WO2017199973A1 - パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置 - Google Patents

パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置 Download PDF

Info

Publication number
WO2017199973A1
WO2017199973A1 PCT/JP2017/018412 JP2017018412W WO2017199973A1 WO 2017199973 A1 WO2017199973 A1 WO 2017199973A1 JP 2017018412 W JP2017018412 W JP 2017018412W WO 2017199973 A1 WO2017199973 A1 WO 2017199973A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
viewing angle
region
film
liquid crystal
Prior art date
Application number
PCT/JP2017/018412
Other languages
English (en)
French (fr)
Inventor
齊藤 之人
雄二郎 矢内
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018518316A priority Critical patent/JP6765422B2/ja
Publication of WO2017199973A1 publication Critical patent/WO2017199973A1/ja
Priority to US16/191,450 priority patent/US10585222B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a pattern retardation film that can be used in a viewing angle control panel for changing a viewing angle in a display device such as a liquid crystal display device or an organic electroluminescence display device. Moreover, it is related with the polarizing plate for viewing angle switching provided with the pattern phase difference film, a viewing angle switching system, and a display apparatus.
  • a method for narrowing the viewing angle of the screen As a method for narrowing the viewing angle of the screen, a method of sticking a film (louver film) or the like containing black stripes to the screen is known. However, in this method, the screen is fixed with a narrow viewing angle. Therefore, for example, when it is necessary to visually recognize the screen from an oblique direction, for example, when several people visually recognize the screen, visibility from an oblique direction is deteriorated, and usability of the electronic device is deteriorated.
  • Patent Document 1 discloses a first substrate having a gate wiring and a data wiring corresponding to R (red), G (green), B (blue), and W (white) subpixels, a gate wiring, and a data wiring.
  • a thin film transistor disposed at the intersection of the first electrode, a plate-type first common electrode provided in the R, G, B, and W sub-pixels, and a plurality of slits connected to the thin film transistor and insulated from the first common electrode.
  • a second substrate having a liquid crystal layer in a space between the pixel electrode and the first substrate, the plate type being formed on the second substrate so as to correspond to the W subpixel.
  • a liquid crystal display device having the second common electrode is disclosed.
  • the driving angle is widened by driving in the FFS mode, and the W luminance is also increased.
  • Patent Document 2 discloses a screen in which the viewing angle is limited to a one-dimensional direction, a personal view mode in which the erecting direction of the image displayed on the screen is substantially orthogonal to the limiting direction of the viewing angle, There is disclosed a display device having image display switching means for switching between a multi-view mode in which an erect direction coincides with a viewing angle limit direction. That is, in this display device, the viewing angle of the screen is limited to a one-dimensional direction by a microprism sheet or the like, and the image is rotated by 90 ° to determine whether or not the image is aligned with the viewing angle limit direction. Switching between wide viewing angle display and narrow viewing angle display is possible.
  • a single display device can visually recognize the display while preventing a third person from peeping from the side. It is possible to achieve both proper visual recognition by several people.
  • the display device of Patent Document 1 requires a plurality of substrates and W sub-pixels that do not have a normal display device, and the device configuration becomes complicated.
  • the display device of Patent Document 2 it is necessary to rotate the image by 90 ° in order to switch between the wide viewing angle display and the narrow viewing angle display, which requires extra image processing.
  • the aspect ratio of the screen is different in a normal display device, the aspect ratio of the image is different between the wide viewing angle display and the narrow viewing angle display in this display device.
  • the present invention provides a display device used for a tablet PC or a notebook PC with a simple configuration and a normal viewing angle display and a narrow viewing angle with a limited viewing angle without performing image processing or the like. It is an object of the present invention to provide a display device capable of switching between display. Moreover, it aims at providing the pattern phase difference film, the polarizing plate for viewing angle switching, and the viewing angle switching system for implement
  • the patterned retardation film of the present invention is a patterned retardation film having an optically anisotropic layer having alternating first and second retardation regions,
  • the first retardation region and the second retardation region contain a hybrid-oriented rod-like liquid crystal or discotic liquid crystal whose tilt angle rising directions are opposite to each other,
  • the direction of the in-plane slow axis and the absolute value of the in-plane retardation are equal between the first retardation region and the second retardation region, and the absolute value of the in-plane retardation is 54 to 74 nm
  • the in-plane slow axis is the x-axis
  • the in-plane fast axis is the x-axis when the discotic liquid crystal is contained.
  • the absolute value of the phase difference at a polar angle of 40 ° in the xz plane and the polar angle at ⁇ 40 ° in each of the first phase difference region and the second phase difference region is 135 to 353 nm, and the other is 8 to 28 nm.
  • the first retardation region and the second retardation region have the same stripe shape and are alternately arranged in the width direction of the stripe shape. Further, at this time, when the first retardation region and the second retardation region contain a rod-like liquid crystal, an in-plane slow axis and an in-plane fast axis when a discotic liquid crystal are contained. In addition, it is preferable to coincide with the length direction of the stripe shape.
  • the first phase difference region and the second phase difference region may have the same rectangular shape, and may be alternately arranged vertically and horizontally in a check pattern.
  • the polarizing plate for viewing angle switching of the present invention is formed by laminating the pattern retardation film of the present invention and a polarizer, and the first retardation region and the second retardation region of the pattern retardation film are:
  • the in-plane slow axis is obtained.
  • the in-plane fast axis and the absorption axis of the polarizer are parallel to each other.
  • the viewing angle switching system of the present invention includes the two viewing angle switching polarizing plates, and the two viewing angle switching polarizing plates have the absorption axes of the polarizers parallel to each other, and the pattern retardation films are arranged in parallel. Are arranged so as to face each other and are relatively movable between the first relative position and the second relative position,
  • the first relative position is a position where different phase difference regions coincide with each other in the stacking direction
  • the second relative position is a position where the same retardation regions coincide with each other in the stacking direction.
  • the display device of the present invention includes a display panel and the viewing angle switching system disposed on the viewing side surface of the display panel.
  • the display panel is a liquid crystal panel
  • the polarizer on the viewing side of the liquid crystal panel is the viewing angle switching on the liquid crystal panel side of the two viewing angle switching polarizing plates constituting the viewing angle switching system. It can also serve as a polarizer for a polarizing plate.
  • the patterned retardation film of the present invention has first and second retardation regions alternately containing rod-like liquid crystals or discotic liquid crystals that are hybrid-aligned so that the rising directions of the tilt angles are opposite to each other. It has an optically anisotropic layer, the in-plane retardation axis direction and the in-plane retardation in the first retardation region and the second retardation region are equal, and the in-plane retardation is 54 to 74 nm.
  • the in-plane slow axis is the x-axis
  • the in-plane fast axis is the x-axis when the discotic liquid crystal is contained
  • the direction perpendicular to the film plane is the z axis
  • one of the absolute value of the phase difference at the polar angle of 40 ° and the absolute value of the phase difference at the polar angle of ⁇ 40 ° in the xz plane is 135 to 353 nm, and the other is 8 to 28 nm.
  • the patterned retardation film of the present invention comprises an optically anisotropic layer having alternately first and second retardation regions having the same in-plane slow axis direction and in-plane retardation.
  • the patterned retardation film of the present invention may be composed of a single-layer film having only an optically anisotropic layer, or a laminate having an optically anisotropic layer on another layer such as a support film and an alignment film. You may be comprised from the film
  • the first retardation region and the second retardation region include discotic liquid crystal (DLC) or rod-like liquid crystal in which the rising direction of the tilt angle is hybrid-aligned so as to be opposite to each other.
  • DLC discotic liquid crystal
  • rod-like liquid crystal in which the rising direction of the tilt angle is hybrid-aligned so as to be opposite to each other.
  • the tilt angle is the fast axis of the disk-shaped DLC molecule (axis perpendicular to the disk surface) D f or the slow axis of the rod-shaped liquid crystal molecule (the length of the bar) with respect to the main surface (film surface) of the film.
  • axis is the slope of the D s.
  • Hybrid alignment means a state in which DLC molecules or rod-like liquid crystal molecules are fixed so that the tilt angle continuously changes from one film surface to the other film surface.
  • the patterned retardation film of the present invention has an in-plane retardation R (0) absolute value of 54 to 74 nm, and when it contains a rod-like liquid crystal, it contains an in-plane slow axis and a discotic liquid crystal.
  • a phase difference at a polar angle of 40 ° in the xz plane in each of the first phase difference region and the second phase difference region when the in-plane fast axis is the x axis and the normal of the film surface is the z axis.
  • One of the absolute value of R (40) and the absolute value of the phase difference R ( ⁇ 40) at a polar angle of ⁇ 40 ° is 135 to 353 nm, and the other is 8 to 28 nm.
  • the absolute values of the phase differences in the first phase difference region and the second phase difference region are substantially equal. This means that the absolute value of the average tilt angle is approximately equal between the first phase difference region and the second phase difference region.
  • the fact that the absolute values of the phase differences are substantially equal means that the absolute values match within a range of ⁇ 5 nm.
  • FIG. 1A shows a schematic perspective view of the pattern retardation film 1 of the first embodiment.
  • the patterned retardation film 1 of the present embodiment is composed of an optically anisotropic layer 10 containing DLC and alternately having first retardation regions 11 and second retardation regions 12.
  • the first retardation region 11 and the second retardation region 12 have the same stripe shape, and are alternately arranged in the width direction of the stripe shape.
  • the same stripe shape means that the size and shape are the same.
