WO2017200358A1 - Composition for adsorbing radioactive cesium and preparation method therefor - Google Patents

Composition for adsorbing radioactive cesium and preparation method therefor Download PDF

Info

Publication number
WO2017200358A1
WO2017200358A1 PCT/KR2017/005263 KR2017005263W WO2017200358A1 WO 2017200358 A1 WO2017200358 A1 WO 2017200358A1 KR 2017005263 W KR2017005263 W KR 2017005263W WO 2017200358 A1 WO2017200358 A1 WO 2017200358A1
Authority
WO
WIPO (PCT)
Prior art keywords
cesium
prussian blue
alginate
cellulose
adsorbent
Prior art date
Application number
PCT/KR2017/005263
Other languages
French (fr)
Korean (ko)
Inventor
허윤석
장성찬
최상락
이일송
김성현
조완섭
노창현
강성민
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160061471A external-priority patent/KR101886646B1/en
Priority claimed from KR1020170029670A external-priority patent/KR102052668B1/en
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Publication of WO2017200358A1 publication Critical patent/WO2017200358A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present invention relates to a radioactive cesium adsorption composition
  • a radioactive cesium adsorption composition comprising a layered clay composite bonded with alginate, encapsulated in Prussian blue, and a method for preparing the same.
  • the present invention also relates to a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue and a method for preparing the same.
  • radioactive iodine has a relatively short half-life of about 8 days
  • radioactive cesium has a very long half-life of 30 years.
  • Cesium has similar chemical properties to potassium and is concentrated in muscles when absorbed, resulting in immune deficiency and various cancers (sterility, bone marrow cancer, lung cancer, thyroid cancer). , Breast cancer, etc.).
  • radioactive cesium contaminated with soil is in the form of cesium ions (Cs + ), and is strongly bonded to clay, organic matter, inorganic matters, etc., and it is very difficult to recover. There is a limit to the selective adsorption because of the low concentration.
  • Hydrogels are hydrophilic polymers with a three-dimensional network structure that can swell without dissolving in water and contain a large amount of water in the structure.They are thermodynamically stable after swelling in aqueous solution and also due to their unique hydrophilicity and flexibility It is widely used in the field.
  • hydrogels are used in biomaterials and drug delivery systems such as soft lenses, biosensors, artificial muscles, and the like.
  • Prussian blue is a royal blue dye which has been used for the selective adsorption of radioactive cesium.
  • Prussian blue is a hydrate of iron ferrocyanide that reduces the biological half-life of 137 Cs from 110 days to 30 days.
  • the Industrial Technology Research Institute a Japanese independent administrative corporation, developed Prussian blue nanoparticles that show selective adsorption to cesium, and developed various types of cesium adsorbents that selectively adsorb cesium in contaminated or leachate contaminated with radioactive cesium.
  • Prussian blue produced by the precipitation method has a problem that it is difficult to recover it in an open environment because it forms a stable colloidal suspension when contacted with water as a fine powder.
  • Korean Patent Publication No. 10-2005-120312 discloses the selective adsorption of radioactive cesium or strontium in radionuclides by adsorbing hexacyano iron (II) anion to anion exchange resin and adsorbing Co, which is a transition metal. Possible ion exchangers are disclosed. However, the ion exchanger disclosed in Patent Literature 1 has a limitation in adsorbing cesium distributed at low concentration in radioactive waste liquid or water with selective and high efficiency.
  • II hexacyano iron
  • Korean Patent Publication No. 10-1172247 discloses first decontamination to convert radioactive carbon in the form of ions in radioactive waste resin into radioactive carbon dioxide using an acidic solution, and remove the radioactive carbon dioxide by adsorbing the radioactive carbon dioxide to the composition for adsorption of radioactive carbon dioxide. And radionuclides in the first decontaminated waste resin in the first decontamination step and radionuclides dissociated in the acidic solution using supercritical carbon dioxide and protonated carbon dioxide metal material extraction aids (Co, Cs ) And a second decontamination step of extraction and removal with a compound combined with a metal material extraction aid), and a drying step of heating and drying the waste resin decontaminated in the first and second decontamination steps.
  • a decontamination method has been proposed, the method also has a limitation in adsorbing radioactive cesium in a selective and highly efficient manner.
  • the present invention is to provide a composition for radioactive cesium adsorption, and a method for preparing the same, comprising a layered clay composite combined with alginate and encapsulated Prussian blue in the composite.
  • the present invention is to provide a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
  • An object of the present invention is to provide a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
  • Another object of the present invention is to provide a method for producing a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
  • Still another object of the present invention is to provide a method for decontaminating radioactive cesium using the cesium adsorbent.
  • Still another object of the present invention is to provide a method for decontaminating radioactive cesium in vivo using the cesium adsorbent.
  • the present invention provides a layered clay composite bonded with alginate and a composition for radioactive cesium adsorption comprising encapsulated Prussian blue in the composite.
  • the present invention comprises the steps of (1) preparing an alginate solution mixed with Prussian blue; And (2) adding the alginate solution to the layered clay solution functionalized with an aminopropyl group to form a hydrogel bead.
  • the present invention also provides a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
  • the present invention also provides a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
  • the cesium adsorbent according to the present invention exhibits properties of biocompatibility, bioabsorbability and biodegradability.
  • the cesium adsorbent according to the present invention may be a decontamination agent for decontamination of cesium in vivo.
  • the cesium adsorbent according to the present invention may have a diameter of 1 to 5 mm and Prussian blue containing 8 to 20% by weight.
  • the cesium adsorbent according to the present invention may be a Prussian blue loaded in the three-dimensional porous cellulose hydrogel.
  • the Prussian blue of the cesium adsorbent according to the present invention may be a porous material having a particle size of 10 to 200 nm.
  • the present invention also provides a method for preparing a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue, comprising the following steps:
  • the present invention comprises the steps of ingesting the cesium adsorbent described above to mammals having cesium in vivo; And adsorbing cesium; provides a method for desalting radioactive cesium in vivo.
  • the present invention comprises the steps of administering the cesium adsorbent to a solution containing radioactive cesium; And adsorbing cesium; provides a method for decontaminating radioactive cesium.
  • the layered clay composite combined with alginate, encapsulated in Prussian blue according to the present invention adsorbs radioactive cesium ( 137 Cs) more efficiently and selectively than conventional Ca-alginate due to its structural specificity, excellent mechanical strength and large surface area. can do. Therefore, it can be usefully used to remove radioactive cesium in radioactively contaminated rivers, rivers, lakes, wetlands and the like.
  • the cesium adsorbent according to the present invention can be prepared by a simple and economical method, as well as a method of adsorbing and recovering the cesium in a batch method, the cesium adsorbent can be removed by continuously adsorbing the cesium by filling the column with a contaminant. It can be industrially advantageous. In addition, even under conditions containing acid, base, high temperature, low temperature, and enzyme, decomposition or deformation of the cellulose hydrogel as a support does not occur, so that the supported Prussian blue is not eluted, and it is eco-friendly, biocompatibility, bio non-adsorption and bio Since it exhibits non-degradable properties, it can be usefully applied as a biological decontamination agent.
  • P-MSC pomegranate-micro scavenger cage
  • FIG. 2 shows a scanning electron microscope (SEM) image of a pomegranate-like micro scavenger cage (P-MSC).
  • P-MSC pomegranate-like micro scavenger cage
  • FIG. 3 shows images and features of Ca-alginate and micro scavenger cages (MSCs).
  • SEM scanning electron microscope
  • FIG. 3 shows images and features of Ca-alginate and micro scavenger cages (MSCs).
  • SEM scanning electron microscope
  • FIG. 3 shows images and features of Ca-alginate and micro scavenger cages (MSCs).
  • SEM scanning electron microscope
  • FIG. 3 shows images and features of Ca-alginate and micro scavenger cages (MSCs).
  • Figure 4 is a diagram showing the adsorption isotherm and kinematic data of Ca- alginate, MSC and P-MSC according to the concentration of cesium, where (a) is experimental data of Ca-alginate, MSC and P-MSC, Langmuir Fitting curves (solid line), and Freudlicht fitting curves (dotted line), (b) represents Langmuir's linear model, (c) represents Freindrich's linear model, and (d) P Adsorption kinetics of -MSC is shown (inset is pseudo-second order model).
  • FIG. 5 is a diagram showing the partition coefficient (K d ) and cesium ion selectivity of Ca-alginate, MSC and P-MSC.
  • K d partition coefficient
  • a) represents a K d value of Ca- alginate, MSC and the P-MSC
  • (b) is competition of the cations (Na +, K +, Ca 2 +, Mg 2 +) and Cs ions in the presence of water Removal efficiency (%) is shown.
  • FIG. 6 is a diagram showing the removal efficiency (%) of radioactive cesium ( 137 Cs) using Ca-alginate, MSC and P-MSC.
  • Figure 7 shows the schematic diagram of the adsorption functionalization technology through nanoparticles containing.
  • FIG. 12 is a schematic of the use as a process filler. (a) is a schematic image and (b) is an industrial filler image produced.
  • FIG. 13 is a view schematically illustrating a process of preparing a cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
  • FIG. 14 is a diagram schematically illustrating the gelling mechanism of cellulose carrying Prussian blue according to an embodiment of the present invention.
  • XRD 15 is a result of analyzing cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention by X-ray diffraction spectroscopy (XRD). to be.
  • cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention analyzed by Fourier transform infrared spectroscopy (FT-IR) The result is.
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 17 is a result of analyzing cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 18 is a view showing the results of observing the surface (A) and the cross-section (B) of the cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention through a scanning electron microscope.
  • FIG. 19 is an absorbance graph for checking the content of Prussian blue according to an embodiment of the present invention.
  • (a) is a calibration curve and
  • (b) is an absorbance result of Example 2.1.
  • 20 is a cesium adsorption isotherm experiment of a cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention.
  • 20 (a) is an isothermal adsorption test in water
  • FIG. 20 (b) is an isothermal adsorption test result in artificial intestinal fluid.
  • 21 is a adsorption kinetics experiment of cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention.
  • 21 (a) shows the adsorption kinetics experiment in water
  • FIG. 21 (b) shows the adsorption kinetics experiment in artificial intestine.
  • FIG. 23 is a result of evaluating the non-extraction characteristics of Prussian blue in an artificial biological liquid of cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
  • 25 is a result of evaluating the enzyme stability of cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
  • 26 is a result of evaluating the enzyme stability of the cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
  • 27 is a process in which radioactive cesium leaked due to a nuclear power plant accident and dirty balm is diffused into nature and introduced into the body.
  • the bioinfective agent of the present invention is orally administered to remove the radioactive cesium in the body to induce excretion into the body.
  • FIG. 28 is a diagram showing the body behavior of the biocontrast agent.
  • Orally administered biological decontamination agent removes radioactive cesium in the body by adsorbing radioactive cesium through the stomach and exiting the body through feces.
  • Prussian blue supported in the biological decontamination agent adsorbs cesium by ion exchange method and proton (hydrogen cation) exchange method.
  • the present invention provides a layered clay composite bonded with alginate and a composition for radioactive cesium adsorption comprising encapsulated Prussian blue in the composite.
  • the present invention forms a layered clay shell combined with alginate to remove cesium, which is a kind of radioactive material, and encapsulates Prussian blue in the shell to efficiently adsorb cesium present in radioactive wastewater.
  • cesium which is a kind of radioactive material
  • the present invention uses layered clay to remove radioactive cesium which is inevitably generated during nuclear power generation or nuclear reaction.
  • the layered clay means that the main component of the mineral is a layered silicate (phyllosilicate) mineral, and may be a natural or synthetic mineral composed of a plate-like layer. Specifically, it may be smectite, kaolinite, montmorillonite, bentonite, hectorite, fluoride hectorite, Weidelite, saponite, nontronite, vermiculite, macadamite, mica and the like.
  • a layered silicate (phyllosilicate) mineral may be a natural or synthetic mineral composed of a plate-like layer. Specifically, it may be smectite, kaolinite, montmorillonite, bentonite, hectorite, fluoride hectorite, Weidelite, saponite, nontronite, vermiculite, macadamite, mica and the like
  • the layered clay may be functionalized by a positively charged functional group, or functionalized with an aminopropyl group according to one embodiment.
  • the aminopropyl group can be positively charged to interact with a negatively charged material to form a complex.
  • the alginate may have the salt (salt), and means hyeongtaeeul, Ca 2 +, gelation (gellation) characteristics in the aqueous solution of polyvalent ions, such as Mg 2 + melting of alginate (alginic acid). This is because the gel has high mechanical strength due to the electrostatic attraction between the carboxylate group and the polyvalent ion of alginate.
  • alginate and layered clay may be crosslinked to form a gel.
  • the surface of the alginate can be charged with CO 2 ⁇ to interact with the layered clay charged with NH 2+ to form a strong complex.
  • the layered clay composite combined with the alginate may be spherical and have an average diameter of 400 ⁇ m to 600 ⁇ m.
  • the composite may have a wide BET surface area of 40-50 m2 / g compared to the Brunauer-Emmett-Teller (BET) surface area of 12.3 m2 / g of the conventional Ca-alginate, thereby exhibiting excellent cesium adsorption ability. .
  • the Prussian blue is a blue dye material and is a hydrate of iron ferrocyanide. It is used as an emergency medicine when contaminated with radioactive cesium ( 137 Cs), and when Prussian Blue is administered, the biological half-life of cesium ( 137 Cs) is reduced from 110 days to 30 days by chemically binding to cesium to promote in vitro discharge. Let's do it.
  • the shape of the Prussian blue may be hollow, mesoporous, or mesocrystal, and the like, but is not limited thereto.
  • the reason for encapsulating the Prussian blue in the alginate-layered clay shell in the present invention is that when Prussian blue having adsorptive capacity is used in the form of fine particles to remove cesium contained in the wastewater or groundwater, the wastewater treatment process The strength is low, and it is intended to prevent such unreasonable matters, since it is leaked to the outside together with the waste water, and not only causes secondary pollution, but also becomes fundamentally impossible to recover and reuse after the treatment process.
  • the cesium may be 137 Cs, 135 Cs, or 134 Cs, and the like, preferably 137 Cs.
  • the 137 Cs is a major radioisotope generated during fission, and has a half life of 30.17 years.
  • the present invention comprises the steps of (1) preparing an alginate solution mixed with Prussian blue; And (2) adding the alginate solution to the layered clay solution functionalized with an aminopropyl group to form a hydrogel bead.
  • Step (1) is a step of preparing an alginate solution in which Prussian blue is mixed by dropwise adding the Prussian blue suspension to the alginate solution.
  • the present invention includes preparing a alginate solution by adding sodium alginate to deionized water in order to use alginate as an organic carrier capable of immobilizing a substance adsorbing cesium ions.
  • the Prussian blue suspension can then be mixed with the alginate solution.
  • the solvent of the alginate solution is water, dichloromethane, tetrachloroethane, dimethylacetamide, dimethylformamide, chloroform, methylene chloride, ethyl acetate, methanol, ethanol, hexane, acetonitrile, toluene, benzene, carbon tetrachloride, pentane, acetone, Dimethyl sulfoxide, tetrahydrofuran, dimethylformaldehyde and the like, preferably deionized water.
  • step (2) the alginate solution in which Prussian blue is mixed is added to the layered clay solution functionalized with an aminopropyl group to form hydrogel beads.
  • an alginate-layered clay composite is prepared by mixing the layered clay solution functionalized with the aminopropyl group to an alginate solution mixed with Prussian blue used as a cesium adsorbent. While mixing the layered clay solution with respect to the alginate solution, it is preferable to add the alginate and the layered clay in a weight ratio of 1: 1 to 1: 4, and the mixture is preferably kneaded uniformly.
  • the alginate and the layered clay are added at a ratio of 1: 1 or less, the adsorption performance of cesium ions of the final adsorbent may be poor, and when the alginate and the layered clay are added at a ratio of 1: 4 or more, the final Although the adsorption performance of cesium ions of the adsorbent is very good, it is difficult to make the adsorbent into the shape of beads, and it may be difficult to prepare the adsorbent into a solid having a constant shape.
  • the present invention provides a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
  • the radioactive cesium adsorbent is structurally stable, has a large BET surface area, and has a long time in radioactive contaminated wastewater such as charged, river, lake, etc., and has the advantage of removing radioactive cesium.
  • the polymer is strongly connected through the glycosidic bond of the cellulose polymer chain and the hydrogen bond between the polymer and the inside of the polymer, so that the Prussian blue can be well supported in aqueous solution.
  • a cesium adsorbent comprising a cellulose hydrogel carrying Prussian Blue which can be effectively used for decontamination.
  • Prussian blue of the present invention is a blue dye material whose main component is potassium hexacyano iron (II) phosphate, and is a hydrate of iron ferrocyanide. It is used as an emergency medicine when contaminated with radioactive cesium ( 137 Cs), and when Prussian Blue is administered, the biological half-life of cesium ( 137 Cs) is reduced from 110 days to 30 days by chemically binding to cesium to promote in vitro discharge. Let's do it.
  • the form of the Prussian blue may be porous, but is not limited thereto, and may be used as long as it is a conventional Prussian blue, and may adjust the particle size, structural or morphological characteristics of the Prussian blue, and / or may be included in the cesium adsorbent. In order to improve the dispersibility of the Prussian blue may be used in the form of a polymer coating.
  • the “porous” is a solid having a lot of small gaps on the inside or the surface of the gap through the outside, there may be columnar, for example, mesoporous (mesoporous) or hollow (hollow) structure It includes, but is not limited to this, Preferably the particle size may be 10 to 200 nm.
  • the adsorption rate of radioactive cesium is particularly improved, which is preferable.
  • the dispersibility is particularly excellent in the cellulose hydrogel
  • a cesium adsorbent having improved adsorption rate of cesium can be prepared, and is separated from the three-dimensional porous cellulose hydrogel structure. It is eco-friendly because it is not discharged.
  • Cesium (Cesium) of the present invention may be 137 Cs, 135 Cs, or 134 Cs, etc., preferably 137 Cs.
  • the 137 Cs is a major radioisotope generated during nuclear fission, and is a radioactive substance released to the outside environment by an accident of a nuclear power plant, and has a half-life of 30.17 years.
  • adsorption refers to a phenomenon in which molecules of a gas or a solution adhere to a solid surface, and a solid material that receives adsorption is called an adsorbent.
  • the adsorbent acts as an excellent adsorbent because the surface area adsorbed per unit volume is wide.
  • the cellulose hydrogel loaded with Prussian blue particles according to the present invention can adsorb radioactive cesium at high efficiency and high selectivity.
  • the hydrogel of the present invention is a hydrophilic polymer material having a three-dimensional network structure that can swell without dissolving in water and contain a large amount of water in the structure, and can absorb at least 20% of the total weight of water.
  • hydrogel swells The reason why the hydrogel swells is that the osmotic pressure between the functional groups such as -OH, -COOH, -CONH, -CONH 2 , -SO 3 H and water in the polymer chain, capillary action, and the hydrogel is dissolved in water The reason for not doing so is generally due to the covalent bond structure between polymer chains. Hydrogels are thermodynamically stable after swelling in aqueous solution and have mechanical and physicochemical properties that correspond to intermediate forms of liquids and solids.
  • the cellulose of the present invention constitutes a plant fiber as a main component of the cell wall of a plant, and refers to a polymer compound in which D-glucose is bound in a straight chain by a glycosidic bond of (1 ⁇ 4) - ⁇ -type.
  • the cellulose may be preferably alpha-cellulose.
  • the alpha-cellulose means carbohydrates which are not dissolved in a 17.5% NaOH aqueous solution at 20 ° C., and are actual celluloses.
  • cesium adsorbent since it is a cellulose-based hydrogel, it has no toxicity or irritation, and has biocompatibility and high swelling power, and other types of hydrogels whose tensile strength is greatly weakened after swelling. Unlike gel, it has strong tensile strength even after swelling, so it can effectively support Prussian blue.
  • polymers such as alginic acid, chitosan, and carboxymethyl cellulose, which are conventionally used in various fields, are crosslinked in an aqueous solution containing +2 and + trivalent cations. While it takes a few hours to form a hydrogel, the adsorbent of the present invention is to drop the cellulose solution in which Prussian blue is dispersed only in water to gel in a few minutes, there is an advantage that it can be easily produced in a short time.
  • the reason why the Prussian blue is supported on the cellulose hydrogel is that when the Prussian blue having adsorptive capacity is used in the form of fine particles, the mechanical strength is weak in the wastewater treatment process, so that it flows out together with the wastewater. Not only does it cause secondary pollution, but it is inherently impossible to recover and reuse it after the treatment process, so it is to prevent such unreasonable matters in advance.
  • Prussian blue is toxic in vivo, it is preferable to carry it on a carrier for biological decontamination.
  • the cesium adsorbent including the same is a biological decontamination agent for adsorbing cesium in the digestive tract to be discharged into the body after oral administration of Especially as preferred
  • the cesium adsorbent according to the present invention can be gelated simply by making a drop of cellulose carrying Prussian blue in distilled water to make a liquid droplet, which can be produced simply and economically, and the glycosidic bond of the cellulose polymer chain Since the polymer is strongly connected through the hydrogen bond (hydrogen bond) between the inside of the polymer and there is an advantage that it can support the Prussian blue well in the aqueous solution and maintain the shape and strength of the hydrogel.
  • the cesium adsorbent according to the present invention can be removed by continuously adsorbing cesium after filling the column as well as the method of recovering the adsorbent after batch adsorption of cesium in the lake or sea, acid, base, high temperature, low temperature or enzyme Since the cellulose hydrogel does not decompose or deform even under the conditions containing, the supported Prussian blue is not eluted, which is pointed out as a problem of the cesium adsorbent using the conventional Prussian blue. Free from problems
  • the cesium adsorbent of the present invention may further include other compounds having cesium adsorption capable in addition to the Prussian blue supported on the cellulose hydrogel.
  • the cesium adsorbent may be used in a free form or immobilized in a carrier or the like.
  • the composition may also be used to fix radioactive cesium by immobilizing the composition on a carrier.
  • the method of immobilizing the adsorbent on a carrier or the like is not particularly limited and various applications are possible. For example, chemical methods such as physical methods such as adsorption and encapsulation, covalent bonding, and crosslinking can be used.
  • the present invention (1) cellulose solution manufacturing step
  • Step (1) is to prepare a cellulose solution, wherein the cellulose is preferably ⁇ -cellulose.
  • ⁇ -cellulose is a polymer having D-glucose as a monomer, and has a beta (1 ⁇ 4) glycoside bond between monomers.
  • the hydroxyl group (hydroxyl group, -OH) included in cellulose induces strong hydrogen bonds between polymers and polymers, thereby making them insoluble in water.
  • Step (1) dissolves 2 to 4 parts by weight of cellulose based on 100 parts by weight of a solution (TBAA / DMSO) in which 1.5 to 2.3 parts by weight of tetrabutylammonium acetate (TBAA) is dissolved per 10 parts by weight of dimethyl sulfoxide. It may be.
  • TBAA tetrabutylammonium acetate
  • the TBAA / DMSO solution used to dissolve the cellulose may be an ionic liquid (IL) in which TBAA (tetrabutylammonium acetate) is ionized with tetrabutylammonium cation and acetate anion on DMSO (dimethyl sulfoxide).
  • IL ionic liquid
  • Acetate anion is hydrogen-bonded to the hydroxyl group of the cellulose to inhibit the self-hydrogen bond of the polymer through which the cellulose is dissolved in the TBAA / DMSO solution.
  • Bipolarity DMSO is preferred because it can be used as a solvent for the reaction of hydrophobic cellulose and hydrophilic acetate anion.
  • Step (2) may be to disperse by adding 0.5 to 1 part by weight of Prussian blue based on 10 parts by weight of cellulose solution. If the content of Prussian blue is less than the above range, cesium removal efficiency is low, and if it exceeds the above range, Prussian blue may be eluted, which is not preferable.
  • the step (3) may be to drop the cellulose solution in which Prussian blue is dispersed to form a hydrogel having a particle size of 1 to 5 mm, and to prepare a hydrogel having a precise size.
  • a Syringe Pump can be used.
  • Syringe pumps are pumps for injecting drugs such as boosters, antihypertensives, anticancer agents, labor promoting agents, parenteral nutrition and anesthetics, and are used to inject the correct amount of drug per hour.
  • drugs such as boosters, antihypertensives, anticancer agents, labor promoting agents, parenteral nutrition and anesthetics, and are used to inject the correct amount of drug per hour.
  • the cesium adsorbent according to the present invention exhibits properties of biocompatibility, bioabsorbability and biodegradability, and thus may be usefully applied to decontamination of cesium in vivo.
  • the present invention comprises the steps of ingesting the cesium adsorbent to a mammal having cesium in vivo; And adsorbing cesium; provides a method for desalting radioactive cesium in vivo.
  • the mammal may be a mammal including a human or a mammal except a human.
  • the present invention comprises the steps of administering the cesium adsorbent to a solution containing radioactive cesium; And adsorbing cesium; provides a method for decontaminating radioactive cesium.
  • AIP clay 3-Aminopropyl functionalized iron phyllosilicate clay
  • the reaction was further reacted overnight, the precipitated aminopropyl functionalized iron phyllosilicate (AIP) was centrifuged at 6,000 g for 10 minutes, and the pellet material was repeatedly centrifuged and washed with 200 mL ethanol solution. The product was dried in an oven at 50 ° C. for 24 hours and powdered with a mortar and pestle before use.
  • AIP precipitated aminopropyl functionalized iron phyllosilicate
  • AIP clay (1.5 g) according to Example 1.1-1 was dissolved in deionized water (30 ml) to prepare an AIP clay solution.
  • water-soluble sodium alginate was dissolved in deionized water (10 ml, 2 wt%) to prepare an alginate solution, and then the alginate solution and 50 ⁇ l Prussian Blue (PB) nanoparticle suspension (1M) were mixed to prepare Prussian Blue.
  • PB Prussian Blue
  • Mixed alginate solutions were prepared. Thereafter, the alginate solution mixed with the Prussian blue was added dropwise to the AIP clay solution.
  • the resulting hydrogel was shaken for 1 hour and then maintained for 24 hours. After collecting the hydrogel beads, deionized water was washed and dried in a freeze dryer for 1 day to prepare a pomegranate-micro scavenger cage (P-MSC).
  • P-MSC pomegranate-micro scavenger cage
  • CaCl 2 flakes (0.2 g) were dissolved in deionized water (10 ml) and stirred for 1 hour. Separately, water-soluble sodium alginate was dissolved in deionized water (10 ml, 2 wt%) to prepare an alginate solution. Thereafter, the alginate solution prepared above was added dropwise to the CaCl 2 solution. The resulting hydrogel was shaken for 1 hour and then maintained for 24 hours. After collecting the hydrogel beads, deionized water was washed and dried in a freeze dryer for 1 day. In the following test examples, Ca-alginate prepared according to the above was used.
  • P-MSC pomegranate-like micro scavenger cage
  • AIP 3-aminopropyl functionalized iron phyllosilicate
  • PB Prussian blue
  • the unit structure of the AIP clay has a brucite layer of a central octahedral plate with superposed silica tetrahedral plates at both ends.
  • AIP clays are organic-inorganic layered materials of trioctahedral iron phyllosilicates having covalently bonded aminopropyl groups occupying interlayer regions.
  • FIG. 1 Images and features of pomegranate-micro scavenger cage (P-MSC) are shown in FIG. 1.
  • P-MSC pomegranate-micro scavenger cage
  • AIP clay is positively charged nanoparticles, and NH 2 of AIP clay crosslinked with alginate chains to form a gel.
  • the alginate gel formed supports the AIP clay network and forms hydrogel beads.
  • Prussian blue (PB) was used as the adsorbent material and encapsulated in the MSC.
  • PB Prussian blue
  • the surface of the AIP clay is charged with NH 2+ to form a strong complex with the alginate chain charged with CO 2 ⁇ .
  • AIP may also penetrate into the polymer network of alginate.
  • XPS results show distinct peaks in C 1s (286.88), O 1s (533.28), Ca 2p (348.48), Fe 2p (713.68 eV), and Si (180 and 150 eV). Indicated. XPS results of the P-MSC represents the surface of the P-MSC indicated a peak at C 1s, O 1s, Si 2s , Si 2p, and Fe 2p (713.68 eV) without Ca 2 + that covers the AIP clay nanoparticles It was. It can also be seen that the peak at 401.9 eV originates from the N of Prussian blue (PB) nanoparticles ([Fe (CN) 6 ] 4- ).
  • PB Prussian blue
  • the AIP clay-alginate shell encapsulates the adsorbent Prussian blue (PB) and protects Prussian blue (PB) from AIP clay-alginate beads. It can be seen that it plays an important role in the release. SEM images also showed that the AIP clay-alginate beads were spherical and had a diameter of approximately 500 ⁇ m.
  • AIP clay is (i) a reservoir of cations for crosslinking with alginate chains, and (ii) has versatile adsorption properties with various species.
  • the structure, morphology and surface properties of the pomegranate-like micro scavenger cage (P-MSC) according to Example 1.1 were analyzed by scanning electron microscopy (SEM, S-4800SE). Here, SEM was performed using an acceleration voltage of 15 kV.
  • FIG. 2 Scanning electron microscope (SEM) images of P-MSCs are shown in FIG. 2.
  • (a) represents the surface morphology of the P-MSC
  • (b) represents the matrix interaction images of the surface and interior of the P-MSC
  • (c) represents the cross-sectional structure of the P-MSC
  • (d) Represents the internal matrix form of the P-MSC.
  • Inset is a high resolution image.
  • AIP clay nanoparticles have a diameter of 30-50 nm and are densely packed on the surface of P-MSC.
  • This alginate chains are _ CO 2 and CO - because has a number of carboxyl groups, such as is charged with negative (negative) to the AIP clay and strong interaction positively charged (positive).
  • P-MSC pomegranate-like micro scavenger cage
  • FIG. 3 Images and features of Ca-alginate and micro scavenger cages (MSCs) are shown in FIG. 3.
  • SEM scanning electron microscope
  • FIG. 3 shows gelation mechanism of Ca-alginate
  • c shows gelation mechanism of Ca-alginate
  • d shows scanning electron microscope (MS) of MSC
  • f shows gelation mechanism of MSC
  • g shows FT-IR peaks of Ca-alginate and P-MSC
  • (h) shows Ca-alginate
  • MSC and P-MSC A nitrogen adsorption / desorption isotherm curve is shown
  • (i) shows UV-Vis. It shows the spectrum.
  • the MSC has many macropores, but exhibited excellent mechanical properties by forming a three-dimensional network. Porosity is closely related to mechanical properties and related to the adsorption capacity of the radioactive cesium adsorbent.
  • Figure 3 (c) and 3 (f) shows the gelation mechanism of the Ca 2 + and AIP clay.
  • the alginate chain _ CO 2 and CO - can be seen that the number of carboxyl groups having a negative (negative) the AIP clay with strong interaction is charged positively charged (positive) the same as.
  • the FT-IR spectra of Ca-alginate and P-MSC showed a broad band at 3447.1 cm ⁇ 1 corresponding to the asymmetric stretching vibration and the -OH stretching vibration of the carboxyl group.
  • bands near 1637.3.1, 1429.9 and 1085.7 cm -1 corresponding to CO 2 _ and CO - stretching vibrations appeared, and strong and wide bands near 3447.2 cm -1 corresponding to -OH stretching vibrations appeared.
  • the band at 2930.3 cm -1 corresponds to the CH asymmetric stretching vibration.
  • BET Brunauer-Emmett-Teller
  • the BET surface areas of Ca-alginate and MSC were found to be 12.3 and 15.6 m2 / g, respectively.
  • the BET surface area, pore volume and average pore diameter of the P-MSC were found to be 44.5 m 2 / g, 0.3656 cm 3 / g, and 31.34 nm, respectively. From the above results, it can be seen that P-MSC has a larger BET surface area than Ca-alginate due to the formation of a three-dimensional network, thereby exhibiting excellent cesium adsorption capacity.
  • P-MSC not only has a large BET surface area, but also forms a three-dimensional network that is mechanically stable and can be maintained in seawater for a long time to remove radioactive cesium.
  • Test Example 1.4 Adsorption performance evaluation of P-MSC using adsorption isotherm
  • P-MSC pomegranate-like-micro scavenger cage
  • Adsorption isotherms and kinematic data of Ca-alginate, MSC and P-MSC according to the concentration of cesium are shown in FIG. 4.
  • (a) represents experimental data of Ca-alginate, MSC and P-MSC, Langmuir fitting curves (solid line), and Freindley fitting curves (dashed line), and
  • (b) represents Langmuir's linear model
  • (c) shows a linear model of Freinthrich
  • (d) shows the adsorption kinetics of P-MSC (inset is pseudo-second order model).
  • the adsorption performance (mg / g) of Ca-alginate, MSC and P-MSC with respect to the cesium concentration (mg / L) after equilibrium is cesium ion when the initial concentration of cesium (Cs) is 30 ppm or less. It appeared to increase rapidly with increasing concentration. This is because there are sufficient adsorption active sites available. However, at higher initial concentrations of cesium, the adsorption performance increased slowly. In addition, Langmuir and Freindley adsorption isotherm models were applied to fit the adsorption data at equilibrium.
  • the Langmuir model represents a monolayer adsorption process of cesium (Cs) on a uniform adsorbent surface, assuming that all active sites are equal and independent.
  • Cs cesium
  • q e and q max represent the equilibrium adsorption performance and the monolayer maximum adsorption performance (mg / g), respectively, and K L is a constant for the affinity between the adsorbent and the adsorbed material.
  • the Freintrich model is an empirical equation describing multilayer adsorption with several types of adsorption sites on the surface of the adsorbent.
  • the linear and nonlinear equations are as follows.
  • K F and n are Freudlicht constants for multilayer adsorption performance, respectively.
  • Adsorption performance of pomegranate-like-micro scavenger cage (P-MSC) according to Example 1.1 was evaluated using adsorption kinetics.
  • Kinematic data were analyzed using the POD-1 model and POD-2 model.
  • the first water reaction rate equation is as follows.
  • q e and q t each represent the adsorption capacity (mg / g) at equilibrium at time t, and k 1 is the water first order reaction constant (L / min).
  • the water secondary reaction rate equation is as follows.
  • q e and q t each represent the adsorption capacity (mg / g) at equilibrium at time t, and k 2 is the water secondary reaction constant (g / mg ⁇ min).
  • the water-second-order kinetic model was better fitted to the experimental results than the water-first-order kinetic model, which showed that the adsorption rate of P-MSC was It depends on the active site rather than the cesium concentration within.
  • the rate determining step is also controlled by chemisorption associated with proton exchange between P-MSC and cesium ions.
  • Test Example 1.6 Evaluation of partition coefficient (K d ) and cesium (Cs) selectivity of P-MSC
  • the partition coefficient (K d ) and cesium ion selectivity of Ca-alginate, MSC and P-MSC are shown in FIG. 5.
  • (a) represents a K d value of Ca- alginate, MSC and the P-MSC
  • (b) is competition of the cations (Na +, K +, Ca 2 +, Mg 2 +) and Cs ions in the presence of water Removal efficiency (%) is shown.
  • the selectivity experiment was performed using 10 mg of P-MSC and 5 mL of cesium solution (0.25 ppm, 1.88 ⁇ 10 ⁇ 3 mmol / L), and the initial and residual concentrations of cesium (Cs) were measured using an inductively coupled plasma mass spectrometer ( ICP-MS).
  • partition coefficient K d was defined as follows.
  • C o and C e represent the initial and equilibrium concentrations of cesium in the solution
  • V represents the volume of cesium solution
  • M represents the weight of the adsorbent
  • the partition coefficients (K d ) of Ca-alginate and MSC were 145.1 and 21937.5, respectively, and the partition coefficient (K d ) of P-MSC was 34317.4, which is 236 higher than that of Ca-alginate. Times higher.
  • distilled water in 5mL Na +, K +, Ca 2 cesium adsorption performance of the P-MSC in + and 9.4 ⁇ 10 -3 mmol of Mg 2+ concentration appeared to be kept constant without changing.
  • the radioactive cesium ( 137 Cs) removal efficiency (%) of the pomegranate-micro scavenger cage (P-MSC) according to Example 1.1 was evaluated.
  • the removal efficiency (%) of radioactive cesium ( 137 Cs) was defined by the following formula.
  • C o and C e respectively represent the initial and equilibrium concentrations of cesium in the solution.
  • the removal efficiency (%) of radioactive cesium ( 137 Cs) using Ca-alginate, MSC and P-MSC is shown in FIG. 6.
  • 1.0 mg / mL of Ca-alginate, MSC and P-MSC, respectively, were added to a radioactive cesium ( 137 Cs) solution (about 130 Bq / g) and stirred for 12 hours, after which the solution was filtered to radioactive in solution
  • the concentration of cesium ( 137 Cs) was analyzed.
  • the radioactive cesium ( 137 Cs) removal efficiency of Ca-alginate was only 15.05%, but the radioactive cesium ( 137 Cs) removal efficiency of the MSC was 77.04%, and Prussian blue (PB)
  • the radioactive cesium ( 137 Cs) removal efficiency of the encapsulated P-MSC was 99.24%. This result is due to the presence of numerous cesium adsorption sites in P-MSC due to the strong interaction of P-MSC with cesium.
  • Figure 7 shows the schematic diagram of the adsorption functionalization technology through nanoparticles containing.
  • Functionality may be imparted through metal oxide incorporation into the synthesized adsorbent.
  • Metal oxides have various functionalities according to their types and characteristics, and in particular, magnetic nanoparticles can be given a function capable of moving and classifying by magnets.
  • the strength is increased as the metal oxide is added.
  • external cesium (cationic) was easily moved to the inside by the charge and ion gradient of the metal oxide, and thus could be utilized as a technology for improving the adsorption capacity.
  • FIG. 8 shows the internal structure and morphology of the functionalized adsorbent through nanoparticle incorporation. Scanning electron microscopy images were confirmed.
  • (A)-(c) of the figure shows a state in which only Prussian blue particles are incorporated into the polymer bead
  • (d)-(f) are cross-sectional views of the adsorbent in which metal oxide particles are added and functionalized. It was confirmed that 100 nano-sized metal oxide was contained inside, and that the metal oxide was stably contained between the polymer inner layers.
  • the complex of the present invention confirmed the deformation and instability of the material by gamma rays through gamma irradiation from the outside. Compared to the instability of the existing calcium-alginate, the material of the present invention has been shown to be stable to gamma rays as a result of the internally incorporated clay. When irradiated with gamma rays of up to 300 kGy, it was confirmed that there was no leakage of internal substances to the outside.
  • Radioactive adsorbents are used in real seawater environments and must be secured in seawater containing high concentrations of salts.
  • Gelation of alginates by conventional cations is very unstable in various ionic environments of high concentrations of seawater, and it is difficult to use them as adsorbent materials by inducing annealing of alginate polymers.
  • the alginate / clay composite of the present invention induces gelation by clay, thereby ensuring stability in a seawater environment in which high concentrations of cations are present. This was verified by confirming that there was no outflow of the inner material (Prussian blue) when using the complex.
  • FIG. 12 is a schematic of the use as a process filler. It was confirmed that the adsorbent according to the present invention can be used as a filler for process in the form of beads. Since it should be resistant to the gas flow rate and pressure of the adsorbent for the process, it has been confirmed that there is a property that should be stable, and therefore the composite of the present invention can be stably packed column.
  • FIG. 13 shows a process for preparing a cesium adsorbent including a cellulose hydrogel loaded with Prussian blue of the present invention (hereinafter referred to as 'PB-cellulose hydrogel').
  • Step 1 preparing a cellulose (PB-cellulose) solution loaded with Prussian blue
  • TBAA / DMSO solution was used as a solvent to dissolve the ⁇ -cellulose.
  • TBAA obtained by mixing DMSO and TBAA in a mass ratio of 8.5: 1.5 by adding 5.83 g of tetrabutylammonium acetate (TBAA) to 30 ml (33 g) of dimethyl sulfoxide (DMSO) and stirring. After preparing 30 ml of / DMSO solution, 0.793 g of ⁇ -cellulose powder was added to the solution and stirred until completely dissolved to prepare a 2 wt% cellulose solution.
  • DMSO dimethyl sulfoxide
  • PB-cellulose solution was prepared by mixing.
  • a syringe pump was used, which is shown schematically in FIG. 14.
  • Syringe pumps can move fluids at a constant flow rate, allowing for semi-automated processes and obtaining droplets of constant size.
  • the syringe was filled with the PB-cellulose solution prepared in step 1 of Example 2.1, and then mounted in a syringe pump. Set the flow rate of the syringe pump to 0.3 ml / min, and place a beaker containing 300 ml of distilled water under the discharge port so that the PB-cellulose solution discharged dropwise from the syringe outlet reacts with water to form a hydrogel. Let go.
  • PB-cellulose droplets reacted with water in the beaker to cure immediately, and the hardened PB-cellulose beads were immersed in distilled water for 2 hours to absorb water.
  • a beaker containing 300 ml of distilled water was placed at the outlet of the syringe to remove any impurities that might remain in the liquid drop.
  • the flow rate of the syringe pump was then operated at 0.3 ml / min to allow the PB-cellulose solution to fall into the beaker at the outlet of the syringe.
  • the PB-cellulose droplets that flowed out were immediately cured when dropped into the beaker, and soaked in PB-cellulose beads in distilled water for 2 hours to absorb water.
  • PB-cellulose hydrogel was prepared by washing several times and freeze-drying to remove impurities that may remain in the droplets.
  • Hydrogel was prepared in the same manner as in Example 2.1 using a cellulose solution not carrying Prussian blue.
  • Hydrogel was prepared by supporting Prussian blue on an alginate polymer.
  • Hydrogels according to Example 2.1 and Comparative Example 2.1 were subjected to UV spectra, X-ray Diffraction Spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (X-ray). Ray Photoelectron Spectroscopy (XPS) was performed to verify the synthesis of PB-cellulose hydrogel according to the present invention.
  • XRD X-ray Diffraction Spectroscopy
  • FT-IR Fourier transform infrared spectroscopy
  • X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy
  • Example 15 is an XRD analysis result.
  • Comparative Example 2.1 bottom spectrum
  • Example 2.1 showed an amorphous peak shape and peaks at 19.6 ° and 21.6 °, which are inherent XRD characteristic peaks of cellulose.
  • peaks are formed at 17.5 °, 24.9 °, 35.5 °, 39.5 °, 43.5 °, 50.7 °, 54.0 °, and 57.1 °, which are not only characteristic peaks of cellulose but also Prussian blue. You can see it.
  • Example 2.1 confirmed that the Prussian blue is well supported on the cellulose hydrogel.
  • Example 16 shows the results of the FT-IR analysis.
  • Comparative Example 2.1 shows only the characteristic FT-IR peak of cellulose
  • Example 2.1 top spectrum
  • 3430 cm -1 (OH), 2901 cm -1 (CH) which is the characteristic FT-IR peak of cellulose.
  • the peak was found at 2080 cm ⁇ 1 by and 468 cm ⁇ 1 by FeII-CN-FeIII.
  • Example 2.1 is well supported by Prussian blue on a cellulose hydrogel.
  • the Fe—O bond formed at 601 cm ⁇ 1 means that the FeIII of Prussian blue and the hydroxyl group (-OH) of cellulose are bonded.
  • FIGS. 17 (c) and 17 (d) are O1s spectral results of Example 2.1 and Comparative Example 2.1, respectively.
  • Example 2.1 showed peaks of C-C (284.70 eV), C-N (285.02 eV), C-O (286.59 eV), O-C-O (287.74 eV).
  • the C-N peak is a characteristic peak of Prussian blue which does not appear in Comparative Example 2.1.
  • the CO peak of Comparative Example 2.1 is formed at 286.64 eV somewhat higher than the Example, and has a stronger binding energy than Example 2.1, which is the Prussian blue binds to the hydroxy group of the cellulose, the peak of the CO bond is weakened The result is a shift.
  • Test Example 2.2 Confirmation of structure and form of PB-cellulose hydrogel
  • FIG. 18A is an SEM image of the PB-cellulose hydrogel surface
  • FIG. 18B is an SEM image of the PB-cellulose hydrogel cross section.
  • the obtained SEM image confirmed that Prussian blue having a diameter of 30 to 50 nm was tightly packed and supported in cellulose hydrogel, and the total size of PB-cellulose hydrogel was 2 mm spherical.
  • Test Example 2.3 PB content in PB-cellulose hydrogel
  • FIG. 19 (a) is a black line
  • FIG. 19 (b) shows an absorbance value of Example 2.1 as 0.063761.
  • FIG. 21 is an adsorption kinetics experiment
  • FIG. 21 (a) shows the results in water
  • FIG. 21 (b) shows the results in artificial intestinal fluid.
  • 1 g of PB-cellulose hydrogel showed the ability to remove 90% or more of cesium at 0.1 and 1 ppm concentrations contained in 1 L of water in 30 minutes, respectively, with a high concentration of 5 ppm.
  • cesium at a concentration was treated with 2 g of PB-cellulose hydrogel, it was confirmed that more than 90% cesium was removed in 30 minutes.
  • FIG. 21 1 g of PB-cellulose hydrogel showed the ability to remove 90% or more of cesium at 0.1 and 1 ppm concentrations contained in 1 L of water in 30 minutes, respectively, with a high concentration of 5 ppm.
  • 1 g of PB-cellulose hydrogel showed the ability to remove at least 90% of cesium at 0.1 and 1 ppm concentrations contained in 1 L of the artificial intestine solution within 1 hour, respectively.
  • 1.5 g and 2 g of cellulose hydrogels were used to confirm the effect of removing 90% or more of cesium at concentrations of 1 ppm and 5 ppm in 1 L of artificial intestinal fluid, respectively, within 1 hour.
  • Stability was evaluated by confirming that there was no elution of Prussian blue from the PB-cellulose hydrogel of Example 2.1, and compared with the alginate hydrogel loaded with Prussian blue of Comparative Example 2.2.
  • Example 22 shows the results of treatment for 24 hours after the addition of Example 2.1 and Comparative Example 2.2 to distilled water, respectively.
  • the PB-cellulose hydrogel of Example 2.1 had almost no elution of Prussian blue, and thus no color change occurred.
  • the color of the hydrogel was changed to blue due to elution of Prussian blue. Confirmed.
  • PB-cellulose hydrogel of Example 2.1 In vivo environment is poor compared to distilled water to maintain the stability of the hydrogel, such as having a low pH or high pH environment.
  • SGF gastric fluid
  • SIF simulated intestinal fluid
  • FIG. 23 (a) The left side of FIG. 23 (a) is a vial immediately after adding the PB-cellulose hydrogel of Example 2.1 to the artificial biological liquid, and the right side is a vial after 24 hours. After 24 hours, no elution of Prussian blue from the cellulose hydrogel was observed, resulting in no change in color.
  • Figure 23 (b) is the result of measuring the UV absorbance of artificial gastric juice and artificial gastric juice treated with PB-cellulose hydrogel for 24 hours. It was confirmed that no elution of Prussian blue occurred and there was no change in absorbance.
  • Figure 24 (a) is a cytotoxicity assessment for macrophages
  • Figure 24 (b) is a cytotoxicity assessment for enterocytes.
  • Prussian blue nanoparticles were found to drop the cell viability below 50% at a concentration of 0.2 mg / mL, PB-cellulose hydrogel according to Example 2.1 concentration of 1.3 mg / mL The survival rate was over 215%.
  • Prussian blue nanoparticles may be degraded by enzymes, in which case there is a problem of desorbing the absorbed cesium. Therefore, in order to be able to use as a decontamination agent of cesium in vivo, it should not be degraded by intestinal enzymes.
  • the enzyme stability of the PB-cellulose hydrogel of Example 2.1 according to the present invention was evaluated, which are shown in FIGS. 25 and 26.
  • PB-cellulose hydrogel of Example 2.1 did not occur desorption of absorbed cesium, Prussian blue nanoparticles were mutated by serous enzyme, It was confirmed that cesium absorbed was desorbed.
  • FIG. 26 shows the results of evaluating the enzyme stability of cesium adsorbents of Example 2.1 and Comparative Example 2.2, assuming that food stays in the stomach for 2 hours and for 6 hours after simulating human digestion.
  • the adsorbents of Example 2.1 and Comparative Example 2.2 were first treated with gastric juice and then separated, and then treated with artificial intestine (Intenstine) for 6 hours.
  • Comparative Example 2.1 was decomposed by the digestion process of the intestinal fluid and eluted Prussian blue, while Example 2.1 was confirmed that the elution of Prussian blue does not occur in the gastric juice and artificial intestinal fluid.
  • the stability was evaluated by irradiating gamma rays with radiation at doses of 0, 6 and 60 kGy to PB-cellulose hydrogel. This is shown in FIG. As a result of the evaluation, it was confirmed that even after irradiating gamma rays, the elution of Prussian blue did not occur in PB-cellulose, and thus there was no change in color.
  • the cesium adsorbent according to the present invention can be prepared simply and economically a layered clay composite combined with alginate, in which Prussian blue is encapsulated, and can remove radioactive cesium with high efficiency and high selectivity.
  • cellulose hydrogel carrying Prussian blue can be produced simply and economically, and can remove cesium with high efficiency and high selectivity.

