WO2017195994A1 - Cold storage refrigeration and freezing system - Google Patents

Cold storage refrigeration and freezing system Download PDF

Info

Publication number
WO2017195994A1
WO2017195994A1 PCT/KR2017/004091 KR2017004091W WO2017195994A1 WO 2017195994 A1 WO2017195994 A1 WO 2017195994A1 KR 2017004091 W KR2017004091 W KR 2017004091W WO 2017195994 A1 WO2017195994 A1 WO 2017195994A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
cooling tube
space
outlet
refrigeration
Prior art date
Application number
PCT/KR2017/004091
Other languages
French (fr)
Korean (ko)
Inventor
이상열
전용호
김진홍
문진호
Original Assignee
주식회사 리우스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리우스 filed Critical 주식회사 리우스
Publication of WO2017195994A1 publication Critical patent/WO2017195994A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/005Devices using other cold materials; Devices using cold-storage bodies combined with heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cold storage refrigeration system, and more particularly, to a cold storage refrigeration system having a simple structure and excellent efficiency.
  • a cold storage refrigeration system means a refrigeration or freezing system using a cold storage material (Phase Change Material (PCM)) instead of a refrigeration system having a general freezing device.
  • the cold storage refrigeration system is a device for maintaining a cold storage at low temperature by storing cold heat in a cold storage module containing a phase change material (cooling material).
  • the cold storage refrigeration system is arranged at regular intervals of at least one cold storage unit, and each cold storage unit is installed to pass through a cooling tube connected to the freezing device to cool the cold storage material.
  • the cooling pipe is connected to the refrigerating device and installed to flow cold refrigerant.
  • the cold storage refrigeration refrigeration system can maintain a stable cold storage temperature, and has the advantage of saving energy because the number of on and off of the motor is reduced by the operation of the uniform refrigeration apparatus.
  • the cold storage refrigeration system by using the low-cost late-night power can reduce the operating cost by operating the freezer at night, there is an advantage that can operate the freezer at a designated day time even when driving during the daytime.
  • the cold storage refrigeration system has the advantage that can maintain the cold temperature for a predetermined time even in the event of power failure or breakdown of the freezing device to maintain the freshness of the product stored in the refrigerator or frozen.
  • Republic of Korea Patent No. 1604974 is characterized in that it is provided with a metal heat conductive plate in order to reduce the contact thermal resistance between the cooling tube and the cold storage module in the cold storage refrigeration refrigeration system.
  • a heat conduction plate is located between the cooling tube and the cooling module and serves to reduce thermal resistance by surface contact.
  • the number of parts is increased by providing the heat conduction plate, which causes a problem in that a process for fixing the heat conduction plate is added.
  • the present invention has been made to solve the above-mentioned problems, and is intended to provide a storage cooling type refrigeration refrigeration system having a simple configuration and excellent efficiency.
  • the refrigerated refrigeration refrigeration system includes a refrigeration module that is opposed to each other, and a cooling tube positioned between the cold storage modules and in contact with the cold storage module, wherein the cooling tube includes a unit cooling tube, and a unit cooling tube
  • the silver cooling tube and the horizontal cooling tube may be provided with an inclined cooling tube interconnected and inclined.
  • the cold storage refrigeration system according to the present invention may have one or more of the following embodiments.
  • the end of the unit cooling tube may be connected to the connection cooling tube.
  • the cooling tube is coupled to the frame, the frame has a horizontal frame and a vertical frame, the horizontal frame has a coupling groove into which the connection cooling tube is inserted, and the vertical frame is to be coupled to the ends of the horizontal cooling tube and the connection cooling tube, respectively. Can be.
  • the cross section of the cooling tube may have an elliptic shape.
  • the air introduced through the inlet is cooled while flowing from the upper portion of the cold storage portion located in the inflow space to the lower portion and moved to the outflow space. It can be discharged to the outside of the case through the outlet.
  • Inlet and outlet may be formed on the upper portion of the case, respectively.
  • the present invention can provide a cold storage refrigeration refrigeration system having a simple configuration and excellent efficiency.
  • FIG. 1 is a perspective view illustrating a cold storage refrigeration system according to an embodiment of the present invention.
  • FIG. 2 is a front view illustrating the cold storage refrigeration system illustrated in FIG. 1.
  • FIG. 3 is a perspective view illustrating an arrangement of a cooling tube.
  • FIG. 4 is a front view of the cooling tube illustrated in FIG. 3.
  • FIG. 5 is a diagram illustrating a unit cooling tube.
  • FIG. 6 is a cross-sectional view illustrating a state in which a cooling tube is disposed between the storage cooling modules.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a perspective view illustrating a cold storage refrigeration system 100 according to an embodiment of the present invention
  • FIG. 2 is a front view of the cold storage refrigeration system 100 illustrated in FIG. 1.
  • the refrigeration apparatus 150 is omitted, and the air flow is indicated by arrows in FIGS. 1 and 2.
  • a cold storage refrigeration system 100 includes a case 120 and an interior of the case 120 located inside a freezing space (not shown). Located in the cold storage unit 130 having a constant storage capacity and cooled, and is provided in the interior of the case 120 is divided into two separate spaces of the inner space of the case 120 into the inlet space 170 and the outlet space 175 A partition wall 140 and a refrigeration device 150 for cooling the storage unit 130 is located outside the freezing space. And the cold storage unit 130 is composed of a plurality of cold storage modules 132 (see Fig. 6), the cooling tube 160 is provided between a pair of adjacent cold storage modules 132.
  • the case 120 accommodates the cold storage unit 130 therein, and an inlet 122 through which air in the freezing space 112 is introduced, and a suction fan disposed in the inlet 122 to force suction of air. 124, an outlet 126 through which air cooled by the cold storage unit 130 is discharged, and a support 128 for supporting the cold storage unit 130 to have a predetermined height at the bottom of the case 120. .
  • Two suction ports 122 are disposed in the upper center of the case 120, and a suction fan 124 for forcibly inhaling air is provided at the front thereof.
  • Air introduced into the case 120 through the inlet 122 flows from the upper portion to the lower portion of the inlet space 170 separated by the partition wall 140, and then flows into the lower portion of the outlet space 175 and then the outlet port. It is discharged to the outside through 126. In this process, the air is cooled by the cold storage unit 130 respectively positioned in the inlet space 170 and the outlet space 175, respectively.
  • Outlets 126 are formed on the upper left and right sides of the case 120, respectively, one at each of the two outlet spaces 175. Air cooled by the cold storage unit 130 through the outlet 126 is discharged to the outside of the case 120 to cool the freezing space.
  • the cold storage refrigeration system 100 has been illustrated as having an inflow space 170 in the center and an outlet space 175 on the left and right sides thereof. This may be formed, in which case the air flows in the opposite direction inside the case 120. Further, although the cold storage refrigeration system 100 according to the present embodiment is illustrated as having two inlets 122 and an outlet 126, one or three or more inlets 122 and an outlet 126 are provided. Of course you can.
  • the support 128 provided at the bottom of the case 120 allows the cold storage unit 130 to have a constant height at the bottom surface of the case 120.
  • the partition wall 140 since the partition wall 140 is not formed below the case 120, the inflow space 170 and the outflow space 175 divided by the partition wall 140 may include a case ( At the lower end of 120, it is connected.
  • the cold storage unit 130 has a plate shape, and the plurality of cold storage modules 132 are coupled to each other to form one cold storage unit 130.
  • one cold storage unit 130 is composed of two cold storage modules 132 in the horizontal direction and four cold storage modules 132 in the vertical direction, for a total of eight cold storages. Module 132.
  • the three cold storage parts 130 are disposed at regular intervals in the case 120.
  • the number of the cold storage module 132 and the cold storage unit 130 may vary depending on the load conditions of the environment in which the cold storage refrigeration refrigeration system 100 is used.
  • the heat storage modules 132 are disposed to face each other, and a cooling tube 160 is disposed therebetween (see FIG. 6).
  • the cooling tube 160 cools the cold storage module 132 while contacting the adjacent cold storage module 132, respectively.
  • phase change material is provided in each of the cold storage modules 132 forming the cold storage unit 130.
  • the phase change material generates a large amount of latent heat while maintaining a variety of inherent freezing point temperatures during the phase change from liquid to solid or from solid to liquid depending on the temperature.
  • the cold storage module 132 may use various phase change materials from -40 ° C to + 60 ° C.
  • the cold storage unit 130 is cooled by the freezing device 150 has a constant storage capacity.