  • the in-plane fast axis f axis of the pattern retardation film 1 is the x axis
  • the in-plane slow axis S axis orthogonal to the y axis is the y axis
  • the main surface 10a of the optical anisotropic layer 10 (hereinafter referred to as film)
  • the normal of surface 10a) is defined as the z-axis.
  • FIG. 1B shows the top surface (xy plane) of the pattern retardation film 1, the side surface (zy plane) in the arrangement direction of the first and second retardation regions 11, 12, and the length direction of the first retardation region 11. It is a figure which shows a side surface (xz plane) typically, respectively.
  • a plurality of DLC molecules 14 are transferred from one film surface 10a to the other on a surface perpendicular to the film surface 10a and along the length direction of the stripe-shaped region (xz surface).
  • the inclination of the fast axis D f is fixed by progressively hybrid orientation gradient is changed.
  • the rising directions of the tilt angles are opposite to each other, and the absolute values of the average tilt angles are the same.
  • the group of hybrid aligned DLC molecules 14 in the first retardation region 11 is defined as the first hybrid alignment liquid crystal group A
  • the group of hybrid aligned DLC molecules 14 in the second retardation region 12 is defined as the second hybrid. This is referred to as an alignment liquid crystal group B.
  • the y-axis component does not change between the DLC molecules of the liquid crystal groups A and B, and only the x-axis component is present. It has changed. This means that the in-plane slow axis directions of the first retardation region 11 including the liquid crystal group A and the second retardation region 12 including the liquid crystal group B coincide with each other.
  • the absolute value of the phase difference at the polar angle of 0 ° that is, the in-plane phase difference R (0) is substantially equal in the first phase difference region 11 and the second phase difference region.
  • the value is 54 to 74 nm.
  • the absolute value of the in-plane retardation R (0) is more preferably 60 to 70 nm, and particularly preferably 63 to 67 nm.
  • the absolute value of the phase difference R 1 (40) at the polar angle 40 ° in the xz plane and the absolute value of the phase difference R 1 ( ⁇ 40) at the polar angle ⁇ 40 ° are larger. It is 135 to 353 nm, and the smaller one is 8 to 28 nm.
  • the absolute value of the phase difference R 2 (40) at the polar angle 40 ° in the xz plane and the absolute value of the phase difference R 2 ( ⁇ 40) at the polar angle ⁇ 40 ° are large. The smaller is 135 to 353 nm, and the smaller is 8 to 28 nm.
  • the phase difference is a phase difference at a wavelength of 550 nm unless otherwise specified.
  • the phase differences R (40) and R ( ⁇ 40) are values measured by making light having a wavelength of 40 ° and ⁇ 40 ° to a wavelength of 550 nm incident on the film surface, respectively.
  • the optically anisotropic layer 10 containing the DLC and having the first retardation region 11 and the second retardation region 12 is obtained by applying an optically anisotropic layer coating liquid (DLC composition) containing DLC to a pattern described later. It can produce by apply
  • DLC composition optically anisotropic layer coating liquid
  • FIG. 2A shows a schematic perspective view of the pattern retardation film of the second embodiment.
  • the patterned retardation film 2 of the present embodiment is composed of an optically anisotropic layer 20 containing rod-like liquid crystals and alternately having first retardation regions 21 and second retardation regions 22.
  • the first retardation region 21 and the second retardation region 22 have the same stripe shape, and are alternately arranged in the width direction of the stripe shape. It is the same.
  • the in-plane slow axis S axis of the pattern retardation film 2 is the x axis
  • the in-plane fast axis f axis perpendicular to this is the y axis
  • the main surface 20a of the optical anisotropic layer 20 (hereinafter referred to as film)
  • the normal of the surface 20a) is defined as the z axis.
  • FIG. 2B shows the upper surface (xy plane) of the pattern retardation film 2, the side surface (zy plane) in the arrangement direction of the first and second retardation regions 21 and 22, and the length direction of the first retardation region 21. It is a figure which shows a side surface (xz plane) typically, respectively.
  • a plurality of rod-like liquid crystal molecules 15 are separated from one film surface 20a on a surface (xz surface) perpendicular to the film surface 20a and along the length direction of the stripe-shaped region.
  • Hybrid orientation in which the inclination of the major axis (slow axis in the rod-like liquid crystal molecules) gradually changes toward the other film surface 20b is fixed.
  • the rising directions of the tilt angles are opposite to each other, and the absolute values of the average tilt angles are the same.
  • the slow axes of the rod-like liquid crystal molecules 15 are all aligned in the x-axis direction in both the first retardation region 21 and the second retardation region 22. That is, the directions of the in-plane slow axes in the first phase difference region 21 and the second phase difference region 22 are the same.
  • the group of rod-like liquid crystal molecules 15 hybrid-aligned in the first retardation region 21 is referred to as the first hybrid alignment liquid crystal group A and the second retardation region 22.
  • the group of rod-like liquid crystal molecules 15 that are hybrid aligned is referred to as a second hybrid aligned liquid crystal group B.
  • the in-plane retardation R (0), the retardation R (40) at the polar angle of 40 °, and the retardation R (40) at the polar angle of ⁇ 40 ° are the first. It is the same as that of the case of the pattern phase difference film 1 of embodiment.
  • the optically anisotropic layer 20 containing the rod-like liquid crystal and having the first retardation region 21 and the second retardation region 22 is obtained by applying an optically anisotropic layer coating liquid (rod-like liquid crystal composition) containing the rod-like liquid crystal. It can be produced by applying and curing on a pattern alignment film described later.
  • the in-plane fast axis f axis of the first retardation region 11 and the second retardation region 12 is aligned with the length direction of the stripe.
  • the in-plane fast axis only needs to coincide with the first phase difference region 11 and the second phase difference region 12.
  • the in-plane fast axis is in the length direction of the stripe.
  • DLC molecules may be arranged so as to be in the width direction of orthogonal stripe shapes.
  • the in-plane slow axis S axis of the first retardation region 21 and the second retardation region 22 coincides with the length direction of the stripe.
  • the direction of the in-plane slow axis only needs to be the same in the first retardation region 21 and the second retardation region 22, and for example, the in-plane slow axis is the length of the stripe.
  • the rod-like liquid crystal molecules may be arranged so as to be in the width direction of the stripe shape orthogonal to the direction.
  • FIG. 3 shows the pattern phase difference film 3 of the other example which shows a plane schematic diagram.
  • the first retardation region 31 including the first hybrid alignment liquid crystal group A and the second retardation region 32 including the second hybrid alignment liquid crystal group B have the same rectangular shape (here, square). And may be alternately arranged in a check shape in the vertical and horizontal directions.
  • the pattern retardation film of the present invention may be not only an optically anisotropic layer but also a support film or a support film and an alignment film.
  • FIG. 4 shows a pattern comprising an alignment film 9 on a support film 8 and an optically anisotropic layer 10 having a first retardation region 11 and a second retardation region 12 on the alignment film 9.
  • the cross-sectional schematic diagram of 1 A of retardation films is shown.
  • the in-plane retardation R (0), polar angle 40 ° or polar angle The retardation R (40) and R ( ⁇ 40) at ⁇ 40 ° are measured for the entire patterned retardation film 1A including layers other than the optically anisotropic layer 10 such as the support film 8 and the alignment film 9. Value.
  • the alignment film 9 is, for example, a liquid crystal molecule contained in an optically anisotropic layer formed on the alignment film whose major axes are aligned in the same direction, and the rising direction (tilt angle) of the tilt angle of the liquid crystal molecules that are hybrid aligned.
  • a pattern alignment film having first and second alignment control regions that can be controlled to be different from each other.
  • the pattern alignment film can be formed, for example, by performing a mask rubbing process after forming a uniform alignment film.
  • a patterned alignment film is formed on the temporary support and used to form an optically anisotropic layer having a first retardation region and a second retardation region, and the optically anisotropic layer is supported.
  • a patterned phase difference film having an optically anisotropic layer can be obtained directly without providing an alignment film on the support film.
  • the support film is preferably a film mainly composed of a polymer or resin that is excellent in light transmittance, mechanical hardness, thermal stability, moisture barrier property, isotropic property, and the like. Moreover, as a support body film, the direction of an in-plane slow axis is random and a thing with a small in-plane phase difference is preferable. For example, a support film described in International Publication No. 2013/047282 is suitable.
  • the viewing angle switching polarizing plate of the present invention has at least the above-described pattern retardation film of the present invention and a polarizer (linear polarizing film).
  • the polarizer may be bonded to the surface of the photo-anisotropic layer of the pattern retardation film, or may be bonded to the surface of the support film.
  • another film for example, a protective film for the polarizer
  • the film sandwiched between them is preferably a film having an in-plane slow axis random and a low retardation.
  • FIG. 5 is a schematic perspective view of an example of a viewing angle switching polarizing plate.
  • the viewing angle switching polarizing plate 50 is formed by laminating a pattern retardation film 1 and a polarizer 4.
  • the pattern retardation film 1 is laminated so that the in-plane fast axis direction (coincident with the x axis) and the absorption axis a of the polarizer 4 are parallel to each other.
  • the viewing angle switching polarizing plate includes the pattern retardation film 2 including the rod-shaped liquid crystal shown in FIG. 2A, the in-plane slow axis direction (coincidence with the x axis) of the pattern retardation film 2 and the polarization What is necessary is just to laminate
  • the viewing angle switching system of the present invention is configured by combining two viewing angle switching polarizing plates. Below, the viewing angle switching system of this invention and a display apparatus provided with the same are demonstrated.
  • FIG. 6 is a perspective view schematically showing an example of the display device of the present invention provided with an example of the viewing angle switching system of the present invention.
  • FIG. 6 shows a state of (i) normal viewing angle display mode and (ii) narrow viewing angle display mode by the viewing angle switching system.
  • one viewing angle switching polarizing plate is 51, and the other viewing angle switching polarizing plate is 52.
  • the reference numerals of the constituent elements in the polarizing plates 51 and 52 a three-digit reference sign obtained by adding 100 or 200 to the reference numerals of the corresponding constituent elements of the viewing angle switching polarizing plate 50 will be described in detail. Is omitted.
