WO2017197563A1 - 用于数据传输的方法和装置 - Google Patents

用于数据传输的方法和装置 Download PDF

Info

Publication number
WO2017197563A1
WO2017197563A1 PCT/CN2016/082217 CN2016082217W WO2017197563A1 WO 2017197563 A1 WO2017197563 A1 WO 2017197563A1 CN 2016082217 W CN2016082217 W CN 2016082217W WO 2017197563 A1 WO2017197563 A1 WO 2017197563A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
address information
communication device
mec network
terminal
Prior art date
Application number
PCT/CN2016/082217
Other languages
English (en)
French (fr)
Inventor
陆伟
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680085745.XA priority Critical patent/CN109155787B/zh
Priority to PCT/CN2016/082217 priority patent/WO2017197563A1/zh
Priority to EP16901949.4A priority patent/EP3457662B1/en
Publication of WO2017197563A1 publication Critical patent/WO2017197563A1/zh
Priority to US16/192,724 priority patent/US10827348B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/289Intermediate processing functionally located close to the data consumer application, e.g. in same machine, in same home or in same sub-network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to the field of communications technologies, and more particularly to a method and apparatus for data transmission.
  • MEC network elements can be deployed in the vicinity of the access network.
  • the MEC network element has the ability of computing and storing, and can obtain data packets of the terminal, and process the data packets after routing.
  • MEC network elements There are two types of MEC network elements deployed. One is that the MEC network element is connected to the eNB separately. The other is that the MEC network element is connected to the Evolved Node B (eNB or eNodeB) and the Serving Gateway (Serving Gateway). S1) on the S1 User Plane (S1-U) interface. However, there is no related solution for establishing a connection between the MEC network element and the eNB or the SGW.
  • eNB Evolved Node B
  • Serving Gateway Serving Gateway
  • Embodiments of the present invention provide a method and apparatus for data transmission, which can establish a data transmission channel between a mobile edge computing MEC network element and a communication device.
  • an embodiment of the present invention provides a method for data transmission, including: a mobile edge computing MEC network element receiving address information of the first communications device sent by a first communications device; the MEC network element storage device Address information of the first communication device, where the address information of the first communication device is used to determine an uplink data packet of the terminal or a destination address of the first downlink data packet.
  • the first communication device may be an access network device or a gateway device.
  • the MEC network element can determine the destination address of the data packet of the terminal according to the address information of the first communication device. For example, the MEC network element uses the address identified by the address information of the first communication device as the data packet of the terminal. Destination address.
  • the MEC network element receives the address information of the communication device sent by the communication device, and stores the address information of the communication device, so that the MEC network element can determine the destination address of the data packet of the terminal according to the address information of the communication device, thereby A data transmission channel can be established between the MEC network element and the communication device so that data can be transmitted between the MEC network element and the communication device.
  • the address information of the first communication device is used to determine the terminal
  • the destination address of the uplink data packet the method further includes: the MEC network element receiving address information of the second communication device sent by the first communication device; the MEC network element storing an address of the second communication device Information, the address information of the second communication device is used to determine a destination address of the second downlink data packet of the terminal.
  • the first communication device is a gateway device, and the second communication device is an access network device.
  • the method further includes: deleting, by the MEC network element, address information of the stored first communication device.
  • the MEC network element may receive the bearer release request message sent by the first communications device, and delete the stored address information of the first communications device according to the bearer release request message, that is, release the MEC network element and a data transmission channel between the communication devices. In this way, when the terminal transitions to the idle state, the MEC network element deletes the stored related information in time, thereby avoiding storage waste.
  • an embodiment of the present invention provides a method for transmitting data, including: acquiring, by a first communications device, address information of a mobile edge computing MEC network element; the first communications device according to an address of the MEC network element And sending the address information of the first communication device to the MEC network element, where the address information of the first communication device is used to determine an uplink data packet of the terminal or a destination address of the first downlink data packet.
  • the address identified by the address information of the MEC network element may be used as the destination address of the data packet of the terminal.
  • the address information of the first communications device may be carried in a message sent by the first communications device to the MEC network element.
  • the communication device sends a create session request message to the MEC network element, where the modify session request message includes address information of the communication device.
  • the create session request message may be used to request to establish a data transmission channel with the MEC network element.
  • the communication device may further send the identification information of the terminal to the MEC network element.
  • the first communication device may be an access network device or a gateway device.
  • the first communication device sends the address information of the communication device to the MEC network element, so that the MEC network element determines the destination data packet of the terminal or the first downlink data packet of the terminal according to the address information of the first communication device. Address so that it can be established between the MEC network element and the communication device A data transmission channel to enable data to be transferred between the MEC network element and the communication device.
  • the acquiring, by the first communications device, the address information of the MEC network element includes: receiving, by the communications device, address information of the MEC network element sent by the mobility management network element; or Obtaining, by the communication device, the address information of the MEC network element according to the corresponding relationship, where the correspondence relationship is one or all of the identifier information of the terminal and the identifier information of the first communication device and the address information of the MEC network element Correspondence between them.
  • the address information of the first communications device is used to determine a destination address of an uplink data packet of the terminal, and the method further includes: the first communications device receiving the second sent by the mobility management network element Address information of the communication device; the first communication device sends address information of the second communication device to the MEC network element, and the address information of the second communication device is used to determine a second downlink data packet of the terminal Destination address.
  • the method further includes: the first communication device notifying the MEC network element to delete the stored address information of the communication device.
  • the embodiment can notify the MEC network element to delete related information in time to avoid storage waste.
  • an embodiment of the present invention provides a method for transmitting data, including: a mobility management network element acquiring address information of a mobile edge computing MEC network element; the mobility management network element transmitting the Address information of the MEC network element.
  • the communication device is an access network device or a gateway device.
  • the communication device by acquiring the address information of the MEC and transmitting the address information of the MEC network element to the communication device, the communication device can establish a data transmission channel with the MEC network element, so that the data can be in the MEC network element and the communication device. Transfer between.
  • the mobility management network element acquires address information of the MEC network element according to the corresponding relationship, where the correspondence relationship is one or all of the identification information of the terminal and the identification information of the communication device. The correspondence between the address information of the MEC network element is described.
  • an embodiment of the present invention provides a MEC network element, where the MEC network element has a function of implementing MEC network element behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the MEC network element includes a processing unit and a communication unit, the processing unit being configured to support the MEC network element to perform a corresponding function in the above method.
  • the communication list The element is used to support communication between the MEC network element and other devices.
  • the MEC network element may further include a storage unit for coupling with the processing unit, which stores necessary program instructions and data of the MEC network element.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a communication device having a function of implementing behavior of a first communication device in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the communication device comprises a processing unit and a communication unit, the processing unit being configured to support the communication device to perform a corresponding function of the above method.
  • the communication unit is for supporting communication between the communication device and other devices.
  • the communication device can also include a storage unit for coupling with the processing unit that retains program instructions and data necessary for the communication device.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a mobility management network element, where the mobility management network element has a function of implementing mobility management network element behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the mobility management network element includes a processing unit and a communication unit, the processing unit being configured to support the mobility management network element to perform a corresponding function in the above method.
  • the communication unit is configured to support communication between the mobility management network element and other devices.
  • the mobility management network element may further include a storage unit for coupling with the processing unit, which stores program instructions and data necessary for the mobility management network element.
  • the processing unit can be a processor
  • the communication unit can be a communication interface
  • the storage unit can be a memory.
  • an embodiment of the present invention provides a communication system, where the communication system includes the MEC network element and the communication device in the foregoing aspect; or the communication system includes the MEC network element, the communication device, and the mobility management described in the foregoing aspect. Network element.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use in the MEC network element, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer readable storage medium for storing as Computer software instructions for use with the first communication device described above, including programs for performing the above aspects.
  • an embodiment of the present invention provides a computer readable storage medium for storing computer software instructions for use in the mobility management network element, including a program designed to perform the above aspects.
  • the MEC network element receives the address information of the first communication device sent by the first communication device, so that the MEC network element can determine the uplink data packet of the terminal or the first downlink of the terminal according to the address information of the communication device.
  • the destination address of the data packet enables a data transmission channel to be established between the MEC network element and the communication device to enable data to be transmitted between the MEC network element and the communication device.
  • FIG. 1 is a schematic diagram of a possible system architecture provided by an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 2B is a schematic diagram of another application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of another method for data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another method for data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of still another method for data transmission according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a MEC network element according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another MEC network element according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a mobility management network element according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another mobility management network element according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the terminal involved in the embodiments of the present invention may include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment). , UE), mobile station (MS), terminal device, and the like.
  • UE user equipment
  • MS mobile station
  • terminal device and the like.
  • the access network device in the embodiment of the present invention may be a base station (BS), and the base station is a device deployed in the radio access network to provide a wireless communication function for the terminal.
  • BS base station
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device with a base station function may be different, for example, in a Long Term Evolution (LTE) system, called an evolved Node B (eNB). Or eNodeB), in a 3G communication system, called a Node B or the like.
  • LTE Long Term Evolution
  • eNB evolved Node B
  • eNodeB in a 3G communication system
  • the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station or a BS.
  • the mobility management network element may be a Mobility Management Entity (MME) or a General Packet Radio System (GPRS) Servicing GPRS Support Node (SGSN), but the present invention Not limited.
  • MME Mobility Management Entity
  • GPRS General Packet Radio System
  • SGSN GPRS Support Node
  • the eNB, the terminal, and the MME are taken as an example to describe the solution of the embodiment of the present invention. It should be understood that although the eNB is used as an example to describe the access network device, and the MME is used as an example to describe the mobility management network element, the embodiments of the present invention are not limited to the system represented by these terms. The embodiments of the present invention are also applicable to other systems, and these variations are all within the scope of the embodiments of the present invention.
  • Embodiments of the present invention can be applied to the system architecture shown in FIG. 1.
  • the following describes the main network entities in the system architecture.
  • Evolved Universal Terrestrial Radio Access Network A network composed of multiple eNBs to implement wireless physical layer functions. Resource scheduling and radio resource management, wireless access control, and mobility management functions.
  • the eNB is connected to the SGW through the S1-U interface, and is used to transmit user data.
  • the S1 control plane interface (S1-MME interface) is connected to the MME, and the S1 application protocol (S1-Application Protocol, S1-AP) is used to implement radio access bearer control. And other functions.
  • MME Mainly responsible for all control plane functions of user and session management, including Non-Access Stratum (NAS) signaling and security, Tracking Area List (TAL) management, PGW and SGW The choices and so on.
  • NAS Non-Access Stratum
  • TAL Tracking Area List
  • SGW It is mainly responsible for data transmission, forwarding, and route switching of the terminal, and serves as a local mobility anchor point when the terminal switches between eNBs.
