WO2017197663A1 - 一种基于绕射波的回采工作面小型陷落柱探测方法 - Google Patents

一种基于绕射波的回采工作面小型陷落柱探测方法 Download PDF

Info

Publication number
WO2017197663A1
WO2017197663A1 PCT/CN2016/083990 CN2016083990W WO2017197663A1 WO 2017197663 A1 WO2017197663 A1 WO 2017197663A1 CN 2016083990 W CN2016083990 W CN 2016083990W WO 2017197663 A1 WO2017197663 A1 WO 2017197663A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
wave
collapse column
small collapse
peak
Prior art date
Application number
PCT/CN2016/083990
Other languages
English (en)
French (fr)
Inventor
王勃
刘盛东
周福宝
黄兰英
章俊
姜永虎
郝家林
余森林
张夏阳
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2016407579A priority Critical patent/AU2016407579B2/en
Publication of WO2017197663A1 publication Critical patent/WO2017197663A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis

Definitions

  • the invention relates to a method for detecting a collapse column, in particular to a method for detecting a small collapse column based on a diverging wave.
  • the subsidence column is a geological body formed by the collapse of the stratum in the upper stratum due to factors such as gravity.
  • the collapse column has the characteristics of isolated and random distribution, usually composed of messy rocks.
  • the collapse column usually needs to be manually removed, which seriously restricts the recovery efficiency.
  • the water inrush caused by the collapse column of the mining area has strong concealment and large water inrush, which brings great harm to the safe production of coal mines and the lives of local people.
  • the methods for detecting collapse columns in coal mines mainly include drilling and geophysical exploration (CT transmission wave detection, radio wave tunnel penetration detection, DC electric method in-plane detection, etc.), but such methods have low resolution or limited detection depth. Therefore, it is usually only possible to detect a large diameter collapse column.
  • drilling is easy to miss, and the current geophysical exploration methods are difficult to distinguish; the safety of the mining face is not guaranteed. . Based on the above situation, the accurate detection of small collapse columns in the mining face is an urgent problem in the industry.
  • the present invention provides a method for detecting a small collapse column based on a diverging wave, which not only can accurately locate a small collapse column, but also has low cost and is easy to operate, and fills the mine.
  • the geophysical method to detect the blank of the small collapse column method can play a good guiding role in the safe recovery of the working face.
  • the technical solution adopted by the present invention is: the method for detecting a small collapse column based on a diffraction wave of a working face, comprising the following steps:
  • a shot point is set in the middle of the belt lane side to excite seismic waves.
  • Ten detection points are arranged in the corresponding track lanes as 1# ⁇ 10# detection points, the track spacing is 7.5m, and the seismic record is obtained by the seismograph;
  • the direct wave of the 1# ⁇ 10# detection point and the diffraction wave of the small collapse column can be separately acquired in the seismic record;
  • step E Determine the actual position of the center of the small collapse column according to the lateral and longitudinal coordinate positions determined in step D.
  • step D the method for determining the lateral position of the small collapse column in step D is:
  • step D the method for determining the longitudinal position of the small collapse column in step D is:
  • i 1, 2...10, v is the average velocity of the medium, and x source and y source are the two-dimensional coordinates of the shot;
  • the n value corresponding to A max is the longitudinal position y peak of the small collapse column, which is the actual longitudinal position of the center of the small collapse column.
  • Huygens principle when a seismic wave encounters a small collapse column (the diameter is less than or equal to one wavelength, usually the wavelength of the downhole seismic wave is 10m), the small collapse column will act as a The new source generates vibration to propagate the surrounding wave.
  • the invention utilizes the motion and dynamic characteristics of the diffracted wave to not only accurately locate the small collapse column, but also has low cost and is easy to operate, and fills the geophysical method under the mine.
  • the blank of the small collapse column method has played a good guiding role in the safe recovery of the working face.
  • Figure 1 is a system layout diagram of the present invention.
  • FIG. 2 is a schematic diagram of a direct wave received by ten detection points of the present invention and a diffraction wave of a small collapse column.
  • FIG 3 is a schematic view showing the diffraction wave train and the maximum amplitude position of the small collapse column of the 1# detection point of the present invention.
  • Figure 4 is a schematic diagram of the fitting hyperbola of the present invention.
  • Figure 5 is a schematic illustration of the longitudinal segmentation of the present invention and the determination of the position of a small collapse column.
  • the present invention includes the following steps:
  • a shot point 2 is set in the middle of the belt lane 1 side to excite seismic waves.
  • Ten detection points 4 are arranged in the corresponding track lane 3 as 1# ⁇ 10# detection points, the track spacing is 7.5m, and the seismograph is passed. Obtain seismic records;
  • the direct wave 6 of the 1# ⁇ 10# detection point and the diffraction wave 7 of the small collapse column can be respectively acquired in the seismic record;
  • step E Determine the actual position of the center of the small collapse column according to the lateral and longitudinal coordinate positions determined in step D.
  • step D the method for determining the lateral position of the small collapse column in step D is:
  • step D the method for determining the longitudinal position of the small collapse column in step D is:
  • i 1, 2...10, v is the average velocity of the medium, and x source and y source are the two-dimensional coordinates of the shot;
  • the value of n corresponding to A max is the longitudinal position y peak of the small collapse column, which is the actual longitudinal position of the center of the small collapse column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于绕射波(7)的回采工作面(5)小型陷落柱探测方法,步骤为:在皮带巷(1)一侧中部设一个炮点(2),激发地震波,在对应的轨道巷(3)布置十个检波点(4)分别为1#~10#检波点,并通过地震仪获取地震记录;根据地震波传播时间先后顺序,地震记录中能够分别获取1#~10#检波点的直达波(6)及小型陷落柱的绕射波(7);分别在1#~10#检波点所接收到的绕射波波列中搜索最大振幅值所对应的时间ti;确定小型陷落柱横向及纵向位置;确定的横向及纵向坐标位置最终确定小型陷落柱中心的实际位置。该探测方法不仅能对小型陷落柱进行准确定位,而且成本低,易于操作,填补了煤矿井下采用地球物理方法探测小型陷落柱方法的空白,对工作面安全回采工作可起到很好的指导作用。