  • the cooling tube 160 of the refrigerating device 150 cools the phase change material provided in the cooling module 132 while flowing from the upper part to the lower part or the lower part to the upper part in the left and right width directions of the refrigerating part 130.
  • the cold storage unit 130 is divided into one inflow space 170 and two outflow spaces 175 by the partition wall 140 formed inside the case 120. Therefore, the middle portion of the cold storage unit 130 is positioned in one inlet space 170, and the left and right portions of the cold storage unit 130 are positioned in each outlet space 175 positioned at the left and right sides.
  • the partition wall 140 does not block the inside of the cold storage module 132, but is located in close contact with the outside of the cold storage unit 130, and only the space of the case 120 is the inflow space 170 and the outflow space 175. Separate.
  • the cold air that is relatively deprived from the a part of the suction port 122 side can be supplemented with the cold part of the d part.
  • the b portion and the c portion of the heat storage unit 130 are also thermally connected, it is possible to supplement the cold air, which is relatively deprived from the b portion, with the cold portion of the c portion.
  • the cold storage 130 may be a portion, b portion, c portion and d portion are all thermally connected.
  • the introduced air is cooled while flowing from the upper end (a part) to the lower end (b part) of the heat storage unit 130.
  • the cooled air exiting the inflow space 170 flows from the lower end (c part) of the heat storage unit 130 to the upper end (d part) and is cooled once again.
  • the temperature of the sucked air from the upper end (a part) to the lower end (b part) of the inflow space 170 and the upper end (d part) from the lower end (c part) of the outlet space 175 is the cold storage part 130.
  • gradually descend ie T a > T b > T c > T d ).
  • the portion a located in the inlet space 170 flows at the highest temperature T a and the portion d located in the outlet space 175 is the lowest temperature T d .
  • Air will flow.
  • air having a temperature T b flows through the portion b located in the inflow space 170 and air having a temperature T c flows through the portion c located in the outflow space 175.
  • the heat transfer rate from a to d is q a > q b Since q c > q d is established, the heat exchange amount generated in the upper part (a part and d part) of the cold storage part 130 is generated in the lower part (b part and c part) of the cold storage part 130. Some balance with heat exchange. For this reason, it is possible to solve the problem in which the upper portion (a portion and the d portion) first melt, as compared with the lower portion (b portion and c portion) of the cold storage unit 130.
  • the partition wall 140 divides the inner space of the case 120 into the inflow space 170 and the outflow space 175, and is provided with two having the same shape.
  • the partition wall 140 is formed in close contact with the outside of the heat storage unit 130.
  • the other edges of the partition wall 140 except for the lower end are formed in close contact with the inner surface of the case 120, and the edges of the lower end thereof are spaced apart from the bottom of the case 120 by a predetermined height. Therefore, the air flowing from the upper end to the lower end of the cold storage unit 130 in the inlet space 170 is prevented from flowing out to the outlet space 175 on the way. For this reason, the air flowing inside the case 120 flows from the upper end to the lower end of the inlet space 170 and then flows into the outlet space 175 through a passage formed in the bottom portion of the case 120.
  • the inlet 122 and the outlet 126 are separated from each other by the partition 140.
  • the refrigerating device 150 freeze-cools the cold storage unit 130 to a constant temperature, and includes a compressor 152, a condenser 154, a receiver 156, an expansion valve 158, and a cooling tube 160. . Since the refrigerating device 150 corresponds to a general refrigerating system, a detailed description thereof will be omitted.
  • the refrigerant cooled by the refrigerating device 150 flows inside the cooling tube 160.
  • the cooling tube 160 is disposed in the left and right directions and the vertical direction of the heat storage unit 130. For this reason, the low-temperature refrigerant flowing inside the cooling tube 160 cools the entirety of the heat storage unit 130 and then flows back into the refrigerating device 150.
  • FIG. 3 is a perspective view illustrating an arrangement of the cooling tube 160
  • FIG. 4 is a front view of the cooling tube 160 illustrated in FIG. 3.
  • 5 is a diagram illustrating the unit cooling tube 161
  • FIG. 6 is a cross-sectional view illustrating a state in which the cooling tube 160 is disposed between the heat storage modules 132.
  • FIG. 6 is a cross-sectional view based on the vertical frame 186.
  • the cooling pipes 160 of the cold storage refrigeration system 100 have a structure in which a plurality of cooling tubes 160 are interconnected inside the frame 180.
  • the cooling tube 160 includes a plurality of unit cooling tubes 161 and a connection cooling tube 166.
  • the unit cooling tube 161 is composed of two horizontal cooling tube 162 and one inclined cooling tube 164.
  • the horizontal cooling tube 162 is positioned horizontally with respect to the frame 180 and is coupled to both ends of the inclined cooling tube 164 by the U-shaped connecting member 163.
  • the two horizontal cooling tubes 162 are disposed at regular intervals in parallel with each other by the inclined cooling tubes 164.
  • the horizontal cooling tubes 162 positioned at the top of the first layer a of the frame 180 are connected to the inlet portion 162a.
  • the horizontal cooling tube 162 positioned at the lowermost portion of the fourth layer d of the frame 180 among the horizontal cooling tubes 162 is connected to the outlet portion 162b.
  • the refrigerant flows into the inlet 162a and continuously flows through the cooling pipe 160, and then is discharged to the outlet 162b.
  • the horizontal cooling tube 162 of the unit cooling tube 161 is connected to the horizontal cooling tube 162 of the adjacent unit cooling tube 161.
  • the unit cooling pipes 161 positioned in different layers (a four layers of a, b, c, and d) of the frame 180 may be connected to each other by a connection cooling pipe 166 having a U shape.
  • Both ends of the connection cooling tube 166 are connected to the horizontal cooling tube 162 of the unit cooling tube 161, respectively.
  • the connection cooling tube 166 may be inserted into the coupling groove 184 of the horizontal frame 182 to be fixed.
  • the inclined cooling tube 164 serves to connect the horizontal cooling tube 162 while being inclined with respect to two horizontal cooling tubes 162 positioned in parallel with each other. Since the inclined cooling tube 164 is disposed with a non-horizontal inclination angle, the number of cooling tubes 160 that can be disposed in the same area increases. As a result, the contact area of the cooling tube 160 with respect to the cold storage module 132 increases, and as a result, the cold storage module 132 can be efficiently cooled.
  • the cold storage refrigeration system 100 does not have a separate heat conduction plate (not shown), and a part of the cooling tube 160 (the inclination cooling tube 164) is inclined to the cold storage module. It is characterized by increasing the heat transfer efficiency by increasing the contact area.
  • the cold storage refrigeration system 100 according to the present embodiment can have a high efficiency with a simple configuration.
  • the cross-sections of the unit cooling tube 161 and the connection cooling tube 166 constituting the cooling tube 160 may have various shapes such as circular or elliptical.
  • the cross section of the cooling tube 160 has an elliptical shape, since the area in contact with the cold storage module 132 increases and the amount of heat transfer increases, the cold storage module (from the low temperature refrigerant flowing through the interior of the cooling tube 160) 132) it is possible to efficiently transmit the cold air.
  • the frame 180 serves to fix the position of the cooling tube 160 to which the plurality of unit cooling tubes 161 and the connection cooling tubes 166 are continuously connected.
  • Frame 180 has a rectangular shape as a whole and consists of a horizontal frame 182 and a vertical frame 186.
  • the horizontal frame 182 is disposed in parallel with the horizontal cooling tube 162 of the unit cooling tube 161.
  • the frame 180 is divided into layers by the horizontal frame 182.
  • the frame 180 is formed of the first layer (a), the second layer (b), the third layer (c), and the fourth layer. It is illustrated as being divided into four layers of layer (d).
  • the vertical frame 186 is positioned at the center of each layer (a, b, c, d,).
  • the frame 180 according to the present embodiment may be divided into eight sections (not shown) having the same size and shape, and the cold storage module is provided at the front and rear of each section as illustrated in FIG. 6. 132 may be disposed to contact the cooling tube 160.
  • Coupling grooves 184 are formed at both ends of the horizontal frame 182, respectively. One of the two coupling grooves 184 may be inserted into the connection cooling tube 166 is fixed. One end of the connection cooling tube 166 may be inserted into the vertical frame 186 and fixed in position.
  • the end of the horizontal cooling pipe 162 is coupled to the vertical frame 186 is fixed in position. As such, the vertical frame 186 is combined with the horizontal cooling tube 162 and the connection cooling tube 166, thereby serving to fix the cooling tube 160 as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A cold storage refrigeration and freezing system is disclosed. The cold storage refrigeration and freezing system according to one aspect of the present invention comprises: cold storage modules facing each other; and a cooling pipe positioned between the cold storage modules and coming into contact with the cold storage modules, wherein the cooling pipe has unit cooling pipes, and the unit cooling pipe can comprise horizontal cooling pipes and an oblique cooling pipe, which connects the horizontal cooling pipes to each other and is obliquely disposed.