  • Packet Data Network Gateway an external network that sends data to the terminal, which is responsible for the allocation of the Internet Protocol (IP) address of the terminal, and the data packet filtering and rate of the terminal. Control, generate billing information, and so on.
  • IP Internet Protocol
  • the PGW allocates an IP address to the terminal, and the terminal uses the IP address to connect to the external network for data transmission; all uplink data packets of the terminal. It will be sent to the external network through the PGW, and all downlink data packets of the external network will be sent to the terminal through the PGW.
  • EPS Evolved Packet System
  • the data packets sent or received by the terminal are transmitted through the EPS bearer (abbreviated as bearer) in the EPS network.
  • bearer Each terminal can have multiple bearers. Different bearers can meet the quality of service (QoS) requirements of different services.
  • the eNB and the SGW store the information of each bearer, that is, the bearer context, which includes the SGW tunnel end identifier (TEID) and the eNB TEID information of the bearer, where the SGW TEID is used for the uplink datagram sent by the eNB to the SGW.
  • the eNB TEID is used for the downlink data packet sent by the SGW to the eNB.
  • the eNB implements the synchronization of the bearer context with the MME through the S1-AP message, and the SGW synchronizes the bearer context with the MME through the GPRS Tunneling Protocol-Control Plane (GTP-C) message; thereby implementing the inter-eNB and the SGW.
  • GTP-C GPRS Tunneling Protocol-Control Plane
  • the eNB When receiving the uplink data packet of the terminal, the eNB encapsulates the uplink data packet of the terminal into an GPRS Tunneling Protocol-User Plane (GTP-U) packet according to the bearer context, where The uplink GTP-U packet includes a GTP-U header, and the GTP-U header contains the SGW TEID information of the bearer. Since different bearers use different SGW TEIDs, when the SGW receives the uplink GTP-U packets sent by the eNB, it can judge according to the GTP-U header.
  • GTP-U GPRS Tunneling Protocol-User Plane
  • the bearer to which the packet belongs when the SGW receives the downlink data packet sent to the terminal, the SGW encapsulates the downlink data packet into a downlink GTP-U packet, where the downlink GTP-U packet includes the GTP-U packet.
  • the GTP-U header contains the eNB TEID information of the bearer.
  • the terminal is first attached to the network
  • the network side establishes a bearer for the terminal, and the data stream of the terminal is sent to the peer end through the bearer, such as an application server or a peer terminal.
  • the MME selects the SGW and the PGW for the terminal, and then the SGW and the eNB exchange the bearer address (including the SGW, the IP address of the eNB, and the TEID) through the MME: that is, the SGW uses the MME to set the IP address of the SGW through the MME.
  • the TEID of the bearer allocation is sent to the eNB.
  • the eNB sends the IP address of the eNB and the TEID allocated for the bearer to the SGW through the MME.
  • the eNB sends a data packet to the IP address of the SGW and the address indicated by the TEID, and the SGW sends the IP address and TEID to the eNB.
  • the marked address sends the data packet, so that the bearer between the eNB and the SGW is successfully established.
  • the MEC network element is mainly composed of a data bus and an application, wherein the data bus is responsible for acquiring the data message of the terminal and forwarding it to the corresponding application, and the application sends the message to the data bus for routing after processing the data message.
  • a variety of applications can be installed on the MEC network element to enhance the user experience.
  • the application on the MEC network element can intercept the data sent by the terminal for modification, detection, forwarding, etc., and can directly respond to the data sent by the terminal.
  • the MEC network element can be installed with a video cache application. When the terminal requests the video service, the terminal request is processed by the video cache application. If there is no video requested by the terminal in the video cache application, the video cache application will continue to forward the user request to the SGW. If the video buffer application stores the video requested by the terminal, the video buffer application directly sends the video data message to the terminal. Therefore, deploying the MEC network element in the vicinity of the access network can effectively improve the user experience.
  • the MEC network element is connected to the S1-U interface between the eNB and the SGW device, that is, the eNB transmits uplink data to the SGW through the MEC network element, or the SGW transmits downlink data to the eNB through the MEC network element.
  • the MEC network element may establish a connection with the eNB according to the configuration of the operator, or the MEC network element may also establish a connection with the SGW.
  • FIG. 2B is a schematic diagram of another application scenario according to an embodiment of the present invention.
  • the MEC network element is separately connected to the eNB, and may also be referred to as an MEC network element attached to the eNB.
  • the embodiment of the present invention can also be used for a universal terrestrial radio access network (UTRAN) or a global system for mobile communications (GSM)/GSM evolution enhanced data rate. (Enhanced Data Rates for GSM Evolution, EDGE for short) in the GSM/EDGE Radio Access Network (GERAN).
  • UTRAN universal terrestrial radio access network
  • GSM global system for mobile communications
  • GERAN GSM/EDGE Radio Access Network
  • the function of the MME is completed by the SGSN, and the function of the SGW or PGW is completed by the Gateway GPRS Support Node (GGSN).
  • GGSN Gateway GPRS Support Node
  • FIG. 3 is a schematic diagram of communication of a method 300 for data transmission according to an embodiment of the present invention.
  • the method 300 may be performed in a process in which a terminal accesses a network, such as an attach process of a terminal or a service request process.
  • method 300 includes the following.
  • the first communications device obtains address information of the MEC network element.
  • the address information of the MEC network element may include one or all of the IP address of the MEC network element and the TEID of the MEC network element.
  • the first communication device may obtain the address information of the MEC network element configured in advance, or the first communication device may also obtain the address information of the MEC network element from the MME.
  • the first communication device may further obtain the address information of the MEC network element according to the corresponding relationship, where the correspondence relationship is one or all of the identifier information of the terminal and the identifier information of the first communication device and the address information of the MEC network element. Correspondence between them.
  • the MEC network element query system stores the corresponding relationship. The MEC network element can query the MEC network element query system to obtain the address information of the MEC network element according to the identification information of the terminal and/or the identification information of the first communication device.
  • the first communication device sends the address information of the first communication device to the MEC network element according to the address information of the MEC network element, where the address information of the first communication device is used to determine the uplink data packet of the terminal or the first downlink data packet. Destination address.
  • a data transmission channel can be established between the first communication device and the MEC network element.
  • the identifier information of the terminal is used to identify the terminal.
  • the embodiment of the present invention does not limit the format of the identifier information of the terminal.
  • the identifier information of the terminal may be a Temporary Mobile Subscriber Identity (TMSI). It is an International Mobile Subscriber Identity (IMSI), and may also be an eNB UE S1-AP ID, or an MME UE S1-AP ID.
  • TMSI Temporary Mobile Subscriber Identity
  • IMSI International Mobile Subscriber Identity
  • eNB UE S1-AP ID is an eNB.
  • the identifier assigned by the terminal, the MME UE S1-AP ID is the identifier assigned by the MME to the terminal.
  • the address information of the first communication device may include one or all of the IP address of the first communication device and the TEID of the first communication device.
  • the MEC network element stores address information of the first communications device.
  • a data transmission channel between the MEC network element and the first communication device can be established.
  • the first communication device can also notify the MEC network element to delete the stored address information of the first communication device. For example, when there is no data transmission in the network and the terminal is in the idle state, the first communication device can notify the MEC network element to delete the stored address information of the first communication device, thereby saving resources of the air interface. Correspondingly, the MEC network element may delete the stored address information of the first communication device according to the notification of the first communication device.
  • the first communication device sends the address information of the first communication device to the MEC network element, so that the MEC network element can determine the uplink data packet of the terminal or the first downlink data of the terminal according to the address information of the communication device.
  • the destination address of the packet so that a data transmission channel can be established between the MEC network element and the communication device to enable data to be transmitted between the MEC network element and the communication device.
  • the foregoing first communications device may be an access network device or a gateway device.
  • the first communication device may be an access network device, and the method 300 may be applied to the application scenario shown in FIG. 2A and FIG. 2B to establish a data transmission channel between the access network device and the MEC network element.
  • the address information of the first communication device is used to determine a destination address of the first downlink data packet of the terminal.
  • the first communication device may be a gateway device, and the method 300 may be applied to the application scenario shown in FIG. 2A to establish a data transmission channel between the MEC network element and the gateway device.
  • the address information of the first communication device is used to determine a destination address of the uplink data packet of the terminal. Further, the first communications device may further receive address information of the second communications device that is sent by the mobility management network element; and send address information of the second communications device to the MEC network element, where the address information of the second communications device is used to determine the terminal The destination address of the second downstream packet.
  • the second communication device may be an access network device.
  • first downlink data packet of the terminal or the second downlink data packet of the terminal may be the same data packet, or may be different data packets, where “first” and “second” are used in the foregoing.
  • first and second are used in the foregoing.
  • the distinction is to reflect different ways of determining the destination address of the downlink data packet of the terminal, and does not constitute other restrictions.
  • the foregoing gateway device may be an SGW or a SGW function.
  • GGW-enabled gateway devices may be an SGW or a SGW function.
  • FIG. 4 is a schematic diagram of communication of another method 400 for data transmission according to an embodiment of the present invention. The method shown in FIG. 4 will be described below with the first communication device as the eNB and the second communication device as the SGW.
  • the terminal sends an attach request message to the MME by using the eNB.
  • the MME sends a create session request message to the SGW.
  • the SGW sends a create session request message to the PGW.
  • the PGW sends a create session response message to the SGW.
  • steps 403 and 404 need not be performed.
  • the SGW sends a create session response message to the MME, where the message includes address information of the SGW, such as an IP address of the SGW, or an IP address and a TEID of the SGW.
  • the MME obtains address information of the MEC network element.
  • the MME may obtain the address information of the MEC network element by querying the MEC network element query system according to at least one of the identifier information of the terminal, the identifier information of the eNB, and the address information of the eNB.
  • the address information of the MEC network element may be pre-configured on the MME, and the MME may obtain the address information of the MEC network element configured in advance.
  • the part 406 is an optional part, and the MME may directly execute the part 407 after receiving the create session response message (ie, part 405) sent by the SGW.
  • the create session response message ie, part 405
  • the MME sends an initial context setup request message/attach accept message to the eNB, where the initial context setup request/attach accept message includes address information of the SGW.
  • the eNB may use the address identified by the address information of the SGW as the destination address of the uplink data packet of the terminal.
  • the initial context setup request message/attach accept message may further include data flow direction indication information, such as Uplink.
  • the initial context establishment request message/attach accept message may further include address information of the MEC network element.
  • the eNB sends a create session request message to the MEC network element according to the address information of the MEC network element, where the create session request message includes the address information of the eNB and the address information of the SGW.
  • a GTP-based tunnel connection may be established between the SGW and the MEC network element.
  • the address information of the SGW carried in the session request message may include the IP address and the TEID of the SGW.
  • the eNB may obtain the address information of the MEC network element by: for example, the eNB obtains the address information of the MEC network element from the initial context setup request message/attach accept message sent by the MME; for example, the eNB may also configure The address information of the MEC network element; for example, the eNB may also obtain the address information of the MEC network element by querying the MEC network element query system based on the location information of the terminal and/or the location information of the eNB. In the latter two modes, the MME may not perform the 406 part.
  • the eNB and the MEC network element may be an IP connection, and the address information of the eNB carried in the creation session request message includes an IP address of the eNB.
  • the eNB and the MEC network element may also be a GTP-based tunnel connection.
  • the address information of the eNB carried in the session request message includes the IP address and TEID of the eNB.
  • the MEC network element can establish context information of the terminal according to the address information of the eNB and the address information of the SGW. For example, the MEC network element may use the address identified by the address information of the eNB as the destination address of the downlink data packet of the terminal, and the address identified by the address information of the SGW as the destination address of the uplink data packet of the terminal.
  • the MEC network element receives the create session request message, and sends a create session response message to the eNB.
  • a data transmission channel between the eNB and the MEC network element can be established.
  • the eNB sends an initial context setup request response message to the MME, where the initial context setup request response message may include address information of the MEC network element.
  • the initial context setup request response message includes the address information of the eNB.
  • the address information of the MEC network element is used as the address information of the eNB in the initial context setup request response message.
  • the MME sends a modify bearer request message to the SGW, where the modify bearer request message includes address information of the MEC network element to establish a data transmission channel from the SGW to the MEC network element.
