WO2017198236A1 - 数据发送方法、装置及*** - Google Patents

数据发送方法、装置及*** Download PDF

Info

Publication number
WO2017198236A1
WO2017198236A1 PCT/CN2017/086075 CN2017086075W WO2017198236A1 WO 2017198236 A1 WO2017198236 A1 WO 2017198236A1 CN 2017086075 W CN2017086075 W CN 2017086075W WO 2017198236 A1 WO2017198236 A1 WO 2017198236A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pdcp
rlc
capability
frame
Prior art date
Application number
PCT/CN2017/086075
Other languages
English (en)
French (fr)
Inventor
吕应权
黄河
黄侃
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017198236A1 publication Critical patent/WO2017198236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmitting method, apparatus, and system.
  • the mobile communication network is facing an expansive growth of terminal data traffic.
  • the construction of the 5th Generation mobile communication technology (5G) network needs to achieve ultra-high speed, high throughput, ultra-high reliability, and super Indicators such as low latency provide users with the best experience.
  • 5G 5th Generation mobile communication technology
  • These requirements make the service capabilities and deployment strategies of mobile networks face enormous pressures and challenges.
  • operators need to enhance existing network deployment and communication technologies.
  • the network architecture of the 4th Generation mobile communication technology (4G) is flattened, and the Radio Network Controller (RNC) is removed.
  • the base station eNodeB is directly connected to the core network. Reduced latency.
  • 5G network architecture in addition to further sinking the core network function, it tends to adopt C-RAN (Centralized, Cooperative, Cloud & Clean-Radio Access Network) network deployment.
  • This network architecture adopts collaboration and virtualization technology to achieve resource sharing and dynamic scheduling, achieving low cost, high bandwidth and high flexibility.
  • the cell range is getting smaller and smaller, and it is an ultra-dense heterogeneous network. This architecture facilitates efficient collaboration between cells.
  • the C-RAN architecture is generally composed of a BaseBand Unit (BBU) and a Radio Remote Unit (RRU).
  • BBU BaseBand Unit
  • RRU Radio Remote Unit
  • the pre-interface between the BBU and the RRU uses a common public radio.
  • Interface Common Public Radio Interface, CPRI for short
  • CPRI interface transmits IQ (in-phase/quadrature) signals processed by physical layer coding and modulation, and CPRI interface pairs are transmitted. Both latency and bandwidth have large requirements.
  • CPRI Common Public Radio Interface
  • the 5G air interface rate is increased to tens of Gbps, the traffic demand of the CPRI interface will rise to the Tbps level, which puts tremendous pressure on the network deployment cost and deployment difficulty. Therefore, in 5G, the functions of the BBU and the RRU need to be redefined.
  • the functional part of the user plane of the layer 2 is placed in the BBU, and the part of the BBU and the RRU are respectively named as the centralized processing unit.
  • Remote processing unit Remote processing unit.
  • the protocol stack of the radio interface user plane includes Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), and Medium Access Control (Medium Access Control). , referred to as MAC), where PDCP functions include header compression, cryptographic integrity protection, retransmission, and receiving side sequencing.
  • the RLC function has automatic repeat request (ARQ), serial segmentation, etc. If the PDCP is only placed in the centralized processing unit, and the RLC and the following functions such as the MAC function are placed in the remote processing unit, this processing method is relatively simple, but has the following problems:
  • the PDCP data needs to be retransmitted in the PDCP reconstruction. Therefore, the PDCP status report and the retransmission function are defined, and the ARQ function of the RLC is duplicated, and each packet of the PDCP needs to be confirmed after receiving the RLC confirmation.
  • the amount of confirmation messages that the RLC feeds back to the PDCP is large;
  • Both the PDCP and the RLC need to be buffered before the same packet data is received, and if there is no flow control mechanism between the PDCP and the RLC, the buffer overhead of the RLC is large;
  • the PDCP does not concatenate the Service Data Unit (SDU).
  • SDU Service Data Unit
  • the IP transmission efficiency of the PDCP and the RLC will be relatively low. Even if the centralized processing unit and the remote processing unit support jumbo frame transmission, it cannot be alleviated. Transfer pressure.
  • the data unit is very large and generally exceeds the maximum packet length of the IP transmission. Such a large packet length is not suitable for IP transmission.
  • the embodiments of the present disclosure provide a data sending method, apparatus, and system, to at least solve the problem that the related technologies cannot meet the service requirements of 5G.
  • a data transmitting method including: a packet data convergence protocol layer PDCP acquires a transmission capability for transmitting data from a radio link control RLC; and the PDCP transmits a first according to the transmission capability One data.
  • the sending, by the PDCP, the first data according to the sending capability includes: the PDCP encapsulating the first data according to a data type of the first data and the sending capability; The first data after encapsulation.
  • the encapsulating, by the PDCP, the first data according to the data type of the first data and the sending capability, when the data type is a robust header compression ROHC feedback information frame When the transmission capability allows the length of the data transmitted by the PDCP to be greater than or equal to the length of the first data, the PDCP encapsulates the first data into a first packet data unit PDU; and/or when the data type When the ROHC feedback information frame is compressed for the non-robust header, the PDCP encapsulates the first data and other non-ROHC feedback information frames to be sent according to the sending capability to form a second packet data unit PDU.
  • the PDCP encapsulating the first data and the other non-ROHC feedback information frames to form the second PDU, the PDCP determining, according to the sending capability, the current The amount of data that is allowed to be sent; the PDCP concatenates the first data and some other non-ROHC feedback information frames to be sent according to the amount of data that is allowed to be sent; the PDCP will be concatenated The data is encapsulated into the second PDU.
  • the sending, by the PDCP, the encapsulated first data includes: the PDCP is based at least according to a sequence number of the second PDU, and Adding the second PDU by the superframe number HFN corresponding to the second PDU The PDCP sends the encrypted second PDU.
  • the method further includes: determining, by the PDCP, whether a return of the peer that receives the first data is received within a predetermined time. a message; the PDCP sends the first data again when the judgment result is that the confirmation message is not received.
  • the method further includes: the PDCP receiving the second data; the PDCP processing the second data according to the data type of the second data.
  • a data transmitting method comprising: a radio link control RLC determining a transmission capability; the RLC notifying the transmission capability to a packet data convergence protocol layer PDCP, wherein the transmission capability Used for the PDCP to send data.
  • the determining, by the RLC, the sending capability includes: obtaining, by the RLC, an amount of data buffered in the PDCP and air interface capability information from a media access control MAC; the RLC The transmitting capability is determined according to the amount of data buffered in the PDCP, the air interface capability information, and the data buffer status of the RLC.
  • the obtaining, by the RLC, the data volume that is buffered in the PDCP the RLC acquiring a data frame from the PDCP, where the RLC acquires a data volume identifier carried in a frame header of the data frame, where The data quantity identifier is used to identify the amount of data buffered in the PDCP; and the RLC determines the amount of data buffered in the PDCP according to the data quantity identifier.
  • the method further includes: when the RLC determines that the air interface capability information and/or the data cache state of the RLC changes, The transmission capability is re-determined; the re-determined transmission capability is notified to the PDCP.
  • the reporting, by the RLC, the sending capability to the PDCP includes: the RLC composing a transmission capability allocation frame according to the sending capability; and the RLC sends the sending capability allocation frame to the PDCP.
  • a data transmitting apparatus the apparatus being applied to a packet data convergence protocol layer PDCP, comprising: an obtaining module configured to acquire a transmission for transmitting data from a radio link control RLC
  • the capability module is configured to send the first data according to the sending capability.
  • a data transmitting apparatus the apparatus being applied to a radio link control RLC, comprising: a determining module configured to determine a transmitting capability; and a notifying module configured to notify the transmitting capability
  • a packet data convergence protocol layer PDCP is provided, wherein the transmission capability is used by the PDCP to transmit data.
  • a data transmitting system including the above-described data transmitting apparatus applied to a packet data convergence protocol layer PDCP and the above-described data transmitting apparatus applied in a radio link control RLC.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the steps in any of the above methods.
  • processor being used for Running a program, wherein the program is executed while performing the method of any of the above.
  • the PDCP can perform data transmission according to the transmission capability from the RLC, thereby making the PDCP data transmission more efficient and reasonable, thereby providing a service requirement for satisfying 5G. Ensure that the problems in the related technologies that cannot meet the 5G business needs are solved.
  • FIG. 1 is a flowchart of a first method of data transmission according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a data frame according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a ROHC feedback information frame according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a status report frame according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a capability allocation frame according to an embodiment of the present disclosure.
  • FIG. 6 is a functional block diagram of a PDCP transmitting side processing according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a PDCP transmitting side according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a PDCP receiving side processing function according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a PDCP receiving side according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a second method of data transmission according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of processing of PDCP data by RLC according to an embodiment of the present disclosure
  • FIG. 13 is a block diagram showing the structure of a first type of data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing the structure of a second type of data transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a first data sending method according to an embodiment of the present disclosure. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 the packet data convergence protocol layer PDCP acquires a transmission capability for transmitting data from the radio link control RLC;
  • Step S104 The PDCP sends the first data according to the sending capability.
  • the capability allocation processing is added in the RLC, so that the PDCP can perform data transmission according to the sending capability from the RLC, so that the PDCP data transmission is more effective and reasonable, and provides a guarantee for satisfying the 5G service requirement, and solves related technologies.
  • the PDCP when the PDCP sends the first data according to the sending capability, the PDCP may be implemented in the following manner: the PDCP performs the first data according to the data type of the first data and the sending capability. Encapsulation; PDCP sends the encapsulated first data.
  • the data type of the first data may include multiple types, for example, a data frame, a control frame (the control frame may include: Robust Header Compression (ROHC) feedback information frame, etc.), and The structure of different frames is different.