Abstract

The present invention relates to: a composition for adsorbing radioactive cesium, containing a layered clay composite coupled to an alginate and having Prussian blue encapsulated therein; and a preparation method therefor. In addition, the present invention relates to a cesium adsorbent comprising a Prussian blue-supported cellulose hydrogel, and a preparation method therefor.

Description

방사성 세슘 흡착용 조성물 및 이의 제조방법Radioactive cesium adsorption composition and preparation method thereof
본 발명은 프러시안 블루가 인캡슐화된, 알지네이트와 결합된 층상점토 복합체를 포함하는 방사성 세슘 흡착용 조성물 및 이의 제조방법에 관한 것이다. The present invention relates to a radioactive cesium adsorption composition comprising a layered clay composite bonded with alginate, encapsulated in Prussian blue, and a method for preparing the same.
또한 본 발명은 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제 및 이의 제조방법에 관한 것이다.The present invention also relates to a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue and a method for preparing the same.
현재, 널리 보급되어 있는 원자로 발전 플랜트에 있어서는, 원자로에서의 핵분열에 의해서 상당한 양의 방사성 부산물의 생성을 수반한다. 이들 방사성 물질의 주된 것은, 방사성 요오드, 방사성 세슘, 방사성 스트론튬, 방사성 세륨 등의 극히 위험한 방사성 동위 원소를 포함하는 핵분열 생성물 및 활성 원소이다. 2011년 3월 일본 후쿠시마 원자력 발전소 사고에 의해 토양이나 동식물, 폐기물 등이 방사선 물질에 오염되어 있어 심각한 환경문제를 야기하고 있다. 원자력 발전소 사고시 발생되는 주요 방사성 물질로는 방사성 요오드와 방사성 세슘 등을 들 수 있다. 방사성 요오드는 반감기가 약 8일로 비교적 짧은데 반해 방사성 세슘은 반감기가 30년으로 대단히 길며, 세슘은 칼륨과 화학적 성질이 비슷하여 흡수시 근육 등에 농축되어 면역력 결핍 및 각종 암(불임증, 골수암, 폐암, 갑상선암, 유방암 등) 등을 유발하는 원인이 된다. Currently, in a widespread nuclear power plant, the nuclear fission in the reactor involves the production of a significant amount of radioactive byproducts. The main ones of these radioactive materials are fission products and active elements containing extremely dangerous radioisotopes such as radioactive iodine, radioactive cesium, radioactive strontium, radioactive cerium and the like. In March 2011, the Fukushima Nuclear Power Plant accident in Japan contaminated soil, plants and wastes with radioactive materials, causing serious environmental problems. The main radioactive materials generated during nuclear power plant accidents include radioactive iodine and radioactive cesium. Radioactive iodine has a relatively short half-life of about 8 days, whereas radioactive cesium has a very long half-life of 30 years. Cesium has similar chemical properties to potassium and is concentrated in muscles when absorbed, resulting in immune deficiency and various cancers (sterility, bone marrow cancer, lung cancer, thyroid cancer). , Breast cancer, etc.).
한편, 원자로 내에서의 핵분열에 의해 생성된 방사성 세슘의 제거 처리 방법으로서는, 무기 이온 교환체나 선택성 이온 교환 수지에 의한 흡착법, 중금속과 가용성 페로시안화물 또는 페로시안화물염 병용에 의한 공침법, 세슘 침전 시약에 의한 화학 처리법 등이 알려져 있다. 그러나, 상술한 처리 방법은, 어느 것도 순환 펌프나 정화조, 또한 각 흡착제를 내장한 충전조 등의 대대적인 설비를 필요로 하고, 또한, 그것들을 가동시키기 위한 막대한 에너지를 필요로 한다. 또한, 토양에 오염된 방사성 세슘은 세슘 이온(Cs+) 형태로, 점토나 유기물, 무기물 등과 강하게 결합되어 있어 회수하는 데 상당히 곤란하며, 하천이나 바다 등을 오염시킨 방사성 세슘도 이온형태로 수중에 저농도로 존재하기 때문에 선택적으로 흡착하는데 한계가 있다.On the other hand, as a method for removing radioactive cesium produced by nuclear fission in a nuclear reactor, adsorption using inorganic ion exchangers or selective ion exchange resins, coprecipitation using heavy metals and soluble ferrocyanide or ferrocyanide salts, and cesium precipitation Chemical treatment with a reagent is known. However, all of the above-described treatment methods require extensive equipment such as a circulation pump, a septic tank, a filling tank incorporating each adsorbent, and also require enormous energy for operating them. In addition, radioactive cesium contaminated with soil is in the form of cesium ions (Cs + ), and is strongly bonded to clay, organic matter, inorganic matters, etc., and it is very difficult to recover. There is a limit to the selective adsorption because of the low concentration.
하이드로겔은 물에 녹지 않고 팽윤되어 구조 내에 많은 양의 수분을 함유할 수 있는 3차원 망상 구조를 갖는 친수성 고분자 물질로서, 수용액에서 팽윤된 이후 열역학적으로 안정하고 또한 특유의 친수성과 유연성으로 인해 의약학적 분야에 다양하게 이용되고 있다. 예를 들면, 소프트렌즈, 바이오센서, 인공근육 등의 생체 재료 및 약물전달시스템 분야에서 하이드로겔을 이용하고 있다. Hydrogels are hydrophilic polymers with a three-dimensional network structure that can swell without dissolving in water and contain a large amount of water in the structure.They are thermodynamically stable after swelling in aqueous solution and also due to their unique hydrophilicity and flexibility It is widely used in the field. For example, hydrogels are used in biomaterials and drug delivery systems such as soft lenses, biosensors, artificial muscles, and the like.
프러시안 블루(prussian blue)는 감청색의 염료로서 방사성 세슘의 선택적 흡착을 위해 사용되어 왔다. 프러시안 블루는 페로시안화 철의 수화물로서 137Cs의 생물학적 반감기를 110일에서 30일로 단축시키는 효과가 있어 세슘 피폭시 정제된 상태로 복용하여 세슘에 의한 방사능 노출을 감소시키는 역할을 해왔다. 또한, 일본 독립행정법인인 산업기술연구소에서는 세슘에 선택흡착을 보이는 프러시안 블루 나노입자를 개발하여 방사성 세슘으로 오염된 오염수나 침출수 중의 세슘을 고농도로 선택 흡착하는 다양한 형태의 세슘흡착제를 개발하였다. 그러나, 침전법에 의해 제조되는 프러시안 블루는 미세한 분말 형태로서 물과 접촉했을 때 안정한 콜로이드 현탁액을 형성하므로 개방된 환경에서 이를 회수하기가 어려운 문제가 있다.Prussian blue is a royal blue dye which has been used for the selective adsorption of radioactive cesium. Prussian blue is a hydrate of iron ferrocyanide that reduces the biological half-life of 137 Cs from 110 days to 30 days. In addition, the Industrial Technology Research Institute, a Japanese independent administrative corporation, developed Prussian blue nanoparticles that show selective adsorption to cesium, and developed various types of cesium adsorbents that selectively adsorb cesium in contaminated or leachate contaminated with radioactive cesium. However, Prussian blue produced by the precipitation method has a problem that it is difficult to recover it in an open environment because it forms a stable colloidal suspension when contacted with water as a fine powder.
한국공개특허공보 제10-2005-120312호에는 음이온 교환수지에 음이온인 헥사시아노철(Ⅱ)을 흡착시키고 여기에 전이금속인 Co를 흡착시킴으로써 방사성 핵종 중 방사성 세슘 또는 스트론듐의 선택적 흡착이 가능한 이온교환체를 개시하고 있다. 그러나 특허문헌 1에 개시된 이온교환체는 방사성 폐액이나 수중에 저농도로 분포된 세슘을 선택적, 고효율로 흡착하는 데는 한계가 있다.Korean Patent Publication No. 10-2005-120312 discloses the selective adsorption of radioactive cesium or strontium in radionuclides by adsorbing hexacyano iron (II) anion to anion exchange resin and adsorbing Co, which is a transition metal. Possible ion exchangers are disclosed. However, the ion exchanger disclosed in Patent Literature 1 has a limitation in adsorbing cesium distributed at low concentration in radioactive waste liquid or water with selective and high efficiency.
또한, 한국등록특허공보 제10-1172247호에는 방사성 폐수지 중의 이온형태의 방사성 탄소를 산성용액을 이용하여 방사성 이산화탄소로 전환시키고 상기 방사성 이산화탄소를 방사성 이산화탄소 흡착용 조성물에 흡착시켜서 제거하는 제1차 제염단계와, 상기 제1차 제염단계에서 제1차 제염된 폐수지 중의 방사성핵종과 상기 산성용액에 해리된 방사성 핵종을 초임계이산화탄소와 친이산화탄소성 금속물질 추출보조제를 이용하여 방사성 착물(Co, Cs) 및 금속물질 추출보조제가 결합한 화합물)로 추출하여 제거하는 제2차 제염단계와, 상기 제1차 제염단계와 제2차 제염단계에서 제염된 폐수지를 가열 건조시키는 건조단계를 포함하는 방사성 폐수지 제염방법이 제안되어 있으나, 상기 방법 역시 방사성 세슘을 선택적, 고효율로 흡착하는 데는 한계가 있다.In addition, Korean Patent Publication No. 10-1172247 discloses first decontamination to convert radioactive carbon in the form of ions in radioactive waste resin into radioactive carbon dioxide using an acidic solution, and remove the radioactive carbon dioxide by adsorbing the radioactive carbon dioxide to the composition for adsorption of radioactive carbon dioxide. And radionuclides in the first decontaminated waste resin in the first decontamination step and radionuclides dissociated in the acidic solution using supercritical carbon dioxide and protonated carbon dioxide metal material extraction aids (Co, Cs ) And a second decontamination step of extraction and removal with a compound combined with a metal material extraction aid), and a drying step of heating and drying the waste resin decontaminated in the first and second decontamination steps. Although a decontamination method has been proposed, the method also has a limitation in adsorbing radioactive cesium in a selective and highly efficient manner.
본 발명자들은 방사성 세슘 흡착제에 대해 탐색하던 중, 프러시안 블루가 인캡슐화된, 알지네이트와 결합된 층상점토 복합체 또가 간단하고 경제적으로 제조될 수 있으며, 고효율 및 고선택적으로 방사성 세슘을 제거할 수 있음을 확인하고, 본 발명을 완성하였다. In the search for a radioactive cesium adsorbent, the inventors have found that a layered clay complex, combined with alginate, encapsulated with Prussian blue, can be prepared simply and economically, and can remove radioactive cesium with high efficiency and high selectivity. It was confirmed that the present invention was completed.
또한, 프러시안 블루를 담지한 셀룰로오스 하이드로겔이 간단하고 경제적으로 제조될 수 있으며, 고효율 및 고선택적으로 세슘을 제거할 수 있음을 확인하고, 본 발명을 완성하였다. In addition, it was confirmed that cellulose hydrogel carrying Prussian blue can be produced simply and economically, and that cesium can be removed with high efficiency and high selectivity, and completed the present invention.
따라서, 본 발명은 알지네이트와 결합된 층상점토 복합체 및 상기 복합체 내 인캡슐화된 프러시안 블루를 포함하는, 방사성 세슘 흡착용 조성물 및 이의 제조방법을 제공하고자 한다. Accordingly, the present invention is to provide a composition for radioactive cesium adsorption, and a method for preparing the same, comprising a layered clay composite combined with alginate and encapsulated Prussian blue in the composite.
또한, 본 발명은 상기 방사성 세슘 흡착용 조성물을 포함하는, 방사성 세슘 흡착제을 제공하고자 한다. In addition, the present invention is to provide a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
본 발명의 목적은 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제를 제공하는 것이다.An object of the present invention is to provide a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
본 발명의 다른 목적은 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
본 발명의 또 다른 목적은 상기 세슘 흡착제를 이용한 방사성 세슘의 제염방법을 제공하는 것이다. Still another object of the present invention is to provide a method for decontaminating radioactive cesium using the cesium adsorbent.
본 발명의 또 다른 목적은 상기 세슘 흡착제를 이용한 생체 내 방사성 세슘의 제염방법을 제공하는 것이다. Still another object of the present invention is to provide a method for decontaminating radioactive cesium in vivo using the cesium adsorbent.
상기와 같은 목적을 달성하기 위해서,In order to achieve the above object,
본 발명은 알지네이트와 결합된 층상점토 복합체 및 상기 복합체 내 인캡슐화된 프러시안 블루를 포함하는, 방사성 세슘 흡착용 조성물을 제공한다.The present invention provides a layered clay composite bonded with alginate and a composition for radioactive cesium adsorption comprising encapsulated Prussian blue in the composite.
또한, 본 발명은 (1) 프러시안 블루가 혼합된 알지네이트 용액을 제조하는 단계; 및 (2) 상기 알지네이트 용액을 아미노프로필기로 기능화된 층상점토 용액에 첨가하여 하이드로겔 비드를 형성하는 단계;를 포함하는, 방사성 세슘 흡착용 조성물의 제조방법을 제공한다. In addition, the present invention comprises the steps of (1) preparing an alginate solution mixed with Prussian blue; And (2) adding the alginate solution to the layered clay solution functionalized with an aminopropyl group to form a hydrogel bead.
또한, 본 발명은 상기 방사성 세슘 흡착용 조성물을 포함하는, 방사성 세슘 흡착제를 제공한다. The present invention also provides a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
또한, 본 발명은 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제를 제공한다.The present invention also provides a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue.
본 발명에 따른 상기 세슘 흡착제는 생체 적합성, 생체 비흡착성 및 생체 비분해성의 특성을 나타낸다. The cesium adsorbent according to the present invention exhibits properties of biocompatibility, bioabsorbability and biodegradability.
본 발명에 따른 상기 세슘 흡착제는 생체 내 세슘의 제염을 위한 제염제일 수 있다. The cesium adsorbent according to the present invention may be a decontamination agent for decontamination of cesium in vivo.
본 발명에 따른 상기 세슘 흡착제는 지름이 1 내지 5 mm이고, 프러시안 블루가 8 내지 20 중량%로 함유된 것일 수 있다.The cesium adsorbent according to the present invention may have a diameter of 1 to 5 mm and Prussian blue containing 8 to 20% by weight.
본 발명에 따른 상기 세슘 흡착제는 3차원 다공성 셀룰로오스 하이드로겔 내부에 프러시안 블루가 담지된 것일 수 있다. The cesium adsorbent according to the present invention may be a Prussian blue loaded in the three-dimensional porous cellulose hydrogel.
본 발명에 따른 상기 세슘 흡착제의 상기 프러시안 블루는 입자의 크기가 10 내지 200 nm인 다공성 물질일 수 있다.The Prussian blue of the cesium adsorbent according to the present invention may be a porous material having a particle size of 10 to 200 nm.
또한, 본 발명은 하기 단계를 포함하는 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제의 제조방법을 제공한다:The present invention also provides a method for preparing a cesium adsorbent comprising a cellulose hydrogel carrying Prussian blue, comprising the following steps:
(1) 셀룰로오스 용액 제조 단계;(1) preparing a cellulose solution;
(2) 상기 셀룰로오스 용액에 프러시안 블루를 첨가하여 분산시키는 단계;(2) adding and dispersing Prussian blue in the cellulose solution;
(3) 증류수에 상기 프러시안 블루가 분산된 셀룰로오스 용액을 떨어뜨려 겔화시키는 단계.(3) gelling the cellulose solution containing the Prussian blue dispersed in distilled water.
또한, 본 발명은 상기한 세슘 흡착제를 생체 내에 세슘을 보유한 포유동물에게 섭취시키는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 생체 내 방사성 세슘의 제염방법을 제공한다. In addition, the present invention comprises the steps of ingesting the cesium adsorbent described above to mammals having cesium in vivo; And adsorbing cesium; provides a method for desalting radioactive cesium in vivo.
또한, 본 발명은 상기한 세슘 흡착제를 방사성 세슘을 포함하는 용액에 투여하는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 방사성 세슘의 제염방법을 제공한다.In addition, the present invention comprises the steps of administering the cesium adsorbent to a solution containing radioactive cesium; And adsorbing cesium; provides a method for decontaminating radioactive cesium.
본 발명에 따른 프러시안 블루가 인캡슐화된, 알지네이트와 결합된 층상점토 복합체는 구조적 특이성, 우수한 기계적 강도 및 넓은 표면적으로 인해 종래 Ca-알지네이트에 비해 방사성 세슘(137Cs)을 고효율 및 고선택적으로 흡착할 수 있다. 따라서, 방사성 오염된 하천, 강, 호수, 습지 등에서 방사성 세슘을 제거하는 데 유용하게 이용될 수 있다.The layered clay composite combined with alginate, encapsulated in Prussian blue according to the present invention, adsorbs radioactive cesium ( 137 Cs) more efficiently and selectively than conventional Ca-alginate due to its structural specificity, excellent mechanical strength and large surface area. can do. Therefore, it can be usefully used to remove radioactive cesium in radioactively contaminated rivers, rivers, lakes, wetlands and the like.
본 발명에 따른 세슘 흡착제는 간단하고 경제적인 방법으로 제조될 수 있으며, 세슘을 회분식으로 흡착한 후 회수하는 방법뿐만 아니라, 컬럼에 충진하여 오염물질을 흘려보내는 방식으로 세슘을 연속적으로 흡착하여 제거할 수 있으므로 산업상 유리하다. 또한, 산, 염기, 고온, 저온 및 효소가 함유된 조건에서도 지지체인 셀룰로오스 하이드로겔의 분해나 변형이 일어나지 않으므로 담지된 프러시안 블루가 용출되는 일이 없어 친환경적이며, 생체 적합성, 생체 비흡착성 및 생체 비분해성의 특성을 나타내므로 생체 제염제로 유용하게 적용 가능하다. The cesium adsorbent according to the present invention can be prepared by a simple and economical method, as well as a method of adsorbing and recovering the cesium in a batch method, the cesium adsorbent can be removed by continuously adsorbing the cesium by filling the column with a contaminant. It can be industrially advantageous. In addition, even under conditions containing acid, base, high temperature, low temperature, and enzyme, decomposition or deformation of the cellulose hydrogel as a support does not occur, so that the supported Prussian blue is not eluted, and it is eco-friendly, biocompatibility, bio non-adsorption and bio Since it exhibits non-degradable properties, it can be usefully applied as a biological decontamination agent.
도 1은 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 이미지 및 특징을 나타내는 도이다. 여기서 (a)는 P-MSC의 겔화 과정을 나타내고, (b)는 Ca-알지네이트 비드 및 P-MSC의 X-선 광분자 분광법(XPS) 스펙트럼을 나타내고, (c)는 P-MSC의 3-차원 구조를 나타내고, (d)는 P-MSC의 단면적 구조를 나타낸다. 1 is a diagram showing images and features of a pomegranate-micro scavenger cage (P-MSC). Where (a) shows the gelation process of P-MSC, (b) shows the X-ray photomolecular spectroscopy (XPS) spectra of Ca-alginate beads and P-MSC, and (c) shows 3- of P-MSC The dimensional structure is shown, and (d) shows the cross-sectional structure of the P-MSC.
도 2는 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 주사전자현미경(SEM) 이미지를 나타내는 도이다. 여기서 (a)는 P-MSC의 표면 모폴러지를 나타내고, (b)는 P-MSC의 표면 및 내부의 메트릭스 상호작용 이미지를 나타내고, (c)는 P-MSC의 단면적 구조를 나타내고, (d)는 P-MSC의 내부 메트릭스 형태를 나타낸다. 삽도는 고해상도 이미지이다. 2 shows a scanning electron microscope (SEM) image of a pomegranate-like micro scavenger cage (P-MSC). Where (a) represents the surface morphology of the P-MSC, (b) represents the matrix interaction images of the surface and interior of the P-MSC, (c) represents the cross-sectional structure of the P-MSC, and (d) Represents the internal matrix form of the P-MSC. Inset is a high resolution image.
도 3은 Ca-알지네이트 및 마이크로 스캐빈저 케이지(MSC)의 이미지 및 특징을 나타내는 도이다. 여기서 (a) 및 (b)는 Ca-알지네이트의 주사전자현미경(SEM) 이미지를 나타내고, (c)는 Ca-알지네이트의 겔화 메카니즘을 나타내고, (d) 및 (e)는 MSC의 주사전자현미경(SEM) 이미지를 나타내고, (f)는 MSC의 겔화 메카니즘을 나타내고, (g)는 Ca-알지네이트 및 P-MSC의 FT-IR 피크를 나타내고, (h)는 Ca-알지네이트, MSC 및 P-MSC의 질소 흡착/탈착 등온선 곡선을 나타내고, (i)는 Ca-알지네이트 및 P-MSC로부터 프러시안 블루(PB)의 방출을 나타내는 UV-Vis. 스펙트럼(590nm)을 나타낸다.3 shows images and features of Ca-alginate and micro scavenger cages (MSCs). Where (a) and (b) show scanning electron microscope (SEM) images of Ca-alginate, (c) shows gelation mechanism of Ca-alginate, and (d) and (e) show scanning electron microscope (MS) of MSC ( SEM) image, (f) shows gelation mechanism of MSC, (g) shows FT-IR peaks of Ca-alginate and P-MSC, (h) shows Ca-alginate, MSC and P-MSC A nitrogen adsorption / desorption isotherm curve is shown, and (i) shows UV-Vis. 1, which shows the release of Prussian blue (PB) from Ca-alginate and P-MSC. The spectrum (590 nm) is shown.
도 4는 세슘의 농도변화에 따른 Ca-알지네이트, MSC 및 P-MSC의 흡착 등온선 및 운동학적 데이터를 나타내는 도이다, 여기서 (a)는 Ca-알지네이트, MSC 및 P-MSC의 실험 데이터, 랭뮤어 피팅 곡선(실선), 및 프로인틀리히 피팅 곡선(점선)을 나타내고, (b)는 랭뮤어의 선형 모델을 나타내고, (c)는 프로인틀리히의 선형 모델을 나타내고, (d)는 P-MSC의 흡착 운동역학을 나타낸다(삽도는 유사-2차 모델이다). Figure 4 is a diagram showing the adsorption isotherm and kinematic data of Ca- alginate, MSC and P-MSC according to the concentration of cesium, where (a) is experimental data of Ca-alginate, MSC and P-MSC, Langmuir Fitting curves (solid line), and Freudlicht fitting curves (dotted line), (b) represents Langmuir's linear model, (c) represents Freindrich's linear model, and (d) P Adsorption kinetics of -MSC is shown (inset is pseudo-second order model).
도 5는 Ca-알지네이트, MSC 및 P-MSC의 분배 계수(Kd) 및 세슘 이온 선택성을 나타내는 도이다. 여기서 (a)는 Ca-알지네이트, MSC 및 P-MSC의 Kd 값을 나타내고, (b)는 경쟁 양이온(Na+, K+, Ca2 +, Mg2 +)과 해수의 존재하에 Cs 이온의 제거 효율(%)을 나타낸다. 5 is a diagram showing the partition coefficient (K d ) and cesium ion selectivity of Ca-alginate, MSC and P-MSC. Wherein (a) represents a K d value of Ca- alginate, MSC and the P-MSC, (b) is competition of the cations (Na +, K +, Ca 2 +, Mg 2 +) and Cs ions in the presence of water Removal efficiency (%) is shown.
도 6은 Ca-알지네이트, MSC 및 P-MSC를 이용한 방사성 세슘(137Cs)의 제거 효율(%)을 나타내는 도이다. 6 is a diagram showing the removal efficiency (%) of radioactive cesium ( 137 Cs) using Ca-alginate, MSC and P-MSC.
도 7은 나노입자 함임을 통한 흡착제 기능화 기술을 도식화하여 나타낸 것이다. Figure 7 shows the schematic diagram of the adsorption functionalization technology through nanoparticles containing.
도 8은 나노입자 함입을 통한 기능화된 흡착제의 내부 구조 및 형태 특성을 나타낸 것이다. 8 shows the internal structure and morphology of the functionalized adsorbent through nanoparticle incorporation.
도 9는 알지네이트/점토 복합체의 강도 특성을 나타낸 것이다. (a)는 아노인덴터 실험이며, (b)는 용액내에서의 안정성을 평가한 것이다.9 shows the strength characteristics of alginate / clay composites. (a) is an anoindenter experiment, and (b) evaluates stability in a solution.
도 10은 감마선에 대한 안정성 확인 결과이다.10 is a result of checking the stability for gamma rays.
도 11은 해수 조건 내에서의 안정성 확인 결과이다.11 shows the results of checking stability in seawater conditions.
도 12는 공정용 충진제로의 사용을 도식화하여 나타낸 것이다. (a)는 도식화하여 나타낸 이미지이며, (b)는 제작된 공업용 충진제 이미지이다. 12 is a schematic of the use as a process filler. (a) is a schematic image and (b) is an industrial filler image produced.
도 13은 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 제조 과정을 개략적으로 나타낸 도이다.FIG. 13 is a view schematically illustrating a process of preparing a cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스의 겔화 메커니즘을 도식화하여 나타낸 도이다.14 is a diagram schematically illustrating the gelling mechanism of cellulose carrying Prussian blue according to an embodiment of the present invention.
도 15는 셀룰로오스 하이드로겔(CH)과 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔(PB-CH)을 X선 회절분석법(X-ray Diffraction Spectroscopy : XRD)으로 분석한 결과이다.15 is a result of analyzing cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention by X-ray diffraction spectroscopy (XRD). to be.
도 16은 셀룰로오스 하이드로겔(CH)과 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔(PB-CH)을 푸리에 변환 적외선 분광법(Fourier transform infrared spectroscopy; FT-IR)으로 분석한 결과이다. 16 is a cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention analyzed by Fourier transform infrared spectroscopy (FT-IR) The result is.
도 17은 셀룰로오스 하이드로겔(CH)과 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔(PB-CH)을 X선 광전자 분광법(X-Ray Photoelectron Spectroscopy : XPS)으로 분석한 결과이다((a) PB-CH의 C1s 스펙트럼, (b) CH의 C1s 스펙트럼, (c) PB-CH의 O1s 스펙트럼, (d) CH의 O1s 스펙트럼)17 is a result of analyzing cellulose hydrogel (CH) and cellulose hydrogel (PB-CH) carrying Prussian blue according to an embodiment of the present invention by X-ray photoelectron spectroscopy (XPS). (A) C1s spectrum of PB-CH, (b) C1s spectrum of CH, (c) O1s spectrum of PB-CH, (d) O1s spectrum of CH)
도 18은 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔 세슘 흡착제의 표면(A) 및 단면(B)을 주사전자현미경을 통해 관찰한 결과를 나타낸 도이다.18 is a view showing the results of observing the surface (A) and the cross-section (B) of the cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention through a scanning electron microscope.
도 19는 본 발명의 일 실시예에 따른 프러시안 블루의 함량을 확인하기 위한 흡광도 그래프이다. (a)는 검정곡선이며, (b)는 실시예 2.1의 흡광도 결과이다. 19 is an absorbance graph for checking the content of Prussian blue according to an embodiment of the present invention. (a) is a calibration curve and (b) is an absorbance result of Example 2.1.
도 20은 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔 세슘 흡착제의 세슘 흡착등온실험이다. 도 20(a)는 물에서의 등온흡착실험이고, 도 20(b)는 인공장액에서의 등온흡착실험 결과이다. 20 is a cesium adsorption isotherm experiment of a cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention. 20 (a) is an isothermal adsorption test in water, and FIG. 20 (b) is an isothermal adsorption test result in artificial intestinal fluid.