Description

축냉식 냉장 냉동 시스템Refrigerant Refrigeration Refrigeration System
본 발명은 축냉식 냉장 냉동 시스템에 관한 것으로서, 구체적으로는 구성이 간단하면서도 효율이 우수한 축냉식 냉장 냉동 시스템에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold storage refrigeration system, and more particularly, to a cold storage refrigeration system having a simple structure and excellent efficiency.
축냉식 냉장 냉동 시스템은, 일반적인 냉동장치를 갖는 냉장 시스템 대신에 축냉재(상변화 물질-PCM(Phase Change Material))를 이용한 냉장 또는 냉동 시스템을 의미한다. 축냉식 냉장 냉동 시스템은 상변화 물질(축냉재)이 수용된 축냉모듈에 냉열을 저장하여 냉장창고를 저온으로 유지하기 위한 장치이다. 축냉식 냉장 냉동 시스템은 적어도 하나 이상의 축냉부를 일정한 간격으로 배치하고, 각각의 축냉부에는 축냉재를 냉각시키기 위해 냉동장치에 연결된 냉각관이 관통하여 지나가도록 설치되어 있다. 냉각관은 냉동장치에 연결되어 차가운 냉매가 유동하도록 설치된다.A cold storage refrigeration system means a refrigeration or freezing system using a cold storage material (Phase Change Material (PCM)) instead of a refrigeration system having a general freezing device. The cold storage refrigeration system is a device for maintaining a cold storage at low temperature by storing cold heat in a cold storage module containing a phase change material (cooling material). The cold storage refrigeration system is arranged at regular intervals of at least one cold storage unit, and each cold storage unit is installed to pass through a cooling tube connected to the freezing device to cool the cold storage material. The cooling pipe is connected to the refrigerating device and installed to flow cold refrigerant.
축냉식 냉장 냉동 시스템은 안정적인 보냉 온도를 유지할 수 있으며, 균일한 냉동장치의 운전으로 모터의 온오프 회수가 줄어들기 때문에 에너지를 절약할 수 있는 장점이 있다. 또한, 축냉식 냉장 냉동 시스템은 저가인 심야전력을 이용하여 냉동기를 야간에 운전함으로써 운전 비용을 절감할 수 있으며, 주간에 운전을 할 경우에도 지정된 낮 시간에 냉동장치를 운전할 수 있는 장점이 있다. 특히, 축냉식 냉장 냉동 시스템은 정전시나 냉동장치의 고장 시에도 일정 시간 동안 보냉 온도를 유지할 수 있어서 냉장 또는 냉동 보관되는 제품의 신선도를 유지할 수 있는 장점이 있다.The cold storage refrigeration refrigeration system can maintain a stable cold storage temperature, and has the advantage of saving energy because the number of on and off of the motor is reduced by the operation of the uniform refrigeration apparatus. In addition, the cold storage refrigeration system by using the low-cost late-night power can reduce the operating cost by operating the freezer at night, there is an advantage that can operate the freezer at a designated day time even when driving during the daytime. In particular, the cold storage refrigeration system has the advantage that can maintain the cold temperature for a predetermined time even in the event of power failure or breakdown of the freezing device to maintain the freshness of the product stored in the refrigerator or frozen.
축냉식 냉장 냉동 시스템은 냉각관으로부터 축냉모듈에 냉기가 전달되기 때문에, 냉기 전달이 효율적으로 이루어지는 것이 중요하다. 즉, 축냉식 냉장 냉동 시스템에서 냉각관과 축냉모듈 사이의 열전달량을 최대화 함으로써, 냉기 전달 시간 및 비용을 줄이는 것이 요구되고 있다. In the cold storage refrigeration system, since cold air is transferred from the cooling tube to the cold storage module, it is important to efficiently transmit the cold air. That is, by maximizing the amount of heat transfer between the cooling tube and the cold storage module in the cold storage refrigeration refrigeration system, it is required to reduce the cold air transfer time and cost.
대한민국 등록특허 제1604974호에는 축냉식 냉장 냉동 시스템에서 냉각관과 축냉모듈의 사이에 접촉 열저항을 줄이기 위해서 금속 재질의 열전도판을 구비하는 것을 특징으로 한다. 이와 같은 열전도판은 냉각관과 냉각모듈 사이에 위치하면서 면 접촉에 의해서 열저항을 줄이는 역할을 한다. Republic of Korea Patent No. 1604974 is characterized in that it is provided with a metal heat conductive plate in order to reduce the contact thermal resistance between the cooling tube and the cold storage module in the cold storage refrigeration refrigeration system. Such a heat conduction plate is located between the cooling tube and the cooling module and serves to reduce thermal resistance by surface contact.
그러나 상기와 같이 열전도판을 구비함으로써 부품수가 증가하고, 열전도판을 고정하기 위한 공정이 추가되는 문제점이 발생하게 된다. However, as described above, the number of parts is increased by providing the heat conduction plate, which causes a problem in that a process for fixing the heat conduction plate is added.
따라서 본 발명은 상술한 문제점을 해결하기 위해 도출된 것으로서, 구성이 간단하면서도 효율이 우수한 축냉식 냉장 냉동 시스템을 제공하고자 한다. Accordingly, the present invention has been made to solve the above-mentioned problems, and is intended to provide a storage cooling type refrigeration refrigeration system having a simple configuration and excellent efficiency.
본 발명의 다른 목적들은 이하에 서술되는 실시예를 통하여 더욱 명확해질 것이다.Other objects of the present invention will become more apparent through the embodiments described below.
본 발명의 일 측면에 따른 축냉식 냉동 냉장 시스템은, 상호 대향하는 축냉모듈과, 축냉모듈 사이에 위치하면서 축냉모듈과 접촉하는 냉각관을 구비하고, 냉각관은 단위냉각관을 구비하고, 단위 냉각관은, 수평냉각관과, 수평 냉각관을 상호 연결하고 경사지게 배치된 경사냉각관을 구비할 수 있다. The refrigerated refrigeration refrigeration system according to an aspect of the present invention includes a refrigeration module that is opposed to each other, and a cooling tube positioned between the cold storage modules and in contact with the cold storage module, wherein the cooling tube includes a unit cooling tube, and a unit cooling tube The silver cooling tube and the horizontal cooling tube may be provided with an inclined cooling tube interconnected and inclined.
본 발명에 따른 축냉식 냉동 냉장 시스템은 다음과 같은 실시예들을 하나 또는 그 이상 구비할 수 있다. 예를 들면, 단위냉각관의 단부는 연결냉각관에 연결될 수 있다. The cold storage refrigeration system according to the present invention may have one or more of the following embodiments. For example, the end of the unit cooling tube may be connected to the connection cooling tube.
냉각관은 프레임에 결합되고, 프레임은 수평프레임 및 수직프레임을 구비하며, 수평프레임은 연결냉각관이 삽입되는 결합홈을 구비하고, 수직프레임은 수평냉각관 및 연결냉각관의 단부가 각각 결합할 수 있다.The cooling tube is coupled to the frame, the frame has a horizontal frame and a vertical frame, the horizontal frame has a coupling groove into which the connection cooling tube is inserted, and the vertical frame is to be coupled to the ends of the horizontal cooling tube and the connection cooling tube, respectively. Can be.
냉각관의 단면은 타원 형상을 가질 수 있다. The cross section of the cooling tube may have an elliptic shape.
흡입구 및 유출구를 구비하는 케이스와, 케이스의 내부에 설치되어 케이스의 내부를 유입공간 및 유출공간으로 구분하는 격벽과, 열적으로 연결되어 유입공간 및 유출공간에 각각 위치하고 축냉모듈을 구비하는 축냉부를 포함하며, 흡입구를 통해 유입된 공기는, 유입공간에 위치하는 축냉부의 상부에서 하부로 흐르면서 냉각되어 유출공간으로 이동하고, 유출공간에서 공기는, 유출공간에 위치하는 축냉부의 하부에서 상부로 흐르면서 냉각되어 유출구를 통해 케이스의 외부로 배출될 수 있다. A case having an inlet and an outlet, a partition wall installed inside the case and dividing the inside of the case into an inflow space and an outflow space; The air introduced through the inlet is cooled while flowing from the upper portion of the cold storage portion located in the inflow space to the lower portion and moved to the outflow space. It can be discharged to the outside of the case through the outlet.
흡입구 및 유출구는 케이스의 상부에 각각 형성될 수 있다. Inlet and outlet may be formed on the upper portion of the case, respectively.
본 발명은 구성이 간단하면서도 효율이 우수한 축냉식 냉장 냉동 시스템을 제공할 수 있다. The present invention can provide a cold storage refrigeration refrigeration system having a simple configuration and excellent efficiency.
도 1은 본 발명의 일 실시예에 따른 축냉식 냉장 냉동 시스템을 예시하는 사시도이다.1 is a perspective view illustrating a cold storage refrigeration system according to an embodiment of the present invention.
도 2는 도 1에 예시된 축냉식 냉장 냉동 시스템을 예시하는 정면도이다.FIG. 2 is a front view illustrating the cold storage refrigeration system illustrated in FIG. 1.
도 3은 냉각관의 배열을 예시하는 사시도이다. 3 is a perspective view illustrating an arrangement of a cooling tube.
도 4는 도 3에 예시된 냉각관의 정면도이다. 4 is a front view of the cooling tube illustrated in FIG. 3.
도 5는 단위 냉각관을 예시하는 도면이다.5 is a diagram illustrating a unit cooling tube.
도 6은 냉각관이 축냉모듈 사이에 배치된 상태를 예시하는 단면도이다. 6 is a cross-sectional view illustrating a state in which a cooling tube is disposed between the storage cooling modules.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