  • the structure of each frame can refer to FIGS. 2 to 5, wherein the fields in each frame structure can be defined as follows:
  • D/C 1 indicates a data frame, and 0 indicates a control frame
  • Segmentation information indicates that 00 indicates that the first byte of the Data field in the PDU is the beginning of a PDCP SDU, and the last byte is the last byte of a PDCP SDU; 01 indicates the number of the Data field in the PDU.
  • One byte is the beginning of a PDCP SDU, the last one The byte is not the last byte of a PDCP SDU; 10 indicates that the first byte of the Data field in the PDU is not the beginning of a PDCP SDU, the last byte is the last byte of a PDCP SDU; 11 indicates the PDU The first byte of the Data field is not the beginning of a PDCP SDU, nor is the last byte the last byte of a PDCP SDU;
  • P: 1 indicates that the peer needs to return a status report after receiving it; 0 means that it does not need to return a status report;
  • PDCP_SN The PDCP sequence number, which is two bytes, and can range from 0 to 65535.
  • User Buffer size indicates the amount of data (bytes) of the PDCP cache, including the data in the unsegmented and pending queues, which can be up to 65535, and the excess is 65535.
  • LI length indication (bytes) of the SDU of the PDCP, the field occupies 15 bits, indicating that the bytes belong to one SDU;
  • PDCP TYPE PDCP control frame type, which can occupy 3 bits, 000 indicates that the frame is a PDCP status report; 001 indicates that the frame is a ROHC feedback information frame; and 010 indicates that the frame is a transmission capability allocation frame;
  • FMS The first PDCP sequence number of the dropped frame, indicating that the previous frame is received and can occupy two bytes.
  • Bitmap Bitmap indicating the frame loss, such as the highest bit of Bitmap_1 is 0, indicating that the sequence number is (FMS+8).
  • the receiver does not receive it and needs to retransmit. If it is 1, it does not need to retransmit, such as the nth of Bitmap_k.
  • the bit is 0, indicating that the sequence number is (FMS+8*(k-1)+n).
  • the receiver does not receive it and needs to retransmit. If it is 1, it does not need to retransmit. If there is no Bitmap indication, it means there is no loss. Packet, the sending side can decide whether to retransmit according to its own judgment;
  • Max PDCP Pdu length The maximum length of a PDCP PDU that can be composed, which is two bytes.
  • Interval The time interval (in ms) at which data is sent, which is 1 byte and the maximum is 255 ms.
  • Repetition Period The number of repetitions (0 to 255) of data sent by consecutive Intervals, which is 1 byte and the maximum is 255.
  • the foregoing, by the PDCP, the first data is encapsulated according to the data type of the first data and the sending capability, where the foregoing data type is a robust header compressed ROHC feedback information frame, and the foregoing sending capability allows
  • the PDCP encapsulates the first data into the first packet data unit PDU; and/or, when the data type is a non-robust header compressed ROHC feedback information frame
  • the PDCP encapsulates the first data and other non-ROHC feedback information frames to be sent together according to the sending capability to form a second packet data unit PDU.
  • the foregoing PDCP encapsulates the first data and the other non-ROHC feedback information frames according to the sending capability to form the second PDU.
  • the PDCP determines, according to the sending capability, the amount of data that is allowed to be sent, and the PDCP is configured according to the PDCP.
  • the amount of data that is allowed to be transmitted is concatenated with some or all of the first data and other non-ROHC feedback information frames to be transmitted; the PDCP encapsulates the concatenated data into a second PDU.
  • the data type is a non-ROHC feedback information frame
  • the first data and other non-ROHC feedback information frames may be concatenated.
  • the concatenation is performed, when the complete non-ROHC cannot be serially connected.
  • Other ROHCs can be segmented, that is, the first data is serially connected with some other non-ROHCs.
  • the foregoing sending, by the PDCP, the encapsulated first data includes: the PDCP is based on at least a sequence number of the second PDU and a super corresponding to the second PDU.
  • the frame number HFN encrypts the second PDU; the PDCP transmits the encrypted second PDU.
  • the non-ROHC feedback information frame is sent, the encryption is performed, and the encryption may be performed in multiple manners.
  • the sequence number of the second PDU and the corresponding HFN are used for encryption.
  • the sequence number of the second PDU may be determined according to the number of received PDUs counted by the PDCP, and the amount of data buffered in the PDCP is limited. For example, the maximum amount of data is 65535 bytes, and the HFN may be buffered to the maximum amount of data. The number of times.
  • the method further includes: determining, by the PDCP, whether a confirmation message returned by the peer receiving the first data is received within a predetermined time; When the result of the determination is that the above confirmation message is not received, the first data is transmitted again.
  • the peer end that receives the first data may be the PDCP on the terminal side.
  • the PDCP may start a Poll timer, and retransmit the first data after the timeout.
  • the PDCP may not perform the retransmission function described above, that is, the PDCP may send the first data only once.
  • the foregoing embodiments are mainly directed to the process of sending data by the PDCP.
  • the following describes the overall sending process on the PDCP side.
  • the following functions are implemented in sequence: header compression; segmentation, In series; increase the PDCP sequence number (corresponding to the sequence number of the above PDU) to form a PDCP PDU; perform encryption processing; put in a transmission queue (not shown in FIG. 6); implement a retransmission mechanism.
  • the overall data processing of the PDCP transmitting side will be described in detail below with reference to the specific embodiment 1:
  • This embodiment provides a method for data processing on the transmitting side of the PDCP. As shown in FIG. 7, the processing flow in this embodiment includes the following steps:
  • the data of the S700 and the PDCP after the header compression processing is placed in the receiving queue.
  • the PDCP obtains data from the receiving queue.
  • the processing of the header compression is not described in detail herein. For details, refer to the 3633 protocol of 3GPP.
  • the transmission capability may be the total length of data allowed to be transmitted by the PDCP, and the corresponding transmission capability may be deducted from the total length of data allowed to be transmitted by the PDCP, and the remaining data is deducted.
  • the length of the data that is allowed to be transmitted by the PDCP is the remaining transmission capability of the PDCP); if it is not the ROHC feedback information frame, the process proceeds to step S702;
  • the P identifier is set according to the Poll_Byte parameter and the Poll_Byte parameter.
  • the PDCP PDU is formed according to the result obtained by S702 ⁇ S704.
  • S707 The processing of the 4G RLC ARQ process is performed, and the data is sent and placed in the sent queue. If the P bit is 1, the Poll timer is started, and the PDU is retransmitted after the timeout;
  • the second data may also be received, where the second data may be sent by the peer end (for example, PDCP in the terminal), below.
  • the related data reception is described: the PDCP receives the second data; the PDCP processes the second data according to the data type of the second data.
  • the processing of the second data is mainly performed according to a specific type of the second data, wherein the data type of the second data may include multiple types, for example, a data frame, a control frame (control frame) It may include: Robust Header Compression (ROHC) feedback information frame, status report frame, transmission capability allocation frame, and the like.
  • ROHC Robust Header Compression
  • the PDCP decompresses the second data, that is, directly sends the ROHC feedback information frame to the header compression processing module for decompression processing, and obtains Corresponding data; and/or,
  • the second data is a status report frame for indicating a data reception state (ie, a receiving state of the data received by the peer receiving the PDCP, which may include information of the received data)
  • the PDCP parses the second data; determines data that needs to be retransmitted according to the parsing result; retransmits the data that needs to be retransmitted; and/or,
  • the PDCP parses the second data to obtain the transmission capability; and/or,
  • the PDCP parses the frame header of the data frame, obtains the sequence number of the data frame, and the status report identifier, where the status report identifier is used to indicate that the PDCP needs to return or does not need to return a status report; a sequence number and a superframe number HFN maintained in the PDCP and corresponding to the data frame to decrypt the data frame, and return a status report indicating a PDCP data reception status when the status report identifier indicates that the PDCP needs to return a status report; Decrypting the decrypted data according to the indication information for indicating the length of the service data unit SDU carried in the second data to form a service data unit SDU; and performing decompression processing on the SDU.
  • the foregoing embodiments are mainly directed to the process of receiving data by the PDCP.
  • the following is a description of the overall receiving process on the PDCP side.
  • the PDCP may sequentially implement the following functions: Transmit; decrypt the received data; deframe the PDCP PDU; reassemble; decompress the header. And the frame resolution can be assigned to the received capability to apply the result to the transmitting side.
  • the overall data processing of the PDCP receiving side will be described in detail below with reference to the specific embodiment 2:
  • This embodiment provides a method for processing data on the receiving side of the PDCP. As shown in FIG. 9, the processing procedure of the method in this embodiment includes the following steps:
  • S900 The data that the PDCP receives the RLC is placed in the cache, and when the scheduling time expires, the PDCP obtains data from the receiving queue.
  • step S901 determining the type of data taken, is a control frame, then proceeds to step S902, is a data frame, then proceeds to step S907;
  • step S902 it is determined whether it is a ROHC feedback information frame, and if so, go to step S911, directly to the header compression module processing, otherwise, go to step S903;
  • step S903 it is determined whether it is a status report frame, if it is a status report frame, then go to step S904 otherwise, go to step S905;
  • step S905 determining whether it is the transmission capability allocation frame reported by the RLC, and if yes, proceeding to step S906;
  • the PDCP SDU is handed over to the header compression module to perform decompression compression; the last data is delivered to the upper layer.
  • FIG. 10 is a flowchart of a second data sending method according to an embodiment of the present disclosure. As shown in FIG. 10, the process includes the following steps:
  • Step S1002 the radio link control RLC determines a transmission capability
  • step S1004 the RLC notifies the sending capability to the packet data convergence protocol layer PDCP, where the sending capability is used by the PDCP to send data.
  • the capability allocation process is added in the RLC, so that the PDCP can perform data transmission according to the sending capability from the RLC, so that the PDCP data transmission is more effective and reasonable, and provides a guarantee for satisfying the 5G service requirement, and solves the related problem.
  • the foregoing RLC determines that the sending capability includes: the RLC acquires the amount of data buffered in the PDCP and the air interface capability information from the media access control MAC; and the RLC according to the amount of data buffered in the PDCP, the air interface capability information. And the data buffer status of the RLC determines the above transmission capability.
