WO2017195780A1 - Method for restoring abnormalized protein three-dimensional structure - Google Patents

Method for restoring abnormalized protein three-dimensional structure Download PDF

Info

Publication number
WO2017195780A1
WO2017195780A1 PCT/JP2017/017554 JP2017017554W WO2017195780A1 WO 2017195780 A1 WO2017195780 A1 WO 2017195780A1 JP 2017017554 W JP2017017554 W JP 2017017554W WO 2017195780 A1 WO2017195780 A1 WO 2017195780A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
water
weight
protein
plant
Prior art date
Application number
PCT/JP2017/017554
Other languages
French (fr)
Japanese (ja)
Inventor
孝一 古▲崎▼
小野寺 節
力雄 桐澤
Original Assignee
株式会社理研テクノシステム
株式会社Santa Mineral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社理研テクノシステム, 株式会社Santa Mineral filed Critical 株式会社理研テクノシステム
Priority to JP2018517033A priority Critical patent/JP6814394B2/en
Publication of WO2017195780A1 publication Critical patent/WO2017195780A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/02Medicinal preparations containing materials or reaction products thereof with undetermined constitution from inanimate materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • A61K33/10Carbonates; Bicarbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/614Cnidaria, e.g. sea anemones, corals, coral animals or jellyfish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/618Molluscs, e.g. fresh-water molluscs, oysters, clams, squids, octopus, cuttlefish, snails or slugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/13Coniferophyta (gymnosperms)
    • A61K36/14Cupressaceae (Cypress family), e.g. juniper or cypress
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/20Aceraceae (Maple family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • A61K36/282Artemisia, e.g. wormwood or sagebrush
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • A61K36/738Rosa (rose)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to a method for restoring an abnormal protein structure to a normal state.
  • Water containing mineral components is said to have the effects of soil reforming, plant growth, harmful chemical decomposition, deodorization, air purification, etc. And production facilities for mineral-containing water.
  • the inventor immerses the conductive wire and the mineral-imparting material (A) coated with an insulator in water, causes a direct current to flow through the conductive wire, and the water around the conductive wire has the same direction as the direct current.
  • Means for forming a raw mineral aqueous solution (A) by applying ultrasonic vibration to the water, and irradiating the formed raw mineral aqueous solution (A) with far infrared rays to contain mineral-containing water (A) Has developed a mineral-containing water production apparatus (A) comprising a far-infrared ray generating means for forming (see Patent Document 1).
  • the present inventors communicate the mineral-containing water production apparatus (A), a plurality of water containers filled with different types of mineral imparting materials (B), and the plurality of water containers in series.
  • Mineral functional water production equipment equipped with a mineral-containing water production apparatus (B) has been developed (see Patent Document 2). And if the said mineral functional water manufacturing facility is used, it has been reported that the mineral functional water (far infrared generation water) which has the function to generate
  • Japanese Patent No. 4817817 JP 2011-56366 A Japanese Patent No. 5864010 PCT / JP2015 / 076268
  • an object of the present invention is to provide a method for restoring an abnormal protein three-dimensional structure to a normal state as a new use of mineral functional water containing an electromagnetic radiation mineral component.
  • the present inventor has found that a protein having an abnormal structure is in a normal state due to the action of a mineral contained in a specific mineral functional water on a protein having an abnormal structure. As a result, the present invention has been found.
  • the present invention relates to the following inventions.
  • ⁇ 1> A method of bringing an abnormal protein into contact with mineral-functional water containing an electromagnetic radiation mineral component and restoring the three-dimensional structure of the abnormal protein to a normal structure.
  • ⁇ 2> The method according to ⁇ 1>, wherein the abnormal protein is an abnormal prion protein.
  • ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the mineral component is a mineral component that emits electromagnetic waves including terahertz waves.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the mineral component is a mineral component derived from mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd.
  • the abnormal three-dimensional structure of a protein can be restored to a normal state.
  • FIG. 3 is a partially omitted cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 shows the storage container of the mineral provision material (A) used for the raw material mineral aqueous solution manufacturing means shown in FIG.
  • A the mineral provision material
  • FIG. 3 shows the reaction state of the conductive wire vicinity in the raw material mineral aqueous solution manufacturing means shown in FIG.
  • the present invention is a method for bringing the abnormal protein into contact with mineral functional water containing an electromagnetic radiation mineral component and restoring the three-dimensional structure of the abnormal protein to a normal structure (hereinafter referred to as “the present invention”). It may be described as “restoration method”).
  • the “mineral functional water containing an electromagnetic radiation mineral component” according to the restoration method of the present invention is hereinafter referred to as “the mineral functional water of the present invention”.
  • Proteins due to amino acid bonds express normal functions due to their three-dimensional structure, but in the process of starting from the primary structure and obtaining the third-order three-dimensional formation and taking the fourth-order folding structure, It is considered that connective tissue degeneration occurs on each structure due to physical external influences and viruses and other internal influences, leading to changes in lesions of living tissues. Since each individual amino acid has been confirmed to have wavelength absorption in a specific terahertz wave region, it is presumed that a protein that is a set of amino acids also has terahertz wave absorption specific to each protein. Therefore, it is possible to restore (regenerate) the three-dimensional structure of the protein by radiation at a wavelength (for example, a wavelength of about 300 ⁇ m) that is absorbed by the protein-level biopolymer.
  • a wavelength for example, a wavelength of about 300 ⁇ m
  • an abnormal protein is restored (regenerated) to a normal structure by an action derived from electromagnetic waves emitted by mineral components contained in mineral functional water.
  • electromagnetic waves terahertz waves, which are wavelengths that induce intermolecular motion in proteins, are effective. Therefore, it is preferable that the mineral component in the mineral functional water is a mineral component that emits electromagnetic waves including terahertz waves.
  • the abnormal protein to be subjected to the restoration method of the present invention is not particularly limited, and examples thereof include prion protein, ⁇ amyloid protein, enzyme protein and the like.
  • the restoration method of the present invention is effective in inducing intermolecular movement in the protein to return the ⁇ sheet structure supporting the infectivity of abnormal prion protein to a normal alpha-felix structure, and normalizing ⁇ amyloid protein causing Alzheimer's Such as induction of intermolecular movement and induction of physiological activity of enzyme protein. And, for diseases mainly caused by the three-dimensional structure modification of these proteins, the electromagnetic wave emitted by the mineral component emits each unique terahertz wavelength that normalizes the protein, thereby returning to the original normal state. be able to.
  • the ⁇ -sheeted structure in the case of an abnormal prion protein, the ⁇ -sheeted structure can be returned to the alpha helix, and a disease derived from the abnormal prion protein can be prevented and treated.
  • the restoring action of the abnormal protein by the mineral functional water of the present invention is caused by the electromagnetic wave radiated from the contained mineral component, it is not only in direct contact with the abnormal protein, but also indirectly. It can also be effective when in contact.
  • the mineral functional water used in the restoration method of the present invention contains an electromagnetic radiation mineral component.
  • a preferred example of the mineral functional water of the present invention is mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd., which corresponds to Example 1 described later.
  • another preferred example of the mineral functional water of the present invention is mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd., which corresponds to Example 2 described later.
  • the mineral functional water CAC-717 and the mineral functional water A20ACA-717 are mineral functional water containing a complex of calcium and carbon as an electromagnetic radiation mineral component.
  • mineral functional water means a substance containing a mineral component and expressing at least one effective effect.
  • mineral containing water is the raw material water of the previous step in manufacturing mineral functional water, and mineral containing water also contains a mineral component. Details will be described later as the method for producing mineral functional water of the present invention.
  • the mineral-containing water itself may or may not have an effective effect.
  • mineral component does not mean “inorganic component (including trace elements) excluding four elements (carbon, hydrogen, nitrogen, oxygen)”, which is a definition of mineral in a narrow sense, As long as it coexists with an inorganic component, it may contain the four elements (carbon, hydrogen, nitrogen, oxygen) excluded in the narrowly defined definition. Therefore, for example, “a plant-derived mineral component” is a concept including a case where a plant-derived organic component is included together with a plant-derived inorganic component such as calcium.
  • an inorganic component for example, sodium, potassium, calcium, magnesium, phosphorus, and the like, and trace elements such as iron, zinc, copper, manganese, iodine, selenium, chromium, and molybdenum, respectively. Although it can illustrate, it is not limited to this.
  • the mineral component contained in the mineral functional water of the present invention can be regarded as a mineral component that emits electromagnetic waves including terahertz waves.
  • the terahertz wave means an electromagnetic wave having a wavelength of 6 to 14 ⁇ m.
  • Terahertz waves are electromagnetic waves that can be said to be so-called actinic rays that are indispensable for growing plants and maintaining the health of animals and humans that are also contained in sunlight.
  • life forms including cells
  • one of the suitable aspects of the mineral functional water of the present invention is that the spectral emissivity spectrum of the mineral functional water of the present invention satisfies the following requirement (i).
  • a method of measuring the liquid sample while being fixed to a reference carrier is usually employed.
  • the spectral emissivity spectrum of the mineral functional water of the present invention is measured by immobilizing the mineral functional water on the supporting ceramic powder.
  • mineral functional water CAC-717 is one mineral functional water that satisfies this requirement.
  • the average radiation ratio with respect to (measurement temperature: 25 ° C.) is 90% or more.
  • the mineral functional water of the present invention adds up the values between the wavelength of 5 to 7 ⁇ m and the wavelength of 14 to 24 ⁇ m in the radiation ratio profile for the black body at 25 ° C., and the average value is (for the black body at 25 ° C. )
  • the average radiation ratio is preferably 90% or more.
  • Radiation at a wavelength of 5 to 7 ⁇ m and a wavelength of 14 to 24 ⁇ m with respect to a black body at 25 ° C. corresponds to mid-infrared light. It has the property to reach. That is, the mineral functional water of the present invention may have a beneficial effect due to this mid-infrared ray.
  • a preferred embodiment of the functional mineral water according to the present invention is a spectral emissivity in a wavelength range of 4 ⁇ m to 24 ⁇ m in a sample in which 20 parts by weight of the mineral functional water is immobilized with respect to 100 parts by weight of the ceramic carrier.
  • the spectrum (measured temperature: 25 ° C.) shows a specific shape (the shape shown in FIG. 12 or FIG. 14) as shown in the examples. Details will be described later in Examples.
  • emissivity is the ratio of the radiant divergence of a radiator to the radiant divergence of a black body at the same temperature as that of the radiator (JIS Z 8117 (2002)).
  • Rent indicates the ratio of radiation of the sample when the emissivity of the black body at that temperature is 100%.
  • the sample to be evaluated has a characteristic spectral emissivity spectrum.
  • the “black body” means an object that absorbs 100% of incident light and has the maximum energy radiation ability. Theoretically, none has a radiation ability larger than that of a black body.
  • the method for measuring the spectral emissivity spectrum is stipulated in JIS R 1801 (2002), and has an apparatus configuration conforming to JIS R 1801 (2002).
  • Emissivity measurement using Fourier transform infrared spectrophotometry (FTIR) It can be measured by the system.
  • FTIR Fourier transform infrared spectrophotometry
  • a suitable example of the emissivity measuring system is a far infrared emissivity measuring apparatus (JIR-E500) manufactured by JEOL Ltd.
  • the estimation mechanism described above is only an estimation at the present time, and even if a mechanism different from the above is discovered in the future, the useful efficacy in the mineral functional water of the present invention is interpreted in a limited way. It shouldn't be.
  • the mineral functional water of the present invention may have a plurality of different useful effects, and the expression mechanism may be different for each effect.
  • the method for producing the mineral functional water of the present invention is not particularly limited, but preferably, the apparatus disclosed in the above-mentioned Patent Document 2 (Japanese Patent Laid-Open No. 2011-56366) is used to the method disclosed in the same document. It can be produced by a similar method. In addition to the manufacturing method using this manufacturing apparatus, the manufacturing method is not limited as long as mineral functional water containing a mineral component having electromagnetic wave radiation action can be obtained.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-56366
  • the following explanation corresponds to a method for producing a mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd., which is a preferred mineral functional water.
  • Other mineral functional water can be produced by appropriately changing.
  • the functional mineral water manufacturing facility 1 is manufactured with a mineral-containing water (A) manufacturing device 2, a mineral-containing water (B) manufacturing device 3, and a mineral-containing water (A) manufacturing device 2.
  • a mixing tank 46 which is a mixing means for mixing the mineral-containing water (A) 44 with the mineral-containing water (B) 45 manufactured by the mineral-containing water (B) manufacturing apparatus 3 to form the mineral functional water 47. ing.
  • the mineral-containing water (A) production apparatus 2 produces a raw mineral aqueous solution (A) 41 that forms raw mineral aqueous solution (A) 41 using raw water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials.
  • the mineral-containing water (B) production device 3 forms mineral-containing water (B) 45 containing mineral components eluted from the mineral-imparting material by passing water W supplied from outside through the water containers 51 to 56.
  • the mineral-containing water (A) production apparatus 2 constituting the mineral functional water production facility 1 shown in FIG. 1 will be described with reference to FIGS.
  • the mineral-containing water (A) production apparatus 2 is a raw mineral aqueous solution (A) 41 using water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials.
  • the raw mineral water producing means 10 (see FIG. 2) for forming the water and the mineral-containing water (A) solution 41 obtained by the raw mineral aqueous solution producing means 10 are irradiated with far-infrared rays to change into mineral-containing water (A) 44.
  • far-infrared light generating means 43 see FIG. 6).
  • the raw mineral aqueous solution production means 10 includes a reaction vessel 13 that can contain water 11 and a mineral-imparting material (A) 12, and a reaction vessel 13 that is covered with an insulator 14.
  • 17 and circulation paths 18a and 18b and a circulation pump P which are means for generating a water flow R in the same direction as the direct current DC in the water 11 around the conductive wire 15.
  • the DC power supply device 17, the ultrasonic wave generating means 16, and the circulation pump P are all operated by feeding from a general commercial power source.
  • the reaction vessel 13 has an inverted conical cylinder shape with an open top surface, and a drain port 19 is provided at the bottom corresponding to the apex thereof.
  • the drain port 19 has a circulation path 18a communicating with the suction port P1 of the circulation pump P.
  • an opening degree adjusting valve 20 for adjusting the amount of drainage to the circulation path 18a and a drainage valve 21 for discharging water in the reaction vessel 13 and the like.
  • the base end of the circulation path 18 b is connected to the discharge port P ⁇ b> 2 of the circulation pump P, and the distal end of the circulation path 18 b is connected to the storage tank 22.
  • a base end of a circulation path 18 c for feeding the water 11 in the storage tank 22 into the reaction container 13 is connected, and the distal end of the circulation path 18 c is an opening of the reaction container 13. It is piped at the position facing.
  • the circulation path 18 c is provided with an opening degree adjusting valve 23 for adjusting the amount of water fed from the storage tank 22 to the reaction vessel 13.
  • a drain pipe 24 having a drain valve 25 and a water temperature gauge 26 is connected to the bottom of the storage tank 22 in a hanging manner. If the drain valve 25 is opened as necessary, the water in the storage tank 22 can be discharged from the lower end of the drain pipe 24. At this time, the temperature of the water 11 passing through the drain pipe 24 is measured by the water thermometer 26. be able to.
  • a plurality of conductive cables 29 comprising the conductive wire 15 and the insulator 14 covering the conductive wire 15 form an annular shape at a plurality of positions having different depths in the reaction vessel 13, respectively.
  • These circular conductive cables 29a to 29g are wired and arranged substantially coaxially with the reaction vessel 13.
  • the inner diameter of each of the conductive cables 29a to 29g is gradually reduced in accordance with the inner diameter of the inverted conical cylindrical reaction vessel 13, and has an inner diameter corresponding to each arrangement location. Since each of the conductive cables 29a to 29g is detachably connected to an insulating terminal 30 provided on the wall 13a of the reaction vessel 13, an annular portion can be removed from the terminal 30 as necessary. Can be attached.
  • a portion of the reaction vessel 13 corresponding to the axial center is provided with a bottomed cylindrical storage container 31 formed of an insulating network, and the storage container 31 is filled with a mineral-imparting material (A) 12.
  • A mineral-imparting material
  • conductive cables 29s and 29t are spirally wound around the outer circumferences of the circulation paths 18a and 18b, respectively, and a DC current DC is supplied from the DC power supply device 17 to these conductive cables 29s and 29t.
  • the direction of the direct current DC flowing through the conductive cables 29s and 29t is set so as to substantially coincide with the direction of the water flow flowing through the circulation paths 18a and 18b.
  • the circulation pump P is operated, and the opening degree adjusting valve 20 at the bottom of the reaction vessel 13 and the opening degree adjusting valve 23 of the circulation path 18c are adjusted so that the drain port 19, the circulation path 18a, and the circulation pump P from the reaction container 13 are adjusted.
  • the water 11 is circulated so as to return to the upper part of the reaction vessel 13 again via the circulation path 18b, the storage tank 22 and the circulation path 18c.
  • the DC power supply device 17 and the ultrasonic wave generation means 16 are operated, the elution reaction of the mineral component from the mineral applying material (A) 12 in the storage container 31 to the water 11 starts.
  • the working conditions for producing the raw mineral aqueous solution (A) using the raw mineral aqueous solution production means 10 are not particularly limited, but in this embodiment, the raw mineral aqueous solution (A) was produced under the following working conditions. .
  • a DC current DC having a voltage of 8000 to 8600 V and a current of 0.05 to 0.1 A was conducted to the conductive cables 29, 29s, and 29t.
  • the insulator 14 constituting the conductive cable 29 and the like is made of polytetrafluoroethylene resin.
  • the mineral-imparting material (A) 12 filled in the reaction vessel 13 is filled with water at a mass ratio of 10 to 15%. Specific description of the mineral-imparting material (A) 12 will be described later.
  • the water 11 should just contain an electrolyte so that direct current DC may act.
  • an electrolyte For example, about 10 g of sodium carbonate, which is an electrolyte, is used for 100 liters of water. However, ground water can be used as it is.
  • the ultrasonic wave generation means 16 generates ultrasonic waves having a frequency of 30 to 100 kHz, and the ultrasonic vibration part (not shown) directly touches the water 11 in the reaction vessel 13 and vibrates. Ultrasonic wave generation means 16 is arranged.
  • the mineral component from the mineral-imparting material (A) 12 is quickly brought into the water 11 by the stirring action by the water flow R, the action of the direct current flowing through the conductive cable 29 and the ultrasonic vibration applied to the water 11 by the ultrasonic wave generation means 16.
  • the raw mineral aqueous solution (A) in which the required mineral components are appropriately dissolved can be efficiently produced.
  • a plurality of annular conductive cables 29 a to 29 g are wired substantially coaxially in the reaction vessel 13, and a water flow R that rotates in the left-handed screw direction in the reaction vessel 13 is generated. ing. Therefore, a relatively dense electric energy field can be formed in the reaction container 13 having a constant volume, and the raw mineral aqueous solution (A) can be efficiently produced in the reaction container 13 having a relatively small volume. .
  • the reaction vessel 13 has an inverted conical cylindrical shape, the water flow R flowing along the plurality of annular conductive cables 29a to 29g can be generated relatively easily and stably. Is promoted. Further, since the flow rate of the water flow R flowing in the inverted conical cylindrical reaction vessel 13 increases toward the drain port 19 at the bottom of the reaction vessel 13, the contact frequency with the mineral imparting material (A) 12 also increases. It is possible to increase the amount of mineral that captures and ionizes the free electrons e present in the water 11.
