WO2017194010A1 - 一种导频信息的发送方法和装置以及接收方法和装置 - Google Patents

一种导频信息的发送方法和装置以及接收方法和装置 Download PDF

Info

Publication number
WO2017194010A1
WO2017194010A1 PCT/CN2017/084214 CN2017084214W WO2017194010A1 WO 2017194010 A1 WO2017194010 A1 WO 2017194010A1 CN 2017084214 W CN2017084214 W CN 2017084214W WO 2017194010 A1 WO2017194010 A1 WO 2017194010A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel measurement
pilot signal
measurement reference
type
reference pilot
Prior art date
Application number
PCT/CN2017/084214
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
鲁照华
吴昊
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017194010A1 publication Critical patent/WO2017194010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference

Definitions

  • This document relates to, but is not limited to, the field of communication technologies, and in particular, to a method and device for transmitting pilot information and a receiving method and apparatus.
  • the transmitting end In a wireless communication system, the transmitting end often takes multiple antennas to obtain a higher transmission rate. Multiple antennas can improve the signal-to-noise ratio and support more spatial multiplexing layers, compared to the open-loop multi-input multi-output (CSI) that does not use CSI (Channel State Information) information.
  • MIMO MIMO technology
  • MIMO technology using CSI information closed-loop MIMO precoding (Precoding) technology
  • Precoding closed-loop MIMO precoding
  • the core idea of the closed-loop MIMO precoding technology is that the receiving end feeds back channel information to the transmitting end, and the transmitting end uses some transmit precoding techniques according to the obtained channel information, which can greatly improve the transmission performance.
  • the transmitting end sends a downlink channel measurement pilot (CSI-RS (Channel State Information-Reference Signals)) to the receiving end.
  • CSI-RS Channel State Information-Reference Signals
  • each antenna transmits a channel measurement pilot signal.
  • the channel measurement pilot signals transmitted by different antennas are staggered in the time-frequency domain or the code domain, and the orthogonality can be maintained without mutual interference.
  • Each antenna corresponds to one CSI-RS port.
  • the channel measurement pilot is used to measure channel information.
  • the CSI-RS transmission of the maximum 8-antenna port on the base station side is supported in LTE-A (Long Term Evolution-Advanced).
  • the base station also sends RRC (Radio Resource Control) signaling to configure relevant location information and transmission period information of the CSI-RS.
  • RRC Radio Resource Control
  • the terminal receives the configuration information of the channel information measurement pilot CSI-RS transmitted by the base station side, and transmits and detects the CSI-RS pilot signal at the time-frequency resource position of each pilot port that is signaled, and each receiving antenna on the terminal side
  • the received CSI-RS pilot signal is obtained by the terminal, and the terminal and the base station perform the convention of transmitting the signal content of the pilot on each time-frequency resource location of each transmission port, so the terminal can accurately know the downlink pilot transmission signal, and then the terminal according to the terminal
  • the received pilot signal can perform downlink channel estimation to obtain downlink channel response information between the terminal side receiving antenna and the base station side transmitting antenna port. In the downlink channel estimation, it is necessary to consider the influence of noise and interference when the actual pilot signal is received.
  • LS Least Square
  • MMSE Minimum Mean Square Error
  • IRC Interference Rejection Combining
  • the terminal can estimate the channel response between the receiving antenna and the plurality of transmitting antenna ports according to the content of the transmitted pilot signal of each pilot port and the received pilot signal on each receiving antenna, so that the channel corresponding to each time-frequency resource location can be obtained.
  • the matrix in turn, can calculate optimal CSI information based on the channel matrix.
  • the CSI generally includes three types of PMI (Precoding Matrix Indicator)/CQI (Channel Quality Indicator)/RI (Rank Indicator) information, and the recommended precoding matrix and channel are respectively fed back to the base station. Quality information and number of transmission layers.
  • the terminal feeds back the calculated CQI/PMI/RI information to the base station through the control channel of the uplink physical layer or the data channel of the uplink physical layer.
  • the base station determines the number of transmission layers, determines the coding and modulation scheme, and determines the transmission precoding based on the feedback information of the terminal.
  • the downlink channel information measurement pilot CSI-RS plays a very important role in the acquisition of channel state information, which often affects the accuracy of precoding information, channel quality information and transmission layer number information, and thus the transmission performance of MIMO. Has a very big impact.
  • the downlink CSI-RS pilot used in the 4G standard is a periodic CSI-RS pilot.
  • the time domain considering that the channel change does not change abruptly, it has a certain time domain correlation, and the correlation time is greater than one subframe. The duration is 1 ms, so it is not necessary to transmit all the subframes.
  • the CSI-RS is generally sent periodically.
  • the so-called periodic pilot the concept is that the base station enters at a certain interval
  • the CSI-RS is transmitted, and the transmission position may have different subframe position offsets. The following describes the configuration of the CSI-RS period and the subframe offset in the LTE-A column.
  • the CSI-reference subframe configuration has the following structure:
  • the I CSI-RS is a configuration parameter of the CSI-RS, and the value is 0-154. Different values correspond to different CSI-RS periods and subframe offsets.
  • each CBR (Physical Resource Block) pair has a CSI-RS, and the same port (port) is transmitted in a different physical resource block pair (PRB pair). (style) the same.
  • the pattern of CSI-RS is shown in Figure 2.
  • the PRB pair can refer to the provisions in the LTE protocol 36.211. A typical case includes 12 frequency domain subcarriers and 14 time domain OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the LTE system there are 40 REs (Resource Element) in a PRB pair that can be used as CSI-RS. It is divided into 5 patterns, and each pattern contains 8 REs, as shown in Figure 2 above.
  • the average CSI-RS pilot port occupies 1 RE in a PRB pair. All ports belonging to a CSI-RS resource need to be limited to a pattern #i shown in Figure 2.
  • the maximum number of ports supported by a CSI-RS is 8, so when the port is 8, there are five kinds of location candidates.
  • the number of ports is 4
  • the port t number there are 20 configurations.
  • the aperiodic CSI-RS is a pilot that is triggered by the base station, and the pilot can be dynamically triggered, sent for channel measurement of a specific UE (User Equipment) or a UE group, and exists in one or less In a few subframes, long-term continuous transmission is not performed, and the terminal (user equipment) transmits in a PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (ePDCCH).
  • PDCCH Physical Downlink Control Channel
  • ePDCCH Enhanced Physical Downlink Control Channel
  • the non-periodic pilot Compared with the periodic pilot, the non-periodic pilot has the advantage of more flexible configuration, and is very suitable for the UE specific (UE-specific) pilot configuration, so that different UEs can use different pilot port virtualization technologies to obtain more Good channel information feedback efficiency; when the number of users is small, the pilot overhead is smaller than the periodic pilot.
  • the parameters of the pilot transmission signal of the aperiodic CSI-RS may be pre-approved by the terminal with the base station or configured by the base station high-level signaling, where The upper layer refers to a layer above the physical layer, for example, an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the aperiodic CSI-RS is generally pre-coded pilot and is oriented to a specific user or group of users, rather than to all users in the cell.