  • the MEC network element and the SGW are connected through the S1-U interface, that is, the GTP-based tunnel connection between the MEC network element and the SGW, and the address information of the MEC network element carried in the modify bearer request message includes the IP address and TEID of the MEC network element.
  • the modify bearer request message includes the address information of the eNB, and in the embodiment of the present invention, the address information of the MEC network element is used as the address information of the eNB, and the address information of the received eNB is actually obtained for the SGW.
  • the upper is the address information of the MEC network element, so that the SGW can send the downlink data packet to the MEC network element.
  • the SGW sends a modify bearer response message to the MME, and the data transmission channel from the SGW to the MEC network element can be successfully established.
  • the messages in the foregoing parts may include the identifier information of the terminal, which is used to identify the terminal.
  • the SGW and the PGW are separately deployed as an example for description.
  • the embodiment of the present invention is not limited thereto, and the SGW may also be deployed in combination with the PGW.
  • a connection is established between the MEC network element and the access network device (such as an eNB), and the address information of the MEC network element is notified to the gateway device (such as the SGW) as the address information of the access network device. That is, the gateway device uses the MEC network element as an access network device.
  • the address information of the MEC network element can be transmitted to the gateway device through the access network device (such as an eNB), and the gateway device is The address information is also notified to the MEC network element.
  • the MEC network element can be connected to the S1-U interface, that is, the uplink data packet passes through the MEC network element to reach the gateway device, and the downlink data packet can also be passed by the SGW.
  • the MEC network element is delivered to the access network so that the MEC network element can process the data stream.
  • the terminal changes from the connected state to the idle state.
  • the bearer between the terminal, the eNB and the SGW is deleted to save the resources of the air interface. Accordingly, the context information of the terminal on the eNB is also deleted. To avoid storage waste, you need to notify the MEC network element to delete the context information of the terminal. As shown in Figure 5.
  • the eNB sends a bearer release request message to the MEC network element, where the bearer release request message includes information such as an identifier of the terminal.
  • the MEC network element receives the bearer request message, and deletes the stored context information of the terminal according to the bearer release request message, releases the data transmission channel between the MEC network element and the eNB, and sends a bearer release response message to the eNB.
  • the context information of the terminal includes address information of the eNB.
  • FIG. 6 is a schematic diagram of communication of a method 600 for data transmission according to an embodiment of the present invention.
  • the terminal sends an attach request message to the MME by using the access network device eNB.
  • the MME obtains address information of the MEC network element.
  • the MME may obtain the address information of the MEC network element by querying the MEC network element query system according to at least one of the identifier information of the terminal, the identifier information of the eNB, and the address information of the eNB.
  • the address information of the MEC network element may be pre-configured on the MME.
  • part 602 is an optional part.
  • the MME sends a create session request message to the SGW.
  • the creation session request message may include address information of the MEC network element.
  • the SGW sends a create session request to the PGW gateway.
  • the PGW sends a create session response message to the SGW.
  • the SGW sends a create session response message to the MME, where the session response message includes the address information of the SGW.
  • the information in the 601 part and the 603 part to the 606 part may include the identification information of the terminal, and is not described in detail herein.
  • execution order of the 606 part and the 602 part is not limited, and the 602 part may be executed after the 606 part.
  • the SGW sends a create session request message to the MEC network element according to the address information of the MEC network element.
  • the session request message includes the identifier information of the terminal and the address information of the SGW to establish a data transmission channel between the SGW and the MEC network element.
  • the create session request message may be used to notify the MEC network element to establish context information of the terminal.
  • the SGW can obtain the address information of the MEC network element by: for example, the SGW can obtain the address information of the MEC network element from the MME; for example, the SGW can also obtain the MEC network element by querying the MEC network element query system. Address information; for example, the address information of the MEC network element may be configured in advance in the SGW. In the latter two modes, the MME may not perform part 602.
  • the SGW and the MEC network element may be an IP connection, and the address information of the SGW includes an IP address of the SGW.
  • the SGW and the MEC network element may be a GTP-based tunnel connection, and the address information of the SGW includes an IP address and a TEID of the SGW.
  • the MEC network element receives the create session request message, and stores the address information of the SGW, and sends a create session response to the SGW.
  • the session response message may include address information of the MEC network element.
  • a data transmission channel between the MEC network element and the SGW can be established.
  • Sections 607 and 608 can be executed after section 606, or before section 606. Execution may also be performed concurrently with the 606 part, which is not limited by the embodiment of the present invention.
  • the MME sends an initial context setup request message/attach accept message to the eNB, where the initial context setup request message/attach accept message includes address information of the MEC network element to establish a data transmission channel from the eNB to the MEC network element.
  • the initial context setup request message/attach accept message in the prior art includes the address information of the SGW.
  • the address information of the MEC network element is sent to the MME as the address information of the SGW.
  • a GTP-based tunnel connection can be established between the eNB and the MEC network element.
  • the address information of the MEC network element can include the IP address and TEID of the MEC network element.
  • the eNB sends the received uplink data packet to the MEC network element.
  • the eNB sends an initial context setup request response message to the MME, where the initial context setup request response message includes address information of the eNB. At this point, a data transmission channel from the eNB to the MEC network element can be established.
  • the eNB sends the uplink data packet of the terminal to the MEC network element.
  • the MME sends a modify bearer request message to the SGW, where the modify bearer request message includes address information of the eNB, to establish a data transmission channel from the SGW to the eNB.
  • the SGW sends a modify session request message to the MEC network element, where the modify session request message includes the address information of the eNB, so as to establish a data transmission channel from the MEC network element to the eNB.
  • the modify session request message may further include a direction identifier of the downlink data stream. That is, for the downlink data stream, the address of the data packet is the address information of the eNB.
  • the MEC network element receives the modify session request message, and stores the address information of the eNB, and sends a modify session response message to the SGW.
  • a data transmission channel from the MEC network element to the eNB can be established.
  • the MEC network element sends the downlink data packet of the terminal to the eNB.
  • the SGW sends a modify bearer response message to the MME.
  • the modify bearer response message may be used to notify the MME that the MEC network element has established a data transmission channel to the eNB.
  • the address information of the MEC network element is notified to the access network device (eNB) as the address information of the gateway device, that is, the access network device uses the MEC network element as the gateway device.
  • a connection is established between the gateway device and the MEC network element, and the address information of the MEC network element is notified as the address information of the gateway device by using the signaling message between the existing devices.
  • the network access device, and the address information of the access network device is also notified to the MEC network element by the gateway device.
  • the connection between the access network device and the MEC network element and the gateway device is established, and the user plane data transmission channel is established. Established successfully.
  • FIG. 4 and FIG. 6 are only described by taking the terminal attaching process as an example, but the embodiment of the present invention is not limited thereto.
  • the solution of the embodiment of the present invention may also be applied to a service request process and the like.
  • a method for data transmission according to an embodiment of the present invention is described in detail above with reference to FIGS. 3 through 6, and an apparatus for transmitting data according to an embodiment of the present invention will be described in detail below with reference to FIGS. 7 through 12.
  • each network element such as a communication device (such as a gateway device or an access network device), a MEC network element, a mobility management network element, etc., in order to implement the above functions, includes a hardware structure corresponding to executing each function and/or Or software module.
  • a communication device such as a gateway device or an access network device
  • MEC network element such as a MEC network element
  • mobility management network element such as a MEC network element
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform functional unit division on a communication device (such as a gateway device or an access network device), an MEC network element, a mobility management network element, and the like according to the foregoing method.
  • a communication device such as a gateway device or an access network device
  • MEC network element such as a MEC network element
  • mobility management network element such as a MEC network element
  • each functional unit may be divided according to each function. It is also possible to integrate two or more functions into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the MEC network element involved in the above embodiment.
  • the MEC network element 700 includes a processing unit 710 and a communication unit 720.
  • the processing unit 710 is configured to perform control management on the action of the MEC network element.
  • the processing unit 710 is configured to support the MEC network element to perform the process 330 in FIG. 3, the process 409 in FIG. 4, and the process 502 in FIG. Process 608 and process 613 and/or for the techniques described herein Other processes.
  • Communication unit 720 is configured to support communication between MEC network elements and other network entities, such as with the eNB, MME, SGW, etc., shown in FIG. 2A.
  • the MEC network element may further include a storage unit 730 for storing program codes and data of the MEC network element.
  • the processing unit 710 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 720 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 730 can be a memory.
  • the MEC network element involved in the embodiment of the present invention may be the MEC network element shown in FIG. 8.
  • the MEC network element 800 includes a processor 810, a communication interface 820, and a memory 830.
  • the MEC network element 800 can also include a bus 840.
  • the communication interface 820, the processor 810, and the memory 830 may be connected to each other through a bus 840.
  • the bus 840 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 840 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • FIG. 9 is a schematic diagram showing a possible structure of a communication device involved in the above embodiment.
  • the communication device 900 includes a processing unit 910 and a communication unit 920. It should be understood that communication device 900 can be an access network device or a gateway device.
  • the processing unit 910 is configured to control management of actions of the communication device, for example, the processing unit 910 is configured to support the communication device to perform the process 310 and process 320 of FIG. 3 and/or other processes for the techniques described herein. It should be understood that when the communication device 900 is an access network device, the processing unit 910 is configured to support the communication device to perform the process 408 of FIG. 4, process 501 of FIG.
  • the processing unit 910 is configured to support the communication device to perform the process 501 in FIG. 5, the process 607 and the process 612 in FIG.
  • the communication unit 920 is configured to support communication of the communication device with other network entities, such as the MME shown in FIG. 2A. Communication between.
  • the communication device can also include a storage unit 930 for storing program codes and data of the communication device.
  • the processing unit 910 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 920 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 930 can be a memory.
  • the processing unit 910 is a processor
  • the communication unit 920 is a communication interface
  • the storage unit 930 is a memory
  • the communication device according to the embodiment of the present invention may be the communication device shown in FIG.
  • the communication device 1000 includes a processor 1010, a communication interface 1020, and a memory 1030.
  • the communication device 1000 may further include a bus 1040.
  • the communication interface 1020, the processor 1010, and the memory 1030 may be connected to each other through a bus 1040; the bus 1040 may be a PCI bus or an EISA bus or the like.
  • the bus 1040 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • FIG. 11 is a schematic diagram showing a possible structure of a mobility management network element involved in the foregoing embodiment.
  • the mobility management network element 1100 includes a processing unit 1110 and a communication unit 1120. It should be understood that the mobility management network element 1100 can be an access network device or a gateway device.
  • the processing unit 1110 is configured to control and manage the actions of the mobility management network element.
  • the processing unit 1110 is configured to support the mobility management network element to perform the process 406 and the process 407 in FIG. 4, the process 602 and the process 603 in FIG. And/or other processes for the techniques described herein.
  • the communication unit 1120 is configured to support communication between the mobility management network element and other network entities, such as communication with the eNB, SGW shown in FIG. 2A.
  • the mobility management network element may further include a storage unit 1130 for storing program codes and data of the mobility management network element.
  • the processing unit 1110 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • Pass The letter unit 1120 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 1130 may be a memory.
  • the mobility management network element may be the mobility management network element shown in FIG.
  • the mobility management network element 1200 includes a processor 1210, a communication interface 1220, and a memory 1230.
  • the mobility management network element 1200 may further include a bus 1240.
  • the communication interface 1220, the processor 1210, and the memory 1230 may be connected to each other through a bus 1240; the bus 1240 may be a PCI bus or an EISA bus or the like.
  • the bus 1240 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a gateway device or mobility management network element.
  • the processor and the storage medium may also exist as discrete components in the gateway device or the mobility management network element.
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种用于传输数据的方法和设备。该方法包括:移动边缘计算MEC网元接收第一通信设备发送的所述第一通信设备的地址信息;所述MEC网元存储所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。本发明实施例中,MEC网元接收通信设备发送的通信设备的地址信息,并存储该通信设备的地址信息,使得MEC网元能够根据通信设备的地址信息确定终端的数据包的目的地址,从而能够在MEC网元和通信设备之间建立数据传输通道,使得数据能够在MEC网元和通信设备之间传输。