  • the storage tank 22 for discharging the water 11 while storing it is provided between the circulation paths 18b and 18c, the mineral elution reaction can be advanced while circulating the amount of water 11 exceeding the volume of the reaction vessel 13. Is possible. For this reason, raw material mineral aqueous solution (A) can be mass-produced efficiently.
  • the raw mineral aqueous solution (A) from which the mineral components are finally eluted is generated.
  • the appearance state of the electrons e can be controlled, and the water solubility of the mineral component is influenced by the action of the free electrons e on the mineral-imparting material (A) 12.
  • the raw mineral aqueous solution (A) 41 is transferred into the processing container 40 shown in FIG.
  • the residue of the mineral-imparting material (A) 12 leaked from the storage container 31 in the reaction container 13 can be discharged from the drain valve 21 at the bottom of the reaction container 13.
  • the raw mineral aqueous solution (A) 41 accommodated in the processing container 40 is irradiated with far-infrared rays by the far-infrared light generating means 43 disposed inside the processing container 40 while being slowly stirred by the stirring blade 42.
  • the far infrared ray generating means 43 is not particularly limited as long as it generates far infrared rays having a wavelength of about 6 to 14 ⁇ m, and any material or means may be used. However, it is desirable to have a radiation ratio of 85% or more with respect to black body radiation in the wavelength range of 6 to 14 ⁇ m at 25 ° C.
  • the mineral component contained in the mineral-imparting material (A) 12 is quickly brought about by the stirring action by the water flow R, the action of the direct current DC flowing through the conductive wire 15 and the ultrasonic vibration.
  • the required mineral components are appropriately dissolved, and the mineral aqueous solution 41 can be produced efficiently.
  • the mineral-containing water (A) 44 whose electronegativity is increased by irradiating the mineral aqueous solution 41 with far-infrared rays to fuse dissolved mineral components and water molecules. Is formed.
  • the mineral-containing water (A) 44 formed by the above-described process is fed into the mixing tank 46 via the water supply path 57y as shown in FIG. In 46, it mixes with the mineral containing water (B) 45 sent from the mineral containing water (B) manufacturing apparatus 3.
  • FIG. 1 the mineral-containing water (A) production apparatus 2
  • the mineral-imparting material (A) is a vegetative plant material consisting of a plant family of asteraceae and a plant family of rose family, and a vegetation plant material consisting of one or more kinds of tree plants selected from maple, birch, pine and cedar. Containing.
  • a site where mineral components such as leaves, stems, flowers, and bark are easy to elute is appropriately selected and may be used as it is, or may be used as a dried product.
  • other plant plants may be included, but it is preferable that only the plants of the Asteraceae and Rose family are included.
  • the addition of cruciferous and pine family plants greatly reduces the control effect of single-cell organisms, which is one of the useful effects of the mineral functional water of the present invention.
  • mineral imparting material (A) is a mineral imparting material (A ′).
  • Mineral-imparting material (A ′) is a material of the plant or plant, such as wild thistle (leaves, stems and flower parts): 8 to 12% by weight, mugwort (leaves and stems), camellia (leaves and stems) ), In a ratio of 8-12 wt%, 55-65 wt%, 27-33 wt%, dried and pulverized Asteraceae plants crushed after drying, and 17-23% by weight, 8-12% by weight, 65-75% by weight of Neubara (leaves, flower parts), Japanese radish (leaves and stems), and raspberry (leaves, stems and flower parts), respectively Use a dry pulverized product of a rose family plant mixed and dried at a ratio of A plant material (A1) obtained by mixing the dried pulverized product of the Asteraceae plant and the dried pulverized product of the Rosaceae plant at a ratio of 1:
  • mineral-providing materials (A ′) in particular, as the plant plant material, field thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems), 10% by weight, 60% by weight, and 30% by weight of each mixture, dried and pulverized Asteraceae plants crushed, dried roses (leaves, flowers), radish (leaves and leaves) Stem part), raspberry (leaf part, stem part and flower part) were mixed at a ratio of 20% by weight, 10% by weight and 70% by weight, respectively, dried and pulverized after drying, Plant and plant material (A1) obtained by mixing at 1: 1 (weight ratio); As the woody plant material, maple (leaves and stems), birch (leaves, stems, and bark), and cedar (leaves, stems, and bark) are 25% by weight and 25% respectively.
  • the woody plant material (A2) comprising the plant material (A1) and the woody plant material (A2) It is preferable that it is a mineral provision material obtained by mixing so that it may become 1: 3.
  • the mineral-containing water (B) production apparatus 3 includes a first water flow container 51 to a sixth water flow container 56 filled with different types of mineral imparting materials (B), A water supply path 57 that connects the first water flow container 51 to the sixth water flow container 56 in series, and a detour connected to the water flow path 57 in parallel with the first water flow container 51 to the sixth water flow container 56, respectively.
  • Water channels 51p to 56p, and water flow switching valves 51v to 56v respectively provided at branch portions of the bypass water channels 51p to 56p and the water supply channel 57 are provided.
  • the switching operation of the water flow switching valves 51v to 56v is executed by operating the six switching buttons 51b to 56b provided on the operation panel 58 connected to the water flow switching valves 51v to 56v by the signal cable 59. Can do. Since the six switching buttons 51b to 56b and the six water flow switching valves 51v to 56v correspond to each number, if one of the switching buttons 51b to 56b is operated, the water flow corresponding to that number is operated. The switching valves 51v to 56v are switched to change the water flow direction.
  • the mineral-imparting materials (B) 51m to 56m can be preferably produced by mixing raw materials based on limestone, fossilized corals and shells. First, components contained in limestone, fossil coral, and shells are analyzed, and the amounts of silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate are evaluated. Then, based on the content of each component, limestone, fossilized coral, and shells are mixed to produce the mineral-imparting material (B) 51m to 56m.
  • the mineral imparting material (B) 51m to 56m is preferably controlled by the mixing ratio of limestone, fossil coral and shell, but the limestone, fossil coral and shell as raw materials are contained depending on the production area.
  • silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate may be added.
  • activated carbon is usually added separately because it is hardly contained in limestone, fossilized coral, and shells.
  • Mineral imparting material (B) 51m-56m A mixture in which the mineral-imparting material (B1) in the first water flow container 51 contains limestone, fossilized coral, and shells by 70 wt%, 15 wt%, and 15 wt%, respectively; A mixture in which the mineral-imparting material (B2) in the second water flow container 52 contains limestone, fossilized coral, shell, activated carbon, 40% by weight, 15% by weight, 40% by weight, and 5% by weight, A mixture containing 80% by weight, 15% by weight, and 5% by weight of limestone, fossilized coral, and shell, respectively, in the mineral-imparting material (B3) in the third water flow container 53; A mixture in which the mineral-imparting material (B4) in the fourth water flow container 54 contains limestone, fossilized coral, and shell, respectively 90% by weight, 5% by weight, and 5% by weight; A mixture in which the mineral-imparting material (B5) in the fifth water flow container 55 contains limestone, fossilized coral, and shell, respectively 80% by weight, 10% by weight,
  • limestone, fossilized corals and shells used for the mineral-imparting materials (B1) to (B6) are preferably the following (1-1) to (1-3).
  • Fossil coral The following two types of fossil corals are mixed at a weight ratio of 1: 9, and the granular material is crushed to 3 to 5 mm. From about 100 meters underground, fossil corals modified by heavy pressure. From the land near Amami Oshima, Okinawa. Fossil coral (including calcium carbonate, calcium phosphate and other trace elements) As such a fossil coral, “CC-300 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
  • Shells Granules obtained by mixing abalone, ground beetles, and barnacles at the same weight and pulverizing them to 3 to 5 mm
  • “CC-400 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
  • the activated carbon can be produced from any raw material, and preferably activated carbon produced from coconut shells.
  • CC-500 product number
  • Riken Techno System Co., Ltd. which is made from palm ginger from Thailand.
  • the switching buttons 51b to 56b of the operation panel 58 described above are operated to switch the water flow switching valves 51v to 56v to the water container side, the water flowing through the water supply path 57 is located downstream of the operated water flow switching valve. If the water flows into the first water flow container 51 to the sixth water flow container 56 and switches the water flow switching valves 51v to 56v to the detour water channel side, the water flowing through the water flow path 57 is transferred from the operated water flow switching valve. It flows into the detour channels 51p to 56p on the downstream side.
  • the mineral-containing water (B) production apparatus 3 includes a substantially cylindrical first water flow container 51 to a sixth water flow container 56 mounted on the gantry 60, and the first of these.
  • a water supply path 57 that connects the water flow container 51 to the sixth water flow container 56 in series, and a raw water tank 63 for storing the water W supplied from the water supply is disposed at the top of the gantry 60.
  • an inorganic porous body 64 having a function of adsorbing impurities in the water W is accommodated.
  • a plurality of casters 61 and level adjusters 62 are provided at the bottom of the gantry 60.
  • the substantially cylindrical first water flow container 51 to sixth water flow container 56 are mounted on a gantry 60 having a rectangular parallelepiped lattice structure in a state where the respective shaft centers 51c to 56c (see FIG. 9) are kept in the horizontal direction. Yes.
  • the first water container 51 to the sixth water container 56 can be attached to and detached from the gantry 60.
  • the first water flow container 51 to the sixth water flow container 56 all have the same structure, and the flanges 51f to 56f provided at both ends of the cylindrical main body parts 51a to 56a are circular.
  • An airtight structure is formed by attaching plate-like lids 51d to 56d.
  • a water inlet 57a communicating with the water supply path 57 is provided at a position located at the lowermost part of the main body portions 51a to 56a, and the lid bodies 51d to 56d far from the water inlet 57a are provided.
  • a water outlet 57b communicating with the water supply path 57 is provided at the top, and a mesh strainer 57c is attached to the water outlet 57b.
  • An automatic air valve 57d for releasing the air in the first water flow container 51 to the sixth water flow container 56 is attached to a portion directly above the water outlet 57b on the outer periphery of the main body portions 51a to 56a.
  • the water supplied from the upstream water supply path 57 passes through the water inlet 57a and flows into the first water flow container 51 to the sixth water flow container 56, and the mineral-imparting material (B) filled in each of them. Since each mineral component elutes into water by contacting 51m to 56m, water containing mineral components corresponding to each mineral imparting material (B) 51m to 56m becomes water downstream from the outlet 57b. To 57.
  • any one of the switching buttons 51b to 56b of the operation panel 58 shown in FIG. By passing through one or more of the water flow containers 51 to the sixth water flow container 56, the mineral imparting materials (B) 51m to 56m filled in the first water flow container 51 to the sixth water flow container 56, respectively.
  • Mineral-containing water (B) 45 in which the characteristic mineral components contained therein are selectively dissolved can be formed.
  • the mineral-containing water (B) production apparatus 3 since the first water flow container 51 to the sixth water flow container 56 are connected in series by the water flow path 57, water is continuously supplied to the water flow path 57. By flowing, it is possible to mass-produce mineral-containing water (B) 45 in which mineral components corresponding to the mineral-imparting materials (B) 51 m to 56 m in the first water flow container 51 to the sixth water flow container 56 are dissolved. .
  • the mineral-containing water (B) 45 formed in the mineral-containing water (B) production apparatus 3 is sent into the mixing tank 46 via the water supply path 57x downstream from the sixth water flow container 56, and Inside, mineral functional water 47 is formed by being mixed with mineral-containing water (A) 44 manufactured by the mineral-containing water (A) manufacturing apparatus 2 shown in FIG.
  • the mixing ratio of the mineral-containing water (A) and the mineral-containing water (B) is appropriately determined in consideration of the types of raw materials contained in the mineral-containing water (A) and the mineral-containing water (B) and the concentration of components to be eluted.
  • mineral functional water When there is too little mineral-containing water (A) (too much mineral-containing water (B)) and too much mineral-containing water (A) (too little mineral-containing water (B)), mineral functional water
  • the active ingredient may be diluted and the intended action may be insufficient.
  • Example 1 ⁇ 1> Manufacture of mineral functional water
  • the mineral function of Example 1 manufactured with the following raw material and method by the manufacturing method described above using the mineral functional water manufacturing apparatus described in the embodiment of the present invention as the mineral functional water. Water was used.
  • the raw material for the mineral imparting material (A) As a raw material for the mineral imparting material (A), as a plant and plant material (A1), "P-100 (product number)” manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-200 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
  • P-100 is a plant material (A1) obtained by mixing the following dry pulverized plant of Asteraceae and dry pulverized plant of Rosaceae at 1: 1 (weight ratio), and “P-200” is The woody plant raw material (A2) described below.
  • A1 Plant and plant material (dried plant plant) A1-1) Dry ground pulverized product of Asteraceae Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), 10% by weight, 60% respectively Mixed in a ratio of 30% by weight and 30% by weight, dried and then pulverized.
  • (A2) Woody plant raw material (dried woody plant) Maple (leaves and stems), birch (leaves, stems, and bark) and cedar (leaves, stems, and bark) are 25%, 25%, and 50% by weight, respectively. Mixed in proportion, dried and then crushed.
  • the raw mineral aqueous solution manufacturing means 10 (see FIG. 2) is placed at 10 to 15% by weight with respect to water, and a direct current (DC8300V, 100 mA) is conducted to the conductive wire of the raw mineral aqueous solution manufacturing means 10 A water flow in the same direction as the direct current was generated in the water around the water, and ultrasonic vibration (oscillation frequency 50 kHz, amplitude 1.5 / 1000 mm) was applied to the water to form a raw mineral aqueous solution (A).
  • DC8300V, 100 mA direct current
  • the mineral-containing water (A) of Example 1 was obtained by irradiating the raw mineral aqueous solution (A) supplied to the far-infrared ray generating means 43 in the latter stage with far infrared rays (wavelength 6 to 14 ⁇ m).
  • Fossil corals produced including calcium carbonate, calcium phosphate and other trace elements
  • Shell “CC-400 (Part No.)” manufactured by Riken Techno System Co., Ltd. ⁇ Abalone, Tokobushi, Barnacle mixed at the same weight and granulated to 3-5mm (1-4)
  • Activated carbon (only 2nd water container is used): “CC-500 (product number)” manufactured by Riken Techno System Co., Ltd.
  • B1 Mineral-imparting material
  • Mineral-imparting material (B2) Mixed limestone, fossilized coral, shell, activated carbon 40%, 15%, 40%, 5% by weight, respectively (equivalent to silicon dioxide and activated carbon) ⁇
  • Third water container Mineral-imparting material (B3): A mixture of limestone, fossilized coral and shell, 80% by weight, 15% by weight and 5% by weight, respectively.
  • Mineral-imparting material (B4) Mixed limestone, fossilized coral and shells by 90 wt%, 5 wt% and 5 wt%, respectively.
  • Mineral-imparting material (B6) Mixed limestone, fossilized coral and shell by 60%, 30% and 10% by weight, respectively.
  • the mineral-containing water (B) is obtained by circulating water through the first to sixth water flow containers using the mineral imparting materials (B1) to (B6).
  • Each of (B1) to (B6) was 50 kg (total 300 kg), the amount of water to be circulated was set at 1000 kg, and the flow rate was set at 500 mL / 40 s.
  • the mineral-containing water (A) and mineral-containing water (B) of Example 1 formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Example 1.
  • the mineral functional water of Example 1 was measured with a pH meter (glass electrode type hydrogen ion concentration indicator TPX-90, manufactured by Toko Chemical Laboratories) and found to have a pH of 12.5.
  • the mineral functional water of Example 1 corresponds to the mineral functional water CAC-717 (Tera Protect (product name), CAC-717 (product number), developed product number CA-C-01) manufactured by Riken Techno System Co., Ltd. To do.
  • spectral emissivity of the sample obtained by immobilizing the mineral functional water of Example 1 on the ceramic carrier was measured with a far-infrared emissivity measuring apparatus (JIR-E500 manufactured by JEOL Ltd.). did.
  • the apparatus includes a Fourier transform infrared spectrophotometer (FTIR) main body, a black body furnace, a sample heating furnace, a temperature controller, and attached optical systems.
  • FTIR Fourier transform infrared spectrophotometer
  • a sample for evaluation of spectral emissivity was prepared by the following procedure. 20 parts by weight of the mineral functional water of Example 1 was added to 100 parts by weight of the supporting ceramic powder (rock powder from Amakusa Oyanojima) to make a clay state.
  • FIG. 12 shows a spectral emissivity spectrum (measurement temperature: 25 ° C., wavelength range: 4 to 24 ⁇ m) of mineral functional water of Example 1 as a measurement sample.
  • FIG. 12 also shows the spectral emissivity spectrum (theoretical value) of the black body.
  • the vertical axis scale indicates the intensity of radiant energy, which is indicated by the number of W per square centimeter. Further, the curve of “sample” means that the closer to the black body curve, the higher the radiation ability.
  • FIG. 13 shows the emission ratio (wavelength range: 4 to 24 ⁇ m) obtained from the spectral emissivity spectrum of the measurement sample and the spectral emissivity spectrum (theoretical value) of the black body. From FIG. 13, the average radiation ratio between the wavelengths of 5 to 7 ⁇ m and between the wavelengths of 14 to 24 ⁇ m was calculated to be 91.7%.
  • Example 2 ⁇ 1> Manufacture of mineral functional water
  • the mineral functional water of Example 2 was manufactured with the following raw materials and methods.
  • A As a raw material for the mineral imparting material (A), as a plant and plant material (A1), “P-101 (product number)” manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-201 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
  • P-101 is a plant and plant material (A1) obtained by mixing the following dry pulverized plant of Asteraceae and dry pulverized plant of Rosaceae in a ratio of 1: 1 (weight ratio).
  • P-201 is The woody plant raw material (A2) described below.
  • A1 Plant and plant material (dried plant plant)
  • A1-1) Dry ground pulverized product of Asteraceae Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), 10% by weight, 60% respectively Mixed in a ratio of 30% by weight and 30% by weight, dried and then pulverized.
  • A1-2 Dry pulverized product of rose family plants, roses (leaves, flower parts), radish (leaves and stem parts), raspberries (leaves, stem parts and flower parts), 20% by weight, 10% Mixed in a ratio of 70% by weight, and then pulverized after drying.
  • Woody plant raw material (dried woody plant) Maple (deciduous), birch (deciduous, stem, and bark), cedar (deciduous, stem, and bark) are mixed in proportions of 20%, 60%, and 20% by weight, respectively, and dried. After pulverizing.
  • Example 2 is the same as Example 1 except that the mineral-imparting material (A) in which the plant and plant material (A1) and the woody plant material (A2) are mixed at a weight ratio of 1: 5 is used. Mineral-containing water (A) was obtained.
  • the mineral-containing water (A) of Example 2 and the mineral-containing water (B) formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Example 2.
  • the mineral functional water of Example 2 corresponds to mineral functional water A20ACA-717 (Tera Support (trade name), A20ACA-717 (product number)) manufactured by Riken Techno System Co., Ltd.
  • FIG. 14 shows the results of evaluating the spectral emissivity of the ceramic sintered bodies of Example 2 and the control sample by the same method as in Example 1 above.
  • a sample was prepared by performing the same operation using 200 ⁇ L of brain homogenate (normal hamster brain, non-infected) containing 200 ⁇ g protein instead of 200 ⁇ L of brain homogenate (263K-infected hamster brain), and evaluated by Western blotting. did.
  • samples not treated with proteinase K were evaluated by Western blotting.
  • the sample not treated with proteinase K is a sample containing an abnormal prion protein (PK resistant PrP) and a normal prion protein (PK sensitive PrP).
  • FIGS. FIG. 15 shows the result of 6 ⁇ L / lane
  • FIG. 16 shows the result of 3 ⁇ L / lane.
  • PK (+) and PK (-) indicate the presence or absence of proteinase K treatment.
  • the abnormal prion protein was reduced in the sample treated with MC water.
  • the increase in normal prion protein is not accurately evaluated, there is a possibility that normal prion protein has increased because abnormal prion protein has decreased. That is, it is suggested that the three-dimensional structure of the abnormal prion protein has been restored to a normal structure.
  • tissue embedded with 10% neutral buffered formalin and paraffin embedded was sliced to prepare a tissue section.
  • the tissue section was immunostained using the anti-prion protein antibody 3F4 as the primary antibody, and then the accumulation and distribution of PrP Sc (abnormal prion protein) in the brain were observed by immunohistological examination.
  • Table 2 shows the results of metastasis and immunohistological examination.
  • FIGS. 17 and 18 show tissue observation photographs of hamster numbers P-1 and S shown in Tables 1 and 2.
  • the method for restoring an abnormal protein three-dimensional structure of the present invention can be used for various applications such as medical applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Physical Water Treatments (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a method for restoring the three-dimensional structure of an abnormalized protein. A method for restoring the three-dimensional structure of an abnormalized protein to a normal structure by bringing a functional mineral water including an electromagnetic radiation-emitting mineral component into contact with an abnormalized protein.