Description

一种基于绕射波的回采工作面小型陷落柱探测方法 技术领域
本发明涉及一种陷落柱的探测方法,具体是一种基于绕射波的回采工作面小型陷落柱探测方法。
背景技术
陷落柱是由于灰岩等易溶地层产生溶洞,其上部地层在自重力等因素作用下发生地层塌陷而形成的一种地质体。在煤矿回采工作面内,陷落柱具有孤立随机分布的特点,通常由杂乱的岩石组成,在回采过程中由于采煤机易割煤难以割岩石,陷落柱通常需要人工放炮破除,严重制约回采效率;此外,矿区陷落柱导致的突水其隐蔽性强、突水量大,给煤矿安全生产及当地人民生活带来了极大的危害。目前,在煤矿井下探测陷落柱的方法主要有钻探及地球物理勘探(CT透射波探测、无线电波坑透探测、直流电法面内探测等)方法,但此类方法由于分辨率低或探测深度有限,因此通常只能探测直径较大的陷落柱,针对小型陷落柱(直径小于10m的陷落柱),钻探易漏判,且目前的地球物理勘探方法难以分辨;导致回采工作面的安全性无法保证。基于上述情况对回采工作面内小型陷落柱的精准探测为本行业目前亟需解决的问题。
发明内容
针对上述现有技术存在的问题,本发明提供一种基于绕射波的回采工作面小型陷落柱探测方法,不仅能对小型陷落柱进行准确定位,而且成本低,易于操作,填补了矿井下采用地球物理方法探测小型陷落柱方法的空白,对工作面安全回采工作可起到很好的指导作用。
为了实现上述目的,本发明采用的技术方案是:该种基于绕射波的回采工作面小型陷落柱探测方法,包括以下步骤:
A、在皮带巷一侧中部设一个炮点,激发地震波,在对应的轨道巷布置十个检波点分别为1#~10#检波点,道间距为7.5m,并通过地震仪获取地震记录;
B、根据地震波传播时间先后顺序,地震记录中能够分别获取1#~10#检波点的直达波及小型陷落柱的绕射波;
C、分别在1#~10#检波点所接收到的绕射波波列中搜索最大振幅值所对应的时间ti
D、确定小型陷落柱横向及纵向位置;
E、根据步骤D确定的横向及纵向坐标位置最终确定小型陷落柱中心的实际位置。
进一步,步骤D中确定小型陷落柱横向位置的方法为:
Ⅰ、通过每个检波点的位置xi(i=1,2…10)及每个检波点接收到的绕射波波列中搜索最大振幅值所对应的时间ti(i=1,2…10),确定绕射波最大振幅值的坐标(xi,ti);
Ⅱ、将接收到的十个绕射波最大振幅值的坐标点拟合成双曲线;
Ⅲ、求出双曲线的顶点坐标(xpeak,tpeak),双曲线的顶点横坐标xpeak位置即为小型陷落柱中心的横向位置。
进一步,步骤D中确定小型陷落柱纵向位置的方法为:
a、将顶点横坐标xpeak所对应的纵轴以1m为单位进行分段,每一段的中点依次记为yn(n=1,2,3……),则小型陷落柱的预计位置即为(xpeak,yn);
b、如n=1时,即假设小型陷落柱的位置为(xpeak,y1),依次计算出十个检波点绕射波的旅行时间:
Figure PCTCN2016083990-appb-000001
式中:i=1,2…10,v为介质的平均速度,xsource及ysource为炮点二维坐标;
c、在各检波点记录上找出t1,i时刻对应的振幅A1,i,将振幅的绝对值求和得
Figure PCTCN2016083990-appb-000002
d、同理,n=2,3……时,重复步骤b、步骤c,求出A2、A3……;