도 21은 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔 세슘 흡착제의 흡착 운동역학실험이다. 도 21(a)는 물에서의 흡착 운동역학실험이고, 도 21(b)는 인공장액에서의 흡착 운동역학실험 결과이다. 21 is a adsorption kinetics experiment of cellulose hydrogel cesium adsorbent carrying Prussian blue according to an embodiment of the present invention. 21 (a) shows the adsorption kinetics experiment in water, and FIG. 21 (b) shows the adsorption kinetics experiment in artificial intestine.
도 22는 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 물에서의 프러시안 블루 비용출 특성을 평가한 결과이다. 22 is a result of evaluating the Prussian blue non-exhaust properties in water of the cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 23은 본 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 인공 생체액에서의 프러시안 블루의 비용출 특성을 평가한 결과이다. FIG. 23 is a result of evaluating the non-extraction characteristics of Prussian blue in an artificial biological liquid of cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 24는 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 세포독성을 평가한 결과이다. 24 is a result of evaluating the cytotoxicity of cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 25는 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 효소 안정성을 평가한 결과이다. 25 is a result of evaluating the enzyme stability of cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 26은 발명의 일 실시예에 따른 프러시안 블루를 담지한 셀룰로오스 하이드로겔의 효소 안정성을 평가한 결과이다. 26 is a result of evaluating the enzyme stability of the cellulose hydrogel carrying Prussian blue according to an embodiment of the present invention.
도 27은 원자력발전소 사고 및 더티밤으로 인해 유출된 방사성 세슘이 자연계로 확산되어 체내로 유입되는 과정이다. 이때, 본 발명의 생체제염제는 경구투약하여 체내 방사성 세슘을 제거하여 체외로의 배출을 유도한다.27 is a process in which radioactive cesium leaked due to a nuclear power plant accident and dirty balm is diffused into nature and introduced into the body. At this time, the bioinfective agent of the present invention is orally administered to remove the radioactive cesium in the body to induce excretion into the body.
도 28은 생체제염제의 체내 거동을 도식화한 것이다. 경구투약한 생체 제염제는 위장을 지나며 방사성 세슘을 흡착한 뒤 대변을 통해 체외로 배출되는 방식으로 체내 방사성 세슘을 제거한다. 이때, 생체 제염제에 담지된 프러시안 블루는 이온교환 방법과 양성자(수소 양이온)교환 방법으로 세슘을 흡착 한다28 is a diagram showing the body behavior of the biocontrast agent. Orally administered biological decontamination agent removes radioactive cesium in the body by adsorbing radioactive cesium through the stomach and exiting the body through feces. At this time, Prussian blue supported in the biological decontamination agent adsorbs cesium by ion exchange method and proton (hydrogen cation) exchange method.
도 29는 본 발명에서 제조한 생체제염제의 세슘 흡착 효율을 평가한 것이다. 29 is an evaluation of the cesium adsorption efficiency of the biocontrast preparation prepared in the present invention.
도 30은 감마선에 대한 프러시안 블루 용출 안정성 평가이다.30 is a Prussian blue elution stability assessment for gamma rays.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 알지네이트와 결합된 층상점토 복합체 및 상기 복합체 내 인캡슐화된 프러시안 블루를 포함하는, 방사성 세슘 흡착용 조성물을 제공한다.The present invention provides a layered clay composite bonded with alginate and a composition for radioactive cesium adsorption comprising encapsulated Prussian blue in the composite.
본 발명은 방사성 물질의 일종인 세슘을 제거하기 위하여, 알지네이트와 결합된 층상점토 쉘을 형성하고, 상기 쉘 내에 프러시안 블루를 인캡슐화시킴으로써 방사성 폐수 중에 존재하는 세슘을 효율적으로 흡착할 수 있도록 하는 점에 기술적인 특징이 있다.The present invention forms a layered clay shell combined with alginate to remove cesium, which is a kind of radioactive material, and encapsulates Prussian blue in the shell to efficiently adsorb cesium present in radioactive wastewater. Has technical features.
본 발명은 원자력 발전 또는 핵 반응 과정에서 필연적으로 발생되는 방사성 세슘을 제거하기 위하여, 층상점토를 사용하고 있다. 상기 층상점토는 광물의 주성분이 층산 규산염(필로실리케이트) 광물인 것을 말하며, 판상형 층으로 구성되는 천연 또는 합성 광물일 수 있다. 구체적으로는, 스멕타이트, 카올리나이트, 몬모릴로나이트, 벤토나이트, 헥토라이트, 불화헥토라이트, 바이델라이트, 사포나이트, 논트로나이트, 버미큘라이트, 마카다이트, 마이카 등일 수 있다.The present invention uses layered clay to remove radioactive cesium which is inevitably generated during nuclear power generation or nuclear reaction. The layered clay means that the main component of the mineral is a layered silicate (phyllosilicate) mineral, and may be a natural or synthetic mineral composed of a plate-like layer. Specifically, it may be smectite, kaolinite, montmorillonite, bentonite, hectorite, fluoride hectorite, Weidelite, saponite, nontronite, vermiculite, macadamite, mica and the like.
상기 층상점토는 양(positive)으로 하전된 작용기에 의해 기능화된 것일 수 있으며, 일 실시예에 따라 아미노프로필기(aminopropyl)로 기능화된 것일 수 있다. 상기 아미노프로필기는 양(positive)으로 하전되어 음(negative)으로 하전된 물질과 상호작용하여 복합체를 형성할 수 있다. The layered clay may be functionalized by a positively charged functional group, or functionalized with an aminopropyl group according to one embodiment. The aminopropyl group can be positively charged to interact with a negatively charged material to form a complex.
상기 알지네이트(alginate)는 알긴산(alginic acid)의 염(salt) 형태을 의미하며, Ca2 +, Mg2 + 등과 같은 다가 이온이 녹아있는 수용액에서 겔화(gellation)되는 특성을 지니고 있다. 이는 알지네이트의 카르복실레이트(carboxylate) 그룹과 다가 이온 사이의 정전기적 인력에 의해서 기계적 강도가 높은 겔을 형성하기 때문이다.The alginate (alginate) may have the salt (salt), and means hyeongtaeeul, Ca 2 +, gelation (gellation) characteristics in the aqueous solution of polyvalent ions, such as Mg 2 + melting of alginate (alginic acid). This is because the gel has high mechanical strength due to the electrostatic attraction between the carboxylate group and the polyvalent ion of alginate.
본 발명에서는 알지네이트 및 층상점토가 가교결합하여 겔(gel)을 형성할 수 있다. 알지네이트의 표면은 CO2 -로 하전되어 NH2+로 하전된 층상점토와 상호작용하여 강한 복합체를 형성할 수 있다.In the present invention, alginate and layered clay may be crosslinked to form a gel. The surface of the alginate can be charged with CO 2 to interact with the layered clay charged with NH 2+ to form a strong complex.
상기 알지네이트와 결합된 층상점토 복합체는 구형으로서, 평균 직경이 400~600μm일 수 있다. 또한, 상기 복합체는 종래 Ca-알지네이트의 BET(Brunauer-Emmett-Teller) 표면적인 12.3 m²/g에 비해 40~50 m²/g의 넓은 BET 표면적을 가질 수 있으며, 이로써 우수한 세슘 흡착 능력을 나타낼 수 있다. The layered clay composite combined with the alginate may be spherical and have an average diameter of 400 μm to 600 μm. In addition, the composite may have a wide BET surface area of 40-50 m² / g compared to the Brunauer-Emmett-Teller (BET) surface area of 12.3 m² / g of the conventional Ca-alginate, thereby exhibiting excellent cesium adsorption ability. .
상기 프러시안 블루(Prussian blue)는 청색 염료 물질로서, 페로시안화 철의 수화물이다. 방사성 세슘(137Cs)에 오염되었을 때 응급 약물으로 사용되며, 프러시안 블루를 투여할 경우, 세슘과 화학적으로 결합해 체외배출을 촉진함으로써 세슘(137Cs)의 생물학적 반감기를 110일에서 30일로 감소시킨다. 상기 프러시안 블루의 형태는 할로우, 메조포러스, 또는 메소크리스탈 등일 수 있으며, 이에 제한되는 것은 아니다.The Prussian blue is a blue dye material and is a hydrate of iron ferrocyanide. It is used as an emergency medicine when contaminated with radioactive cesium ( 137 Cs), and when Prussian Blue is administered, the biological half-life of cesium ( 137 Cs) is reduced from 110 days to 30 days by chemically binding to cesium to promote in vitro discharge. Let's do it. The shape of the Prussian blue may be hollow, mesoporous, or mesocrystal, and the like, but is not limited thereto.
본 발명에서 프러시안 블루를 알지네이트-층상점토 쉘에 인캡슐화하는 이유는, 폐수 또는 지하수 등에 포함되어 있는 세슘을 제거하기 위하여 흡착능이 있는 프러시안 블루를 미립자의 상태로 사용할 경우, 폐수처리 공정에서 기계적 강도가 약하여, 폐수와 함께 외부로 유출되어지고, 2차 오염을 발생시킬 뿐만 아니라, 처리공정 이후 회수하여 재사용하는 것이 원천적으로 불가능하게 되므로, 이러한 불합리한 사항들을 사전에 방지하기 위한 것이다.The reason for encapsulating the Prussian blue in the alginate-layered clay shell in the present invention is that when Prussian blue having adsorptive capacity is used in the form of fine particles to remove cesium contained in the wastewater or groundwater, the wastewater treatment process The strength is low, and it is intended to prevent such unreasonable matters, since it is leaked to the outside together with the waste water, and not only causes secondary pollution, but also becomes fundamentally impossible to recover and reuse after the treatment process.
상기 세슘은 137Cs, 135Cs, 또는 134Cs 등일 수 있으며, 137Cs인 것이 바람직하다. 상기 137Cs은 핵분열시 발생하는 주요 방사성 동위원소로서, 반감기가 30.17년인 유독 물질이다.The cesium may be 137 Cs, 135 Cs, or 134 Cs, and the like, preferably 137 Cs. The 137 Cs is a major radioisotope generated during fission, and has a half life of 30.17 years.
또한, 본 발명은 (1) 프러시안 블루가 혼합된 알지네이트 용액을 제조하는 단계; 및 (2) 상기 알지네이트 용액을 아미노프로필기로 기능화된 층상점토 용액에 첨가하여 하이드로겔 비드를 형성하는 단계;를 포함하는, 방사성 세슘 흡착용 조성물의 제조방법을 제공한다. In addition, the present invention comprises the steps of (1) preparing an alginate solution mixed with Prussian blue; And (2) adding the alginate solution to the layered clay solution functionalized with an aminopropyl group to form a hydrogel bead.
상기 (1) 단계는 프러시안 블루 현탁액을 알지네이트 용액에 적가하여 프러시안 블루가 혼합된 알지네이트 용액을 제조하는 단계이다.Step (1) is a step of preparing an alginate solution in which Prussian blue is mixed by dropwise adding the Prussian blue suspension to the alginate solution.
본 발명은 세슘 이온을 흡착하는 물질을 고정화시킬 수 있는 유기질 담체로서 알지네이트를 사용하기 위하여, 탈이온수에 소듐 알지네이트를 투입하여 알지네이트 용액을 준비하는 단계를 포함하고 있다. 그 후, 프러시안 블루 현탁액을 상기 알지네이트 용액과 혼합할 수 있다.  The present invention includes preparing a alginate solution by adding sodium alginate to deionized water in order to use alginate as an organic carrier capable of immobilizing a substance adsorbing cesium ions. The Prussian blue suspension can then be mixed with the alginate solution.
상기 알지네이트 용액의 용매는 물, 디클로로메탄, 테트라클로로에탄, 디메틸아세트아마이드, 디메틸포름아마이드, 클로로포름, 메틸렌 클로라이드, 에틸 아세테이트, 메탄올, 에탄올, 헥산, 아세토니트릴, 톨루엔, 벤젠, 사염화탄소, 펜탄, 아세톤, 디메틸 설폭시드, 테트라하이드로퓨란, 디메틸포름알데히드 등일 수 있으며, 탈이온수인 것이 바람직하다. The solvent of the alginate solution is water, dichloromethane, tetrachloroethane, dimethylacetamide, dimethylformamide, chloroform, methylene chloride, ethyl acetate, methanol, ethanol, hexane, acetonitrile, toluene, benzene, carbon tetrachloride, pentane, acetone, Dimethyl sulfoxide, tetrahydrofuran, dimethylformaldehyde and the like, preferably deionized water.
상기 (2) 단계는 프러시안 블루가 혼합된 알지네이트 용액을 아미노프로필기로 기능화된 층상점토 용액에 첨가하여 하이드로겔 비드를 형성하는 단계이다.In step (2), the alginate solution in which Prussian blue is mixed is added to the layered clay solution functionalized with an aminopropyl group to form hydrogel beads.
본 발명은, 세슘 흡착제로 사용되는 프러시안 블루가 혼합된 알지네이트 용액에 상기 아미노프로필기로 기능화된 층상점토 용액을 혼합하여 알지네이트-층상점토 복합체를 제조한다. 상기 알지네이트 용액에 대하여 상기 층상점토 용액을 혼합하되, 알지네이트 및 층상점토를 1:1 내지 1:4의 중량비로 투입하는 것이 바람직하고, 그 혼합물을 균일하게 혼련시키는 것이 바람직하다. 상기 알지네이트 및 층상점토를 1:1 이하의 비율로 투입할 경우, 최종적인 흡착제의 세슘 이온의 흡착성능이 저조할 수 있고, 상기 알지네이트 및 층상점토를 1:4 이상의 비율로 투입할 경우, 최종적인 흡착제의 세슘 이온의 흡착성능은 매우 양호하지만, 흡착제를 비드의 형상으로 만들기 어렵고, 흡착제를 일정한 형상의 고형물로 제조하는 것이 곤란할 수 있다.In the present invention, an alginate-layered clay composite is prepared by mixing the layered clay solution functionalized with the aminopropyl group to an alginate solution mixed with Prussian blue used as a cesium adsorbent. While mixing the layered clay solution with respect to the alginate solution, it is preferable to add the alginate and the layered clay in a weight ratio of 1: 1 to 1: 4, and the mixture is preferably kneaded uniformly. When the alginate and the layered clay are added at a ratio of 1: 1 or less, the adsorption performance of cesium ions of the final adsorbent may be poor, and when the alginate and the layered clay are added at a ratio of 1: 4 or more, the final Although the adsorption performance of cesium ions of the adsorbent is very good, it is difficult to make the adsorbent into the shape of beads, and it may be difficult to prepare the adsorbent into a solid having a constant shape.
또한, 본 발명은 상기 방사성 세슘 흡착용 조성물을 포함하는, 방사성 세슘 흡착제을 제공한다. In addition, the present invention provides a radioactive cesium adsorbent comprising the radioactive cesium adsorption composition.
상기 방사성 세슘 흡착제는 구조적으로 안정하고, 넓은 BET 표면적을 가질뿐 아니라, 하전, 강, 호수 등의 방사성 오염 폐수 내에 오랜 시간 유지되며 방사성 세슘을 제거할 수 있는 장점이 있다. The radioactive cesium adsorbent is structurally stable, has a large BET surface area, and has a long time in radioactive contaminated wastewater such as charged, river, lake, etc., and has the advantage of removing radioactive cesium.
본 발명은 셀룰로오스 고분자 사슬의 글리코시드 결합과 고분자 내부 및 고분자간의 수소결합을 통해 고분자가 강하게 연결되어 있어 수용액 상에서도 프러시안 블루를 잘 담지할 수 있으며, 형태의 변형이나 기계적 특성의 하락이 없어 세슘의 제염에 효과적으로 이용될 수 있는 프러시안 블루(Prussian Blue)를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제를 제공한다. In the present invention, the polymer is strongly connected through the glycosidic bond of the cellulose polymer chain and the hydrogen bond between the polymer and the inside of the polymer, so that the Prussian blue can be well supported in aqueous solution. Provided is a cesium adsorbent comprising a cellulose hydrogel carrying Prussian Blue which can be effectively used for decontamination.
본 발명의 프러시안 블루(Prussian blue)는 헥사시아노철(II)산철(III)칼륨이 주성분인 청색 염료 물질로서, 페로시안화 철의 수화물이다. 방사성 세슘(137Cs)에 오염되었을 때 응급 약물으로 사용되며, 프러시안 블루를 투여할 경우, 세슘과 화학적으로 결합해 체외배출을 촉진함으로써 세슘(137Cs)의 생물학적 반감기를 110일에서 30일로 감소시킨다. Prussian blue of the present invention is a blue dye material whose main component is potassium hexacyano iron (II) phosphate, and is a hydrate of iron ferrocyanide. It is used as an emergency medicine when contaminated with radioactive cesium ( 137 Cs), and when Prussian Blue is administered, the biological half-life of cesium ( 137 Cs) is reduced from 110 days to 30 days by chemically binding to cesium to promote in vitro discharge. Let's do it.
상기 프러시안 블루의 형태는 다공성일 수 있으나, 이에 한정되지 않으며, 통상의 프러시안 블루이면 사용이 가능하고, 프러시안 블루의 입자 크기, 구조적 또는 형태적 특징을 조절하거나 또는/및 세슘 흡착제에 함유되는 프러시안 블루의 분산성을 향상시키기 위해 고분자로 코팅된 형태의 것을 사용할 수도 있다. The form of the Prussian blue may be porous, but is not limited thereto, and may be used as long as it is a conventional Prussian blue, and may adjust the particle size, structural or morphological characteristics of the Prussian blue, and / or may be included in the cesium adsorbent. In order to improve the dispersibility of the Prussian blue may be used in the form of a polymer coating.
상기, "다공성"은 고체가 내부 또는 표면에 작은 빈틈을 많이 가진 상태로 빈틈이 외부로 통하는 것도 있고, 기둥모양인 것도 있을 수 있으며, 예를 들어, 메소포러스(mesoporous) 또는 할로우(hollow) 구조를 포함하나, 이에 한정되지 않으며, 바람직하게는 입자의 크기가 10 내지 200 nm인 것일 수 있다. The "porous" is a solid having a lot of small gaps on the inside or the surface of the gap through the outside, there may be columnar, for example, mesoporous (mesoporous) or hollow (hollow) structure It includes, but is not limited to this, Preferably the particle size may be 10 to 200 nm.
상기 프러시안 블루가 상기 범위의 다공도를 가지는 경우에는 방사성 세슘의 흡착율이 특히 향상되므로 바람직하다. When the Prussian blue has a porosity in the above range, the adsorption rate of radioactive cesium is particularly improved, which is preferable.
본 발명에 의하면, 상기 프러시안 블루가 상기 입자 크기를 가지는 경우에는 셀룰로오스 하이드로겔에서 분산성이 특히 우수해지므로 세슘의 흡착율이 향상된 세슘 흡착제를 제조할 수 있으며, 3차원 다공성 셀룰로오스 하이드로겔 구조로부터 분리되어 배출되지 않으므로 친환경적이다. According to the present invention, when the Prussian blue has the particle size, since the dispersibility is particularly excellent in the cellulose hydrogel, a cesium adsorbent having improved adsorption rate of cesium can be prepared, and is separated from the three-dimensional porous cellulose hydrogel structure. It is eco-friendly because it is not discharged.
본 발명의 세슘(Cesium)은 137Cs, 135Cs, 또는 134Cs 등일 수 있으며, 바람직하게는 137Cs일 수 있다. 상기 137Cs은 핵분열시 발생하는 주요 방사성 동위원소로서, 원자력 발전소의 사고에 의해 외부 환경에 방출되는 방사성 물질이며, 반감기가 30.17년인 유독 물질이다.Cesium (Cesium) of the present invention may be 137 Cs, 135 Cs, or 134 Cs, etc., preferably 137 Cs. The 137 Cs is a major radioisotope generated during nuclear fission, and is a radioactive substance released to the outside environment by an accident of a nuclear power plant, and has a half-life of 30.17 years.
본 발명에서 "흡착"이란 기체나 용액의 분자들이 고체 표면에 달라붙는 현상을 말하며 이때 흡착을 받아들이는 고체물질을 흡착제라고 한다. 흡착제는 단위부피당 흡착되는 표면 넓이가 넓은 것이 우수한 흡착제로 작용한다. 본 발명에 따른 프러시안 블루 입자가 담지된 셀룰로오스 하이드로겔은 방사성 세슘을 고효율, 고선택적으로 흡착이 가능하다.In the present invention, "adsorption" refers to a phenomenon in which molecules of a gas or a solution adhere to a solid surface, and a solid material that receives adsorption is called an adsorbent. The adsorbent acts as an excellent adsorbent because the surface area adsorbed per unit volume is wide. The cellulose hydrogel loaded with Prussian blue particles according to the present invention can adsorb radioactive cesium at high efficiency and high selectivity.
본 발명의 하이드로겔은 물에 녹지 않고 팽윤되어 구조 내에 많은 양의 수분을 함유할 수 있는 3차원 망상 구조를 갖는 친수성 고분자 물질로서, 적어도 전체 중량의 20% 이상의 수분을 흡수할 수 있다. The hydrogel of the present invention is a hydrophilic polymer material having a three-dimensional network structure that can swell without dissolving in water and contain a large amount of water in the structure, and can absorb at least 20% of the total weight of water.
하이드로겔이 팽윤하는 이유는 고분자 사슬의 -OH, -COOH, -CONH, -CONH2, -SO3H와 같은 작용기와 물 사이의 삼투압 현상, 모세관 현상이 작용하기 때문이며, 하이드로겔이 물에 용해하지 않는 이유는 일반적으로 고분자 사슬 간 공유결합 구조 때문이다. 하이드로겔은 수용액상에서 팽윤된 후에 열역학적으로 안정하게 존재하여 액체와 고체의 중간 형태에 해당하는 기계적·물리화학적 특성을 지닌다.The reason why the hydrogel swells is that the osmotic pressure between the functional groups such as -OH, -COOH, -CONH, -CONH 2 , -SO 3 H and water in the polymer chain, capillary action, and the hydrogel is dissolved in water The reason for not doing so is generally due to the covalent bond structure between polymer chains. Hydrogels are thermodynamically stable after swelling in aqueous solution and have mechanical and physicochemical properties that correspond to intermediate forms of liquids and solids.
본 발명의 셀룰로오스(cellulose)는 식물체의 세포벽 주성분으로서 식물 섬유를 구성하며, D-글루코오스가 (1→4)-β-형의 글리코시드 결합으로 곧은 사슬 모양으로 결합한 고분자 화합물을 의미한다.The cellulose of the present invention constitutes a plant fiber as a main component of the cell wall of a plant, and refers to a polymer compound in which D-glucose is bound in a straight chain by a glycosidic bond of (1 → 4) -β-type.
상기 셀룰로오스는 바람직하게는 알파-셀룰로오스(α-cellulose)일 수 있다.The cellulose may be preferably alpha-cellulose.
상기 알파-셀룰로오스는 20°C의 17.5% NaOH 수용액에서 용해되지 않는 탄수화물을 의미하며, 실제의 셀룰로오스이다.The alpha-cellulose means carbohydrates which are not dissolved in a 17.5% NaOH aqueous solution at 20 ° C., and are actual celluloses.
본 발명에 따른 세슘 흡착제의 경우 셀룰로오스를 기반으로 한 하이드로겔이므로, 독성이나 자극성이 없고 생적합성과 높은 팽윤력을 가지는 특징이 있으며, 팽윤(swelling)된 후 인장강도가 크게 약해지는 다른 종류들의 하이드로겔과 달리 팽윤된 후에도 강한 인장강도를 갖고 있어 프러시안 블루를 효과적으로 담지할 수 있다. In the case of cesium adsorbent according to the present invention, since it is a cellulose-based hydrogel, it has no toxicity or irritation, and has biocompatibility and high swelling power, and other types of hydrogels whose tensile strength is greatly weakened after swelling. Unlike gel, it has strong tensile strength even after swelling, so it can effectively support Prussian blue.
또한, 종래에 다방면으로 이용되는 알긴산(alginic acid), 키토산(chitosan), 카복시메틸셀룰로오스(carboxymethyl cellulose) 등의 고분자는 +2가, +3가 양이온을 포함하는 수용액에서 가교결합(cross linking)하여 하이드로겔을 형성하므로 수 시간이 걸리는 반면, 본 발명의 흡착제는 프러시안 블루가 분산된 셀룰로오스 용액을 오직 물에 떨어뜨려 수 분 안에 겔화시키는 것으로, 단시간 내에 간단하게 제작할 수 있다는 장점이 있다.In addition, polymers such as alginic acid, chitosan, and carboxymethyl cellulose, which are conventionally used in various fields, are crosslinked in an aqueous solution containing +2 and + trivalent cations. While it takes a few hours to form a hydrogel, the adsorbent of the present invention is to drop the cellulose solution in which Prussian blue is dispersed only in water to gel in a few minutes, there is an advantage that it can be easily produced in a short time.
본 발명에서 프러시안 블루를 셀루로오스 하이드로겔에 담지시키는 이유는, 흡착능이 있는 프러시안 블루를 미립자의 상태로 사용할 경우, 폐수처리 공정에서 기계적 강도가 약하여, 폐수와 함께 외부로 유출되어지고, 2차 오염을 발생시킬 뿐만 아니라, 처리공정 이후 회수하여 재사용하는 것이 원천적으로 불가능하게 되므로, 이러한 불합리한 사항들을 사전에 방지하기 위한 것이다. 또한 프러시안 블루는 생체 내에서 독성을 나타내므로 생체 제염을 위해서는 담지체에 담지하는 것이 바람직하다.In the present invention, the reason why the Prussian blue is supported on the cellulose hydrogel is that when the Prussian blue having adsorptive capacity is used in the form of fine particles, the mechanical strength is weak in the wastewater treatment process, so that it flows out together with the wastewater. Not only does it cause secondary pollution, but it is inherently impossible to recover and reuse it after the treatment process, so it is to prevent such unreasonable matters in advance. In addition, since Prussian blue is toxic in vivo, it is preferable to carry it on a carrier for biological decontamination.
한편, 프러시안 블루의 담지체로 PNIPAm과 같은 고분자를 사용하는 경우에는 생체 독성이 있기 때문에 생체 제염을 위한 소재로 이용하기 어려우며, 알지네이트와 같은 다당류 고분자나 젤라틴을 사용하는 경우에는 장액 등의 효소에 의해 수분 내로 분해될 수 있으므로 프러시안 블루가 용출될 우려가 있다. 반면 본 발명에 따른 셀룰로오스 하이드로겔은 생체 적합성을 가지는 재료이며 체내에서 분해 또는 소화되지 않으므로, 이를 포함하는 세슘 흡착제는 체내로 경구 투여하여 소화기관에서 세슘을 흡착한 뒤 체외로 배출시키기 위한 생체 제염제로서 특히, 바람직하다On the other hand, when a polymer such as PNIPAm is used as a carrier of Prussian blue, it is difficult to use as a material for biological decontamination because it is biotoxic, and in the case of using a polysaccharide polymer such as alginate or gelatin, by enzymes such as serous Prussian blue may be eluted because it may decompose into moisture. On the other hand, since the cellulose hydrogel according to the present invention is a material having biocompatibility and is not decomposed or digested in the body, the cesium adsorbent including the same is a biological decontamination agent for adsorbing cesium in the digestive tract to be discharged into the body after oral administration of Especially as preferred
본 발명에 따른 세슘 흡착제는 프러시안 블루를 담지한 셀룰로오스를 증류수에 떨어뜨려 액체방울을 만드는 것만으로 겔화될 수 있어 간단하고 경제적으로 제조될 수 있으며, 셀룰로오스 고분자 사슬의 글리코시드결합(glycosidic bond)과 고분자 내부 및 고분자 간의 수소결합(hydrogen bond)을 통해 고분자가 강하게 연결되어 있어 수용액상에서도 프러시안 블루를 잘 담지하며 하이드로겔의 모양 및 강도를 유지할 수 있다는 장점이 있다.The cesium adsorbent according to the present invention can be gelated simply by making a drop of cellulose carrying Prussian blue in distilled water to make a liquid droplet, which can be produced simply and economically, and the glycosidic bond of the cellulose polymer chain Since the polymer is strongly connected through the hydrogen bond (hydrogen bond) between the inside of the polymer and there is an advantage that it can support the Prussian blue well in the aqueous solution and maintain the shape and strength of the hydrogel.