Description

異常化したタンパク質立体構造の復元方法Restoration method of abnormal protein structure
 本発明は、異常化したタンパク質の構造を正常な状態に復元する方法に関する。 The present invention relates to a method for restoring an abnormal protein structure to a normal state.
 ミネラル成分を含有する水には、土壌改質作用、植物育成作用、有害化学物質分解作用、消臭作用、空気浄化作用等の効能がある可能性があるとされ、従来、様々なミネラル含有水やミネラル含有水の製造設備が開発されている。
 本発明者は、絶縁体で被覆された導電線及びミネラル付与材(A)を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成する手段と、形成された原料ミネラル水溶液(A)に遠赤外線を照射してミネラル含有水(A)を形成する遠赤外線発生手段と、を備えたミネラル含有水製造装置(A)を開発している(特許文献1参照)。
 また、本発明者らは、ミネラル含有水製造装置(A)と、互いに種類の異なるミネラル付与材(B)が充填された複数の通水容器と、複数の前記通水容器を直列に連通する送水経路と、複数の前記通水容器とそれぞれ並列した状態で前記送水経路に連結された迂回水路と、前記送水経路と前記迂回水路との分岐部にそれぞれ設けられた水流切替弁と、を備えたミネラル含有水製造装置(B)を備えたミネラル機能水製造設備を開発している(特許文献2参照)。そして、当該ミネラル機能水製造設備を用いると特徴的な波長の遠赤外線を発生する機能を有するミネラル機能水(遠赤外線発生水)が製造できることを報告している。また、本発明者らは、特許文献2で開示したミネラル機能水製造設備を使用し、ミネラル付与材の種類や配合割合を中心に検討を重ねた結果、ある特定の条件で製造されたミネラル機能水が単細胞生物やウィルス等に対する優れた防除作用を示すことを報告している(特許文献3)。また、他の原料、製造条件で製造されたミネラル機能水が身体活性化作用を有することを発見している(特許文献4)。
Water containing mineral components is said to have the effects of soil reforming, plant growth, harmful chemical decomposition, deodorization, air purification, etc. And production facilities for mineral-containing water.
The inventor immerses the conductive wire and the mineral-imparting material (A) coated with an insulator in water, causes a direct current to flow through the conductive wire, and the water around the conductive wire has the same direction as the direct current. Means for forming a raw mineral aqueous solution (A) by applying ultrasonic vibration to the water, and irradiating the formed raw mineral aqueous solution (A) with far infrared rays to contain mineral-containing water (A) Has developed a mineral-containing water production apparatus (A) comprising a far-infrared ray generating means for forming (see Patent Document 1).
In addition, the present inventors communicate the mineral-containing water production apparatus (A), a plurality of water containers filled with different types of mineral imparting materials (B), and the plurality of water containers in series. A water supply path, a bypass water passage connected to the water supply path in parallel with each of the plurality of water flow containers, and a water flow switching valve provided at a branch portion of the water supply path and the bypass water path, respectively. Mineral functional water production equipment equipped with a mineral-containing water production apparatus (B) has been developed (see Patent Document 2). And if the said mineral functional water manufacturing facility is used, it has been reported that the mineral functional water (far infrared generation water) which has the function to generate | occur | produce the far infrared rays of a characteristic wavelength can be manufactured. Moreover, the present inventors used the mineral functional water manufacturing equipment disclosed by patent document 2, and as a result of repeating examination centering on the kind and compounding ratio of a mineral provision material, the mineral function manufactured on the specific condition was carried out. It has been reported that water exhibits an excellent control action against unicellular organisms and viruses (Patent Document 3). Moreover, it discovered that the mineral functional water manufactured with the other raw material and manufacturing conditions has a body activation effect | action (patent document 4).
特許第4817817号公報Japanese Patent No. 4817817 特開2011-56366号公報JP 2011-56366 A 特許第5864010号公報Japanese Patent No. 5864010 PCT/JP2015/076268PCT / JP2015 / 076268
 上述のように、従来から様々なミネラル含有水が報告されているが、ミネラル含有水の効果は科学的に実証されていないものも多くあり、ミネラル含有水の真の作用に付いては、未だ明確にされていない部分も多い。そのため、従来のミネラル含有水には、その効能を謳いながら実際には効能を有していないものや、効能を有しても実用には不十分であったり、効能の再現性が乏しいものも少なくない。
 特許文献1,2で報告している装置において製造されるミネラル機能水においても、目標とする有効な効能を発現するミネラル機能水を確実に生産できているとはいえなかった。特に特許文献2で報告したミネラル含有水製造装置(A)及び(B)で使用するミネラル成分の原料(ミネラル付与材)の種類や配合割合が複雑に関与しており、どのようなミネラル付与材を用いれば、どのような効能を発現するミネラル機能水を得られるかは必ずしも判明していなかったのが実状であった。
As mentioned above, various mineral-containing waters have been reported so far, but the effect of mineral-containing water has not been scientifically verified, and the true action of mineral-containing water has not been achieved yet. There are many parts that are not clarified. For this reason, some conventional mineral-containing water does not actually have an effect, while it has an effect, and even if it has an effect, it is insufficient for practical use or has a poor reproducibility. Not a few.
Even in the mineral functional water produced in the devices reported in Patent Documents 1 and 2, it cannot be said that the mineral functional water that expresses the target effective efficacy has been reliably produced. In particular, the types and blending ratios of the raw materials (mineral-providing materials) of mineral components used in the mineral-containing water production apparatus (A) and (B) reported in Patent Document 2 are involved in a complex manner, and what kind of mineral-giving materials In fact, it was not always clear what kind of effect functional mineral water can be obtained by using.
 かかる状況下、本発明の目的は、電磁波放射性のミネラル成分を含むミネラル機能水の新たな用途として、異常化したタンパク質の立体構造を正常な状態に復元する方法を提供する。 Under such circumstances, an object of the present invention is to provide a method for restoring an abnormal protein three-dimensional structure to a normal state as a new use of mineral functional water containing an electromagnetic radiation mineral component.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、異常化した構造を有するタンパク質に、特定のミネラル機能水に含まれるミネラルが作用することによって異常化したタンパク質を、正常な状態に戻すことができることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventor has found that a protein having an abnormal structure is in a normal state due to the action of a mineral contained in a specific mineral functional water on a protein having an abnormal structure. As a result, the present invention has been found.
 すなわち、本発明は、以下の発明に係るものである。
 <1> 異常化したタンパク質に対して、電磁波放射性のミネラル成分を含むミネラル機能水を接触させて、前記異常化したタンパク質の立体構造を正常な構造に復元する方法。
 <2> 前記異常化したタンパク質が、異常化したプリオンタンパク質である<1>に記載の方法。
 <3> 前記ミネラル成分が、テラヘルツ波を含む電磁波を放射するミネラル成分である<1>または<2>に記載の方法。
 <4> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC-717に由来するミネラル成分である<1>から<3>のいずれかに記載の方法。
 <5> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA-717に由来するミネラル成分である<1>から<3>のいずれかに記載の方法。
That is, the present invention relates to the following inventions.
<1> A method of bringing an abnormal protein into contact with mineral-functional water containing an electromagnetic radiation mineral component and restoring the three-dimensional structure of the abnormal protein to a normal structure.
<2> The method according to <1>, wherein the abnormal protein is an abnormal prion protein.
<3> The method according to <1> or <2>, wherein the mineral component is a mineral component that emits electromagnetic waves including terahertz waves.
<4> The method according to any one of <1> to <3>, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd.
<5> The method according to any one of <1> to <3>, wherein the mineral component is a mineral component derived from mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd.
 本発明によれば、異常化したタンパク質の立体構造を正常な状態に復元することができる。 According to the present invention, the abnormal three-dimensional structure of a protein can be restored to a normal state.
ミネラル機能水製造設備の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a mineral functional water manufacturing facility. 図1に示すミネラル機能水製造設備を構成するミネラル含有水(A)製造装置の一部をなすミネラル含有水溶液製造手段の模式図である。It is a schematic diagram of the mineral containing aqueous solution manufacturing means which makes a part of the mineral containing water (A) manufacturing apparatus which comprises the mineral functional water manufacturing equipment shown in FIG. 図2のA-A線における一部省略断面図である。FIG. 3 is a partially omitted cross-sectional view taken along line AA in FIG. 2. 図2に示す原料ミネラル水溶液製造手段に使用するミネラル付与材(A)の収納容器を示す斜視図である。It is a perspective view which shows the storage container of the mineral provision material (A) used for the raw material mineral aqueous solution manufacturing means shown in FIG. 図2に示す原料ミネラル水溶液製造手段における導電線付近の反応状態を示す模式図である。It is a schematic diagram which shows the reaction state of the conductive wire vicinity in the raw material mineral aqueous solution manufacturing means shown in FIG. 図1に示すミネラル機能水製造設備を構成するミネラル含有水(A)製造装置の一部をなす遠赤外線照射装置の概略断面図である。It is a schematic sectional drawing of the far infrared irradiation apparatus which makes a part of the mineral containing water (A) manufacturing apparatus which comprises the mineral functional water manufacturing equipment shown in FIG. 図1に示すミネラル機能水製造設備を構成するミネラル含有水(B)製造装置のブロック図である。It is a block diagram of the mineral containing water (B) manufacturing apparatus which comprises the mineral functional water manufacturing equipment shown in FIG. 図1に示すミネラル機能水製造設備を構成するミネラル含有水(B)製造装置を示す正面図である。It is a front view which shows the mineral containing water (B) manufacturing apparatus which comprises the mineral functional water manufacturing equipment shown in FIG. 図8に示すミネラル含有水(B)製造装置の側面図である。It is a side view of the mineral containing water (B) manufacturing apparatus shown in FIG. 図8に示すミネラル含有水(B)製造装置の構成を示す一部省略斜視図である。It is a partially-omission perspective view which shows the structure of the mineral containing water (B) manufacturing apparatus shown in FIG. 図8に示すミネラル含有水(B)製造装置を構成する通水容器の側面図である。It is a side view of the water flow container which comprises the mineral containing water (B) manufacturing apparatus shown in FIG. セラミック担体100重量部に対し、実施例1のミネラル機能水20重量部を固定化した試料の分光放射率スペクトル、及び黒体の分光放射率スペクトル(理論値)である(測定温度:25℃、波長範囲:4~24μm、担体:セラミック粉末)。It is the spectral emissivity spectrum of the sample which fixed 20 weight part of mineral functional water of Example 1 with respect to 100 weight part of ceramic carriers, and the spectral emissivity spectrum (theoretical value) of a black body (measurement temperature: 25 ° C., Wavelength range: 4 to 24 μm, carrier: ceramic powder). セラミック担体100重量部に対し、実施例1のミネラル機能水20重量部を固定化した試料の黒体に対する放射比率(測定温度:25℃)を示す図である。It is a figure which shows the radiation ratio (measurement temperature: 25 degreeC) with respect to the black body of the sample which fixed 20 weight part of mineral functional waters of Example 1 with respect to 100 weight part of ceramic carriers. セラミック担体100重量部に対し、実施例2のミネラル機能水20重量部を固定化した試料の分光放射率スペクトル、及び黒体の分光放射率スペクトル(理論値)である(測定温度:25℃、波長範囲:4~24μm、担体:セラミック粉末)。It is a spectral emissivity spectrum of a sample in which 20 parts by weight of mineral functional water of Example 2 is immobilized with respect to 100 parts by weight of a ceramic carrier, and a spectral emissivity spectrum (theoretical value) of a black body (measurement temperature: 25 ° C., Wavelength range: 4 to 24 μm, carrier: ceramic powder). ミネラル機能水処理の異常型プリオンタンパク質に対する効果を評価した結果を示すウェスタンブロッティング像である(6μL/lane)。It is a western blotting image which shows the result of having evaluated the effect with respect to abnormal type prion protein of mineral functional water treatment (6 microliter / lane). ミネラル機能水処理の異常型プリオンタンパク質に対する効果を評価した結果を示すウェスタンブロッティング像である(3μL/lane)。It is a western blotting image which shows the result of having evaluated the effect with respect to abnormal type prion protein of mineral functional water treatment (3 microliters / lane). ハムスター番号P-1(陽性対照)の脳組織切片の免疫染色像である。It is an immunostaining image of a brain tissue section of hamster number P-1 (positive control). ハムスター番号Sの脳組織切片の免疫染色像である。It is an immunostaining image of a brain tissue section of hamster number S.
 1 ミネラル機能水製造設備
 2 ミネラル含有水(A)製造装置
 3 ミネラル含有水(B)製造装置
 10 原料ミネラル水溶液製造手段
 11,W 水
 12 ミネラル付与材(A)
 13 反応容器
 13a 壁体
 14 絶縁体
 15 導電線
 16 超音波発生手段
 17 直流電源装置
 18a,18b,18c 循環経路
 19 排水口
 20,23 開度調節バルブ
 21,25 排水バルブ
 22 収容槽
 24 排水管
 26 水温計
 29,29a~29g,29s,29t 導電ケーブル
 30 ターミナル
 31 収納容器
 31f フック
 40 処理容器
 41 原料ミネラル水溶液(A)
 42 撹拌羽根
 43 遠赤外線発生手段
 44 ミネラル含有水(A)
 45 ミネラル含有水(B)
 46 混合槽
 47 ミネラル機能水
 51 第1通水容器
 52 第2通水容器
 53 第3通水容器
 54 第4通水容器
 55 第5通水容器
 56 第6通水容器
 51a~56a 本体部
 51b~56b 切替ボタン
 51c~56c 軸心
 51d~56d 蓋体
 51f~56f フランジ部
 51m~56m ミネラル付与材(B)
 51p~56p 迂回水路
 51v~56v 水流切替弁
 57,57x,57y 送水経路
 57a 入水口
 57b 出水口
 57c メッシュストレーナ
 57d 自動エア弁
 58 操作盤
 59 信号ケーブル
 60 架台
 61 キャスタ
 62 レベルアジャスタ
 63 原水タンク
 DC 直流電流
 DW 水道水
 R 水流
DESCRIPTION OF SYMBOLS 1 Mineral functional water manufacturing equipment 2 Mineral containing water (A) manufacturing apparatus 3 Mineral containing water (B) manufacturing apparatus 10 Raw material aqueous solution manufacturing means 11, W water 12 Mineral provision material (A)
DESCRIPTION OF SYMBOLS 13 Reaction container 13a Wall body 14 Insulator 15 Conductive wire 16 Ultrasonic wave generation means 17 DC power supply device 18a, 18b, 18c Circulation path 19 Drain port 20, 23 Opening control valve 21, 25 Drain valve 22 Containment tank 24 Drain pipe 26 Water temperature meter 29, 29a to 29g, 29s, 29t Conductive cable 30 Terminal 31 Storage container 31f Hook 40 Processing container 41 Raw material mineral aqueous solution (A)
42 Stirrer blades 43 Far infrared ray generating means 44 Mineral-containing water (A)
45 Mineral-containing water (B)
46 Mixing tank 47 Mineral functional water 51 1st water container 52 2nd water container 53 3rd water container 54 4th water container 55 5th water container 56 6th water container 51a-56a Main part 51b- 56b Switch button 51c to 56c Axle 51d to 56d Lid 51f to 56f Flange 51m to 56m Mineral imparting material (B)
51p to 56p Detour channel 51v to 56v Water flow switching valve 57, 57x, 57y Water supply route 57a Water inlet 57b Water outlet 57c Mesh strainer 57d Automatic air valve 58 Operation panel 59 Signal cable 60 Mounting base 61 Caster 62 Level adjuster 63 Raw water tank DC DC current DW Tap water R Water flow
 以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「~」とはその前後の数値又は物理量を含む表現として用いるものとする。 Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In this specification, “to” is used as an expression including numerical values or physical quantities before and after.
<1.異常化したタンパク質の復元方法>
 本発明は、異常化したタンパク質に対して、電磁波放射性のミネラル成分を含むミネラル機能水を接触させて、前記異常化したタンパク質の立体構造を正常な構造に復元する方法(以下、「本発明の復元方法」と記載する場合がある。)に関する。なお、本発明の復元方法に係る「電磁波放射性のミネラル成分を含むミネラル機能水」を、以下、「本発明のミネラル機能水」と記載する。
<1. How to restore abnormal protein>
The present invention is a method for bringing the abnormal protein into contact with mineral functional water containing an electromagnetic radiation mineral component and restoring the three-dimensional structure of the abnormal protein to a normal structure (hereinafter referred to as “the present invention”). It may be described as “restoration method”). The “mineral functional water containing an electromagnetic radiation mineral component” according to the restoration method of the present invention is hereinafter referred to as “the mineral functional water of the present invention”.
 アミノ酸の結合によるタンパク質は、その立体構造に起因して正常な機能を発現しているが、1次構造から始まり3次の立体形成を得て4次の折りたたみ構造を取る過程で、何らかの化学的物理的な外的影響やウィルスその他の内的影響を受けて、各構造上に結合組織の変性が起き、生体組織の病変の変化につながると考えられる。
 個々のアミノ酸には固有のテラヘルツ波領域の波長吸収が確認されていることから、アミノ酸の集合であるタンパク質にもそれぞれのタンパク質固有のテラヘルツ波吸収があると推測される。そのため、タンパク質レベルの生体高分子が吸収する波長(例えば、波長300μm程度)の放射により、タンパク質の立体構造を復元(再生)することが可能である。
Proteins due to amino acid bonds express normal functions due to their three-dimensional structure, but in the process of starting from the primary structure and obtaining the third-order three-dimensional formation and taking the fourth-order folding structure, It is considered that connective tissue degeneration occurs on each structure due to physical external influences and viruses and other internal influences, leading to changes in lesions of living tissues.
Since each individual amino acid has been confirmed to have wavelength absorption in a specific terahertz wave region, it is presumed that a protein that is a set of amino acids also has terahertz wave absorption specific to each protein. Therefore, it is possible to restore (regenerate) the three-dimensional structure of the protein by radiation at a wavelength (for example, a wavelength of about 300 μm) that is absorbed by the protein-level biopolymer.
 本発明の復元方法では、ミネラル機能水に含まれるミネラル成分が放射する電磁波に由来する作用によって、異常化したタンパク質を正常な構造に復元(再生)する。電磁波としてはタンパク質内の分子間運動を誘導する波長である、テラヘルツ波が有効である。
 そのため、ミネラル機能水におけるミネラル成分が、テラヘルツ波を含む電磁波を放射するミネラル成分であることが好ましい。
In the restoration method of the present invention, an abnormal protein is restored (regenerated) to a normal structure by an action derived from electromagnetic waves emitted by mineral components contained in mineral functional water. As electromagnetic waves, terahertz waves, which are wavelengths that induce intermolecular motion in proteins, are effective.
Therefore, it is preferable that the mineral component in the mineral functional water is a mineral component that emits electromagnetic waves including terahertz waves.
 本発明の復元方法の対象となる異常化したタンパク質としては特に制限はないが、例えば、プリオンタンパク質、βアミロイドタンパク質、酵素タンパク質等が挙げられる。 The abnormal protein to be subjected to the restoration method of the present invention is not particularly limited, and examples thereof include prion protein, β amyloid protein, enzyme protein and the like.
 本発明の復元方法により、異常プリオンタンパク質の感染力を裏付けるβシート構造を正常なアルファーフェリックス構造に戻すためのタンパク質内の分子間運動の誘導、アルツハイマーの原因であるβアミロイドタンパク質の正常化に有効な分子間運動の誘導、酵素タンパク質の生理活性の誘導等を行うことができる。
 そして、これらタンパク質の立体構造変性が主たる原因である疾病に対し、ミネラル成分が放射する電磁波から、それぞれタンパク質を正常化するそれぞれの固有のテラヘルツ波長を放射することにより、元の正常な状態に戻すことができる。例えば、本発明の復元方法では、異常プリオンタンパク質の場合には、βシート化した構造を、アルファへリリックスに戻すことができ、異常プリオンタンパク質に由来する疾患を予防、治療することができる。
The restoration method of the present invention is effective in inducing intermolecular movement in the protein to return the β sheet structure supporting the infectivity of abnormal prion protein to a normal alpha-felix structure, and normalizing β amyloid protein causing Alzheimer's Such as induction of intermolecular movement and induction of physiological activity of enzyme protein.