e、比较A1、A2、A3……的大小,得出Amax,Amax所对应的n值为小型陷落柱的纵向位 置ypeak,即为小型陷落柱中心的实际纵向位置。
由于煤层与围岩波阻抗差异明显,煤层、围岩平均密度及各自纵波波速分别为:煤层(平均密度ρ=1.3g/cm3、纵波波速V=1700m/s)、围岩(平均密度ρ=2.6g/cm3、纵波波速V=3500m/s),根据惠更斯原理,地震波遇到小型陷落柱(直径小于或等于一个波长,通常井下地震波波长为10m)时,小型陷落柱会作为一个新震源产生振动向周围传播绕射波;本发明利用绕射波的运动、动力学特性,不仅能对小型陷落柱进行准确定位,而且成本低,易于操作,填补了矿井下采用地球物理方法探测小型陷落柱方法的空白,对工作面安全回采工作起到了很好的指导作用。
附图说明
图1是本发明的***布置图。
图2是本发明十个检波点接收的直达波及小型陷落柱绕射波示意图。
图3是本发明1#检波点小型陷落柱绕射波波列及最大振幅位置示意图。
图4是本发明拟合双曲线示意图。
图5是本发明纵向分段及确定小型陷落柱位置示意图。
图中:1、皮带巷,2、炮点,3、轨道巷,4、检波点,5、回采工作面,6、直达波,7、绕射波,8、绕射波列最大振幅位置,9、小型陷落柱的实际中心位置。
具体实施方式
下面将对本发明作进一步说明。
如图1至图5所示,本发明包括以下步骤:
A、在皮带巷1一侧中部设一个炮点2,激发地震波,在对应的轨道巷3布置十个检波点4分别为1#~10#检波点,道间距为7.5m,并通过地震仪获取地震记录;
B、根据地震波传播时间先后顺序,地震记录中能够分别获取1#~10#检波点的直达波6及小型陷落柱的绕射波7;
C、分别在1#~10#检波点所接收到的绕射波波列中搜索最大振幅值所对应的时间ti
D、确定小型陷落柱横向及纵向位置;
E、根据步骤D确定的横向及纵向坐标位置最终确定小型陷落柱中心的实际位置。
进一步,步骤D中确定小型陷落柱横向位置的方法为:
Ⅰ、通过每个检波点的位置xi(i=1,2…10)及每个检波点4接收到的绕射波波列中搜索最大振幅值所对应的时间ti(i=1,2…10),确定绕射波最大振幅值的坐标(xi,ti);
Ⅱ、将接收到的十个绕射波最大振幅值的坐标点拟合成双曲线;
Ⅲ、求出双曲线的顶点坐标(xpeak,tpeak),双曲线的顶点横坐标xpeak位置即为小型陷落柱中心的横向位置。
进一步,步骤D中确定小型陷落柱纵向位置的方法为:
a、将顶点横坐标xpeak所对应的纵轴以1m为单位进行分段,每一段的中点依次记为yn(n=1,2,3……),则小型陷落柱的预计位置即为(xpeak,yn);
b、如n=1时,即假设小型陷落柱的位置为(xpeak,y1),依次计算出十个检波点绕射波的旅行时间:
Figure PCTCN2016083990-appb-000003
式中:i=1,2…10,v为介质的平均速度,xsource及ysource为炮点二维坐标;
c、在各检波点记录上找出t1,i时刻对应的振幅A1,i,将振幅的绝对值求和得
Figure PCTCN2016083990-appb-000004
d、同理,n=2,3……时,重复步骤b、步骤c,求出A2、A3……;
e、比较A1、A2、A3……的大小,得出Amax,Amax所对应的n值为小型陷落柱的纵向位置ypeak,即为小型陷落柱中心的实际纵向位置。

