WO2017200297A1 - 화학-기계적 연마용 슬러리 조성물 - Google Patents

화학-기계적 연마용 슬러리 조성물 Download PDF

Info

Publication number
WO2017200297A1
WO2017200297A1 PCT/KR2017/005118 KR2017005118W WO2017200297A1 WO 2017200297 A1 WO2017200297 A1 WO 2017200297A1 KR 2017005118 W KR2017005118 W KR 2017005118W WO 2017200297 A1 WO2017200297 A1 WO 2017200297A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry composition
aluminum
abrasive
weight
chemical
Prior art date
Application number
PCT/KR2017/005118
Other languages
English (en)
French (fr)
Inventor
박혜정
김재현
박종대
이민건
신종철
진성훈
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to JP2018560761A priority Critical patent/JP7032327B2/ja
Priority to CN201780030849.5A priority patent/CN109153889B/zh
Publication of WO2017200297A1 publication Critical patent/WO2017200297A1/ko
Priority to US16/189,236 priority patent/US11001732B2/en
Priority to US16/189,207 priority patent/US20190077993A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a slurry composition for chemical-mechanical polishing, and more particularly, to a slurry composition for chemical-mechanical polishing which is easy to be stored for a long time because the pH change with time is small in an acidic atmosphere.
  • the metal film since the metal film has high strength and is not easily polished, in order to effectively polish the metal film, the metal film needs to be oxidized to a relatively low strength metal oxide, followed by polishing.
  • the metal film when silica is used as the abrasive, the longer the storage period of the slurry composition in the acidic region, such as an increase in particle size or pH may occur, and thus stability (Shelf life) time can cause problems.
  • the present invention is an abrasive; 0.000006 to 0.01 weight percent aluminum; And it provides a slurry composition for chemical-mechanical polishing comprising water. It is preferable that the number of silanol groups and the aluminum content on the surface of the abrasive satisfy the condition of the following equation (1).
  • S is the number of silanol groups present on the abrasive surface 1 nm 2 (unit: nm / nm 2 ) and C is the aluminum content (% by weight) in the slurry composition.
  • Slurry composition according to the present invention is excellent in stability, due to changes in pH in the acidic region over time, the polishing performance of the slurry is lowered to prevent the problem of increased scratches or changing the polishing rate, stability (shelf life time) It is improved and easy to store for a long time.
  • the slurry composition for chemical-mechanical polishing according to the present invention has excellent polishing rate, low scratch generation, and excellent stability, and can be stored for a long time, and includes abrasive, aluminum, and water.
  • the abrasive is for polishing the film to be polished, and silica-based abrasives such as fumed silica, colloidal silica, and mixtures thereof are used.
  • the particle size of the abrasive is 5 to 200 nm, specifically 10 to 150 nm, and the content of the abrasive is 0.001 to 20% by weight, specifically 0.01 to 10% by weight, more specifically based on the total slurry composition. Is 0.1 to 5% by weight. If the particle size of the abrasive is too small or the content is too small, the polishing rate of the metal film may be lowered, and if the particle size is too large or too much, scratches on the metal film and the silicon oxide film may occur excessively.
  • Silica-based abrasive surface silanol group are Si-OH or Si-O of - meaning a functional group, and the more abrasive surface on the number of silanol groups, it was confirmed that an excellent polishing rate. If the silanol group having chemical activity on the surface of the abrasive is large, the polishing rate is expected to increase as the abrasive is easily bonded to the hydroxyl group on the surface of the oxide film and the oxide film surface is easily removed by physical friction. In addition, the more silanol groups, the lower the degree of condensation of Si-O-Si, and physical friction does not occur excessively, thus reducing scratches.
  • the slurry composition according to the present invention preferably has a silanol group number on the surface of the abrasive of 1 to 10 / nm 2 , more preferably 1 to 8 / nm 2 , more preferably 2 to 5 / nm 2
  • a silanol group number on the surface of the abrasive of 1 to 10 / nm 2 , more preferably 1 to 8 / nm 2 , more preferably 2 to 5 / nm 2
  • the polishing rate is too low to increase the nonuniformity, there is a problem that the scratch is increased, if the number of silanol groups exceeds 10 / nm 2 of the polishing rate While the synergistic effect decreases, the activation surface of the abrasive is so high that dispersion stability is lowered, and there is a fear that aggregation and precipitation occur.
  • Aluminum used in the chemical-mechanical polishing slurry composition of the present invention acts as a kind of pH stabilizer that suppresses changes in pH and the like during long-term storage of the slurry composition, thereby improving stability of the slurry composition.
  • the aluminum includes aluminum salts, and may be made of aluminum salts as necessary.
  • the aluminum salt may be chloride (Cl), sulfate (SO 4 ), ammonium salt (NH 4 ), potassium salt (K), hydroxide (OH), methylate (CH 3 ), phosphide (P), and mixtures thereof.
  • it may include chloride (Cl), sulfate (SO 4 ), potassium (K) and mixtures thereof, and the like, for example, aluminum chloride (AlCl 3 ), aluminum sulfate, Al 2 (SO 4 ) 3 ), ammonium aluminum sulfate, (NH 4 ) Al (SO 4 ) 2 ), aluminum potassium sulfate, KAl (SO 4 ) 2 ), aluminum hydroxide , Al (OH) 3 ), trimethyl aluminum (C 6 H 18 Al 2 ), aluminum phosphide (AlP) and mixtures thereof, specifically aluminum chloride, aluminum sulfate, ammonium aluminum sulfate, sulfuric acid Potassium aluminum and mixtures thereof, more specifically aluminum chloride, aluminum sulfate, potassium aluminum sulfate and As a mixture, and most specifically is selected from aluminum chloride, aluminum sulfate and mixtures thereof.
  • AlCl 3 aluminum chloride
  • Al 2 (SO 4 ) 3 Al sulfate
  • the aluminum may be present in the slurry composition in the form of aluminum ions and / or in combination with an aluminum salt and / or abrasive. That is, in the composition of the present invention, the aluminum may be present in one or more conditions selected from the group consisting of a type and aluminum ions (Al + 3) adsorbed to aluminum salts, aluminum atoms abrasive surface.
  • the aluminum content is 0.000006 to 0.01% by weight, specifically, 0.0001 to 0.005% by weight. If the aluminum content is too small, the effect of inhibiting pH change over time may not be sufficient, and if too large, a problem of increasing particle size may occur. That is, when the content of aluminum in the slurry in the acidic region exceeds 0.01% by weight, regardless of the number of silanol groups on the silica surface, the electric double layer is compressed and the aggregation occurs to increase the particle size (particle size) was confirmed. The higher the ion concentration, the higher the valence of the ions, the more the electrical double layer is compressed, causing aggregation. Therefore, according to the present invention, only a small amount of aluminum salt can be included to effectively stabilize the pH without increasing the particle size. In addition, excessive use of aluminum is undesirable because it may contaminate the semiconductor process.
  • the pH change during the long-term storage of the slurry composition is more effectively suppressed, and the slurry composition Is stabilized.
  • S is the number of silanol groups present on the abrasive surface 1 nm 2 (unit: nm / nm 2 ) and C is the aluminum content (% by weight) in the slurry composition.
  • the silanol group number is measured by nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), titration, etc. In the present invention, it was measured by a titration method using NaOH.
  • the number of silanol groups (S) on the surface of the abrasive is greater than a certain amount of aluminum, the thickness of the electric double layer is compressed and the dispersibility is sharply lowered. Therefore, depending on the number of silanol groups on the surface of the abrasive, the inclusion of excess aluminum results in lower dispersion stability due to an increase in particle size. That is, according to the number of silanol groups on the surface of the abrasive, it is necessary to include an appropriate amount of aluminum that satisfies Equation 1 to obtain a pH stabilization effect without increasing the particle size.
  • the remaining components constituting the chemical-mechanical polishing slurry composition according to the present invention may be water, deionized water, distilled water, or the like.
  • the content of the water is expressed in weight percent, the water content is, for example, 79.95 to 99 weight percent, specifically 89.95 to 99 weight percent.
  • the remaining component of the slurry composition is water, except that the composition of the present invention includes the abrasive, the aluminum component and, if necessary, other additives, except for the abrasive, the aluminum component and the additive used as needed. It means that the component is water.
  • the pH of the slurry composition for chemical-mechanical polishing according to the present invention is 1 to 6, specifically 1 to 4, and when the pH of the slurry composition is too high, oxide film formation may not be sufficient, and the polishing rate may be lowered.
  • the slurry composition for chemical-mechanical polishing according to the present invention may further include a pH adjusting agent and / or a biocide, if necessary.
  • the pH adjusting agent serves to adjust the pH of the slurry composition to 1 to 6, specifically 1 to 4, pH regulators (acids, bases) used in conventional slurry compositions can be used without limitation, for example
  • acids such as nitric acid, hydrochloric acid, sulfuric acid, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, and the like
  • bases such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide, and mixtures thereof are used alone. Or it can mix and use.
  • the content of the pH regulator is 0.0005 to 5% by weight, specifically 0.001 to 1% by weight based on the total sludge composition.
  • the content of the pH adjuster is out of the range, it may be difficult to adjust the pH of the slurry composition, and may act as a metal impurity to cause wafer contamination and defects.
  • the bioside is to prevent the chemical-mechanical polishing slurry composition from being contaminated by microorganisms such as bacteria and molds, and may be used as a commonly used product, and specifically, isothiazolinone or its Derivatives may be used, for example, methyl isothiazolinone (MIT, MI), chloromethyl isothiazolinone (CMIT, CMI, MCI), benzisothiazolinone (BIT) ), Octylisothiazolinone (OIT, OI), dichlorooctylisothiazolinone (DCOIT, DCOI), butylbenzisothiazolinone (BBIT), and the like.
  • MIT methyl isothiazolinone
  • CMIT chloromethyl isothiazolinone
  • CMIT chloromethyl isothiazolinone
  • BIT benzisothiazolinone
  • OIT Octylisothiazolinone
  • DCOIT dichlorooct
  • the content of the bioside is 0.0001 to 0.05% by weight, specifically 0.001 to 0.01% by weight based on the entire slurry composition. If the content of the bioside is too small, the effect of inhibiting microorganisms may be less, if too much, the dispersibility of the slurry composition may be lowered.
  • the slurry composition according to the present invention may be used to polish the metal film and the insulating film (SiO 2 ), and when the polishing target is a metal film such as tungsten (W), aluminum (Al), copper (Cu), an oxidizing agent (oxidizing agent) may be further included.
  • the oxidant is to facilitate the polishing of the metal film by quickly forming an oxide film on the surface of the metal film, and can be used without limitation, conventional oxidants used in the slurry composition for chemical-mechanical polishing, specifically, hydrogen peroxide, iodic acid Potassium and mixtures thereof can be used.
  • the oxidant oxidizes metal films, such as wafers and substrates, to the corresponding oxides.
  • the content of the oxidant is 0.005 to 10% by weight, specifically 0.2 to 5% by weight, based on the entire slurry composition. If the content of the oxidizing agent is too small, the polishing rate of the metal film may be lowered, and if it is too large, the polishing efficiency may be lowered.
  • the polishing target is a tungsten metal film
  • it may further include a catalyst.
  • the catalyst can be used without limitation, the catalyst usually used in the slurry composition for chemical-mechanical polishing, specifically, nano-ferrosilicon (FeSi), iron salt compounds (for example, iron nitrate, iron chloride, iron sulfate, Iron acetate, etc.) can be used.
  • the content of the catalyst is 0.00001 to 0.5% by weight, specifically 0.001 to 0.05% by weight based on the entire slurry composition. If the content of the catalyst is too small, the polishing rate of the metal film may be lowered. If the content of the catalyst is too high, the reactivity may be excessively increased and the polishing rate may be uneven.
  • the slurry composition for chemical-mechanical polishing according to the present invention can be prepared by mixing and stirring 0.001 to 20% by weight of abrasive, 0.000006 to 0.01% by weight of aluminum and the rest of water, if necessary, from 0.0005 to 5% by weight of It may further comprise a pH adjuster, 0.0001 to 0.05% by weight of bioside, 0.005 to 10% by weight of oxidant and 0.00001 to 0.1% by weight of catalyst.
  • abrasive pH stabilizer catalyst pH Silica Content (% by weight) kindss Content (% by weight) Aluminum content (% by weight) Kinds Content (% by weight)
  • Example 1 Colloidal silica 5 Aluminum chloride 0.0001 0.000006 - - 3
  • Example 2 Colloidal silica 5 Aluminum chloride 0.01 0.002 - - 3
  • Example 3 Colloidal silica 5 Aluminum chloride 0.05 0.01 - - 3
  • Example 6 Colloidal silica 5 Ammonium Sulfate 0.01 0.001 - - 3
  • Example 7 Fumed silica 5 Aluminum chloride 0.01 0.002 Nano ferrosilicon 0.003 3
  • Example 8 Fumed silica 5 Potassium aluminum sulfate 0.01 0.0006 Nano ferrosilicon 0.003 3
  • Comparative Example 4 if the aluminum content is more than 0.01% by weight, as shown in Comparative Example 4 can be confirmed that the particle size (particle size) is increased rather than Comparative Example 1, it is necessary to use the appropriate content so as not to change over time It can be seen that it is effective.
  • the hydrogen peroxide is mixed with the slurry composition and then decomposed if hydrogen peroxide is used as the oxidizing agent, it is mixed before polishing.
  • the IC pressure, RR pressure, EC pressure, and UC pressure of Table 4 are Inter Chamber Pressure, Retainer Ring Pressure, External Chamber Pressure, and Upper Chamber Pressure, respectively.
  • a pH adjuster nitric acid or tetramethylammonium hydroxide
  • the measurement of the silanol group number was carried out as follows using a titration method.
  • an appropriate amount of solution (X [ml]) is prepared by preparing an appropriate amount (100 ml or less) of a solution so that the total area of silica is 90 m 2 in the analysis vessel.
  • the pH of the slurry composition is adjusted to 3 using 0.1 M HNO 3 aqueous solution, and sufficiently stabilized until the pH change amount is 0.01 or less.
  • Obtain Obtain Obtain Obtain Obtain Obtain Obtain Obtain Obtain Obtain Obtain a (B [mol / L]) (B Y / X) - Here, divided by the initial amount (X [ml]) in the sample for a proper adsorption to silica particles [OH].
  • the silanol group density which silica particle has was computed from following formula (2).
  • N A [dog / mol] is the avogadro number
  • S BET [m 2 / g] is the specific surface area of the silica particles
  • Cp [g / L] is the concentration of the silica particles, respectively.
  • the insulating film (PE-TEOS) blanket wafer (polish) was polished for 60 seconds, and then the number of scratches formed on the wafer was measured using Negevtech defect inspection equipment.
  • the SiO 2 insulating film polishing rate of the slurry composition and the pH change amount before and after storage for 30 days at room temperature were measured and shown in Table 7 together.
  • colloidal silica having a surface silanol group number as shown in Table 8
  • the composition was prepared.
  • the pH change and particle size change over time of the prepared slurry composition were measured and shown in Table 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