또한, 본 발명에 따른 세슘 흡착제는 호수 또는 바다에서 세슘을 회분식 흡착 후 흡착제를 회수하는 방법뿐만 아니라 칼럼에 충진한 뒤 연속적으로 세슘을 흡착하여 제거할 수 있으며, 산, 염기, 고온, 저온이나 효소가 함유된 조건에서도 셀룰로오스 하이드로겔이 분해되거나 변형되지 않으므로 담지한 프러시안 블루가 용출되지 않아 종래의 프러시안 블루를 이용한 세슘 흡착제의 문제점으로 지적되고 있는, 세슘이 부착된 프러시안 블루를 재방출하는 문제에서 자유롭다.In addition, the cesium adsorbent according to the present invention can be removed by continuously adsorbing cesium after filling the column as well as the method of recovering the adsorbent after batch adsorption of cesium in the lake or sea, acid, base, high temperature, low temperature or enzyme Since the cellulose hydrogel does not decompose or deform even under the conditions containing, the supported Prussian blue is not eluted, which is pointed out as a problem of the cesium adsorbent using the conventional Prussian blue. Free from problems
본 발명의 세슘 흡착제는 셀룰로오스 하이드로겔에 담지된 프러시안 블루 외에 세슘 흡착 가능을 갖는 다른 화합물을 더 포함할 수 있다. 또한, 상기 세슘 흡착제는 자유로운(free) 형태 또는 담체 등에 고정화된 형태로 사용될 수 있다. 또한, 상기 조성물을 담체에 고정화시켜 방사성 세슘을 제거하기 위하여 사용할 수도 있다. 상기 흡착제를 담체 등에 고정화시키는 방법은 특별히 제한되지 않으며 다양한 응용이 가능하다. 예들 들어, 흡착법과 포괄법과 같은 물리적인 방법, 공유결합법, 가교연결방법 등의 화학적인 방법을 사용할 수 있다.The cesium adsorbent of the present invention may further include other compounds having cesium adsorption capable in addition to the Prussian blue supported on the cellulose hydrogel. In addition, the cesium adsorbent may be used in a free form or immobilized in a carrier or the like. The composition may also be used to fix radioactive cesium by immobilizing the composition on a carrier. The method of immobilizing the adsorbent on a carrier or the like is not particularly limited and various applications are possible. For example, chemical methods such as physical methods such as adsorption and encapsulation, covalent bonding, and crosslinking can be used.
또한, 본 발명은 (1) 셀룰로오스 용액 제조 단계;In addition, the present invention (1) cellulose solution manufacturing step;
(2) 상기 셀룰로오스 용액에 프러시안 블루를 첨가하여 분산시키는 단계;(2) adding and dispersing Prussian blue in the cellulose solution;
(3) 증류수에 상기 프러시안 블루가 분산된 셀룰로오스 용액을 떨어뜨려 겔화시키는 단계;를 포함하는 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제의 제조방법을 제공한다. (3) dropping the cellulose solution in which the Prussian blue is dispersed in distilled water to gelate the cellulose hydrogel containing the Prussian blue.
상기 (1) 단계는 셀룰로오스 용액을 제조하는 단계로, 상기 셀룰로오스는 바람직하게는 α-셀룰로오스이다.Step (1) is to prepare a cellulose solution, wherein the cellulose is preferably α-cellulose.
α-셀룰로오스는 D-글루코오스(D-glucose)를 단량체로 하는 고분자로 단량체간 베타(1→4) 글리코시드결합을 하고 있다. 셀룰로오스가 포함하는 히드록실기(hydroxyl group, -OH)는 고분자 내부 및 고분자간의 강한 수소결합을 유도하여 물에 녹지 않는 특성을 갖게 한다.α-cellulose is a polymer having D-glucose as a monomer, and has a beta (1 → 4) glycoside bond between monomers. The hydroxyl group (hydroxyl group, -OH) included in cellulose induces strong hydrogen bonds between polymers and polymers, thereby making them insoluble in water.
상기 (1) 단계는 디메틸설폭사이드 10 중량부에 대하여 테트라부틸암모늄 아세테이트(tetrabutylammonium acetate; TBAA) 1.5 내지 2.3 중량부를 용해시킨 용액(TBAA/DMSO) 100 중량부에 대하여 셀룰로오스 2 내지 4 중량부를 용해시키는 것일 수 있다. Step (1) dissolves 2 to 4 parts by weight of cellulose based on 100 parts by weight of a solution (TBAA / DMSO) in which 1.5 to 2.3 parts by weight of tetrabutylammonium acetate (TBAA) is dissolved per 10 parts by weight of dimethyl sulfoxide. It may be.
이때, 셀룰로오스를 녹이기 위하여 사용한 TBAA/DMSO 용액은 DMSO(dimethyl sulfoxide) 상에서 TBAA(tetrabutylammonium acetate)가 테트라부틸암모늄 양이온과 아세테이트 음이온으로 이온화 되어 있는 이온성 액체(ionic liquid; IL)일 수 있다. 아세테이트 음이온은 셀룰로오스의 히드록실기와 수소결합하여 고분자의 자가수소결합을 저해하며 이를 통해 셀룰로오스가 TBAA/DMSO 용액에 용해된다. 양쪽성(bipolarity)물질인 DMSO는 소수성(hydrophobic)인 셀룰로오스와 친수성(hydrophilic)인 아세테이트 음이온이 반응하기 위한 용매로 이용될 수 있으므로 바람직하다. In this case, the TBAA / DMSO solution used to dissolve the cellulose may be an ionic liquid (IL) in which TBAA (tetrabutylammonium acetate) is ionized with tetrabutylammonium cation and acetate anion on DMSO (dimethyl sulfoxide). Acetate anion is hydrogen-bonded to the hydroxyl group of the cellulose to inhibit the self-hydrogen bond of the polymer through which the cellulose is dissolved in the TBAA / DMSO solution. Bipolarity DMSO is preferred because it can be used as a solvent for the reaction of hydrophobic cellulose and hydrophilic acetate anion.
상기 (2) 단계는 셀룰로오스 용액 10 중량부에 대하여 프러시안 블루 0.5 내지 1 중량부를 첨가하여 분산시키는 것일 수 있다. 프러시안 블루의 함량이 상기 범위 미만이면 세슘 제거 효율이 낮으며, 상기 범위를 초과하면 프러시안 블루가 용출될 우려가 있으므로 바람직하지 않다. Step (2) may be to disperse by adding 0.5 to 1 part by weight of Prussian blue based on 10 parts by weight of cellulose solution. If the content of Prussian blue is less than the above range, cesium removal efficiency is low, and if it exceeds the above range, Prussian blue may be eluted, which is not preferable.
본 발명에 의하면, 상기 (3) 단계는 입자의 크기가 1 내지 5 mm인 하이드로겔을 형성되도록 프러시안 블루가 분산된 셀룰로오스 용액을 떨어뜨리는 것일 수 있으며, 정확한 크기의 하이드로겔을 제조하기 위하여 시린지 펌프(Syringe Pump)를 이용할 수 있다.According to the present invention, the step (3) may be to drop the cellulose solution in which Prussian blue is dispersed to form a hydrogel having a particle size of 1 to 5 mm, and to prepare a hydrogel having a precise size. A Syringe Pump can be used.
시린지 펌프는 승압약제, 혈압강하제, 항암제, 분만 촉진제, 비경구 영양제, 마취제와 같은 약물 주입을 위한 펌프로 시간당 정확한 양의 약물을 주입시키고자 할 때에 사용되는 기구이다.Syringe pumps are pumps for injecting drugs such as boosters, antihypertensives, anticancer agents, labor promoting agents, parenteral nutrition and anesthetics, and are used to inject the correct amount of drug per hour.
프러시안 블루를 혼합한 셀룰로오스 액체방울을 증류수에 떨어뜨리면 액체방울에 포함되어 있던 TBAA와 DMSO가 물에 용해된다. 이 과정에서 셀룰로오스의 하이드록시기와 수소결합하고 있던 아세테이트 음이온이 빠져나가면서 셀룰로오스 고분자의 자가수소결합을 방해하는 인자가 사라지고, 셀룰로오스는 다시 자가 수소결합을 하여 겔화될 수 있다. When cellulose drops containing Prussian blue are dropped into distilled water, TBAA and DMSO contained in the droplets are dissolved in water. In this process, as the acetate anion which was hydrogen-bonded with the hydroxy group of the cellulose is released, the factor that prevents the self-hydrogen bonding of the cellulose polymer disappears, and the cellulose may be gelled by self-hydrogen bond again.
본 발명에 따른 상기 세슘 흡착제는 생체 적합성, 생체 비흡착성 및 생체 비분해성의 특성을 나타내므로 생체 내의 세슘의 제염에 유용하게 적용할 수 있다. The cesium adsorbent according to the present invention exhibits properties of biocompatibility, bioabsorbability and biodegradability, and thus may be usefully applied to decontamination of cesium in vivo.
본 발명은 상기 세슘 흡착제를 생체 내에 세슘을 보유한 포유동물에게 섭취시키는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 생체 내 방사성 세슘의 제염방법을 제공한다. The present invention comprises the steps of ingesting the cesium adsorbent to a mammal having cesium in vivo; And adsorbing cesium; provides a method for desalting radioactive cesium in vivo.
상기 포유동물은 인간을 포함한 포유동물이거나 인간을 제외한 포유동물일 수 있다. The mammal may be a mammal including a human or a mammal except a human.
또한, 본 발명은 상기 세슘 흡착제를 방사성 세슘을 포함하는 용액에 투여하는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 방사성 세슘의 제염방법을 제공한다. In addition, the present invention comprises the steps of administering the cesium adsorbent to a solution containing radioactive cesium; And adsorbing cesium; provides a method for decontaminating radioactive cesium.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
실시예 1.1. 프러시안 블루가 인캡슐화된, 알지네이트와 결합된 층상점토 복합체의 제조Example 1.1. Preparation of Layered Clay Composite Bonded with Alginate Encapsulated by Prussian Blue
3-아미노프로필트리에톡시실란(APTES, ≥98 %), 철(III) 클로라이드, 소듐 알지네이트, 프러시안 블루(PB), 및 칼슘 클로라이드를 시그마-알드리치(미국)으로부터 구입한 후, 추가 정제없이 사용하였다. 또한 비활성 Cs 용액(KANTO 화학 주식회사) 및 방사성 세슘(137Cs)을 한국 원자력 에너지 연구소에서 얻었고, 해수를 인천 연안에서 얻었다.3-aminopropyltriethoxysilane (APTES, ≧ 98%), iron (III) chloride, sodium alginate, Prussian blue (PB), and calcium chloride were purchased from Sigma-Aldrich (United States) and then without further purification. Used. Inert Cs solution (KANTO Chemical Co., Ltd.) and radioactive cesium ( 137 Cs) were obtained from the Korea Atomic Energy Research Institute, and seawater was obtained from the coast of Incheon.
1-1. 아미노프로필 기능화된 철 필로실리케이트(AIP) 점토의 제조1-1. Preparation of Aminopropyl Functionalized Iron Phylosilicate (AIP) Clay
3-아미노프로필 기능화된 철 필로실리케이트 점토(이하 "AIP 점토"라 한다)를 공지된 방법에 의해 제조하였다 (참조: Advanced Functional Materials 2011, 21, 674-681). 먼저, 500mL 유리비이커에 200mL 에탄올 및 FeCl3·6H2O(41.32 mmol, 8.4g)을 혼합한 후, 10분 동안 교반하였다. 그 후, 상기 혼합용액에 3-아미노프로필트리에톡시실란(58.73mmol, 13mL)을 가하여 3-아미노프로필트리에톡시실란에 대해 FeCl3·6H2O 의 몰비를 0.7로 조정하였다. 5분 동안 혼합한 후, 갈색의 슬러리가 형성되었다. 그 후, 하룻밤 동안 더 반응시키고, 침전된 아미노프로필 기능화된 철 필로실리케이트(AIP)를 6,000g에서 10분 동안 원심분리하고, 펠릿 물질을 반복적으로 원심분리하여 200mL 에탄올 용액으로 세척하였다. 생성물을 50℃의 오븐에서 24시간 동안 건조하고, 사용 전에 막자사발과 유봉으로 분말화하였다. 3-Aminopropyl functionalized iron phyllosilicate clay (hereinafter referred to as "AIP clay") was prepared by known methods (Advanced Functional Materials 2011, 21, 674-681). First, 200 mL ethanol and FeCl 3 · 6H 2 O (41.32 mmol, 8.4 g) were mixed in a 500 mL glass beaker, followed by stirring for 10 minutes. Thereafter, 3-aminopropyltriethoxysilane (58.73 mmol, 13 mL) was added to the mixed solution to adjust the molar ratio of FeCl 3 .6H 2 O to 3 -aminopropyltriethoxysilane to 0.7. After mixing for 5 minutes, a brown slurry formed. Thereafter, the reaction was further reacted overnight, the precipitated aminopropyl functionalized iron phyllosilicate (AIP) was centrifuged at 6,000 g for 10 minutes, and the pellet material was repeatedly centrifuged and washed with 200 mL ethanol solution. The product was dried in an oven at 50 ° C. for 24 hours and powdered with a mortar and pestle before use.
1-2. 석류같은-마이크로 스캐빈저 케이지(Pomegranate-like micro-scavenger cage, P-MSC)의 제조1-2. Pomegranate-like micro-scavenger cage, P-MSC)
상기 실시예 1.1-1에 따른 AIP 점토(1.5g)를 탈이온수(30ml)에 용해하여 AIP 점토 용액을 제조하였다. 이와 별도로, 수용성 소듐 알지네이트를 탈이온수(10ml, 2wt%)에 용해하여 알지네이트 용액을 제조한 후, 상기 알지네이트 용액 및 50㎕ 프러시안 블루(PB) 나노입자 현탁액(1M)을 혼합하여 프러시안 블루가 혼합된 알지네이트 용액을 제조하였다. 그 후, 상기 프러시안 블루가 혼합된 알지네이트 용액을 AIP 점토 용액에 적가하였다. 생성된 하이드로겔을 1시간 동안 진탕한 후 24시간 동안 유지하였다. 하이드로겔 비드를 수집한 후, 탈이온수를 세척하고, 1일 동안 동결 건조기에서 건조하여 석류같은-마이크로 스캐빈저 케이지(P-MSC)를 제조하였다. AIP clay (1.5 g) according to Example 1.1-1 was dissolved in deionized water (30 ml) to prepare an AIP clay solution. Separately, water-soluble sodium alginate was dissolved in deionized water (10 ml, 2 wt%) to prepare an alginate solution, and then the alginate solution and 50 μl Prussian Blue (PB) nanoparticle suspension (1M) were mixed to prepare Prussian Blue. Mixed alginate solutions were prepared. Thereafter, the alginate solution mixed with the Prussian blue was added dropwise to the AIP clay solution. The resulting hydrogel was shaken for 1 hour and then maintained for 24 hours. After collecting the hydrogel beads, deionized water was washed and dried in a freeze dryer for 1 day to prepare a pomegranate-micro scavenger cage (P-MSC).
비교예 1.1. Ca-알지네이트의 제조Comparative Example 1.1. Preparation of Ca-Alginate
CaCl2 플레이크(0.2g)을 탈이온수(10ml)에 용해하고 1시간 동안 교반하였다. 이와 별도로, 수용성 소듐 알지네이트를 탈이온수(10ml, 2wt%)에 용해하여 알지네이트 용액을 제조하였다. 그 후, 상기 제조된 알지네이트 용액을 CaCl2 용액에 적가하였다. 생성된 하이드로겔을 1시간 동안 진탕한 후 24시간 동안 유지하였다. 하이드로겔 비드를 수집한 후, 탈이온수를 세척하고, 1일 동안 동결 건조기에서 건조하였다. 이하 시험예에서 상기에 따라 제조된 Ca-알지네이트를 사용하였다. CaCl 2 flakes (0.2 g) were dissolved in deionized water (10 ml) and stirred for 1 hour. Separately, water-soluble sodium alginate was dissolved in deionized water (10 ml, 2 wt%) to prepare an alginate solution. Thereafter, the alginate solution prepared above was added dropwise to the CaCl 2 solution. The resulting hydrogel was shaken for 1 hour and then maintained for 24 hours. After collecting the hydrogel beads, deionized water was washed and dried in a freeze dryer for 1 day. In the following test examples, Ca-alginate prepared according to the above was used.
비교예 1.2. 마이크로 스캐빈저 케이지(MSC)의 제조Comparative Example 1.2. Preparation of Micro Scavenger Cages (MSC)
2wt% 소듐 알지네이트를 탈이온수에 용해하여 알지네이트 용액을 제조하였다. 이와 별도로, AIP 점토 나노입자(1.5g)를 탈이온수(30ml)에 용해하여 AIP 점토 용액을 제조하였다. AIP 점토는 철 이온으로 인해 갈색 색상을 나타낸다. 상기 알지네이트 용액을 상기 AIP 점토 용액에 적가하였다. 생성된 하이드로겔을 1시간 동안 진탕한 후 24시간 동안 유지하였다. 하이드로겔 비드를 수집한 후, 탈이온수를 세척하고, 1일 동안 동결 건조기에서 건조하였다. 이하 시험예에서 상기에 따라 제조된 마이크로 스캐빈저 케이지(MSC)를 사용하였다. 2 wt% sodium alginate was dissolved in deionized water to prepare an alginate solution. Separately, AIP clay nanoparticles (1.5 g) were dissolved in deionized water (30 ml) to prepare an AIP clay solution. AIP clays have a brown color due to iron ions. The alginate solution was added dropwise to the AIP clay solution. The resulting hydrogel was shaken for 1 hour and then maintained for 24 hours. After collecting the hydrogel beads, deionized water was washed and dried in a freeze dryer for 1 day. In the following test example, a micro scavenger cage (MSC) prepared according to the above was used.
시험예 1.1. P-MSC의 형성 메카니즘Test Example 1.1. Formation Mechanism of P-MSC
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 형성 메카니즘을 분석하였다. P-MSC는 알지네이트 고분자, 3-아미노프로필 기능화된 철 필로실리케이트(AIP) 점토 및 프러시안 블루(PB) 나노입자로 구성된다. 여기서, AIP 점토의 단위 구조는 양쪽 끝에 실리카 4면체판이 중첩된, 중앙 8면체판의 수활석(brucite) 층을 가진다. 또한, [H2N(CH2)3]8Si8Fe6O12(OH)4의 화학식을 가지며 양쪽 끝에 유연한 -(CH2)3NH2기가 존재한다. 특히, AIP 점토는 층간 영역을 점유하는 공유결합된 아미노프로필기를 갖는 트리옥타헤드럴형 철 필로실리케이트의 유기-무기 층상 물질이다. The formation mechanism of the pomegranate-like micro scavenger cage (P-MSC) according to Example 1.1 was analyzed. P-MSCs consist of alginate polymer, 3-aminopropyl functionalized iron phyllosilicate (AIP) clay and Prussian blue (PB) nanoparticles. Here, the unit structure of the AIP clay has a brucite layer of a central octahedral plate with superposed silica tetrahedral plates at both ends. In addition, there is a group of formula [H 2 N (CH 2 ) 3 ] 8 Si 8 Fe 6 O 12 (OH) 4 and a flexible-(CH 2 ) 3 NH 2 group at both ends. In particular, AIP clays are organic-inorganic layered materials of trioctahedral iron phyllosilicates having covalently bonded aminopropyl groups occupying interlayer regions.
석류같은-마이크로 스캐빈저 케이지(P-MSC)의 이미지 및 특징을 도 1에 나타내었다. 여기서 (a)는 P-MSC의 겔화 과정을 나타내고, (b)는 Ca-알지네이트 비드 및 P-MSC의 X-선 광분자 분광법(XPS) 피크를 나타내고, (c)는 P-MSC의 3-차원 구조를 나타내고, (d)는 P-MSC의 단면적 구조를 나타낸다. Images and features of pomegranate-micro scavenger cage (P-MSC) are shown in FIG. 1. Where (a) represents the gelation process of P-MSC, (b) represents X-ray photomolecular spectroscopy (XPS) peaks of Ca-alginate beads and P-MSC, and (c) represents 3- of P-MSC The dimensional structure is shown, and (d) shows the cross-sectional structure of the P-MSC.
도 1(a)에 나타난 바와 같이, AIP 점토는 양으로 하전된 나노입자이고, AIP 점토의 NH2는 알지네이트 체인과 가교 결합하여 겔(gel)을 형성하였다. 형성된 알지네이트 겔은 AIP 점토 네트워크를 지지하며 하이드로겔 비드를 형성한다. 또한, 흡착 성능을 향상시키기 위하여, 프러시안 블루(PB)가 흡착제 물질로 사용되어 MSC 안에 인캡슐화되었다. 이 때, AIP 점토의 표면은 NH2+로 하전되어 있어 CO2 -로 하전된 알지네이트 체인과 강한 복합체를 형성한다. 또한, AIP는 알지네이트의 고분자 네트워크 내로 침투할 수도 있다. As shown in FIG. 1 (a), AIP clay is positively charged nanoparticles, and NH 2 of AIP clay crosslinked with alginate chains to form a gel. The alginate gel formed supports the AIP clay network and forms hydrogel beads. In addition, to improve the adsorption performance, Prussian blue (PB) was used as the adsorbent material and encapsulated in the MSC. At this time, the surface of the AIP clay is charged with NH 2+ to form a strong complex with the alginate chain charged with CO 2 . AIP may also penetrate into the polymer network of alginate.
도 1(b)에 나타난 바와 같이, XPS 결과는 C 1s (286.88), O 1s (533.28), Ca 2p (348.48), Fe 2p (713.68 eV), 및 Si (180 및 150 eV)에서 뚜렷한 피크를 나타내었다. P-MSC 의 XPS 결과는 C 1s, O 1s, Si 2s, Si 2p, 및 Fe 2p (713.68 eV)에서 피크를 나타내어 Ca2 +이 없는 P-MSC의 표면을 AIP 점토 나노입자가 덮고 있음을 나타내었다. 또한, 401.9 eV에서의 피크는 프러시안 블루(PB) 나노입자 ([Fe(CN)6]4-)의 N으로부터 기인한 것임을 알 수 있다.As shown in FIG. 1 (b), XPS results show distinct peaks in C 1s (286.88), O 1s (533.28), Ca 2p (348.48), Fe 2p (713.68 eV), and Si (180 and 150 eV). Indicated. XPS results of the P-MSC represents the surface of the P-MSC indicated a peak at C 1s, O 1s, Si 2s , Si 2p, and Fe 2p (713.68 eV) without Ca 2 + that covers the AIP clay nanoparticles It was. It can also be seen that the peak at 401.9 eV originates from the N of Prussian blue (PB) nanoparticles ([Fe (CN) 6 ] 4- ).
도 1(c) 및 1(d)에 나타난 바와 같이, AIP 점토-알지네이트 쉘은 흡착제인 프러시안 블루(PB)를 인캡슐화하고 있고, AIP 점토-알지네이트 비드로부터 프러시안 블루(PB)의 보호된 방출에 중요한 역할을 하는 것을 알 수 있다. 또한, SEM 이미지는 AIP 점토-알지네이트 비드가 구형이며 대략적으로 500μm의 직경을 갖는 것을 나타내었다. As shown in Figures 1 (c) and 1 (d), the AIP clay-alginate shell encapsulates the adsorbent Prussian blue (PB) and protects Prussian blue (PB) from AIP clay-alginate beads. It can be seen that it plays an important role in the release. SEM images also showed that the AIP clay-alginate beads were spherical and had a diameter of approximately 500 μm.
상기 결과로부터 AIP 점토는 (i) 알지네이트 체인과 가교 결합하기 위한 양이온의 저장소이며, (ii) 다양한 종과 다재다능한 흡착 특성을 갖는 것을 알 수 있다. The results indicate that AIP clay is (i) a reservoir of cations for crosslinking with alginate chains, and (ii) has versatile adsorption properties with various species.
시험예 1.2. P-MSC의 구조, 형태 및 표면 특성Test Example 1.2. Structure, Form and Surface Characteristics of P-MSCs
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 구조, 형태 및 표면 특성을 주사전자현미경(SEM, S-4800SE)으로 분석하였다. 여기서,SEM은 15kV의 가속전압을 사용하여 수행하였다.The structure, morphology and surface properties of the pomegranate-like micro scavenger cage (P-MSC) according to Example 1.1 were analyzed by scanning electron microscopy (SEM, S-4800SE). Here, SEM was performed using an acceleration voltage of 15 kV.
P-MSC의 주사전자현미경(SEM) 이미지를 도 2에 나타내었다. 여기서 (a)는 P-MSC의 표면 모폴러지를 나타내고, (b)는 P-MSC의 표면 및 내부의 메트릭스 상호작용 이미지를 나타내고, (c)는 P-MSC의 단면적 구조를 나타내고, (d)는 P-MSC의 내부 메트릭스 형태를 나타낸다. 삽도는 고해상도 이미지이다. Scanning electron microscope (SEM) images of P-MSCs are shown in FIG. 2. Where (a) represents the surface morphology of the P-MSC, (b) represents the matrix interaction images of the surface and interior of the P-MSC, (c) represents the cross-sectional structure of the P-MSC, and (d) Represents the internal matrix form of the P-MSC. Inset is a high resolution image.
도 2에 나타난 바와 같이, SEM 이미지는 프로시안 블루(PB) 나노입자가 AIP 점토-알지네이트 체인 내에 인캡슐화되어 있음을 나타내었다. 또한 AIP 점토 나노입자는 30~50nm 직경을 가지며 P-MSC의 표면에 빽빽하게 패킹되어 있음을 알 수 있다. 이것은 알지네이트 체인이 CO2 _ 및 CO-와 같은 많은 카르복실기를 가지며 음(negative)로 하전되어 양(positive)으로 하전된 AIP 점토와 강한 상호 작용을 하기 때문이다. As shown in FIG. 2, SEM images showed that the Procedane Blue (PB) nanoparticles were encapsulated within the AIP clay-alginate chain. In addition, it can be seen that AIP clay nanoparticles have a diameter of 30-50 nm and are densely packed on the surface of P-MSC. This alginate chains are _ CO 2 and CO - because has a number of carboxyl groups, such as is charged with negative (negative) to the AIP clay and strong interaction positively charged (positive).
시험예 1.3. P-MSC의 안정성 특성Test Example 1.3. Stability Characteristics of P-MSC
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 안정성을 Ca-알지네이트와 비교하여 분석하였다. The stability of the pomegranate-like micro scavenger cage (P-MSC) according to Example 1.1 above was analyzed in comparison with Ca-alginate.
Ca-알지네이트 및 마이크로 스캐빈저 케이지(MSC)의 이미지 및 특징을 도 3에 나타내었다. 여기서 (a), (b)는 Ca-알지네이트의 주사전자현미경(SEM) 이미지를 나타내고, (c)는 Ca-알지네이트의 겔화 메카니즘을 나타내고, (d), (e)는 MSC의 주사전자현미경(SEM) 이미지를 나타내고, (f)는 MSC의 겔화 메카니즘을 나타내고, (g)는 Ca-알지네이트 및 P-MSC의 FT-IR 피크를 나타내고, (h)는 Ca-알지네이트, MSC 및 P-MSC의 질소 흡착/탈착 등온선 곡선을 나타내고, (i)는 Ca-알지네이트 및 P-MSC로부터 프러시안 블루(PB)의 방출을 나타내는 UV-Vis. 스펙트럼을 나타낸다.Images and features of Ca-alginate and micro scavenger cages (MSCs) are shown in FIG. 3. Where (a) and (b) show scanning electron microscope (SEM) images of Ca-alginate, (c) shows gelation mechanism of Ca-alginate, and (d) and (e) show scanning electron microscope (MS) of MSC ( SEM) image, (f) shows gelation mechanism of MSC, (g) shows FT-IR peaks of Ca-alginate and P-MSC, (h) shows Ca-alginate, MSC and P-MSC A nitrogen adsorption / desorption isotherm curve is shown, and (i) shows UV-Vis. It shows the spectrum.
도 3(a) 및 3(b)에 나타난 바와 같이, Ca-알지네이트 비드는 거칠고, 다공성 표면을 갖는 것으로 나타났다. 이 결과는 Ca-알지네이트 비드가 많은 기공을 가지며 약한 기계적 특성을 가졌음을 나타낸다. As shown in Figures 3 (a) and 3 (b), Ca-alginate beads appeared to have a rough, porous surface. This result indicates that Ca-alginate beads have many pores and weak mechanical properties.
도 3(d) 및 3(e)에 나타난 바와 같이, MSC는 많은 거대기공을 가지나, 3차원 네트워크를 형성함으로써 우수한 기계적 특성을 나타내었다. 다공성은 기계적 특성과 밀접한 관련을 가지며 방사성 세슘 흡착 물질을 포획하는 흡착 성능과 관련된다. As shown in Figures 3 (d) and 3 (e), the MSC has many macropores, but exhibited excellent mechanical properties by forming a three-dimensional network. Porosity is closely related to mechanical properties and related to the adsorption capacity of the radioactive cesium adsorbent.
도 3(c) 및 3(f)은 Ca2 + 및 AIP 점토에 의한 겔화 메카니즘을 나타낸다. 상기 기술된 바와 같이, 알지네이트 체인이 CO2 _ 및 CO-와 같은 많은 카르복실기를 가지며 음(negative)로 하전되어 양(positive)으로 하전된 AIP 점토와 강한 상호 작용을 하는 것을 알 수 있다. Figure 3 (c) and 3 (f) shows the gelation mechanism of the Ca 2 + and AIP clay. As described above, the alginate chain _ CO 2 and CO - can be seen that the number of carboxyl groups having a negative (negative) the AIP clay with strong interaction is charged positively charged (positive) the same as.
도 3(g)에 나타난 바와 같이, Ca-알지네이트 및 P-MSC의 FT-IR 스펙트럼은 카르복실기의 비대칭 스트레칭 진동과 -OH 스트레칭 진동에 상응하는 3447.1 cm-1 에서의 넓은 밴드를 나타내었다. 또한, CO2 _ 및 CO- 스트레칭 진동에 상응하는 1637.3.1, 1429.9 및 1085.7 cm-1 근처의 밴드가 나타났고, -OH 스트레칭 진동에 상응하는 3447.2 cm-1 근처의 강하고 넓은 밴드가 나타났으며, C-H 비대칭 스트레칭 진동에 상응하는 2930.3 cm-1에서의 밴드가 나타났다. 또한, 각각 -NH2 비대칭 스트레칭 진동 및 -CH2 대칭 스트레칭 진동에 해당하는 1623.8 cm-1 및 1425.1 cm-1에서 2개의 작은 밴드가 나타났다. 또한, 1035.6 cm-1 및 685.6 cm-1 에서의 밴드는 AIP 점토의 Si-O-Si 및 Fe-O 스트레칭 진동에 상응하고, 2091.4 cm-1 에서의 밴드는 P-MSC 내로 인캡슐화된 프러시안 블루(PB) 나노입자의 -C≡N-에 상응한다. As shown in FIG. 3 (g), the FT-IR spectra of Ca-alginate and P-MSC showed a broad band at 3447.1 cm −1 corresponding to the asymmetric stretching vibration and the -OH stretching vibration of the carboxyl group. In addition, bands near 1637.3.1, 1429.9 and 1085.7 cm -1 corresponding to CO 2 _ and CO - stretching vibrations appeared, and strong and wide bands near 3447.2 cm -1 corresponding to -OH stretching vibrations appeared. The band at 2930.3 cm -1 corresponds to the CH asymmetric stretching vibration. In addition, two small bands appeared at 1623.8 cm −1 and 1425.1 cm −1 , corresponding to -NH 2 asymmetric stretching vibration and -CH 2 symmetric stretching vibration, respectively. In addition, the bands at 1035.6 cm −1 and 685.6 cm −1 correspond to Si-O-Si and Fe-O stretching vibrations of AIP clay and the band at 2091.4 cm −1 is Prussian encapsulated into P-MSC It corresponds to-blue (PB) -C≡N of nanoparticles.