Description

用于数据传输的方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及用于数据传输的方法和装置。
背景技术
为了增强用户的业务体验,可以在接入网附近部署移动边缘计算(Mobile Edge Computing,简称MEC)网元。MEC网元具有计算和存储的能力,能够获取终端的数据报文,并将数据报文处理完后进行路由。
MEC网元的部署形式有两种,一种是MEC网元单独与eNB连接,一种是MEC网元连接在演进型节点(Evolved Node B,简称eNB或eNodeB)与服务网关(Serving Gateway,简称SGW)之间的S1用户面(S1User Plane,简称S1-U)接口上。但是如何在MEC网元与eNB或SGW之间建立连接,目前还没有相关的解决方案。
发明内容
本发明实施例提供了一种用于数据传输的方法和装置,能够在移动边缘计算MEC网元与通信设备之间建立数据传通道。
一方面,本发明实施例提供了一种用于数据传输的方法,包括:移动边缘计算MEC网元接收第一通信设备发送的所述第一通信设备的地址信息;所述MEC网元存储所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
其中,第一通信设备可以为接入网设备或网关设备。
所述MEC网元能够根据第一通信设备的地址信息确定终端的数据包的目的地址,例如,所述MEC网元将所述第一通信设备的地址信息标识的地址作为所述终端的数据包的目的地址。
本发明实施例中,MEC网元接收通信设备发送的通信设备的地址信息,并存储该通信设备的地址信息,使得MEC网元能够根据通信设备的地址信息确定终端的数据包的目的地址,从而能够在MEC网元和通信设备之间建立数据传输通道,使得数据能够在MEC网元和通信设备之间传输。
在一个可能的设计中,所述第一通信设备的地址信息用于确定所述终端 的上行数据包的目的地址,所述方法还包括:所述MEC网元接收所述第一通信设备发送的第二通信设备的地址信息;所述MEC网元存储所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
其中,所述第一通信设备为网关设备,第二通信设备为接入网设备。
在一个可能的设计中,所述方法还包括:所述MEC网元删除存储的所述第一通信设备的地址信息。
例如,所述MEC网元可以接收所述第一通信设备发送的承载释放请求消息,根据所述承载释放请求消息删除存储的所述第一通信设备的地址信息,即释放所述MEC网元与所述通信设备之间的数据传输通道。这样,在终端转入空闲态时,MEC网元及时将存储的相关信息删除掉,能够避免存储浪费。
另一方面,本发明实施例提供了一种用于传输数据的方法,包括:第一通信设备获取移动边缘计算MEC网元的地址信息;所述第一通信设备根据所述MEC网元的地址信息,向所述MEC网元发送所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
在一个可能的设计中,所述第一通信设备获取所述MEC网元的地址信息后,可以将所述MEC网元的地址信息标识的地址作为所述终端的数据包的目的地址。
在一个可能的设计中,所述第一通信设备的地址信息可以携带在所述第一通信设备向所述MEC网元发送的消息中。例如,所述通信设备向所述MEC网元发送创建会话请求消息,所述修改会话请求消息包括通信设备的地址信息。所述创建会话请求消息可以用于请求与所述MEC网元建立数据传输通道。
在一个可能的设计中,所述通信设备还可以向所述MEC网元发送所述终端的标识信息。
其中,第一通信设备可以为接入网设备或网关设备。
本发明实施例中,第一通信设备向MEC网元发送通信设备的地址信息,使得MEC网元根据第一通信设备的地址信息确定终端的上行数据包或终端的第一下行数据包的目的地址,从而能够在MEC网元和通信设备之间建立 数据传输通道,以使得数据能够在MEC网元和通信设备之间传输。
在一个可能的设计中,所述第一通信设备获取所述MEC网元的地址信息包括:所述通信设备接收移动性管理网元发送的所述MEC网元的地址信息;或者,所述第一通信设备根据对应关系获取所述MEC网元的地址信息,所述对应关系为所述终端的标识信息和所述第一通信设备的标识信息之一或全部与所述MEC网元的地址信息之间的对应关系。
在一个可能的设计中,所述第一通信设备的地址信息用于确定终端的上行数据包的目的地址,所述方法还包括:所述第一通信设备接收移动性管理网元发送的第二通信设备的地址信息;所述第一通信设备向所述MEC网元发送所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
在一个可能的设计中,所述方法还包括:所述第一通信设备通知所述MEC网元删除存储的所述通信设备的地址信息。
本发明实施例在终端转入空闲态时,能够及时通知MEC网元将相关信息删除掉,避免造成存储浪费。
又一方面,本发明实施例提供了一种用于传输数据的方法,包括:移动性管理网元获取移动边缘计算MEC网元的地址信息;所述移动性管理网元向通信设备发送所述MEC网元的地址信息。
其中,所述通信设备为接入网设备或网关设备。
本发明实施例中,通过获取MEC的地址信息,并向通信设备发送MEC网元的地址信息,能够使得通信设备与MEC网元建立数据传输通道,从而使得数据能够在MEC网元与通信设备之间传输。
在一个可能的设计中,所述移动性管理网元根据对应关系获取所述MEC网元的地址信息,所述对应关系为终端的标识信息和所述通信设备的标识信息之一或全部与所述MEC网元的地址信息之间的对应关系。
又一方面,本发明实施例提供了一种MEC网元,该MEC网元具有实现上述方法设计中MEC网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述MEC网元包括处理单元和通信单元,所述处理单元被配置为支持MEC网元执行上述方法中相应的功能。所述通信单 元用于支持MEC网元与其他设备之间的通信。所述MEC网元还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存MEC网元必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供了一种通信设备,该通信设备具有实现上述方法设计中第一通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信设备包括处理单元和通信单元,所述处理单元被配置为支持通信设备执行上述方法中相应的功能。所述通信单元用于支持通信设备与其他设备之间的通信。所述通信设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存通信设备必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供了一种移动性管理网元,该移动性管理网元具有实现上述方法设计中移动性管理网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述移动性管理网元包括处理单元和通信单元,所述处理单元被配置为支持移动性管理网元执行上述方法中相应的功能。所述通信单元用于支持移动性管理网元与其他设备之间的通信。所述移动性管理网元还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存移动性管理网元必要的程序指令和数据。作为示例,处理单元可以为处理器,通信单元可以为通信接口,存储单元可以为存储器。
又一方面,本发明实施例提供一种通信***,该通信***包括上述方面所述的MEC网元和通信设备;或者该通信***包括上述方面所述的MEC网元、通信设备和移动性管理网元。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述MEC网元所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为 上述第一通信设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述移动性管理网元所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例的方案中,MEC网元接收第一通信设备发送的第一通信设备的地址信息,以使得MEC网元能够根据通信设备的地址信息确定终端的上行数据包或终端的第一下行数据包的目的地址,从而能够在MEC网元和通信设备之间建立数据传输通道,以使得数据能够在MEC网元和通信设备之间传输。
附图说明
图1是本发明实施例提供的一种可能的***架构的示意图;
图2A是本发明实施例提供的一种应用场景的示意图;
图2B是本发明实施例提供的另一种应用场景的示意图;
图3是本发明实施例提供的一种用于数据传输的方法的示意性流程图;
图4是本发明实施例提供的另一种用于数据传输的方法的示意性流程图;
图5是本发明实施例提供的又一种用于数据传输的方法的示意性流程图;
图6是本发明实施例提供的又一种用于数据传输的方法的示意性流程图;
图7是本发明实施例提供的一种通信设备的结构示意图;
图8是本发明实施例提供的另一种通信设备的结构示意图;
图9是本发明实施例提供的一种MEC网元的结构示意图;
图10是本发明实施例提供的另一种MEC网元的结构示意图;
图11是本发明实施例提供的一种移动性管理网元的结构示意图;
图12是本发明实施例提供的另一种移动性管理网元的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,名词“网络”和“***”经常交替使用,但本领域技术人员可以理解其含义。本发明实施例所涉及到的终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。本发明实施例所涉及到接入网设备可以是基站(Base Station,BS),所述基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)***中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G通信***中,称为节点B(Node B)等等。为方便描述,本发明实施例中,上述为终端提供无线通信功能的装置统称为基站或BS。
移动性管理网元可以是移动性管理实体(Mobility Management Entity,简称MME)或通用分组无线***(General Packet Radio System,简称GPRS)业务支撑节点(Serving GPRS Support Node,简称SGSN),但本发明并不限定。
但为描述方便,下面将以eNB、终端和MME为例对本发明实施例的方案进行说明。应理解,下文中虽然使用eNB为例描述接入网设备,使用MME为例描述移动性管理网元,但本发明实施例不限于这些术语所代表的制式。本发明实施例也可应用于其他制式,这些变化均落入本发明实施例的范围内。
本发明实施例可以应用于图1所示的***架构。下面首先介绍该***架构中的主要网络实体。
演进型通用陆地无线接入网(Evolved UniversalTerrestrial Radio Access Network,简称E-UTRAN):由多个eNB组成的网络,实现无线物理层功能、 资源调度和无线资源管理、无线接入控制以及移动性管理功能。eNB通过S1-U接口和SGW相连,用于传送用户数据;通过S1控制面接口(S1-MME接口)和MME相连,采用S1应用协议(S1Application Protocol,简称S1-AP)实现无线接入承载控制等功能。
MME:主要负责用户及会话管理的所有控制平面功能,包括非接入层(Non-Access Stratum,简称NAS)信令及安全、跟踪区列表(Tracking Area List,简称TAL)的管理、PGW与SGW的选择等。
SGW:主要负责终端的数据传输、转发以及路由切换等,并作为终端在eNB之间切换时的本地移动性锚定点。
分组数据网络网关(Packet Data Network Gateway,简称PDN GW或PGW):外部网络向终端发送数据的入口,负责终端的互联网协议(Internet Protocol,简称IP)地址的分配,终端的数据报文过滤、速率控制、生成计费信息等。