산성 분위기 하에서 경시에 따른 pH 변화가 작으므로 장기간 보관이 용이한 화학-기계적 연마용 슬러리 조성물이 개시된다. 상기 화학-기계적 연마용 슬러리 조성물은 연마제; 알루미늄 0.000006 내지 0.01 중량%; 및 물을 포함한다. 상기 연마제 표면의 실라놀기의 수와 알루미늄 함량이 다음 수학식 1의 조건을 만족하는 것이 바람직하다. [수학식 1] 0.0005 ≤ (S * C)*100 ≤ 4.5 여기서, S는 연마제 표면 1 nm2에 존재하는 실라놀기 수이며(단위: 개/nm2), C는 슬러리 조성물 중의 알루미늄 함량(중량%)이다.

Description

화학-기계적 연마용 슬러리 조성물
본 발명은 화학-기계적 연마용 슬러리 조성물에 관한 것으로서, 더욱 상세하게는 산성 분위기 하에서 경시에 따른 pH 변화가 작으므로 장기간 보관이 용이한 화학-기계적 연마용 슬러리 조성물에 관한 것이다.
직접회로 기술이 적용된 반도체 칩에서, 트랜지스터, 커패시터, 저항기 등 수 많은 기능 요소(소자)들이 포함되어 있으며, 이러한 개별적인 기능 요소들이 일정한 모양으로 도안된 배선에 의해 서로 연결되어 회로를 구성한다. 집적회로는 각 세대를 거치면서 소형화되었고, 이에 따라 칩 하나가 가지는 기능도 점차 증대되고 있다. 반도체 칩의 소형화에 있어서, 단순히 소자의 크기를 감소시키는 것에는 한계가 있으므로, 최근에는 각 소자를 다층으로 형성하는 다층 배선 구조에 대한 연구가 활발히 진행되고 있다. 이와 같이 다층 배선 구조의 반도체 소자를 제조하기 위해서는 금속막을 연마하여 평탄화하는 공정을 수행하여야 한다. 그러나 일반적으로 금속막은 강도가 높아 연마가 용이하지 않으므로, 금속막을 효과적으로 연마하기 위해서는 금속막을 비교적 강도가 낮은 금속 산화물 형태로 산화시킨 다음, 연마를 수행하여야 한다. 이와 같은 금속막을 연마시키는 슬러리 조성물에 있어서, 연마제로 실리카를 사용한 경우 산성 영역에서 슬러리 조성물의 보관 기간이 길어질수록 입자 크기 또는 pH가 증가하는 등의 경시 변화가 발생할 수 있고, 그에 따라 안정성(Shelf life time)에 문제가 생길 수 있다.
따라서, 본 발명의 목적은 산성 영역에서 우수한 연마 성능을 유지하면서도 장기간 보관에 따른 변화가 작아, 장기 보관 안정성을 가지는 화학-기계적 연마용 슬러리 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 연마제; 알루미늄 0.000006 내지 0.01 중량%; 및 물을 포함하는 화학-기계적 연마용 슬러리 조성물을 제공한다. 상기 연마제 표면의 실라놀기의 수와 알루미늄 함량이 다음 수학식 1의 조건을 만족하는 것이 바람직하다.
[수학식 1]
0.0005 ≤ (S * C)*100 ≤ 4.5
여기서, S는 연마제 표면 1 nm2에 존재하는 실라놀기 수이며(단위: 개/nm2), C는 슬러리 조성물 중의 알루미늄 함량(중량%)이다.
본 발명에 따른 슬러리 조성물은 안정성이 우수하여, 산성 영역에서 pH가 증가되는 경시 변화로 인하여, 슬러리의 연마 성능이 저하되어 스크래치가 증가되거나 연마 속도가 변하는 문제를 방지하고, 안정성(shelf life time)이 향상되어 장기간 보관이 용이하다.
이하, 본 발명을 상세하게 설명한다.
본 발명에 따른 화학-기계적 연마용 슬러리 조성물은, 연마속도가 우수하고, 스크래치 발생이 적으며, 안정성 또한 우수하여, 장기간 보관이 가능한 것으로서, 연마제(abrasive), 알루미늄 및 물을 포함한다.
상기 연마제는 연마 대상막을 연마하기 위한 것으로서, 흄드 실리카(fumed silica), 콜로이달 실리카(colloidal silica), 이들의 혼합물 등의 실리카계 연마제를 사용한다. 상기 연마제의 입자 크기는 5 내지 200 nm, 구체적으로는 10 내지 150 nm이고, 상기 연마제의 함량은, 전체 슬러리 조성물에 대하여, 0.001 내지 20 중량%, 구체적으로는 0.01 내지 10 중량%, 더욱 구체적으로는 0.1 내지 5 중량%이다. 상기 연마제의 입자 크기가 너무 작거나, 함량이 너무 적으면, 금속막의 연마 속도가 저하될 수 있고, 너무 크거나, 너무 많으면, 금속막 및 실리콘 산화막에 대한 스크래치가 과도하게 발생할 수 있다.
실리카계 연마제 표면의 실라놀기(silanol group)는 Si-OH 또는 Si-O- 작용기를 의미하며, 연마제 표면에 실라놀기의 수가 많을수록, 연마 속도가 우수함을 확인하였다. 연마제 표면에 화학적 활성을 가지는 실라놀기가 많으면, 연마제가 산화막 표면의 수산기와 용이하게 결합하여 물리적 마찰에 의해 산화막 표면이 쉽게 제거되므로 연마속도가 증가하는 것으로 예상된다. 또한 실라놀기가 많을수록 상대적으로 Si-O-Si 축합도가 낮고, 물리적 마찰이 과도하게 발생되지 않으므로 스크래치(Scratch)가 감소하게 된다. 반면 연마제 표면에 실라놀기가 과도하게 많으면 산성 영역에서의 분산 안정성이 저하되고 장시간 보관 시 pH 변화가 발생하게 된다. 이러한 pH 변화 등의 보관안정성 문제가 발생하면, 연마 속도 등의 연마 성능이 우수할지라도, 장기간 품질을 유지할 수 없고, 상품성이 저하된다. 상품화된 슬러리 제품은 통상적으로 최소 3 ~ 6개월 이상의 보관 안정성이 요구되고 있다. 따라서, 본 발명에 따른 슬러리 조성물은, 연마제 표면의 실라놀기 수가 바람직하게는 1 내지 10 개/nm2, 더욱 바람직하게는 1 내지 8 개/nm2, 보다 바람직하게는 2 내지 5 개/nm2 인 실리카계 연마제를 사용함으로써, 슬러리 조성물의 연마속도를 향상시키고, 스크래치(Scratch) 발생을 억제할 수 있다. 상기 실라놀기의 개수가 1 개/nm2 미만이면, 연마속도가 너무 낮아 불균일도가 증가하며, 스크래치가 증가되는 문제가 있고, 상기 실라놀기의 개수가 10 개/nm2 를 초과하면 연마 속도의 상승 효과는 적어지면서, 연마제 표면의 활성화도가 너무 높아 분산 안정성이 저하되며, 응집 및 침전이 발생할 우려가 있다.
본 발명의 화학-기계적 연마용 슬러리 조성물에 사용되는 알루미늄은, 슬러리 조성물의 장기 보관 시, pH 등의 변화를 억제하여, 슬러리 조성물의 안정성을 개선시키는 일종의 pH 안정화제(pH stabilizer)로 작용한다. 상기 알루미늄은 알루미늄 염(Aluminum salts, 알루미늄 염화합물)을 포함하고, 필요에 따라, 알루미늄 염으로 이루어질 수도 있다. 상기 알루미늄 염은 알루미늄의 염화물(Cl), 황산염(SO4), 암모늄염(NH4), 칼륨염(K), 수산화물(OH), 메틸화물(CH3), 인화물(P) 및 이들의 혼합물 등, 구체적으로는 염화물(Cl), 황산염(SO4), 칼륨(K) 및 이들의 혼합물 등을 포함할 수 있고, 예를 들면, 염화알루미늄(aluminum chloride, AlCl3), 황산 알루미늄(aluminum sulfate, Al2(SO4)3), 황산알루미늄암모늄(ammonium aluminum sulfate, (NH4)Al(SO4)2), 황산알루미늄칼륨(aluminum potassium sulfate, KAl(SO4)2), 수산화알루미늄(aluminum hydroxide, Al(OH)3), 트리메틸알루미늄(trimethyl aluminum, C6H18Al2), 인화알루미늄(aluminum phosphide, AlP) 및 이들의 혼합물 등, 구체적으로는 염화알루미늄, 황산알루미늄, 황산알루미늄암모늄, 황산알루미늄칼륨 및 이들의 혼합물, 더욱 구체적으로는, 염화알루미늄, 황산알루미늄, 황산알루미늄칼륨 및 이들의 혼합물, 가장 구체적으로는 염화알루미늄, 황산알루미늄 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 상기 알루미늄은 슬러리 조성물 내에서, 알루미늄 염 및/또는 연마제와 결합한 형태 및/또는 알루미늄 이온의 상태로 존재할 수도 있다. 즉, 본 발명의 조성물 내에서, 상기 알루미늄은 알루미늄 염, 알루미늄 원자가 연마제 표면에 흡착된 형태 및 알루미늄 이온(Al3 +)으로 이루어진 군으로부터 선택되는 하나 이상의 상태로 존재할 수 있다.