Claims (3)

  1. 一种基于绕射波的回采工作面小型陷落柱探测方法,其特征在于,包括以下步骤:
    A、在皮带巷(1)一侧中部设一个炮点(2),激发地震波,在对应的轨道巷(3)布置十个检波点(4)分别为1#~10#检波点,道间距为7.5m,并通过地震仪获取地震记录;
    B、根据地震波传播时间先后顺序,地震记录中能够分别获取1#~10#检波点的直达波(6)及小型陷落柱的绕射波(7);
    C、分别在1#~10#检波点所接收到的绕射波波列中搜索最大振幅值所对应的时间ti
    D、确定小型陷落柱横向及纵向位置;
    E、根据步骤D确定的横向及纵向坐标位置最终确定小型陷落柱中心的实际位置。
  2. 根据权利要求1所述的一种基于绕射波的回采工作面小型陷落柱探测方法,其特征在于,步骤D中确定小型陷落柱横向位置的方法为:
    Ⅰ、通过每个检波点的位置xi(i=1,2…10)及每个检波点(4)接收到的绕射波波列中搜索最大振幅值所对应的时间ti(i=1,2…10),确定绕射波最大振幅值的坐标(xi,ti);
    Ⅱ、将接收到的十个绕射波最大振幅值的坐标点拟合成双曲线;
    Ⅲ、求出双曲线的顶点坐标(xpeak,tpeak),双曲线的顶点横坐标xpeak位置即为小型陷落柱中心的横向位置。
  3. 根据权利要求1中所述的一种基于绕射波的回采工作面小型陷落柱探测方法,其特征在于,步骤D中确定小型陷落柱纵向位置的方法为:
    a、将顶点横坐标xpeak所对应的纵轴以1m为单位进行分段,每一段的中点依次记为yn(n=1,2,3……),则小型陷落柱的预计位置即为(xpeak,yn);
    b、如n=1时,即假设小型陷落柱的位置为(xpeak,y1),依次计算出十个检波点绕射波的旅行时间:
    Figure PCTCN2016083990-appb-100001
    式中:i=1,2…10,v为介质的平均速度,xsource及ysource为炮点二维坐标;
    c、在各检波点记录上找出t1,i时刻对应的振幅A1,i,将振幅的绝对值求和得
    Figure PCTCN2016083990-appb-100002
    d、同理,n=2,3……时,重复步骤b、步骤c,求出A2、A3……;
    e、比较A1、A2、A3……的大小,得出Amax,Amax所对应的n值为小型陷落柱的纵向位置ypeak,即为小型陷落柱中心的实际纵向位置。
PCT/CN2016/083990 2016-05-16 2016-05-31 一种基于绕射波的回采工作面小型陷落柱探测方法 WO2017197663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016407579A AU2016407579B2 (en) 2016-05-16 2016-05-31 Diffracted wave-based detection method for small-sized collapse pillar of working face