도 3(h)은 Ca-알지네이트, MSC 및 P-MSC의 질소 흡착/탈착의 Brunauer-Emmett-Teller (BET) 표면적 분석을 나타낸다. Ca-알지네이트 및 MSC의 BET 표면적은 각각 12.3 및 15.6 m²/g인 것으로 나타났다. 또한, P-MSC의 BET 표면적, 기공 부피 및 평균 기공 직경은 각각 44.5 m²/g, 0.3656 cm³/g, 및 31.34 nm인 것으로 나타났다. 상기 결과로부터 P-MSC는 3-차원 네트워크 형성으로 인해 Ca-알지네이트에 비해 더욱 넓은 BET 표면적을 나타내며, 이로써 우수한 세슘 흡착 능력을 나타냄을 알 수 있다. 3 (h) shows Brunauer-Emmett-Teller (BET) surface area analysis of nitrogen adsorption / desorption of Ca-alginate, MSC and P-MSC. The BET surface areas of Ca-alginate and MSC were found to be 12.3 and 15.6 m² / g, respectively. In addition, the BET surface area, pore volume and average pore diameter of the P-MSC were found to be 44.5 m 2 / g, 0.3656 cm 3 / g, and 31.34 nm, respectively. From the above results, it can be seen that P-MSC has a larger BET surface area than Ca-alginate due to the formation of a three-dimensional network, thereby exhibiting excellent cesium adsorption capacity.
도 3(i)에 나타난 바와 같이, Ca-알지네이트 비드는 인캡슐된 프러시안 블루(PB)를 빠르게 방출하는 것으로 나타났다. 또한, 대조적으로, P-MSC는 거의 프러시안 블루(PB)를 방출하지 않아 흡착 동안 안정한 것으로 나타났다.As shown in FIG. 3 (i), Ca-alginate beads were shown to rapidly release encapsulated Prussian blue (PB). In addition, P-MSCs, on the other hand, appeared to be stable during adsorption with little Prussian blue (PB) emission.
상기 결과는 P-MSC가 넓은 BET 표면적을 가질 뿐 아니라, 3차원 네트워크를 형성하여 기계적으로 안정하고, 방사성 세슘을 제거하기 위하여 오랜 시간 동안 해수 내에서 유지될 수 있음을 나타낸다. The results show that P-MSC not only has a large BET surface area, but also forms a three-dimensional network that is mechanically stable and can be maintained in seawater for a long time to remove radioactive cesium.
시험예 1.4. 흡착 등온선을 이용한 P-MSC의 흡착 성능 평가Test Example 1.4. Adsorption performance evaluation of P-MSC using adsorption isotherm
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 흡착 성능을 흡착 등온선을 이용하여 평가하였다. P-MSC의 흡착 성능을 1 내지 50ppm의 세슘의 초기농도 변화에 따라 조사하였다. The adsorption performance of pomegranate-like-micro scavenger cage (P-MSC) according to Example 1.1 was evaluated using adsorption isotherms. The adsorption performance of P-MSC was investigated according to the initial concentration change of cesium of 1 to 50 ppm.
세슘의 농도변화에 따른 Ca-알지네이트, MSC 및 P-MSC의 흡착 등온선 및 운동학적 데이터를 도 4에 나타내었다. 여기서 (a)는 Ca-알지네이트, MSC 및 P-MSC의 실험 데이터, 랭뮤어 피팅 곡선(실선), 및 프로인틀리히 피팅 곡선(점선)을 나타내고, (b)는 랭뮤어의 선형 모델을 나타내고, (c)는 프로인틀리히의 선형 모델을 나타내고, (d)는 P-MSC의 흡착 운동역학을 나타낸다 (삽도는 유사-2차 모델이다). Adsorption isotherms and kinematic data of Ca-alginate, MSC and P-MSC according to the concentration of cesium are shown in FIG. 4. Where (a) represents experimental data of Ca-alginate, MSC and P-MSC, Langmuir fitting curves (solid line), and Freindley fitting curves (dashed line), and (b) represents Langmuir's linear model , (c) shows a linear model of Freinthrich, and (d) shows the adsorption kinetics of P-MSC (inset is pseudo-second order model).
도 4에 나타난 바와 같이, 평형 후의 세슘 농도(mg/L)에 대한 Ca-알지네이트, MSC 및 P-MSC의 흡착 성능(mg/g)은 세슘(Cs)의 초기 농도가 30ppm 이하인 경우, 세슘 이온 농도가 증가함에 따라 빠르게 증가하는 것으로 나타났다. 이것은 이용가능한 충분한 흡착 활성 사이트가 존재하기 때문이다. 그러나, 세슘의 초기 농도가 더 높을 경우, 흡착 성능은 느리게 증가하였다. 또한, 랭뮤어 및 프로인틀리히 흡착 등온선 모델이 평형에서 흡착 데이터를 피팅하기 위하여 적용되었다. As shown in FIG. 4, the adsorption performance (mg / g) of Ca-alginate, MSC and P-MSC with respect to the cesium concentration (mg / L) after equilibrium is cesium ion when the initial concentration of cesium (Cs) is 30 ppm or less. It appeared to increase rapidly with increasing concentration. This is because there are sufficient adsorption active sites available. However, at higher initial concentrations of cesium, the adsorption performance increased slowly. In addition, Langmuir and Freindley adsorption isotherm models were applied to fit the adsorption data at equilibrium.
랭뮤어 모델은 모든 활성 사이트가 균등하며 독립적이라는 가정하에 균일한 흡착제 표면 위에 세슘(Cs)의 단층 흡착 과정을 나타낸다. 선형 및 비선형 방정식은 하기와 같다. The Langmuir model represents a monolayer adsorption process of cesium (Cs) on a uniform adsorbent surface, assuming that all active sites are equal and independent. The linear and nonlinear equations are as follows.
Figure PCTKR2017005263-appb-I000001
Figure PCTKR2017005263-appb-I000001
여기서, qe 및 qmax는 각각 평형 흡착 성능 및 단층 최대 흡착 성능(mg/g)을 나타내고, KL은 흡착제와 흡착된 물질 사이의 친화도에 대한 상수이다. Where q e and q max represent the equilibrium adsorption performance and the monolayer maximum adsorption performance (mg / g), respectively, and K L is a constant for the affinity between the adsorbent and the adsorbed material.
대조적으로, 프로인틀리히 모델은 흡착제의 표면 위에 몇몇 유형의 흡착 사이트를 갖는 다층 흡착을 설명하는 실험식(empirical equation)이다. 선형 및 비선형 방정식은 하기와 같다. In contrast, the Freintrich model is an empirical equation describing multilayer adsorption with several types of adsorption sites on the surface of the adsorbent. The linear and nonlinear equations are as follows.
Figure PCTKR2017005263-appb-I000002
Figure PCTKR2017005263-appb-I000002
여기서, KF 및 n은 각각 다층 흡착 성능에 대한 프로인틀리히 상수이다. Where K F and n are Freudlicht constants for multilayer adsorption performance, respectively.
랭뮤어 및 프로인틀리히 모델 상수 값은 각 플럿의 기울기 및 절편으로부터 산출되었다. 등온선은 0.99의 R2 값을 갖는 프로인틀리히 모델에서 잘 피팅되었다. 피팅 결과, P-MSC가 세슘(Cs)에 대해 108.06 mg/g의 높은 흡착 성능을 가지는데 반해, Ca-알지네이트 비드 및 MSC는 각각 2.25 mg/g 및 48.48 mg/g의 흡착 성능을 나타내었다. 또한, 실험데이터는 프로인틀리히 선형 모델에 잘 피팅됨을 알 수 있으며, 이것은 흡착제의 표면 위에 활성 사이트가 불균일하게 분포되어 있음을 나타낸다. The Langmuir and Freudenrich model constant values were calculated from the slope and intercept of each plot. The isotherm fits well in a Freindrich model with an R 2 value of 0.99. As a result of fitting, P-MSC had a high adsorption performance of 108.06 mg / g for cesium (Cs), whereas Ca-alginate beads and MSC showed adsorption performance of 2.25 mg / g and 48.48 mg / g, respectively. In addition, the experimental data can be found to fit well with the Freintrich linear model, indicating that the active site is unevenly distributed on the surface of the adsorbent.
상기 Ca-알지네이트, MSC 및 P-MSC 표면 위에 세슘(Cs) 흡착에 대한 랭뮤어 및 프로인틀리히 모델 인자를 표 1에 나타내었다. The Langmuir and Prointrich model factors for cesium (Cs) adsorption on the Ca-alginate, MSC and P-MSC surfaces are shown in Table 1.
[표 1]TABLE 1
Figure PCTKR2017005263-appb-I000003
Figure PCTKR2017005263-appb-I000003
시험예 1.5. 흡착 운동역학을 이용한 P-MSC의 흡착 성능 평가Test Example 1.5. Adsorption Performance Evaluation of P-MSC Using Adsorption Kinetics
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 흡착 성능을 흡착 운동역학을 이용하여 평가하였다. 운동학적 데이터는 수도-1차 모델 및 수도-2차 모델을 이용하여 분석하였다. Adsorption performance of pomegranate-like-micro scavenger cage (P-MSC) according to Example 1.1 was evaluated using adsorption kinetics. Kinematic data were analyzed using the POD-1 model and POD-2 model.
수도 1차 반응 속도식은 하기와 같다.The first water reaction rate equation is as follows.
Figure PCTKR2017005263-appb-I000004
Figure PCTKR2017005263-appb-I000004
여기서, qe 및 qt는 각각 시간 t에서 평형에서의 흡착 용량(mg/g)를 나타내고, k1은 수도 1차 반응 상수(L/min)이다. Where q e and q t each represent the adsorption capacity (mg / g) at equilibrium at time t, and k 1 is the water first order reaction constant (L / min).
t=0~t 및 qt=0~qt의 경계조건을 적용하고 적분함으로써 단순화된 반응 속도식 은 하기와 같다. By applying and integrating the boundary conditions t = 0 to t and q t = 0 to q t , the simplified reaction rate equation is:
Figure PCTKR2017005263-appb-I000005
Figure PCTKR2017005263-appb-I000005
상기 반응 속도식에서, ln(qe-qt) 대 시간의 플럿은 기울기 및 절편으로부터 직선으로 나타나고, 이로부터 k1 값을 계산할 수 있다. In the reaction rate equation, the plot of ln (q e -q t ) vs. time appears as a straight line from the slope and intercept, from which the k 1 value can be calculated.
수도 2차 반응 속도식은 하기와 같다.The water secondary reaction rate equation is as follows.
Figure PCTKR2017005263-appb-I000006
Figure PCTKR2017005263-appb-I000006
여기서, qe 및 qt는 각각 시간 t에서 평형에서의 흡착 용량(mg/g)를 나타내고, k2은 수도 2차 반응 상수(g/mg·min)이다. Where q e and q t each represent the adsorption capacity (mg / g) at equilibrium at time t, and k 2 is the water secondary reaction constant (g / mg · min).
계산된 qe 및 R2 값에 나타난 바와 같이, 수도-2차 반응 속도식 모델이 수도-1차 반응 속도식 모델보다 실험 결과에 더 잘 피팅되었고, 이 결과는 P-MSC의 흡착 속도가 용액 내의 세슘 농도보다는 활성 사이트에 의존한다는 것을 나타낸다. 또한, 반응속도 결정단계는 P-MSC와 세슘 이온간의 양성자 교환과 관련된 화학 흡착에 의해 제어된다. As shown in the calculated q e and R 2 values, the water-second-order kinetic model was better fitted to the experimental results than the water-first-order kinetic model, which showed that the adsorption rate of P-MSC was It depends on the active site rather than the cesium concentration within. The rate determining step is also controlled by chemisorption associated with proton exchange between P-MSC and cesium ions.
상기 수도-1차 및 수도-2차 반응 속도식 모델에 대한 인자를 표 2에 나타내었다. The factors for the water-first and water-secondary reaction rate equation models are shown in Table 2.
[표 2]TABLE 2
Figure PCTKR2017005263-appb-I000007
Figure PCTKR2017005263-appb-I000007
시험예 1.6. P-MSC의 분배 계수(Kd) 및 세슘(Cs) 선택성 평가Test Example 1.6. Evaluation of partition coefficient (K d ) and cesium (Cs) selectivity of P-MSC
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 분배 계수(Kd) 및 경쟁 양이온에 대한 세슘 이온 선택성을 평가하였다. The partition coefficient (K d ) of the pomegranate-like-micro scavenger cage (P-MSC) according to Example 1.1 above and the cesium ion selectivity for the competing cations were evaluated.
Ca-알지네이트, MSC 및 P-MSC의 분배 계수(Kd) 및 세슘 이온 선택성을 도 5에 나타내었다. 여기서 (a)는 Ca-알지네이트, MSC 및 P-MSC의 Kd 값을 나타내고, (b)는 경쟁 양이온(Na+, K+, Ca2 +, Mg2 +)과 해수의 존재하에 Cs 이온의 제거 효율(%)을 나타낸다. 여기서, 선택성 실험은 10mg의 P-MSC 및 5mL의 세슘 용액(0.25ppm, 1.88×10-3 mmol/L)을 이용하여 수행하였고, 세슘(Cs)의 초기 및 잔류 농도는 유도결합 플라즈마 질량분석기(ICP-MS)로 분석하였다. The partition coefficient (K d ) and cesium ion selectivity of Ca-alginate, MSC and P-MSC are shown in FIG. 5. Wherein (a) represents a K d value of Ca- alginate, MSC and the P-MSC, (b) is competition of the cations (Na +, K +, Ca 2 +, Mg 2 +) and Cs ions in the presence of water Removal efficiency (%) is shown. Here, the selectivity experiment was performed using 10 mg of P-MSC and 5 mL of cesium solution (0.25 ppm, 1.88 × 10 −3 mmol / L), and the initial and residual concentrations of cesium (Cs) were measured using an inductively coupled plasma mass spectrometer ( ICP-MS).
또한, 분배 계수(Kd)를 하기와 같이 정의하였다.In addition, the partition coefficient K d was defined as follows.
Figure PCTKR2017005263-appb-I000008
Figure PCTKR2017005263-appb-I000008
여기서, Co 및 Ce는 각각 용액 내 세슘의 초기 및 평형 농도를 나타내고, V는 세슘 용액의 부피를 나타내고, M은 흡착제의 중량을 나타낸다. Where C o and C e represent the initial and equilibrium concentrations of cesium in the solution, V represents the volume of cesium solution, and M represents the weight of the adsorbent.
도 5에 나타난 바와 같이, Ca-알지네이트 및 MSC의 분배 계수(Kd)는 각각 145.1 및 21937.5로 나타났으며, P-MSC의 분배 계수(Kd)는 34317.4로 Ca-알지네이트의 분배 계수보다 236배 더 높게 나타났다. 또한, 5mL 증류수 내 Na+, K+, Ca2 + 및 Mg2+의 9.4×10-3mmol 농도에서 P-MSC의 세슘 흡착 성능은 변하지 않고 일정하게 유지되는 것으로 나타났다. As shown in FIG. 5, the partition coefficients (K d ) of Ca-alginate and MSC were 145.1 and 21937.5, respectively, and the partition coefficient (K d ) of P-MSC was 34317.4, which is 236 higher than that of Ca-alginate. Times higher. In addition, distilled water in 5mL Na +, K +, Ca 2 cesium adsorption performance of the P-MSC in + and 9.4 × 10 -3 mmol of Mg 2+ concentration appeared to be kept constant without changing.
상기 결과로부터 1가 및 2가 금속 이온은 P-MSC의 세슘 흡착에 대해서 어떠한 영향도 끼치지 못함을 알 수 있다. 이 결과는 수화된 Cs+ 이온을 흡착시키는 프로시안 블루(PB)의 뛰어난 흡착 효율 때문으로 알카리 금속에 대한 프러시안 블루(PB)의 흡착 성능은 Cs+>> Na+, K+, Ca2+ 및 Mg2+임을 알 수 있다. From the above results, it can be seen that monovalent and divalent metal ions have no effect on cesium adsorption of P-MSC. This result is due to the excellent adsorption efficiency of procian blue (PB), which adsorbs hydrated Cs + ions, so that Prussian blue (PB) adsorption on alkali metals is Cs + >> Na + , K + , Ca 2+ And Mg 2+ .
시험예 1.7. P-MSC의 방사성 세슘(137Cs) 제거 효율 평가Test Example 1.7. Evaluation of the radioactive cesium ( 137 Cs) removal efficiency of P-MSC
상기 실시예 1.1에 따른 석류같은-마이크로 스캐빈저 케이지(P-MSC)의 방사성 세슘(137Cs) 제거 효율(%)을 평가하였다. 방사성 세슘(137Cs)의 제거 효율(%)을 하기 식으로 정의하였다. The radioactive cesium ( 137 Cs) removal efficiency (%) of the pomegranate-micro scavenger cage (P-MSC) according to Example 1.1 was evaluated. The removal efficiency (%) of radioactive cesium ( 137 Cs) was defined by the following formula.
Figure PCTKR2017005263-appb-I000009
Figure PCTKR2017005263-appb-I000009
여기서, Co 및 Ce는 각각 용액 내 세슘의 초기 및 평형 농도를 각각 나타낸다. Where C o and C e respectively represent the initial and equilibrium concentrations of cesium in the solution.
Ca-알지네이트, MSC 및 P-MSC를 이용한 방사성 세슘(137Cs)의 제거 효율(%)을 도 6에 나타내었다. 여기서, 각각 Ca-알지네이트, MSC 및 P-MSC의 1.0mg/mL을 방사성 세슘(137Cs) 용액(약 130 Bq/g)에 첨가하고 12시간 동안 교반하였고, 그 후 용액을 여과하여 용액 내 방사성 세슘(137Cs)의 농도를 분석하였다. The removal efficiency (%) of radioactive cesium ( 137 Cs) using Ca-alginate, MSC and P-MSC is shown in FIG. 6. Here, 1.0 mg / mL of Ca-alginate, MSC and P-MSC, respectively, were added to a radioactive cesium ( 137 Cs) solution (about 130 Bq / g) and stirred for 12 hours, after which the solution was filtered to radioactive in solution The concentration of cesium ( 137 Cs) was analyzed.
도 6에 나타난 바와 같이, Ca-알지네이트의 방사성 세슘(137Cs) 제거 효율은 15.05%에 불과했으나, MSC의 방사성 세슘(137Cs) 제거 효율은 77.04%로 나타났고, 프러시안 블루(PB)가 인캡슐된 P-MSC의 방사성 세슘(137Cs) 제거 효율은 99.24%로 나타났다. 이 결과는 P-MSC와 세슘과의 강한 상호작용으로 인해 P-MSC내 수많은 세슘 흡착 사이트가 존재하기 때문이다. As shown in FIG. 6, the radioactive cesium ( 137 Cs) removal efficiency of Ca-alginate was only 15.05%, but the radioactive cesium ( 137 Cs) removal efficiency of the MSC was 77.04%, and Prussian blue (PB) The radioactive cesium ( 137 Cs) removal efficiency of the encapsulated P-MSC was 99.24%. This result is due to the presence of numerous cesium adsorption sites in P-MSC due to the strong interaction of P-MSC with cesium.
상기 결과로부터, P-MSC가 방사성 세슘(137Cs) 오염된 물로부터 방사성 세슘(137Cs)을 제거하는 데 우수한 능력을 가졌음을 알 수 있다. From the above results, it is possible to know the P-MSC gajyeoteum superior ability in removing radioactive cesium (137 Cs) radioactive cesium (Cs 137) from contaminated water.
도 7은 나노입자 함임을 통한 흡착제 기능화 기술을 도식화하여 나타낸 것이다. 합성된 흡착제 내부에 메탈 옥사이드 함입을 통한 기능성 부여할 수 있다. 메탈옥사이드는 그 종류와 특징에 따라 다양한 기능성을 갖으며, 특히 자성 나노입자는 자석에 의한 이동 및 분류가 가능한 기능을 부여할 수 있었다. 또한, 메탈 옥사이드가 첨가되면서 강도가 증가됨을 확인하였다. 추가적으로, 메탈 옥사이드의 전하 및 이온구배에 의해 외부 세슘 (양가이온)이 내부로 이동을 쉽게 하여, 흡착능을 향상시킬 수 있는 기술로 활용할 수 있었다.Figure 7 shows the schematic diagram of the adsorption functionalization technology through nanoparticles containing. Functionality may be imparted through metal oxide incorporation into the synthesized adsorbent. Metal oxides have various functionalities according to their types and characteristics, and in particular, magnetic nanoparticles can be given a function capable of moving and classifying by magnets. In addition, it was confirmed that the strength is increased as the metal oxide is added. In addition, external cesium (cationic) was easily moved to the inside by the charge and ion gradient of the metal oxide, and thus could be utilized as a technology for improving the adsorption capacity.
도 8은 나노입자 함입을 통한 기능화된 흡착제의 내부 구조 및 형태 특성을 나타낸 것이다. 주사 전자 현미경 이미지를 확인하였다. 도면의 (a)-(c) 는 고분자 비드 내부에 프러시안 블루 입자만 함입되어진 상태를 보여주며 (d)-(f)는 추가로 메탈 옥사이드 입자를 넣어서 기능화를 시킨 흡착제의 단면도이다. 내부에는 100 나노 크기의 메탈 옥사이드가 함입되었으며, 고분자 내부 층 사이에 안정적으로 함입이 되어져 있음을 확인하였다.8 shows the internal structure and morphology of the functionalized adsorbent through nanoparticle incorporation. Scanning electron microscopy images were confirmed. (A)-(c) of the figure shows a state in which only Prussian blue particles are incorporated into the polymer bead, and (d)-(f) are cross-sectional views of the adsorbent in which metal oxide particles are added and functionalized. It was confirmed that 100 nano-sized metal oxide was contained inside, and that the metal oxide was stably contained between the polymer inner layers.
도 9는 알지네이트/점토 복합체의 강도 특성을 나타낸 것이다. 제조된 알지네이트/점토 복합체는 기본 칼슘-알지네이트에 비해 강도가 향상됨을 확인하였다. 이는 나노인덴터 실험으로 표면특성 및 강도 실험, 압축강도 실험으로 외부 압력에 의한 변형율을 통해 기존 물질에 비해 향상된 특성을 확인하였다(a). 일반적인 알지네이트 고분자의 경우 강도가 좋지 않아 외부 힘에 의한 변형이 큰 특성을 확인하였으며, 합성된 P-MSC 의 경우 외부 힘에 대한 변형율이 상대적으로 적음을 확인하여 함입된 나노 입자에 의한 강도가 향상 될 수 있음을 보여준다. 용액 내에서의 안정성을 확인하여, 내부 물질의 외부 누출이 없음을 보여준다(b). 최대 1년까지의 용액내 안정성을 확인해본 결과, 알지네이트/점토 복합체는 외부로의 내부물질 유출이 없음을 확인할 수 있었다. 이 결과 또한 고분자 복합체가 안정하게 합성되어 있으며 좋은 강도를 유지하고 있음을 보여준다.9 shows the strength characteristics of alginate / clay composites. It was confirmed that the prepared alginate / clay composite has improved strength compared to basic calcium-alginate. This was confirmed by the nano-indenter experiments compared to the conventional material through the surface properties and strength experiments, compressive strength experiments through the strain due to external pressure (a). In general, the alginate polymer showed poor strength due to poor strength, and the modified P-MSC showed relatively low strain against external force. Shows that it can. The stability in the solution is checked to show that there is no external leakage of internal material (b). As a result of confirming the stability in the solution up to 1 year, it was confirmed that the alginate / clay composite has no internal material leakage to the outside. The results also show that the polymer composite is stably synthesized and maintains good strength.
도 10은 감마선에 대한 안정성 확인 결과이다. 방사성 원소의 흡착제는 흡착물질이 외부로 방사선 에너지를 내기 때문에 방사선 (감마선)에 대한 안정성을 확보해야한다. 본 발명의 복합체는 외부에서 감마선 조사를 통해 감마선에 의한 물질의 변형 및 불안정성을 확인하였다. 기존의 칼슘-알지네이트의 불안정성에 비해, 본 발명의 물질은 내부 합임되어 있는 점토에 의한 결과로 감마선에도 안정성이 있음을 보여주고 있다. 최대 300 kGy의 감마선을 조사하였을 때도 외부로 내부 물질의 유출이 없음을 확인하였다. 10 is a result of checking the stability for gamma rays. Adsorbents of radioactive elements have to ensure stability against radiation (gamma rays) because the adsorbents give out radiation energy to the outside. The complex of the present invention confirmed the deformation and instability of the material by gamma rays through gamma irradiation from the outside. Compared to the instability of the existing calcium-alginate, the material of the present invention has been shown to be stable to gamma rays as a result of the internally incorporated clay. When irradiated with gamma rays of up to 300 kGy, it was confirmed that there was no leakage of internal substances to the outside.
도 11은 해수 조건 내에서의 안정성 확인 결과이다. 방사성 흡착제는 실제 해수 환경에서 사용되어지며, 고농도의 염을 포함하고 있는 해수에서의 안정성이 확보되어 져야한다. 기존의 양이온에 의한 알지네이트의 젤화는 해수의 고농도의 다양한 이온환경에서 매우 불안정하며, 알지네이트 고분자의 풀림을 유도하여 흡착제 물질로 사용하기 어려웠다. 본 발명의 알지네이트/점토 복합체는 점토에 의한 젤화를 유도하여, 고 농도의 양이온이 존재하는 해수 환경에서의 안정성을 확보하였다. 이는 상기 복합체를 사용하였을 때, 내부 물질(프러시안 블루)의 외부로의 유출이 없음을 확인하여 입증하였다.11 shows the results of checking stability in seawater conditions. Radioactive adsorbents are used in real seawater environments and must be secured in seawater containing high concentrations of salts. Gelation of alginates by conventional cations is very unstable in various ionic environments of high concentrations of seawater, and it is difficult to use them as adsorbent materials by inducing annealing of alginate polymers. The alginate / clay composite of the present invention induces gelation by clay, thereby ensuring stability in a seawater environment in which high concentrations of cations are present. This was verified by confirming that there was no outflow of the inner material (Prussian blue) when using the complex.
도 12는 공정용 충진제로의 사용을 도식화하여 나타낸 것이다. 본 발명에 따른 흡착제는 비드 형태의 공정용 충진제로 사용 가능함을 확인하였다. 공정용 흡착제의 경유 유속에 및 압력에 강해야 하기 때문에, 안정적이여야 하는 특성이 있으며, 따라서 본 발명의 복합체는 안정적으로 컬럼을 충진할 수 있음을 확인하였다.12 is a schematic of the use as a process filler. It was confirmed that the adsorbent according to the present invention can be used as a filler for process in the form of beads. Since it should be resistant to the gas flow rate and pressure of the adsorbent for the process, it has been confirmed that there is a property that should be stable, and therefore the composite of the present invention can be stably packed column.
실시예 2.1. 세슘 흡착제의 제조Example 2.1. Preparation of Cesium Adsorbent
본 발명의 프러시안 블루가 담지된 셀룰로오스 하이드로겔(이하, 'PB-셀룰로오스 하이드로겔'이라 한다)을 포함하는 세슘 흡착제의 제조과정을 하기 도 13에 개략적으로 나타내었다.13 shows a process for preparing a cesium adsorbent including a cellulose hydrogel loaded with Prussian blue of the present invention (hereinafter referred to as 'PB-cellulose hydrogel').
1 단계: 프러시안 블루가 담지된 셀룰로오스(PB-셀룰로오스) 용액의 제조Step 1: preparing a cellulose (PB-cellulose) solution loaded with Prussian blue
α-셀룰로오스를 용해시키기 위한 용매로서 TBAA/DMSO 용액을 사용하였다. 먼저, 디메틸설폭사이드(Dimethyl sulfoxide; DMSO) 30 ml(33 g)에 테트라부틸암모늄 아세테이트(tetrabutylammonium acetate; TBAA) 5.83 g을 첨가 및 교반하며 용해시켜 DMSO와 TBAA를 8.5:1.5의 질량비로 혼합한 TBAA/DMSO 용액 30 ml을 제조한 후, 상기 용액에 α-셀룰로오스 분말 0.793 g을 첨가하고 완전히 용해될 때까지 교반하여 2wt% 셀룰로오스 용액을 제조하였다. 그 후, 2 wt% 셀룰로오스 용액 30 ml에 1 M 프러시안 블루 용액을 2 ml 첨가한 후 완전히 혼합될 때까지 교반하여 2% 셀룰로오스 용액과 1 M 프러시안 블루(PB) 용액을 15:1의 부피비로 혼합한 PB-셀룰로오스 용액을 제조하였다.TBAA / DMSO solution was used as a solvent to dissolve the α-cellulose. First, TBAA obtained by mixing DMSO and TBAA in a mass ratio of 8.5: 1.5 by adding 5.83 g of tetrabutylammonium acetate (TBAA) to 30 ml (33 g) of dimethyl sulfoxide (DMSO) and stirring. After preparing 30 ml of / DMSO solution, 0.793 g of α-cellulose powder was added to the solution and stirred until completely dissolved to prepare a 2 wt% cellulose solution. Then, 2 ml of 1 M Prussian Blue solution was added to 30 ml of 2 wt% cellulose solution, followed by stirring until complete mixing, thereby adding 2% cellulose solution and 1 M Prussian Blue (PB) solution in a volume ratio of 15: 1. PB-cellulose solution was prepared by mixing.
2 단계: PB-셀룰로오스 하이드로겔의 제조Step 2: Preparation of PB-Cellulose Hydrogel
PB-셀룰로오스 하이드로겔을 제조하기 위하여, 시린지 펌프(syringe pump)를 이용하였으며, 이를 하기 도 14에 도식화하여 나타내었다.In order to prepare a PB-cellulose hydrogel, a syringe pump was used, which is shown schematically in FIG. 14.