본 발명의 화학-기계적 연마용 슬러리 조성물에 있어서, 상기 알루미늄 함량은 0.000006 내지 0.01 중량%, 구체적으로는, 0.0001 내지 0.005 중량%이다. 상기 알루미늄의 함량이 너무 적으면, pH 경시 변화 억제 효과가 충분치 못할 수 있고, 너무 많으면, 오히려 입자 크기가 증가되는 문제가 발생 할 수 있다. 즉, 산성 영역에서 슬러리 내 알루미늄의 함량이 0.01 중량%를 초과하면, 실리카 표면의 실라놀기 개수에 무관하게 전기 이중층이 압축되면서 응집이 발생하여 입도(particle size)가 증가하는 현상을 확인하였다. 이온 농도가 높을수록, 이온의 원자가가 클수록, 전기 이중층이 더 많이 압축되어 응집이 발생된다. 따라서, 본 발명에 의하면, 알루미늄 염을 소량으로 포함하여야 만 입도 증가없이 효과적으로 pH를 안정화시킬 수 있다. 또한 알루미늄을 과도하게 많이 사용하는 것은, 반도체 공정을 오염시킬 우려가 있으므로, 바람직하지 못하다.
본 발명의 일 측면에 의하면, 슬러리 조성물에 있어서, 연마제 표면의 실라놀기의 수와 알루미늄 함량이 다음 수학식 1의 조건을 만족하면, 슬러리 조성물의 장기 보관 시 pH 변화가 보다 효과적으로 억제되어, 슬러리 조성물이 안정화된다.
[수학식 1]
0.0005 ≤ (S * C)*100 ≤ 4.5
여기서, S는 연마제 표면 1 nm2에 존재하는 실라놀기 수이며(단위: 개/nm2), C는 슬러리 조성물 중의 알루미늄 함량(중량%)이다. 상기 실라놀기 수는 핵자기공명(nuclear magnetic resonance; NMR) 분석법, 열 중량 분석법(thermogravimetric analysis: TGA), 퓨리에 트랜스폼 적외선 분광법(Fourier transform infrared spectroscopy: FT-IR), 적정법(Titration) 등으로 측정할 수 있으며, 본 발명에서는 NaOH를 이용한 적정법으로 측정하였다.
연마제 표면의 실라놀기 수(S)가 많을수록 일정 함량 이상의 알루미늄을 포함할 경우, 전기 이중층의 두께가 압축되면서 분산성이 급격히 저하되는 문제가 발생하게 된다. 그러므로 연마제 표면의 실라놀기 수에 따라, 과량의 알루미늄이 포함되면 입도 증가로 인해 분산 안정성이 오히려 저하된다. 즉, 연마제 표면의 실라놀기 개수에 따라, 수학식 1을 만족하는 적정량의 알루미늄을 포함하여야 입도 증가 없이 pH 안정화 효과를 얻을 수 있다. 연마제 표면의 실라놀기 수(S)와 알루미늄 함량(C)의 곱((S * C)*100)이 4.5를 초과하면, pH 안정화 효과를 얻을 수는 있지만, 연마제 입자 표면의 안정성이 감소하여 입도가 증가한다. 반대로, 연마제 표면의 실라놀기 수(S)와 알루미늄 함량(C)의 곱((S * C)*100)이 0.0005 미만이면 pH 안정화 효과를 얻을 수 없다. 즉, 슬러리 조성물의 장기 보관 안정성을 얻기 위해서는, 연마제 표면의 실라놀기 수(S)와 알루미늄 함량(C)의 곱((S * C)*100)이 4.5를 초과하지 않는 것이 중요하다.
본 발명에 따른 화학-기계적 연마용 슬러리 조성물을 구성하는 나머지 성분은 물로서, 탈이온수 및 증류수 등을 사용할 수 있으며, 상기 물의 함량을 중량%로 나타낼 경우, 상기 물의 함량은 예를 들어, 79.95 내지 99 중량%, 구체적으로는 89.95 내지 99 중량% 일 수 있다. 본 명세서에서, 슬러리 조성물의 나머지 성분이 물이라는 것은, 본 발명의 조성물이, 연마제, 알루미늄 성분 및 필요에 따라, 기타 첨가제를 포함할 경우, 연마제, 알루미늄 성분 및 필요에 따라 사용되는 첨가제를 제외한 나머지 성분이 물이라는 것을 의미한다. 본 발명에 따른 화학-기계적 연마용 슬러리 조성물의 pH는 1 내지 6, 구체적으로는 1 내지 4이며, 상기 슬러리 조성물의 pH가 너무 높으면, 산화막 형성이 충분하지 못하여, 연마 속도가 저하될 수 있다.
본 발명에 따른 화학-기계적 연마용 슬러리 조성물은 필요에 따라, pH 조절제(pH adjusting agent) 및/또는 바이오사이드(biocide)를 더욱 포함할 수 있다.
상기 pH 조절제는, 상기 슬러리 조성물의 pH를 1 내지 6, 구체적으로는 1 내지 4로 조절하는 역할을 하고, 통상적인 슬러리 조성물에 사용되는 pH 조절제(산, 염기)를 제한 없이 사용할 수 있으며, 예를 들면, 질산, 염산, 황산 등의 산, 수산화 칼륨, 수산화 나트륨, 수산화 테트라메틸암모늄, 수산화 테트라부틸암모늄 등, 구체적으로는 수산화 테트라메틸암모늄, 수산화 테트라부틸암모늄 등의 염기 및 이들의 혼합물을 단독 또는 혼합하여 사용할 수 있다. 상기 pH 조절제의 함량은, 슬러지 조성물 전체에 대하여, 0.0005 내지 5 중량%, 구체적으로는 0.001 내지 1 중량%이다. 상기 pH 조절제의 함량이 상기 범위를 벗어나면, 슬러리 조성물의 pH 조절이 어려워질 수 있고, 금속 불순물(metal impurity)로 작용하여 웨이퍼(wafer) 오염 및 불량을 유발할 수 있다.
상기 바이오사이드는, 화학-기계적 연마용 슬러리 조성물이 세균, 곰팡이 등의 미생물에 의하여 오염되는 것을 방지해주는 것으로서, 통상적으로 이용되는 제품을 사용할 수 있으며, 구체적으로는 이소티아졸리논(Isothiazolinone) 또는 그 유도체를 사용할 수 있으며, 예를 들면, 메틸이소티아졸리논(Methyl isothiazolinone: MIT, MI), 클로로메틸이소티아졸리논(Chloromethyl isothiazolinone: CMIT, CMI, MCI), 벤즈이소티아졸린논(Benzisothiazolinone: BIT), 옥틸이소티아졸리논(Octylisothiazolinone: OIT, OI), 디클로로옥틸이소티아졸리논(Dichlorooctylisothiazolinone: DCOIT, DCOI), 부틸벤즈이소티아졸리논(Butylbenzisothiazolinone: BBIT) 등을 사용할 수 있다. 상기 바이오사이드의 함량은, 슬러리 조성물 전체에 대하여, 0.0001 내지 0.05 중량%, 구체적으로는 0.001 내지 0.01 중량%이다. 상기 바이오사이드의 함량이 너무 적으면, 미생물을 억제하는 효과가 적을 수 있고, 너무 많으면, 슬러리 조성물의 분산성이 저하될 수 있다.
또한, 본 발명에 따른 슬러리 조성물은 금속막 및 절연막(SiO2)을 연마하는데 이용될 수 있고, 연마 대상이 텅스텐(W), 알루미늄(Al), 구리(Cu) 등의 금속막일 경우, 산화제(oxidizing agent)를 더욱 포함할 수 있다. 상기 산화제는 금속막의 표면에 산화막을 빠르게 형성하여 금속막의 연마를 용이하게 하기 위한 것으로서, 화학-기계적 연마용 슬러리 조성물에 사용되는 통상의 산화제를 제한 없이 사용할 수 있으며, 구체적으로는, 과산화수소, 요오드산칼륨 및 이들의 혼합물을 사용할 수 있다. 상기 산화제는 웨이퍼, 기판 등의 금속막을 상응하는 산화물로 산화시킨다. 상기 산화제의 함량은, 슬러리 조성물 전체에 대하여, 0.005 내지 10 중량%, 구체적으로는 0.2 내지 5 중량%이다. 상기 산화제의 함량이 너무 적으면, 금속막의 연마 속도가 저하될 수 있고, 너무 많으면 연마 효율이 저하될 수 있다.
상기 연마 대상이 텅스텐 금속막일 경우, 촉매(catalyst)를 더욱 포함할 수 있다. 상기 촉매는, 통상적으로 화학-기계적 연마용 슬러리 조성물에 사용되는 촉매를 제한 없이 사용할 수 있으며, 구체적으로는, 나노 페로실리콘(FeSi), 철염 화합물(예를 들면, 질산철, 염화철, 황산철, 초산철 등) 등을 사용할 수 있다. 상기 촉매의 함량은, 슬러리 조성물 전체에 대하여, 0.00001 내지 0.5 중량%, 구체적으로는 0.001 내지 0.05 중량%이다. 상기 촉매의 함량이 너무 적으면, 금속막의 연마 속도가 저하될 수 있고, 너무 많으면 반응성이 과도하게 증가하여 연마 속도가 불균일하게 될 수 있다.
본 발명에 따른 화학-기계적 연마용 슬러리 조성물은 0.001 내지 20 중량%의 연마제, 0.000006 내지 0.01 중량%의 알루미늄 및 나머지 물을 혼합하고 교반하여 제조할 수 있는데, 필요에 따라, 0.0005 내지 5 중량%의 pH 조절제, 0.0001 내지 0.05 중량%의 바이오사이드, 0.005 내지 10 중량%의 산화제 및 0.00001 내지 0.1 중량%의 촉매를 더욱 포함할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