And, for diseases mainly caused by the three-dimensional structure modification of these proteins, the electromagnetic wave emitted by the mineral component emits each unique terahertz wavelength that normalizes the protein, thereby returning to the original normal state. be able to. For example, in the restoration method of the present invention, in the case of an abnormal prion protein, the β-sheeted structure can be returned to the alpha helix, and a disease derived from the abnormal prion protein can be prevented and treated.
 また、本発明のミネラル機能水による異常化したタンパク質の復元作用は、含有するミネラル成分が放射する電磁波に起因するため、異常化したタンパク質に直接的に接触させた場合のみならず、間接的に接触する場合にも効力を奏する可能性がある。 Moreover, since the restoring action of the abnormal protein by the mineral functional water of the present invention is caused by the electromagnetic wave radiated from the contained mineral component, it is not only in direct contact with the abnormal protein, but also indirectly. It can also be effective when in contact.
<2.本発明のミネラル機能水>
 本発明の復元方法で使用されるミネラル機能水は、電磁波放射性のミネラル成分を含有する。なお、本発明のミネラル機能水の原料、製造条件については、<3.本発明のミネラル機能水の製造方法>において後述する。
 本発明のミネラル機能水の好適例としては、後述する実施例1に相当する、株式会社理研テクノシステム製ミネラル機能水CAC-717が挙げられる。
 また、本発明のミネラル機能水の他の好適例としては、後述する実施例2に相当する、株式会社理研テクノシステム製ミネラル機能水A20ACA-717が挙げられる。
 ミネラル機能水CAC-717及びミネラル機能水A20ACA-717は、電磁波放射性のミネラル成分としてカルシウム及び炭素の複合体を含むミネラル機能水である。
<2. Mineral functional water of the present invention>
The mineral functional water used in the restoration method of the present invention contains an electromagnetic radiation mineral component. In addition, about the raw material of mineral functional water of this invention, and manufacturing conditions, <3. It will be described later in the method for producing mineral functional water of the present invention>.
A preferred example of the mineral functional water of the present invention is mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd., which corresponds to Example 1 described later.
Further, another preferred example of the mineral functional water of the present invention is mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd., which corresponds to Example 2 described later.
The mineral functional water CAC-717 and the mineral functional water A20ACA-717 are mineral functional water containing a complex of calcium and carbon as an electromagnetic radiation mineral component.
 本明細書において、「ミネラル機能水」とは、ミネラル成分を含有し、少なくとも一種以上の有効な効能を発現するものを意味する。また、本明細書において、「ミネラル含有水」とは、ミネラル機能水を製造する際における、前段階の原料水であり、ミネラル含有水もミネラル成分を含有する。詳細は本発明のミネラル機能水の製造方法として後述する。なお、ミネラル含有水はそれ自身が有効な効能を有していても、有していなくてもよい。 In the present specification, “mineral functional water” means a substance containing a mineral component and expressing at least one effective effect. Moreover, in this specification, "mineral containing water" is the raw material water of the previous step in manufacturing mineral functional water, and mineral containing water also contains a mineral component. Details will be described later as the method for producing mineral functional water of the present invention. The mineral-containing water itself may or may not have an effective effect.
 なお、本明細書において、「ミネラル成分」は、狭義のミネラルの定義である「4元素(炭素・水素・窒素・酸素)を除外した無機成分(微量元素含む)」を意味するものではなく、無機成分と共存する態様であれば、狭義の定義で除外されている前記4元素(炭素・水素・窒素・酸素)を含んでいてもよい。そのため、例えば、「植物由来のミネラル成分」は、カルシウム等の植物由来の無機成分と共に、植物由来の有機成分が含まれる場合も含む概念である。
 また、(ミネラル成分を構成する)無機成分としては、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、及びリン等、微量元素として鉄、亜鉛、銅、マンガン、ヨウ素、セレン、クロム、及びモリブデン等がそれぞれ例示できるがこれに限定されない。
In this specification, “mineral component” does not mean “inorganic component (including trace elements) excluding four elements (carbon, hydrogen, nitrogen, oxygen)”, which is a definition of mineral in a narrow sense, As long as it coexists with an inorganic component, it may contain the four elements (carbon, hydrogen, nitrogen, oxygen) excluded in the narrowly defined definition. Therefore, for example, “a plant-derived mineral component” is a concept including a case where a plant-derived organic component is included together with a plant-derived inorganic component such as calcium.
Moreover, as an inorganic component (composing a mineral component), for example, sodium, potassium, calcium, magnesium, phosphorus, and the like, and trace elements such as iron, zinc, copper, manganese, iodine, selenium, chromium, and molybdenum, respectively. Although it can illustrate, it is not limited to this.
 以下、本発明のミネラル機能水についてさらに詳しく説明する。 Hereinafter, the mineral functional water of the present invention will be described in more detail.
 本発明のミネラル機能水が、異常化したタンパク質の復元作用を発現する理由についてはいまだ明らかでない点が多いが、電磁波放射性のミネラル成分が寄与している。 The reason why the functional mineral water of the present invention exhibits the restoring action of the abnormal protein is still unclear, but the electromagnetic radiation mineral component contributes.
 本発明のミネラル機能水が含有するミネラル成分は、テラヘルツ波を含む電磁波を放射するミネラル成分であるとみなせる。ここでいう、テラヘルツ波は、波長6~14μmの電磁波を意味する。テラヘルツ波は、太陽光線にも含まれる植物の育成や動物・ヒトの健康維持に欠かせない、いわゆる活性光線といえる電磁波である。換言すると、生命体(細胞含む)は、それぞれの種類に適合する波長のテラヘルツ波を吸収、放射することで生命活動を維持しているといえる。 The mineral component contained in the mineral functional water of the present invention can be regarded as a mineral component that emits electromagnetic waves including terahertz waves. Here, the terahertz wave means an electromagnetic wave having a wavelength of 6 to 14 μm. Terahertz waves are electromagnetic waves that can be said to be so-called actinic rays that are indispensable for growing plants and maintaining the health of animals and humans that are also contained in sunlight. In other words, life forms (including cells) can be said to maintain life activities by absorbing and radiating terahertz waves having wavelengths suitable for each type.
 ミネラル機能水の有するテラヘルツ波作用の詳細は、現在のところ完全にあきらかではないが、タンパク質を構成するアミノ酸の相互運動に吸収され、その立体構造を復元するものと推測される。 Although the details of the terahertz wave action of mineral functional water are not completely clear at present, it is presumed that it is absorbed by the mutual movement of amino acids constituting the protein and restores its three-dimensional structure.
 また、本発明のミネラル機能水の好適な態様の一つは、本発明のミネラル機能水の分光放射率スペクトルが以下の要件(i)を満たすことである。なお、液体試料の分光放射率は、直接測定することが困難であるため、通常、参照用担体に固定して測定する方法が取られる。本発明のミネラル機能水の分光放射率スペクトルは、ミネラル機能水を担持用のセラミック粉末に固定化して測定される。例えば、ミネラル機能水CAC-717はこの要件を満たすミネラル機能水のひとつである。 Moreover, one of the suitable aspects of the mineral functional water of the present invention is that the spectral emissivity spectrum of the mineral functional water of the present invention satisfies the following requirement (i). In addition, since it is difficult to directly measure the spectral emissivity of a liquid sample, a method of measuring the liquid sample while being fixed to a reference carrier is usually employed. The spectral emissivity spectrum of the mineral functional water of the present invention is measured by immobilizing the mineral functional water on the supporting ceramic powder. For example, mineral functional water CAC-717 is one mineral functional water that satisfies this requirement.
 要件(i):
 (i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上(好適には20重量部以上)を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること。
Requirement (i):
(I) A black body with a wavelength of 5 to 7 μm and a wavelength of 14 to 24 μm in a sample in which 15 parts by weight or more (preferably 20 parts by weight or more) of the mineral functional water is fixed with respect to 100 parts by weight of the ceramic carrier. The average radiation ratio with respect to (measurement temperature: 25 ° C.) is 90% or more.
 すなわち、本発明のミネラル機能水は、25℃における黒体に対する放射比率プロファイルにおける、波長5~7μm間及び波長14~24μm間での値を合計し、その平均値を(25℃における黒体に対する)波長5~7μm間及び波長14~24μm間での平均放射比率としたときに、その平均放射比率が90%以上であることが好ましい。
 25℃における黒体に対する波長5~7μm間及び波長14~24μm間での放射線は、中赤外線に相当し、中赤外線は近赤外線に比べ、光子エネルギーは小さいが浸透力が強く、生体内部にまで到達する性質を有する。
 すなわち、本発明のミネラル機能水は、この中赤外線により、有益な効能を発現している可能性がある。
That is, the mineral functional water of the present invention adds up the values between the wavelength of 5 to 7 μm and the wavelength of 14 to 24 μm in the radiation ratio profile for the black body at 25 ° C., and the average value is (for the black body at 25 ° C. ) When the average radiation ratio between the wavelengths of 5 to 7 μm and between the wavelengths of 14 to 24 μm is used, the average radiation ratio is preferably 90% or more.
Radiation at a wavelength of 5 to 7 μm and a wavelength of 14 to 24 μm with respect to a black body at 25 ° C. corresponds to mid-infrared light. It has the property to reach.
That is, the mineral functional water of the present invention may have a beneficial effect due to this mid-infrared ray.
 具体的には、本発明のミネラル機能水の好適な態様は、セラミック担体100重量部に対し、当該ミネラル機能水20重量部を固定化した試料における、波長4μm~24μmの範囲での分光放射率スペクトル(測定温度:25℃)が、実施例で示すような、特定の形状(図12または図14に示す形状)を示す。詳細は実施例にて後述する。 Specifically, a preferred embodiment of the functional mineral water according to the present invention is a spectral emissivity in a wavelength range of 4 μm to 24 μm in a sample in which 20 parts by weight of the mineral functional water is immobilized with respect to 100 parts by weight of the ceramic carrier. The spectrum (measured temperature: 25 ° C.) shows a specific shape (the shape shown in FIG. 12 or FIG. 14) as shown in the examples. Details will be described later in Examples.
 本明細書において、「放射率」とは、放射体の放射発散度とその放射体と同温度の黒体の放射発散度との比」(JIS Z 8117(2002))であり、「分光放射率」とは、その温度における黒体の放射率を100%としたときの試料の放射の割合を示すものである。評価される試料は、特有の分光放射率スペクトルを有する。なお、「黒体」とは、入射する光を100%吸収し、エネルギー放射能力が最大の物体のことであり、理論的には黒体よりも大きい放射能力を示すものはない。 In this specification, “emissivity” is the ratio of the radiant divergence of a radiator to the radiant divergence of a black body at the same temperature as that of the radiator (JIS Z 8117 (2002)). "Rate" indicates the ratio of radiation of the sample when the emissivity of the black body at that temperature is 100%. The sample to be evaluated has a characteristic spectral emissivity spectrum. The “black body” means an object that absorbs 100% of incident light and has the maximum energy radiation ability. Theoretically, none has a radiation ability larger than that of a black body.
 分光放射率スペクトルの測定方法はJIS R 1801(2002)に規定されており、JIS R 1801(2002)に準じる装置構成を有する、フーリエ変換型赤外線分光光度測定法(FTIR)を使用した放射率測定システムで測定することができる。放射率測定システムとしては、日本電子(株)製遠赤外線輻射率測定装置(JIR-E500)を好適な一例として挙げることができる。 The method for measuring the spectral emissivity spectrum is stipulated in JIS R 1801 (2002), and has an apparatus configuration conforming to JIS R 1801 (2002). Emissivity measurement using Fourier transform infrared spectrophotometry (FTIR) It can be measured by the system. A suitable example of the emissivity measuring system is a far infrared emissivity measuring apparatus (JIR-E500) manufactured by JEOL Ltd.
 上述した推定メカニズムは、あくまで現時点での推定されるものであり、将来的に上記と異なるメカニズムが発見された場合であっても、本発明のミネラル機能水における有用な効能が制限的に解釈されるべきものではない。また、本発明のミネラル機能水には、複数の異なる有用な効能を有している可能性があり、それぞれの効能について発現メカニズムが異なる可能性もある。 The estimation mechanism described above is only an estimation at the present time, and even if a mechanism different from the above is discovered in the future, the useful efficacy in the mineral functional water of the present invention is interpreted in a limited way. It shouldn't be. Moreover, the mineral functional water of the present invention may have a plurality of different useful effects, and the expression mechanism may be different for each effect.
<3.ミネラル機能水の製造方法>
 本発明のミネラル機能水は、製造方法は特に限定されないが、好適には上記特許文献2(特開2011-56366号公報)で開示された装置を使用して、同文献で開示された方法に準じる方法で製造することができる。
 なお、この製造装置を使用する製造方法以外にも、電磁波放射作用を有するミネラル成分を含有するミネラル機能水を得られるならば、製造方法は限定されない。
<3. Manufacturing method of mineral functional water>
The method for producing the mineral functional water of the present invention is not particularly limited, but preferably, the apparatus disclosed in the above-mentioned Patent Document 2 (Japanese Patent Laid-Open No. 2011-56366) is used to the method disclosed in the same document. It can be produced by a similar method.
In addition to the manufacturing method using this manufacturing apparatus, the manufacturing method is not limited as long as mineral functional water containing a mineral component having electromagnetic wave radiation action can be obtained.
 以下、特許文献2(特開2011-56366号公報)で開示された装置を使用する、本発明のミネラル機能水の製造方法の好適な実施形態について、図面を参照して説明する。なお、以下の説明は、好適なミネラル機能水である、株式会社理研テクノシステム製ミネラル機能水CAC-717を製造する方法に相当するが、これは例示であり、原料を初めとする製造条件を適宜変更することにより、他のミネラル機能水を製造することができる。 Hereinafter, a preferred embodiment of the method for producing mineral functional water of the present invention using the apparatus disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2011-56366) will be described with reference to the drawings. The following explanation corresponds to a method for producing a mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd., which is a preferred mineral functional water. Other mineral functional water can be produced by appropriately changing.
 図1に示すように、ミネラル機能水製造設備1は、ミネラル含有水(A)製造装置2と、ミネラル含有水(B)製造装置3と、ミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44にミネラル含有水(B)製造装置3で製造されたミネラル含有水(B)45を混合してミネラル機能水47を形成する混合手段である混合槽46と、を備えている。 As shown in FIG. 1, the functional mineral water manufacturing facility 1 is manufactured with a mineral-containing water (A) manufacturing device 2, a mineral-containing water (B) manufacturing device 3, and a mineral-containing water (A) manufacturing device 2. A mixing tank 46 which is a mixing means for mixing the mineral-containing water (A) 44 with the mineral-containing water (B) 45 manufactured by the mineral-containing water (B) manufacturing apparatus 3 to form the mineral functional water 47. ing.
 ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10と、原料ミネラル水溶液製造手段10で得られた原料ミネラル水溶液(A)41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43と、を備えている。 The mineral-containing water (A) production apparatus 2 produces a raw mineral aqueous solution (A) 41 that forms raw mineral aqueous solution (A) 41 using raw water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials. Means 10 and a far infrared ray generating means 43 for irradiating the raw mineral water solution (A) 41 obtained by the raw material mineral aqueous solution production means 10 with far infrared rays to change to mineral-containing water (A) 44.
 ミネラル含有水(B)製造装置3は、外部から供給される水Wを通水容器51~56に通過させることによってミネラル付与材から溶出したミネラル成分を含有するミネラル含有水(B)45を形成する機能を有する。 The mineral-containing water (B) production device 3 forms mineral-containing water (B) 45 containing mineral components eluted from the mineral-imparting material by passing water W supplied from outside through the water containers 51 to 56. Has the function of
 以下、ミネラル含有水(A)製造装置2及びミネラル含有水(B)製造装置3について詳細に説明する。 Hereinafter, the mineral-containing water (A) manufacturing apparatus 2 and the mineral-containing water (B) manufacturing apparatus 3 will be described in detail.
(3-1:ミネラル含有水(A)製造装置)
 次に、図2~図6に基づいて、図1に示すミネラル機能水製造設備1を構成するミネラル含有水(A)製造装置2について説明する。図1に示すように、ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10(図2参照)と、原料ミネラル水溶液製造手段10で得られたミネラル含有水(A)溶液41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43(図6参照)と、を備えている。
(3-1: Mineral-containing water (A) production equipment)
Next, the mineral-containing water (A) production apparatus 2 constituting the mineral functional water production facility 1 shown in FIG. 1 will be described with reference to FIGS. As shown in FIG. 1, the mineral-containing water (A) production apparatus 2 is a raw mineral aqueous solution (A) 41 using water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials. The raw mineral water producing means 10 (see FIG. 2) for forming the water and the mineral-containing water (A) solution 41 obtained by the raw mineral aqueous solution producing means 10 are irradiated with far-infrared rays to change into mineral-containing water (A) 44. And far-infrared light generating means 43 (see FIG. 6).
 図2,図3に示すように、原料ミネラル水溶液製造手段10は、水11及びミネラル付与材(A)12を収容可能な反応容器13と、絶縁体14で被覆された状態で反応容器13内の水11に浸漬された導電線15と、反応容器13内の水11に超音波振動を付与するための超音波発生手段16と、導電線15に直流電流DCを導通させるための直流電源装置17と、導電線15の周囲の水11に直流電流DCと同方向の水流Rを発生させる手段である循環経路18a,18b及び循環ポンプPと、を備えている。直流電源装置17、超音波発生手段16及び循環ポンプPはいずれも一般の商用電源からの給電により作動する。 As shown in FIG. 2 and FIG. 3, the raw mineral aqueous solution production means 10 includes a reaction vessel 13 that can contain water 11 and a mineral-imparting material (A) 12, and a reaction vessel 13 that is covered with an insulator 14. A conductive wire 15 immersed in the water 11, an ultrasonic generator 16 for applying ultrasonic vibration to the water 11 in the reaction vessel 13, and a direct current power source device for conducting a direct current DC through the conductive wire 15. 17 and circulation paths 18a and 18b and a circulation pump P, which are means for generating a water flow R in the same direction as the direct current DC in the water 11 around the conductive wire 15. The DC power supply device 17, the ultrasonic wave generating means 16, and the circulation pump P are all operated by feeding from a general commercial power source.
 反応容器13は、上面が開口した倒立円錐筒状であり、その頂点に相当する底部には排水口19が設けられ、この排水口19には循環ポンプPの吸込口P1に連通する循環経路18aが接続され、排水口19直下には循環経路18aへの排水量を調節するための開度調節バルブ20と、反応容器13内の水などを排出するための排水バルブ21が設けられている。 The reaction vessel 13 has an inverted conical cylinder shape with an open top surface, and a drain port 19 is provided at the bottom corresponding to the apex thereof. The drain port 19 has a circulation path 18a communicating with the suction port P1 of the circulation pump P. And an opening degree adjusting valve 20 for adjusting the amount of drainage to the circulation path 18a and a drainage valve 21 for discharging water in the reaction vessel 13 and the like.