  • the foregoing RLC acquires the data volume buffered in the PDCP, where the RLC acquires the data frame from the PDCP, and the RLC acquires the data volume identifier carried in the frame header of the data frame, where the data volume identifier is used by the RLC.
  • the amount of data buffered in the PDCP is identified; the RLC determines the amount of data buffered in the PDCP according to the data amount identifier.
  • the data frame sent by the PDCP may carry the total amount of data buffered in the PDCP, so that the RLC may obtain the data sent by the PDCP from the receiving buffer queue used for buffering the data sent by the PDCP, and according to the data, The carried information determines the total amount of data buffered in the PDCP.
  • the foregoing sending capability is not fixed. It may be changed according to the data buffered in the RLC or the change of the air interface capability. After determining that the sending capability needs to be changed, the sending capability may be updated. In an optional embodiment, after the foregoing RLC notifies the foregoing sending capability to the PDCP, the method further includes: re-determining the sending capability when the RLC determines that the air interface capability information and/or the data buffer state of the RLC changes. ; and notify the PDCP of the re-determined sending ability.
  • the foregoing RLC notifying the foregoing sending capability to the PDCP includes: the RLC composing a transmission capability allocation frame according to the foregoing transmission capability; and the RLC transmitting the foregoing transmission capability allocation frame to the PDCP. That is, in the present embodiment, the RLC notifies the PDCP of the transmission capability by the transmission capability allocation frame.
  • the foregoing embodiments are mainly directed to the RLC side processing flow.
  • UM Unacknowledge Mode
  • the air interface capability is connected or segmented, and the RLC sequence number is added, the transmission is performed, and the process of capacity allocation is added, and the capability allocation frame is transmitted to the PDCP.
  • UM Unacknowledge Mode
  • the overall flow of the RLC side will be described in detail below with reference to the specific embodiment 3 and the specific embodiment 4:
  • This embodiment provides a method for processing the PDCP data by the RLC. As shown in FIG. 11, the processing procedure of the method in this embodiment includes the following steps:
  • step S1101 it is determined whether the type of the fetched data is a control frame, and if so, step S1102 is performed, otherwise step S1103 is performed;
  • the User Buffer Size information in the frame header is obtained to obtain the buffer information in the PDCP, and is used when the total transmission capability is processed;
  • S1104 Perform a UM RLC process, and segment and connect the data according to the air interface capability reported by the MAC.
  • S1105 Send the formed RLC PDU to the MAC layer.
  • This embodiment provides a method for allocating RLC processing capability. As shown in FIG. 12, the processing procedure of the method in this embodiment includes the following steps:
  • S1201 Calculate the sending capability that needs to be allocated to the PDCP according to the saved PDCP User Buffer Size information, the RLC self-cache status, and the air interface capability reported by the MAC.
  • Max PDCP PDU Length can refer to the MTU configuration of the IP transmission at the same time;
  • S1203 A capability allocation frame constituting the PDCP is sent to the PDCP layer.
  • a new data processing method for user plane data is provided in the embodiment of the present disclosure, so that under the C-RAN architecture, it is more suitable for 5G large capacity and short time. Extended performance requirements.
  • the main function of the PDCP/RLC is merged into the PDCP layer and placed in the centralized processing unit, and the RLC with high delay requirement is connected in the air interface capability, the re-segmentation and the MAC function are placed in the remote processing unit, simplifying
  • the latter RLC function is similar to the current UMRLC mode.
  • this paper adds the capability allocation processing at the RLC layer with reference to the 2525 protocol of 3G, so that the data processing of the PDCP is more effective and reasonable.
  • the RLC layer may adopt the UM mode, perform the segmentation and concatenation functions, and increase the function of data transmission capability allocation; the PDCP layer adds the basis according to the original encryption and header compression functions of the 4G.
  • the RLC transmission capability allocation performs segmentation and concatenation functions on the PDCP SDU and implements the ARQ function.
  • a data transmitting apparatus is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 13 is a structural block diagram of a first data transmitting apparatus according to an embodiment of the present disclosure.
  • the apparatus may be applied to a packet data convergence protocol layer PDCP.
  • the apparatus includes an obtaining module 132 and a sending module 134.
  • the device includes an obtaining module 132 and a sending module 134.
  • the obtaining module 132 is configured to acquire a sending capability for transmitting data from the radio link control RLC, and the sending module 134 is connected to the obtaining module 132, and configured to send the first data according to the sending capability.
  • the sending module 134 may send the first data by: encapsulating the first data according to the data type of the first data and the sending capability; and sending the encapsulated first data.
  • the sending module 134 may encapsulate the first data according to the data type and the sending capability of the first data by: when the data type is a robust header compression ROHC feedback information frame, and When the sending capability allows the length of the data sent by the PDCP to be greater than or equal to the length of the first data, the first data is encapsulated into the first packet data unit PDU; and/or, when the data type is non-robust header compression ROHC feedback information In the case of a frame, the first data and other non-ROHC feedback information frames to be transmitted are encapsulated together to form a second packet data unit PDU according to the foregoing transmission capability.
  • the sending module 134 may encapsulate the first data and other non-ROHC feedback information frames to form a second PDU according to the foregoing sending capability: determining, according to the sending capability, that the current sending is allowed. The amount of data; the first data and some other non-ROHC feedback information frames to be transmitted are serially connected according to the amount of data allowed to be sent; and the serialized data is encapsulated into the second PDU.
  • the sending by the sending module 134, the encapsulated first data includes: at least according to the sequence number of the second PDU and the second PDU.
  • the superframe number HFN encrypts the second PDU; the encrypted second PDU is transmitted.
  • the foregoing apparatus further includes: a retransmission module, configured to: after receiving the first data according to the sending capability, determine whether a confirmation message returned by the peer receiving the first data is received within a predetermined time; When the result of the determination is that the above confirmation message is not received, the first data is transmitted again.
  • a retransmission module configured to: after receiving the first data according to the sending capability, determine whether a confirmation message returned by the peer receiving the first data is received within a predetermined time; When the result of the determination is that the above confirmation message is not received, the first data is transmitted again.
  • the foregoing apparatus further includes a receiving module and a processing module, where The receiving module is configured to receive the second data; the processing module is configured to process the second data according to the data type of the second data.
  • the processing module may process the second data by: decompressing the second data when the second data is a robust header compression ROHC feedback information frame; And/or, when the second data is a status report frame for indicating a data receiving status, parsing the second data; determining data that needs to be retransmitted according to the parsing result; retransmitting the data that needs to be retransmitted; and Or, when the second data is a transmission capability allocation frame for indicating the transmission capability, parsing the second data acquisition transmission capability; and/or, when the second data is a data frame, parsing the frame of the data frame a header, a sequence number of the data frame, and a status report identifier, where the status report identifier is used to indicate that the PDCP needs to return or does not need to return a status report; according to the sequence number of the data frame and the superframe number HFN corresponding to the data frame maintained in the PDCP Decrypting the data frame and returning for indicating when the status report identifier
  • FIG. 14 is a structural block diagram of a second type of data transmitting apparatus, which may be applied to a radio link control RLC, as shown in FIG. 14, including a determining module 142 and a notifying module 144, below, according to an embodiment of the present disclosure.
  • a radio link control RLC radio link control
  • the determining module 142 is configured to determine a sending capability; the notification module 144 is coupled to the determining module 142, and configured to notify the packet data convergence protocol layer PDCP of the sending capability, wherein the sending capability is used by the PDCP to send data.
  • the determining module 142 may determine the sending capability by acquiring the amount of data buffered in the PDCP and the air interface capability information from the media access control MAC; according to the amount of data buffered in the PDCP, The above air interface capability information and the data buffer status of the RLC determine the above transmission capability.
  • the determining module 142 can be obtained by: The amount of data buffered in the PDCP is obtained by: obtaining a data frame from the PDCP; and obtaining a data quantity identifier carried in a frame header of the data frame, where the data quantity identifier is used to identify the amount of data buffered in the PDCP; Determine the amount of data cached in PDCP.
  • the apparatus further includes an update module, configured to: after notifying the foregoing transmit capability to the PDCP, and when the RLC determines that the air interface capability information and/or the data cache state of the RLC changes, The above transmission capability is determined; the re-determined transmission capability is notified to the PDCP.
  • an update module configured to: after notifying the foregoing transmit capability to the PDCP, and when the RLC determines that the air interface capability information and/or the data cache state of the RLC changes, The above transmission capability is determined; the re-determined transmission capability is notified to the PDCP.
  • the foregoing notification module 144 may notify the PDCP of the foregoing sending capability by: transmitting a capability allocation frame according to the foregoing transmission capability; and transmitting the foregoing transmission capability allocation frame to the PDCP.
  • a data transmitting system comprising the data transmitting apparatus applied to the PDCP according to any one of the above, and the data transmitting apparatus applied to the RLC according to any one of the above.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium.
  • the storage medium may be configured to store program code for performing the steps in the foregoing method embodiments.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs the above steps according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • a data transmission method, apparatus, and system provided by an embodiment of the present disclosure have the following beneficial effects: since the capability allocation processing is added in the RLC, the PDCP can perform data transmission according to the transmission capability from the RLC, thereby making the PDCP The data transmission is more effective and reasonable, thus providing a guarantee for meeting the 5G business requirements, and solving the problem that the related technologies cannot meet the 5G business requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开实施例中提供了一种数据发送方法、装置及***,其中,该方法包括:分组数据汇聚协议层PDCP获取来自无线链路控制RLC的用于发送数据的发送能力;上述PDCP根据上述发送能力发送第一数据。通过本公开,解决了相关技术中存在的无法满足5G的业务需求的问题。