[실시예 1 내지 11 및 비교예 1 내지 4] 슬러리 조성물의 제조
하기 표 1에 나타낸 함량의 성분을 상온에서 혼합하고, 기계적 교반기(Mechanical stirrer)로 교반하여, 슬러리 조성물(실시예 1 내지 11 및 비교예 1 내지 4)을 제조하였다.
  연마제 pH 안정화제 촉매 pH
실리카 함량(중량%) 종류 함량(중량%) 알루미늄 함량(중량%) 종류 함량 (중량%)
실시예1 콜로이달 실리카 5 염화알루미늄 0.0001 0.000006 - - 3
실시예2 콜로이달 실리카 5 염화알루미늄 0.01 0.002 - - 3
실시예3 콜로이달 실리카 5 염화알루미늄 0.05 0.01 - - 3
실시예4 콜로이달 실리카 5 황산알루미늄 0.01 0.0016 - - 3
실시예5 콜로이달 실리카 5 황산알루미늄칼륨 0.01 0.0006 - - 3
실시예6 콜로이달 실리카 5 황산알루미늄암모늄 0.01 0.001 - - 3
실시예7 흄드 실리카 5 염화알루미늄 0.01 0.002 나노 페로실리콘 0.003 3
실시예8 흄드 실리카 5 황산알루미늄칼륨 0.01 0.0006 나노 페로실리콘 0.003 3
실시예9 흄드 실리카 5 황산알루미늄암모늄 0.02 0.002 질산철 0.015 3
실시예10 흄드 실리카 5 황산알루미늄암모늄 0.02 0.002 황산철 0.015 3
실시예11 흄드 실리카 5 황산알루미늄암모늄 0.02 0.002 염화철 0.015 3
비교예1 콜로이달 실리카 5 -  - - - - 3
비교예2 흄드 실리카 5 -  - - 나노 페로실리콘 0.003 3
비교예3 콜로이달 실리카 5 염화알루미늄 0.00002 0.000004 - - 3
비교예4 콜로이달 실리카 5 염화알루미늄 0.08 0.016 - - 3
실험예 1] 슬러리 조성물의 경시 변화 확인
상기 실시예 1 내지 11 및 비교예 1 내지 4에서 제조된 슬러리 조성물을 6 개월간 상온 보관한 뒤, pH 분석기(Metrohm 704, Metrohm) 및 입도 분석기(ELS-Z, Otsuka Electronics)를 이용하여, 각각의 pH 및 입도의 경시 변화를 측정하여 pH의 경시 변화를 하기 표 2에, 입도의 경시 변화(단위: nm)를 하기 표 3에 나타내었다.
No. 보관온도 0일 15일 30일 60일 120일 150일 180일
실시예 1 상온 2.99 3.01 3.05 3.07 3.07 3.08 3.07
실시예 2 상온 3.02 3 2.99 3.01 3 3 3.01
실시예 3 상온 3 2.98 3.01 3 2.99 3.01 3.00 
실시예 4 상온 3.03 3 3.02 3.01 3.03 3 3.02
실시예 5 상온 2.98 3.01 3 3.02 2.99 3.01 3.01
실시예 6 상온 3.02 2.99 3 3.01 3.03 3 2.99
실시예 7 상온 3.01 3 2.99 3.01 3.02 3 3.01
실시예 8 상온 3 3.01 3 3 3.01 3.02 3.02
실시예 9 상온 3 3 2.99 3.01 3.03 3.02 3.03
실시예 10 상온 2.99 2.98 3 3.01 3 3.02 3.02
실시예 11 상온 3 3.01 3 3.02 3.01 3.01 3.03
비교예 1 상온 3.01 3.12 3.15 3.21 3.32 3.57 3.78
비교예 2 상온 3 3.1 3.13 3.17 3.21 3.33 3.34
비교예 3 상온 3.01 3.07 3.12 3.13 3.16 3.18 3.22
비교예 4 상온 3.01 3.01 3 3.02 3 3.03 3.02
No. 보관온도 0일 15일 30일 60일 120일 150일 180일
실시예 1 상온 89 90 90 89 91 91 91
실시예 2 상온 91 89 91 88 90 92 91
실시예 3 상온 90 91 90 90 89 92 92
실시예 4 상온 90 89 90 90 91 90 91
실시예 5 상온 88 90 89 89 90 91 92 
실시예 6 상온 91 91 90 91 90 90 91
실시예 7 상온 109 110 110 109 111 110 111
실시예 8 상온 111 110 111 109 111 111 110
실시예 9 상온 110 109 110 110 110 111 110
실시예 10 상온 110 110 111 110 109 110 111
실시예 11 상온 109 110 111 110 110 111 113
비교예 1 상온 90 90 90 93 93 96 101
비교예 2 상온 110 109 109 112 113 113 115
비교예 3 상온 90 89 89 92 91 93 94
비교예 4 상온 91 107 120 141 185 225 260
상기 표 2에 나타낸 바와 같이, 염화 알루미늄을 0.000004 중량% 적용한 비교예 3의 경우, 비교예 1에 대비하여 pH 경시 변화량이 감소되었지만, 효과가 부족한 반면, 알루미늄 함량이 0.000006 중량% 이상 적용한 실시예 1 내지 11 및 비교예 4는 비교예 1 내지 3 대비 pH 경시 변화가 거의 발생하지 않는 것을 알 수 있다. 또한, 상기 표 3에 나타낸 바와 같이, 염화알루미늄(AlCl3)을 0.00002 중량% 적용한 비교예 3의 경우, 입자 크기 변화가 거의 발생하지 않았으나 pH 변화 억제 효과가 부족하고, 염화알루미늄(AlCl3), 황산알루미늄(Al2(SO4)3), 황산알루미늄칼륨 또는 황산알루미늄암모늄을 0.0001 내지 0.05 중량% 적용한 실시예 1 내지 11의 경우 비교예 1 내지 2 대비 입자 크기(particle size) 경시 변화가 거의 발생하지 않는 결과를 나타낸다. 하지만 오히려 알루미늄 함량이 0.01 중량% 이상일 경우, 비교예 4에서와 같이 비교예 1 대비 입자 크기(particle size)가 오히려 증가하는 결과를 확인 할 수 있으므로, 적정함량을 사용하여야 경시변화가 발생하지 않도록 하는데 효과적인 것을 알 수 있다.
[실험예 2] 연마속도 실험의 측정
어플라이드 머티어리얼사(Applied Materials사)의 Mirra 3400 연마 장비(Polisher)에 IC-1010 연마 패드(Rohm & Haas사 제품)를 부착하고, 8인치 텅스텐(W) 및 8인치 절연막(PE-TEOS) 블랭킷 웨이퍼(blanket wafer)를 장착하였다. 다음으로, 상기 실시예 1 내지 8 및 비교예 1 내지 4에서 제조된 슬러리 조성물을 주입하여 상기 웨이퍼로 공급하면서, 텅스텐막(W) 및 절연막을 60초 동안 연마하였고, 이 때, 상기 실시예 7, 8 및 비교예 2는 슬러리 조성물을 주입하기 전에 과산화수소 2 중량%를 추가로 혼합하여 연마하였으며, 상기 연마 조건을 하기 표 4에 나타내었다. 상기 과산화수소는 슬러리 조성물과 혼합된 이후에 과산화수소가 산화제로 사용되면 분해되기 때문에, 연마하기 전에 혼합한다. 하기 표 4의 IC 압력, RR 압력, EC 압력, UC 압력은 각각 Inter Chamber Pressure, Retainer Ring Pressure, External Chamber Pressure, Upper Chamber Pressure로서, 웨이퍼가 장착되는 Head 내 영역별 압력 조건을 나타낸 것이다.
Platen 속도 Head 속도 IC 압력 RR 압력 EC 압력 UC 압력 슬러리 유량
84 rpm 78 rpm 3.6 psi 10.4 psi 5.2 psi 5.2 psi 200 ml/min
텅스텐(W)막 및 절연막의 연마 속도(Removal Rate, 단위: Angstrom(Å)/min, 이하 R/R)를 각각 저항 측정기(CMT-2000, 4-point probe, ㈜창민 Tech 제품 / Thermawave OP-2600, KLA TENCOR 제품)로 측정한 결과를 하기 표 5(SiO2 연마 속도) 및 표 6(텅스텐(W) 연마속도)에 나타내었다. 여기서, "연마속도 = CMP 전 두께 - CMP 후 두께"의 계산을 이용하여 구하였다.
SiO2 연마속도 (Å/min)
실시예 1 1,002