이하, 첨부한 도면들을 참조하여 본 발명에 따른 실시예들을 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어 도면 부호에 상관없이 동일하거나 대응하는 구성 요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and in describing the present invention with reference to the accompanying drawings, the same or corresponding elements are denoted by the same reference numerals regardless of the reference numerals, and duplicates thereof. The description will be omitted.
도 1은 본 발명의 일 실시예에 따른 축냉식 냉장 냉동 시스템(100)을 예시하는 사시도이고, 도 2는 도 1에 예시된 축냉식 냉장 냉동 시스템(100)에 대한 정면도이다. 참고로, 도 2에서는 냉동장치(150)를 생략하였으며, 도 1 내지 도 2에서 공기 흐름을 화살표로 표시하였다. 1 is a perspective view illustrating a cold storage refrigeration system 100 according to an embodiment of the present invention, and FIG. 2 is a front view of the cold storage refrigeration system 100 illustrated in FIG. 1. For reference, in FIG. 2, the refrigeration apparatus 150 is omitted, and the air flow is indicated by arrows in FIGS. 1 and 2.
도 1 내지 도 2를 참조하면, 본 발명의 일 실시예에 따른 축냉식 냉장 냉동 시스템(100)은, 냉동공간(도시하지 않음)의 내부에 위치하는 케이스(120)와, 케이스(120)의 내부에 위치하면서 냉각되어 일정한 축냉용량을 갖는 축냉부(130)와, 케이스(120)의 내부에 구비되어 케이스(120)의 내부 공간을 유입공간(170) 및 유출공간(175)으로 구분하는 두 개의 격벽(140)과, 냉동공간의 외부에 위치하면서 축냉부(130)를 냉각하는 냉동장치(150)를 포함한다. 그리고 축냉부(130)는 다수 개의 축냉모듈(132, 도 6 참조)로 구성되는데, 인접하는 한 쌍의 축냉모듈(132) 사이에는 냉각관(160)이 구비되어 있다 1 to 2, a cold storage refrigeration system 100 according to an embodiment of the present invention includes a case 120 and an interior of the case 120 located inside a freezing space (not shown). Located in the cold storage unit 130 having a constant storage capacity and cooled, and is provided in the interior of the case 120 is divided into two separate spaces of the inner space of the case 120 into the inlet space 170 and the outlet space 175 A partition wall 140 and a refrigeration device 150 for cooling the storage unit 130 is located outside the freezing space. And the cold storage unit 130 is composed of a plurality of cold storage modules 132 (see Fig. 6), the cooling tube 160 is provided between a pair of adjacent cold storage modules 132.
케이스(120)는 그 내부에 축냉부(130)를 수용하는 것으로, 냉동공간(112) 내부의 공기가 유입되는 흡입구(122)와, 흡입구(122)에 배치되어 공기를 강제 흡입하게 하는 흡입팬(124)과, 축냉부(130)에 의해 냉각된 공기가 배출되는 유출구(126)와, 축냉부(130)를 케이스(120)의 바닥에서 일정한 높이를 갖도록 지지하는 지지대(128)를 포함한다.The case 120 accommodates the cold storage unit 130 therein, and an inlet 122 through which air in the freezing space 112 is introduced, and a suction fan disposed in the inlet 122 to force suction of air. 124, an outlet 126 through which air cooled by the cold storage unit 130 is discharged, and a support 128 for supporting the cold storage unit 130 to have a predetermined height at the bottom of the case 120. .
흡입구(122)는 케이스(120)의 상부 중앙에 두 개가 배치되어 있으며, 그 전방에는 공기를 강제 흡입하기 위한 흡입팬(124)이 설치되어 있다. 흡입구(122)를 통해 케이스(120)의 내부로 유입된 공기는, 격벽(140)에 의해 구분된 유입공간(170)의 상부에서 하부로 흐른 후 유출공간(175)의 하부로 유입된 후 유출구(126)를 통해서 외부로 배출된다. 이 과정에서, 공기는 유입공간(170) 및 유출공간(175)에 각각 위치하는 축냉부(130)에 의해 각각 냉각된다. Two suction ports 122 are disposed in the upper center of the case 120, and a suction fan 124 for forcibly inhaling air is provided at the front thereof. Air introduced into the case 120 through the inlet 122 flows from the upper portion to the lower portion of the inlet space 170 separated by the partition wall 140, and then flows into the lower portion of the outlet space 175 and then the outlet port. It is discharged to the outside through 126. In this process, the air is cooled by the cold storage unit 130 respectively positioned in the inlet space 170 and the outlet space 175, respectively.
유출구(126)는 케이스(120)의 상부 좌우측에 각각 형성되어 있는데, 두 개의 유출공간(175)의 상부에 각각 하나씩 형성되어 있다. 유출구(126)를 통해서 축냉부(130)에 의해 냉각된 공기가 케이스(120)의 외부로 배출되어 냉동공간을 냉각하게 된다. Outlets 126 are formed on the upper left and right sides of the case 120, respectively, one at each of the two outlet spaces 175. Air cooled by the cold storage unit 130 through the outlet 126 is discharged to the outside of the case 120 to cool the freezing space.
본 실시예에 따른 축냉식 냉장 냉동 시스템(100)은, 중앙에 유입공간(170)이 위치하고 그 좌우에 각각 유출공간(175)을 갖는 것으로 예시하였지만, 중앙에 유출공간이 위치하고 그 좌우에 각각 유입공간이 형성될 수도 있고, 이때 케이스(120) 내부에서 공기는 반대 방향으로 흐르게 된다. 또한, 본 실시예에 따른 축냉식 냉장 냉동 시스템(100)은, 두 개의 흡입구(122) 및 유출구(126)를 구비하는 것으로 예시하였지만, 하나 또는 세 개 이상의 흡입구(122) 및 유출구(126)를 구비할 수 있음은 물론이다.The cold storage refrigeration system 100 according to the present embodiment has been illustrated as having an inflow space 170 in the center and an outlet space 175 on the left and right sides thereof. This may be formed, in which case the air flows in the opposite direction inside the case 120. Further, although the cold storage refrigeration system 100 according to the present embodiment is illustrated as having two inlets 122 and an outlet 126, one or three or more inlets 122 and an outlet 126 are provided. Of course you can.
케이스(120)의 하부에 구비된 지지대(128)는, 케이스(120)의 바닥면에서 축냉부(130)가 일정한 높이를 갖도록 한다. 그리고 도 2에서 알 수 있는 바와 같이, 케이스(120)의 하부에는 격벽(140)이 형성되어 있지 않기 때문에, 격벽(140)에 의해 구분되는 유입공간(170) 및 유출공간(175)은 케이스(120)의 하단부에서는 연결된다.The support 128 provided at the bottom of the case 120 allows the cold storage unit 130 to have a constant height at the bottom surface of the case 120. As shown in FIG. 2, since the partition wall 140 is not formed below the case 120, the inflow space 170 and the outflow space 175 divided by the partition wall 140 may include a case ( At the lower end of 120, it is connected.
축냉부(130)는 판 형상을 갖는 것으로, 다수 개의 축냉모듈(132)이 상호 결합하여 하나의 축냉부(130)를 형성하게 된다. 본 실시예에 따른 축냉식 냉장 냉동 시스템(100)에서, 하나의 축냉부(130)는, 가로 방향으로 두 개의 축냉모듈(132) 및 세로 방향으로 네 개의 축냉모듈(132)로 이루어져 총 8개의 축냉모듈(132)로 구성된다. 그리고 케이스(120)의 내부에는 세 개의 축냉부(130)가 일정한 간격을 가지고 배치되어 있음을 알 수 있다.The cold storage unit 130 has a plate shape, and the plurality of cold storage modules 132 are coupled to each other to form one cold storage unit 130. In the cold storage refrigeration refrigeration system 100 according to the present embodiment, one cold storage unit 130 is composed of two cold storage modules 132 in the horizontal direction and four cold storage modules 132 in the vertical direction, for a total of eight cold storages. Module 132. In addition, it can be seen that the three cold storage parts 130 are disposed at regular intervals in the case 120.
물론, 축냉모듈(132) 및 축냉부(130)의 개수는, 축냉식 냉장 냉동 시스템(100)이 사용되는 환경의 부하조건 등에 따라서 달라질 수 있음은 물론이다.Of course, the number of the cold storage module 132 and the cold storage unit 130 may vary depending on the load conditions of the environment in which the cold storage refrigeration refrigeration system 100 is used.
축냉모듈(132)은 상호 대향되게 배치되고, 그 사이에는 냉각관(160)이 배치된다(도 6 참조). 냉각관(160)은 인접하는 축냉모듈(132)과 각각 접하면서 축냉모듈(132)을 냉각한다. The heat storage modules 132 are disposed to face each other, and a cooling tube 160 is disposed therebetween (see FIG. 6). The cooling tube 160 cools the cold storage module 132 while contacting the adjacent cold storage module 132, respectively.
축냉부(130)를 형성하는 각각의 축냉모듈(132)의 내부에는 상변화 물질(Phase Change Material, PCM)이 구비되어 있다. 상변화 물질은 온도에 따라서 액체에서 고체로 또는 고체에서 액체로 상변화 하는 과정에서 다양한 고유의 동결점 온도를 일정하게 유지하면서 다량의 잠열을 발생한다. 축냉모듈(132)은 -40℃~+60℃까지 다양한 상변화 물질을 이용할 수 있다.A phase change material (PCM) is provided in each of the cold storage modules 132 forming the cold storage unit 130. The phase change material generates a large amount of latent heat while maintaining a variety of inherent freezing point temperatures during the phase change from liquid to solid or from solid to liquid depending on the temperature. The cold storage module 132 may use various phase change materials from -40 ° C to + 60 ° C.