  • the aperiodic CSI-RS can effectively reduce the number of ports during measurement by supporting precoding. Reduce the amount of calculation of CSI feedback.
  • the pilots of each user are different, the pilots cannot share the pilots like the periodic pilots, and the resource utilization decreases when the number of users is large.
  • This document provides a method and apparatus for transmitting pilot information and a receiving method and apparatus, which can improve the utilization of pilot resources.
  • the embodiment of the invention provides a method for transmitting pilot information, which is applied to a transmitting end, and the method includes:
  • Determining a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal Determining a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal; and transmitting, to the receiving end, parameter information of the second type of channel measurement reference pilot signal;
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the method further includes:
  • the configuring, by the receiving end, the first type of channel measurement reference pilot signal including:
  • the transmission resources of the first type channel measurement reference pilot signal configured for the receiving end are divided into N groups, and N is greater than or equal to 1;
  • Determining a second type of channel measurement reference pilot signal that causes interference to the first type of channel measurement reference pilot signal including:
  • the sending resource of the first type of channel measurement reference pilot signal includes: sending the The first type of channel measures the time-frequency location resource of the reference pilot signal.
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a device for transmitting pilot information, which is applied to a transmitting end, and includes:
  • a first configuration module configured to configure a first type of channel measurement reference pilot signal for the receiving end
  • a second configuration module configured to determine a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal; and send the second type of channel measurement reference pilot signal to the receiver Parameter information;
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the second configuration module is further configured to send, to the receiving end, a set number K of the second type channel measurement reference pilot signal, where the K is greater than or equal to 1; and/or send the K set to the receiving end.
  • the class channel measurement reference pilot signal respectively corresponds to the interference channel information of the first type channel measurement reference pilot signal.
  • the first configuration module is configured to configure the first type of channel measurement reference pilot signal for the receiving end by:
  • the transmission resources of the first type channel measurement reference pilot signal configured for the receiving end are divided into N groups, and N is greater than or equal to 1;
  • a second configuration module is configured to determine a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal in the following manner:
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a method for receiving pilot information, which is applied to a receiving end, and the method includes:
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the method further includes:
  • the interference port information of the first type channel measurement reference pilot signal corresponding to the K sets of the second type channel measurement reference pilot signals respectively sent by the transmitting end is received.
  • the receiving, by the receiving end, the configuration information of the first type of channel measurement reference pilot signal including:
  • the configuration information of the second type of channel measurement reference pilot signal that generates interference on the first type of channel measurement reference pilot signal including:
  • the sending resource of the first type of channel measurement reference pilot signal includes: sending the The first type of channel measures the time-frequency location resource of the reference pilot signal.
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a device for receiving pilot information, which is applied to a receiving end, and includes:
  • a first receiving module configured to receive configuration information of a first type of channel measurement reference pilot signal configured by the transmitting end
  • a second receiving module configured to receive configuration information of a second type of channel measurement reference pilot signal that generates interference on the first type of channel measurement reference pilot signal
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the second receiving module is further configured to receive a set number K of the second type channel measurement reference pilot signal sent by the sending end, where the K is greater than or equal to 1; and/or receive the K set second sent by the transmitting end.
  • the class channel measurement reference pilot signal respectively corresponds to the interference channel information of the first type channel measurement reference pilot signal.
  • the first receiving module is configured to receive configuration information of the first type channel measurement reference pilot signal configured by the sending end in the following manner:
  • the second receiving module is configured to receive configuration information of the second type channel measurement reference pilot signal that generates interference on the first type channel measurement reference pilot signal in the following manner:
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a method for transmitting pilot information, which is applied to a transmitting end, and the method includes:
  • the method further includes:
  • determining a channel measurement reference pilot signal configured for the receiving end including:
  • One port is selected from the port set P, and the ports in the port set P are multiplexed in a code division manner.
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and the port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system;
  • the port selection information is notified to the receiving end by high layer or physical layer signaling.
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a device for transmitting pilot information, which is applied to a transmitting end, and includes:
  • a configuration module configured to determine a channel measurement reference pilot signal configured for the receiving end
  • a sending module configured to send the number of ports of the channel measurement reference pilot signal to the receiving end.
  • the sending module is further configured to send, to the receiving end, a port number of the channel measurement reference pilot signal.
  • the configuration module is configured to determine a channel measurement reference pilot signal configured for the receiving end in the following manner:
  • One port is selected from the port set P, and the ports in the port set P are multiplexed in a code division manner.
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and the port 16 are channel state information measurement parameters in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the port selection information is notified to the receiving end by high layer or physical layer signaling.
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a method for receiving pilot information, which is applied to a receiving end, and the method includes:
  • the port number is determined according to physical layer configuration signaling, high layer configuration signaling, or blind detection.
  • determining a port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection including:
  • One port is selected from the port set P, and the ports in the port set P are multiplexed in a code division manner.
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention provides a device for receiving pilot information, which is applied to a receiving end, and includes:
  • a first acquiring module configured to determine a number of ports of the channel measurement reference pilot signal configured by the transmitting end
  • the second obtaining module is configured to determine the port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection.
  • the second obtaining module is configured to determine the port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection in the following manner:
  • one port is selected from the port set P, and the ports in the port set P are multiplexed in a code division manner.
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and the port 16 are channel state information measurement parameters in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when executed by a processor.
  • the base station can notify the terminal of the interference pilot information when the pilot signal is spatially multiplexed, so that the terminal can enable the terminal to Interference cancellation is performed when the pilot signal is received, thereby improving pilot resource utilization.
  • the pilot resource is flexibly configured to improve the utilization of pilot resources.
  • FIG. 1 is a schematic diagram of subframe position transmission corresponding to a CSI-RS configuration example in LTE in the background art.
  • FIG. 2 is a schematic diagram of a CSI-RS Pattern in LTE in the background art.
  • FIG. 3 is a flowchart of a method (transmitting end) for transmitting pilot information according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method (transmitting end) for transmitting pilot information according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another method (receiving end) for receiving pilot information according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another method (receiving end) for receiving pilot information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a transmitting device (transmitting end) of pilot information according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a receiving device (receiving end) of pilot information according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another transmitting device (transmitting end) of pilot information according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another receiving device (receiving end) of pilot information according to an embodiment of the present invention.
  • Figure 11-a is a schematic diagram of pilot interference (two pilot signals) in Example 1 of the present invention.
  • Figure 11-b is a schematic diagram of pilot interference (three pilot signals) in Example 1 of the present invention.
  • Figure 12 is a schematic diagram of pilot interference in Example 3 of the present invention.