실시예 2 1,006
실시예 3 995
실시예 4 1,031
실시예 5 1,017
실시예 6 1,023
비교예 1 1,020
비교예 3 1,048
비교예 4 969
텅스텐 연마속도 (Å/min)
실시예 7 3,300
실시예 8 3,197
비교예 2 3,250
상기 표 5 및 6에 나타낸 바와 같이, 염화 알루미늄의 함량이 증가함에 따라 SiO2연마속도에 영향을 미치지 않음을 알 수 있고, 염화 알루미늄을 각각 0.01 중량% 적용한 경우, 비교예 2 대비 텅스텐의 연마 속도에 영향을 미치지 않음을 알 수 있다.
[참고예 1 내지 21] 실라놀기 수에 따른 슬러리 조성물의 스크래치 억제 효과 측정
하기 표 7에 나타낸 바와 같은 표면 실라놀기 수를 가지는 콜로이달 실리카 5 중량%, pH를 2.5로 조절하기 위한 pH 조절제(질산 또는 수산화 테트라메틸암모늄)및 나머지 증류수를 포함하는 슬러리 조성물을 제조하였다. 실라놀기 수(ρ[개/nm2])의 측정은, 적정법 (Titration)을 사용하여 다음과 같이 수행하였다. 우선, 분석 용기 내에 실리카의 총면적이 90 m2가 되도록 적량(100 ml 이하)의 용액을 제조하여 적정용 샘플(X [ml])을 준비한다. 다음으로, 0.1 M HNO3 수용액을 사용하여 슬러리 조성물의 pH를 3으로 조정하고, pH 변화량이 0.01 이하가 될 때까지 충분히 안정화시킨다. 그 후, 0.1M NaOH 수용액을 사용하여 0.5 mV/min 이하의 속도로 pH 10까지 적정하고, 적정 용액의 H+ 및 OH- mol수 변화가 없는 영역에 대한 0.1M NaOH 소요량(Y [mol])을 구한다. 여기에, 적정용 샘플의 초기량(X[ml])으로 나누어 실리카 입자에 흡착한 [OH-](B [mol/L])를 구한다 (B = Y/X). 하기 수학식 2로부터 실리카 입자가 갖는 실라놀기 밀도를 산출하였다.
[수학식 2]
Figure PCTKR2017005118-appb-I000001
여기서, NA[개/mol]는 아보가드로수, SBET[m2/g]는 실리카 입자의 비표면적, Cp[g/L]는 실리카 입자의 농도를 각각 나타낸다.
제조된 슬러리 조성물을 이용하여, 절연막(PE-TEOS) 블랭킷 웨이퍼(blanket wafer)를 60초 동안 연마한 후, Negevtech defect inspection 장비를 이용하여, 웨이퍼에 형성된 스크래치(scratch)의 개수를 측정하였다. 또한, 상기 슬러리 조성물의 SiO2 절연막 연마 속도 및 상온에서 30일 보관 전후의 pH 변화량을 측정하여, 표 7에 함께 나타내었다.
  Silica 함량(중량%) pH Silanol 수 (개/nm2) SiO2 연마속도 (Å/min) Scratch (개) pH
0일 30일 변화량
참고예 1 5 2.5 0.5 525 48 2.51 2.63 0.12
참고예 2 5 2.5 0.8 536 52 2.5 2.61 0.11
참고예 3 5 2.5 1.2 794 35 2.5 2.59 0.09
참고예 4 5 2.5 1.6 812 37 2.5 2.62 0.12
참고예 5 5 2.5 2.3 885 18 2.51 2.65 0.14
참고예 6 5 2.5 3.8 1,002 20 2.49 2.67 0.18
참고예 7 5 2.5 4.9 1,227 15 2.5 2.75 0.25
참고예 8 5 2.5 9.7 1,374 7 2.5 2.88 0.38
참고예 9 5 2.5 10.9 1,311 9 2.51 4.25 1.74
참고예 10 5 2.5 11.8 1,297 10 2.5 3.99 1.49
상기 표 7에 나타낸 바와 같이, 실리카 표면에 실라놀기 수가 많아짐에 따라 Oxide 연마속도가 증가하는 반면 Scratch는 감소하는 것을 알 수 있다. 또한 실라놀 표면의 실라놀기 수가 증가함에 따라 상온에서 보관 시 pH가 증가하는 현상이 확인되었고, 특히 10 개/nm2 이상인 경우 pH변화량이 급격히 증가하는 것을 확인하였다.
[실시예 12 내지 21, 비교예 5 내지 10] 실라놀기 수 및 알루미늄 함량에 따른 슬러리 조성물의 장기 보관 안정성 측정
하기 표 8에 나타낸 바와 같은 표면 실라놀기 수를 가지는 콜로이달 실리카 5 중량%, 다양한 함량의 황산알루미늄, pH를 2.5로 조절하기 위한 pH 조절제(질산 또는 수산화 테트라메틸암모늄)및 나머지 증류수를 포함하는 슬러리 조성물을 제조하였다. 제조된 슬러리 조성물의 시간 경과에 따른 pH 변화량 및 입도 변화량을 측정하여 표 9에 나타내었다.
  Silica 함량(중량%) pH Silanol 수 (개/nm2) 황산알루미늄 함량 (중량%) Al 함량 (wt%) (S*C)*100
비교예 5 5 2.5 3.8 0 0 0
비교예 6 5 2.5 0.5 0.000032 0.000005 0.0003
비교예 7 5 2.5 0.5 0.000044 0.000007 0.0004
실시예 12 5 2.5 0.5 0.000063 0.00001 0.0005
실시예 13 5 2.5 0.8 0.000038 0.000006 0.0005
비교예 8 5 2.5 1.2 0.000019 0.000003 0.0004
실시예 14 5 2.5 1.2 0.00032 0.00005 0.006
실시예 15 5 2.5 1.2 0.019 0.003 0.36
실시예 16 5 2.5 1.6 0.019 0.003 0.48
실시예 17 5 2.5 2.3 0.00004 0.000006 0.0014
실시예 18 5 2.5 2.3 0.038 0.006 1.4
실시예 19 5 2.5 3.8 0.025 0.004 1.5
비교예 9 5 2.5 3.8 0.10 0.015 5.7
실시예 20 5 2.5 4.9 0.0013 0.0002 0.098
실시예 21 5 2.5 4.9 0.057 0.009 4.41
비교예 10 5 2.5 4.9 0.076 0.012 5.9
실시예 22 5 2.5 9.7 0.019 0.003 2.9
실시예 23 5 2.5 9.7 0.044 0.007 6.8
  (S*C)*100 pH 입도
0일 90일 180일 변화량 0일 90일 180일 변화량
비교예 5 0 2.49 3.81 4.56 2.07 89 90 90 1
비교예 6 0.0003 2.50 2.73 3.55 1.05 89 89 89 0
비교예 7 0.0004 2.51 2.77 3.33 0.82 90 91 90 0
실시예 12 0.0005 2.50 2.52 2.54 0.04 89 90 90 1
실시예 13 0.0005 2.50 2.50 2.56 0.06 90 90 90 0
비교예 8 0.0004 2.51 3.74 4.02 1.51 90 89 91 1
실시예 14 0.006 2.51 2.50 2.53 0.02 91 91 92 1
실시예 15 0.36 2.50 2.52 2.56 0.06 90 91 90 0
실시예 16 0.48 2.50 2.51 2.57 0.07 90 91 91 1
실시예 17 0.0014 2.49 2.52 2.58 0.09 89 90 91 2
실시예 18 1.4 2.50 2.51 2.52 0.02 90 91 91 1
실시예 19 1.5 2.50 2.50 2.51 0.01 90 89 91 1
비교예 9 5.7 2.50 2.51 2.53 0.03 90 193 521 431
실시예 22 0.098 2.51 2.52 2.56 0.05 90 89 90 0
실시예 21 4.41 2.51 2.50 2.50 0.01 91 91 91 0
비교예 10 5.9 2.49 2.51 2.51 0.02 89 130 205 116
실시예 22 2.9 2.50 2.51 2.51 0.01 90 90 91 1
실시예 23 6.8 2.50 2.49 2.52 0.02 90 121 158 68
상기 표 9에 나타낸 바와 같이, 슬러리 내 실리카 표면의 실라놀기 수와 알루미늄함량을 곱한 값이 0.0005 ≤ (S * C)*100 ≤ 4.5 을 만족할 때 상온에서 보다 효율적으로 장기간 pH를 안정화시킬 수 있음을 알 수 있다. 비교예 9 및 10과 같이, (S * C)*100이 4.5을 초과할 경우에는 pH는 안정화되는 반면, 입도가 급격히 증가하였고, 비교예 5 내지 8과 같이 (S * C)*100이 0.0005 미만일 경우에는 pH 안정화 효과가 부족하였다.