 循環ポンプPの吐出口P2には循環経路18bの基端部が接続され、循環経路18bの先端部は収容槽22に接続されている。収容槽22外周の底部付近には、収容槽22内の水11を反応容器13内へ送り込むための循環経路18cの基端部が接続され、循環経路18cの先端部は反応容器13の開口部に臨む位置に配管されている。循環経路18cには、収容槽22から反応容器13へ送り込む水量を調節するための開度調節バルブ23が設けられている。 The base end of the circulation path 18 b is connected to the discharge port P <b> 2 of the circulation pump P, and the distal end of the circulation path 18 b is connected to the storage tank 22. Near the bottom of the outer periphery of the storage tank 22, a base end of a circulation path 18 c for feeding the water 11 in the storage tank 22 into the reaction container 13 is connected, and the distal end of the circulation path 18 c is an opening of the reaction container 13. It is piped at the position facing. The circulation path 18 c is provided with an opening degree adjusting valve 23 for adjusting the amount of water fed from the storage tank 22 to the reaction vessel 13.
 収容槽22の底部には、排水バルブ25及び水温計26を有する排水管24が垂下状に接続されている。必要に応じて排水バルブ25を開くと、収容槽22内の水が排水管24の下端部から排出することができ、このとき排水管24を通過する水11の温度を水温計26で計測することができる。 A drain pipe 24 having a drain valve 25 and a water temperature gauge 26 is connected to the bottom of the storage tank 22 in a hanging manner. If the drain valve 25 is opened as necessary, the water in the storage tank 22 can be discharged from the lower end of the drain pipe 24. At this time, the temperature of the water 11 passing through the drain pipe 24 is measured by the water thermometer 26. be able to.
 図5に示すように、導電線15とこれを被覆する絶縁体14からなる複数の導電ケーブル29(29a~29g)はそれぞれ反応容器13内の深さの異なる複数位置に円環状をなすように配線され、これらの円環状の導電ケーブル29a~29gはいずれも反応容器13と略同軸上に配置されている。それぞれの導電ケーブル29a~29gの内径は倒立円錐筒状の反応容器13の内径に合わせて段階的に縮径しており、それぞれの配置箇所に対応した内径となっている。各導電ケーブル29a~29gは、反応容器13の壁体13aに設けられた絶縁性のターミナル30に着脱可能に結線されているため、必要に応じて、円環状の部分をターミナル30から取り外したり、取り付けたりすることができる。 As shown in FIG. 5, a plurality of conductive cables 29 (29a to 29g) comprising the conductive wire 15 and the insulator 14 covering the conductive wire 15 form an annular shape at a plurality of positions having different depths in the reaction vessel 13, respectively. These circular conductive cables 29a to 29g are wired and arranged substantially coaxially with the reaction vessel 13. The inner diameter of each of the conductive cables 29a to 29g is gradually reduced in accordance with the inner diameter of the inverted conical cylindrical reaction vessel 13, and has an inner diameter corresponding to each arrangement location. Since each of the conductive cables 29a to 29g is detachably connected to an insulating terminal 30 provided on the wall 13a of the reaction vessel 13, an annular portion can be removed from the terminal 30 as necessary. Can be attached.
 反応容器13内の軸心に相当する部分には、絶縁性の網状体で形成された有底円筒状の収納容器31が配置され、この収納容器31内にミネラル付与材(A)12が充填されている。この収納容器31はその上部に設けられたフック31fにより、反応容器13の壁体13a上縁部に着脱可能に係止されている。 A portion of the reaction vessel 13 corresponding to the axial center is provided with a bottomed cylindrical storage container 31 formed of an insulating network, and the storage container 31 is filled with a mineral-imparting material (A) 12. Has been. The storage container 31 is detachably locked to the upper edge of the wall 13a of the reaction container 13 by a hook 31f provided on the upper part thereof.
 図2に示すように、循環経路18a,18bの外周にはそれぞれ導電ケーブル29s,29tが螺旋状に巻き付けられ、これらの導電ケーブル29s,29tに対し、直流電源装置17から直流電流DCが供給される。導電ケーブル29s,29tを流れる直流電流DCの向きは循環経路18a,18b内を流動する水流の向きと略一致するように設定されている。 As shown in FIG. 2, conductive cables 29s and 29t are spirally wound around the outer circumferences of the circulation paths 18a and 18b, respectively, and a DC current DC is supplied from the DC power supply device 17 to these conductive cables 29s and 29t. The The direction of the direct current DC flowing through the conductive cables 29s and 29t is set so as to substantially coincide with the direction of the water flow flowing through the circulation paths 18a and 18b.
 原料ミネラル水溶液製造手段10において、反応容器13内及び収容槽22内に所定量の水11を入れ、ミネラル付与材(A)12が充填された収納容器31を反応容器13内の中心にセットした後、循環ポンプPを作動させるとともに、反応容器13底部の開度調節バルブ20及び循環経路18cの開度調節バルブ23を調節して、反応容器13から排水口19、循環経路18a、循環ポンプP、循環経路18b、収容槽22及び循環経路18cを経由して再び反応容器13の上部に戻るように水11を循環させる。そして、直流電源装置17、超音波発生手段16を作動させると、収納容器31内のミネラル付与材(A)12から水11へのミネラル成分の溶出反応が始まる。 In the raw mineral water aqueous solution manufacturing means 10, a predetermined amount of water 11 is placed in the reaction container 13 and the storage tank 22, and the storage container 31 filled with the mineral-imparting material (A) 12 is set in the center of the reaction container 13. Thereafter, the circulation pump P is operated, and the opening degree adjusting valve 20 at the bottom of the reaction vessel 13 and the opening degree adjusting valve 23 of the circulation path 18c are adjusted so that the drain port 19, the circulation path 18a, and the circulation pump P from the reaction container 13 are adjusted. Then, the water 11 is circulated so as to return to the upper part of the reaction vessel 13 again via the circulation path 18b, the storage tank 22 and the circulation path 18c. Then, when the DC power supply device 17 and the ultrasonic wave generation means 16 are operated, the elution reaction of the mineral component from the mineral applying material (A) 12 in the storage container 31 to the water 11 starts.
 原料ミネラル水溶液製造手段10を使用して原料ミネラル水溶液(A)を製造する際の作業条件は特に限定しないが、本実施形態では、以下の作業条件で原料ミネラル水溶液(A)の製造を行った。
(1)導電ケーブル29,29s,29tには電圧8000~8600V、電流0.05~0.1Aの直流電流DCを導通させた。なお、導電ケーブル29などを構成する絶縁体14はポリテトラフルオロエチレン樹脂で形成されている。
(2)反応容器13内に充填されたミネラル付与材(A)12は、水11に対し質量比で10~15%充填されている。ミネラル付与材(A)12の具体的な説明は後述する。
(3)水11は、直流電流DCが作用するように電解質を含むものであればよい。例えば、水100リットルに対して、電解質である炭酸ナトリウムを10g程度溶解したものなどを使用しているが、地下水であればそのまま使用することができる。
(4)超音波発生手段16は周波数30~100kHzの超音波を発生するものであり、その超音波振動部(図示せず)が反応容器13内の水11に直接触れて加振するように超音波発生手段16を配置している。
The working conditions for producing the raw mineral aqueous solution (A) using the raw mineral aqueous solution production means 10 are not particularly limited, but in this embodiment, the raw mineral aqueous solution (A) was produced under the following working conditions. .
(1) A DC current DC having a voltage of 8000 to 8600 V and a current of 0.05 to 0.1 A was conducted to the conductive cables 29, 29s, and 29t. The insulator 14 constituting the conductive cable 29 and the like is made of polytetrafluoroethylene resin.
(2) The mineral-imparting material (A) 12 filled in the reaction vessel 13 is filled with water at a mass ratio of 10 to 15%. Specific description of the mineral-imparting material (A) 12 will be described later.
(3) The water 11 should just contain an electrolyte so that direct current DC may act. For example, about 10 g of sodium carbonate, which is an electrolyte, is used for 100 liters of water. However, ground water can be used as it is.
(4) The ultrasonic wave generation means 16 generates ultrasonic waves having a frequency of 30 to 100 kHz, and the ultrasonic vibration part (not shown) directly touches the water 11 in the reaction vessel 13 and vibrates. Ultrasonic wave generation means 16 is arranged.
 このような条件で原料ミネラル水溶液製造手段10を稼働させると、反応容器13内には、左ねじ方向に回転しながら排水口19に吸い込まれる水流Rが発生し、排水口19から排出された水11は、前述した循環経路18a,18bなどを経由して、再び、反応容器13内へ戻るという状態が継続される。 When the raw mineral water producing means 10 is operated under such conditions, a water flow R sucked into the drain port 19 while rotating in the left-handed direction is generated in the reaction vessel 13, and the water discharged from the drain port 19 is generated. 11 continues to return to the reaction vessel 13 again via the circulation paths 18a and 18b described above.
 従って、水流Rによる撹拌作用、導電ケーブル29を流れる直流電流の作用及び超音波発生手段16が水11に付与する超音波振動により、ミネラル付与材(A)12からミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込んだ原料ミネラル水溶液(A)を効率良く製造することができる。 Therefore, the mineral component from the mineral-imparting material (A) 12 is quickly brought into the water 11 by the stirring action by the water flow R, the action of the direct current flowing through the conductive cable 29 and the ultrasonic vibration applied to the water 11 by the ultrasonic wave generation means 16. The raw mineral aqueous solution (A) in which the required mineral components are appropriately dissolved can be efficiently produced.
 原料ミネラル水溶液製造手段10においては、円環状をした複数の導電ケーブル29a~29gを反応容器13内に略同軸上に配線するとともに、反応容器13内で左ねじ方向に回転する水流Rを発生させている。従って、一定容積の反応容器13内に比較的密状態の電気エネルギーの場を形成することができ、比較的小さな容積の反応容器13内で効率良く原料ミネラル水溶液(A)を製造することができる。 In the raw mineral water production means 10, a plurality of annular conductive cables 29 a to 29 g are wired substantially coaxially in the reaction vessel 13, and a water flow R that rotates in the left-handed screw direction in the reaction vessel 13 is generated. ing. Therefore, a relatively dense electric energy field can be formed in the reaction container 13 having a constant volume, and the raw mineral aqueous solution (A) can be efficiently produced in the reaction container 13 having a relatively small volume. .
 また、反応容器13は倒立円錐筒状であるため、円環状をした複数の導電ケーブル29a~29gに沿って流動する水流Rを比較的容易且つ安定的に発生させることができ、これによってミネラル成分の溶出が促進される。また、倒立円錐筒状の反応容器13内を流動する水流Rは、反応容器13底部の排水口19に向かうにつれて流速が増大するため、ミネラル付与材(A)12との接触頻度も増大し、水11中に存在する自由電子eを捕捉してイオン化するミネラル量を増加させることができる。 Further, since the reaction vessel 13 has an inverted conical cylindrical shape, the water flow R flowing along the plurality of annular conductive cables 29a to 29g can be generated relatively easily and stably. Is promoted. Further, since the flow rate of the water flow R flowing in the inverted conical cylindrical reaction vessel 13 increases toward the drain port 19 at the bottom of the reaction vessel 13, the contact frequency with the mineral imparting material (A) 12 also increases. It is possible to increase the amount of mineral that captures and ionizes the free electrons e present in the water 11.
 さらに、循環経路18b,18cの間に水11を貯留しながら排出する収容槽22を設けているため、反応容器13の容積を超える分量の水11を循環させながらミネラル溶出反応を進行させることが可能である。このため、原料ミネラル水溶液(A)を効率良く大量生産することができる。 Further, since the storage tank 22 for discharging the water 11 while storing it is provided between the circulation paths 18b and 18c, the mineral elution reaction can be advanced while circulating the amount of water 11 exceeding the volume of the reaction vessel 13. Is possible. For this reason, raw material mineral aqueous solution (A) can be mass-produced efficiently.
 循環ポンプPを連続運転して、これらの反応を継続させると、最終的にはミネラル成分が溶出した原料ミネラル水溶液(A)が生成される。反応容器13底部の排水口19の大きさ、循環水量の多少、反応容器13の形状(特に、図2に示す軸心Cと壁体13aとの成す角度γ)などにより、水11中における自由電子eの出現状況をコントロールすることができ、ミネラル付与材(A)12に自由電子eが与える作用により、ミネラル成分の水溶性が左右される。 When the circulation pump P is continuously operated and these reactions are continued, the raw mineral aqueous solution (A) from which the mineral components are finally eluted is generated. Depending on the size of the drain outlet 19 at the bottom of the reaction vessel 13, the amount of circulating water, the shape of the reaction vessel 13 (particularly, the angle γ formed between the axis C shown in FIG. 2 and the wall 13 a), etc. The appearance state of the electrons e can be controlled, and the water solubility of the mineral component is influenced by the action of the free electrons e on the mineral-imparting material (A) 12.
 原料ミネラル水溶液(A)が形成されたら、この原料ミネラル水溶液(A)41を、図6に示す処理容器40内へ移す。この場合、反応容器13内において収納容器31から漏出したミネラル付与材(A)12の残留物は反応容器13の底部にある排水バルブ21から排出することができる。処理容器40内に収容した原料ミネラル水溶液(A)41は、撹拌羽根42でゆっくりと撹拌しながら、処理容器40内部に配置された遠赤外線発生手段43により遠赤外線を照射する。 When the raw mineral aqueous solution (A) is formed, the raw mineral aqueous solution (A) 41 is transferred into the processing container 40 shown in FIG. In this case, the residue of the mineral-imparting material (A) 12 leaked from the storage container 31 in the reaction container 13 can be discharged from the drain valve 21 at the bottom of the reaction container 13. The raw mineral aqueous solution (A) 41 accommodated in the processing container 40 is irradiated with far-infrared rays by the far-infrared light generating means 43 disposed inside the processing container 40 while being slowly stirred by the stirring blade 42.
 なお、遠赤外線発生手段43は、波長6~14μm程度の遠赤外線を発生するものであれば良く、材質や発生手段などは問わないので、加熱方式であってもよい。ただし、25℃において、6~14μm波長域の黒体放射に対して85%以上の放射比率を有するものが望ましい。 It should be noted that the far infrared ray generating means 43 is not particularly limited as long as it generates far infrared rays having a wavelength of about 6 to 14 μm, and any material or means may be used. However, it is desirable to have a radiation ratio of 85% or more with respect to black body radiation in the wavelength range of 6 to 14 μm at 25 ° C.
 図2に示す原料ミネラル水溶液製造手段10においては、水流Rによる撹拌作用、導電線15を流れる直流電流DCの作用及び超音波振動により、ミネラル付与材(A)12に含まれるミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込みミネラル水溶液41を効率良く製造することができる。 In the raw material aqueous mineral solution manufacturing means 10 shown in FIG. 2, the mineral component contained in the mineral-imparting material (A) 12 is quickly brought about by the stirring action by the water flow R, the action of the direct current DC flowing through the conductive wire 15 and the ultrasonic vibration. By eluting into the water 11, the required mineral components are appropriately dissolved, and the mineral aqueous solution 41 can be produced efficiently.
 そして、図6に示す遠赤外線発生手段43において、ミネラル水溶液41に遠赤外線を照射することにより、溶解したミネラル成分と水分子とが融合して電気陰性度の高まったミネラル含有水(A)44が形成される。 Then, in the far-infrared ray generating means 43 shown in FIG. 6, the mineral-containing water (A) 44 whose electronegativity is increased by irradiating the mineral aqueous solution 41 with far-infrared rays to fuse dissolved mineral components and water molecules. Is formed.
 ミネラル含有水(A)製造装置2において、前述した工程により形成されたミネラル含有水(A)44は、図1に示すように、送水経路57yを経由して混合槽46へ送り込まれ、混合槽46内において、ミネラル含有水(B)製造装置3から送り込まれたミネラル含有水(B)45と混合される。 In the mineral-containing water (A) production apparatus 2, the mineral-containing water (A) 44 formed by the above-described process is fed into the mixing tank 46 via the water supply path 57y as shown in FIG. In 46, it mixes with the mineral containing water (B) 45 sent from the mineral containing water (B) manufacturing apparatus 3. FIG.
 以下、ミネラル付与材(A)について説明する。
 ミネラル付与材(A)は、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有する。使用される部位は、葉部、茎部、花部、樹皮部等のミネラル成分が溶出しやすい部位が適宜選択され、そのまま用いてもよいが、乾燥物として用いてもよい。
 なお、キク科及びバラ科以外の草木植物以外にも他の草木植物を含んでもよいが、キク科及びバラ科の草木植物のみであることが好ましい。例えば、理由は不明であるが、アブラナ科やマツ科の草木植物を加えると、本発明のミネラル機能水の有用な効能のひとつである単細胞生物の防除作用が大きく低下する。
Hereinafter, the mineral imparting material (A) will be described.
The mineral-imparting material (A) is a vegetative plant material consisting of a plant family of asteraceae and a plant family of rose family, and a vegetation plant material consisting of one or more kinds of tree plants selected from maple, birch, pine and cedar. Containing. As the site to be used, a site where mineral components such as leaves, stems, flowers, and bark are easy to elute is appropriately selected and may be used as it is, or may be used as a dried product.
In addition to other plant plants other than the Asteraceae and the Rosaceae, other plant plants may be included, but it is preferable that only the plants of the Asteraceae and Rose family are included. For example, for unknown reasons, the addition of cruciferous and pine family plants greatly reduces the control effect of single-cell organisms, which is one of the useful effects of the mineral functional water of the present invention.
 ミネラル付与材(A)として、ミネラル付与材(A')が挙げられる。ミネラル付与材(A')は、前記草木植物原料として、野アザミ(葉部、茎部及び花部):8~12重量%、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8~12重量%、55~65重量%、27~33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17~23重量%、8~12重量%、65~75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
 当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8~1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22~28重量%、22~28重量%、45~55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
 草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7~1:3.3となるように混合して得られるミネラル付与材である。
An example of the mineral imparting material (A) is a mineral imparting material (A ′). Mineral-imparting material (A ′) is a material of the plant or plant, such as wild thistle (leaves, stems and flower parts): 8 to 12% by weight, mugwort (leaves and stems), camellia (leaves and stems) ), In a ratio of 8-12 wt%, 55-65 wt%, 27-33 wt%, dried and pulverized Asteraceae plants crushed after drying, and
17-23% by weight, 8-12% by weight, 65-75% by weight of Neubara (leaves, flower parts), Japanese radish (leaves and stems), and raspberry (leaves, stems and flower parts), respectively Use a dry pulverized product of a rose family plant mixed and dried at a ratio of
A plant material (A1) obtained by mixing the dried pulverized product of the Asteraceae plant and the dried pulverized product of the Rosaceae plant at a ratio of 1: 0.8 to 1: 1.2 (weight ratio);
As the woody plant material, maple (leaves and stems), birch (leaves, stems, and bark), cedar (leaves, stems, and bark), 22 to 28% by weight, A woody plant raw material (A2) comprising a dried pulverized product mixed at a ratio of 22 to 28% by weight and 45 to 55% by weight, dried and pulverized,
This is a mineral-imparting material obtained by mixing so that the weight ratio of the plant and plant material (A1) and the woody plant material (A2) is 1: 2.7 to 1: 3.3.
 ミネラル付与材(A')の中でも、特には前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を、1:1(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、草木植物原料(A1)と木本植物原料(A2)の重量比で1:3となるように混合して得られるミネラル付与材であることが好ましい。
 このような草木植物原料(A1)として、株式会社理研テクノシステム製「P-100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-200(品番)」を好適に使用することができる。
Among the mineral-providing materials (A ′), in particular, as the plant plant material, field thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems), 10% by weight, 60% by weight, and 30% by weight of each mixture, dried and pulverized Asteraceae plants crushed, dried roses (leaves, flowers), radish (leaves and leaves) Stem part), raspberry (leaf part, stem part and flower part) were mixed at a ratio of 20% by weight, 10% by weight and 70% by weight, respectively, dried and pulverized after drying, Plant and plant material (A1) obtained by mixing at 1: 1 (weight ratio);