축냉부(130)는 냉동장치(150)에 의해서 냉각되어 일정한 축냉용량을 갖게 된다. 냉동장치(150)의 냉각관(160)은 축냉부(130)의 좌우 폭 방향으로 상부에서 하부 또는 하부에서 상부로 흐르면서 축냉모듈(132)의 내부에 구비된 상변화 물질을 냉각한다. The cold storage unit 130 is cooled by the freezing device 150 has a constant storage capacity. The cooling tube 160 of the refrigerating device 150 cools the phase change material provided in the cooling module 132 while flowing from the upper part to the lower part or the lower part to the upper part in the left and right width directions of the refrigerating part 130.
축냉부(130)는, 케이스(120)의 내부에 형성된 격벽(140)에 의해서 하나의 유입공간(170) 및 두 개의 유출공간(175)으로 구분된다. 따라서 하나의 유입공간(170)에는 축냉부(130)의 중간 부분이 위치하고, 좌우측에 위치하는 각각의 유출공간(175)에는 축냉부(130)의 좌우측 부분이 각각 위치하게 된다. 격벽(140)은 축냉모듈(132)의 내부를 차단하는 것이 아니고, 축냉부(130)의 외부에 밀착되어 위치하면서, 케이스(120)의 공간만을 유입공간(170) 및 유출공간(175)으로 분리한다. 따라서 축냉부(130)의 a 부분 및 d 부분은 열적으로 연결되어 있기 때문에, 흡입구(122)측 a 부분에서 상대적으로 많이 빼앗긴 냉기를 d 부분의 냉기로 보충할 수 있다. 또한, 축냉부(130)의 b 부분 및 c 부분도 열적으로 연결되어 있기 때문에, b 부분에서 상대적으로 많이 빼앗긴 냉기를 c 부분의 냉기로 보충할 수 있다. The cold storage unit 130 is divided into one inflow space 170 and two outflow spaces 175 by the partition wall 140 formed inside the case 120. Therefore, the middle portion of the cold storage unit 130 is positioned in one inlet space 170, and the left and right portions of the cold storage unit 130 are positioned in each outlet space 175 positioned at the left and right sides. The partition wall 140 does not block the inside of the cold storage module 132, but is located in close contact with the outside of the cold storage unit 130, and only the space of the case 120 is the inflow space 170 and the outflow space 175. Separate. Therefore, since the a part and the d part of the heat storage unit 130 are thermally connected, the cold air that is relatively deprived from the a part of the suction port 122 side can be supplemented with the cold part of the d part. In addition, since the b portion and the c portion of the heat storage unit 130 are also thermally connected, it is possible to supplement the cold air, which is relatively deprived from the b portion, with the cold portion of the c portion.
물론, 축냉부(130)는 a 부분, b 부분, c 부분 및 d 부분이 모두 열적으로 연결될 수 있다. Of course, the cold storage 130 may be a portion, b portion, c portion and d portion are all thermally connected.
유입공간(170)에는, 유입된 공기가 축냉부(130)의 상단(a 부분)에서 하단(b 부분)으로 흐르면서 냉각된다. 그리고 유출공간(175)에는 유입공간(170)을 빠져 나온, 냉각된 공기가 축냉부(130)의 하단(c 부분)에서 상단(d 부분)으로 흐르면서 다시 한 번 냉각된다. 또한, 유입공간(170)의 상단(a 부분)에서 하단(b 부분)으로 그리고 유출공간(175)의 하단(c 부분)에서 상단(d 부분)으로 갈수록 흡입된 공기의 온도는 축냉부(130)에 의해서 냉각되어 점점 하강한다(즉, Ta > Tb > Tc > Td).In the inflow space 170, the introduced air is cooled while flowing from the upper end (a part) to the lower end (b part) of the heat storage unit 130. In the outflow space 175, the cooled air exiting the inflow space 170 flows from the lower end (c part) of the heat storage unit 130 to the upper end (d part) and is cooled once again. In addition, the temperature of the sucked air from the upper end (a part) to the lower end (b part) of the inflow space 170 and the upper end (d part) from the lower end (c part) of the outlet space 175 is the cold storage part 130. ) And gradually descend (ie T a > T b > T c > T d ).
따라서 축냉부(130)의 상부에서, 유입공간(170)에 위치하는 a 부분은 가장 높은 온도(Ta)의 공기가 흐르고 유출공간(175)에 위치하는 d 부분은 가장 낮은 온도(Td)의 공기가 흐르게 된다. 그리고 축냉부(130)의 하부에서, 유입공간(170)에 위치하는 b 부분에는 온도 Tb 의 공기가 흐르고 유출공간(175)에 위치하는 c 부분에는 온도 Tc 의 공기가 흐른다. 따라서 a 부분 내지 d 부분에서의 열전달률은 qa > qb > qc > qd의 관계가 성립하기 때문에, 축냉부(130)의 상부(a 부분 및 d 부분)에서 발생하는 열교환량은 축냉부(130)의 하부(b 부분 및 c 부분)에서 발생하는 열교환량과 어느 정도 균형을 이루게 된다. 이로 인해, 축냉부(130)의 하부(b 부분 및 c 부분)에 비해 상부(a 부분 및 d 부분)가 먼저 녹는 문제점을 해결할 수 있다. Therefore, in the upper portion of the cold storage unit 130, the portion a located in the inlet space 170 flows at the highest temperature T a and the portion d located in the outlet space 175 is the lowest temperature T d . Air will flow. In the lower portion of the cold storage unit 130, air having a temperature T b flows through the portion b located in the inflow space 170 and air having a temperature T c flows through the portion c located in the outflow space 175. Therefore, the heat transfer rate from a to d is q a > q b Since q c > q d is established, the heat exchange amount generated in the upper part (a part and d part) of the cold storage part 130 is generated in the lower part (b part and c part) of the cold storage part 130. Some balance with heat exchange. For this reason, it is possible to solve the problem in which the upper portion (a portion and the d portion) first melt, as compared with the lower portion (b portion and c portion) of the cold storage unit 130.
격벽(140)은 케이스(120)의 내부 공간을 유입공간(170) 및 유출공간(175)으로 구분하는 것으로, 동일한 형상을 가진 두 개가 구비된다. The partition wall 140 divides the inner space of the case 120 into the inflow space 170 and the outflow space 175, and is provided with two having the same shape.
격벽(140)은 축냉부(130)의 외부에 밀착 형성된다. 그리고 격벽(140)에서 하단부를 제외한 나머지 가장자리는 케이스(120)의 내면에 밀착 형성되고, 그 하단부의 가장자리는 케이스(120)의 바닥면에서 일정 높이로 이격되어 있다. 따라서 유입공간(170)에서 축냉부(130)의 상단에서 하단으로 흐르는 공기가 도중에 유출공간(175)으로 유출되는 것을 방지한다. 이로 인해, 케이스(120)의 내부를 흐르는 공기는, 유입공간(170)의 상단에서 하단으로 유동한 후 케이스(120)의 바닥 부분에 형성된 통로를 통해서 유출공간(175)으로 유입된다. The partition wall 140 is formed in close contact with the outside of the heat storage unit 130. The other edges of the partition wall 140 except for the lower end are formed in close contact with the inner surface of the case 120, and the edges of the lower end thereof are spaced apart from the bottom of the case 120 by a predetermined height. Therefore, the air flowing from the upper end to the lower end of the cold storage unit 130 in the inlet space 170 is prevented from flowing out to the outlet space 175 on the way. For this reason, the air flowing inside the case 120 flows from the upper end to the lower end of the inlet space 170 and then flows into the outlet space 175 through a passage formed in the bottom portion of the case 120.
격벽(140)에 의해서 흡입구(122)와 유출구(126)는 상호 분리된다. The inlet 122 and the outlet 126 are separated from each other by the partition 140.
냉동장치(150)는 축냉부(130)를 일정한 온도로 동결 냉각하는 것으로, 압축기(152), 응축기(154), 수액기(156), 팽창밸브(158) 및 냉각관(160)을 포함한다. 냉동장치(150)는 일반적인 냉동 시스템에 해당하기 때문에 구체적인 설명은 생략하기로 한다. The refrigerating device 150 freeze-cools the cold storage unit 130 to a constant temperature, and includes a compressor 152, a condenser 154, a receiver 156, an expansion valve 158, and a cooling tube 160. . Since the refrigerating device 150 corresponds to a general refrigerating system, a detailed description thereof will be omitted.
냉각관(160)의 내부에는 냉동장치(150)에 의해 냉각된 냉매가 흐르게 된다. 냉각관(160)은 축냉부(130)의 좌우 방향 및 상하 방향으로 배치되어 있다. 이로 인해, 냉각관(160)의 내부에서 유동하는 저온의 냉매는, 축냉부(130)의 전체를 냉각한 후 다시 냉동장치(150)로 유입된다. The refrigerant cooled by the refrigerating device 150 flows inside the cooling tube 160. The cooling tube 160 is disposed in the left and right directions and the vertical direction of the heat storage unit 130. For this reason, the low-temperature refrigerant flowing inside the cooling tube 160 cools the entirety of the heat storage unit 130 and then flows back into the refrigerating device 150.
도 3은 냉각관(160)의 배열을 예시하는 사시도이고, 도 4는 도 3에 예시된 냉각관(160)의 정면도이다. 그리고 도 5는 단위 냉각관(161)을 예시하는 도면이고, 도 6은 냉각관(160)이 축냉모듈(132) 사이에 배치된 상태를 예시하는 단면도이다. 참고로, 도 6은 수직프레임(186)을 기준으로 한 단면도이다. 3 is a perspective view illustrating an arrangement of the cooling tube 160, and FIG. 4 is a front view of the cooling tube 160 illustrated in FIG. 3. 5 is a diagram illustrating the unit cooling tube 161, and FIG. 6 is a cross-sectional view illustrating a state in which the cooling tube 160 is disposed between the heat storage modules 132. For reference, FIG. 6 is a cross-sectional view based on the vertical frame 186.