Claims (14)

  1. 연마제;
    알루미늄 0.000006 내지 0.01 중량%; 및
    물을 포함하는 화학-기계적 연마용 슬러리 조성물.
  2. 제 1항에 있어서, 상기 연마제는 흄드 실리카, 콜로이달 실리카, 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 그 함량은 0.001 내지 20 중량%인 것인, 화학-기계적 연마용 슬러리 조성물.
  3. 제 1항에 있어서, 상기 연마제 표면의 실라놀기의 개수가 1 내지 10 개/nm2인 것인, 화학-기계적 연마용 슬러리 조성물.
  4. 제 1항에 있어서, 상기 알루미늄은 알루미늄 염, 알루미늄 원자가 연마제 표면에 흡착된 형태 및 알루미늄 이온(Al3 +)으로 이루어진 군으로부터 선택되는 하나 이상의 상태로 존재하는 것인, 화학-기계적 연마용 슬러리 조성물.
  5. 제 4항에 있어서, 상기 알루미늄 염은 알루미늄의 염화물(Cl), 황산염(SO4), 암모늄염(NH4), 칼륨염(K), 수산화물(OH), 메틸화물(CH3), 인화물(P) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 화학-기계적 연마용 슬러리 조성물.
  6. 제 1항에 있어서, 상기 연마제 표면의 실라놀기의 수와 알루미늄 함량이 다음 수학식 1의 조건을 만족하는 것인, 화학-기계적 연마용 슬러리 조성물.
    [수학식 1]
    0.0005 ≤ (S * C)*100 ≤ 4.5
    여기서, S는 연마제 표면 1 nm2에 존재하는 실라놀기 수이며(단위: 개/nm2), C는 슬러리 조성물 중의 알루미늄 함량(중량%)이다.
  7. 제 1항에 있어서, 상기 슬러리 조성물은 pH 조절제를 더욱 포함하고, 상기 pH 조절제는 질산, 염산, 황산, 수산화칼륨, 수산화 나트륨, 수산화 테트라메틸암모늄, 수산화 테트라부틸암모늄 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 화학-기계적 연마용 슬러리 조성물.
  8. 제 1항에 있어서, 상기 슬러리 조성물은 0.005 내지 10 중량%의 산화제를 더욱 포함하는 것인, 화학-기계적 연마용 슬러리 조성물.
  9. 제 1항에 있어서, 상기 슬러리 조성물은 0.0001 내지 0.05 중량%의 바이오사이드를 더욱 포함하는 것인, 화학-기계적 연마용 슬러리 조성물.
  10. 제 1항에 있어서, 상기 슬러리 조성물은 0.00001 내지 0.5 중량%의 나노 페로실리콘 또는 철염화합물로 이루어진 촉매를 더욱 포함하는 것인, 화학-기계적 연마용 슬러리 조성물.
  11. 연마제 0.001 내지 20 중량%;
    알루미늄 0.000006 내지 0.01 중량%;
    나노 페로실리콘 또는 철염화합물로 이루어진 촉매 0.00001 내지 0.5 중량%; 및
    나머지 물을 포함하는 화학-기계적 연마용 슬러리 조성물.
  12. 제 11항에 있어서, 상기 슬러리 조성물은 pH를 1 내지 6으로 조절하는 pH 조절제 및 0.0001 내지 0.05 중량%의 바이오사이드를 더욱 포함하고,
    상기 pH 조절제는 질산, 염산, 황산, 수산화칼륨, 수산화 나트륨, 수산화 테트라메틸암모늄, 수산화 테트라부틸암모늄 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 화학-기계적 연마용 슬러리 조성물.
  13. 제 11항에 있어서, 상기 슬러리 조성물은 산화제 0.005 내지 10 중량%를 더욱 포함하는 것인, 화학-기계적 연마용 슬러리 조성물.
  14. 연마제 0.001 내지 20 중량%;
    알루미늄 0.000006 내지 0.01 중량%;
    나노 페로실리콘 또는 철염화합물로 이루어진 촉매 0.00001 내지 0.5 중량%;
    산화제 0.005 내지 10 중량%; 및
    나머지 물을 포함하는 화학-기계적 연마용 슬러리 조성물.
PCT/KR2017/005118 2016-05-19 2017-05-17 화학-기계적 연마용 슬러리 조성물 WO2017200297A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018560761A JP7032327B2 (ja) 2016-05-19 2017-05-17 化学-機械的研磨用スラリー組成物
CN201780030849.5A CN109153889B (zh) 2016-05-19 2017-05-17 用于化学机械抛光的浆料组合物
US16/189,236 US11001732B2 (en) 2016-05-19 2018-11-13 Polishing slurry composition
US16/189,207 US20190077993A1 (en) 2016-05-19 2018-11-13 Polishing slurry composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160061230 2016-05-19
KR10-2016-0061230 2016-05-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/189,236 Continuation-In-Part US11001732B2 (en) 2016-05-19 2018-11-13 Polishing slurry composition
US16/189,207 Continuation-In-Part US20190077993A1 (en) 2016-05-19 2018-11-13 Polishing slurry composition