  • two viewing angle switching polarizing plates 51 and 52 are arranged so that the absorption axes a of the polarizers 104 and 204 are parallel to each other and the pattern retardation films 101 and 201 are opposed to each other. And a relative movement between a first relative position for the normal viewing angle mode and a second relative position for the narrow viewing angle mode.
  • the first relative position is a position where the different retardation regions of the pattern retardation films 101 and 201 coincide with each other in the stacking direction. That is, at this time, the first retardation region 111 of one pattern retardation film 101 and the second retardation region 212 of the other pattern retardation film 201 coincide with each other in the stacking direction, and one pattern The second retardation region 112 of the retardation film 101 and the first retardation region 211 of the other pattern retardation film 201 coincide with the stacking direction.
  • the second relative position is a position where the same retardation regions of the pattern retardation films 101 and 201 coincide with each other in the stacking direction. That is, at this time, the first retardation region 111 of one pattern retardation film 101 and the first retardation region 211 of the other pattern retardation film 201 coincide with each other in the lamination direction, and one pattern position The second retardation region 112 of the retardation film 101 and the second retardation region 212 of the other pattern retardation film 201 coincide with the stacking direction.
  • one viewing angle switching polarizing plate 51 is divided into one stripe-shaped width (one stripe width) that is the first and second retardation regions by an arrow M in the figure. It is configured to be movable in the direction of. By shifting the viewing angle switching polarizing plate 51 by one stripe in the M direction, the normal viewing angle and the narrow viewing angle can be switched.
  • the viewing angle switching system 60 is shown for sliding at least one viewing angle switching polarizing plate by one stripe in the width direction so as to be the first relative position and the second relative position.
  • a moving mechanism is provided.
  • a known slide mechanism can be appropriately used as the moving mechanism.
  • the viewing angle switching polarizing plate 51 is slid by one stripe width, and by turning the dial again, the slide mechanism slides by one stripe in the opposite direction and returns to the original position. If it is configured to be able to switch between the relative position of 1 and the second relative position, it is preferable that no power source is required.
  • the pattern retardation film provided in the viewing angle switching system is not limited to the pattern retardation film 1 of the first embodiment but may be the pattern retardation film 2 of the second embodiment.
  • the pattern retardation film 3 in which the first retardation region and the second retardation region shown in FIG. 3 are arranged in a check pattern may be used.
  • the sliding direction may be either vertical or horizontal.
  • the display device of the present invention includes a display panel and the viewing angle switching system described above, which is disposed on the viewing side of the display panel. As shown in FIG. 6, the display device 100 according to the present embodiment is configured such that the viewing angle switching system 60 is disposed on the viewing side surface of the liquid crystal panel 70.
  • the liquid crystal panel 70 has a configuration in which a liquid crystal cell 71 is sandwiched between polarizers 72 and 73 orthogonal to each other. Note that the backlight is omitted.
  • the polarizer 73 on the viewing side of the liquid crystal panel 70 is the polarizer 204 of the viewing angle switching polarizing plate 52 on the liquid crystal panel 70 side, out of the two viewing angle switching polarizing plates 51 and 52 that constitute the viewing angle switching system 60. Doubles as
  • FIG. 7 schematically shows a part of the opposed pattern retardation film in (i) normal viewing angle display mode and (ii) narrow viewing angle display mode.
  • the second retardation region 112 of one pattern phase film and the first retardation region 211 of the other pattern phase film face each other.
  • the first hybrid alignment liquid crystal group A and the second hybrid alignment liquid crystal group B which are hybrid alignments in opposite directions, face each other over the entire surface.
  • the directions of the hybrid orientations of the two are opposite, the phase difference in the oblique direction is canceled out with respect to the light traveling in the stacking direction, and the mutual phase difference is compensated. Therefore, the viewing angle switching system does not affect the light emitted from the display panel and passing through the system, and the normal viewing angle of the display panel can be obtained.
  • the phase difference regions 111 and 211 having the same hybrid orientation direction of the two pattern phase films face each other in the stacking direction. overlapping.
  • the first hybrid alignment liquid crystal group A and the second hybrid alignment liquid crystal group B which are hybrid alignments in the same direction, face each other over the entire surface.
  • the phase difference is not compensated, and as a whole, a phase difference in the oblique direction (direction inclined from the normal direction to the film surface side with respect to the film surface) occurs.
  • the viewing angle is narrower than the normal viewing angle of the display panel.
  • the viewing angle luminance distribution (azimuth angle, polar angle) when the viewing angle switching system is arranged on the light emitting point and each mode is set is obtained by simulation and displayed in two dimensions in polar coordinates.
  • the horizontal direction is the horizontal direction
  • the vertical direction is the vertical direction
  • the right is the azimuth angle of 0 degrees
  • the top is the azimuth angle 90 degrees
  • the left is the azimuth angle 180 degrees
  • the bottom is the azimuth angle 270 degrees.
  • the distance from the center of the circle represents the polar angle from the front direction and is in the range of 0 to 80 degrees.
  • the viewing angle switching system shown in FIG. 6 is arranged so that the stripe length direction coincides with the axis of 0 ° to 180 °.
  • the narrow viewing angle display mode it is clear that the viewing angle in the line from 0 ° to 180 ° is significantly narrower than the normal viewing angle.
  • FIG. 10 is a graph showing the luminance distribution at the horizontal angle of ⁇ 90 ° to 90 ° in each of the normal viewing angle display mode and the narrow viewing angle display mode.
  • the positive direction of the horizontal angle corresponds to the azimuth angle of 0 degrees in FIGS. 8 and 9
  • the negative direction corresponds to the azimuth angle of 180 degrees in FIGS. 8 and 9, and the magnitude of the angle is the pole of FIGS. Corresponds to the corner.
  • FIG. 10 it can be seen that in the narrow viewing angle mode, the angle region that can be viewed is abruptly reduced when the horizontal angle is away from 0 degrees (ie, the front), and the viewing angle is greatly reduced.
  • display panel various display elements (display panels) used in known display devices used for mobile phones such as tablet PCs, notebook PCs, and smartphones can be used.
  • display elements display panels
  • organic EL (electroluminescence) display panel, a plasma display panel, electronic paper, and the like are exemplified in addition to the liquid crystal panel described above.
  • FIG. 11 shows a schematic configuration of a display device 100A including an organic EL panel 75 as a display panel.
  • the display device 100 ⁇ / b> A has a configuration in which a viewing angle switching system 60 is provided on the viewing screen of the organic EL panel 75.
  • a viewing angle switching system 60 is provided on the viewing screen of the organic EL panel 75.
  • a first retardation region and a second retardation layer are formed by forming an alignment film on a support film, pattern-rubbing the alignment film, and then forming an optically anisotropic layer on the alignment film.
  • a patterned retardation film having an optically anisotropic layer provided with the above retardation region was prepared.
  • a cellulose acylate film was used as the support film. Specifically, Z-TAC (trade name) manufactured by FUJIFILM Corporation was used.
  • the surface of the cellulose acylate film was saponified, and an alignment film coating solution having the composition shown in Table 1 below was applied to the saponified surface using a # 14 wire bar.
  • the coating film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds to form an alignment film.
  • the formed film was rubbed.
  • FIG. 12 is a schematic diagram for explaining the pattern rubbing method.
  • a striped pattern mask 90 in which a plurality of stripe-shaped openings are arranged in parallel on the uniform alignment film 9 formed on the support film 8 at the same width interval as the width of the stripes. Place. Then, rubbing is performed in parallel with one direction (1) in the length direction of the stripe from the right to the left in the figure, and then the mask 90 is shifted in the width direction of the stripe by one width of the stripe-shaped opening.
  • the optically anisotropic layer coating solution shown in Table 2 below was applied after adjusting the coating amount, and then cured by UV curing and fixed.
  • This optically anisotropic layer has a pattern having a first retardation region in a striped region rubbed in the first direction and a second retardation region in a striped region rubbed in the second direction. It is a retardation layer.
  • the pattern retardation film of each Example and the comparative example was produced in the above procedure.
  • an optically anisotropic layer was prepared by using any one of the following coating solutions D1 to D5 or R1 as the coating solution for the optically anisotropic layer.
  • compositions of the optically anisotropic coating liquids D1 to D5 were as shown in Table 3 below. All units are parts by mass.
  • composition of the optically anisotropic layer coating liquid R1 was as shown in Table 4 below. All units are parts by mass.
  • the liquid crystal display device was set to white display, and the luminance at 60 degrees left and right (polar angle 60 °) at a narrow viewing angle (comparative value with luminance when the pattern retardation film was not provided as 1) was measured.
  • the measurement was performed using Topcon BM-5A.
  • Table 5 shows the results of evaluating the luminance according to the following criteria. A: Brightness less than 0.1 (substantially black and has a sufficiently narrow viewing angle effect) B: Brightness 0.1 or more and 0.2 or less (slightly black, with a sufficiently narrow viewing angle effect (allowable)) C: Brightness over 0.2 and below 0.5 (black is insufficient and narrow viewing angle effect is insufficient (unacceptable)) B: Brightness> 0.5 (Not black, not enough narrow viewing angle effect)
  • Example 1 As shown in Table 5, Examples 1 to 6 were all evaluated as A or B, while Comparative Examples 1 to 4 were evaluated as C. Very good results were obtained in Example 1 and Example 2.
  • the patterned phase difference film of the present invention is used for a viewing angle switching polarizer for controlling the viewing angle of a display device and a viewing angle switching system as described above, as well as a dimming window and a switching for optical communication. It can also be used for elements, backlights, illumination directivity changeover switches, and the like.
  • the display device of the present invention can be suitably used as a display device such as a tablet PC, a notebook PC, or a smartphone.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