  • an embodiment of the present invention provides a method for transmitting pilot information, which is applied to a transmitting end, and the method includes:
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference
  • the first type of channel measurement reference pilot signal includes one or more ports
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the number K of the second type channel measurement reference pilot signal is sent to the receiving end, where the K is greater than or equal to 1;
  • the first type channel measurement reference pilot signal is configured for the receiving end, and includes:
  • the transmission resources of the first type channel measurement reference pilot signal configured for the receiving end are divided into N groups, and N is greater than or equal to 1;
  • the determining, by the determining, the second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal includes:
  • the transmitting resource of the first type of channel measurement reference pilot signal includes: transmitting a time-frequency location resource of the first type channel measurement reference pilot signal;
  • the first type of channel measurement reference pilot signal is a downlink precoding measurement reference pilot signal
  • the receiving end includes: a user equipment; the sending end includes: a base station;
  • an embodiment of the present invention provides a method for transmitting pilot information, which is applied to a transmitting end, and the method includes:
  • the method further includes:
  • the channel measurement reference pilot signal configured for the receiving end is determined to include:
  • the method further includes:
  • the port selection information includes: a port number
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port set P is ⁇ port 15, port 16, port 17, port 18 ⁇ ;
  • the port 15 and the port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system;
  • the port selection information is notified to the receiving end by high layer or physical layer signaling;
  • the high layer signaling is, for example, RRC (Radio Resource Control) signaling;
  • the receiving end includes: a user equipment; the sending end includes: a base station;
  • an embodiment of the present invention provides a method for receiving pilot information, which is applied to a receiving end, and the method includes:
  • S520 Receive configuration information of a second type of channel measurement reference pilot signal that generates interference on the first type of channel measurement reference pilot signal.
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference
  • the first type of channel measurement reference pilot signal includes one or more ports
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the method further includes:
  • the interference port information of the first type channel measurement reference pilot signal corresponding to the K sets of the second type channel measurement reference pilot signals respectively sent by the transmitting end is received.
  • the configuration information of the first type channel measurement reference pilot signal configured by the receiving and sending end includes:
  • the configuration information of the second type of channel measurement reference pilot signal that generates interference on the first type of channel measurement reference pilot signal including:
  • the transmitting resource of the first type of channel measurement reference pilot signal includes: transmitting a time-frequency location resource of the first type channel measurement reference pilot signal;
  • the first type of channel measurement reference pilot signal is a downlink precoding measurement reference pilot signal
  • the receiving end includes: a user equipment; the sending end includes: a base station;
  • the embodiment of the present invention provides a method for receiving pilot information, which is applied to a receiving end, and the method includes:
  • S620 Determine a port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection.
  • the method further includes:
  • the port number is determined according to physical layer configuration signaling, high layer configuration signaling, or blind detection, including:
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and the port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system;
  • the high layer signaling is, for example, RRC signaling
  • the receiving end includes: a user equipment; the sending end includes: a base station;
  • an embodiment of the present invention provides a device for transmitting pilot information, which is applied to Sending end, including:
  • the first configuration module 701 is configured to configure a first type of channel measurement reference pilot signal for the receiving end;
  • a second configuration module 702 configured to determine a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal; and send the second type of channel measurement reference pilot to the receiver Parameter information of the signal;
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the second configuration module is further configured to send, to the receiving end, a set number K of the second type channel measurement reference pilot signal, where the K is greater than or equal to 1; and/or send a K set second type channel to the receiving end.
  • the interference port information of the first type channel measurement reference pilot signal corresponding to the reference pilot signal is respectively measured.
  • the first configuration module is configured to configure the first type of channel measurement reference pilot signal for the receiving end by using the following manner:
  • the transmission resources of the first type channel measurement reference pilot signal configured for the receiving end are divided into N groups, and N is greater than or equal to 1;
  • a second configuration module is configured to determine a second type of channel measurement reference pilot signal that interferes with the first type of channel measurement reference pilot signal in the following manner:
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the first type of channel measurement reference pilot signal is a downlink precoding measurement reference pilot signal. number.
  • an embodiment of the present invention provides a device for receiving pilot information, which is applied to a receiving end, and includes:
  • the first receiving module 801 is configured to receive configuration information of the first type channel measurement reference pilot signal configured by the transmitting end;
  • the second receiving module 802 is configured to receive configuration information of a second type of channel measurement reference pilot signal that generates interference on the first type of channel measurement reference pilot signal;
  • the first type of channel measurement reference pilot signal is used by the receiving end to perform channel measurement
  • the second type of channel measurement reference pilot signal is used to measure a part of the reference pilot signal of the first type of channel or All ports generate interference.
  • the parameter of the second type channel measurement reference pilot signal includes at least one of the following parameters:
  • the second receiving module is further configured to receive a set number K of the second type channel measurement reference pilot signal sent by the transmitting end, where the K is greater than or equal to 1; and/or receive the K set second type channel sent by the transmitting end.
  • the interference port information of the first type channel measurement reference pilot signal corresponding to the reference pilot signal is respectively measured.
  • the first receiving module is configured to receive configuration information of the first type channel measurement reference pilot signal configured by the sending end in the following manner:
  • the second receiving module is configured to receive configuration information of the second type channel measurement reference pilot signal that generates interference on the first type channel measurement reference pilot signal in the following manner:
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • the first type of channel measurement reference pilot signal is a downlink precoding measurement reference pilot signal.
  • an embodiment of the present invention provides a device for transmitting pilot information, which is applied to a transmitting end, and includes:
  • the configuration module 901 is configured to determine a channel measurement reference pilot signal configured for the receiving end;
  • the sending module 902 is configured to send the number n of ports of the channel measurement reference pilot signal to the receiving end.
  • the sending module is further configured to send a port number of the channel measurement reference pilot signal to the receiving end.
  • the configuration module is configured to determine a channel measurement reference pilot signal configured for the receiving end by using the following manner:
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and the port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system;
  • the port selection information is notified to the receiving end by high layer or physical layer signaling.
  • the high layer signaling is, for example, RRC signaling
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • an embodiment of the present invention provides a device for receiving pilot information, which is applied to a receiving end, and includes:
  • the first obtaining module 1001 is configured to determine a port number n of a channel measurement reference pilot signal configured by the transmitting end;
  • the second obtaining module 1002 is configured to determine a port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection.
  • the second obtaining module is configured to determine a port number according to physical layer configuration signaling, high layer configuration signaling, or blind detection in the following manner:
  • the port set P is ⁇ port 15, port 16 ⁇ ;
  • the port 15 and port 16 are ports of a channel state information measurement reference signal in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the high layer signaling is, for example, RRC signaling
  • the receiving end includes: a user equipment; and the sending end includes: a base station.
  • This example mainly introduces the interference notification technology for measuring pilots. It can multiplex some pilot ports or pilot port groups with better spatial orthogonality. For example, multiple users in the system need to perform precoding based pilot measurements.
  • Channel measurement assuming UE1, UE2, ... UEm, respectively corresponding to the port group g1, g2 ... gm of the channel measurement, find some pilots, and there is similarity between these pilots similar to Figure 11-a or Figure 11-b
  • the better orthogonality shown in the figure But in fact, the complete non-interference is almost non-existent, and the pilot is different from the data.
  • the data can be multi-user pre-coded at the transmitting end according to the information of the channel to eliminate interference.
  • the pilot here cannot be interfered by these means.
  • the unknownness of the channel information does not support the interference cancellation at the transmitting end, and on the other hand, the interference cancellation at the transmitting end affects the accuracy of the channel measurement. Therefore, the present invention contemplates the elimination of interference at the receiving end.