Publications (1)

Publication Number Publication Date
WO2017200297A1 true WO2017200297A1 (ko) 2017-11-23

Family

ID=60325360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005118 WO2017200297A1 (ko) 2016-05-19 2017-05-17 화학-기계적 연마용 슬러리 조성물

Country Status (6)

Country Link
US (2) US11001732B2 (ko)
JP (1) JP7032327B2 (ko)
KR (1) KR102450333B1 (ko)
CN (1) CN109153889B (ko)
TW (1) TWI736623B (ko)
WO (1) WO2017200297A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189610A1 (ja) * 2018-03-30 2019-10-03 日揮触媒化成株式会社 シリカ粒子分散液、研磨組成物及びシリカ粒子分散液の製造方法
JPWO2020196542A1 (ko) * 2019-03-27 2020-10-01
US11180679B1 (en) 2020-05-27 2021-11-23 Skc Solmics Co., Ltd. Composition for semiconductor processing and method for polishing substrate using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200082827A (ko) * 2018-12-31 2020-07-08 주식회사 동진쎄미켐 화학-기계적 연마 입자 및 이를 포함하는 연마 슬러리 조성물
JP7356864B2 (ja) * 2019-10-30 2023-10-05 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物、及び磁気ディスク基板の研磨方法
JP7356865B2 (ja) * 2019-10-30 2023-10-05 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物、及び磁気ディスク基板の研磨方法
TW202138504A (zh) * 2020-03-30 2021-10-16 日商福吉米股份有限公司 研磨用組合物
WO2023007722A1 (ja) * 2021-07-30 2023-02-02 昭和電工マテリアルズ株式会社 研磨液及び研磨方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231436A (ja) * 2005-02-23 2006-09-07 Tokyo Seimitsu Co Ltd 研磨用スラリーおよび研磨方法
KR20070106450A (ko) * 2006-04-28 2007-11-01 후지필름 가부시키가이샤 금속 연마용 조성물 및 그것을 사용한 화학적 기계적 연마방법
KR20080000518A (ko) * 2006-06-27 2008-01-02 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 화학 기계 연마용 선택적 배리어 슬러리
JP2009238930A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2009289887A (ja) * 2008-05-28 2009-12-10 Fujifilm Corp 金属用研磨液、化学的機械的研磨方法、および新規化合物