As the woody plant material, maple (leaves and stems), birch (leaves, stems, and bark), and cedar (leaves, stems, and bark) are 25% by weight and 25% respectively. %, 50% by weight of the mixture, dried and pulverized, and then the woody plant material (A2) comprising the plant material (A1) and the woody plant material (A2) It is preferable that it is a mineral provision material obtained by mixing so that it may become 1: 3.
As such plant and plant material (A1), Riken Techno System Co., Ltd. “P-100 (Part No.)” and as the wood plant material (A2), Riken Techno System Co., Ltd. “P-200 (Part No.)” It can be preferably used.
 また、ミネラル機能水CAC-717に代えて、ミネラル機能水A20ACA-717を製造する場合には、草木植物原料(A1)として、株式会社理研テクノシステム製「P-101(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-201(品番)」を使用すればよい。 In addition, when producing mineral functional water A20ACA-717 instead of mineral functional water CAC-717, “P-101 (product number)” manufactured by Riken Technosystem Co., Ltd. as a plant and plant material (A1), Kimoto As the plant material (A2), “P-201 (product number)” manufactured by Riken Techno System Co., Ltd. may be used.
(3-2:ミネラル含有水(B)製造装置)
 次に、図1,図7に基づいて、ミネラル含有水(B)製造装置3の構造、機能などについて説明する。
 図1,図7に示すように、ミネラル含有水(B)製造装置3は、互いに種類の異なるミネラル付与材(B)が充填された第1通水容器51~第6通水容器56と、第1通水容器51~第6通水容器56を直列に連通する送水経路57と、第1通水容器51~第6通水容器56とそれぞれ並列した状態で送水経路57に連結された迂回水路51p~56pと、各迂回水路51p~56pと送水経路57との分岐部にそれぞれ設けられた水流切替弁51v~56vと、を備えている。
(3-2: Mineral-containing water (B) production equipment)
Next, based on FIG. 1, FIG. 7, the structure of the mineral containing water (B) manufacturing apparatus 3, a function, etc. are demonstrated.
As shown in FIGS. 1 and 7, the mineral-containing water (B) production apparatus 3 includes a first water flow container 51 to a sixth water flow container 56 filled with different types of mineral imparting materials (B), A water supply path 57 that connects the first water flow container 51 to the sixth water flow container 56 in series, and a detour connected to the water flow path 57 in parallel with the first water flow container 51 to the sixth water flow container 56, respectively. Water channels 51p to 56p, and water flow switching valves 51v to 56v respectively provided at branch portions of the bypass water channels 51p to 56p and the water supply channel 57 are provided.
 水流切替弁51v~56vの切替操作は、これらの水流切替弁51v~56vと信号ケーブル59で結ばれた操作盤58に設けられた6個の切替ボタン51b~56bを操作することによって実行することができる。6個の切替ボタン51b~56bと6個の水流切替弁51v~56vとがそれぞれの番号ごとに対応しているので、切替ボタン51b~56bの何れかを操作すれば、それと対応する番号の水流切替弁51v~56vが切り替わり、水流方向を変えることができる。 The switching operation of the water flow switching valves 51v to 56v is executed by operating the six switching buttons 51b to 56b provided on the operation panel 58 connected to the water flow switching valves 51v to 56v by the signal cable 59. Can do. Since the six switching buttons 51b to 56b and the six water flow switching valves 51v to 56v correspond to each number, if one of the switching buttons 51b to 56b is operated, the water flow corresponding to that number is operated. The switching valves 51v to 56v are switched to change the water flow direction.
 ここで、ミネラル付与材(B)51m~56mは、好適には石灰石、化石サンゴ、貝殻をベースとした原料を混合して製造することができる。
 まず、石灰石、化石サンゴ、貝殻に含まれる成分を分析し、それぞれに二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムの量を評価する。そして、各成分の含有量を基に、石灰石、化石サンゴ、貝殻を混合し、ミネラル付与材(B)51m~56mを製造する。
 なお、上記ミネラル付与材(B)51m~56mは、石灰石、化石サンゴ、貝殻の混合比によって含有する成分をコントロールすることが望ましいが、原料とする石灰石、化石サンゴ、貝殻は、産地によって含有される成分が不足する場合があるので、必要に応じて二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムを追加してもよい。特に活性炭は、石灰石、化石サンゴ、貝殻にほとんど含まれないため、通常、別途追加する。
Here, the mineral-imparting materials (B) 51m to 56m can be preferably produced by mixing raw materials based on limestone, fossilized corals and shells.
First, components contained in limestone, fossil coral, and shells are analyzed, and the amounts of silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate are evaluated. Then, based on the content of each component, limestone, fossilized coral, and shells are mixed to produce the mineral-imparting material (B) 51m to 56m.
The mineral imparting material (B) 51m to 56m is preferably controlled by the mixing ratio of limestone, fossil coral and shell, but the limestone, fossil coral and shell as raw materials are contained depending on the production area. Therefore, if necessary, silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate may be added. In particular, activated carbon is usually added separately because it is hardly contained in limestone, fossilized coral, and shells.
 ミネラル付与材(B)51m~56mとして、
 第1通水容器51内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
 第2通水容器52内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
 第3通水容器53内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
 第4通水容器54内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
 第5通水容器55内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
 第6通水容器56内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、であると、ミネラル含有水(A)と混合させた際に優れた防除作用を発現するミネラル含有水(B)を得ることができる。
Mineral imparting material (B) 51m-56m,
A mixture in which the mineral-imparting material (B1) in the first water flow container 51 contains limestone, fossilized coral, and shells by 70 wt%, 15 wt%, and 15 wt%, respectively;
A mixture in which the mineral-imparting material (B2) in the second water flow container 52 contains limestone, fossilized coral, shell, activated carbon, 40% by weight, 15% by weight, 40% by weight, and 5% by weight,
A mixture containing 80% by weight, 15% by weight, and 5% by weight of limestone, fossilized coral, and shell, respectively, in the mineral-imparting material (B3) in the third water flow container 53;
A mixture in which the mineral-imparting material (B4) in the fourth water flow container 54 contains limestone, fossilized coral, and shell, respectively 90% by weight, 5% by weight, and 5% by weight;
A mixture in which the mineral-imparting material (B5) in the fifth water flow container 55 contains limestone, fossilized coral, and shell, respectively 80% by weight, 10% by weight, and 10% by weight,
When the mineral-imparting material (B6) in the sixth water flow container 56 is a mixture containing 60% by weight, 30% by weight, and 10% by weight of limestone, fossilized coral, and shell, it is mixed with mineral-containing water (A). It is possible to obtain mineral-containing water (B) that exhibits an excellent control action when it is made to occur.
 特に、ミネラル付与材(B1)~(B6)に使用される、石灰石、化石サンゴ、貝殻が、以下の(1-1)~(1-3)であることが好ましい。 In particular, limestone, fossilized corals and shells used for the mineral-imparting materials (B1) to (B6) are preferably the following (1-1) to (1-3).
(1-1)石灰石:
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
   炭酸カルシウム:50重量%以上
   酸化鉄:3~9重量%の鉄
   酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
   炭酸マグネシウム:7~10重量%
 このような石灰石として、株式会社理研テクノシステム製「CC-200(品番)」を好適に使用することができる。
(1-1) Limestone:
3 cm pebble crushed limestone mixed with volcanic deposits containing the following components: Calcium carbonate: 50 wt% or more Iron oxide: 3-9 wt% iron Total of titanium oxide, titanium carbide, titanium nitride: 0 .8 wt% or more Magnesium carbonate: 7 to 10 wt%
As such limestone, “CC-200 (product number)” manufactured by Riken Techno System Co., Ltd. can be preferably used.
(1-2)化石サンゴ:
下記2種類の化石サンゴを1:9の重量比で混合し、3~5mmに粉砕した粒状物
   地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ
   沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)
 このような化石サンゴとして、株式会社理研テクノシステム製「CC-300(品番)」を好適に使用することができる。
(1-2) Fossil coral:
The following two types of fossil corals are mixed at a weight ratio of 1: 9, and the granular material is crushed to 3 to 5 mm. From about 100 meters underground, fossil corals modified by heavy pressure. From the land near Amami Oshima, Okinawa. Fossil coral (including calcium carbonate, calcium phosphate and other trace elements)
As such a fossil coral, “CC-300 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
(1-3)貝殻:
   アワビ、トコブシ、フジツボを同じ重量で混合し3~5mmに粉砕した粒状物
 このような貝殻として、株式会社理研テクノシステム製「CC-400(品番)」を好適に使用することができる。
(1-3) Shells:
Granules obtained by mixing abalone, ground beetles, and barnacles at the same weight and pulverizing them to 3 to 5 mm As such shells, “CC-400 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
(1-4)活性炭
   活性炭は、任意の原料から製造したものを使用することができるが、好ましくはヤシガラを原料として製造した活性炭が挙げられる。例えば、タイ産のヤシガラを原料とした、株式会社理研テクノシステム製「CC-500(品番)」が挙げられる。
(1-4) Activated carbon The activated carbon can be produced from any raw material, and preferably activated carbon produced from coconut shells. For example, “CC-500 (product number)” manufactured by Riken Techno System Co., Ltd., which is made from palm ginger from Thailand.
 前述した操作盤58の切替ボタン51b~56bを操作して、水流切替弁51v~56vを通水容器側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側にある第1通水容器51~第6通水容器56内へ流れ込み、水流切替弁51v~56vを迂回水路側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側の迂回水路51p~56pへ流れ込む。従って、切替ボタン51b~56bの何れかを操作して水流切替弁51v~56vを選択的に切り替えることにより、第1通水容器51~第6通水容器56ごとに異なるミネラル付与材(B)51m~56mから溶出するミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。 If the switching buttons 51b to 56b of the operation panel 58 described above are operated to switch the water flow switching valves 51v to 56v to the water container side, the water flowing through the water supply path 57 is located downstream of the operated water flow switching valve. If the water flows into the first water flow container 51 to the sixth water flow container 56 and switches the water flow switching valves 51v to 56v to the detour water channel side, the water flowing through the water flow path 57 is transferred from the operated water flow switching valve. It flows into the detour channels 51p to 56p on the downstream side. Accordingly, by operating any one of the switching buttons 51b to 56b to selectively switch the water flow switching valves 51v to 56v, a different mineral imparting material (B) for each of the first water flow container 51 to the sixth water flow container 56 is obtained. Mineral-containing water (B) 45 in which mineral components eluted from 51 to 56 m are selectively dissolved can be formed.
 次に、図8~図11に基づいて、実際のミネラル含有水(B)製造装置3の構造、機能などについて説明する。なお、図8~図10においては、前述した迂回水路51p~56p,水流切替弁51v~56v,操作盤58及び信号ケーブル59を省略している。 Next, the structure, function, etc. of the actual mineral-containing water (B) production apparatus 3 will be described with reference to FIGS. 8 to 10, the bypass water channels 51p to 56p, the water flow switching valves 51v to 56v, the operation panel 58, and the signal cable 59 described above are omitted.
 図8,図9に示すように、ミネラル含有水(B)製造装置3は、架台60に搭載された略円筒形状の第1通水容器51~第6通水容器56と、これらの第1通水容器51~第6通水容器56を直列に連通する送水経路57と、を備え、水道から供給される水Wを貯留するための原水タンク63が架台60の最上部に配置されている。原水タンク63内には、水W中の不純物を吸着する機能を有する無機質多孔体64が収容されている。架台60の底部には複数のキャスタ61及びレベルアジャスタ62が設けられている。略円筒形状の第1通水容器51~第6通水容器56は、それぞれの軸心51c~56c(図9参照)を水平方向に保った状態で、直方体格子構造の架台60に搭載されている。第1通水容器51~第6通水容器56は架台60対し着脱可能である。 As shown in FIGS. 8 and 9, the mineral-containing water (B) production apparatus 3 includes a substantially cylindrical first water flow container 51 to a sixth water flow container 56 mounted on the gantry 60, and the first of these. A water supply path 57 that connects the water flow container 51 to the sixth water flow container 56 in series, and a raw water tank 63 for storing the water W supplied from the water supply is disposed at the top of the gantry 60. . In the raw water tank 63, an inorganic porous body 64 having a function of adsorbing impurities in the water W is accommodated. A plurality of casters 61 and level adjusters 62 are provided at the bottom of the gantry 60. The substantially cylindrical first water flow container 51 to sixth water flow container 56 are mounted on a gantry 60 having a rectangular parallelepiped lattice structure in a state where the respective shaft centers 51c to 56c (see FIG. 9) are kept in the horizontal direction. Yes. The first water container 51 to the sixth water container 56 can be attached to and detached from the gantry 60.
 図10に示すように、第1通水容器51~第6通水容器56はいずれも同じ構造であり、円筒形状の本体部51a~56aの両端部に設けられたフランジ部51f~56fに円板状の蓋体51d~56dを取り付けることにより気密構造が形成されている。軸心51c~56cが水平状態のとき本体部51a~56aの最下部に位置する箇所に、送水経路57と連通する入水口57aが設けられ、入水口57aから遠い方の蓋体51d~56dの最上部に、送水経路57と連通する出水口57bが設けられ、出水口57bにはメッシュストレーナ57cが取り付けられている。本体部51a~56a外周の出水口57b直上部分には、第1通水容器51~第6通水容器56内のエアを逃がすための自動エア弁57dが取り付けられている。 As shown in FIG. 10, the first water flow container 51 to the sixth water flow container 56 all have the same structure, and the flanges 51f to 56f provided at both ends of the cylindrical main body parts 51a to 56a are circular. An airtight structure is formed by attaching plate-like lids 51d to 56d. When the shaft centers 51c to 56c are in a horizontal state, a water inlet 57a communicating with the water supply path 57 is provided at a position located at the lowermost part of the main body portions 51a to 56a, and the lid bodies 51d to 56d far from the water inlet 57a are provided. A water outlet 57b communicating with the water supply path 57 is provided at the top, and a mesh strainer 57c is attached to the water outlet 57b. An automatic air valve 57d for releasing the air in the first water flow container 51 to the sixth water flow container 56 is attached to a portion directly above the water outlet 57b on the outer periphery of the main body portions 51a to 56a.
 上流側の送水経路57から供給された水は入水口57aを通過して第1通水容器51~第6通水容器56内へ流入し、それぞれの内部に充填されたミネラル付与材(B)51m~56mと接触することにより各ミネラル成分が水中へ溶出するので、それぞれのミネラル付与材(B)51m~56mに応じたミネラル成分を含有した水となって出水口57bから下流側の送水経路57へ流出する。 The water supplied from the upstream water supply path 57 passes through the water inlet 57a and flows into the first water flow container 51 to the sixth water flow container 56, and the mineral-imparting material (B) filled in each of them. Since each mineral component elutes into water by contacting 51m to 56m, water containing mineral components corresponding to each mineral imparting material (B) 51m to 56m becomes water downstream from the outlet 57b. To 57.
 図8~図10に示すミネラル含有水(B)製造装置3においては、図7に示す操作盤58の切替ボタン51b~56bの何れかを操作して、原水タンク63の水Wを、第1通水容器51~第6通水容器56の1個以上に通過させことにより、第1通水容器51から第6通水容器56にそれぞれ充填されたミネラル付与材(B)51m~56mにそれぞれ含まれている特徴あるミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。 In the mineral-containing water (B) production apparatus 3 shown in FIGS. 8 to 10, any one of the switching buttons 51b to 56b of the operation panel 58 shown in FIG. By passing through one or more of the water flow containers 51 to the sixth water flow container 56, the mineral imparting materials (B) 51m to 56m filled in the first water flow container 51 to the sixth water flow container 56, respectively. Mineral-containing water (B) 45 in which the characteristic mineral components contained therein are selectively dissolved can be formed.
 また、ミネラル含有水(B)製造装置3においては、第1通水容器51~第6通水容器56が送水経路57で直列に連結されているため、当該送水経路57に連続的に水を流すことにより、第1通水容器51~第6通水容器56内のミネラル付与材(B)51m~56mに応じたミネラル成分が溶け込んだミネラル含有水(B)45を大量生産することができる。 Further, in the mineral-containing water (B) production apparatus 3, since the first water flow container 51 to the sixth water flow container 56 are connected in series by the water flow path 57, water is continuously supplied to the water flow path 57. By flowing, it is possible to mass-produce mineral-containing water (B) 45 in which mineral components corresponding to the mineral-imparting materials (B) 51 m to 56 m in the first water flow container 51 to the sixth water flow container 56 are dissolved. .
 なお、ミネラル含有水(B)製造装置3において形成されたミネラル含有水(B)45は、第6通水容器56より下流側の送水経路57xを経由して混合槽46内へ送り込まれ、その内部において、図1に示すミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44と混合されることによってミネラル機能水47が形成される。 The mineral-containing water (B) 45 formed in the mineral-containing water (B) production apparatus 3 is sent into the mixing tank 46 via the water supply path 57x downstream from the sixth water flow container 56, and Inside, mineral functional water 47 is formed by being mixed with mineral-containing water (A) 44 manufactured by the mineral-containing water (A) manufacturing apparatus 2 shown in FIG.
 ミネラル含有水(A)とミネラル含有水(B)の配合割合は、ミネラル含有水(A)及びミネラル含有水(B)に含まれる原料の種類、溶出する成分濃度を考慮して適宜決定されるが、ミネラル含有水(A)とミネラル含有水(B)との重量比([ミネラル含有水(A)]:[ミネラル含有水(B)])で、1:5~1:20の範囲であり、好適には1:7~1:12の範囲、より好適には1:10の範囲である。
 ミネラル含有水(A)が少なすぎる(ミネラル含有水(B)が多すぎる)場合、及びミネラル含有水(A)が多すぎる(ミネラル含有水(B)が少なすぎる)場合には、ミネラル機能水の有効成分が希釈されて目的とする作用が不十分になるおそれがある。
The mixing ratio of the mineral-containing water (A) and the mineral-containing water (B) is appropriately determined in consideration of the types of raw materials contained in the mineral-containing water (A) and the mineral-containing water (B) and the concentration of components to be eluted. Is a weight ratio of mineral-containing water (A) and mineral-containing water (B) ([mineral-containing water (A)]: [mineral-containing water (B)]) in the range of 1: 5 to 1:20. Yes, preferably in the range of 1: 7 to 1:12, more preferably in the range of 1:10.
When there is too little mineral-containing water (A) (too much mineral-containing water (B)) and too much mineral-containing water (A) (too little mineral-containing water (B)), mineral functional water The active ingredient may be diluted and the intended action may be insufficient.
 以上、本発明のミネラル機能水の製造方法の好適な実施形態を説明したが、上述した構成を有する本発明のミネラル機能水が製造できればよく、上記好適な実施形態以外にも様々な構成を採用することもでき、制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。 As mentioned above, although suitable embodiment of the manufacturing method of the mineral functional water of this invention was described, the mineral functional water of this invention which has the structure mentioned above should just be manufactured, and various structures other than the said preferred embodiment are employ | adopted. Should be considered non-restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[実施例1]
<1>ミネラル機能水の製造
 ミネラル機能水として上記本発明の実施形態で説明したミネラル機能水製造装置を用い、上述した製造方法にて、以下の原料及び方法で製造した実施例1のミネラル機能水を用いた。
1.ミネラル含有水(A)の製造
 ミネラル付与材(A)の原料として、草木植物原料(A1)として、株式会社理研テクノシステム製「P-100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-200(品番)」を使用した。
 「P-100」は、以下のキク科植物の乾燥粉砕物及びバラ科植物の乾燥粉砕物を1:1(重量比)で混合した草木植物原料(A1)であり、「P-200」は、以下に記載の木本植物原料(A2)である。