通常視野角を狭視野角に切り換え可能な表示装置およびそれを実現するためのパターン位相差フィルム、視野角スイッチング用偏光板および視野角スイッチングシステムを提供する。 パターン位相差フィルム(1)は、チルト角の立ち上がり方向が互いに逆であるハイブリッド配向された棒状液晶またはディスコティック液晶を含有する第1の位相差領域(11)および第2の位相差領域(12)を交互に有する光学異方性層(10)を有し、第1の位相差領域(11)と第2の位相差領域(12)との面内遅相軸の方向および面内位相差の絶対値は54~74nmの範囲で等しく、第1の位相差領域(11)および第2の位相差領域(12)のそれぞれにおいて、極角40°および-40°における位相差の絶対値の一方が135~353nmであり、他方が8~28nmとなるハイブリッド配向を有する。

Description

パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置
 本発明は、液晶表示装置や有機エレクトロルミネッセンス表示装置などの表示装置において、視野角を変更可能とするための視野角制御パネルに利用可能なパターン位相差フィルムに関する。また、そのパターン位相差フィルムを備えた視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置に関する。
 タブレットPC(Personal Computer)、ノートPC、スマートフォンなどの携帯電話など、個人使用の電子機器では、周囲の第三者に画面を覗き見られたくないという要望がある。そのため、これらの電子機器では、画面の視野角を狭くすることが行われている。
 画面の狭視野角化の方法としては、黒色のストライプが入ったフィルム(ルーバーフィルム)等を画面に貼着する方法が知られている。
 ところが、この方法では、画面の視野角が狭い状態で固定されてしまう。そのため、例えば数人で画面を視認する場合など、斜め方向からも画面を視認する必要が有る場合には斜めからの視認性が悪くなってしまい、電子機器の使い勝手が悪くなってしまう。
 このような不都合を解決するために、タブレットPCやノートPCなどの電子機器において、横からの覗き見防止などのセキュリティと必要な場合における横からの十分な視認性とを実現するために、広視野角での表示と狭視野角での表示とを切り替える表示装置が、各種、提案されている。
  例えば、特許文献1には、R(赤)、G(緑)、B(青)およびW(白)のサブピクセルに対応するゲート配線およびデータ配線を有する第1基板と、ゲート配線とデータ配線との交点に配置される薄膜トランジスタと、R、G、BおよびWのサブピクセル内に備えられるプレート型の第1共通電極と、薄膜トランジスタに接続され、第1共通電極と絶縁されて複数のスリットを有する画素電極と、第1基板に対向合着される、第1基板との空間に液晶層が備えられる第2基板と、第2基板上にWサブピクセルに対応するように形成されるプレート型の第2共通電極とを有する液晶表示装置が開示されている。
 この液晶表示装置では、Wサブピクセルに対して、広視野角表示の場合には、R,GおよびBの隣接サブピクセルと同様にFFSモードで駆動して視野角を広め、かつ、W輝度も補償すると共に、狭視野角表示の場合には、R,GおよびBの隣接サブピクセルとは異なる、垂直電界を形成するECBモードで駆動することにより、視野角を減少することを可能にしている。
 また、特許文献2には、視野角が一次元方向に制限された画面と、この画面に表示する画像の正立方向が視野角の制限方向に対して略直交するパーソナルビューモードと、画像の正立方向が視野角の制限方向に一致するマルチビューモードとを切り換える画像表示切替手段とを有する表示装置が開示されている。
 すなわち、この表示装置では、マイクロプリズムシート等によって画面の視野角を一次元方向に制限すると共に、画像を90°回転して、視野角の制限方向に画像の天地を一致させるか否かによって、広視野角表示と狭視野角表示との切り換えを可能にしている。
 これらの表示装置によれば、広視野角の表示と狭視野角の表示との切り換えにより、1台の表示装置で、横からの第三者の覗き見を防いだ状態での表示の視認と、数人での適正な表示の視認とを両立できる。
特開2007-178979号公報 特開2004-279866号公報
 しかしながら、特許文献1の表示装置では、複数の基板や、通常の表示装置は有さないWサブピクセルが必要であり、装置構成が複雑になってしまう。
 他方、特許文献2の表示装置では、広視野角の表示と狭視野角の表示とを切り換えるために、画像を90°回転する必要があり、余分な画像処理が必要になってしまう。また、通常の表示装置では、画面の縦横比が異なるため、この表示装置では、広視野角の表示と狭視野角の表示とで、画像の縦横比が異なってしまう。
 本発明は、上記事情に鑑みて、タブレットPCやノートPCに用いられる表示装置において、簡易な構成で、画像処理などを行うことなく、通常の視野角表示と、視野角を制限した狭視野角表示とを切り換えることができる表示装置を提供することを目的とする。また、そのような表示装置を実現するためのパターン位相差フィルム、視野角スイッチング用偏光板および視野角スイッチングシステムを提供することを目的とする。
 本発明のパターン位相差フィルムは、第1の位相差領域および第2の位相差領域を交互に有する光学異方性層を有するパターン位相差フィルムであって、
 第1の位相差領域および第2の位相差領域が、チルト角の立ち上がり方向が互いに逆であるハイブリッド配向された棒状液晶またはディスコティック液晶を含有し、
 第1の位相差領域と第2の位相差領域との面内遅相軸の方向および面内位相差の絶対値が等しく、その面内位相差の絶対値は、54~74nmであり、
 第1の位相差領域と第2の位相差領域とが、棒状液晶を含有する場合には面内遅相軸、ディスコティック液晶を含有する場合には面内進相軸をx軸とし、フィルム面に垂直な方向をz軸としたとき、第1の位相差領域および第2の位相差領域のそれぞれにおいて、xz平面内の極角40°における位相差の絶対値および極角-40°における位相差の絶対値の一方が135~353nmであり、他方が8~28nmである。
 本発明のパターン位相差フィルムは、第1の位相差領域と第2の位相差領域が同一のストライプ形状を有し、ストライプ形状の幅方向に交互に配置されていることが好ましい。
 また、このとき、第1の位相差領域と第2の位相差領域とが、棒状液晶を含有する場合には面内遅相軸、ディスコティック液晶を含有する場合には面内進相軸が、ストライプ形状の長さ方向と一致していることが好ましい。
 本発明のパターン位相差フィルムは、第1の位相差領域と第2の位相差領域が同一の矩形状を有し、縦横に交互にチェック状に配置されていてもよい。
 本発明の視野角スイッチング用偏光板は、本発明のパターン位相差フィルムと、偏光子とが積層されてなり、パターン位相差フィルムの第1の位相差領域と第2の位相差領域とが、棒状液晶を含有する場合には面内遅相軸、ディスコティック液晶を含有する場合には面内進相軸と、偏光子の吸収軸とが互いに平行である視野角スイッチング用偏光板である。
 本発明の視野角スイッチングシステムは、上記視野角スイッチング用偏光板を2枚備え、この2枚の視野角スイッチング用偏光板が、互いの偏光子の吸収軸が平行に、そのパターン位相差フィルム同士が対向して配置され、かつ、第1の相対位置と第2の相対位置との間で相対移動可能に備えられており、
 第1の相対位置が、互いに異なる位相差領域同士が積層方向に一致する位置であり、
 第2の相対位置が、互いに同一の位相差領域同士が積層方向に一致する位置である視野角スイッチングシステムである。
 本発明の表示装置は、表示パネルと、表示パネルの視認側面に配置された上記視野角スイッチングシステムとを備えている。
 本発明の表示装置は、表示パネルが液晶パネルであり、液晶パネルの視認側の偏光子が、視野角スイッチングシステムを構成する2枚の視野角スイッチング用偏光板うち、液晶パネル側の視野角スイッチング用偏光板の偏光子を兼ねることができる。
 本発明のパターン位相差フィルムは、チルト角の立ち上がり方向が互いに逆向きにハイブリッド配向された棒状液晶またはディスコティック液晶を含有する、第1の位相差領域および第2の位相差領域を交互に有する光学異方性層を有し、第1の位相差領域と第2の位相差領域との面内遅相軸の方向および面内位相差が等しく、面内位相差は、54~74nmであり、第1の位相差領域と第2の位相差領域とが、棒状液晶を含有する場合には面内遅相軸、ディスコティック液晶を含有する場合には面内進相軸をx軸とし、フィルム面に垂直な方向をz軸としたとき、xz平面内の極角40°における位相差の絶対値および極角-40°における位相差の絶対値の一方が135~353nmであり、他方が8~28nmである。係る構成のパターン位相差フィルムを2枚組み合せることにより、簡易な構成で、画像処理などを行うことなく、通常の視野角表示(広視野角表示)と、通常の視野角よりも狭い範囲に視野角を制限した狭視野角表示とを切り換えることができる表示装置を提供することが可能である。
第1の実施形態のパターン位相差フィルムの模式斜視図である。 図1Aのパターン位相差フィルムの上面および両側面を示す図である。 第2の実施形態のパターン位相差フィルムの模式斜視図である。 図2Aのパターン位相差フィルムの上面および両側面を示す図である。 他の例のパターン位相差フィルムの平面模式図である。 さらに他の例のパターン位相差フィルムの断面模式図である。 本発明の視野角スイッチング用偏光板の一例を示す模式斜視図である。 本発明の表示装置の一例を示す模式斜視図である。 通常視野角表示モードおよび狭視野角表示モードにおける視野角スイッチシステムの一部を模式的に示す図である。 通常視野角表示モードにおける輝度分布を示す図である。 狭視野角表示モードにおける輝度分布を示すである。 通常視野角表示モードと狭視野角表示モードにおける輝度の水平角依存性を示す図である。 本発明の表示装置の他の例を示す断面模式図である。 パターン配向膜の作製方法を説明するための図である。