  • precoding CSI-RS i as the first type of measurement pilot for channel measurement
  • precoding CSI-RS j and / or CSI-RS k can be defined as a second type of measurement pilot, and the second type of measurement pilot potentially interferes with the first type of measurement pilot
  • CSI-RS i is separately configured
  • the information and some or all of the information of CSI-RS j and/or CSI-RS k are given to the terminal.
  • the information of the second type of measurement pilot CSI-RS j and/or CSI-RS k notified by the base station to the user terminal may include at least one of the following a-f information:
  • a) transmit power indication information used to indicate the pilot transmit power of the CSI-RS j and/or the CSI-RS k, which may be the power relative to the first type of measurement pilot CSI-RS i; or may be the absolute value of the power
  • sequence parameter indication information used to indicate sequence information, so that the terminal knows the source sequence information of the interference pilot, and performs interference cancellation
  • orthogonal code length indication information indicating a code division multiplexing length used by pilots of CSI-RS j and/or CSI-RS k;
  • pilot density indication information used to indicate the density of the pilot port of CSI-RS j and/or CSI-RS k, such as 1RE/port/RB or 0.5RE/port/RB;
  • port number indication information indicating the number of ports of the pilot of CSI-RS j and/or CSI-RS k so that it determines the size of the interfered area
  • pilot pattern indication information indicating the location of the pilot of the CSI-RS j and/or CSI-RS k to determine the specific location to be interfered with
  • precoding CSI-RS is the main application scenario, the non-precoded CSI-RS is equally applicable.
  • the number K of the second type of measurement pilots is mainly exemplified by one or two cases, and in fact, is not limited to a maximum of two, and can be flexibly determined according to the situation;
  • the pilot interference scenario of Figure 12 may also occur: different transmission resource groups correspond to different second type of measurement pilot signals.
  • the base station needs to consider some or all of the transmission resources of the first type of measurement pilots.
  • the group separately reports the corresponding type 2 measurement pilot information that generates interference.
  • the division manner of the transmission resource group may be based on time-frequency resource division or partitioned based on the port number.
  • the terminal detects configuration signaling to obtain information about the first type of measurement pilots and the second type of measurement pilots. After obtaining the above information, the terminal may use some existing interference cancellation methods to suppress interference, for example, if the information can be learned
  • the interference pilot sequence can extract the interference signal by using the correlation of the sequence and subtract the interference signal from the received signal.
  • the CSI-RS port adopts a code division mode.
  • the base station first determines the channel measurement reference pilot configured for the terminal. If the number of ports is 1, the information of the port index selection needs to be notified.
  • a typical case is to configure multiple sets of ports.
  • the case where the pilot of 1 performs the CSI-RS selection; the base station can support the port index selection information through the high layer signaling; for example, 1 bit indicates the port 15 of the code division multiplexing or 16; and can also indicate through the physical layer signaling;
  • there are more pilot code division multiplexing such as port 15, 16, 17, 18, which can also be used to indicate a specific port index by signaling.
  • the terminal may also determine the port index by performing blind detection on the port included in the set, and perform channel measurement, port collection. It can be ⁇ port15,16 ⁇ or ⁇ port15,16,17,18 ⁇ .
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when executed by a processor.
  • the base station can notify the terminal of the interference pilot information when the pilot signal is spatially multiplexed, so that the terminal can perform interference cancellation when receiving the pilot signal, thereby improving the utilization of the pilot resource.
  • the pilot resource is flexibly configured to improve the utilization of pilot resources.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the base station notifies the terminal of the interference pilot information when the pilot signal is spatially multiplexed, so that the terminal can perform interference cancellation when receiving the pilot signal, thereby improving the utilization of the pilot resource.
  • the pilot resource is flexibly configured to improve the utilization of pilot resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种导频信息的发送方法和装置以及接收方法和装置。所述应用于发送端的导频信息的发送方法包括:为接收端配置第一类信道测量参考导频信号;确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。

Description

一种导频信息的发送方法和装置以及接收方法和装置 技术领域
本文涉及但不限于通信技术领域,尤其涉及的是一种导频信息的发送方法和装置以及接收方法和装置。
背景技术