시린지 펌프는 유체를 일정한 유량으로 이동시킬 수 있으므로 반자동화 공정이 가능하고 일정한 크기의 액체방울을 얻을 수 있다. 먼저, 시린지에 상기 실시예 2.1의 1 단계에서 제조한 PB-셀룰로오스 용액을 채운 뒤, 이를 시린지 펌프에 장착하였다. 시린지 펌프의 유량을 0.3 ml/min으로 세팅하고, 시린지의 토출구에서 한 방울씩 토출되는 PB-셀룰로오스 용액이 물과 반응하여 하이드로겔을 형성할 수 있도록, 토출구 아래 쪽에 300 ml의 증류수가 담긴 비커를 놓았다. 토출된 PB-셀룰로오스 액체방울은 비이커 안의 물과 반응하여 즉시 경화되며, 증류수 안에서 경화된 PB-셀룰로오스 비드를 2시간 정도 충분히 담가두어 물을 흡수할 수 있도록 하였다. 마지막으로 액체 방울에 남아있을 수 있는 불순물을 제거하기 위해 시린지의 출구에 300 ml의 증류수를 담은 비커를 놓았다. 그 후 시린지 펌프의 유량을 0.3 ml/min으로 작동시켜 시린지의 출구로 PB-셀룰로오스 용액이 비커에 떨어질 수 있게 하였다. 흘러나온 PB-셀룰로오스 액체방울은 비커에 떨어지면 즉시 경화되며, 증류수 안에서 경화된 PB-셀룰로오스 비드를 2시간 정도 충분히 담가 두어 물을 흡수할 수 있게 하였다. 마지막으로 액체방울에 남아있을 수 있는 불순물을 제거하기 위해 수 번 세척하고 동결건조하여 PB-셀룰로오스 하이드로겔을 제조하였다.Syringe pumps can move fluids at a constant flow rate, allowing for semi-automated processes and obtaining droplets of constant size. First, the syringe was filled with the PB-cellulose solution prepared in step 1 of Example 2.1, and then mounted in a syringe pump. Set the flow rate of the syringe pump to 0.3 ml / min, and place a beaker containing 300 ml of distilled water under the discharge port so that the PB-cellulose solution discharged dropwise from the syringe outlet reacts with water to form a hydrogel. Let go. The discharged PB-cellulose droplets reacted with water in the beaker to cure immediately, and the hardened PB-cellulose beads were immersed in distilled water for 2 hours to absorb water. Finally, a beaker containing 300 ml of distilled water was placed at the outlet of the syringe to remove any impurities that might remain in the liquid drop. The flow rate of the syringe pump was then operated at 0.3 ml / min to allow the PB-cellulose solution to fall into the beaker at the outlet of the syringe. The PB-cellulose droplets that flowed out were immediately cured when dropped into the beaker, and soaked in PB-cellulose beads in distilled water for 2 hours to absorb water. Finally, PB-cellulose hydrogel was prepared by washing several times and freeze-drying to remove impurities that may remain in the droplets.
물성 평가는 PB-셀룰로오스 하이드로겔을 건조(PB-Cellulose aerogel) 하여 실시하였다.Physical property evaluation was performed by drying PB-cellulose hydrogel (PB-Cellulose aerogel).
비교예 2.1Comparative Example 2.1
프러시안 블루를 담지하지 않은 셀룰로오스 용액을 이용하여 실시예 2.1과 동일한 방법으로 하이드로겔을 제조하였다. Hydrogel was prepared in the same manner as in Example 2.1 using a cellulose solution not carrying Prussian blue.
비교예 2.2Comparative Example 2.2
프러시안 블루를 알지네이트 고분자에 담지하여 하이드로겔을 제조하였다. Hydrogel was prepared by supporting Prussian blue on an alginate polymer.
시험예 2.1. PB-셀룰로오스 하이드로겔 합성 확인Test Example 2.1. PB-cellulose hydrogel synthesis confirmation
실시예 2.1과 비교예 2.1에 따른 하이드로겔을 UV 스펙트럼, X선 회절분석법(X-ray Diffraction Spectroscopy : XRD), 푸리에 변환 적외선 분광법(Fourier transform infrared spectroscopy; FT-IR) 및 X선 광전자 분광법(X-Ray Photoelectron Spectroscopy : XPS)을 수행하여, 본 발명에 따른 PB-셀룰로오스 하이드로겔의 합성여부를 검증하였다. Hydrogels according to Example 2.1 and Comparative Example 2.1 were subjected to UV spectra, X-ray Diffraction Spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (X-ray). Ray Photoelectron Spectroscopy (XPS) was performed to verify the synthesis of PB-cellulose hydrogel according to the present invention.
X선 회절 분석X-ray diffraction analysis
도 15는 XRD 분석결과이다. 비교예 2.1(하단 스펙트럼)은 무정형의 피크 모양을 나타내었으며, 셀룰로오스 고유의 XRD 특성 피크인 19.6°, 21.6°에서 피크가 나타났다. 반면, 실시예 2.1(상단 스펙트럼)의 경우 셀룰로오스의 특성 피크뿐만 아니라 프러시안 블루의 특성인 17.5°, 24.9°, 35.5°, 39.5°, 43.5°, 50.7°, 54.0°, 57.1°에서 피크가 형성되는 것을 볼 수 있다. 이를 통하여 실시예 2.1은 셀룰로오스 하이드로겔에 프러시안 블루가 잘 담지되어 있음을 확인하였다. 15 is an XRD analysis result. Comparative Example 2.1 (bottom spectrum) showed an amorphous peak shape and peaks at 19.6 ° and 21.6 °, which are inherent XRD characteristic peaks of cellulose. On the other hand, in Example 2.1 (upper spectrum), peaks are formed at 17.5 °, 24.9 °, 35.5 °, 39.5 °, 43.5 °, 50.7 °, 54.0 °, and 57.1 °, which are not only characteristic peaks of cellulose but also Prussian blue. You can see it. Through this, Example 2.1 confirmed that the Prussian blue is well supported on the cellulose hydrogel.
푸리에 변환 적외선 분광 분석Fourier Transform Infrared Spectroscopy
도 16은 FT-IR 분석결과이다. 비교예 2.1(하단 스펙트럼)은 셀룰로오스의 특성 FT-IR 피크만 나타난 반면, 실시예 2.1(상단 스펙트럼)은 셀룰로오스의 특성 FT-IR 피크인 3430 cm-1 (O-H), 2901 cm-1 (C-H), 1163 cm-1 (C-O-C, 글리코시드 결합), 1024 cm-1 (C-OH에서 나타나는 C-O), 892 cm-1 (C-O-C, 단량체간의 가교)에서 피크가 나타났을 뿐만 아니라 프러시안 블루의 시아나이드에 의한 2080 cm-1, FeⅡ-CN-FeⅢ에 의한 468 cm-1에서 피크가 나타났다. 상기와 같은 FT-IR 분석 결과를 통해서도 실시예 2.1은 셀룰로오스 하이드로겔에 프러시안 블루가 잘 담지되어 있음을 알 수 있다. 뿐만 아니라, 601 cm-1에서 형성된 Fe-O 결합은 프러시안 블루의 FeⅢ와 셀룰로오스의 하이드록시기(-OH)가 결합하고 있음을 의미한다. 16 shows the results of the FT-IR analysis. Comparative Example 2.1 (bottom spectrum) shows only the characteristic FT-IR peak of cellulose, whereas Example 2.1 (top spectrum) shows 3430 cm -1 (OH), 2901 cm -1 (CH), which is the characteristic FT-IR peak of cellulose. Not only peaks at 1163 cm -1 (COC, glycosidic bonds), 1024 cm -1 (CO in C-OH), 892 cm -1 (COC, crosslinking between monomers), but also cyanide in Prussian blue The peak was found at 2080 cm −1 by and 468 cm −1 by FeII-CN-FeIII. From the above FT-IR analysis results, it can be seen that Example 2.1 is well supported by Prussian blue on a cellulose hydrogel. In addition, the Fe—O bond formed at 601 cm −1 means that the FeIII of Prussian blue and the hydroxyl group (-OH) of cellulose are bonded.
X선 광전자 분광 분석X-ray photoelectron spectroscopy
도 17은 XPS 분석 결과이다. 도 17(a) 및 17(b)는 각각 실시예 2.1 및 비교예 2.1의 C1s 스펙트럼 결과이고, 도 17(c) 및 도 17(d)는 각각 실시예 2.1 및 비교예 2.1의 O1s 스펙트럼 결과이다. 도 17(a) 및 도 17(b)를 비교하면, 실시예 2.1은 C-C (284.70 eV), C-N (285.02 eV), C-O (286.59 eV), O-C-O (287.74 eV)의 피크가 나타났다. 여기서, 상기 C-N 피크는 비교예 2.1에서는 나타나지 않는 프러시안 블루의 특성 피크이다. 한편, 비교예 2.1의 C-O 피크는 실시예보다 다소 높은 286.64 eV에서 형성되며, 실시예 2.1 보다 강한 결합에너지를 갖고 있는데, 이는 프러시안 블루가 셀룰로오스의 하이드록시기와 결합하면서 C-O 결합이 약해지면서 피크가 이동된 결과이다. 17 shows XPS analysis results. 17 (a) and 17 (b) are C1s spectral results of Example 2.1 and Comparative Example 2.1, and FIGS. 17 (c) and 17 (d) are O1s spectral results of Example 2.1 and Comparative Example 2.1, respectively. . Comparing Figures 17 (a) and 17 (b), Example 2.1 showed peaks of C-C (284.70 eV), C-N (285.02 eV), C-O (286.59 eV), O-C-O (287.74 eV). Here, the C-N peak is a characteristic peak of Prussian blue which does not appear in Comparative Example 2.1. On the other hand, the CO peak of Comparative Example 2.1 is formed at 286.64 eV somewhat higher than the Example, and has a stronger binding energy than Example 2.1, which is the Prussian blue binds to the hydroxy group of the cellulose, the peak of the CO bond is weakened The result is a shift.
프러시안 블루와 셀룰로오스 간의 결합은 도 17(c) 및 도 17(d)에 나타낸 O1s 스펙트럼에서도 확인할 수 있다. 실시예 2.1은 비교예 2.1에서 나타내지 않는 Fe-O (531.18 eV)가 나타나는데, 이 결과 또한 프러시안 블루의 Fe와 셀룰루오스의 하이드록시기(-OH)가 결합하여 나타나는 현상으로 셀룰로오스와 프러시안 블루가 화학적 결합을 통해 매우 강하게 결합하고 있음을 시사한다. 이와 같은 프러시안 블루와 셀룰로오스 간의 강한 결합은 프러시안 블루 나노입자들이 셀룰로오스 하이드로겔로부터 떨어져 나오게 되는 것을 막아주기 때문에, 물보다 열악한 환경인 인공위액(Simulated Gastric Fluid; SGF)이나 인공장액(simulated intestinal fluid; SIF)에서도 프러시안 블루가 셀룰로오스 하이드로겔로부터 이탈하지 않고, 안정적으로 고정화될 수 있도록 기여한다. The binding between Prussian blue and cellulose can also be seen in the O1s spectra shown in FIGS. 17 (c) and 17 (d). In Example 2.1, Fe-O (531.18 eV), which is not shown in Comparative Example 2.1, appears, which is also a result of the combination of hydroxy group (-OH) of Fe III of Prussian blue and cellulose of cellulose. This suggests that Russian blue binds very strongly through chemical bonding. This strong bond between Prussian blue and cellulose prevents Prussian blue nanoparticles from falling off the cellulose hydrogel, which results in a simulated gastric fluid (SGF) or simulated intestinal fluid, which is worse than water. SIF) also contributes to stably immobilizing Prussian blue without leaving the cellulose hydrogel.
시험예 2.2. PB-셀룰로오스 하이드로겔의 구조 및 형태 확인Test Example 2.2. Confirmation of structure and form of PB-cellulose hydrogel
실시예 2.1에서 제조된 PB-셀룰로오스 하이드로겔의 구조 및 형태를 확인하기 위하여, 주사전자현미경(SEM, S-4800SE)으로 표면 및 단면 이미지를 얻었으며, 이를 하기 도 18에 나타내었다. 도 18A는 PB-셀룰로오스 하이드로겔 표면의 SEM 이미지이며, 도 18B는 PB-셀룰로오스 하이드로겔 단면의 SEM 이미지이다. 얻어진 SEM 이미지를 통해 직경이 30 내지 50 nm인 프러시안 블루가 셀룰로오스 하이드로겔 내에 빽빽하게 패킹되어 담지된 것이 확인되었으며, PB-셀룰로오스 하이드로겔의 전체크기는 2 mm의 구형이었다. In order to confirm the structure and shape of the PB-cellulose hydrogel prepared in Example 2.1, the surface and cross-sectional images were obtained by scanning electron microscope (SEM, S-4800SE), which is shown in Figure 18 below. FIG. 18A is an SEM image of the PB-cellulose hydrogel surface, and FIG. 18B is an SEM image of the PB-cellulose hydrogel cross section. The obtained SEM image confirmed that Prussian blue having a diameter of 30 to 50 nm was tightly packed and supported in cellulose hydrogel, and the total size of PB-cellulose hydrogel was 2 mm spherical.
시험예 2.3. PB-셀룰로오스 하이드로겔에 함유된 PB양Test Example 2.3. PB content in PB-cellulose hydrogel
셀룰로오스 하이드로겔에 담지된 프러시안 블루의 함량을 확인하기 위하여 UV-sptectroscopy를 이용하여 흡광도를 측정하였으며, 이를 하기 도 19에 나타내었다. 도 19(a)는 검정선이며, 도 19(b)는 실시예 2.1의 흡광도로 흡광도 값은 0.063761이다. In order to confirm the content of Prussian blue supported on the cellulose hydrogel, absorbance was measured using UV-sptectroscopy, which is shown in FIG. 19. 19 (a) is a black line, and FIG. 19 (b) shows an absorbance value of Example 2.1 as 0.063761.
검정선은 TBAA/DMSO 용액에 PB를 5가지의 농도로 분산시킨 뒤 UV흡광도를 측정하여 작성하였다. 상기 검정선을 통해 (흡광도) = 0.0225×(PB의 농도)의 식을 얻을 수 있었으며, 상기 식을 통해 얻은 실시예 2.1의 프러시안 블루의 질량은 1.3045 mg임을 확인하였다. The calibration curve was prepared by dispersing PB in 5 concentrations in TBAA / DMSO solution and measuring the UV absorbance. Through the calibration line (absorbance) = 0.0225 × (concentration of PB) was obtained, it was confirmed that the mass of the Prussian blue of Example 2.1 obtained through the above formula is 1.3045 mg.
따라서, PB-셀룰로오스 하이드로겔 1mg에 담지된 프러시안 블루는 0.13045 mg으로 프러시안 블루가 약 13 중량%를 차지하고 있음을 확인하였다. Therefore, it was confirmed that the Prussian blue supported on 1 mg of PB-cellulose hydrogel was 0.13045 mg and the Prussian blue accounted for about 13% by weight.
시험예 2.4. 세슘 흡착능 평가Test Example 2.4. Cesium adsorption capacity evaluation
실시예 2.1에서 제조된 PB-셀룰로오스 하이드로겔의 세슘 흡착 성능을 평가하기 위하여 Langmuir 및 Freundlich 흡착등온선 모델을 사용하여 물(DW)와 인공장액(SIF)에서 등온흡착실험을 수행하였으며, 그 결과를 하기 표 3 및 도 19, 20에 나타내었다. 하기 도 20(a)는 물에서의 등온흡착실험이고, 하기 도 20(b)는 인공장액에서의 등온흡착실험 결과이며, 실험에 사용한 PB-셀룰로오스 하이드로겔은 1g이다. In order to evaluate the cesium adsorption performance of the PB-cellulose hydrogel prepared in Example 2.1, an isothermal adsorption experiment was performed in water (DW) and artificial intestinal fluid (SIF) using Langmuir and Freundlich adsorption isotherm models. Table 3 and shown in Figure 19, 20. Figure 20 (a) is an isothermal adsorption experiment in water, Figure 20 (b) is an isothermal adsorption experiment result in artificial intestinal fluid, PB-cellulose hydrogel used in the experiment is 1g.
구분division Langmuir 모델 Langmuir model Freundlich 모델 Freundlich Model
KL(L/mg)K L (L / mg) qmax(mg/g)q max (mg / g) R2 R 2 Kf(L/mg)K f (L / mg) nn R2 R 2
water 0.230.23 15.3815.38 0.950.95 3.673.67 4.554.55 0.900.90
인공장액Artificial serous 0.050.05 13.7013.70 0.850.85 3.323.32 4.174.17 0.980.98
상기 표 3에 나타낸 바와 같이, 실시예 2.1에 따른 PB-셀룰로오스 하이드로겔 1g은 물에서 15.38 mg의 세슘을 흡착하였으며, 인공장액에서 13.70 mg을 흡착하는 것으로 나타나 세슘 흡착제로서 효과적으로 작용할 수 있음이 확인되었다. As shown in Table 3 above, 1 g of PB-cellulose hydrogel according to Example 2.1 adsorbed 15.38 mg of cesium in water and 13.70 mg of adsorbed in artificial intestine, which was found to be able to effectively act as a cesium adsorbent. .
하기 도 21은 흡착 운동역학실험으로, 도 21(a)는 물에서 수행한 결과이고, 도 21(b)는 인공장액에서 수행한 결과이다. 도 21(a)에 나타난 바와 같이, PB-셀룰로오스 하이드로겔 1 g은 물 1 L에 함유된 0.1 및 1 ppm 농도의 세슘을 각각 30 분만에 90% 이상 제거하는 능력을 나타내었으며, 고농도인 5 ppm 농도의 세슘은 PB-셀룰로오스 하이드로겔 2 g으로 처리하였을 때, 30분 만에 90% 이상의 세슘이 제거되는 것을 확인하였다. 또한, 도 21(b)에 나타낸 바와 같이, PB-셀룰로오스 하이드로겔 1 g은 인공장액 1 L에 함유된 0.1 및 1 ppm 농도의 세슘을 각각 1시간 이내에 90% 이상 제거하는 능력을 나타내었으며, PB-셀룰로오스 하이드로겔 1.5g 및 2g을 사용하여 각각 인공장액 1 L에 함유된 1 ppm 및 5ppm 농도의 세슘을 1시간 이내에 90 %이상 제거하는 효과를 확인하였다. 상기와 같은 결과를 통해, 본 발명에 따른 PB-셀룰로오스 하이드로겔이 세슘 흡착제로서 효과적으로 이용될 수 있음을 입증하였다.21 is an adsorption kinetics experiment, FIG. 21 (a) shows the results in water, and FIG. 21 (b) shows the results in artificial intestinal fluid. As shown in FIG. 21 (a), 1 g of PB-cellulose hydrogel showed the ability to remove 90% or more of cesium at 0.1 and 1 ppm concentrations contained in 1 L of water in 30 minutes, respectively, with a high concentration of 5 ppm. When cesium at a concentration was treated with 2 g of PB-cellulose hydrogel, it was confirmed that more than 90% cesium was removed in 30 minutes. In addition, as shown in FIG. 21 (b), 1 g of PB-cellulose hydrogel showed the ability to remove at least 90% of cesium at 0.1 and 1 ppm concentrations contained in 1 L of the artificial intestine solution within 1 hour, respectively. 1.5 g and 2 g of cellulose hydrogels were used to confirm the effect of removing 90% or more of cesium at concentrations of 1 ppm and 5 ppm in 1 L of artificial intestinal fluid, respectively, within 1 hour. Through the above results, it was proved that the PB-cellulose hydrogel according to the present invention can be effectively used as cesium adsorbent.
도 29는 본 발명에서 제조한 생체제염제의 세슘 흡착 효율을 평가한 것이다. 생체제염제의 세슘 흡착성능을 평가하기 위하여 1 ppm의 물(DW), 인공위액(SGF) 및 인공장액(SIF)에서 흡착실험을 진행하였다. 흡착실험결과, 본 발명의 생체제염제 5g을 이용하여 1 L의 물에서 1분 내로 98.60%, 10분 내로 99.71%의 세슘 제거 효율을 보였다. 1 L의 인공위액에서는 1분 내로 56.27%, 10분내로 88.30%의 세슘을 제거하였으며, 1 L 인공장액에서 1분 내로 98.44%, 10분 내로 99.43%의 세슘 제거 효율을 나타내었다. 위 결과를 통하여 본 발명에서 제작한 생체제염제는 체내 세슘을 효과적으로 제거할 수 있음을 확인하였다.29 is an evaluation of the cesium adsorption efficiency of the biocontrast preparation prepared in the present invention. In order to evaluate the cesium adsorption performance of biodeterminants, adsorption experiments were conducted in 1 ppm water (DW), artificial gastric juice (SGF) and artificial intestinal fluid (SIF). As a result of the adsorption experiment, the cesium removal efficiency of 98.60% in 1 minute and 99.71% in 10 minutes in 1 L of water using the biodetergent of the present invention. In 1 L of gastric juice, 56.27% of cesium was removed in 1 minute and 88.30% in 10 minutes. The cesium removal efficiency was 98.44% in 1 minute and 99.43% in 10 minutes. Through the above results, it was confirmed that the biodetergent prepared in the present invention can effectively remove cesium in the body.
시험예 2.5. PB-셀룰로오스 하이드로겔의 안정성 평가Test Example 2.5. Evaluation of stability of PB-cellulose hydrogel
1) 물에서의 프러시안 용출 안정성 평가1) Evaluation of Prussian Elution Stability in Water
실시예 2.1의 PB-셀룰로오스 하이드로겔로부터 프러시안 블루의 용출이 없는지 확인하여 안정성을 평가하였으며, 비교예 2.2의 프러시안 블루가 담지된 알지네이트 하이드로겔과 비교하였다. Stability was evaluated by confirming that there was no elution of Prussian blue from the PB-cellulose hydrogel of Example 2.1, and compared with the alginate hydrogel loaded with Prussian blue of Comparative Example 2.2.
도 22는 각각 증류수에 실시예 2.1 및 비교예 2.2를 첨가한 뒤, 24시간 동안 처리한 결과이다. 실시예 2.1의 PB-셀룰로오스 하이드로겔은 프러시안 블루의 용출이 거의 없어 색의 변화가 일어나지 않았지만, 비교예 2.2의 알지네이트 하이드로겔의 경우에는 프러시안 블루의 용출로 하이드로겔 색상이 푸른색으로 변한 것이 확인되었다. 22 shows the results of treatment for 24 hours after the addition of Example 2.1 and Comparative Example 2.2 to distilled water, respectively. The PB-cellulose hydrogel of Example 2.1 had almost no elution of Prussian blue, and thus no color change occurred. However, in the case of the alginate hydrogel of Comparative Example 2.2, the color of the hydrogel was changed to blue due to elution of Prussian blue. Confirmed.
2) 인공생체액에서의 프러시안 용출 안정성 평가2) Evaluation of Prussian Elution Stability in Artificial Biological Fluids
생체 내 환경은 낮은 pH 또는 높은 pH 환경을 가지는 등, 하이드로겔의 안정성을 유지하기에는 증류수에 비하여 열악하다. 본 발명에 따른 실시예 2.1의 PB-셀룰로오스 하이드로겔이 생체 내 존재하는 세슘의 제염제로서 이용이 가능한지 여부를 확인하기 위하여 인공위액(Simulated Gastric Fluid; SGF)과 인공장액(simulated intestinal fluid; SIF)에서의 안정성을 평가하였으며, 이를 하기 도 23에 나타내었다. In vivo environment is poor compared to distilled water to maintain the stability of the hydrogel, such as having a low pH or high pH environment. In order to confirm whether or not the PB-cellulose hydrogel of Example 2.1 according to the present invention can be used as a decontamination agent of cesium in vivo, a simulated gastric fluid (SGF) and a simulated intestinal fluid (SIF) The stability at was evaluated, which is shown in FIG. 23.
도 23(a)의 왼쪽은 인공생체액에 실시예 2.1의 PB-셀룰로오스 하이드로겔을 첨가한 직후의 바이알이며, 오른쪽은 24시간 후의 바이알이다. 24시간이 지난 후에도 셀룰로오스 하이드로겔로부터 프러시안 블루의 용출이 일어나지 않아 색상의 변화가 없는 것이 확인되었다. The left side of FIG. 23 (a) is a vial immediately after adding the PB-cellulose hydrogel of Example 2.1 to the artificial biological liquid, and the right side is a vial after 24 hours. After 24 hours, no elution of Prussian blue from the cellulose hydrogel was observed, resulting in no change in color.
도 23(b)는 PB-셀룰로오스 하이드로겔을 24시간 동안 처리한 인공위액 및 인공장액의 UV 흡광도를 측정한 결과이다. 프러시안 블루의 용출이 일어나지 않아 흡광도의 변화 역시 없었음을 확인하였다. Figure 23 (b) is the result of measuring the UV absorbance of artificial gastric juice and artificial gastric juice treated with PB-cellulose hydrogel for 24 hours. It was confirmed that no elution of Prussian blue occurred and there was no change in absorbance.
3) 세포독성 평가3) Cytotoxicity Assessment
프러시안 블루 나노입자는 세포독성을 나타내는 것으로 알려져 있다. 이에, 생체 내 존재하는 세슘의 제염제로서 이용이 가능하기 위해서는 세슘 제염제가 세포독성이 일어나지 않아야 하며, 세슘 제염제로부터 프러시안 블루가 용출되는 문제가 없어야 한다. 이에, 본 발명에 따른 실시예 2.1의 PB-셀룰로오스 하이드로겔에 대한 세포독성을 평가하였으며, 이를 하기 도 24에 나타내었다. Prussian blue nanoparticles are known to exhibit cytotoxicity. Therefore, in order to be able to use as a cesium decontamination agent present in vivo, cesium decontamination agent should not have cytotoxicity, and there should be no problem that Prussian blue is eluted from cesium decontamination agent. Thus, the cytotoxicity was evaluated for the PB-cellulose hydrogel of Example 2.1 according to the present invention, which is shown in Figure 24 below.
도 24(a)는 대식세포에 대한 세포독성 평가이며, 도 24(b)는 장세포에 대한 세포독성 평가이다. 도 24에 나타낸 바와 같이, 프러시안 블루 나노입자는 0.2 mg/mL의 농도에서 세포생존율이 50% 이하로 떨어지는 것으로 나타났으나, 실시예 2.1에 따른 PB-셀룰로오스 하이드로겔은 1.3 mg/mL의 농도에서도 215% 이상의 생존능을 보이는 것으로 나타났다. Figure 24 (a) is a cytotoxicity assessment for macrophages, Figure 24 (b) is a cytotoxicity assessment for enterocytes. As shown in Figure 24, Prussian blue nanoparticles were found to drop the cell viability below 50% at a concentration of 0.2 mg / mL, PB-cellulose hydrogel according to Example 2.1 concentration of 1.3 mg / mL The survival rate was over 215%.
4) 효소 안정성 평가4) Enzyme Stability Evaluation
프러시안 블루 나노입자는 효소에 의해 변질될 수 있으며, 그 경우, 흡수한 세슘을 탈착시키는 문제가 있다. 따라서 생체 내 존재하는 세슘의 제염제로서 이용이 가능하기 위해서는 장내 효소에 의해 분해되지 않아야 한다. 이에, 본 발명에 따른 실시예 2.1의 PB-셀룰로오스 하이드로겔의 효소안정성을 평가하였으며, 이를 하기 도 25 및 26에 나타내었다. Prussian blue nanoparticles may be degraded by enzymes, in which case there is a problem of desorbing the absorbed cesium. Therefore, in order to be able to use as a decontamination agent of cesium in vivo, it should not be degraded by intestinal enzymes. Thus, the enzyme stability of the PB-cellulose hydrogel of Example 2.1 according to the present invention was evaluated, which are shown in FIGS. 25 and 26.
도 25는 장액 효소로 24시간 처리한 후의 결과로, 본 발명에 따른 실시예 2.1의 PB-셀룰로오스 하이드로겔은 흡수된 세슘의 탈착이 일어나지 않았으나, 프러시안 블루 나노입자는 장액효소에 의해 변이되었으며, 흡수한 세슘이 탈착되는 것이 확인되었다. 25 is a result of treatment after 24 hours with serous enzyme, PB-cellulose hydrogel of Example 2.1 according to the present invention did not occur desorption of absorbed cesium, Prussian blue nanoparticles were mutated by serous enzyme, It was confirmed that cesium absorbed was desorbed.
도 26은 사람의 소화과정을 모사하여 2시간 동안은 위에서, 이후 6시간 동안은 장에서 음식물이 체류한다는 가정하에 실시예 2.1 및 비교예 2.2의 세슘 흡착체의 효소안정성을 평가한 결과이다. 실시예 2.1 및 비교예 2.2의 흡착제를 먼저 인공위액(Gastric)으로 처리한 뒤 분리하고, 이어서 인공장액(Intenstine)으로 6 시간 동안 처리하였다.FIG. 26 shows the results of evaluating the enzyme stability of cesium adsorbents of Example 2.1 and Comparative Example 2.2, assuming that food stays in the stomach for 2 hours and for 6 hours after simulating human digestion. The adsorbents of Example 2.1 and Comparative Example 2.2 were first treated with gastric juice and then separated, and then treated with artificial intestine (Intenstine) for 6 hours.
비교예 2.1은 장액의 소화과정에 의해 분해되어 프러시안 블루를 용출한 반면, 실시예 2.1은 인공위액 및 인공장액에서 프러시안 블루의 용출이 일어나지 않음을 확인하였다. Comparative Example 2.1 was decomposed by the digestion process of the intestinal fluid and eluted Prussian blue, while Example 2.1 was confirmed that the elution of Prussian blue does not occur in the gastric juice and artificial intestinal fluid.
방사성 세슘은 감마에너지를 방출하기 때문에 유/무기물의 물리/화학적 변화를 야기할 수 있다. 본 발명의 생체제염제가 생체 내 존재하는 방사성 세슘의 제염제로서 이용이 가능한지 여부를 확인하기 위하여 PB-셀룰로오스 하이드로겔에 방사선인 감마선을 0, 6, 60 kGy의 용량으로 조사하여 안정성을 평가하였으며, 이를 도 30에 나타내었다. 평가 결과 감마선을 조사한 후에도 PB-셀룰로오스에서 프러시안 블루의 용출이 일어나지 않아 색상의 변화가 없는 것으로 확인되었으며, UV 흡광도를 측정하여도 프러시안 블루의 용출이 일어나지 않아 흡광도의 변화 역시 없음을 확인하였다.Radioactive cesium releases gamma energy and can cause physical and chemical changes in organic and inorganic materials. In order to confirm whether the biodecontamination agent of the present invention can be used as a decontamination agent of radioactive cesium present in vivo, the stability was evaluated by irradiating gamma rays with radiation at doses of 0, 6 and 60 kGy to PB-cellulose hydrogel. This is shown in FIG. As a result of the evaluation, it was confirmed that even after irradiating gamma rays, the elution of Prussian blue did not occur in PB-cellulose, and thus there was no change in color.
본 발명에 따른 세슘 흡착제는 프러시안 블루가 인캡슐화된, 알지네이트와 결합된 층상점토 복합체가 간단하고 경제적으로 제조될 수 있으며, 고효율 및 고선택적으로 방사성 세슘을 제거할 수 있다. The cesium adsorbent according to the present invention can be prepared simply and economically a layered clay composite combined with alginate, in which Prussian blue is encapsulated, and can remove radioactive cesium with high efficiency and high selectivity.
또한, 프러시안 블루를 담지한 셀룰로오스 하이드로겔이 간단하고 경제적으로 제조될 수 있으며, 고효율 및 고선택적으로 세슘을 제거할 수 있다.In addition, cellulose hydrogel carrying Prussian blue can be produced simply and economically, and can remove cesium with high efficiency and high selectivity.