 以下、本発明のパターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置の実施形態について図面を参照して説明する。
 <パターン位相差フィルム>
 本発明のパターン位相差フィルムは、面内遅相軸の方向および面内位相差が等しい第1の位相差領域および第2の位相差領域を交互に有する光学異方性層を備えてなる。本発明のパターン位相差フィルムは、光学異方性層のみの単層膜で構成されていてもよいし、支持体フィルムおよび配向膜などの他の層上に光学異方性層を備えた積層膜から構成されていてもよい。そして、第1の位相差領域および第2の位相差領域は、チルト角の立ち上がり方向が互いに逆向きにハイブリッド配向されたディスコティック液晶(Discotic Liquid Crystal:DLC)もしくは棒状液晶を有している。ここで、チルト角とは、フィルムの主面(フィルム面)に対する、円盤状のDLC分子の進相軸(円盤の面に垂直な軸)Dもしくは棒状液晶分子の遅相軸(棒の長軸)Dの傾きである。ハイブリッド配向とはDLC分子あるいは棒状液晶分子が一方のフィルム面から他方のフィルム面に向かってチルト角が連続的に変化するように固定された状態をいう。
 本発明のパターン位相差フィルムは、面内位相差R(0)の絶対値が54~74nmであり、棒状液晶を含有する場合には面内遅相軸、ディスコティック液晶を含有する場合には面内進相軸をx軸とし、フィルム面の法線をz軸としたとき、第1の位相差領域および第2の位相差領域のそれぞれにおいて、xz平面内の極角40°における位相差R(40)の絶対値および極角-40°における位相差R(-40)の絶対値の一方が135~353nmであり、他方が8~28nmである。なお、第1の位相差領域および第2の位相差領域における上記位相差の絶対値の一方同士および他方同士は略等しい。これは、第1の位相差領域と第2の位相差領域とで平均チルト角の絶対値が略等しいことを意味する。なお、ここで、位相差の絶対値が略等しいとは、絶対値が±5nmの範囲で一致していることをいう。
 図1Aに第1の実施形態のパターン位相差フィルム1の模式斜視図を示す。なお、図1Aをはじめとした各模式図は、実際のフィルムの状態を、説明のため特徴を際立たせ模式化して記載したものである。
 本実施形態のパターン位相差フィルム1は、DLCを含有する、第1の位相差領域11および第2の位相差領域12を交互に有する光学異方性層10からなる。本実施形態においては、第1の位相差領域11と第2の位相差領域12が同一のストライプ形状を有し、ストライプ形状の幅方向に交互に配置されている。ここで、同一のストライプ形状とは、大きさおよび形が同じであることを意味している。
 図1Aにおいて、パターン位相差フィルム1の面内進相軸faxisをx軸、これに直交する面内遅相軸Saxisをy軸、光学異方性層10の主面10a(以下においてフィルム面10a)の法線をz軸と規定する。図1Bは、パターン位相差フィルム1の上面(xy平面)、第1および第2の位相差領域11、12の並び方向の側面(zy平面)および第1の位相差領域11の長さ方向の側面(xz平面)をそれぞれ模式的に示す図である。
 図1Aおよび図1Bに示すように、フィルム面10aに垂直、かつ、ストライプ形状の領域の長さ方向に沿った面(xz面)において、複数のDLC分子14が、一方のフィルム面10aから他方のフィルム面10bに向かって、進相軸Dの傾きが徐々に傾きが変化するハイブリッド配向されて固定されている。そして、第1の位相差領域11と第2の位相差領域12とではチルト角の立ち上がり方向が互いに逆であり、平均的なチルト角の絶対値は同等である。以下において、第1の位相差領域11のハイブリッド配向したDLC分子14の群を第1のハイブリッド配向液晶群A、第2の位相差領域12のハイブリッド配向したDLC分子14の群を第2のハイブリッド配向液晶群Bと称する。
 図1Aに示すように、第1の位相差領域11および第2の位相差領域12において、各液晶群A、BのDLC分子間ではいずれもy軸成分は変化せず、x軸成分のみが変化している。これは、液晶群Aを備えた第1の位相差領域11および液晶群Bを備えた第2の位相差領域12の面内遅相軸の方向が一致していることを意味する。
 なお、図1Aに示すように、極角0°における位相差、すなわち面内位相差R(0)の絶対値は第1の位相差領域11および第2の位相差領域で略等しく、その絶対値は54~74nmである。面内位相差R(0)の絶対値は60~70nmがより好ましく、63~67nmが特に好ましい。
 第1の位相差領域11において、xz平面内の極角40°における位相差R(40)の絶対値および極角-40°における位相差R(-40)の絶対値の大きい方が135~353nmであり、小さい方が8~28nmである。
 同様に第2の位相差領域12において、xz平面内の極角40°における位相差R(40)の絶対値および極角-40°における位相差R(-40)の絶対値の大きい方が135~353nmであり、小さい方が8~28nmである。
 なお、第1の位相差領域と第2の位相差領域とのハイブリッド配向の程度は略同じであるため、R(40)≒R(-40)、R(-40)≒R(40)である。
 本発明において、位相差は特に記載がないときは、波長550nmにおける位相差とする。
 本発明において、面内位相差ReはAxoScan(Axometrics社製)において、フィルム面の法線方向(上記xyz軸を有する球面座標における極角0°)から波長550nmの光を入射させて測定した値(=R(0))である。また、位相差R(40)、R(-40)は、それぞれフィルム面に極角40°、-40°から波長550nmの光を入射させて測定した値である。
 DLCを含有する、第1の位相差領域11と第2の位相差領域12を有する光学異方性層10は、DLCを含む光学異方性層塗布液(DLC組成物)を、後述のパターン配向膜上に塗布し、硬化させることにより作製することができる。
 図2Aに第2の実施形態のパターン位相差フィルムの模式斜視図を示す。
 本実施形態のパターン位相差フィルム2は、棒状液晶を含有する、第1の位相差領域21および第2の位相差領域22を交互に有する光学異方性層20からなる。本実施形態においては、第1の位相差領域21と第2の位相差領域22が同一のストライプ形状を有し、ストライプ形状の幅方向に交互に配置されている点は第1の実施形態と同様である。
 図2Aにおいて、パターン位相差フィルム2の面内遅相軸Saxisをx軸、これに直交する面内進相軸faxisをy軸、光学異方性層20の主面20a(以下においてフィルム面20a)の法線をz軸と規定する。図2Bは、パターン位相差フィルム2の上面(xy平面)、第1および第2の位相差領域21、22の並び方向の側面(zy平面)および第1の位相差領域21の長さ方向の側面(xz平面)をそれぞれ模式的に示す図である。
 図2Aおよび図2Bに示すように、フィルム面20aに垂直、かつ、ストライプ形状の領域の長さ方向に沿った面(xz面)において、複数の棒状液晶分子15が、一方のフィルム面20aから他方のフィルム面20bに向かって、その長軸(棒状液晶分子における遅相軸)の傾きが徐々に変化するハイブリッド配向されて固定されている。そして、第1の位相差領域21と第2の位相差領域22とではチルト角の立ち上がり方向が互いに逆であり、平均的なチルト角の絶対値は同等である。また、フィルム法線方向zからみると、棒状液晶分子15の遅相軸は、第1の位相差領域21においても第2の位相差領域22においても全てx軸方向に並んでいる。すなわち、第1の位相差領域21および第2の位相差領域22における面内遅相軸の方向は一致している。
 なお、以下において、第1の実施形態の場合と同様に、第1の位相差領域21のハイブリッド配向した棒状液晶分子15の群を第1のハイブリッド配向液晶群A、第2の位相差領域22のハイブリッド配向した棒状液晶分子15の群を第2のハイブリッド配向液晶群Bと称する。
 本実施形態のパターン位相差フィルム2においても、面内位相差R(0)、極角40°における位相差R(40)、極角-40°における位相差R(40)については第1の実施形態のパターン位相差フィルム1の場合と同様である。
 棒状液晶を含有する、第1の位相差領域21と第2の位相差領域22を有する光学異方性層20は、棒状液晶を含む光学異方性層塗布液(棒状液晶組成物)を、後述のパターン配向膜上に塗布し、硬化させることにより作製することができる。
 上記第1の実施形態のパターン位相差フィルム1においては、第1の位相差領域11と第2の位相差領域12との面内進相軸faxisがストライプの長さ方向に一致した構成を説明したが、面内進相軸の方向は第1の位相差領域11と第2の位相差領域12とで一致していればよく、例えば、面内進相軸がストライプの長さ方向に直交するストライプ形状の幅方向となるようにDLC分子が配列されていてもよい。
 同様に、第2の実施形態のパターン位相差フィルム2においては、第1の位相差領域21と第2の位相差領域22との面内遅相軸Saxisがストライプの長さ方向に一致した構成を説明したが、面内遅相軸の方向は第1の位相差領域21と第2の位相差領域22とで一致していればよく、例えば、面内遅相軸がストライプの長さ方向に直交するストライプ形状の幅方向となるように棒状液晶分子が配列されていてもよい。