无线通信***中,发送端经常会采取使用多根天线以获取更高的传输速率。多根天线能够带来信噪比的提升以及支持更多的空间复用层数,相对于发送端不使用CSI(Channel State Information)信息的开环多输入多输出(Multi-input Multi-output,MIMO)技术,使用CSI信息的MIMO技术(闭环MIMO预编码(Precoding)技术)会有更高的容量,是目前主流的4G(the fourth generation of mobile phone mobile communication technology standards,***移动通信技术)标准广泛使用的一种传输技术。闭环MIMO预编码技术的核心思想是接收端反馈信道信息给发送端,发送端根据获得的信道信息使用一些发射预编码技术,可以极大地提高传输性能。对于单用户MIMO,可以直接使用与信道特征矢量信息比较匹配的预编码矢量进行发送预编码;对于多用户MIMO,也需要比较准确的信道信息进行干扰消除。因此,信道信息的获取有着非常重要的作用。在一些4G技术的标准规范中,FDD(Frequency Division Duplexing,频分双工)***下行信道信息的获取的一般流程如下:
发送端(基站)发送下行信道测量导频(CSI-RS(Channel State Information–Reference Signals,信道状态信息参考信号))给接收端,一般来说,每根天线发送一份信道测量导频信号。不同天线发送的信道测量导频信号在时频域或码域上位置是错开的,能够保持正交性不受到互相的干扰,每根天线分别对应一个CSI-RS端口(port)。该信道测量导频用于测量信道信息。在LTE-A(Long Term Evolution-Advanced,长期演进技术的后续演进)中支持基站侧最大8天线端口的CSI-RS发送。基站还发送RRC(Radio Resource Control,无线资源控制)信令配置CSI-RS的相关位置信息和发送周期信息 给终端。基站侧导频信号的发送内容由预先约定的一些规则确定,终端能准确地获知基站侧每个端口在每个时频位置的导频信号发送内容。
终端接收基站侧发送的信道信息测量导频CSI-RS的配置信息,在信令通知的各导频端口发送时频资源位置进行CSI-RS导频信号接收与检测,在终端侧每根接收天线上均获得接收的CSI-RS导频信号,由于终端与基站进行了各发送端口各时频资源位置上导频发送信号内容的约定,因此终端能够准确地获知下行导频发送信号,进而终端根据接收到的导频信号就可以进行下行信道估计获得终端侧接收天线与基站侧发送天线端口间的下行信道响应信息。在下行信道估计时需要考虑实际的导频信号接收时掺杂了噪声及干扰的影响,可以采用LS(Least Square,最小二乘),MMSE(Minimum Mean Square Error,最小均方误差估计),IRC(Interference Rejection Combining,干扰抑制合并)等算法进行信道估计,最终得到各时频资源位置上与发送端口数匹配的下行信道矩阵。
终端根据各导频端口的发送导频信号内容与各接收天线上的接收导频信号,可以估计接收天线与多个发射天线端口之间的信道响应,即可得到各个时频资源位置对应的信道矩阵,进而可以根据信道矩阵计算最优的CSI信息。CSI一般包括PMI(Precoding Matrix Indicator,预编码矩阵索引)/CQI(channel quality indicator,信道质量指示)/RI(Rank Indicator,秩指示)信息三种类型,分别向基站反馈推荐了预编码矩阵、信道质量信息和传输层数。终端通过上行物理层的控制信道或者上行物理层的数据信道将计算得到的CQI/PMI/RI信息反馈给基站。基站基于终端的反馈信息进行传输层数的确定、编码调制方式的确定及发送预编码的确定。
因此,下行信道信息测量导频CSI-RS在信道状态信息的获取过程中有着非常重要的作用,往往影响到预编码信息、信道质量信息和传输层数信息的准确性,进而对MIMO的传输性能有非常大的影响。
4G标准中采用的下行CSI-RS导频为周期CSI-RS导频,在时域上,考虑到信道的变化并不是突然变化的,具有一定的时域相关性,相关时间大于一个子帧的持续时间1ms,因此不必要所有子帧都进行发送,为了节约开销,CSI-RS一般周期发送。所谓周期导频,其概念是基站按照某个周期间隔进 行CSI-RS发送,发送位置可以有不同的子帧位置偏置,下面以LTE-A为列,介绍一下CSI-RS周期及子帧偏置的配置。
如下表1所示,在LTE的标准36.211中,CSI-RS子帧构造(CSI reference signal subframe configuration)具有如下的结构:
Figure PCTCN2017084214-appb-000001
表1
表1中,ICSI-RS是CSI-RS的配置参数,取值0-154,不同的取值会对应不同的CSI-RS的周期和子帧偏置。图1示出了部分CSI-RS配置示例对应的子帧位置发送示意图,分别对应ICSI-RS=0,ICSI-RS=2,ICSI-RS=5的配置。
在频域位置上,每个PRB(Physical Resource Block,物理资源块)对(pair)内都存在CSI-RS,相同的端口(port)在不同的物理资源块对(PRB pair)内的发送图样(式样)相同。CSI-RS的式样(pattern)如图2所示。PRB对可以参考LTE协议36.211中的规定,典型的情况包括12个频域的子载波和14个时域OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
LTE***中定义了一个PRB对内有40个RE(Resource Element,资源单元)可以被用做CSI-RS,被分为了5个pattern,每个pattern包含8个RE,如上图2所示。CSI-RS导频平均每个端口(Port)在一个PRB对内占用1个RE,属于一份CSI-RS资源(resource)的所有端口(port)需要限制在一个图2所示的图样#i内。目前一套CSI-RS支持的端口数最大为8,因此在端口为8时,有5种位置候选,在端口数为4时,有10种位置可配置。 端口t数为2时,有20种配置。
非周期CSI-RS是一种由基站即时触发的导频,该导频可以动态地触发、针对特定UE(User Equipment,用户设备)或UE组的信道测量进行发送,存在于一个或较少的几个子帧中,并不进行长时间的持续发送,终端(用户设备)通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)或ePDCCH(Enhanced Physical Downlink Control Channel,增强的物理下行控制信道)中传输的控制信息后可获知非周期CSI-RS的发送位置后可以在对应位置上进行导频检测。相对于周期导频,非周期导频有着配置更加灵活的优点,非常适合UE specific(UE专有)的导频配置,这样可以使得不同的UE使用不同的导频端口虚拟化技术,可以获得更好的信道信息反馈效率;这种导频在用户数目较小时,导频开销比周期导频要小。与周期CSI-RS一样,非周期CSI-RS的导频发送信号的参数(比如位置、端口数、使用的序列)可以是由终端预先与基站约定好或基站高层信令配置好的,其中,高层是指物理层以上的层,比如,RRC(Radio Resource Control,无线资源控制)层等。
非周期CSI-RS一般是预编码导频且是面向特定用户或用户组的,而不是面向小区内所有用户的,非周期CSI-RS通过支持预编码能够有效地降低测量时的端口数目,从而降低CSI反馈的计算量。但同时,由于每个用户的导频都不一样,所以用户之间不能像周期导频一样进行导频共享,当用户数目较多时资源利用率降低。
因此,不管是周期导频还是非周期导频,都存在导频资源利用率低下的问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种导频信息的发送方法和装置以及接收方法和装置,能够提高导频资源利用率。
本发明实施例提供一种导频信息的发送方法,应用于发送端,该方法包括:
为接收端配置第一类信道测量参考导频信号;
确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
可选地,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
可选地,所述方法还包括:
向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或
向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
可选地,所述为接收端配置第一类信道测量参考导频信号,包括:
将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
所述确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号,包括:
确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号。
可选地,所述第一类信道测量参考导频信号的发送资源包括:发送所述 第一类信道测量参考导频信号的时频位置资源。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的发送装置,应用于发送端,包括:
第一配置模块,设置为为接收端配置第一类信道测量参考导频信号;
第二配置模块,设置为确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
可选地,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
可选地,所述第二配置模块,还设置为向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
可选地,第一配置模块,设置为采用以下方式为接收端配置第一类信道测量参考导频信号:
将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
第二配置模块,设置为采用以下方式确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号:
确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的接收方法,应用于接收端,该方法包括:
接收发送端配置的第一类信道测量参考导频信号的配置信息;
接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
可选地,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
可选地,所述方法还包括:
接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或
接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
可选地,所述接收发送端配置的第一类信道测量参考导频信号的配置信息,包括:
接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
所述接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息,包括:
接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息。
可选地,所述第一类信道测量参考导频信号的发送资源包括:发送所述 第一类信道测量参考导频信号的时频位置资源。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的接收装置,应用于接收端,包括:
第一接收模块,设置为接收发送端配置的第一类信道测量参考导频信号的配置信息;
第二接收模块,设置为接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