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922393A (en) * 1974-07-02 1975-11-25 Du Pont Process for polishing silicon and germanium semiconductor materials
JPS6086186A (ja) * 1983-10-17 1985-05-15 Toshiba Ceramics Co Ltd 半導体ウエ−ハ研摩材
US4959113C1 (en) * 1989-07-31 2001-03-13 Rodel Inc Method and composition for polishing metal surfaces
JPH0781132B2 (ja) * 1990-08-29 1995-08-30 株式会社フジミインコーポレーテッド 研磨剤組成物
JPH1121545A (ja) * 1997-06-30 1999-01-26 Fujimi Inkooporeetetsudo:Kk 研磨用組成物
US6258140B1 (en) 1999-09-27 2001-07-10 Fujimi America Inc. Polishing composition
US20020039839A1 (en) * 1999-12-14 2002-04-04 Thomas Terence M. Polishing compositions for noble metals
WO2001085868A1 (en) 2000-05-12 2001-11-15 Nissan Chemical Industries, Ltd. Polishing composition
JP2003197573A (ja) * 2001-12-26 2003-07-11 Ekc Technology Kk メタル膜絶縁膜共存表面研磨用コロイダルシリカ
US6893476B2 (en) * 2002-12-09 2005-05-17 Dupont Air Products Nanomaterials Llc Composition and associated methods for chemical mechanical planarization having high selectivity for metal removal
TW200516122A (en) * 2003-06-27 2005-05-16 Showa Denko Kk Polishing composition and method for polishing substrate using the composition
US20050104048A1 (en) * 2003-11-13 2005-05-19 Thomas Terence M. Compositions and methods for polishing copper
US8038752B2 (en) 2004-10-27 2011-10-18 Cabot Microelectronics Corporation Metal ion-containing CMP composition and method for using the same
JP4954558B2 (ja) * 2006-01-31 2012-06-20 富士フイルム株式会社 金属用研磨液、及びそれを用いた化学的機械的研磨方法
US20070176142A1 (en) * 2006-01-31 2007-08-02 Fujifilm Corporation Metal- polishing liquid and chemical-mechanical polishing method using the same
JP2007207908A (ja) * 2006-01-31 2007-08-16 Fujifilm Corp バリア層用研磨液
MY153666A (en) 2006-07-12 2015-03-13 Cabot Microelectronics Corporations Cmp method for metal-containing substrates
CN101541476A (zh) * 2007-02-20 2009-09-23 住友电气工业株式会社 研磨浆料、制备研磨浆料的方法、氮化物晶体材料以及氮化物晶体材料的表面研磨方法
JP2008288537A (ja) * 2007-05-21 2008-11-27 Fujifilm Corp 金属用研磨液及び化学的機械的研磨方法
KR100928456B1 (ko) * 2009-06-01 2009-11-25 주식회사 동진쎄미켐 이온화되지 않는 열활성 나노촉매를 포함하는 화학 기계적 연마 슬러리 조성물 및 이를 이용한 연마방법
US8697576B2 (en) * 2009-09-16 2014-04-15 Cabot Microelectronics Corporation Composition and method for polishing polysilicon
MY169261A (en) * 2012-02-29 2019-03-20 Hoya Corp Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk
JP2013227168A (ja) * 2012-04-25 2013-11-07 Nippon Chem Ind Co Ltd 表面に凹凸のあるシリカ粒子を有するコロイダルシリカ、その製造方法及びそれを用いた研磨剤
US9896604B2 (en) 2013-03-15 2018-02-20 Ecolab Usa Inc. Methods of polishing sapphire surfaces
US10043678B2 (en) 2013-10-23 2018-08-07 Dongjin Semichem Co., Ltd. Metal film polishing slurry composition, and method for reducing scratches generated when polishing metal film by using same
CN104650739A (zh) * 2013-11-22 2015-05-27 安集微电子(上海)有限公司 一种用于抛光二氧化硅基材的化学机械抛光液
JP6482234B2 (ja) 2014-10-22 2019-03-13 株式会社フジミインコーポレーテッド 研磨用組成物
CN104588568B (zh) * 2014-11-21 2016-07-27 广东惠和硅制品有限公司 一种铝改性硅溶胶的制备方法
US9803109B2 (en) 2015-02-03 2017-10-31 Cabot Microelectronics Corporation CMP composition for silicon nitride removal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231436A (ja) * 2005-02-23 2006-09-07 Tokyo Seimitsu Co Ltd 研磨用スラリーおよび研磨方法
KR20070106450A (ko) * 2006-04-28 2007-11-01 후지필름 가부시키가이샤 금속 연마용 조성물 및 그것을 사용한 화학적 기계적 연마방법
KR20080000518A (ko) * 2006-06-27 2008-01-02 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 화학 기계 연마용 선택적 배리어 슬러리
JP2009238930A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2009289887A (ja) * 2008-05-28 2009-12-10 Fujifilm Corp 金属用研磨液、化学的機械的研磨方法、および新規化合物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189610A1 (ja) * 2018-03-30 2019-10-03 日揮触媒化成株式会社 シリカ粒子分散液、研磨組成物及びシリカ粒子分散液の製造方法
JPWO2019189610A1 (ja) * 2018-03-30 2021-05-13 日揮触媒化成株式会社 シリカ粒子分散液、研磨組成物及びシリカ粒子分散液の製造方法
US11492513B2 (en) 2018-03-30 2022-11-08 Jgc Catalysts And Chemicals Ltd. Dispersion liquid of silica particles, polishing composition, and method for producing dispersion liquid of silica particles
JP7213234B2 (ja) 2018-03-30 2023-01-26 日揮触媒化成株式会社 シリカ粒子分散液、研磨組成物及びシリカ粒子分散液の製造方法
TWI793293B (zh) * 2018-03-30 2023-02-21 日商日揮觸媒化成股份有限公司 二氧化矽粒子分散液、研磨組合物及二氧化矽粒子分散液之製造方法
JPWO2020196542A1 (ko) * 2019-03-27 2020-10-01
WO2020196542A1 (ja) * 2019-03-27 2020-10-01 株式会社フジミインコーポレーテッド 研磨用組成物、研磨方法および基板の製造方法
US11992914B2 (en) 2019-03-27 2024-05-28 Fujimi Incorporated Polishing composition, polishing method, and method for producing substrate
US11180679B1 (en) 2020-05-27 2021-11-23 Skc Solmics Co., Ltd. Composition for semiconductor processing and method for polishing substrate using the same

Also Published As

Publication number Publication date
CN109153889B (zh) 2021-10-29
US20190077994A1 (en) 2019-03-14
JP2019522896A (ja) 2019-08-15
KR102450333B1 (ko) 2022-10-04
KR20170131247A (ko) 2017-11-29
CN109153889A (zh) 2019-01-04
US20190077993A1 (en) 2019-03-14
US11001732B2 (en) 2021-05-11
TWI736623B (zh) 2021-08-21
JP7032327B2 (ja) 2022-03-08
TW201811944A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2017200297A1 (ko) 화학-기계적 연마용 슬러리 조성물
US6565619B1 (en) Polishing composition and polishing method employing it
KR101202720B1 (ko) 화학적 기계적 연마용 수계 슬러리 조성물 및 화학적 기계적 연마 방법
US6547843B2 (en) LSI device polishing composition and method for producing LSI device
EP3169737B1 (en) A chemical mechanical polishing (cmp) composition
EP1930938A1 (en) Polishing agent, method for polishing surface to be polished, and method for manufacturing semiconductor integrated circuit device
TWI478227B (zh) 用於基板之化學機械研磨之方法
DE102007004881A1 (de) Mehrkomponenten-Barrierepolierlösung
DE102005016554A1 (de) Polierlösung für Barrieren
JP2015188093A (ja) 基板をケミカルメカニカルポリッシングする方法
WO2013100447A1 (ko) Cmp 슬러리 조성물 및 이를 이용한 연마 방법
DE102011113804A1 (de) Aufschlämmungszusammensetzung mit einstellbarer Dielektrikum-Polierselektivität und Verfahren zum Polieren eines Substrats
CN105637986A (zh) 抛光组合物及印刷线路板的制造方法
WO2017057906A1 (ko) 유기막 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법
WO2015060610A1 (ko) 금속막 연마 슬러리 조성물 및 이를 이용한 금속막 연마 시 발생하는 스크래치의 감소 방법
KR20140049985A (ko) 화학적 기계 연마액
JP2012039087A (ja) 安定化されたケミカルメカニカルポリッシング組成物及び基板を研磨する方法
JPWO2009028471A1 (ja) 研磨組成物
US20220332977A1 (en) Cmp compositions for polishing dielectric materials
WO2020141804A1 (ko) 화학-기계적 연마 입자 및 이를 포함하는 연마 슬러리 조성물
WO2020091242A1 (ko) 구리 배리어층 연마용 슬러리 조성물
WO2022260433A1 (ko) 유기막 연마 조성물 및 이를 이용한 연마 방법
WO2014104504A1 (ko) 구리 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR100460312B1 (ko) 금속배선 연마용 슬러리 조성물
JP2003133266A (ja) 研磨用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799654

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799654

Country of ref document: EP

Kind code of ref document: A1