终端接入演进分组***(Evolved Packet System,简称EPS)后,PGW为终端分配IP地址(IP address),终端通过该IP地址实现与外部网络的连接以进行数据传输;终端的所有上行数据报文会通过PGW发送至外部网络,外部网络所有的下行数据报文会通过PGW发送至终端。
终端发送或接收的数据报文在EPS网络内通过EPS承载(简称承载)进行传输,每个终端可以有多个承载,不同的承载可以满足不同业务的服务质量(Quality of Service,简称QoS)需求。eNB与SGW会存储每个承载的信息,即承载上下文,其中包含该承载的SGW隧道端点标识(Tunnel Endpoint Identifier,简称TEID)与eNB TEID信息,其中SGW TEID用于eNB发往SGW的上行数据报文,eNB TEID用于SGW发往eNB的下行数据报文。eNB通过S1-AP消息与MME实现承载上下文的同步,SGW通过GPRS隧道协议控制面(GPRS Tunneling Protocol-Control Plane,简称GTP-C)消息与MME实现承载上下文的同步;进而实现了eNB与SGW间的承载上下文同步。
eNB在收到终端的上行数据报文时,会根据承载上下文将终端的上行数据报文封装为上行的GPRS隧道协议用户面(GPRS Tunneling Protocol-User Plane,简称GTP-U)报文,其中,上行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的SGW TEID信息。由于不同的承载会使用不同的SGW TEID,因此SGW收到eNB发来的上行的GTP-U报文时,根据GTP-U头即可判断 该报文所属的承载;SGW收到发往终端的下行数据报文时,会将该下行数据报文封装为下行的GTP-U报文,其中,下行的GTP-U报文包含GTP-U头,GTP-U头包含该承载的eNB TEID信息。
在图1所示的LTE网络架构中,终端进行移动业务的过程如下:
(1)终端先附着在网络上;
(2)网络侧为终端建立承载,终端的数据流在通过承载发送到对端,比如应用服务器或者对端终端。
在建立承载的过程中,MME为终端选择SGW与PGW,然后SGW与eNB之间通过MME交换承载的地址(包括SGW、eNB的IP地址和TEID):即SGW通过MME将SGW的IP地址与为承载分配的TEID发送给eNB,eNB通过MME向SGW发送eNB的IP地址与为承载分配的TEID,eNB向SGW的IP地址、TEID标示的地址发送数据包,而SGW则向eNB的IP地址、TEID标示的地址发送数据包,这样,eNB与SGW之间的承载就建立成功。
MEC网元主要由数据总线与应用组成,其中数据总线负责获取终端的数据报文并转发给相应的应用,应用处理完数据报文后会将报文送还数据总线进行路由。MEC网元上可以安装多种应用,用于增强用户的业务体验。MEC网元上的应用可以截获终端发送的数据进行修改、检测、转发等,也可以对终端发送来的数据直接给出应答。例如MEC网元可以安装视频缓存应用,当终端请求视频业务时,终端的请求会被视频缓存应用处理,如果视频缓存应用中没有终端所请求的视频,视频缓存应用会继续转发该用户请求给SGW;如果视频缓存应用存储有终端所请求的视频,视频缓存应用会直接发送视频数据报文给终端。因此,将MEC网元部署在接入网附近能够有效提升用户的业务体验。
图2A是本发明实施例的应用场景的示意图。如图2A所示,MEC网元串接在eNB与SGW设备之间的S1-U接口上,即eNB通过MEC网元向SGW传输上行数据,或SGW通过MEC网元向eNB传输下行数据。根据运营商的配置,MEC网元可以与eNB建立连接,或者MEC网元也可以与SGW建立连接。
图2B是本发明实施例的另一种应用场景的示意图。如图2B所示,MEC网元单独与eNB连接,也可以称为MEC网元外挂在eNB上。
需要说明的是,本发明实施例也可以用于通用陆地无线接入网(Universal Terrestrial Radio Access Network,简称UTRAN)或全球移动通信***(Global System for Mobile Communications,简称GSM)/GSM演进增强数据速率(Enhanced Data Rates for GSM Evolution,简称EDGE)无线接入网(GSM/EDGE Radio Access Network,简称GERAN)中。与LTE网络不同的是,在UTRAN或GERAN中,MME的功能是由SGSN完成的,而且SGW或PGW的功能是由网关GPRS支持节点(Gateway GPRS Support Node,简称GGSN)完成的。
图3是本发明实施例提供的的一种用于数据传输的方法300的通信示意图。其中,方法300可以在终端接入网络的过程(如终端的附着过程或者服务请求过程)中执行。
如图3所示,方法300包括如下内容。
310、第一通信设备获取MEC网元的地址信息。
其中,MEC网元的地址信息可以包括MEC网元的IP地址和MEC网元的TEID之一或全部。
在一个示例中,第一通信设备可以获取预先配置的MEC网元的地址信息,或者第一通信设备也可以从MME获取MEC网元的地址信息。
在另一个示例中,第一通信设备还可以根据对应关系获取MEC网元的地址信息,该对应关系为终端的标识信息和第一通信设备的标识信息之一或全部与MEC网元的地址信息之间的对应关系。例如,MEC网元查询***中存储有该对应关系,MEC网元可以根据终端的标识信息和/或第一通信设备的标识信息通过查询MEC网元查询***以获取MEC网元的地址信息。
320、第一通信设备根据MEC网元的地址信息向MEC网元发送第一通信设备的地址信息,该第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
从而可以在第一通信设备与MEC网元之间的建立数据传输通道。
其中,终端的标识信息用于标识该终端,本发明实施例对终端的标识信息的形式不作限定,例如,终端的标识信息可以是临时移动用户标识(Temporary Mobile Subscriber Identity,简称TMSI),也可以是国际移动用户标识(International Mobile Subscriber Identity,简称IMSI),还可以是eNB UE S1-AP ID,或者MME UE S1-AP ID等。其中,eNB UE S1-AP ID为eNB为 终端分配的标识,MME UE S1-AP ID为MME为终端分配的标识
第一通信设备的地址信息可以包括第一通信设备的IP地址和第一通信设备的TEID之一或全部。
330、MEC网元存储第一通信设备的地址信息。
此时即可建立MEC网元与第一通信设备之间的数据传输通道。
在一个示例中,第一通信设备还可以通知MEC网元删除存储的第一通信设备的地址信息。例如,当网络中没有数据传输,终端转为空闲态时,第一通信设备可以通知MEC网元删除存储的第一通信设备的地址信息,从而能够节约空口的资源。对应的,MEC网元可以根据第一通信设备的通知删除存储的第一通信设备的地址信息。
本发明实施例的方案中,第一通信设备向MEC网元发送第一通信设备的地址信息,使得MEC网元能够根据通信设备的地址信息确定终端的上行数据包或终端的第一下行数据包的目的地址,从而能够在MEC网元和通信设备之间建立数据传输通道,以使得数据能够在MEC网元和通信设备之间传输。
需要说明的是,上述第一通信设备可以为接入网设备或网关设备。例如,第一通信设备可以为接入网设备,方法300可以应用于图2A和图2B所示的应用场景中,使接入网设备与MEC网元之间建立数据传输通道。当第一通信设备为接入网设备时,第一通信设备的地址信息用于确定终端的第一下行数据包的目的地址。又例如,第一通信设备可以为网关设备,方法300可以应用于图2A所示的应用场景中,使MEC网元与网关设备之间建立数据传输通道。当第一通信设备为网关设备时,第一通信设备的地址信息用于确定终端的上行数据包的目的地址。进一步的,第一通信设备还可以接收移动性管理网元发送的第二通信设备的地址信息;以及向MEC网元发送第二通信设备的地址信息,第二通信设备的地址信息用于确定终端的第二下行数据包的目的地址。其中,第二通信设备可以为接入网设备。
需要说明的是,上述终端的第一下行数据包或终端的第二下行数据包可以为相同的数据包,也可以为不同的数据包,上文中用“第一”、“第二”进行区分是为了体现终端的下行数据包的目的地址的不同确定方式,而不构成其他限定。
本发明实施例中,上述网关设备可以为SGW,也可以为兼具SGW功能 和PGW功能的网关设备。
下面结合图4至图6,对本发明实施例的方案做进一步说明。
图4为本发明实施例提供的另一种用于数据传输的方法400的通信示意图。下面以第一通信设备为eNB,第二通信设备为SGW为例,对图4所示的方法进行说明。
401、终端通过eNB向MME发送附着请求消息。
402、MME向SGW发送创建会话请求消息。
403、SGW向PGW发送创建会话请求消息。
404、PGW向SGW发送创建会话响应消息。
应理解,当SGW和PGW合并部署时,无需执行步骤403和404。
405、SGW向MME发送创建会话响应消息,消息中包括SGW的地址信息,例如SGW的IP地址、或者SGW的IP地址和TEID。
406、MME获取MEC网元的地址信息。
在一个示例中,MME可以根据终端的标识信息、eNB的标识信息和eNB的地址信息中的至少一种信息,通过查询MEC网元查询***获取MEC网元的地址信息。
在另一个示例中,还可以在MME上预先配置MEC网元的地址信息,MME可以获取预先配置的MEC网元的地址信息。
406部分为可选部分,MME也可以在接收到SGW发送的创建会话响应消息(即405部分)后直接执行407部分。
407、MME向eNB发送初始上下文建立请求消息/附着接受消息,该初始上下文建立请求/附着接受消息中包括SGW的地址信息。eNB可以将SGW的地址信息标识的地址作为终端的上行数据包的目的地址。
在一个示例中该初始上下文建立请求消息/附着接受消息中还可以包括数据流方向指示信息,比如上行(Uplink)。
需要说明的是,如果MME执行406部分,相应地,该初始上下文建立请求消息/附着接受消息中还可以包括MEC网元的地址信息。
408、eNB根据MEC网元的地址信息向MEC网元发送创建会话请求消息,创建会话请求消息包括eNB的地址信息和SGW的地址信息。
SGW与MEC网元之间可以建立基于GTP的隧道连接,则创建会话请求消息中携带的SGW的地址信息可以包括SGW的IP地址和TEID。
在一个示例中,eNB可以通过以下方式获取MEC网元的地址信息:例如,eNB从MME发送的初始上下文建立请求消息/附着接受消息中获取MEC网元的地址信息;又例如,eNB也可以配置MEC网元的地址信息;又例如,eNB还可以基于终端的位置信息和/或eNB的位置信息通过查询MEC网元查询***获取MEC网元的地址信息。在后面两种方式中,MME可以不执行406部分。
在另一个示例中,eNB与MEC网元之间可以为IP连接,创建会话请求消息中携带的eNB的地址信息包括eNB的IP地址。或者,eNB与MEC网元之间也可以为基于GTP的隧道连接,创建会话请求消息中携带的eNB的地址信息包括eNB的IP地址和TEID。
从而,MEC网元可以根据eNB的地址信息和SGW的地址信息建立终端的上下文信息。例如,MEC网元可以将eNB的地址信息标识的地址作为终端的下行数据包的目的地址,将SGW的地址信息标识的地址作为终端的上行数据包的目的地址。
409、MEC网元接收创建会话请求消息,并向eNB发送创建会话响应消息。
经过409部分可以建立eNB与MEC网元之间的数据传输通道。
410、eNB向MME发送初始上下文建立请求响应消息,初始上下文建立请求响应消息中可以包括MEC网元的地址信息。
在现有技术中,该初始上下文建立请求响应消息中包括eNB的地址信息,本发明实施例中,该初始上下文建立请求响应消息中将MEC网元的地址信息作为eNB的地址信息。
411、MME向SGW发送修改承载请求消息,该修改承载请求消息中包括MEC网元的地址信息,以建立从SGW到MEC网元的数据传输通道。
MEC网元与SGW通过S1-U接口连接,即MEC网元与SGW之间为基于GTP的隧道连接,修改承载请求消息中携带的MEC网元的地址信息包括MEC网元的IP地址和TEID。
现有技术中,修改承载请求消息中包括eNB的地址信息,而在本发明实施例中,将MEC网元的地址信息作为eNB的地址信息,对于SGW来说,接收到的eNB的地址信息实际上为MEC网元的地址信息,这样SGW就可以将下行数据包发送到MEC网元上。