 さらに、パターン位相差フィルムにおける第1の位相差領域と第2の位相差領域の形状はストライプ形状に限るものではなく、図3に、平面模式図を示す他の例のパターン位相差フィルム3のように、第1のハイブリッド配向液晶群Aを含む第1の位相差領域31と第2のハイブリッド配向液晶群Bを含む第2の位相差領域32とが同一の矩形状(ここでは正方形)を有し、縦横に交互にチェック状に配置されていてもよい。
 上記第1および第2の実施形態のパターン位相差フィルム1、2としては、第1の位相差領域と第2の位相差領域を有する光学異方性層のみからなる構成について説明したが、本発明のパターン位相差フィルムとしては、光学異方性層のみならず、支持体フィルムを備えたもの、あるいは支持体フィルムおよび配向膜をさらに備えたものであってもよい。
 図4は、支持体フィルム8上に配向膜9を備え、さらに配向膜9上に第1の位相差領域11および第2の位相差領域12を有する光学異方性層10を備えてなるパターン位相差フィルム1Aの断面模式図を示す。
 パターン位相差フィルム1Aのように、支持体フィルム8および配向膜9など光学異方性層10以外の層を含む場合には、上記面内位相差R(0)、極角40°あるいは極角-40°での位相差R(40)、R(-40)は、いずれも支持体フィルム8および配向膜9などの光学異方性層10以外の層を含むパターン位相差フィルム1A全体で測定した値とする。
 配向膜9は、例えば、配向膜上に形成される光学異方性層に含まれる液晶分子が、その長軸が同一方向に並び、かつハイブリッド配向する液晶分子のチルト角の立ち上がり方向(傾斜角の符号)を互いに異なるように制御可能な第1および第2の配向制御領域を有するパターン配向膜である。パターン配向膜は、例えば、一様な配向膜形成後にマスクラビング処理を行うことで形成することができる。
 また、仮支持体上にパターン配向膜を形成して利用して第1の位相差領域と第2の位相差領域を有する光学異方性層を形成し、その光学異方性層を、支持体フィルム上に転写することにより、支持体フィルム上に配向膜を備えず、直接、光学異方性層を備えたパターン位相差フィルムを得ることができる。
 支持体フィルムとしては、光透過性、機械的硬度、熱安定性、水分遮断性、等方性などに優れる重合体や樹脂を主成分とするフィルムが好ましい。また、支持体フィルムとしては、面内遅相軸の向きがランダムであり、面内位相差が小さいものが好ましい。例えば、国際公開2013/047282号等に記載の支持フィルムが好適である。
 <視野角スイッチング用偏光板>
 本発明の視野角スイッチング用偏光板は、上述した本発明のパターン位相差フィルムと偏光子(直線偏光膜)とを少なくとも有する。偏光子は、パターン位相差フィルムの光異方性層の表面と貼合してもよいし、支持体フィルムの表面と貼合してもよい。また、偏光子とパターン位相差フィルムとの間に他のフィルム(例えば、偏光子の保護フィルム)が配置されていてもよい。間に挟まれるフィルムとしては、面内遅相軸がランダムでありかつ低位相差のフィルムであることが好ましい。
 図5は、視野角スイッチング用偏光板の一例の模式斜視図である。
 図5に示すように、視野角スイッチング用偏光板50は、パターン位相差フィルム1と偏光子4とが積層されてなる。このとき、パターン位相差フィルム1の面内進相軸方向(x軸と一致)と偏光子4の吸収軸aとが平行となるように積層される。
 なお、視野角スイッチング用偏光板が、図2Aに示した棒状液晶を含むパターン位相差フィルム2を備える場合には、パターン位相差フィルム2の面内遅相軸方向(x軸と一致)と偏光子の吸収軸とが平行となるように積層すればよい。
 <視野角スイッチングシステムおよび表示装置>
 本発明の視野角スイッチングシステムは、上記の視野角スイッチング用偏光板を2枚組み合わせて構成される。以下に、本発明の視野角スイッチングシステムおよびそれを備えた表示装置について説明する。
 図6は、本発明の視野角スイッチングシステムの一例を備えた本発明の表示装置の一例を模式的に示す斜視図である。なお、図6においては、視野角スイッチングシステムによる(i)通常視野角表示モードおよび(ii)狭視野角表示モードの状態を示している。
 本実施形態の視野角スイッチングシステム60においては、2枚の視野角スイッチング用偏光板を区別するため、一方の視野角スイッチング用偏光板を51、他方の視野角スイッチング用偏光板を52とし、各偏光板51、52中の各構成要素の符号として、既述の視野角スイッチング用偏光板50の対応する構成要素の符号に100または200を加算した3桁の符号を用いることとして、詳細な説明は省略する。
 視野角スイッチングシステム60は、2枚の視野角スイッチング用偏光板51、52が、互いの偏光子104、204の吸収軸aが平行に、パターン位相差フィルム101、201同士が対向して配置され、かつ、通常視野角モードのための第1の相対位置と狭視野角モードのための第2の相対位置との間で相対移動可能に備えられている。
 図6中(i)に示すように、第1の相対位置は、パターン位相差フィルム101、201の互いに異なる位相差領域同士が積層方向に一致する位置である。すなわち、このとき、一方のパターン位相差フィルム101の第1の位相差領域111と、他方のパターン位相差フィルム201の第2の位相差領域212とが積層方向に一致し、かつ、一方のパターン位相差フィルム101の第2の位相差領域112と、他方のパターン位相差フィルム201の第1の位相差領域211とが積層方向に一致する。
 第2の相対位置は、パターン位相差フィルム101、201の互いに同じ位相差領域同士が積層方向に一致する位置である。すなわち、このとき、一方のパターン位相差フィルム101の第1の位相差領域111と他方のパターン位相差フィルム201の第1の位相差領域211とが積層方向に一致し、かつ、一方のパターン位相差フィルム101の第2の位相差領域112と他方のパターン位相差フィルム201の第2の位相差領域212とが積層方向に一致する。
 本実施形態の視野角スイッチングシステム60は、一方の視野角スイッチング用偏光板51を、第1および第2の位相差領域である1つのストライプ形状の幅(1ストライプ幅)分、図中矢印Mの方向に移動可能に構成されている。このM方向に視野角スイッチング用偏光板51を1ストライプ分ずらすことにより、通常視野角と狭視野角とを切り替えることができる。
 なお、視野角スイッチングシステム60は、上記の第1の相対位置と第2の相対位置となるように、少なくともいずれかの視野角スイッチング用偏光板を1ストライプ分幅方向にスライドさせるための、図示しない移動機構を備える。移動機構としては公知のスライド機構を適宜利用することができる。ユーザがダイヤルを回すことにより、視野角スイッチング用偏光板51を1ストライプ幅分スライドさせ、再度ダイヤルを回すことにより逆向きに1ストライプ分スライドして元も位置に戻るスライド機構など機械的に第1の相対位置と第2の相対位置とを切り替えられるように構成すれば、電源不要であり好ましい。
 視野角スイッチングシステムに備えられるパターン位相差フィルムとしては、第1の実施形態のパターン位相差フィルム1に限らず第2の実施形態のパターン位相差フィルム2であってもよいことは言うまでもない。また、さらに、図3に示した第1の位相差領域と第2の位相差領域とがチェック状に配置されたパターン位相差フィルム3を用いてもよい。図3に示すようなチェックパターンのパターン位相差フィルム3を備えた場合、スライド方向は縦横いずれの方向としてもよい。
 本発明の表示装置は、表示パネルと、その表示パネルの視認側面に配置された、上記の視野角スイッチングシステムとを備えている。図6に示す通り、本実施形態の表示装置100は、上記視野角スイッチングシステム60が液晶パネル70の視認側面に配置されてなる。
 液晶パネル70は、液晶セル71が互いに直交する偏光子72、73により挟まれた構成を有している。なお、バックライトは省略している。液晶パネル70の視認側の偏光子73は、視野角スイッチングシステム60を構成する2枚の視野角スイッチング用偏光板51、52うち、液晶パネル70側の視野角スイッチング用偏光板52の偏光子204を兼ねている。
 図7は、(i)通常視野角表示モード時、および(ii)狭視野角表示モード時における、対向するパターン位相差フィルムの一部を模式的に示している。
 通常視野角表示モード時には、図7の(i)に示すように、一方のパターン位相フィルムの第2の位相差領域112と、他方のパターン位相フィルムの第1の位相差領域211とが対向し、積層方向に重なっている。このとき、全面に亘って互いに逆向きのハイブリッド配向である第1のハイブリッド配向液晶群Aと第2のハイブリッド配向液晶群Bとが対向する。このとき、両者のハイブリッド配向の方向が逆であるので、積層方向に進む光に対し、互いに斜め方向における位相差を打ち消し合しあい、互いの位相差が補償される。そのため、視野角スイッチングシステムは、表示パネルから出射されてそのシステムを通過する光に対して影響を及ぼさず、表示パネルの有する通常の視野角が得られる。
 他方、狭視野角表示モード時には、図7の(ii)に示すように、2枚のパターン位相フィルムの、ハイブリッド配向の向きが同じである位相差領域同士111と211が対向し、積層方向に重なっている。このとき、全面に亘って、同一向きのハイブリッド配向である第1のハイブリッド配向液晶群A同士、および第2のハイブリッド配向液晶群B同士が対向する。このとき、互いに同一の斜め方向における位相差を有しているため、位相差は補償されず、全体として斜め方向(フィルム面に対する法線方向からフィルム面側に傾いた方向)における位相差が生じ、結果として表示パネルの有する通常の視野角よりも視野角が狭められる。