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610323984.6A CN105911588B (zh) 2016-05-16 2016-05-16 一种基于绕射波的回采工作面小型陷落柱探测方法
CN201610323984.6 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017197663A1 true WO2017197663A1 (zh) 2017-11-23

Family

ID=56748290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083990 WO2017197663A1 (zh) 2016-05-16 2016-05-31 一种基于绕射波的回采工作面小型陷落柱探测方法

Country Status (3)

Country Link
CN (1) CN105911588B (zh)
AU (1) AU2016407579B2 (zh)
WO (1) WO2017197663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839663A (zh) * 2019-03-20 2019-06-04 山西山地物探技术有限公司 一种隐伏陷落柱的地震识别方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531419B (zh) * 2019-08-21 2020-10-30 徐州工程学院 一种利用Love型面波的陷落柱超前探测方法
CN110531415B (zh) * 2019-08-21 2020-10-30 徐州工程学院 一种利用围岩松动圈影响的三维小断层超前探测方法
CN110632667B (zh) * 2019-10-18 2020-12-18 徐州工程学院 一种基于冲击波激震条件下的隐伏陷落柱超前探测方法
CN111025383B (zh) * 2019-11-21 2021-09-24 徐州工程学院 一种基于绕射横波定性判断隧道前方溶洞充水情况的方法
CN114000827B (zh) * 2021-11-05 2023-07-14 中国矿业大学 一种基于压力渗流原理及电磁响应特征的陷落柱探查方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131205A1 (en) * 2007-03-12 2010-05-27 Geomage (2003) Ltd Method for identifying and analyzing faults/fractures using reflected and diffracted waves
CN102928869A (zh) * 2012-11-02 2013-02-13 中国矿业大学 矿井工作面裂隙各向异性p波探测方法
CN103217719A (zh) * 2013-04-11 2013-07-24 中国矿业大学 基于单一炮检对观测***的煤巷超前探测断失翼煤层的方法
CN103235334A (zh) * 2013-04-11 2013-08-07 中国矿业大学 基于地震信号的低抽巷道超前探测断层落差方法
CN103245977A (zh) * 2013-05-15 2013-08-14 中国矿业大学(北京) 一种矿井回采区灾害源的地质雷达层析探测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158724B (zh) * 2007-09-14 2010-06-09 中国石油集团西北地质研究所 基于偶极小波的储层厚度预测方法
WO2009077440A2 (en) * 2007-12-14 2009-06-25 Shell Internationale Research Maatschappij B.V. Method of processing data obtained from seismic prospecting
CN102798892B (zh) * 2011-05-27 2015-12-02 中国石油天然气集团公司 一种利用转换波属性提取分析有效储层的方法
CN103235333B (zh) * 2013-04-11 2015-09-09 中国矿业大学 基于反射槽波信号的煤巷超前探测断层方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131205A1 (en) * 2007-03-12 2010-05-27 Geomage (2003) Ltd Method for identifying and analyzing faults/fractures using reflected and diffracted waves
CN102928869A (zh) * 2012-11-02 2013-02-13 中国矿业大学 矿井工作面裂隙各向异性p波探测方法
CN103217719A (zh) * 2013-04-11 2013-07-24 中国矿业大学 基于单一炮检对观测***的煤巷超前探测断失翼煤层的方法
CN103235334A (zh) * 2013-04-11 2013-08-07 中国矿业大学 基于地震信号的低抽巷道超前探测断层落差方法
CN103245977A (zh) * 2013-05-15 2013-08-14 中国矿业大学(北京) 一种矿井回采区灾害源的地质雷达层析探测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUI, WEIXIONG ET AL.: "Study on Amplitude Characteristics of Seismic Diffraction Wave", ENERGY TECHNOLOGY AND MANAGEMENT, vol. 39, no. 4, 30 April 2014 (2014-04-30) *
YANG, DEYI ET AL.: "Diffraction waves from fallen pillars", GEOPHYSICAL PROSPECTING FOR PETROLEUM, vol. 39, no. 4, 31 December 2000 (2000-12-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839663A (zh) * 2019-03-20 2019-06-04 山西山地物探技术有限公司 一种隐伏陷落柱的地震识别方法和装置
CN109839663B (zh) * 2019-03-20 2020-04-10 山西山地物探技术有限公司 一种隐伏陷落柱的地震识别方法和装置