Description

数据发送方法、装置及*** 技术领域
本公开涉及通信领域,具体而言,涉及一种数据发送方法、装置及***。
背景技术
移动通信网络面临终端数据业务量膨胀式的增长,第五代移动通信技术(the 5th Generation mobile communication technology,简称为5G)网络的构建需要达到超高速率,大吞吐量,超高可靠性,超低时延等指标,为用户提供最佳的体验,这些需求使得移动网络的服务能力和部署策略都面临着巨大的压力与挑战,运营商一方面需要增强现有的网络部署和通讯技术,另一方面希望加快新技术的推广和网络拓展,从而达到快速提升网络性能的目的。
***移动通信技术(the 4th Generation mobile communication technology,简称为4G)的网络架构呈现了扁平化,去掉了无线网络控制器(Radio Network Controller,简称为RNC),基站eNodeB直接跟核心网相连,降低了时延。未来5G的网络架构,除了进一步将核心网功能下沉外,倾向于采用C-RAN(Centralized,Cooperative,Cloud & Clean-Radio Access Network)的网络部署。这种网络架构采用协作化,虚拟化技术,实现资源共享和动态调度,达到低成本、高带宽和高灵活的运行,而且在5G,小区范围越来越小,是个超密集的异构网络,这种架构可以方便实现小区之间有效的协作。
在4G中,C-RAN架构一般由集中基带单元(BaseBand Unit,简称为BBU)、拉远射频拉远单元(Radio Remote Unit,简称为RRU)组成,BBU、RRU间的前传接口采用通用公共无线电接口(Common Public Radio Interface,简称为CPRI),由于CPRI接口传输的是经过物理层编码调制等处理后的IQ(in-phase/quadrature,同相/正交)信号,CPRI接口对传输时 延迟和带宽都有较大的要求。如果在5G空口速率提升到数十Gbps后,CPRI接口的流量需求将上升到Tbps级别,对网络部署成本和部署难度都带来了巨大的压力。因此,在5G,需要重新定义BBU和RRU的功能,比如将层2的用户面部分功能部分放在BBU,部分放在RRU,可以对重新规划功能后的BBU和RRU分别命名为集中处理单元和远端处理单元。
在4G中,无线接口用户平面的协议栈有分组数据汇聚协议层(Packet Data Convergence Protocol,简称为PDCP)、无线链路控制(Radio Link Control,简称为RLC)、媒体接入控制(Medium Access Control,简称为MAC),其中PDCP的功能有头压缩,加密完整性保护,重传,接收侧排序等功能,RLC功能有自动重传请求(Automatic Repeat Request,简称为ARQ),串联分段等,如果只是把PDCP放在集中处理单元,而RLC及其以下如MAC功能放在远端处理单元,这种处理方式较简单,但是有以下的几个问题:
1、PDCP的数据在PDCP重建的需要重传,因此定义了PDCP的状态报告以及重传的功能,与RLC的ARQ功能有重复,而且PDCP每一包数据需要收到RLC的确认后才删除,RLC反馈给PDCP的确认消息量很大;
2、同一包数据在收到对端确认之前PDCP和RLC都需要缓存,并且如果PDCP和RLC之间没有流控机制,那么RLC的缓存开销就很大;
3、PDCP没有将服务数据单元(Service Data Unit,简称为SDU)串接,PDCP和RLC的IP传输效率将比较低,即使如果集中处理单元和远端处理单元支持巨型帧传送,那也不能减轻传输压力。
如果PDCP/RLC的所有功能都放在集中处理单元,那么因为目前4G中MAC需要根据空口能力频繁通知RLC当前可以发送数据量,那这个通知消息的频度是不能承受的,而且RLC组成的协议数据单元(Protocol data unit,简称为PDU)会很大,一般都会超过IP传输的最大包长。这么大的包长不适于IP传输。
综上考虑,在C-RAN架构下,如果不对PDCP/RLC功能做整合,将 对运营商的网络部署带来很大困难,采用上述的整合方式会存在诸多问题,用户也将无法达到5G高速率的业务需求。针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
公开内容
本公开实施例提供了一种数据发送方法、装置及***,以至少解决相关技术中存在的无法满足5G的业务需求的问题。
根据本公开的一个实施例,提供了一种数据发送方法,包括:分组数据汇聚协议层PDCP获取来自无线链路控制RLC的用于发送数据的发送能力;所述PDCP根据所述发送能力发送第一数据。
可选地,所述PDCP根据所述发送能力发送所述第一数据包括:所述PDCP根据所述第一数据的数据类型以及所述发送能力对所述第一数据进行封装;所述PDCP发送封装后的第一数据。
可选地,所述PDCP根据所述第一数据的数据类型以及所述发送能力对所述第一数据进行封装包括:当所述数据类型为健壮性头压缩ROHC反馈信息帧时,且所述发送能力允许所述PDCP发送的数据的长度大于或等于所述第一数据的长度时,所述PDCP将所述第一数据封装成第一分组数据单元PDU;和/或,当所述数据类型为非健壮性头压缩ROHC反馈信息帧时,所述PDCP根据所述发送能力将所述第一数据以及其他的待发送的非ROHC反馈信息帧封装在一起组成第二分组数据单元PDU。
可选地,所述PDCP根据所述发送能力将所述第一数据以及所述其他的非ROHC反馈信息帧封装在一起组成所述第二PDU包括:所述PDCP根据所述发送能力确定本次允许发送的数据量;所述PDCP根据所述允许发送的数据量将所述第一数据和其他的待发送的非ROHC反馈信息帧的部分或全部进行串接;所述PDCP将串接后的数据封装成所述第二PDU。
可选地,当所述第一数据类型为所述非ROHC反馈信息帧时,所述PDCP发送所述封装后的第一数据包括:所述PDCP至少根据所述第二PDU的序号和所述第二PDU对应的超帧号HFN对所述第二PDU进行加 密;所述PDCP发送加密后的第二PDU。
可选地,所述PDCP在根据所述发送能力发送所述第一数据之后,所述方法还包括:所述PDCP判断在预定时间内是否收到接收所述第一数据的对端返回的确认消息;所述PDCP在判断结果为未收到所述确认消息时,再次发送所述第一数据。
可选地,所述方法还包括:所述PDCP接收第二数据;所述PDCP根据所述第二数据的数据类型对所述第二数据进行处理。
可选地,所述PDCP根据所述第二数据的数据类型对所述第二数据进行处理包括:当所述第二数据为健壮性头压缩ROHC反馈信息帧时,所述PDCP对所述第二数据进行解压缩处理;和/或,当所述第二数据为用于指示数据接收状态的状态报告帧时,所述PDCP解析所述第二数据;根据解析结果确定需要重传的数据;对需要重传的数据进行重传;和/或,当所述第二数据为用于指示所述发送能力的发送能力分配帧时,所述PDCP解析所述第二数据获取所述发送能力;和/或,当所述第二数据为数据帧时,所述PDCP解析所述数据帧的帧头,获取所述数据帧的序号以及状态报告标识,其中,所述状态报告标识用于指示所述PDCP需要返回或无需返回状态报告;根据所述数据帧的序号以及所述PDCP中维护的与所述数据帧对应的超帧号HFN对所述数据帧进行解密处理,以及在所述状态报告标识指示所述PDCP需要返回状态报告时返回用于表示所述PDCP的数据接收情况的状态报告;根据所述第二数据中携带的用于指示服务数据单元SDU的长度的指示信息对解密后的数据进行重组,组成服务数据单元SDU;对所述SDU进行解压缩处理。
根据本公开的一个实施例,提供了一种数据发送方法,包括:无线链路控制RLC确定发送能力;所述RLC将所述发送能力通知给分组数据汇聚协议层PDCP,其中,所述发送能力用于所述PDCP发送数据。
可选地,所述RLC确定所述发送能力包括:所述RLC获取所述PDCP中缓存的数据量以及来自媒体接入控制MAC的空口能力信息;所述RLC 根据所述PDCP中缓存的数据量、所述空口能力信息以及所述RLC的数据缓存状态确定所述发送能力。
可选地,所述RLC获取所述PDCP中缓存的数据量包括:所述RLC获取来自所述PDCP的数据帧;所述RLC获取所述数据帧的帧头中携带的数据量标识,其中,所述数据量标识用于标识所述PDCP中缓存的数据量;所述RLC根据所述数据量标识确定所述PDCP中缓存的数据量。
可选地,所述RLC在将所述发送能力通知给所述PDCP之后,所述方法还包括:当所述RLC确定所述空口能力信息和/或所述RLC的数据缓存状态发生变化时,重新确定所述发送能力;将重新确定的发送能力通知给所述PDCP。
可选地,所述RLC将所述发送能力通知给所述PDCP包括:所述RLC根据所述发送能力组成发送能力分配帧;所述RLC将所述发送能力分配帧发送给所述PDCP。
根据本公开的一个实施例,提供了一种数据发送装置,所述装置应用于分组数据汇聚协议层PDCP中,包括:获取模块,设置为获取来自无线链路控制RLC的用于发送数据的发送能力;发送模块,设置为根据所述发送能力发送第一数据。
根据本公开的一个实施例,提供了一种数据发送装置,所述装置应用于无线链路控制RLC中,包括:确定模块,设置为确定发送能力;通知模块,设置为将所述发送能力通知给分组数据汇聚协议层PDCP,其中,所述发送能力用于所述PDCP发送数据。
根据本公开的一个实施例,提供了一种数据发送***,包括上述的应用于分组数据汇聚协议层PDCP中的数据发送装置以及上述的应用于无线链路控制RLC中的数据发送装置。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行上述任一项方法中的步骤的程序代码。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于 运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开中的实施例,由于RLC中增加了能力分配处理,使得PDCP能够根据来自RLC的发送能力进行数据发送,从而使得PDCP的数据发送更加有效,合理,从而为满足5G的业务需求提供了保证,解决相关技术中存在的无法满足5G的业务需求的问题。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的第一种数据发送方法的流程图;
图2是根据本公开实施例的数据帧的结构示意图;
图3是根据本公开实施例的ROHC反馈信息帧的结构示意图;
图4是根据本公开实施例状态报告帧的结构示意图;
图5是根据本公开实施例的能力分配帧的结构示意图;
图6是根据本公开实施例的PDCP发送侧处理功能框图;
图7是根据本公开实施例的PDCP发送侧的流程图;
图8是根据本公开实施例的PDCP接收侧处理功能框图;
图9是根据本公开实施例的PDCP接收侧的流程图;
图10是根据本公开实施例的第二种数据发送方法流程图;
图11是根据本公开实施例的RLC对PDCP数据的处理流程图;
图12是根据本公开实施例的RLC对PDCP能力分配处理流程图;
图13是根据本公开实施例的第一种数据发送装置的结构框图;