Claims (23)

  1. 알지네이트와 결합된 층상점토 복합체 및 상기 복합체 내 인캡슐화된 프러시안 블루를 포함하는, 방사성 세슘 흡착용 조성물. A layered clay composite bonded with alginate and encapsulated Prussian blue in the composite, radioactive cesium adsorption composition.
  2. 제1항에 있어서,The method of claim 1,
    상기 층상점토는 스멕타이트, 카올리나이트, 몬모릴로나이트, 벤토나이트, 헥토라이트, 불화헥토라이트, 바이델라이트, 사포나이트, 논트로나이트, 버미큘라이트, 마카다이트, 및 마이카로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The layered clay is at least one member selected from the group consisting of smectite, kaolinite, montmorillonite, bentonite, hectorite, fluoride hectorite, bidelite, saponite, nontronite, vermiculite, macadamite, and mica. , Radioactive cesium adsorption composition.
  3. 제1항에 있어서,The method of claim 1,
    상기 층상점토는 아미노프로필기(aminopropyl)로 기능화된 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The layered clay is characterized in that functionalized with an aminopropyl group (aminopropyl), radioactive cesium adsorption composition.
  4. 제1항에 있어서,The method of claim 1,
    상기 알지네이트 및 층상점토는 가교결합하여 겔(gel)을 형성하는 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The alginate and layered clay is cross-linked to form a gel, characterized in that the radioactive cesium adsorption composition.
  5. 제1항에 있어서,The method of claim 1,
    상기 복합체의 평균 직경은 400~600μm인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The average diameter of the composite is characterized in that 400 ~ 600μm, radioactive cesium adsorption composition.
  6. 제1항에 있어서,The method of claim 1,
    상기 복합체는 40~50 m²/g의 BET(Brunauer-Emmett-Teller) 표면적을 갖는 다공성 물질인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The composite is characterized in that the porous material having a surface area of Brunauer-Emmett-Teller (BET) 40 ~ 50 m² / g, radioactive cesium adsorption composition.
  7. 제1항에 있어서,The method of claim 1,
    상기 프러시안 블루는 할로우, 메조포러스 또는 메소크리스탈의 형태인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물.The Prussian blue is characterized in that the hollow, mesoporous or mesocrystal form, radioactive cesium adsorption composition.
  8. 제1항에 있어서,The method of claim 1,
    상기 세슘(Cs)은 137Cs, 135Cs 또는 134Cs인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물. The cesium (Cs) is characterized in that 137 Cs, 135 Cs or 134 Cs, radioactive cesium adsorption composition.
  9. (1) 프러시안 블루가 혼합된 알지네이트 용액을 제조하는 단계; 및(1) preparing an alginate solution mixed with Prussian blue; And
    (2) 상기 알지네이트 용액을 아미노프로필기로 기능화된 층상점토 용액에 첨가하여 하이드로겔 비드를 형성하는 단계;를 포함하는, 방사성 세슘 흡착용 조성물의 제조방법.(2) adding the alginate solution to the layered clay solution functionalized with an aminopropyl group to form a hydrogel bead; a method for producing a composition for radioactive cesium adsorption.
  10. 제9항에 있어서,The method of claim 9,
    상기 (1) 단계에서, 용매는 물, 디클로로메탄, 테트라클로로에탄, 디메틸아세트아마이드, 디메틸포름아마이드, 클로로포름, 메틸렌 클로라이드, 에틸 아세테이트, 메탄올, 에탄올, 헥산, 아세토니트릴, 톨루엔, 벤젠, 사염화탄소, 펜탄, 아세톤, 디메틸 설폭시드, 테트라하이드로퓨란 및 디메틸포름알데히드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 방사성 세슘 흡착용 조성물의 제조방법. In the step (1), the solvent is water, dichloromethane, tetrachloroethane, dimethylacetamide, dimethylformamide, chloroform, methylene chloride, ethyl acetate, methanol, ethanol, hexane, acetonitrile, toluene, benzene, carbon tetrachloride, pentane , Acetone, dimethyl sulfoxide, tetrahydrofuran and dimethylformaldehyde, characterized in that at least one member selected from the group consisting of, radioactive cesium adsorption method for producing a composition.
  11. 제1항의 방사성 세슘 흡착용 조성물을 포함하는, 방사성 세슘 흡착제.A radioactive cesium adsorbent comprising the radioactive cesium adsorption composition of claim 1.
  12. 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제.Cesium adsorbent containing cellulose hydrogel carrying Prussian blue.
  13. 제12항에 있어서, The method of claim 12,
    상기 세슘 흡착제는 생체 적합성, 생체 비흡착성 및 생체 비분해성인 것을 특징으로 하는 세슘 흡착제.The cesium adsorbent is a cesium adsorbent, characterized in that the biocompatible, bio non-adsorbable and bio non-degradable.
  14. 제12항에 있어서,The method of claim 12,
    생체 내 세슘의 제염을 위한 제염제인 것을 특징으로 하는 세슘 흡착제Cesium adsorbent, characterized in that the decontamination agent for the decontamination of cesium in vivo
  15. 제12항에 있어서, The method of claim 12,
    상기 세슘 흡착제는 지름이 1 내지 5 mm이고, 프러시안 블루가 8 내지 20 중량%로 함유된 것을 특징으로 하는 세슘 흡착제.The cesium adsorbent has a diameter of 1 to 5 mm, cesium adsorbent, characterized in that it contains 8 to 20% by weight of Prussian blue.
  16. 제12항에 있어서, The method of claim 12,
    상기 세슘 흡착제는 그물구조의 3차원 다공성 셀룰로오스 하이드로겔 내부에 프러시안 블루가 담지된 것을 특징으로 하는 세슘 흡착제.The cesium adsorbent is a cesium adsorbent, characterized in that the Prussian blue is carried inside the three-dimensional porous cellulose hydrogel of the net structure.
  17. 제12항에 있어서, The method of claim 12,
    상기 프러시안 블루는 입자의 크기가 10 내지 200 nm인 다공성 물질인 것을 특징으로 하는 세슘 흡착제.The Prussian blue is a cesium adsorbent, characterized in that the particle size of the porous material 10 to 200 nm.
  18. (1) 셀룰로오스 용액 제조 단계;(1) preparing a cellulose solution;
    (2) 상기 셀룰로오스 용액에 프러시안 블루를 첨가하여 분산시키는 단계;(2) adding and dispersing Prussian blue in the cellulose solution;
    (3) 증류수에 상기 프러시안 블루가 분산된 셀룰로오스 용액을 떨어뜨려 겔화시키는 단계;를 포함하는 프러시안 블루를 담지한 셀룰로오스 하이드로겔을 포함하는 세슘 흡착제의 제조방법.(3) dropping the cellulose solution in which the Prussian blue is dispersed in distilled water to gel the cellulose hydrogel carrying Prussian blue.
  19. 제18항에 있어서, The method of claim 18,
    상기 (1) 단계는 디메틸설폭사이드 10 중량부에 대하여 테트라부틸암모늄 아세테이트 1.5 내지 2.3 중량부를 용해시킨 용액 100 중량부에 대하여 셀룰로오스 2 내지 4 중량부를 용해시키는 것을 특징으로 하는 제조방법.The step (1) is characterized in that to dissolve 2 to 4 parts by weight of cellulose based on 100 parts by weight of a solution in which 1.5 to 2.3 parts by weight of tetrabutylammonium acetate is dissolved in 10 parts by weight of dimethyl sulfoxide.
  20. 제18항에 있어서,The method of claim 18,
    상기 (2) 단계는 셀룰로오스 용액 10 중량부에 대하여 프러시안 블루 0.5 내지 1 중량부를 첨가하여 분산시키는 것을 특징으로 하는 제조방법. In the step (2), 0.5 to 1 part by weight of Prussian blue is added and dispersed with respect to 10 parts by weight of cellulose solution.
  21. 제18항에 있어서, The method of claim 18,
    상기 (3) 단계는 입자의 크기가 1 내지 5 mm인 하이드로겔이 형성되도록 하는 것을 특징으로 하는 제조방법.Step (3) is characterized in that the hydrogel having a particle size of 1 to 5 mm is formed.
  22. 제12항 내지 제17항 중 어느 하나에 따른 세슘 흡착제를 생체 내에 세슘을 보유한 포유동물에게 섭취시키는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 생체 내 방사성 세슘의 제염방법.18. A method comprising: ingesting a cesium adsorbent according to any one of claims 12 to 17 to a mammal having cesium in vivo; And adsorbing cesium. 2.
  23. 제12항 내지 제17항 중 어느 하나에 따른 세슘 흡착제를 방사성 세슘을 포함하는 용액에 투여하는 단계; 및 세슘을 흡착시키는 단계;를 포함하는 방사성 세슘의 제염방법.18. A method comprising: administering a cesium adsorbent according to any one of claims 12 to 17 to a solution comprising radioactive cesium; And adsorbing cesium.
PCT/KR2017/005263 2016-05-19 2017-05-19 Composition for adsorbing radioactive cesium and preparation method therefor WO2017200358A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0061471 2016-05-19
KR1020160061471A KR101886646B1 (en) 2016-05-19 2016-05-19 Composition for adsorption of radioactive cesium and method for preparing the same
KR1020170029670A KR102052668B1 (en) 2017-03-08 2017-03-08 Cesium adsorbent comprising cellulose-hydrogel having prussian blue, and method for preparing the same
KR10-2017-0029670 2017-03-08