도 3 내지 도 6을 참고하면, 본 실시예에 따른 축냉식 냉장 냉동 시스템(100)의 냉각관(160)은 프레임(180)의 내부에 다수 개가 상호 연결된 구조를 갖는다. 냉각관(160)은 다수 개의 단위냉각관(161) 및 연결냉각관(166)으로 이루어진다.3 to 6, the cooling pipes 160 of the cold storage refrigeration system 100 according to the present exemplary embodiment have a structure in which a plurality of cooling tubes 160 are interconnected inside the frame 180. The cooling tube 160 includes a plurality of unit cooling tubes 161 and a connection cooling tube 166.
단위냉각관(161)은 두 개의 수평냉각관(162) 및 하나의 경사냉각관(164)으로 이루어져 있다. The unit cooling tube 161 is composed of two horizontal cooling tube 162 and one inclined cooling tube 164.
수평냉각관(162)은 프레임(180)에 대해 수평으로 위치하는 것으로 경사냉각관(164)의 양 단부에 U자형 연결부재(163)에 의해 결합되어 있다. 단위냉각관(161)에서 두 개의 수평 냉각관(162)은 경사냉각관(164)에 의해서 상호 평행한 상태에서 일정한 간격을 갖고 배치된다. 수평냉각관(162) 중에서 프레임(180)의 제1 층(a)의 최상부에 위치한 수평냉각관(162)은 유입부(162a)와 연결된다. 그리고 수평냉각관(162) 중에서 프레임(180)의 제4 층(d)의 최하부에 위치한 수평냉각관(162)은 유출부(162b)와 연결된다. 냉매는 유입부(162a)로 유입되어 냉각관(160)을 연속적으로 흐른 후 유출부(162b)로 배출된다. The horizontal cooling tube 162 is positioned horizontally with respect to the frame 180 and is coupled to both ends of the inclined cooling tube 164 by the U-shaped connecting member 163. In the unit cooling tube 161, the two horizontal cooling tubes 162 are disposed at regular intervals in parallel with each other by the inclined cooling tubes 164. Among the horizontal cooling tubes 162, the horizontal cooling tubes 162 positioned at the top of the first layer a of the frame 180 are connected to the inlet portion 162a. In addition, the horizontal cooling tube 162 positioned at the lowermost portion of the fourth layer d of the frame 180 among the horizontal cooling tubes 162 is connected to the outlet portion 162b. The refrigerant flows into the inlet 162a and continuously flows through the cooling pipe 160, and then is discharged to the outlet 162b.
단위냉각관(161)의 수평냉각관(162)은 인접하는 단위냉각관(161)의 수평냉각관(162)과 연결된다. 그리고 프레임(180)에서 각각 다른 층(a, b, c, d 네 개의 층으로 예시됨)에 위치하는 단위냉각관(161)은 U 형상을 갖는 연결냉각관(166)에 의해서 상호 연결될 수 있다. 연결냉각관(166)의 양 단부는 단위냉각관(161)의 수평냉각관(162)에 각각 연결된다. 그리고 연결냉각관(166)은 수평프레임(182)의 결합홈(184)에 삽입되어 위치 고정될 수 있다. The horizontal cooling tube 162 of the unit cooling tube 161 is connected to the horizontal cooling tube 162 of the adjacent unit cooling tube 161. In addition, the unit cooling pipes 161 positioned in different layers (a four layers of a, b, c, and d) of the frame 180 may be connected to each other by a connection cooling pipe 166 having a U shape. . Both ends of the connection cooling tube 166 are connected to the horizontal cooling tube 162 of the unit cooling tube 161, respectively. In addition, the connection cooling tube 166 may be inserted into the coupling groove 184 of the horizontal frame 182 to be fixed.
경사냉각관(164)은 상호 평행하게 위치하는 두 개의 수평냉각관(162)에 대해 경사지게 배치되면서 수평냉각관(162)을 연결하는 역할을 한다. 경사냉각관(164)이 수평이 아닌 경사각을 갖고 배치됨으로써 동일한 면적 내에 배치할 수 있는 냉각관(160)의 수가 증가한다. 이로 인해서 축냉모듈(132)에 대한 냉각관(160)의 접촉 면적이 증가하게 되고, 결과적으로 축냉모듈(132)을 효율적으로 냉각할 수 있게 된다. The inclined cooling tube 164 serves to connect the horizontal cooling tube 162 while being inclined with respect to two horizontal cooling tubes 162 positioned in parallel with each other. Since the inclined cooling tube 164 is disposed with a non-horizontal inclination angle, the number of cooling tubes 160 that can be disposed in the same area increases. As a result, the contact area of the cooling tube 160 with respect to the cold storage module 132 increases, and as a result, the cold storage module 132 can be efficiently cooled.
특히, 본 실시예에 따른 축냉식 냉장 냉동 시스템(100)은 별도의 열전도판(도시하지 않음)을 구비하지 않고 냉각관(160)의 일부(경사냉각관(164))를 경사지게 배치하여 축냉모듈에 대한 접촉 면적을 증가함으로써 열전달 효율을 높이는 것을 특징으로 한다. 이로 인해, 본 실시예에 따른 축냉식 냉장 냉동 시스템(100)은 간단한 구성과 함께 높은 효율을 가질 수 있게 된다. Particularly, the cold storage refrigeration system 100 according to the present embodiment does not have a separate heat conduction plate (not shown), and a part of the cooling tube 160 (the inclination cooling tube 164) is inclined to the cold storage module. It is characterized by increasing the heat transfer efficiency by increasing the contact area. Thus, the cold storage refrigeration system 100 according to the present embodiment can have a high efficiency with a simple configuration.
냉각관(160)을 구성하는 단위냉각관(161) 및 연결냉각관(166)의 단면은 원형 또는 타원형 등 다양한 형상을 가질 수 있다. 특히, 냉각관(160)의 단면이 타원 형상을 갖는 경우, 축냉모듈(132)과 접촉하는 면적이 증가하여 열전달량이 증가하기 때문에, 냉각관(160)의 내부를 흐르는 저온의 냉매로부터 축냉모듈(132)로 냉기를 효율적으로 전달할 수 있게 된다. The cross-sections of the unit cooling tube 161 and the connection cooling tube 166 constituting the cooling tube 160 may have various shapes such as circular or elliptical. In particular, when the cross section of the cooling tube 160 has an elliptical shape, since the area in contact with the cold storage module 132 increases and the amount of heat transfer increases, the cold storage module (from the low temperature refrigerant flowing through the interior of the cooling tube 160) 132) it is possible to efficiently transmit the cold air.
프레임(180)은 다수 개의 단위냉각관(161) 및 연결냉각관(166)이 연속으로 연결된 냉각관(160)을 위치 고정하는 역할을 한다. 프레임(180)은 전체적으로 사각 형상을 갖고 수평프레임(182) 및 수직프레임(186)으로 이루어져 있다. The frame 180 serves to fix the position of the cooling tube 160 to which the plurality of unit cooling tubes 161 and the connection cooling tubes 166 are continuously connected. Frame 180 has a rectangular shape as a whole and consists of a horizontal frame 182 and a vertical frame 186.
수평프레임(182)은 단위냉각관(161)의 수평냉각관(162)과 평행하게 배치된다. 수평프레임(182)에 의해서 프레임(180)은 각 층으로 분리되는데, 본 실시예에서는 프레임(180)이 제1 층(a), 제2 층(b), 제3 층(c) 및 제4 층(d)의 네 개의 층으로 구분되는 것으로 예시되어 있다. 그리고 각 층(a, b, c, d,)의 중앙에는 수직프레임(186)이 위치하고 있다. 이로 인해, 본 실시예에 따른 프레임(180)은 동일한 크기 및 형상을 갖는 8개의 섹션(도면부호 없음)으로 구분될 수 있고, 도 6에 예시된 바와 같이 각각의 섹션의 전면 및 후면에는 축냉모듈(132)이 냉각관(160)과 접하도록 배치될 수 있다. The horizontal frame 182 is disposed in parallel with the horizontal cooling tube 162 of the unit cooling tube 161. The frame 180 is divided into layers by the horizontal frame 182. In the present embodiment, the frame 180 is formed of the first layer (a), the second layer (b), the third layer (c), and the fourth layer. It is illustrated as being divided into four layers of layer (d). The vertical frame 186 is positioned at the center of each layer (a, b, c, d,). For this reason, the frame 180 according to the present embodiment may be divided into eight sections (not shown) having the same size and shape, and the cold storage module is provided at the front and rear of each section as illustrated in FIG. 6. 132 may be disposed to contact the cooling tube 160.
수평프레임(182)의 양 단부에는 결합홈(184)이 각각 형성되어 있다. 두 개의 결합홈(184) 중 하나에는 연결냉각관(166)이 삽입되어 위치 고정될 수 있다. 그리고 연결냉각관(166)의 일 단부는 수직프레임(186)에 삽입되어 위치 고정될 수 있다. Coupling grooves 184 are formed at both ends of the horizontal frame 182, respectively. One of the two coupling grooves 184 may be inserted into the connection cooling tube 166 is fixed. One end of the connection cooling tube 166 may be inserted into the vertical frame 186 and fixed in position.
수직프레임(186)에는 수평냉각관(162)의 단부가 결합되어 위치 고정된다. 이와 같이, 수직프레임(186)은 수평냉각관(162) 및 연결냉각관(166)과 결합됨으로써, 냉각관(160)을 전체적으로 위치 고정하는 역할을 한다. The end of the horizontal cooling pipe 162 is coupled to the vertical frame 186 is fixed in position. As such, the vertical frame 186 is combined with the horizontal cooling tube 162 and the connection cooling tube 166, thereby serving to fix the cooling tube 160 as a whole.
상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to an embodiment of the present invention, those skilled in the art may vary the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be appreciated that modifications and variations can be made.