图14是根据本公开实施例的第二种数据发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种数据发送方法,图1是根据本公开实施例的第一种数据发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,分组数据汇聚协议层PDCP获取来自无线链路控制RLC的用于发送数据的发送能力;
步骤S104,上述PDCP根据上述发送能力发送第一数据。
通过上述步骤,由于RLC中增加了能力分配处理,使得PDCP能够根据来自RLC的发送能力进行数据发送,从而使得PDCP的数据发送更加有效,合理,为满足5G的业务需求提供了保证,解决相关技术中存在的无法满足5G的业务需求的问题。
在一个可选的实施例中,在上述步骤S104中,上述PDCP根据上述发送能力发送第一数据时,可以通过如下方式实现:PDCP根据第一数据的数据类型以及上述发送能力对第一数据进行封装;PDCP发送封装后的第一数据。在本实施例中,第一数据的数据类型可以包括多种,例如,数据帧、控制帧(控制帧可以包括:健壮性头压缩(Robust Header Compression,简称为ROHC)反馈信息帧等),并且,不同的帧的结构是不同的,各个帧的结构可以参考附图2至5,其中,各个帧结构中的字段可以定义如下:
D/C:1表示数据帧,0表示控制帧;
R:保留字段;
FI:分段信息指示,00表示PDU中的Data字段的第一个字节为一个PDCP SDU的开始,最后一个字节为一个PDCP SDU的最后一个字节;01表示PDU中的Data字段的第一个字节为一个PDCP SDU的开始,最后一 个字节不是一个PDCP SDU的最后一个字节;10表示PDU中的Data字段的第一个字节不是一个PDCP SDU的开始,最后一个字节是一个PDCP SDU的最后一个字节;11表示PDU中的Data字段的第一个字节不是一个PDCP SDU的开始,最后一个字节也不是一个PDCP SDU的最后一个字节;
P:1表示对端收到后需要返回状态报告;0表示不需要返回状态报告;
E:1表示后面存在LI字段,0表示后面不再有LI字段;
PDCP_SN:PDCP序号,占两个字节,范围可以是0~65535;
User Buffer size:表示PDCP缓存的数据量(字节数),包括未分段以及待发队列中的数据,最大可以为65535,超过则表示为65535;
LI:PDCP的SDU的长度指示(字节数),该字段占15位,表示这些字节属于一个SDU;
PDCP TYPE:PDCP控制帧类型,可以占3位,000表示该帧为PDCP状态报告;001表示该帧为ROHC反馈信息帧;010表示该帧为发送能力分配帧;
FMS:第一个丢帧的PDCP序号,表示之前的帧都是收到的,可以占两个字节。
Bitmap:丢帧指示的位图,如Bitmap_1的最高位为0,表示序号为(FMS+8)接收端没有收到,需要重传,如果为1,则不需要重传,如Bitmap_k的第n位为0,表示序号为(FMS+8*(k-1)+n)接收端没有收到,需要重传,如果为1,则不需要重传,如果没有Bitmap指示,则表示不存在丢包,发送侧可以根据自己的判断是否决定重传;
Max PDCP Pdu length:可组成的PDCP PDU的最大长度,占两个字节;
Credit:每个Interval时间可以发送的数据量(字节数),占4个字节。
Interval:发送数据的时间间隔(单位ms),占1个字节,最大为255ms;
Repetition Period:连续多个Interval发送数据的重复次数(0~255),占1个字节,最大为255。
在一个可选的实施例中,上述PDCP根据第一数据的数据类型以及上述发送能力对第一数据进行封装包括:当上述数据类型为健壮性头压缩ROHC反馈信息帧时,且上述发送能力允许PDCP发送的数据的长度大于或等于第一数据的长度时,上述PDCP将第一数据封装成第一分组数据单元PDU;和/或,当上述数据类型为非健壮性头压缩ROHC反馈信息帧时,上述PDCP根据发送能力将第一数据以及其他的待发送的非ROHC反馈信息帧封装在一起组成第二分组数据单元PDU。
在一个可选的实施例中,上述PDCP根据发送能力将第一数据以及其他的非ROHC反馈信息帧封装在一起组成第二PDU包括:PDCP根据发送能力确定本次允许发送的数据量;PDCP根据允许发送的数据量将第一数据和其他的待发送的非ROHC反馈信息帧的部分或全部进行串接;PDCP将串接后的数据封装成第二PDU。在本实施例中,当数据类型是非ROHC反馈信息帧时,可以将第一数据和其他的非ROHC反馈信息帧进行串接,在进行串接时,当无法串接完整的其他的非ROHC时,可以将其他的ROHC进行分段,即将第一数据和部分其他的非ROHC进行串接。
在一个可选的实施例中,当上述第一数据类型为非ROHC反馈信息帧时,上述PDCP发送上述封装后的第一数据包括:PDCP至少根据第二PDU的序号和第二PDU对应的超帧号HFN对第二PDU进行加密;PDCP发送加密后的第二PDU。在本实施例中,在发送非ROHC反馈信息帧时,需要进行加密,加密的方式可以有多种,在本实施例中,是采用第二PDU的序号以及对应的HFN进行加密的,其中,第二PDU的序号可以是根据PDCP统计的接收的PDU的数量来确定的,而PDCP中缓存的数据量是有限的,例如,最多缓存65535字节的数据量,HFN可以是缓存到最大数据量的次数。
在一个可选的实施例中,上述PDCP在根据上述发送能力发送第一数据之后,上述方法还包括:PDCP判断在预定时间内是否收到接收第一数据的对端返回的确认消息;PDCP在判断结果为未收到上述确认消息时,再次发送第一数据。在本实施例中,接收第一数据的对端可以是终端侧的PDCP,PDCP在发送了上述第一数据之后,可以启动一个Poll定时器,超时后便对第一数据进行重传。当然,在实际应用中,PDCP也可以不执行上述的重传功能,即,PDCP可以仅发送一次第一数据。
上述的各实施例主要针对的是PDCP发送数据的流程,下面对PDCP侧的整体发送流程进行说明:如图6所示,PDCP在发送数据时,依次实现如下功能:头压缩;分段、串联;增加PDCP序号(对应于上述的PDU的序号)组成PDCP PDU;执行加密处理;放入发送队列(在图6中并无体现);实现重传机制。下面结合具体实施例1对PDCP发送侧的整体的数据处理进行详细说明:
具体实施例1
本实施例提供了一种PDCP发送侧数据处理的方法,如图7所示,本实施例中的处理流程包括以下步骤:
S700、PDCP经过头压缩处理后的数据放在接收队列,调度时刻到时,PDCP从该接收队列中获取数据,头压缩的处理这里不详细介绍,具体参见3GPP的36323协议;
S701、判断取到的数据类型是否是ROHC反馈信息帧,如果是ROHC反馈信息帧,那么在发送能力允许的情况下发送,按图3所示的帧结构构成PDCP PDU发送给RLC,并扣除对应的发送能力(在本实施例中,发送能力可以是允许PDCP发送的数据的总长度,扣除对应的发送能力可以是在允许PDCP发送的数据的总长度中扣除已发送的数据的长度,剩余的允许PDCP发送的数据的长度即为PDCP剩余的发送能力);如果不是ROHC反馈信息帧则转至步骤S702;
S702、如果不是ROHC反馈帧,获取RLC分配的发送能力,最大可 组成的PDCP PDU长度,确定本次调度发送的数据量,对接收队列中的其他非ROHC反馈帧统一考虑,进行分段,串接;
S703、得到本PDU的PDCP_SN,并参照4G RLC协议36322协议维护HFN,统计PDCP接收队列以及待发队列中的数据量,记为User Buffer Size;
S704、参照4G RLC的处理,如根据Poll_PDU,Poll_Byte参数,设置P标识;
S705、根据S702~S704得到的结果组成PDCP PDU;
S706、根据配置的加密算法,以及前面计算得到的HFN,PDCP_SN等信息,对PDCP PDU(LI+Data内容)进行加密;
S707、同4G RLC ARQ过程的处理,对数据进行发送,并放入已发队列,如果P位为1,则启动Poll定时器,超时后对该PDU进行重传;
S708、发送此PDU后,需要扣除发送能力。
在一个可选的实施例中,在PDCP发送上述第一数据之前或之后或同时,还可以接收第二数据,该第二数据可以是对端(例如,终端中的PDCP)发送的,下面对相关的数据接收进行描述:上述PDCP接收第二数据;PDCP根据该第二数据的数据类型对第二数据进行处理。在本实施例中,对第二数据进行处理主要是根据第二数据的具体类型来执行对应的处理,其中,第二数据的数据类型可以包括多种,例如,数据帧、控制帧(控制帧可以包括:健壮性头压缩(Robust Header Compression,简称为ROHC)反馈信息帧、状态报告帧、发送能力分配帧等)。下面对第二数据进行处理进行具体说明:
可选地,当上述第二数据为健壮性头压缩ROHC反馈信息帧时,PDCP对第二数据进行解压缩处理,即,直接将ROHC反馈信息帧交给头压缩处理模块进行解压缩处理,获取相应的数据;和/或,
当上述第二数据为用于指示数据接收状态(即,对端接收PDCP发送的数据的接收状态,可以包括接收到了的数据的信息)的状态报告帧时, PDCP解析第二数据;根据解析结果确定需要重传的数据;对需要重传的数据进行重传;和/或,
当上述第二数据为用于指示发送能力的发送能力分配帧时,PDCP解析第二数据获取上述发送能力;和/或,
当所述第二数据为数据帧时,PDCP解析数据帧的帧头,获取数据帧的序号以及状态报告标识,其中,该状态报告标识用于指示PDCP需要返回或无需返回状态报告;根据数据帧的序号以及PDCP中维护的与该数据帧对应的超帧号HFN对上述数据帧进行解密处理,以及在状态报告标识指示PDCP需要返回状态报告时返回用于表示PDCP的数据接收情况的状态报告;根据上述第二数据中携带的用于指示服务数据单元SDU的长度的指示信息对解密后的数据进行重组,组成服务数据单元SDU;对上述SDU进行解压缩处理。
上述的各实施例主要针对的是PDCP接收数据的流程,下面对PDCP侧的整体接收流程进行说明:如图8所示,PDCP在接收数据时,可以依次实现如下功能:根据状态报告进行重传;对接收的数据解密;对PDCPPDU解帧;重组;解头压缩。以及可以对接收的能力分配帧解析将结果作用到发送侧。下面结合具体实施例2对PDCP接收侧的整体的数据处理进行详细说明:
具体实施例2
本实施例提供了一种PDCP接收侧数据处理的方法,如图9所示,本实施例方法的处理流程包括以下步骤:
S900,PDCP接收RLC的数据放在缓存中,调度时刻到时,PDCP从该接收队列中获取数据;
S901,判断取到的数据类型,是控制帧则转至步骤S902,是数据帧则转至步骤S907;
S902,判断是否是ROHC反馈信息帧,若是,转至步骤S911,直接交给头压缩模块处理,否则,转至步骤S903;
S903,判断是否是状态报告帧,如果是状态报告帧,则转至步骤S904否则,转至步骤S905;
S904,解析状态报告帧的内容,得到已经确认收到的数据,需要重传的数据,交给ARQ处理模块,进行窗口的移动,并实施重传;
S905,判断是否是RLC上报的发送能力分配帧,若是,转至步骤S906;