Publications (1)

Publication Number Publication Date
WO2017200358A1 true WO2017200358A1 (en) 2017-11-23

Family

ID=60326046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005263 WO2017200358A1 (en) 2016-05-19 2017-05-19 Composition for adsorbing radioactive cesium and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2017200358A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636380A (en) * 2018-05-14 2018-10-12 浙江海洋大学 A kind of hydrogel microsphere and preparation method of absorption heavy metal arsenic
CN110227549A (en) * 2019-06-28 2019-09-13 陕西科技大学 A kind of hollow cube structure anode catalyst and preparation method thereof
CN110237860A (en) * 2019-06-28 2019-09-17 陕西科技大学 A kind of electrolysis water and electrolysis urea anode catalyst and preparation method thereof
KR102058374B1 (en) 2018-01-25 2019-12-23 충남대학교 산학협력단 Radioactive cesium absorbent and method of the same
CN110624605A (en) * 2019-10-28 2019-12-31 陕西科技大学 Shell-core structured anode catalyst and preparation method thereof
CN111167402A (en) * 2019-12-09 2020-05-19 北京化工大学 Zinc-cobalt Prussian blue analogue adsorbent with hollow structure and preparation method and application thereof
KR20200064526A (en) 2018-11-29 2020-06-08 한국과학기술연구원 Self-assembled radioactive cesium removal complex, method for producing the same, and method for removing radioactive cesium using the same
CN113231040A (en) * 2021-05-10 2021-08-10 中国人民解放军陆军防化学院 Graphene adsorption material for removing radioactive cesium ions in water
CN113351175A (en) * 2021-07-05 2021-09-07 江南大学 Preparation method and application of zinc-aluminum hydrotalcite/chitosan-based sponge
CN113908799A (en) * 2021-12-14 2022-01-11 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Preparation method and application of magnetic Prussian blue nano clay
CN113951387A (en) * 2021-06-02 2022-01-21 烟台大学 Water-soluble Prussian blue/rectorite composite material and application of water-soluble Prussian blue/rectorite composite material to excretion-promoting feed additive
CN114873611A (en) * 2022-06-17 2022-08-09 福州大学 Method for preparing 3D hollow macroporous Co/Fe PBA nano cage structure material in situ by one-pot method and application thereof
KR20220141198A (en) * 2021-04-12 2022-10-19 충남대학교산학협력단 Layer-by-layer assembly of Prussian blue modified mesoporous silica nanofiber and manufacturing method thereof
CN116173890B (en) * 2023-03-21 2024-05-17 湖北三峡实验室 Preparation method of phosphogypsum adsorbent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013068438A (en) * 2011-09-21 2013-04-18 Swing Corp Radioactive matter remover, manufacturing method thereof and processing method of radioactive contaminated water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033019A (en) * 2011-07-05 2013-02-14 Hokkaido Univ Method and apparatus for removing radioactive matter in radiation-contaminated water
JP2013068438A (en) * 2011-09-21 2013-04-18 Swing Corp Radioactive matter remover, manufacturing method thereof and processing method of radioactive contaminated water

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JANG, SUNG-CHAN: "Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium", SCIENTIFIC REPORTS, vol. 6, no. 38384, 5 December 2016 (2016-12-05), pages 1 - 12, XP055600697 *
KIM, YONGHWAN: "Nanostructured potassium copper hexacyanoferrate- cellulose hydrogel for selective and rapid cesium adsorption", CHEMICAL ENGINEERING JOURNAL, vol. 313, 1 November 2016 (2016-11-01), pages 1042 - 1050, XP029900620, DOI: doi:10.1016/j.cej.2016.10.136 *
YANG, HEE-MAN: "Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 657, 23 October 2015 (2015-10-23), pages 387 - 393, XP029332216, DOI: doi:10.1016/j.jallcom.2015.10.068 *
YANG, HONGJUN: "Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil", CHEMICAL ENGINEERING JOURNAL, vol. 246, 2014, pages 10 - 19, XP055600695 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058374B1 (en) 2018-01-25 2019-12-23 충남대학교 산학협력단 Radioactive cesium absorbent and method of the same
CN108636380A (en) * 2018-05-14 2018-10-12 浙江海洋大学 A kind of hydrogel microsphere and preparation method of absorption heavy metal arsenic
KR20200064526A (en) 2018-11-29 2020-06-08 한국과학기술연구원 Self-assembled radioactive cesium removal complex, method for producing the same, and method for removing radioactive cesium using the same
CN110227549A (en) * 2019-06-28 2019-09-13 陕西科技大学 A kind of hollow cube structure anode catalyst and preparation method thereof
CN110237860A (en) * 2019-06-28 2019-09-17 陕西科技大学 A kind of electrolysis water and electrolysis urea anode catalyst and preparation method thereof
CN110227549B (en) * 2019-06-28 2022-04-29 陕西科技大学 Hollow cubic structure anode catalyst and preparation method thereof
CN110237860B (en) * 2019-06-28 2022-04-29 陕西科技大学 Anode catalyst for electrolyzing water and urea and preparation method thereof
CN110624605B (en) * 2019-10-28 2022-04-29 陕西科技大学 Shell-core structured anode catalyst and preparation method thereof
CN110624605A (en) * 2019-10-28 2019-12-31 陕西科技大学 Shell-core structured anode catalyst and preparation method thereof
CN111167402B (en) * 2019-12-09 2021-06-01 北京化工大学 Zinc-cobalt Prussian blue analogue adsorbent with hollow structure and preparation method and application thereof
CN111167402A (en) * 2019-12-09 2020-05-19 北京化工大学 Zinc-cobalt Prussian blue analogue adsorbent with hollow structure and preparation method and application thereof
KR102537077B1 (en) 2021-04-12 2023-05-26 충남대학교산학협력단 Layer-by-layer assembly of Prussian blue modified mesoporous silica nanofiber and manufacturing method thereof
KR20220141198A (en) * 2021-04-12 2022-10-19 충남대학교산학협력단 Layer-by-layer assembly of Prussian blue modified mesoporous silica nanofiber and manufacturing method thereof
CN113231040A (en) * 2021-05-10 2021-08-10 中国人民解放军陆军防化学院 Graphene adsorption material for removing radioactive cesium ions in water
CN113231040B (en) * 2021-05-10 2023-04-25 中国人民解放军陆军防化学院 Graphene adsorption material for removing radioactive cesium ions in water
CN113951387A (en) * 2021-06-02 2022-01-21 烟台大学 Water-soluble Prussian blue/rectorite composite material and application of water-soluble Prussian blue/rectorite composite material to excretion-promoting feed additive
CN113951387B (en) * 2021-06-02 2024-05-03 烟台大学 Water-soluble Prussian blue/rectorite composite material and application of feed additive for promoting excretion
CN113351175A (en) * 2021-07-05 2021-09-07 江南大学 Preparation method and application of zinc-aluminum hydrotalcite/chitosan-based sponge
CN113351175B (en) * 2021-07-05 2022-09-09 江南大学 Preparation method and application of zinc-aluminum hydrotalcite-like compound/chitosan-based sponge
CN113908799A (en) * 2021-12-14 2022-01-11 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Preparation method and application of magnetic Prussian blue nano clay
CN114873611A (en) * 2022-06-17 2022-08-09 福州大学 Method for preparing 3D hollow macroporous Co/Fe PBA nano cage structure material in situ by one-pot method and application thereof
CN116173890B (en) * 2023-03-21 2024-05-17 湖北三峡实验室 Preparation method of phosphogypsum adsorbent

Similar Documents

Publication Publication Date Title
WO2017200358A1 (en) Composition for adsorbing radioactive cesium and preparation method therefor
Ali et al. Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment
Yu et al. Copper removal using bio-inspired polydopamine coated natural zeolites
Ai et al. Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics
Soares et al. Chitosan-silica hybrid nanosorbents for oil removal from water
Zhang et al. Bio-Inspired Preparation of Clay–Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs+
Dai et al. Macroporous ion-imprinted chitosan foams for the selective biosorption of U (VI) from aqueous solution
Mahmoud et al. A sustainable nanocomposite for removal of heavy metals from water based on crosslinked sodium alginate with iron oxide waste material from steel industry
KR101978499B1 (en) A adsorbent based on hollow prussian blue magnetic nanoparticles for radioactive cesium, and method of manufacturing the same
Pawar et al. Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment
Altun et al. Cr (VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads
KR102052668B1 (en) Cesium adsorbent comprising cellulose-hydrogel having prussian blue, and method for preparing the same
Ayouch et al. Improved recovery of cadmium from aqueous medium by alginate composite beads filled by bentonite and phosphate washing sludge
Cunha et al. Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol
Chen et al. Assessment of a novel aminated magnetic adsorbent with excellent adsorption capacity for dyes and drugs
Peng et al. Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb (II) and methylene blue from aqueous solution
Pal et al. Gelatin-bentonite composite as reusable adsorbent for the removal of lead from aqueous solutions: Kinetic and equilibrium studies
Rahmani et al. Removal of heavy metals from polluted water using magnetic adsorbent based on κ-carrageenan and N-doped carbon dots
Choi et al. Three-dimensional double-network hydrogels of graphene oxide, alginate, and polyacrylonitrile for copper removal from aqueous solution
Ali et al. Sorption of some rare earth elements from acidic solution onto poly (acrylic acid–co-acrylamide/16, 16-dimethylheptadecan-1-amine) composite
Stanisz et al. Development of functional lignin-based spherical particles for the removal of vanadium (V) from an aqueous system
KR101886646B1 (en) Composition for adsorption of radioactive cesium and method for preparing the same
Jabir et al. Cellulose based pH-sensitive hydrogel for highly efficient dye removal in water treatment: kinetic, thermodynamic, theoretical and computational studies
Shen et al. Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite
Vo et al. Modification of the interfacial glass fiber surface through graphene oxide-chitosan interactions for excellent dye removal as an adsorptive membrane

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799715

Country of ref document: EP

Kind code of ref document: A1