412、SGW向MME发送修改承载响应消息,此时即可成功建立从SGW到MEC网元的数据传输通道。
需要说明的是,上述各个部分中的消息中均可以包括终端的标识信息,用于标识终端。
需要说明的是,图4所示仅以SGW和PGW分开部署为例进行描述。但本发明实施例对此并不限定,SGW也可与PGW合一部署。
本发明实施例的方案中,在MEC网元与接入网设备(如eNB)之间建立连接,将MEC网元的地址信息作为接入网设备的地址信息通知到网关设备(如SGW),也就是说,网关设备将MEC网元作为接入网设备。
换句话说,在不修改核心网设备(如MME\SGW\PGW等)的情况下,可以将MEC网元的地址信息通过接入网设备(如eNB)传递给网关设备,并且将网关设备的地址信息也通知到MEC网元,通过这种方式,可以将MEC网元串接在S1-U接口上,即使得上行数据包经过MEC网元到达网关设备,下行的数据包也可以由SGW经过MEC网元传递给接入网,这样,MEC网元能够处理数据流。
在一定时间段内,如果网络中没有数据传输时,终端从连接态转为空闲态,当转为空闲态时,终端、eNB与SGW之间的承载会删除,以节约空口的资源。相应地,在eNB上的终端的上下文信息也随之删除。为避免造成存储浪费,需要及时通知MEC网元删除终端的上下文信息。如图5所示。
501、eNB向MEC网元发送承载释放请求消息,承载释放请求消息中包括终端的标识等信息。
502、MEC网元接收承载请求消息,并根据承载释放请求消息将存储的终端的上下文信息删除,释放MEC网元与eNB之间的数据传输通道,向eNB发送承载释放响应消息。其中,终端的上下文信息包括eNB的地址信息。
图6为本发明实施例提供的又一种用于数据传输的方法600的通信示意图。
601、终端通过接入网设备eNB向MME发送附着请求消息;
602、MME获取MEC网元的地址信息。
在一个示例中,MME可以根据终端的标识信息、eNB的标识信息和eNB的地址信息中的至少一种信息,通过查询MEC网元查询***获取MEC网元的地址信息。或者,也可以在MME上预先配置MEC网元的地址信息。
需要说明的是,上述602部分为可选部分。
603、MME向SGW发送创建会话请求消息。
当MME执行602部分时,创建会话请求消息中可以包括MEC网元的地址信息。
604、SGW向PGW网关发送创建会话请求。
605、PGW向SGW发送创建会话响应消息。
应理解,当SGW和PGW合并部署时,无需执行604部分和605部分。
606、SGW向MME发送创建会话响应消息,创建会话响应消息中包括SGW的地址信息。
601部分、603部分~606部分中所涉及的消息中均可以包括终端的标识信息,在此不再详细描述。
需要说明的是,606部分与602部分的执行顺序不限定,也可以在606部分之后再执行602部分。
607、SGW根据MEC网元的地址信息向MEC网元发送创建会话请求消息,建会话请求消息中包括终端的标识信息和SGW的地址信息,以建立SGW与MEC网元之间的数据传输通道。
其中,创建会话请求消息可以用于通知MEC网元建立终端的上下文信息。
在一个示例中,SGW可以通过以下方式获取MEC网元的地址信息:例如,SGW可以从MME获取MEC网元的地址信息;又例如,SGW也可以通过查询MEC网元查询***获取MEC网元的地址信息;又例如,可以预先在SGW中配置MEC网元的地址信息。在后面两种方式中,MME可以不执行602部分。
在另一个示例中,SGW与MEC网元之间可以为IP连接,SGW的地址信息包括SGW的IP地址。或者,SGW与MEC网元之间可以为基于GTP的隧道连接,SGW的地址信息包括SGW的IP地址和TEID。
608、MEC网元接收创建会话请求消息,并存储SGW的地址信息,向SGW发送创建会话响应。其中,创建会话响应消息中可以包括MEC网元的地址信息。
经过608部分可以建立MEC网元与SGW之间的数据传输通道。
607部分和608部分可以在606部分之后执行,也可以在606部分之前 执行,还可以与606部分同时执行,本发明实施例对此并不限定。
609、MME向eNB发送初始上下文建立请求消息/附着接受消息,初始上下文建立请求消息/附着接受消息中包括MEC网元的地址信息,以建立从eNB到MEC网元的数据传输通道。
应注意,现有技术中初始上下文建立请求消息/附着接受消息中包括SGW的地址信息,在本发明实施例中,将MEC网元的地址信息作为SGW的地址信息发送给MME。
eNB与MEC网元之间可以建立基于GTP的隧道连接,则MEC网元的地址信息可以包括MEC网元的IP地址和TEID。
eNB会将接收到的上行数据包发到MEC网元。
610、eNB向MME发送初始上下文建立请求响应消息,初始上下文建立请求响应消息中包括eNB的地址信息。此时即可建立从eNB到MEC网元的数据传输通道。
eNB会将终端的上行数据包发送至MEC网元。
611、MME向SGW发送修改承载请求消息,修改承载请求消息中包括eNB的地址信息,以建立从SGW到eNB的数据传输通道。
612、SGW向MEC网元发送修改会话请求消息,修改会话请求消息中包括eNB的地址信息,以建立从MEC网元到eNB的数据传输通道。
在一个示例中,修改会话请求消息中还可以包括下行数据流的方向标识。也就是说,对于下行数据流,数据包的地址是eNB的地址信息。
613、MEC网元接收修改会话请求消息,并存储eNB的地址信息,向SGW发送修改会话响应消息。
此时即可建立从MEC网元到eNB的数据传输通道。MEC网元会将终端的下行数据包发送至eNB。
614、SGW向MME发送修改承载响应消息。
修改承载响应消息可以用于通知MME已经建立MEC网元到eNB的数据传输通道。
本发明实施例中将MEC网元的地址信息作为网关设备的地址信息通知到接入网设备(eNB),也就是说,接入网设备将MEC网元作为网关设备。
本发明实施例在网关设备与MEC网元之间建立连接,再通过现有的设备间的信令消息,将MEC网元的地址信息作为网关设备的地址信息通知接 入网设备,并且将接入网设备的地址信息也通过网关设备通知MEC网元,通过这种方式,接入网设备与MEC网元以及网关设备之间建立了连接,将此用户面数据传输通道建立成功。
应注意,图4和图6仅以终端附着过程为例进行描述,但本发明实施例对此并不限定,例如,本发明实施例的方案还可以应用于服务请求过程等。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文结合图3至图6详细描述了根据本发明实施例的用于数据传输的方法,下面将结合图7至图12详细描述根据本发明实施例的用于传输数据的装置。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,各个网元,例如通信设备(如网关设备或接入网设备),MEC网元,移动性管理网元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对通信设备(如网关设备或接入网设备),MEC网元,移动性管理网元等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的MEC网元的一种可能的结构示意图。MEC网元700包括处理单元710和通信单元720。处理单元710用于对MEC网元的动作进行控制管理,例如,处理单元710用于支持MEC网元执行图3中的过程330,图4中的过程409,图5中的过程502,图6中的过程608和过程613和/或用于本文所描述的技术 的其它过程。通信单元720用于支持MEC网元与其他网络实体的通信,例如与图2A中示出的eNB、MME、SGW等之间的通信。MEC网元还可以包括存储单元730,用于存储MEC网元的程序代码和数据。
其中,处理单元710可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元720可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元730可以是存储器。
当处理单元710为处理器,通信单元720为通信接口,存储单元730为存储器时,本发明实施例所涉及的MEC网元可以为图8所示的MEC网元。
参阅图8所示,该MEC网元800包括:处理器810、通信接口820、存储器830。可选的,MEC网元800还可以包括总线840。其中,通信接口820、处理器810以及存储器830可以通过总线840相互连接;总线840可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线840可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
图9示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。通信设备900包括处理单元910和通信单元920。应理解,通信设备900可以为接入网设备或网关设备。处理单元910用于对通信设备的动作进行控制管理,例如,处理单元910用于支持通信设备执行图3中的过程310和过程320和/或用于本文所描述的技术的其它过程。应理解,当通信设备900为接入网设备时,处理单元910用于支持通信设备执行图4中的过程408,图5中的过程501。当通信设备900为网关设备时,处理单元910用于支持通信设备执行图5中的过程501,图6中的过程607和过程612。通信单元920用于支持通信设备与其他网络实体的通信,例如与图2A中示出的MME之 间的通信。通信设备还可以包括存储单元930,用于存储通信设备的程序代码和数据。
其中,处理单元910可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元920可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元930可以是存储器。
当处理单元910为处理器,通信单元920为通信接口,存储单元930为存储器时,本发明实施例所涉及的通信设备可以为图10所示的通信设备。
参阅图10所示,该通信设备1000包括:处理器1010、通信接口1020、存储器1030。可选的,通信设备1000还可以包括总线1040。其中,通信接口1020、处理器1010以及存储器1030可以通过总线1040相互连接;总线1040可以是PCI总线或EISA总线等。所述总线1040可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
图11示出了上述实施例中所涉及的移动性管理网元的一种可能的结构示意图。移动性管理网元1100包括处理单元1110和通信单元1120。应理解,移动性管理网元1100可以为接入网设备或网关设备。处理单元1110用于对移动性管理网元的动作进行控制管理,例如,处理单元1110用于支持移动性管理网元执行图4中的过程406和过程407,图6中的过程602和过程603,和/或用于本文所描述的技术的其它过程。通信单元1120用于支持移动性管理网元与其他网络实体的通信,例如与图2A中示出的eNB、SGW之间的通信。移动性管理网元还可以包括存储单元1130,用于存储移动性管理网元的程序代码和数据。
其中,处理单元1110可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通 信单元1120可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1130可以是存储器。
当处理单元1110为处理器,通信单元1120为通信接口,存储单元1130为存储器时,本发明实施例所涉及的移动性管理网元可以为图12所示的移动性管理网元。
参阅图12所示,该移动性管理网元1200包括:处理器1210、通信接口1220、存储器1230。可选的,移动性管理网元1200还可以包括总线1240。其中,通信接口1220、处理器1210以及存储器1230可以通过总线1240相互连接;总线1240可以是PCI总线或EISA总线等。所述总线1240可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网关设备或移动性管理网元中。当然,处理器和存储介质也可以作为分立组件存在于网关设备或移动性管理网元中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施 例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (14)