S906,解析发送能力分配帧的内容得到具体的发送能力,供PDCP发送数据时处理;
S907,如果是数据帧,那么解析帧头,得到PDCP_SN,P标识等信息,根据维护的HFN,得到COUNTC;
S908,如果P为1,那么检查是否存在丢包,生成状态报告,发送给对端;
S909,进行解密处理;
S910,解析解密后的数据,得到LI等信息,实行重组,组成PDCP SDU;
S911,将PDCP SDU交给头压缩模块,执行解头压缩;将最后数据投递给上层。
上述的各实施例主要是从PDCP侧的数据发送和数据接收流程进行的说明,下面从RLC侧进行说明:
图10是根据本公开实施例的第二种数据发送方法流程图,如图10所示,该流程包括如下步骤:
步骤S1002,无线链路控制RLC确定发送能力;
步骤S1004,上述RLC将发送能力通知给分组数据汇聚协议层PDCP,其中,该发送能力用于PDCP发送数据。
由上述步骤可知,由于RLC中增加了能力分配处理,使得PDCP能够根据来自RLC的发送能力进行数据发送,从而使得PDCP的数据发送更加有效,合理,为满足5G的业务需求提供了保证,解决相关技术中存在的无法满足5G的业务需求的问题。
在一个可选的实施例中,上述RLC确定上述发送能力包括:RLC获取PDCP中缓存的数据量以及来自媒体接入控制MAC的空口能力信息;RLC根据PDCP中缓存的数据量、上述空口能力信息以及RLC的数据缓存状态确定上述发送能力。
在一个可选的实施例中,上述RLC获取PDCP中缓存的数据量包括:RLC获取来自PDCP的数据帧;RLC获取上述数据帧的帧头中携带的数据量标识,其中,该数据量标识用于标识PDCP中缓存的数据量;RLC根据该数据量标识确定上述PDCP中缓存的数据量。在本实施例中,PDCP发送的数据帧中都可以携带PDCP中缓存的数据总量,从而RLC可以从用于缓存PDCP发送的数据的接收缓存队列中获取PDCP发送的数据,并根据该数据中携带的信息确定PDCP中缓存的数据总量。
可选地,上述发送能力并不是固定的,它可以是根据RLC中缓存的数据或者上述空口能力的改变而改变,当确定上述发送能力需要改变后,可以对发送能力进行更新。在一个可选的实施例中,上述RLC在将上述发送能力通知给PDCP之后,上述方法还包括:当RLC确定上述空口能力信息和/或RLC的数据缓存状态发生变化时,重新确定上述发送能力;并将重新确定的发送能力通知给PDCP。
在一个可选的实施例中,上述RLC将上述发送能力通知给PDCP包括:RLC根据上述发送能力组成发送能力分配帧;上述RLC将上述发送能力分配帧发送给PDCP。即,在本实施例中,RLC是通过发送能力分配帧将发送能力通知给PDCP。
上述的各实施例主要针对的是RLC侧处理流程,下面对RLC侧的整体流程进行说明:RLC侧可以统一都采用非确认模式(Unacknowledge Mode,简称为UM),即实现:根据MAC提供的空口能力进行串联或者分段,并增加RLC序号,进行发送,并且增加能力分配的处理过程,发送能力分配帧给PDCP。下面结合具体实施例3和具体实施例4对RLC侧的整体流程进行详细说明:
具体实施例3
本实施例提供了一种RLC对PDCP数据进行处理的方法,如图11所示,本实施例方法的处理流程包括以下步骤:
S1100,调度时刻到时,RLC从接收缓存中获取PDCP的数据;
S1101,判断取到数据的类型是否是控制帧,如果是,执行步骤S1102,否则执行步骤S1103;
S1102,如果是ROHC反馈信息帧,不需要解析帧内容,继续执行S1104;
S1103,如果是数据帧,那么获取帧头中User Buffer Size信息得到PDCP中缓存信息,共分配发送能力处理时使用;
S1104,执行UM RLC的处理过程,根据MAC上报的空口能力对数据进行分段,串接;
S1105,将组成的RLC PDU发送给MAC层。
具体实施例4
本实施例提供了一种RLC处理能力分配的方法,如图12所示,本实施例方法的处理流程包括以下步骤:
S1200,RLC确定需要调整PDCP的发送能力时,比如MAC上报的空口能力有变化;RLC缓存占用超过门限等等,开始处理以下过程;
S1201,根据保存的PDCP User Buffer Size信息,RLC本身缓存情况,MAC上报的空口能力等信息,计算得到需要分配给PDCP的发送能力;
S1202,将发送能力折算为Max PDCP PDU Length;Credit;Interval;Repetition Period;Max PDCP PDU Length可以同时参照IP传输的MTU配置;
S1203,组成PDCP的能力分配帧,发送给PDCP层。
从上述的实施例可知,本公开实施例中提供的是一种对用户面数据新的数据处理方法,使得在C-RAN架构下,更加能适应5G大容量,短时 延的性能要求。其中,主要是将PDCP/RLC的部分功能合并到PDCP层放在集中处理单元,而对时延要求较高的RLC按空口能力串联、重分段以及MAC的功能放在远端处理单元,简化后的RLC功能类似目前的UMRLC模式。为使集中处理单元和远端处理单元的数据传输更加贴近空口能力,以及IP传输特性,本文参照3G的25425协议在RLC层增加能力分配处理,使PDCP的数据处理达到更有效、合理。并且,在本公开实施例中,RLC层可以采用UM模式,执行分段和串接功能,并增加数据发送能力分配的功能;PDCP层除了4G原有的加密,头压缩等功能外,增加根据RLC的发送能力分配对PDCP SDU进行分段和串接功能,并实现ARQ功能。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种数据发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图13是根据本公开实施例的第一种数据发送装置的结构框图,该装置可以应用于分组数据汇聚协议层PDCP中,如图13所示,该装置包括获取模块132和发送模块134,下面对该装置进行说明:
获取模块132,设置为获取来自无线链路控制RLC的用于发送数据的发送能力;发送模块134,连接至上述获取模块132,设置为根据上述发送能力发送第一数据。
在一个可选的实施例中,上述发送模块134可以通过如下方式发送第一数据:根据第一数据的数据类型以及上述发送能力对第一数据进行封装;发送封装后的第一数据。
在一个可选的实施例中,上述发送模块134可以通过如下方式根据第一数据的数据类型以及发送能力对第一数据进行封装:当上述数据类型为健壮性头压缩ROHC反馈信息帧时,且上述发送能力允许PDCP发送的数据的长度大于或等于第一数据的长度时,将第一数据封装成第一分组数据单元PDU;和/或,当上述数据类型为非健壮性头压缩ROHC反馈信息帧时,根据上述发送能力将第一数据以及其他的待发送的非ROHC反馈信息帧封装在一起组成第二分组数据单元PDU。
在一个可选的实施例中,上述发送模块134可以通过如下方式根据上述发送能力将第一数据以及其他的非ROHC反馈信息帧封装在一起组成第二PDU:根据上述发送能力确定本次允许发送的数据量;根据上述允许发送的数据量将第一数据和其他的待发送的非ROHC反馈信息帧的部分或全部进行串接;将串接后的数据封装成上述第二PDU。
在一个可选的实施例中,当上述第一数据类型为非ROHC反馈信息帧时,上述发送模块134发送上述封装后的第一数据包括:至少根据第二PDU的序号和第二PDU对应的超帧号HFN对第二PDU进行加密;发送加密后的第二PDU。
在一个可选的实施例中,上述装置还包括重发送模块,设置为在根据上述发送能力发送第一数据之后,判断在预定时间内是否收到接收第一数据的对端返回的确认消息;在判断结果为未收到上述确认消息时,再次发送第一数据。
在一个可选的实施例中,上述装置还包括接收模块和处理模块,其中, 该接收模块设置为接收第二数据;处理模块,设置为根据上述第二数据的数据类型对第二数据进行处理。
在一个可选的实施例中,上述处理模块可以通过如下方式对上述第二数据进行处理:当上述第二数据为健壮性头压缩ROHC反馈信息帧时,对上述第二数据进行解压缩处理;和/或,当上述第二数据为用于指示数据接收状态的状态报告帧时,解析上述第二数据;根据解析结果确定需要重传的数据;对需要重传的数据进行重传;和/或,当上述第二数据为用于指示上述发送能力的发送能力分配帧时,解析上述第二数据获取发送能力;和/或,当上述第二数据为数据帧时,解析上述数据帧的帧头,获取数据帧的序号以及状态报告标识,其中,上述状态报告标识用于指示PDCP需要返回或无需返回状态报告;根据上述数据帧的序号以及PDCP中维护的与数据帧对应的超帧号HFN对所述数据帧进行解密处理,以及在上述状态报告标识指示PDCP需要返回状态报告时返回用于表示PDCP的数据接收情况的状态报告;根据上述第二数据中携带的用于指示服务数据单元SDU的长度的指示信息对解密后的数据进行重组,组成服务数据单元SDU;对上述SDU进行解压缩处理。
图14是根据本公开实施例的第二种数据发送装置的结构框图,该装置可以应用于无线链路控制RLC中,如图14所示,该装置包括确定模块142和通知模块144,下面对该装置进行说明:
确定模块142,设置为确定发送能力;通知模块144,连接至上述确定模块142,设置为将上述发送能力通知给分组数据汇聚协议层PDCP,其中,该发送能力用于PDCP发送数据。
在一个可选的实施例中,上述确定模块142可以通过如下方式确定上述发送能力:获取上述PDCP中缓存的数据量以及来自媒体接入控制MAC的空口能力信息;根据PDCP中缓存的数据量、上述空口能力信息以及RLC的数据缓存状态确定上述发送能力。
在一个可选的实施例中,上述确定模块142可以通过如下方式获取上 述PDCP中缓存的数据量:获取来自PDCP的数据帧;获取该数据帧的帧头中携带的数据量标识,其中,该数据量标识用于标识PDCP中缓存的数据量;根据该数据量标识确定PDCP中缓存的数据量。
在一个可选的实施例中,上述装置还包括更新模块,设置为在将上述发送能力通知给PDCP之后,且当上述RLC确定上述空口能力信息和/或RLC的数据缓存状态发生变化时,重新确定上述发送能力;将重新确定的发送能力通知给PDCP。
在一个可选的实施例中,上述通知模块144可以通过如下方式将上述发送能力通知给PDCP:根据上述发送能力组成发送能力分配帧;将上述发送能力分配帧发送给PDCP。
在本公开实施例中,还提供了一种数据发送***,该***包括上任一项的应用于PDCP中的数据发送装置以及上述任一项的应用于RLC中的数据发送装置。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述各方法实施例中的步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述各步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
如上所述,本公开实施例提供的一种数据发送方法、装置及***具有以下有益效果:由于RLC中增加了能力分配处理,使得PDCP能够根据来自RLC的发送能力进行数据发送,从而使得PDCP的数据发送更加有效,合理,从而为满足5G的业务需求提供了保证,解决相关技术中存在的无法满足5G的业务需求的问题。