可选地,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
可选地,第二接收模块,还用于接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
可选地,第一接收模块,设置为采用以下方式接收发送端配置的第一类信道测量参考导频信号的配置信息:
接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
第二接收模块,设置为采用以下方式接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息:
接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的发送方法,应用于发送端,该方法包括:
确定为接收端配置的信道测量参考导频信号;
向所述接收端发送所述信道测量参考导频信号的端口数目。
可选地,所述方法还包括:
向所述接收端发送所述信道测量参考导频信号的端口号。
可选地,确定为接收端配置的信道测量参考导频信号,包括:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
可选地,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
所述端口选择信息通过高层或物理层信令通知给所述接收端。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的发送装置,应用于发送端,包括:
配置模块,设置为确定为接收端配置的信道测量参考导频信号;
发送模块,设置为向所述接收端发送所述信道测量参考导频信号的端口数目。
可选地,发送模块,还用于向所述接收端发送所述信道测量参考导频信号的端口号。
可选地,配置模块,设置为采用以下方式确定为接收端配置的信道测量参考导频信号:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
可选地,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参 考信号的端口;
所述端口选择信息通过高层或物理层信令通知给所述接收端。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的接收方法,应用于接收端,该方法包括:
确定发送端配置的信道测量参考导频信号的端口数目;
根据物理层配置信令、高层配置信令或盲检测确定端口号。
可选地,当所述端口数目为1时,根据物理层配置信令、高层配置信令或盲检测确定端口号,包括:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
可选地,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例提供一种导频信息的接收装置,应用于接收端,包括:
第一获取模块,设置为确定发送端配置的信道测量参考导频信号的端口数目;
第二获取模块,设置为根据物理层配置信令、高层配置信令或盲检测确定端口号。
可选地,第二获取模块,设置为采用以下方式根据物理层配置信令、高层配置信令或盲检测确定端口号:
当所述端口数目为1时,从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
可选地,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参 考信号的端口。
可选地,所述接收端包括:用户设备;所述发送端包括:基站。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
与相关技术相比,本发明实施例提供的一种导频信息的发送方法和装置以及接收方法和装置,基站通过向终端通知导频信号空分复用时的干扰导频信息,使得终端能够在接收导频信号时进行干扰消除,从而提高导频资源利用率。另一方面,通过灵活配置导频端口,从而提高导频资源利用率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为背景技术的LTE中CSI-RS配置示例对应的子帧位置发送示意图。
图2为背景技术的LTE中CSI-RS Pattern示意图。
图3为本发明实施例的一种导频信息的发送方法(发送端)流程图。
图4为本发明实施例的一种导频信息的发送方法(发送端)流程图。
图5为本发明实施例的另一种导频信息的接收方法(接收端)流程图。
图6为本发明实施例的另一种导频信息的接收方法(接收端)流程图。
图7为本发明实施例的一种导频信息的发送装置(发送端)示意图。
图8为本发明实施例的一种导频信息的接收装置(接收端)示意图。
图9为本发明实施例的另一种导频信息的发送装置(发送端)示意图。
图10为本发明实施例的另一种导频信息的接收装置(接收端)示意图。
图11-a为本发明示例1中导频干扰(两个导频信号)示意图。
图11-b为本发明示例1中导频干扰(三个导频信号)示意图。
图12为本发明示例3中导频干扰示意图。
详述
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图3所示,本发明实施例提供了一种导频信息的发送方法,应用于发送端,该方法包括:
S110,为接收端配置第一类信道测量参考导频信号;
S120,确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰;
其中,所述第一类信道测量参考导频信号包含一个或多个端口;
其中,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息;
其中,向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;
向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息;
其中,所述为接收端配置第一类信道测量参考导频信号,包括:
将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
其中,所述确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号,包括:
确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号;
其中,所述第一类信道测量参考导频信号的发送资源包括:发送所述第一类信道测量参考导频信号的时频位置资源;
其中,所述第一类信道测量参考导频信号为下行预编码测量参考导频信号;
其中,所述接收端包括:用户设备;所述发送端包括:基站;
如图4所示,本发明实施例提供了一种导频信息的发送方法,应用于发送端,该方法包括:
S410,确定为接收端配置的信道测量参考导频信号;
S420,向所述接收端发送所述信道测量参考导频信号的端口数目n;
其中,所述方法还包括:
向所述接收端发送所述信道测量参考导频信号的端口号;
其中,确定为接收端配置的信道测量参考导频信号,包括:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用;
所述方法还包括:
向所述接收端发送端口选择信息;
所述端口选择信息包括:端口号;
其中,所述端口集合P为{端口15,端口16};
其中,所述端口集合P为{端口15,端口16,端口17,端口18};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
所述端口选择信息通过高层或物理层信令通知给所述接收端;
其中,所述高层信令比如:RRC(Radio Resource Control,无线资源控制)信令;
其中,所述接收端包括:用户设备;所述发送端包括:基站;
如图5所示,本发明实施例提供了一种导频信息的接收方法,应用于接收端,该方法包括:
S510,接收发送端配置的第一类信道测量参考导频信号的配置信息;
S520,接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰;
其中,所述第一类信道测量参考导频信号包含一个或多个端口;
其中,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息;
其中,所述方法还包括:
接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或
接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
其中,所述接收发送端配置的第一类信道测量参考导频信号的配置信息,包括:
接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
所述接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息,包括:
接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息;
其中,所述第一类信道测量参考导频信号的发送资源包括:发送所述第一类信道测量参考导频信号的时频位置资源;
其中,所述第一类信道测量参考导频信号为下行预编码测量参考导频信号;
其中,所述接收端包括:用户设备;所述发送端包括:基站;
如图6所示,本发明实施例提供了一种导频信息的接收方法,应用于接收端,该方法包括:
S610,确定发送端配置的信道测量参考导频信号的端口数目n;
S620,根据物理层配置信令、高层配置信令或盲检测确定端口号;
其中,所述方法还包括:
当所述端口数目n为1时,根据物理层配置信令、高层配置信令或盲检测确定端口号,包括:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用;
其中,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
其中,所述高层信令比如:RRC信令;
其中,所述接收端包括:用户设备;所述发送端包括:基站;
如图7所示,本发明实施例提供了一种导频信息的发送装置,应用于发 送端,包括:
第一配置模块701,设置为为接收端配置第一类信道测量参考导频信号;
第二配置模块702,设置为确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
其中,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
其中,所述第二配置模块,还设置为向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
其中,第一配置模块,设置为采用以下方式为接收端配置第一类信道测量参考导频信号:
将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
第二配置模块,设置为采用以下方式确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号:
确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号。
其中,所述接收端包括:用户设备;所述发送端包括:基站。
其中,所述第一类信道测量参考导频信号为下行预编码测量参考导频信 号。
如图8所示,本发明实施例提供了一种导频信息的接收装置,应用于接收端,包括:
第一接收模块801,设置为接收发送端配置的第一类信道测量参考导频信号的配置信息;
第二接收模块802,设置为接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
其中,所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
其中,第二接收模块,还设置为接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