Claims (4)

  1. 상호 대향하는 축냉모듈; 및 Mutually opposed cooling modules; And
    상기 축냉모듈 사이에 위치하면서 상기 축냉모듈과 접촉하는 냉각관을 구비하고,It is provided between the cold storage module and the cooling tube in contact with the cold storage module,
    상기 냉각관은 단위냉각관을 구비하고, The cooling tube has a unit cooling tube,
    상기 단위 냉각관은, 수평냉각관과, 상기 수평 냉각관을 상호 연결하고 경사지게 배치된 경사냉각관을 구비하는 축냉식 냉동 냉장 시스템.The unit cooling tube, the refrigeration refrigeration refrigeration system having a horizontal cooling tube and the inclined cooling tube which is arranged to be inclined to interconnect the horizontal cooling tube.
  2. 상호 대향하는 축냉모듈; 및 Mutually opposed cooling modules; And
    상기 축냉모듈 사이에 위치하면서 상기 축냉모듈과 접촉하는 냉각관을 구비하고,It is provided between the cold storage module and the cooling tube in contact with the cold storage module,
    상기 냉각관은 단위냉각관을 구비하고, The cooling tube has a unit cooling tube,
    상기 냉각관의 단면은 타원 형상을 갖는 것을 특징으로 하는 축냉식 냉동 냉장 시스템.The cross section of the cooling tube has an elliptic shape, cold storage refrigeration refrigeration system.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    흡입구 및 유출구를 구비하는 케이스;A case having an inlet and an outlet;
    상기 케이스의 내부에 설치되어 상기 케이스의 내부를 유입공간 및 유출공간으로 구분하는 격벽; 및A partition wall disposed inside the case to divide the inside of the case into an inflow space and an outflow space; And
    열적으로 연결되어 상기 유입공간 및 유출공간에 각각 위치하고 상기 축냉모듈을 구비하는 축냉부를 포함하며,Thermally connected to each of the inlet space and the outlet space and includes a cold storage unit having the cold storage module,
    상기 흡입구를 통해 유입된 공기는, 상기 유입공간에 위치하는 상기 축냉부의 상부에서 하부로 흐르면서 냉각되어 상기 유출공간으로 이동하고,The air introduced through the suction port is cooled while flowing downward from the upper portion of the cold storage part located in the inlet space, and moves to the outlet space.
    상기 유출공간에서 공기는, 상기 유출공간에 위치하는 상기 축냉부의 하부에서 상부로 흐르면서 냉각되어 상기 유출구를 통해 상기 케이스의 외부로 배출되는 축냉식 냉장 냉동 시스템.The air is cooled in the outlet space, flows from the lower portion of the cold storage portion located in the outlet space to the upper portion is cooled storage refrigeration refrigeration system is discharged to the outside of the case through the outlet.
  4. 제3항에 있어서,The method of claim 3,
    상기 흡입구 및 유출구는 상기 케이스의 상부에 각각 형성되는 것을 특징으로 하는 축냉식 냉장 냉동 시스템. The suction port and the outlet port are respectively formed on the upper portion of the cold storage refrigeration refrigeration system.
PCT/KR2017/004091 2016-05-10 2017-04-17 Cold storage refrigeration and freezing system WO2017195994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0056991 2016-05-10
KR1020160056991A KR20170126663A (en) 2016-05-10 2016-05-10 Cold storage system