Claims (17)

  1. 一种数据发送方法,包括:
    分组数据汇聚协议层PDCP获取来自无线链路控制RLC的用于发送数据的发送能力;
    所述PDCP根据所述发送能力发送第一数据。
  2. 根据权利要求1所述的方法,其中,所述PDCP根据所述发送能力发送所述第一数据包括:
    所述PDCP根据所述第一数据的数据类型以及所述发送能力对所述第一数据进行封装;
    所述PDCP发送封装后的第一数据。
  3. 根据权利要求2所述的方法,其中,所述PDCP根据所述第一数据的数据类型以及所述发送能力对所述第一数据进行封装包括:
    当所述数据类型为健壮性头压缩ROHC反馈信息帧时,且所述发送能力允许所述PDCP发送的数据的长度大于或等于所述第一数据的长度时,所述PDCP将所述第一数据封装成第一分组数据单元PDU;和/或,
    当所述数据类型为非健壮性头压缩ROHC反馈信息帧时,所述PDCP根据所述发送能力将所述第一数据以及其他的待发送的非ROHC反馈信息帧封装在一起组成第二分组数据单元PDU。
  4. 根据权利要求3所述的方法,其中,所述PDCP根据所述发送能力将所述第一数据以及所述其他的非ROHC反馈信息帧封装在一起组成所述第二PDU包括:
    所述PDCP根据所述发送能力确定本次允许发送的数据量;
    所述PDCP根据所述允许发送的数据量将所述第一数据和其他的待发送的非ROHC反馈信息帧的部分或全部进行串接;
    所述PDCP将串接后的数据封装成所述第二PDU。
  5. 根据权利要求3或4所述的方法,其中,当所述第一数据类型为所述非ROHC反馈信息帧时,所述PDCP发送所述封装后的第一数据包括:
    所述PDCP至少根据所述第二PDU的序号和所述第二PDU对应的超帧号HFN对所述第二PDU进行加密;
    所述PDCP发送加密后的第二PDU。
  6. 根据权利要求1所述的方法,其中,所述PDCP在根据所述发送能力发送所述第一数据之后,所述方法还包括:
    所述PDCP判断在预定时间内是否收到接收所述第一数据的对端返回的确认消息;
    所述PDCP在判断结果为未收到所述确认消息时,再次发送所述第一数据。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述PDCP接收第二数据;
    所述PDCP根据所述第二数据的数据类型对所述第二数据进行处理。
  8. 根据权利要求7所述的方法,其中,所述PDCP根据所述第二数据的数据类型对所述第二数据进行处理包括:
    当所述第二数据为健壮性头压缩ROHC反馈信息帧时,所述PDCP对所述第二数据进行解压缩处理;和/或,
    当所述第二数据为用于指示数据接收状态的状态报告帧时,所述PDCP解析所述第二数据;根据解析结果确定需要重传的数据;对需要重传的数据进行重传;和/或,
    当所述第二数据为用于指示所述发送能力的发送能力分配帧时,所述PDCP解析所述第二数据获取所述发送能力;和/或,
    当所述第二数据为数据帧时,所述PDCP解析所述数据帧的帧头,获取所述数据帧的序号以及状态报告标识,其中,所述状态报告标识用于指示所述PDCP需要返回或无需返回状态报告;根据所述数据帧的序号以及所述PDCP中维护的与所述数据帧对应的超帧号HFN对所述数据帧进行解密处理,以及在所述状态报告标识指示所述PDCP需要返回状态报告时返回用于表示所述PDCP的数据接收情况的状态报告;根据所述第二数据中携带的用于指示服务数据单元SDU的长度的指示信息对解密后的数据进行重组,组成服务数据单元SDU;对所述SDU进行解压缩处理。
  9. 一种数据发送方法,包括:
    无线链路控制RLC确定发送能力;
    所述RLC将所述发送能力通知给分组数据汇聚协议层PDCP,其中,所述发送能力用于所述PDCP发送数据。
  10. 根据权利要求9所述的方法,其中,所述RLC确定所述发送能力包括:
    所述RLC获取所述PDCP中缓存的数据量以及来自媒体接入控制MAC的空口能力信息;
    所述RLC根据所述PDCP中缓存的数据量、所述空口能力信息以及所述RLC的数据缓存状态确定所述发送能力。
  11. 根据权利要求10所述的方法,其中,所述RLC获取所述PDCP中缓存的数据量包括:
    所述RLC获取来自所述PDCP的数据帧;
    所述RLC获取所述数据帧的帧头中携带的数据量标识,其中,所述数据量标识用于标识所述PDCP中缓存的数据量;
    所述RLC根据所述数据量标识确定所述PDCP中缓存的数据量。
  12. 根据权利要求10或11所述的方法,其中,所述RLC在将所述发送能力通知给所述PDCP之后,所述方法还包括:
    当所述RLC确定所述空口能力信息和/或所述RLC的数据缓存状态发生变化时,重新确定所述发送能力;
    将重新确定的发送能力通知给所述PDCP。
  13. 根据权利要求9所述的方法,其中,所述RLC将所述发送能力通知给所述PDCP包括:
    所述RLC根据所述发送能力组成发送能力分配帧;
    所述RLC将所述发送能力分配帧发送给所述PDCP。
  14. 一种数据发送装置,应用于分组数据汇聚协议层PDCP中,包括:
    获取模块,设置为获取来自无线链路控制RLC的用于发送数据的发送能力;
    发送模块,设置为根据所述发送能力发送第一数据。
  15. 一种数据发送装置,应用于无线链路控制RLC中,包括:
    确定模块,设置为确定发送能力;
    通知模块,设置为将所述发送能力通知给分组数据汇聚协议层PDCP,其中,所述发送能力用于所述PDCP发送数据。
  16. 一种数据发送***,包括权利要求14所述的应用于分组数据汇聚协议层PDCP中的数据发送装置以及权利要求15所述的应用于无线链路控制RLC中的数据发送装置。
  17. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至13中任一项所述的方法。
PCT/CN2017/086075 2016-05-18 2017-05-26 数据发送方法、装置及*** WO2017198236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610331547.9 2016-05-18
CN201610331547.9A CN107404734B (zh) 2016-05-18 2016-05-18 数据发送方法、装置及***