(A1)草木植物原料(草木植物の乾燥物)
(A1-1)キク科植物の乾燥粉砕物
 野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
(A1-2)バラ科植物の乾燥粉砕物
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕させたもの。

(A2)木本植物原料(木本植物の乾燥物)
 カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
[Example 1]
<1> Manufacture of mineral functional water The mineral function of Example 1 manufactured with the following raw material and method by the manufacturing method described above using the mineral functional water manufacturing apparatus described in the embodiment of the present invention as the mineral functional water. Water was used.
1. Manufacture of mineral-containing water (A) As a raw material for the mineral imparting material (A), as a plant and plant material (A1), "P-100 (product number)" manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-200 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
“P-100” is a plant material (A1) obtained by mixing the following dry pulverized plant of Asteraceae and dry pulverized plant of Rosaceae at 1: 1 (weight ratio), and “P-200” is The woody plant raw material (A2) described below.

(A1) Plant and plant material (dried plant plant)
(A1-1) Dry ground pulverized product of Asteraceae Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), 10% by weight, 60% respectively Mixed in a ratio of 30% by weight and 30% by weight, dried and then pulverized.
(A1-2) Dry pulverized product of rose family plants, roses (leaves, flower parts), radish (leaves and stem parts), raspberries (leaves, stem parts and flower parts), 20% by weight, 10% Mixed in a ratio of 70% by weight, and then pulverized after drying.

(A2) Woody plant raw material (dried woody plant)
Maple (leaves and stems), birch (leaves, stems, and bark) and cedar (leaves, stems, and bark) are 25%, 25%, and 50% by weight, respectively. Mixed in proportion, dried and then crushed.
 上記草木植物原料(A1)と木本植物原料(A2)を、1:3(重量比)で混合したミネラル付与材(A)を、図1に示すミネラル含有水(A)製造装置2における、原料ミネラル水溶液製造手段10(図2参照)に水に対して10~15重量%になるように入れ、原料ミネラル水溶液製造手段10の導電線に直流電流(DC8300V、100mA)を導通させ、導電線の周囲の水に直流電流と同方向の水流を発生させ、前記水に超音波振動(発振周波数50kHz、振幅1.5/1000mm)を付与して原料ミネラル水溶液(A)を形成した。次いで、後段の遠赤外線発生手段43に供給された原料ミネラル水溶液(A)に遠赤外線(波長6~14μm)を照射することにより実施例1のミネラル含有水(A)を得た。 In the mineral-containing water (A) production apparatus 2 shown in FIG. 1, the mineral-imparting material (A) obtained by mixing the plant and plant material (A1) and the woody plant material (A2) at a ratio of 1: 3 (weight ratio), The raw mineral aqueous solution manufacturing means 10 (see FIG. 2) is placed at 10 to 15% by weight with respect to water, and a direct current (DC8300V, 100 mA) is conducted to the conductive wire of the raw mineral aqueous solution manufacturing means 10 A water flow in the same direction as the direct current was generated in the water around the water, and ultrasonic vibration (oscillation frequency 50 kHz, amplitude 1.5 / 1000 mm) was applied to the water to form a raw mineral aqueous solution (A). Next, the mineral-containing water (A) of Example 1 was obtained by irradiating the raw mineral aqueous solution (A) supplied to the far-infrared ray generating means 43 in the latter stage with far infrared rays (wavelength 6 to 14 μm).
2.ミネラル含有水(B)の製造
 ミネラル付与材(B)の原料としては、石灰石、化石サンゴ、貝殻、活性炭を粉砕・混合した混合物を使用した。ミネラル付与材(B)の原料及び第1~6通水容器で使用した混合物(ミネラル付与材(B1)~(B6))は、以下の通りである。

(1)原料
(1-1)石灰石:株式会社理研テクノシステム製「CC-200(品番)」
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
   炭酸カルシウム:50重量%以上
   酸化鉄:3~9重量%の鉄
   酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
   炭酸マグネシウム:7~10重量%

(1-2)化石サンゴ:株式会社理研テクノシステム製「CC-300(品番)」
下記2種類の化石サンゴを1:9の重量比で混合し、3~5mmに粉砕した粒状物
・地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ
・沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)

(1-3)貝殻:株式会社理研テクノシステム製「CC-400(品番)」
・アワビ、トコブシ、フジツボを同じ重量で混合し3~5mmに粉砕した粒状物

(1-4)活性炭(第2通水容器のみ使用):株式会社理研テクノシステム製「CC-500(品番)」

(2)第1~6通水容器での使用割合
・第1通水容器: 
 ミネラル付与材(B1):石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%混合したもの
・第2通水容器: 
 ミネラル付与材(B2):石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%混合したもの(二酸化ケイ素と活性炭に相当)
・第3通水容器: 
 ミネラル付与材(B3):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%混合したもの
・第4通水容器: 
 ミネラル付与材(B4):石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%混合したもの
・第5通水容器: 
 ミネラル付与材(B5):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%混合したもの
・第6通水容器: 
 ミネラル付与材(B6):石灰石、化石サンゴ、貝殻をそれぞれ60重量%、30重量%、10重量%混合したもの
2. Production of Mineral-Containing Water (B) As a raw material for the mineral-imparting material (B), a mixture obtained by pulverizing and mixing limestone, fossil coral, shells and activated carbon was used. The raw materials of the mineral-imparting material (B) and the mixtures (mineral-imparting materials (B1) to (B6)) used in the first to sixth water flow containers are as follows.

(1) Raw material (1-1) Limestone: “CC-200 (Part No.)” manufactured by Riken Techno System Co., Ltd.
3 cm pebble crushed limestone mixed with volcanic deposits containing the following components: Calcium carbonate: 50 wt% or more Iron oxide: 3-9 wt% iron Total of titanium oxide, titanium carbide, titanium nitride: 0 .8 wt% or more Magnesium carbonate: 7 to 10 wt%

(1-2) Fossil coral: “CC-300 (part number)” manufactured by Riken Techno System Co., Ltd.
The following two types of fossil corals are mixed at a weight ratio of 1: 9, and are granulated to 3 to 5 mm. From fossil corals that have been produced from about 100 meters underground and whose crystal composition has been modified by heavy pressure. From land near Amami Oshima, Okinawa. Fossil corals produced (including calcium carbonate, calcium phosphate and other trace elements)

(1-3) Shell: “CC-400 (Part No.)” manufactured by Riken Techno System Co., Ltd.
・ Abalone, Tokobushi, Barnacle mixed at the same weight and granulated to 3-5mm

(1-4) Activated carbon (only 2nd water container is used): “CC-500 (product number)” manufactured by Riken Techno System Co., Ltd.