其中,第一接收模块,设置为采用以下方式接收发送端配置的第一类信道测量参考导频信号的配置信息:
接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
第二接收模块,设置为采用以下方式接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息:
接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息。
其中,所述接收端包括:用户设备;所述发送端包括:基站。
其中,所述第一类信道测量参考导频信号为下行预编码测量参考导频信号。
如图9所示,本发明实施例提供了一种导频信息的发送装置,应用于发送端,包括:
配置模块901,设置为确定为接收端配置的信道测量参考导频信号;
发送模块902,设置为向所述接收端发送所述信道测量参考导频信号的端口数目n。
其中,发送模块,还设置为向所述接收端发送所述信道测量参考导频信号的端口号。
其中,配置模块,设置为采用以下方式确定为接收端配置的信道测量参考导频信号:
从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用;
其中,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
所述端口选择信息通过高层或物理层信令通知给所述接收端。
其中,所述高层信令比如:RRC信令;
其中,所述接收端包括:用户设备;所述发送端包括:基站。
如图10所示,本发明实施例提供了一种导频信息的接收装置,应用于接收端,包括:
第一获取模块1001,设置为确定发送端配置的信道测量参考导频信号的端口数目n;
第二获取模块1002,设置为根据物理层配置信令、高层配置信令或盲检测确定端口号。
其中,第二获取模块,设置为采用以下方式根据物理层配置信令、高层配置信令或盲检测确定端口号:
当所述端口数目n为1时,从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
其中,所述端口集合P为{端口15,端口16};
所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口。
其中,所述高层信令比如:RRC信令;
其中,所述接收端包括:用户设备;所述发送端包括:基站。
示例1
本示例主要介绍测量导频的干扰通知技术,可以将一些空间正交性较好的导频端口或导频端口组进行复用,例如,***中多个用户需要进行基于预编码测量导频的信道测量,假设有UE1,UE2,……UEm,分别对应信道测量的端口组g1,g2……gm,找到一些导频,这些导频之间存在类似于附图11-a或图11-b中所示的较好的正交性。但是实际上,完全的无干扰几乎是不存在的,而且导频与数据不同,数据可以根据信道的信息进行发射端的多用户预编码来消除干扰,这里的导频则不能通过这些手段进行干扰消除,一方面是信道信息的未知性不支持发射端干扰消除,另外一方面是发射端干扰消除会影响信道测量的准确性。因此,本发明考虑对接收端的干扰进行消除。
如附图11-a或附图11-b所示,对于UEi,我们把预编码CSI-RS i定义为第一类测量导频,用于信道测量,此时,预编码CSI-RS j和/或CSI-RS k可以定义为第二类测量导频,第二类测量导频潜在地对第一类测量导频产生干扰;基站确定了上述复用方式后,会分别配置CSI-RS i的信息以及CSI-RS j和/或CSI-RS k的部分或全部信息给终端。
基站通知给用户终端的第二类测量导频CSI-RS j和/或CSI-RS k的信息可以包括以下a-f信息中的至少一种:
a)发送功率指示信息,用于指示CSI-RS j和/或CSI-RS k的导频发送功率,可以是相对第一类测量导频CSI-RS i的功率;也可以是功率绝对值
b)序列参数指示信息,用于指示序列信息,以便终端知道干扰导频的信源序列信息,进行干扰消除;
c)正交码长度指示信息,用于指示CSI-RS j和/或CSI-RS k的导频使用的码分复用长度;
d)导频密度指示信息,用于指示CSI-RS j和/或CSI-RS k的导频端口的密度,比如是1RE/port/RB还是0.5RE/port/RB;
e)端口数目指示信息,用于指示CSI-RS j和/或CSI-RS k的导频的端口数目,以便其确定干扰的区域大小;
f)导频图样(pattern)指示信息,用于指示CSI-RS j和/或CSI-RS k的导频的位置,以便确定被干扰的具***置;
需要指出的是,虽然预编码CSI-RS是主要应用场景,但非预编码CSI-RS也是同样可以应用的。
示例2
在示例1中,第二类测量导频的个数K主要举例了1个或2个的情况,实际上,不限于最大2个,而且可以根据情况灵活地确定;
在灵活确定时,基站需要向终端配置K的数值,比如,如果采用1bit信令,可以分别指示K=0/1;如果采用2bit信令,可以分别指示K=0/1/2/3;
示例3
除了附图11-a或附图11-b中的导频干扰情况,可能还会出现附图12中的导频干扰情形:不同的发送资源组对应于不同的第二类测量导频信号。附图12的情况下,基站需要考虑对第一类测量导频的部分或全部的发送资源 组分别通知对应的产生干扰的第二类测量导频信息。其中,发送资源组的划分方式可以是基于时频资源划分,或者是基于port的编号进行划分。
示例4
终端检测配置信令获取对应的第一类测量导频和第二类测量导频的信息,获取上述信息后,终端可以利用已有的一些干扰消除的方法对干扰进行抑制,例如,如果能够获知干扰导频序列,可以利用序列的相关性提取出干扰信号,并从接收信号中减掉所述干扰信号。
示例5
本示例主要描述灵活的导频端口配置。CSI-RS端口采用码分方式,基站首先确定为终端配置的信道测量参考导频,如果端口数目为1,则还需要通知port索引选择的信息,一种比较典型的情况是配置多套port为1的导频进行CSI-RS选择的情况;基站可以通过高层信令来支持端口索引选择信息;比如,1bit来指示码分复用的port 15还是16;也可以通过物理层信令指示;如果未来的版本中有更多的导频码分复用,比如port15,16,17,18,也可以采用类似方式,通过信令指示具体的port索引。
示例6
在示例5中,如果基站灵活地在port集合中挑选了一个port,但没有通知终端,终端也可以通过对集合中包含的port进行盲检测的方式来确定端口索引,并进行信道测量,port集合可以是{port15,16}或{port15,16,17,18}。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
上述实施例提供的一种导频信息的发送方法和装置以及接收方法和装 置,基站通过向终端通知导频信号空分复用时的干扰导频信息,使得终端能够在接收导频信号时进行干扰消除,从而提高导频资源利用率。另一方面,通过灵活配置导频端口,从而提高导频资源利用率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。
如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
工业实用性
本发明实施例提供的技术方案,基站通过向终端通知导频信号空分复用时的干扰导频信息,使得终端能够在接收导频信号时进行干扰消除,从而提高导频资源利用率。另一方面,通过灵活配置导频端口,从而提高导频资源利用率。

Claims (40)

  1. 一种导频信息的发送方法,应用于发送端,该方法包括:
    为接收端配置第一类信道测量参考导频信号;
    确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
    其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
  2. 如权利要求1所述的方法,其中:
    所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
    发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
  3. 如权利要求1所述的方法,其中:
    所述方法还包括:
    向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或
    向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
  4. 如权利要求1所述的方法,其中:
    所述为接收端配置第一类信道测量参考导频信号,包括:
    将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
    从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
    所述确定对所述第一类信道测量参考导频信号产生干扰的第二类信道 测量参考导频信号,包括:
    确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号。
  5. 如权利要求4所述的方法,其中:
    所述第一类信道测量参考导频信号的发送资源包括:发送所述第一类信道测量参考导频信号的时频位置资源。
  6. 如权利要求1-5中任一项所述的方法,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  7. 一种导频信息的发送装置,应用于发送端,包括:
    第一配置模块,设置为为接收端配置第一类信道测量参考导频信号;
    第二配置模块,设置为确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号;向所述接收端发送所述第二类信道测量参考导频信号的参数信息;
    其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
  8. 如权利要求7所述的装置,其中:
    所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
    发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
  9. 如权利要求7所述的装置,其中:
    所述第二配置模块,还设置为向接收端发送第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或向接收端发送K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
  10. 如权利要求7所述的装置,其中:
    第一配置模块,设置为采用以下方式为接收端配置第一类信道测量参考导频信号:
    将为接收端配置的第一类信道测量参考导频信号的发送资源分为N组,N大于或等于1;
    从第一类信道测量参考导频信号的N组发送资源中选出M组,M<=N;
    第二配置模块,设置为采用以下方式确定对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号:
    确定M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号。
  11. 如权利要求7-10中任一项所述的装置,其特征在于:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  12. 一种导频信息的接收方法,应用于接收端,该方法包括:
    接收发送端配置的第一类信道测量参考导频信号的配置信息;
    接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
    其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
  13. 如权利要求12所述的方法,其中:
    所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