Publications (1)

Publication Number Publication Date
WO2017198236A1 true WO2017198236A1 (zh) 2017-11-23

Family

ID=60324798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086075 WO2017198236A1 (zh) 2016-05-18 2017-05-26 数据发送方法、装置及***

Country Status (2)

Country Link
CN (1) CN107404734B (zh)
WO (1) WO2017198236A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572850A (zh) * 2019-09-05 2019-12-13 京信通信***(中国)有限公司 5g基站缓存处理业务数据方法、装置、设备和存储介质
CN111278060A (zh) * 2019-01-18 2020-06-12 维沃移动通信有限公司 一种以太帧传输方法和相关设备
CN112752305A (zh) * 2019-10-29 2021-05-04 ***通信有限公司研究院 流量控制方法、装置、相关设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10674396B2 (en) * 2017-12-21 2020-06-02 Mediatek Inc. Method and apparatus for handling compression error in mobile communications
CN110557229B (zh) * 2018-05-31 2022-04-29 ***通信有限公司研究院 一种数据发送方法、接收方法、发送端及接收端
US11576081B2 (en) 2018-07-02 2023-02-07 Huawei Technolgoies Co., Ltd. Link quality-based offloading method and device in dual connectivity
WO2020056880A1 (zh) * 2018-09-17 2020-03-26 Oppo广东移动通信有限公司 一种连接释放方法、数据处理方法、设备及存储介质
CN112586032B (zh) * 2018-11-15 2023-05-23 Oppo广东移动通信有限公司 无线通信的方法和通信设备
CN112953849B (zh) * 2019-12-10 2023-05-09 ***通信有限公司研究院 一种数据量处理方法、设备及介质
CN112399471B (zh) * 2020-10-23 2023-02-10 紫光展锐(重庆)科技有限公司 一种数据缓存的方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729396A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 数据包的发送、接收方法及装置、以及处理方法及***
CN101848489A (zh) * 2009-03-25 2010-09-29 中兴通讯股份有限公司 Pdu的发送/接收方法和装置
US20110141993A1 (en) * 2007-08-10 2011-06-16 Fujitsu Limited Radio Transmission Apparatus, Radio Receiving Apparatus, Radio Communication Apparatus, Radio Transmission Method, And Radio Receiving Method
CN102395156A (zh) * 2011-09-28 2012-03-28 电信科学技术研究院 应用于pdcp实体和rlc实体间的数据传输方法及装置
CN102958102A (zh) * 2011-08-22 2013-03-06 中兴通讯股份有限公司 一种rlc分流传输方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2153597B1 (en) * 2007-05-03 2013-04-03 LG Electronics Inc. Method of data processing in a wireless communication system
CN101925121B (zh) * 2009-06-10 2014-03-19 中兴通讯股份有限公司 一种分组数据汇聚协议层重建的方法和装置
CN103634080B (zh) * 2012-08-29 2018-12-21 中兴通讯股份有限公司 数据调度处理方法及装置
CN104396302B (zh) * 2013-01-18 2018-10-30 华为技术有限公司 传输数据的方法、基站和用户设备
US9923695B2 (en) * 2014-09-24 2018-03-20 Samsung Electronics Co., Ltd. Call processing method and apparatus for use in LTE system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141993A1 (en) * 2007-08-10 2011-06-16 Fujitsu Limited Radio Transmission Apparatus, Radio Receiving Apparatus, Radio Communication Apparatus, Radio Transmission Method, And Radio Receiving Method
CN101729396A (zh) * 2008-10-31 2010-06-09 华为技术有限公司 数据包的发送、接收方法及装置、以及处理方法及***
CN101848489A (zh) * 2009-03-25 2010-09-29 中兴通讯股份有限公司 Pdu的发送/接收方法和装置
CN102958102A (zh) * 2011-08-22 2013-03-06 中兴通讯股份有限公司 一种rlc分流传输方法及***
CN102395156A (zh) * 2011-09-28 2012-03-28 电信科学技术研究院 应用于pdcp实体和rlc实体间的数据传输方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278060A (zh) * 2019-01-18 2020-06-12 维沃移动通信有限公司 一种以太帧传输方法和相关设备
CN111278060B (zh) * 2019-01-18 2023-10-24 维沃移动通信有限公司 一种以太帧传输方法和相关设备
CN110572850A (zh) * 2019-09-05 2019-12-13 京信通信***(中国)有限公司 5g基站缓存处理业务数据方法、装置、设备和存储介质
CN110572850B (zh) * 2019-09-05 2023-07-25 京信网络***股份有限公司 5g基站缓存处理业务数据方法、装置、设备和存储介质
CN112752305A (zh) * 2019-10-29 2021-05-04 ***通信有限公司研究院 流量控制方法、装置、相关设备及存储介质
CN112752305B (zh) * 2019-10-29 2023-03-31 ***通信有限公司研究院 流量控制方法、装置、相关设备及存储介质

Also Published As

Publication number Publication date
CN107404734B (zh) 2022-08-19
CN107404734A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2017198236A1 (zh) 数据发送方法、装置及***
US11445404B2 (en) Method and apparatus for wireless communication in wireless communication system
US11722929B2 (en) Method and apparatus for processing PDCP control data in system supporting high-reliability low-latency service
KR20220156486A (ko) 무선 통신 시스템에서 데이터 처리 방법 및 장치
US11838797B2 (en) Method and device for improved communication performance in wireless communication system
US11943611B2 (en) Method and apparatus for identifying security key in next generation mobile communication system
KR20200034484A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
EP3706461A1 (en) Method and device for improved communication performance in wireless communication system
CN112470429A (zh) 无线通信***中加速加密和解密的方法和装置
EP3879780A1 (en) Method and device for identifying security key based on pdcp layer device in next-generation mobile communication system
US20240129795A1 (en) Method and device for identifying security key based on pdcp layer device in next-generation mobile communication system
US20230189066A1 (en) Method and device for preventing data decompression error in next-generation mobile communication system
KR20200049444A (ko) 차세대 이동 통신 시스템에서 이더넷 프레임의 오버헤드를 줄이는 방법 및 장치
KR102293999B1 (ko) 무선 통신 시스템에서 장치 및 이의 버퍼 제어 방법
US20230025610A1 (en) Method and apparatus for driving pdcp during data decompression failure in next-generation mobile communication system
WO2018188510A1 (zh) 一种数据链路层中封装、解析数据包的方法、装置及设备
KR20230096561A (ko) 차세대 이동 통신 시스템에서 헤더 압축 또는 압축 해제 절차를 효과적으로 수행하는 방법 및 장치
KR20200076574A (ko) 차세대 이동 통신 시스템에서 pdcp 계층 장치 기반 보안키 확인 방법 및 장치
KR20200076573A (ko) 차세대 이동 통신 시스템에서 pdcp 계층 장치 기반 보안키 확인 방법 및 장치
KR20200033081A (ko) 차세대 이동 통신 시스템에서 암호화 키를 확인하는 방법 및 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798799

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798799

Country of ref document: EP

Kind code of ref document: A1