 図8および図9はそれぞれ(i)通常視野角表示モード、(ii)狭視野角表示モードにおける輝度分布を示す。発光点上に視野角スイッチングシステムを配置し、各モードに設定した場合における、視野角輝度分布(方位角、極角)をシミュレーションにより求め極座標で二次元表示したものである。図の左右が水平方位、上下が垂直方位になっており、右が方位角0度、上が方位角90度、左が方位角180度、下が方位角270度である。また、円の中心からの距離が正面方向からの極角を表しており0度~80度の範囲になっている。
 ここでは、図6に示した視野角スイッチングシステムのストライプ長さ方向が0°から180°の軸と一致するように配置されている。狭視野角表示モードにおいては、0°から180°のラインにおける視野角が通常視野角と比較して大幅に狭まっていることが明らかである。
 図10は、通常視野角表示モードおよび狭視野角表示モードのそれぞれの、水平角度-90°から90°における輝度分布を示すグラフである。水平角度の正の方向が図8および図9の方位角0度、負の方向が図8および図9の方位角180度に対応しており、角度の大きさが図8および図9の極角に対応している。図10に示すように、狭視野角モードでは視認可能な角度領域が水平角度0度(すなわち正面)から離れると急激に小さくなっており、視野角が大きく減じられていることが分かる。
 したがって、視野角スイッチングシステムを通常の表示パネルに重ねて配置した表示装置では、通常の視野角での表示と視野角を制限した狭視野角での表示とを切り替えて、通常は横方向からでも適正な表示の視認を可能とし、必要に応じて狭視野角モードに切り替えることで、例えば周囲の第三者が表示を視認することを防止することができる。
 表示パネルとしては、タブレットPC、ノートPC、スマートフォンなどの携帯電話等に利用される、公知の表示装置で利用されている各種の表示素子(ディスプレイパネル)が利用可能である。具体的には、既述の液晶パネルの他、有機EL(エレクトロルミネッセンス)表示パネル、プラズマ表示パネル、電子ペーパ等が例示される。
 図11は、表示パネルとして有機ELパネル75を備えた表示装置100Aの概略構成を示す。表示装置100Aは、有機ELパネル75の視認画面に、視野角スイッチングシステム60を備えた構成である。
 既述の通り、本構成の表示装置100Aにおいても液晶パネル70を備えた場合と同様に、通常視野角モードでは、有機ELパネル75自体の通常の視野角で画面を視認することができ、かつ、狭視野角モードでは、水平方向の視野角を狭め、周囲の第三者からの画面視認性を低下させ、第三者による画面の覗き見を防止することができる。
 <パターン位相差フィルムの作製法>
 実施例および比較例として、支持体フィルム上に配向膜を形成し、配向膜にパターンラビングを施した後に配向膜上に光学異方性層を形成することにより第1の位相差領域と第2の位相差領域を備えた光学異方性層を有するパターン位相差フィルムを作製した。
 支持体フィルムとして、セルロースアシレートフィルムを用いた。具体的には、富士フイルム社製のZ-TAC(商品名)を用いた。
 (配向膜の形成)
 セルロースアシレートフィルムの表面に鹸化処理を施し、その鹸化処理した表面に、下記表1の組成の配向膜塗布液を#14のワイヤーバーを用いて塗布した。塗布膜を60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。形成した膜にラビング処理を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000002
 上記のようにして形成した配向膜をパターンラビングした。パターンラビングには、特開2004-163495の方法を参考にマスクラビング法を用いた。図12にパターンラビング法を説明するための模式図を示す。図12に示すように、支持体フィルム8上に形成した一様な配向膜9上に、ストライプ形状の開口が平行にそのストライプの幅と同一幅間隔で複数配列されたストライプ状パターンのマスク90を配置する。そして、図中右から左に向かう、ストライプの長さ方向の一方の向き(1)に平行にラビングし、その後、マスク90をストライプ形状の開口の幅1つ分、ストライプの幅方向にずらして配置し、図中左から右に向かう、ストライプの長さ方向の他方の向き(2)にラビングする。この処理により、互いに逆向きにラビングされたストライプ状領域が交互に形成されたパターン配向膜を作製した。このとき、パターンの幅は5mmであった。
 上記パターン配向膜上に、各実施例および比較例について下記表2に示す光学異方性層塗布液を塗布量調整して塗布し、紫外線硬化して固定化した。この光学異方性層は、第1の方向にラビング配向されたストライプ状領域に第1の位相差領域を、第2の方向にラビングされたストライプ状領域に第2の位相差領域を有するパターン位相差層である。
 以上の手順で各実施例および比較例のパターン位相差フィルムを作製した。
 各実施例および比較例において、光学異方性層塗布液として、それぞれ実施例毎に次のD1~D5、あるいはR1のいずれかの塗布液を用いて光学異方性層を作製した。
Figure JPOXMLDOC01-appb-T000003
 光学異方性塗布液D1~D5の組成は下記表3に示す通りとした。単位はすべて質量部である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 光学異方性層塗布液R1の組成は下記表4に示す通りとした。単位はすべて質量部である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013
 <位相差の測定>
 上記のようにして得られ各実施例および比較例のパターン位相差フィルムについて、Axometric社のAxoscanを用いてR(0)、R(40)、R(-40)の位相差を測定した。結果を表5に示す。なお、棒状液晶の位相差はDLCの位相差と符号は反対になる。これは、棒状液晶がラビング方向に対し面内遅相軸が平行になるのに対し、DLCはラビング方向に対し面内進相軸が平行になるためである。本明細書ではリタデーションの絶対値が重要になるため、符号にはとらわれず絶対値で記述している。
 <評価>
 各実施例および比較例のパターン位相差フィルムを2枚ずつ用い、異方性層が内側になるように重ね合わせ、第1の位相差領域同士、第2の位相差領域同士を重ねた場合を狭視野角表示モード、第1の位相差領域と第2の位相差領域とが重なる場合を通常視野角(広視野角)表示モード(図6参照)として以後の評価を行った。この2枚のフィルムを液晶表示装置(液晶モニター:HP社 LP2065)の液晶パネル上に、各ストライプの長さ方向が観察者に対して横方向(左右方向)となるように重ね、さらにその上に偏光板を重ねた。偏光板の吸収軸の向きは、液晶表示装置の視認側偏光板と同じ向きとした(図6参照)。
 液晶表示装置を白表示とし、狭視野角時の左右斜め60度(極角60°)における輝度(パターン位相差フィルムを備えない場合の輝度を1とした比較値)を測定した。測定はトプコン社のBM-5Aを用いた。輝度を下記基準で評価した結果を表5に示す。
 A:輝度0.1未満     (略黒となり十分な狭視野角効果あり)
 B:輝度0.1以上0.2以下(やや黒となり十分な狭視野角効果あり(許容))
 C:輝度0.2超0.5以下 (黒が不十分で狭視野角効果不十分(許容できない))
 B:輝度0.5超      (黒とならず十分な狭視野角効果なし)
 また、広視野角と狭視野角のスイッチングの性能を液晶表示装置に画像を表示させて目視による下記表記基準A~Dの官能評価を行った。なお、ここでは広視野角と狭視野角の場合について、それぞれ左右斜め60度(極角60°)から観察した。評価結果を表5に示す。
 A:広視野角時には画像が鮮明に認識されたが、狭視野角時には完全に黒くなり全く画像が視認できない状態となり、十分なスイッチング効果あり
 B:広視野角時には画像が鮮明に認識されたが、狭視野角時には略黒くなり画像がほぼ視認できない状態となり、実用上許容できる程度のスイッチング効果あり(許容)
 C:広視野角時には画像が鮮明に認識されたが、狭視野角時にはやや黒くなったが画像がやや視認でき、スイッチング効果不十分(許容できない)
 D:広視野角時には画像が鮮明に認識されたが、狭視野角時には黒くならず画像が視認できるままとなり、スイッチング効果なし
Figure JPOXMLDOC01-appb-T000014
 表5に示すように、実施例1~6はいずれの評価もAもしくはBであったのに対し、比較例1~4はいずれの評価もCであった。実施例1および実施例2で非常によい結果が得られた。
 本発明のパターン位相差フィルムは、既述のような、表示装置の視野角を制御する視野角スイッチング用偏光子、および視野角スイッチングシステムに利用される他、調光ウインドウ、光通信用のスイッチング素子、バックライトや照明の指向性切り替えスイッチ等にも用いることができる。
 本発明の表示装置は、タブレットPC、ノートPC、スマートフォン等の表示装置として、好適に利用可能である。
  1、1A、2、3、101、201  パターン位相差フィルム
  4、104、204  偏光子
  8  支持体フィルム
  9  配向膜
  10、20  光学異方性層
  10a、10b、20a、20b  フィルム面
  11、21、31、111、211  第1の位相差領域
  12、22、32、112、212  第2の位相差領域
  14  DLC分子
  15  棒状液晶分子
  50、51、52  視野角スイッチング用偏光板
  60  視野角スイッチングシステム
  70  液晶パネル
  71  液晶セル
  72、73  偏光子
  75  有機ELパネル
  90  マスク
  100、100A  表示装置
  A  第1のハイブリッド配向液晶群
  B  第2のハイブリッド配向液晶群