Also Published As

Publication number Publication date
AU2016407579A1 (en) 2018-09-20
CN105911588B (zh) 2017-10-27
AU2016407579B2 (en) 2020-01-02
CN105911588A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017197663A1 (zh) 一种基于绕射波的回采工作面小型陷落柱探测方法
CN104166164B (zh) 煤巷掘进地质构造三分量多波反射三维地震超前探测方法
Manzi et al. 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand basin, South Africa
CN109736796B (zh) 一种加深炮孔超前探测机构及其预报方法
CN107831530B (zh) 厚煤层沿底板或顶板掘进煤巷反射槽波超前探测方法
CN104880729B (zh) 一种基于连续跟踪槽波信号的煤巷超前探测异常构造方法
RU2467171C1 (ru) Способ диагностики опасных ситуаций при подземной добыче каменного угля и методика прогноза параметров зон трещиноватости, образованной гидроразрывом пласта
CN103235333A (zh) 基于反射槽波信号的煤巷超前探测断层方法
CN103424769A (zh) 一种采空区联合多波地震勘探方法
CN112965136A (zh) 一种富水岩溶隧道的多手段超前探测方法
CN103217719A (zh) 基于单一炮检对观测***的煤巷超前探测断失翼煤层的方法
Golebiowski et al. Ambiguities in geophysical interpretation during fracture detection—case study from a limestone quarry (Lower Silesia Region, Poland)
CN102798884B (zh) 巷道顶板二维地震勘探方法及***
Isakova et al. GPR for mapping fractures for the extraction of facing granite from a quarry: A case study from Republic of Karelia
CN114185082A (zh) 一种基于工作面透射地震观测的煤层下伏陷落柱探测方法
Cheng et al. Rapidly locating a water–inrush collapse column in a seam floor: A case study
CN110531419B (zh) 一种利用Love型面波的陷落柱超前探测方法
McCulloch et al. Geologic investigations of underground coal mining problems
Pilecki et al. Identification of gaso-geodynamic zones in the structure of copper ore deposits using geophysical methods
Wang et al. Channel wave tomographic imaging method and its application in detection of collapse column in coal
CN112761712B (zh) 一种基于穿层抽采钻孔探测采煤工作面小构造的方法
Liu et al. Research on tomography by using seismic reflection wave in laneway
Cui A Study on Goaf Water Accumulation Detection in Shuanglong Coal Mine with TSP Technology
Luo et al. Detection of multilayer cavities by employing RC-DTH air hammer system and cavity auto scanning laser system
Evrard et al. Mining and Reclamation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016407579

Country of ref document: AU

Date of ref document: 20160531

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902047

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902047

Country of ref document: EP

Kind code of ref document: A1