  1. 一种用于数据传输的方法,其特征在于,包括:
    移动边缘计算MEC网元接收第一通信设备发送的所述第一通信设备的地址信息;
    所述MEC网元存储所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信设备的地址信息用于确定所述终端的上行数据包的目的地址,所述方法还包括:
    所述MEC网元接收所述第一通信设备发送的第二通信设备的地址信息;
    所述MEC网元存储所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述MEC网元删除存储的所述第一通信设备的地址信息。
  4. 一种用于数据传输的方法,其特征在于,包括:
    第一通信设备获取移动边缘计算MEC网元的地址信息;
    所述第一通信设备根据所述MEC网元的地址信息,向所述MEC网元发送所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
  5. 根据权利要求4所述的方法,其特征在于,所述第一通信设备获取所述MEC网元的地址信息,包括:
    所述第一通信设备接收移动性管理网元发送的所述MEC网元的地址信息;或者,
    所述第一通信设备根据对应关系获取所述MEC网元的地址信息,所述对应关系为所述终端的标识信息和所述第一通信设备的标识信息之一或全部与所述MEC网元的地址信息之间的对应关系。
  6. 根据权利要求4所述的方法,其特征在于,所述第一通信设备的地址信息用于确定终端的上行数据包的目的地址,所述方法还包括:
    所述第一通信设备接收移动性管理网元发送的第二通信设备的地址信息;
    所述第一通信设备向所述MEC网元发送所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,还包括:
    所述第一通信设备通知所述MEC网元删除存储的所述第一通信设备的地址信息。
  8. 一种移动边缘计算MEC网元,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于通过所述通信单元接收第一通信设备发送的所述第一通信设备的地址信息;以及用于存储所述第一通信设备的地址信息,所述第一通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
  9. 根据权利要求8所述的MEC网元,其特征在于,所述第一通信设备的地址信息用于确定所述终端的上行数据包的目的地址,
    所述处理单元还用于通过所述通信单元接收所述第一通信设备发送的第二通信设备的地址信息;以及用于存储所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
  10. 根据权利要求8或9所述的MEC网元,其特征在于,所述处理单元还用于删除存储的所述第一通信设备的地址信息。
  11. 一种通信设备,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于获取移动边缘计算MEC网元的地址信息;以及用于根据所述MEC网元的地址信息,通过所述通信单元向所述MEC网元发送所述通信设备的地址信息,所述通信设备的地址信息用于确定终端的上行数据包或第一下行数据包的目的地址。
  12. 根据权利要求11所述的通信设备,其特征在于,所述处理单元具体用于通过所述通信单元接收移动性管理网元发送的所述MEC网元的地址信息;或者,所述处理单元具体用于根据对应关系获取所述MEC网元的地址信息,所述对应关系为所述终端的标识信息和所述第一通信设备的标识信息之一或全部与所述MEC网元的地址信息之间的对应关系。
  13. 根据权利要求11所述的通信设备,其特征在于,所述通信设备为 第一通信设备,所述第一通信设备的地址信息用于确定终端的上行数据包的目的地址,
    所述处理单元还用于通过所述通信单元接收移动性管理网元发送的第二通信设备的地址信息;以及用于通过所述通信单元向所述MEC网元发送所述第二通信设备的地址信息,所述第二通信设备的地址信息用于确定所述终端的第二下行数据包的目的地址。
  14. 根据权利要求11至13中任一项所述的通信设备,其特征在于,所述处理单元还用于通过所述通信单元通知所述MEC网元删除存储的所述通信设备的地址信息。
PCT/CN2016/082217 2016-05-16 2016-05-16 用于数据传输的方法和装置 WO2017197563A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680085745.XA CN109155787B (zh) 2016-05-16 2016-05-16 用于数据传输的方法和装置
PCT/CN2016/082217 WO2017197563A1 (zh) 2016-05-16 2016-05-16 用于数据传输的方法和装置
EP16901949.4A EP3457662B1 (en) 2016-05-16 2016-05-16 Data transmission method and apparatus
US16/192,724 US10827348B2 (en) 2016-05-16 2018-11-15 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082217 WO2017197563A1 (zh) 2016-05-16 2016-05-16 用于数据传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/192,724 Continuation US10827348B2 (en) 2016-05-16 2018-11-15 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017197563A1 true WO2017197563A1 (zh) 2017-11-23