Claims (8)

  1.  第1の位相差領域および第2の位相差領域を交互に有する光学異方性層を有するパターン位相差フィルムであって、
     前記第1の位相差領域および前記第2の位相差領域が、チルト角の立ち上がり方向が互いに逆であるハイブリッド配向された棒状液晶またはディスコティック液晶を含有し、
     前記第1の位相差領域と前記第2の位相差領域との面内遅相軸の方向および面内位相差の絶対値が等しく、該面内位相差の絶対値は、54~74nmであり、
     前記第1の位相差領域と前記第2の位相差領域とが、前記棒状液晶を含有する場合には面内遅相軸、前記ディスコティック液晶を含有する場合には面内進相軸をx軸とし、フィルム面に垂直な方向をz軸としたとき、前記第1の位相差領域および前記第2の位相差領域のそれぞれにおいて、xz平面内の極角40°における位相差の絶対値および極角-40°における位相差の絶対値の一方が135~353nmであり、他方が8~28nmであるパターン位相差フィルム。
  2.  前記第1の位相差領域と前記第2の位相差領域が同一のストライプ形状を有し、該ストライプ形状の幅方向に交互に配置されている請求項1記載のパターン位相差フィルム。
  3.  前記第1の位相差領域と前記第2の位相差領域とが、前記棒状液晶を含有する場合には面内遅相軸、前記ディスコティック液晶を含有する場合には面内進相軸が、前記ストライプ形状の長さ方向と一致している請求項2記載のパターン位相差フィルム。
  4.  前記第1の位相差領域と前記第2の位相差領域が同一の矩形状を有し、縦横に交互にチェック状に配置されている請求項1記載のパターン位相差フィルム。
  5.  請求項1から4いずれか1項記載のパターン位相差フィルムと、偏光子とが積層されてなり、
     前記パターン位相差フィルムの前記第1の位相差領域と前記第2の位相差領域とが、前記棒状液晶を含有する場合には面内遅相軸、前記ディスコティック液晶を含有する場合には面内進相軸と、前記偏光子の吸収軸とが互いに平行である視野角スイッチング用偏光板。
  6.  請求項5記載の視野角スイッチング用偏光板を2枚備え、
     該2枚の視野角スイッチング用偏光板が、互いの前記偏光子の吸収軸が平行に、前記パターン位相差フィルム同士が対向して配置され、かつ、第1の相対位置と第2の相対位置との間で相対移動可能に備えられており、
     前記第1の相対位置が、前記対向した配置された前記パターン位相差フィルムの互いに異なる位相差領域同士が積層方向に一致する位置であり、
     前記第2の相対位置が、前記対向した配置された前記パターン位相差フィルムの互いに同じ位相差領域同士が積層方向に一致する位置である視野角スイッチングシステム。
  7.  表示パネルと、該表示パネルの視認側面に配置された請求項6記載の視野角スイッチングシステムとを備えた表示装置。
  8.  前記表示パネルが液晶パネルであり、該液晶パネルの視認側の偏光子が、前記視野角スイッチングシステムを構成する2枚の前記視野角スイッチング用偏光板うち、前記液晶パネル側の視野角スイッチング用偏光板の偏光子を兼ねる請求項7記載の表示装置。
PCT/JP2017/018412 2016-05-20 2017-05-16 パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置 WO2017199973A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018518316A JP6765422B2 (ja) 2016-05-20 2017-05-16 視野角スイッチングシステムおよび表示装置
US16/191,450 US10585222B2 (en) 2016-05-20 2018-11-15 Patterned phase difference film, viewing angle switching polarizing plate, viewing angle switching system, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-101060 2016-05-20
JP2016101060 2016-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/191,450 Continuation US10585222B2 (en) 2016-05-20 2018-11-15 Patterned phase difference film, viewing angle switching polarizing plate, viewing angle switching system, and display device

Publications (1)

Publication Number Publication Date
WO2017199973A1 true WO2017199973A1 (ja) 2017-11-23

Family

ID=60325242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018412 WO2017199973A1 (ja) 2016-05-20 2017-05-16 パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置

Country Status (3)

Country Link
US (1) US10585222B2 (ja)
JP (1) JP6765422B2 (ja)
WO (1) WO2017199973A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398833A (zh) * 2018-03-22 2018-08-14 京东方科技集团股份有限公司 补偿膜及其制作方法、显示装置
WO2021131491A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 画像表示装置、車両用情報表示システムおよび光学フィルム
WO2021177280A1 (ja) * 2020-03-05 2021-09-10 富士フイルム株式会社 視角制御システムおよび画像表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428791B (zh) * 2019-08-16 2021-03-30 京东方科技集团股份有限公司 一种显示装置
CN114384714A (zh) * 2020-10-18 2022-04-22 中强光电股份有限公司 显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062623A (ja) * 1996-08-21 1998-03-06 Fujitsu Ltd 液晶表示パネル
JP2008175857A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 電気光学装置、電子機器、電気光学装置の駆動方法
JP2010139661A (ja) * 2008-12-10 2010-06-24 Fujifilm Corp 偏光板の製造方法、偏光板、および液晶表示装置
WO2015033932A1 (ja) * 2013-09-03 2015-03-12 富士フイルム株式会社 光学フィルター、光学フィルター付表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279866A (ja) 2003-03-18 2004-10-07 Sony Corp 表示装置
KR101222955B1 (ko) 2005-12-28 2013-01-17 엘지디스플레이 주식회사 액정표시소자 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062623A (ja) * 1996-08-21 1998-03-06 Fujitsu Ltd 液晶表示パネル
JP2008175857A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 電気光学装置、電子機器、電気光学装置の駆動方法
JP2010139661A (ja) * 2008-12-10 2010-06-24 Fujifilm Corp 偏光板の製造方法、偏光板、および液晶表示装置
WO2015033932A1 (ja) * 2013-09-03 2015-03-12 富士フイルム株式会社 光学フィルター、光学フィルター付表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398833A (zh) * 2018-03-22 2018-08-14 京东方科技集团股份有限公司 补偿膜及其制作方法、显示装置
WO2021131491A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 画像表示装置、車両用情報表示システムおよび光学フィルム
JPWO2021131491A1 (ja) * 2019-12-27 2021-07-01
JP7333414B2 (ja) 2019-12-27 2023-08-24 富士フイルム株式会社 画像表示装置、車両用情報表示システムおよび光学フィルム
US11885995B2 (en) 2019-12-27 2024-01-30 Fujifilm Corporation Image display apparatus, information display system for vehicle, and optical film
WO2021177280A1 (ja) * 2020-03-05 2021-09-10 富士フイルム株式会社 視角制御システムおよび画像表示装置
US11789190B2 (en) 2020-03-05 2023-10-17 Fujifilm Corporation Viewing angle control system and image display device
JP7482987B2 (ja) 2020-03-05 2024-05-14 富士フイルム株式会社 視角制御システムおよび画像表示装置

Also Published As

Publication number Publication date
US20190079232A1 (en) 2019-03-14
JPWO2017199973A1 (ja) 2019-02-28
US10585222B2 (en) 2020-03-10
JP6765422B2 (ja) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6820417B2 (ja) 表示装置
WO2017199973A1 (ja) パターン位相差フィルム、視野角スイッチング用偏光板、視野角スイッチングシステムおよび表示装置
TWI474080B (zh) Liquid crystal display device
KR100685569B1 (ko) 시각 제어 소자, 표시 장치, 및 전자 기기
CN101046573B (zh) 液晶面板、液晶显示设备和终端设备
US20100128200A1 (en) Liquid crystal display device and viewing angle control panel
KR101260841B1 (ko) 횡전계방식 액정표시장치
TW200411208A (en) Parallax barrier element, method of producing the same, and display device
KR102177588B1 (ko) 나노캡슐 액정층을 포함하는 액정표시장치
WO2017156875A1 (zh) 一种液晶透镜及显示装置
JP6887525B2 (ja) 表示装置
EP3422057A1 (en) Polarized type viewing angle control element, polarized type viewing angle control display module, and polarized type viewing angle control light source module
JP2008107687A (ja) 液晶表示装置、光学フィルムおよび端末装置
US9599854B2 (en) Liquid crystal display device and electronic apparatus
WO2016017536A1 (ja) 液晶表示装置
US10025140B2 (en) Liquid crystal display
CN111190305A (zh) 液晶显示装置
JP2008268733A (ja) 液晶表示装置
CN100356245C (zh) 具有更高图像质量的平面内切换模式lcd设备
US9019438B2 (en) Polarization system and three-dimensional image display apparatus having the same
JP2008040120A (ja) 液晶表示装置
WO2017159785A1 (ja) 表示装置
JP2008299290A (ja) 液晶表示装置
JP2008065079A (ja) 液晶表示装置、液晶表示装置の製造方法
KR20160000946A (ko) 곡면 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518316

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799397

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799397

Country of ref document: EP

Kind code of ref document: A1