(2) Percentage of use in 1st to 6th water containers · 1st water container:
Mineral-imparting material (B1): A mixture of limestone, fossilized coral, and shells of 70%, 15%, and 15% by weight, respectively.
Mineral-imparting material (B2): Mixed limestone, fossilized coral, shell, activated carbon 40%, 15%, 40%, 5% by weight, respectively (equivalent to silicon dioxide and activated carbon)
・ Third water container:
Mineral-imparting material (B3): A mixture of limestone, fossilized coral and shell, 80% by weight, 15% by weight and 5% by weight, respectively.
Mineral-imparting material (B4): Mixed limestone, fossilized coral and shells by 90 wt%, 5 wt% and 5 wt%, respectively.
Mineral-imparting material (B5): A mixture of limestone, fossilized coral, and shell, 80% by weight, 10% by weight, and 10% by weight, respectively.
Mineral-imparting material (B6): Mixed limestone, fossilized coral and shell by 60%, 30% and 10% by weight, respectively.
 図1の構成のミネラル含有水(B)製造装置3において、上記ミネラル付与材(B1)~(B6)を使用した第1~6通水容器に水を流通させることにより、ミネラル含有水(B)を得た。(B1)~(B6)はそれぞれ50kg(合計300kg)であり、流通させる水の量は1000kg、流速は500mL/40sで設定した。 In the mineral-containing water (B) production apparatus 3 having the configuration shown in FIG. 1, the mineral-containing water (B) is obtained by circulating water through the first to sixth water flow containers using the mineral imparting materials (B1) to (B6). ) Each of (B1) to (B6) was 50 kg (total 300 kg), the amount of water to be circulated was set at 1000 kg, and the flow rate was set at 500 mL / 40 s.
 上記方法で形成した実施例1のミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、実施例1のミネラル機能水を得た。実施例1のミネラル機能水をpHメータ(東興化学研究所製 ガラス電極式水素イオン濃度指示計 TPX-90)で測定したところ、pH12.5であった。
 なお、実施例1のミネラル機能水は、株式会社理研テクノシステム製ミネラル機能水CAC-717(テラ・プロテクト(商品名)、CAC-717(品番)、開発品番号CA-C-01)に相当する。
The mineral-containing water (A) and mineral-containing water (B) of Example 1 formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Example 1. The mineral functional water of Example 1 was measured with a pH meter (glass electrode type hydrogen ion concentration indicator TPX-90, manufactured by Toko Chemical Laboratories) and found to have a pH of 12.5.
The mineral functional water of Example 1 corresponds to the mineral functional water CAC-717 (Tera Protect (product name), CAC-717 (product number), developed product number CA-C-01) manufactured by Riken Techno System Co., Ltd. To do.
<2>分光放射率の評価
 セラミック担体に対し、実施例1のミネラル機能水を固定化した試料の分光放射率は、遠赤外線輻射率測定装置(日本電子(株)製JIR-E500)で測定した。当該装置は、フーリエ変換型赤外線分光光度計(FTIR)本体と、黒体炉、試料加熱炉、温度コントローラおよび付属光学系から構成される。
 分光放射率の評価試料は以下の手順で作製した。
 担持用のセラミック粉末(天草大矢野島産出の岩石粉末)100重量部に対し、実施例1のミネラル機能水20重量部を含水させ粘土状態にした。これを厚み5mm程度、直径2cmの円形の表面が平らな板状に加工し、1000℃で焼成することにより、試料(ミネラル機能水)に含まれるミネラル成分が固定化された評価試料を得た。
 図12に、測定試料である実施例1のミネラル機能水の分光放射率スペクトル(測定温度:25℃、波長範囲:4~24μm)を示す。また、図12には、黒体の分光放射率スペクトル(理論値)も併せて示している。なお、図12において、縦軸目盛は放射エネルギーの強さであり、1平方cm当たりのW数で示している。また、「試料」の曲線は、黒体の曲線に近接しているほど放射能力が高いことを意味する。
<2> Evaluation of spectral emissivity The spectral emissivity of the sample obtained by immobilizing the mineral functional water of Example 1 on the ceramic carrier was measured with a far-infrared emissivity measuring apparatus (JIR-E500 manufactured by JEOL Ltd.). did. The apparatus includes a Fourier transform infrared spectrophotometer (FTIR) main body, a black body furnace, a sample heating furnace, a temperature controller, and attached optical systems.
A sample for evaluation of spectral emissivity was prepared by the following procedure.
20 parts by weight of the mineral functional water of Example 1 was added to 100 parts by weight of the supporting ceramic powder (rock powder from Amakusa Oyanojima) to make a clay state. This was processed into a flat plate with a circular surface having a thickness of about 5 mm and a diameter of 2 cm, and baked at 1000 ° C. to obtain an evaluation sample in which mineral components contained in the sample (mineral functional water) were immobilized. .
FIG. 12 shows a spectral emissivity spectrum (measurement temperature: 25 ° C., wavelength range: 4 to 24 μm) of mineral functional water of Example 1 as a measurement sample. FIG. 12 also shows the spectral emissivity spectrum (theoretical value) of the black body. In FIG. 12, the vertical axis scale indicates the intensity of radiant energy, which is indicated by the number of W per square centimeter. Further, the curve of “sample” means that the closer to the black body curve, the higher the radiation ability.
 また、図13に、測定試料の分光放射率スペクトルと黒体の分光放射率スペクトル(理論値)から求めた放射比率(波長範囲:4~24μm)を示す。
 図13から、波長5~7μm間及び波長14~24μm間の平均放射比率を算出したところ、91.7%であった。
FIG. 13 shows the emission ratio (wavelength range: 4 to 24 μm) obtained from the spectral emissivity spectrum of the measurement sample and the spectral emissivity spectrum (theoretical value) of the black body.
From FIG. 13, the average radiation ratio between the wavelengths of 5 to 7 μm and between the wavelengths of 14 to 24 μm was calculated to be 91.7%.
[実施例2]
<1>ミネラル機能水の製造
 以下の原料及び方法で実施例2のミネラル機能水を製造した。
1.ミネラル含有水(A)の製造
 ミネラル付与材(A)の原料として、草木植物原料(A1)として、株式会社理研テクノシステム製「P-101(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-201(品番)」を使用した。
 「P-101」は、以下のキク科植物の乾燥粉砕物及びバラ科植物の乾燥粉砕物を1:1(重量比)で混合した草木植物原料(A1)であり、「P-201」は、以下に記載の木本植物原料(A2)である。

(A1)草木植物原料(草木植物の乾燥物)
(A1-1)キク科植物の乾燥粉砕物
 野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
(A1-2)バラ科植物の乾燥粉砕物
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕させたもの。
(A2)木本植物原料(木本植物の乾燥物)
 カエデ(落葉)、白樺(落葉、茎部、及び樹皮部)、杉(落葉、茎部、及び樹皮部)を、それぞれ20重量%、60重量%、20重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
[Example 2]
<1> Manufacture of mineral functional water The mineral functional water of Example 2 was manufactured with the following raw materials and methods.
1. Manufacture of mineral-containing water (A) As a raw material for the mineral imparting material (A), as a plant and plant material (A1), "P-101 (product number)" manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-201 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
“P-101” is a plant and plant material (A1) obtained by mixing the following dry pulverized plant of Asteraceae and dry pulverized plant of Rosaceae in a ratio of 1: 1 (weight ratio). “P-201” is The woody plant raw material (A2) described below.

(A1) Plant and plant material (dried plant plant)
(A1-1) Dry ground pulverized product of Asteraceae Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), 10% by weight, 60% respectively Mixed in a ratio of 30% by weight and 30% by weight, dried and then pulverized.
(A1-2) Dry pulverized product of rose family plants, roses (leaves, flower parts), radish (leaves and stem parts), raspberries (leaves, stem parts and flower parts), 20% by weight, 10% Mixed in a ratio of 70% by weight, and then pulverized after drying.
(A2) Woody plant raw material (dried woody plant)
Maple (deciduous), birch (deciduous, stem, and bark), cedar (deciduous, stem, and bark) are mixed in proportions of 20%, 60%, and 20% by weight, respectively, and dried. After pulverizing.
 上記草木植物原料(A1)と木本植物原料(A2)を、1:5(重量比)で混合したミネラル付与材(A)を使用した以外は、実施例1と同様の方法で実施例2のミネラル含有水(A)を得た。 Example 2 is the same as Example 1 except that the mineral-imparting material (A) in which the plant and plant material (A1) and the woody plant material (A2) are mixed at a weight ratio of 1: 5 is used. Mineral-containing water (A) was obtained.
2.ミネラル含有水(B)の製造
 実施例1と共通であるため、説明を省略する。
2. Manufacture of mineral-containing water (B) Since it is common with Example 1, description is abbreviate | omitted.
 上記方法で形成した実施例2のミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、実施例2のミネラル機能水を得た。
 なお、実施例2のミネラル機能水は、株式会社理研テクノシステム製ミネラル機能水A20ACA-717(テラ・サポート(商品名)、A20ACA-717(品番))に相当する。
The mineral-containing water (A) of Example 2 and the mineral-containing water (B) formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Example 2.
The mineral functional water of Example 2 corresponds to mineral functional water A20ACA-717 (Tera Support (trade name), A20ACA-717 (product number)) manufactured by Riken Techno System Co., Ltd.
<2>分光放射率の評価
 図14に上記実施例1と同様の方法で、実施例2と対照試料のセラミック焼結体の分光放射率の評価を行った結果を示す。
<2> Evaluation of Spectral Emissivity FIG. 14 shows the results of evaluating the spectral emissivity of the ceramic sintered bodies of Example 2 and the control sample by the same method as in Example 1 above.
[評価]
<1>ウェスタンブロッティング法による評価
 200μgタンパク質を含む脳ホモジネート(263K感染ハムスター脳)200μLとMCウォーター(CA-C-01、主成分:炭素、カルシウム)20μLとを混合し、室温で1時間反応させた。次に、20μg/mLのプロテイナーゼKを加え、37℃で1時間処理した。プロテイナーゼKで処理することで、正常型プリオンタンパク質(PK感受性PrP)が分解されるため、得られるサンプルには、異常型プリオンタンパク質のみが含まれる。得られたサンプルをウェスタンブロッティング法により評価した。
 コントロールとして、脳ホモジネート(263K感染ハムスター脳)200μLに変えて、200μgタンパク質を含む脳ホモジネート(正常ハムスター脳、非感染)200μLを用いて同様の操作を行ったサンプルを準備し、ウェスタンブロッティング法で評価した。
 また、プロテイナーゼKで処理しなかったサンプルについても、同様に、ウェスタンブロッティング法で評価した。なお、プロテイナーゼKで処理しなかったサンプルは、異常型プリオンタンパク質(PK抵抗性PrP)と正常型プリオンタンパク質(PK感受性PrP)が含まれるサンプルである。
[Evaluation]
<1> Evaluation by Western blotting method 200 μL of brain homogenate (263K-infected hamster brain) containing 200 μg protein and 20 μL of MC water (CA-C-01, main components: carbon, calcium) are mixed and allowed to react at room temperature for 1 hour. It was. Next, 20 μg / mL proteinase K was added and treated at 37 ° C. for 1 hour. By treating with proteinase K, normal prion protein (PK sensitive PrP) is degraded, so that the sample obtained contains only abnormal prion protein. The obtained sample was evaluated by Western blotting.
As a control, a sample was prepared by performing the same operation using 200 μL of brain homogenate (normal hamster brain, non-infected) containing 200 μg protein instead of 200 μL of brain homogenate (263K-infected hamster brain), and evaluated by Western blotting. did.
Similarly, samples not treated with proteinase K were evaluated by Western blotting. The sample not treated with proteinase K is a sample containing an abnormal prion protein (PK resistant PrP) and a normal prion protein (PK sensitive PrP).
 結果を図15、図16に示す。図15は、6μL/各Laneの結果であり、図16は、3μL/各Laneの結果である。なお、図中のPK(+)およびPK(-)はプロテイナーゼK処理の有無を表す。
 図15および図16に示すとおり、MCウォーター処理したサンプルは、異常型プリオンタンパク質が減少していた。正常型プリオンタンパク質の増加については正確には評価しくにいが、異常型プリオンタンパク質が減少していることから、正常型プリオンタンパク質が増加している可能性がある。すなわち、異常型プリオンタンパク質の立体構造が正常な構造に復元したことが示唆される。
The results are shown in FIGS. FIG. 15 shows the result of 6 μL / lane, and FIG. 16 shows the result of 3 μL / lane. In the figure, PK (+) and PK (-) indicate the presence or absence of proteinase K treatment.
As shown in FIGS. 15 and 16, the abnormal prion protein was reduced in the sample treated with MC water. Although the increase in normal prion protein is not accurately evaluated, there is a possibility that normal prion protein has increased because abnormal prion protein has decreased. That is, it is suggested that the three-dimensional structure of the abnormal prion protein has been restored to a normal structure.
<2>in vivoでの評価
 263K株シリアンハムスター8週齢、雄、計5匹を使用した。
 まず、スクレイピー感染ハムスター10%脳乳剤とMCウォーター(CA-C-01)を1:1の比率で混合し、1時間静置した。得られた溶液100μLを表1に示すようにシリアンハムスターに脳内接種した。
 スクレイピーの症状が現れた個体(陽性対照、ハムスター番号P-1、P-2)については、62日後または64日後に脳を採取した。スクレイピーの症状が現れなかった個体(ハムスター番号S)については、72日後に脳を採取した。なお、摂取した脳組織は、-80℃で保管した。
<2> Evaluation in vivo 263K strain Syrian hamsters 8 weeks old, males, 5 in total were used.
First, scrapie-infected hamster 10% brain emulsion and MC water (CA-C-01) were mixed at a ratio of 1: 1 and allowed to stand for 1 hour. As shown in Table 1, 100 μL of the resulting solution was inoculated into Syrian hamsters in the brain.
For individuals that showed scrapie symptoms (positive controls, hamster numbers P-1, P-2), brains were collected after 62 or 64 days. For individuals (hamster number S) that did not show scrapie symptoms, brains were collected 72 days later. The ingested brain tissue was stored at −80 ° C.
 次いで、脳組織を融解後、10%中性緩衝ホルマリン固定、パラフィン包埋した組織を薄切し、組織切片を作製した。組織切片を、一次抗体に抗プリオンタンパク質抗体3F4を使用し、免疫染色した後に、免疫組織学的検査による脳内PrPSc(異常型プリオンタンパク質)の蓄積や分布を観察した。 Next, after thawing the brain tissue, the tissue embedded with 10% neutral buffered formalin and paraffin embedded was sliced to prepare a tissue section. The tissue section was immunostained using the anti-prion protein antibody 3F4 as the primary antibody, and then the accumulation and distribution of PrP Sc (abnormal prion protein) in the brain were observed by immunohistological examination.
 転移および免疫組織学的検査結果を表2に示す。また、表1および表2に示すハムスター番号P-1およびSの組織観察写真を図17、図18に示す。 Table 2 shows the results of metastasis and immunohistological examination. In addition, FIGS. 17 and 18 show tissue observation photographs of hamster numbers P-1 and S shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図17に示すように、P-1の個体(陽性対照)は、スクレイピーの徴候が現れ、脳内には茶色いPrPSc(異常型プリオンタンパク質)が観察された。P-2についても同様であった。
 一方、MCウォーター(CA-C-01)と反応させたスクレイピー感染ハムスター脳乳剤を投与した個体であるSは、スクレイピーの徴候が現れることがなく、Sの個体は、図18に示すように、脳内にPrPSc(異常型プリオンタンパク質)は観察されなかった。
 このことから、異常型プリオンタンパク質の立体構造が正常な構造に復元したことが示唆された。
As shown in FIG. 17, the P-1 individual (positive control) showed signs of scrapie, and brown PrP Sc (abnormal prion protein) was observed in the brain. The same was true for P-2.
On the other hand, S, which is an individual administered with scrapie-infected hamster brain emulsion reacted with MC water (CA-C-01), shows no signs of scrapie, and as shown in FIG. No PrP Sc (abnormal prion protein) was observed in the brain.
This suggested that the three-dimensional structure of the abnormal prion protein was restored to a normal structure.
 本発明の異常化したタンパク質立体構造の復元方法は、医療用途など様々な用途で使用できる。 The method for restoring an abnormal protein three-dimensional structure of the present invention can be used for various applications such as medical applications.

Claims (5)

  1.  異常化したタンパク質に対して、電磁波放射性のミネラル成分を含むミネラル機能水を接触させて、前記異常化したタンパク質の立体構造を正常な構造に復元する方法。 A method of bringing the abnormal protein into contact with mineral functional water containing an electromagnetic radiation mineral component and restoring the three-dimensional structure of the abnormal protein to a normal structure.
  2.  前記異常化したタンパク質が、異常プリオンタンパク質である請求項1に記載の方法。 The method according to claim 1, wherein the abnormal protein is an abnormal prion protein.
  3.  前記ミネラル成分が、テラヘルツ波を含む電磁波を放射するミネラル成分である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the mineral component is a mineral component that emits electromagnetic waves including terahertz waves.
  4.  前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC-717に由来するミネラル成分である請求項1から3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd.
  5.  前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA-717に由来するミネラル成分である請求項1から3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the mineral component is a mineral component derived from a mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd.
PCT/JP2017/017554 2016-05-09 2017-05-09 Method for restoring abnormalized protein three-dimensional structure WO2017195780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018517033A JP6814394B2 (en) 2016-05-09 2017-05-09 How to restore the abnormal protein three-dimensional structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093601 2016-05-09
JP2016-093601 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195780A1 true WO2017195780A1 (en) 2017-11-16

Family

ID=60267022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017554 WO2017195780A1 (en) 2016-05-09 2017-05-09 Method for restoring abnormalized protein three-dimensional structure

Country Status (3)

Country Link
JP (1) JP6814394B2 (en)
TW (1) TWI735572B (en)
WO (1) WO2017195780A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043213A1 (en) * 2014-09-17 2016-03-24 株式会社理研テクノシステム Mineral functional water and method for producing same as well as method for controlling unicellular organisms and/or viruses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030270B2 (en) * 2014-09-17 2016-11-24 株式会社理研テクノシステム Manufacturing method of mineral functional water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043213A1 (en) * 2014-09-17 2016-03-24 株式会社理研テクノシステム Mineral functional water and method for producing same as well as method for controlling unicellular organisms and/or viruses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIZUSAWA, HIDEHIRO: "Prion-byo", CLINICAL NEUROLOGY, vol. 50, no. 11, 2010, pages 797 - 801 *
ONODERA, TAKASHI ET AL.: "Prion treatment by electrolyzed alkaline water and other chemicals", PRION, UNIVERSITY OF TOKYO, 18 April 2016 (2016-04-18), pages 275, XP055599890 *

Also Published As

Publication number Publication date
JPWO2017195780A1 (en) 2019-04-11
TW201808816A (en) 2018-03-16
JP6814394B2 (en) 2021-01-20
TWI735572B (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2016043213A1 (en) Mineral functional water and method for producing same as well as method for controlling unicellular organisms and/or viruses
WO2017038973A1 (en) Ceramic sintered body and production method thereof
JP6030270B2 (en) Manufacturing method of mineral functional water
WO2017038974A1 (en) Device for producing eluted functional water containing mineral component, and method of producing eluted functional water
JP6185202B2 (en) Mineral functional water and method for producing the same
JP2011056366A (en) Mineral containing water producing apparatus, far infrared ray generating water producing equipment and far infrared ray generating water producing method
JP5864010B1 (en) Manufacturing method of mineral functional water
Iwata et al. Simultaneous achievement of antimicrobial property and plant growth promotion using plasma‐activated benzoic compound solution
Zheng et al. Engineering Dynamic Defect of CeIII/CeIV‐Based Metal‐Organic Framework through Ultrasound‐Triggered Au Electron Trapper for Sonodynamic Therapy of Osteomyelitis
JP6154085B2 (en) Functional mineral water, method for producing the same, and method for promoting combustion of hydrocarbons
Mukhoro et al. Very green photosynthesis of gold nanoparticles by a living aquatic plant: photoreduction of AuIII by the seaweed Ulva armoricana
WO2017195780A1 (en) Method for restoring abnormalized protein three-dimensional structure
WO2017195781A1 (en) Abnormal prion protein infectiousness reduction method and pharmaceutical composition for preventive therapy of prion disease
Yu et al. Microenvironment‐Adaptive Nanozyme for Accelerating Drug‐Resistant Bacteria‐Infected Wound Healing
JP5778328B1 (en) Mineral functional water and method for controlling single cell organisms
WO2017038972A1 (en) Ceramic material and production method thereof, and eluted functional water
JP7381147B1 (en) Sediment water purification material and its manufacturing method, and method for purifying sediment and water quality
Yang et al. Simultaneous optical monitoring of the overgrowth modes of individual asymmetric hybrid nanoparticles
Minich et al. Changes in morphogenesis and productivity of Lactuca sativa L. lettuce by presowing treatment of seeds with dielectric-barrier discharge plasma
JP2017165682A (en) Mineral functional water and composition comprising the same
Fincur et al. Ianas, i, C.; Alapi, T.; et al. Removal of Emerging Pollutants from Water Using Environmentally Friendly Processes: Photocatalysts Preparation, Characterization, Intermediates Identification and Toxicity Assessment
Fincur et al. Ianas, i, C
JP2002119962A (en) Device for exciting and activating molecule such as water and organic compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17796141

Country of ref document: EP

Kind code of ref document: A1