Family

ID=60324606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082217 WO2017197563A1 (zh) 2016-05-16 2016-05-16 用于数据传输的方法和装置

Country Status (4)

Country Link
US (1) US10827348B2 (zh)
EP (1) EP3457662B1 (zh)
CN (1) CN109155787B (zh)
WO (1) WO2017197563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826359A4 (en) * 2018-07-16 2022-04-20 ZTE Corporation METHOD AND DEVICE FOR PROCESSING INFORMATION OF A RADIO ACCESS NETWORK, NETWORK ELEMENT AND STORAGE MEDIUM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312500A (zh) * 2017-10-16 2021-02-02 华为技术有限公司 会话建立方法、设备及***
CN110995777B (zh) * 2019-10-24 2022-08-26 华为技术有限公司 一种业务管理方法及装置
CN111654833B (zh) * 2020-06-02 2023-09-19 Tcl通讯(宁波)有限公司 传感器数据的处理方法和装置
CN111885630B (zh) * 2020-07-01 2023-06-30 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN112422685B (zh) * 2020-11-19 2022-02-01 中国联合网络通信集团有限公司 一种基于移动边缘计算mec的5g数据处理***和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578199A (zh) * 2016-02-22 2016-05-11 北京佰才邦技术有限公司 虚拟现实全景多媒体处理***、方法及客户端设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633153A1 (en) * 2004-09-03 2006-03-08 Hewlett-Packard Development Company, L.P. Communications infrastructure for content delivery using edge servers
US8630288B2 (en) * 2010-05-17 2014-01-14 Fujitsu Limited Hierarchical isolated learning and flooding for metro ethernet bridging domains
KR101736163B1 (ko) * 2010-11-30 2017-05-17 한국전자통신연구원 검색 기반의 분산형 이동성 제어 방법 및 그 장치
EP2795875B1 (en) * 2011-12-21 2020-10-21 Telefonaktiebolaget LM Ericsson (publ) Devices and methods using network load data in mobile cloud accelerator context to optimize network usage by selectively deferring content delivery
EP2845398B1 (en) * 2012-05-02 2020-01-01 Nokia Solutions and Networks Oy Methods and apparatus
KR101677476B1 (ko) * 2013-02-21 2016-11-18 후아웨이 테크놀러지 컴퍼니 리미티드 서비스 제공 시스템 및 방법, 및 모바일 에지 애플리케이션 서버 및 지원 노드
EP3107266A1 (en) * 2015-06-16 2016-12-21 Saguna Networks Ltd. Methods circuits devices systems and associated machine executable instructions for transporting packetized data across a cellular communications network
CN108029053B (zh) * 2015-10-29 2020-07-21 华为技术有限公司 移动边缘平台确定承载的方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578199A (zh) * 2016-02-22 2016-05-11 北京佰才邦技术有限公司 虚拟现实全景多媒体处理***、方法及客户端设备

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ETSI: "Mobile Edge Computing (MEC): Technical Requirements", ETSI GS MEC 002 V1.1.1, 31 March 2016 (2016-03-31), XP055560273 *
ETSI: "Mobile Edge Computing (MEC); Framework and Reference Architecture", ETSI GS MEC 003 V1.1.1, 31 March 2016 (2016-03-31), XP055560286 *
ETSI: "Mobile-Edge Computing (MEC); Proof of Concept Framework", ETSI GS MEC-IEG 005 V1.1.1, 31 August 2015 (2015-08-31), XP055560300 *
ETSI: "Mobile-Edge Computing (MEC); Service Scenarios", ETSI GS MEC-IEG 004 V1.1.1, 30 November 2015 (2015-11-30), XP055560291 *
HU , YUNCHAO ET AL.: "Mobile Edge Computing A key technology towards 5G", ETSI WHITE PAPER, 30 September 2015 (2015-09-30), XP055537310 *
HUAWEI ET AL.: "Mobile-Edge Computing", MOBILE-EDGE COMPUTING-INTRODUCTORY TECHNICAL WHITE PAPER, 30 September 2014 (2014-09-30), XP050901711 *
See also references of EP3457662A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826359A4 (en) * 2018-07-16 2022-04-20 ZTE Corporation METHOD AND DEVICE FOR PROCESSING INFORMATION OF A RADIO ACCESS NETWORK, NETWORK ELEMENT AND STORAGE MEDIUM

Also Published As

Publication number Publication date
EP3457662A4 (en) 2019-06-19
CN109155787A (zh) 2019-01-04
EP3457662B1 (en) 2021-11-10
EP3457662A1 (en) 2019-03-20
US10827348B2 (en) 2020-11-03
US20190090128A1 (en) 2019-03-21
CN109155787B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US10798620B2 (en) Communication method in handover process and apparatus
US10674420B2 (en) Method, apparatus, and system for routing user plane data in mobile network
US9794969B2 (en) Bearer allocation method, user equipment, base station, and serving gateway
EP3457748B1 (en) Communication method and apparatus during switching
WO2017197563A1 (zh) 用于数据传输的方法和装置
CN111629450B (zh) 一种数据传输方法、相关设备以及存储介质
KR102017167B1 (ko) 무선 통신 시스템에서 데이터 트래픽 분산을 위한 방법 및 장치
JP2019515576A (ja) データ伝送方法、装置及びコンピュータ記憶媒体
WO2018082070A1 (zh) 一种数据报文处理方法及控制面网元、用户面网元
WO2009132582A1 (zh) 一种删除承载的方法与装置
CN103428888B (zh) 一种直通隧道建立方法及***
CN112437426B (zh) 一种发送下行数据通知消息的方法和装置
WO2018045515A1 (zh) 一种数据分流方法及相关装置
WO2017193344A1 (zh) 访问资源的方法、装置和***
WO2011063692A1 (zh) 一种数据缓存单元区分网络链接类型的方法及***
WO2013174188A1 (zh) 路由优化方法及***、无线侧网元
WO2017193346A1 (zh) 访问资源的方法、装置和***
WO2016074468A1 (zh) 支持多pdn连接的优化切换的方法、网络节点及***

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901949

Country of ref document: EP

Effective date: 20181217