Publications (1)

Publication Number Publication Date
WO2017195994A1 true WO2017195994A1 (en) 2017-11-16

Family

ID=60267738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004091 WO2017195994A1 (en) 2016-05-10 2017-04-17 Cold storage refrigeration and freezing system

Country Status (2)

Country Link
KR (1) KR20170126663A (en)
WO (1) WO2017195994A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168899B1 (en) * 2018-07-24 2020-10-22 포스코에너지 주식회사 Cooling system of energy storage system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227854A (en) * 2000-02-16 2001-08-24 Sanden Corp Heat regenerating cold insulated box
JP2002130903A (en) * 2000-10-25 2002-05-09 Daikin Ind Ltd Cold storage unit for cold insulation cabinet
JP3947158B2 (en) * 2003-03-19 2007-07-18 エルジー エレクトロニクス インコーポレイティド Heat exchanger
KR20140056483A (en) * 2012-10-26 2014-05-12 한국생산기술연구원 A freeze container have a setting position veriable insulation wall
KR101604974B1 (en) * 2014-09-25 2016-03-21 주식회사 리우스 Reducing device and method for contact thermal resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227854A (en) * 2000-02-16 2001-08-24 Sanden Corp Heat regenerating cold insulated box
JP2002130903A (en) * 2000-10-25 2002-05-09 Daikin Ind Ltd Cold storage unit for cold insulation cabinet
JP3947158B2 (en) * 2003-03-19 2007-07-18 エルジー エレクトロニクス インコーポレイティド Heat exchanger
KR20140056483A (en) * 2012-10-26 2014-05-12 한국생산기술연구원 A freeze container have a setting position veriable insulation wall
KR101604974B1 (en) * 2014-09-25 2016-03-21 주식회사 리우스 Reducing device and method for contact thermal resistance

Also Published As

Publication number Publication date
KR20170126663A (en) 2017-11-20

Similar Documents

Publication Publication Date Title
KR101336592B1 (en) Cold storage system
US9671128B2 (en) Air conditioner having angled heat exchangers
EP2483609B1 (en) Cascade refrigeration system mounted within a deck
WO2015009028A1 (en) Heat exchanger
US20060067052A1 (en) Liquid cooling system
WO2011007960A2 (en) Refrigerator
CN216716625U (en) Heat exchanger and air conditioner
CA2394474A1 (en) Refrigeration units and heat pipe
US11940227B2 (en) Cooling systems and methods using single-phase fluid
WO2016129862A1 (en) Refrigerator
KR20090016598A (en) Cold and/or heat accumulator
EP3842728B1 (en) Heat exchanger and air conditioner
WO2012002698A2 (en) Heat exchanger
WO2017195994A1 (en) Cold storage refrigeration and freezing system
JP2023118975A (en) refrigerator
JP3547386B2 (en) Heat storage coil device
KR101913803B1 (en) Cold storage system
WO2012057493A2 (en) Air conditioner
US10883767B2 (en) Multi-fluid heat exchanger
KR101604974B1 (en) Reducing device and method for contact thermal resistance
CN109780756B (en) Heat exchanger, refrigerating system and refrigerating equipment
CN220771431U (en) Semiconductor refrigerating device with partition plate
WO2020045868A1 (en) Refrigerator
CN218846512U (en) Refrigerating system and freezer
CN220290960U (en) Modularized energy storage battery temperature control cabinet

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796294

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17796294

Country of ref document: EP

Kind code of ref document: A1