    发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
  14. 如权利要求12所述的方法,其中:
    所述方法还包括:
    接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或
    接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
  15. 如权利要求12所述的方法,其中:
    所述接收发送端配置的第一类信道测量参考导频信号的配置信息,包括:
    接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
    所述接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息,包括:
    接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息。
  16. 如权利要求15所述的方法,其中:
    所述第一类信道测量参考导频信号的发送资源包括:发送所述第一类信道测量参考导频信号的时频位置资源。
  17. 如权利要求12-16中任一项所述的方法,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  18. 一种导频信息的接收装置,应用于接收端,包括:
    第一接收模块,设置为接收发送端配置的第一类信道测量参考导频信号的配置信息;
    第二接收模块,设置为接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息;
    其中,所述第一类信道测量参考导频信号用于所述接收端进行信道测 量,所述第二类信道测量参考导频信号对所述第一类信道测量参考导频信号中的部分或全部的端口产生干扰。
  19. 如权利要求18所述的装置,其中:
    所述第二类信道测量参考导频信号的参数包括以下参数的至少一种:
    发送功率指示信息、序列参数指示信息、正交码长度指示信息、导频密度指示信息、端口数目指示信息、导频图样指示信息。
  20. 如权利要求18所述的装置,其中:
    第二接收模块,还用于接收发送端发送的第二类信道测量参考导频信号的套数K,所述K大于或等于1;和/或接收发送端发送的K套第二类信道测量参考导频信号分别对应的第一类信道测量参考导频信号的干扰端口信息。
  21. 如权利要求18所述的装置,其中:
    第一接收模块,设置为采用以下方式接收发送端配置的第一类信道测量参考导频信号的配置信息:
    接收发送端从N组发送资源中选出的M组发送资源对应的第一类信道测量参考导频信号的配置信息;
    第二接收模块,设置为采用以下方式接收对所述第一类信道测量参考导频信号产生干扰的第二类信道测量参考导频信号的配置信息:
    接收M组第一类信道测量参考导频信号的发送资源对应的第二类信道测量参考导频信号的配置信息。
  22. 如权利要求18-21中任一项所述的装置,其特征在于:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  23. 一种导频信息的发送方法,应用于发送端,该方法包括:
    确定为接收端配置的信道测量参考导频信号;
    向所述接收端发送所述信道测量参考导频信号的端口数目。
  24. 如权利要求23所述的方法,其中:
    所述方法还包括:
    向所述接收端发送所述信道测量参考导频信号的端口号。
  25. 如权利要求24所述的方法,其中:
    确定为接收端配置的信道测量参考导频信号,包括:
    从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
  26. 如权利要求25所述的方法,其中:
    所述端口集合P为{端口15,端口16};
    所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
    所述端口选择信息通过高层或物理层信令通知给所述接收端。
  27. 如权利要求23-26中任一项所述的方法,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  28. 一种导频信息的发送装置,应用于发送端,包括:
    配置模块,设置为确定为接收端配置的信道测量参考导频信号;
    发送模块,设置为向所述接收端发送所述信道测量参考导频信号的端口数目。
  29. 如权利要求28所述的装置,其中:
    发送模块,还用于向所述接收端发送所述信道测量参考导频信号的端口号。
  30. 如权利要求29所述的装置,其中:
    配置模块,设置为采用以下方式确定为接收端配置的信道测量参考导频信号:
    从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
  31. 如权利要求30所述的装置,其中:
    所述端口集合P为{端口15,端口16};
    所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口;
    所述端口选择信息通过高层或物理层信令通知给所述接收端。
  32. 如权利要求28-31中任一项所述的装置,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  33. 一种导频信息的接收方法,应用于接收端,该方法包括:
    确定发送端配置的信道测量参考导频信号的端口数目;
    根据物理层配置信令、高层配置信令或盲检测确定端口号。
  34. 如权利要求33所述的方法,其中:
    当所述端口数目为1时,根据物理层配置信令、高层配置信令或盲检测确定端口号,包括:
    从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
  35. 如权利要求34所述的方法,其中:
    所述端口集合P为{端口15,端口16};
    所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口。
  36. 如权利要求33-35中任一项所述的方法,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
  37. 一种导频信息的接收装置,应用于接收端,包括:
    第一获取模块,设置为确定发送端配置的信道测量参考导频信号的端口数目;
    第二获取模块,设置为根据物理层配置信令、高层配置信令或盲检测确定端口号。
  38. 如权利要求37所述的装置,其中:
    第二获取模块,设置为采用以下方式根据物理层配置信令、高层配置信令或盲检测确定端口号:
    当所述端口数目为1时,从端口集合P中选择1个端口,所述端口集合P中的端口以码分方式进行复用。
  39. 如权利要求38所述的装置,其中:
    所述端口集合P为{端口15,端口16};
    所述端口15和端口16为长期演进LTE***中的信道状态信息测量参考信号的端口。
  40. 如权利要求37-39中任一项所述的装置,其中:
    所述接收端包括:用户设备;
    所述发送端包括:基站。
PCT/CN2017/084214 2016-05-13 2017-05-12 一种导频信息的发送方法和装置以及接收方法和装置 WO2017194010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610319112.2A CN107370584B (zh) 2016-05-13 2016-05-13 一种导频信息的发送方法和装置以及接收方法和装置
CN201610319112.2 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017194010A1 true WO2017194010A1 (zh) 2017-11-16

Family

ID=60266288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084214 WO2017194010A1 (zh) 2016-05-13 2017-05-12 一种导频信息的发送方法和装置以及接收方法和装置

Country Status (2)

Country Link
CN (1) CN107370584B (zh)
WO (1) WO2017194010A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019222882A1 (en) * 2018-05-21 2019-11-28 Nokia Shanghai Bell Co., Ltd. Channel state information feedback
CN110943819A (zh) * 2019-10-30 2020-03-31 深圳供电局有限公司 导频分配方法和装置、计算机设备、计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106842B (zh) * 2018-10-25 2022-04-22 中兴通讯股份有限公司 一种消除邻近信道干扰的方法、电子设备和可读存储介质
CN112994832B (zh) * 2019-12-13 2023-03-31 ***通信有限公司研究院 参数确定方法、装置、相关设备及存储介质
CN116264488A (zh) * 2021-12-14 2023-06-16 维沃移动通信有限公司 干扰测量方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055508A (zh) * 2009-11-02 2011-05-11 富士通株式会社 导频发送方法及相应信道估计方法
CN102118867A (zh) * 2009-12-31 2011-07-06 电信科学技术研究院 一种测量导频的传输方法及装置
CN102195673A (zh) * 2011-02-25 2011-09-21 福建三元达通讯股份有限公司 一种导频污染消除方法
CN103763071A (zh) * 2010-08-02 2014-04-30 华为技术有限公司 通知参考信号配置信息的方法及设备
US20140376464A1 (en) * 2013-06-21 2014-12-25 Electronics & Telecommunications Research Institute Method for communication using large-scale antenna in multi-cell environment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241916B1 (ko) * 2010-02-07 2013-03-11 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
WO2012037335A1 (en) * 2010-09-15 2012-03-22 Huawei Technologies Co., Ltd. System and method for channel state information feedback in wireless communications systems
US8982866B1 (en) * 2010-10-08 2015-03-17 Marvell International Ltd. Data channel noise estimation using control channel
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、***及设备
CN105515725B (zh) * 2014-09-26 2020-07-07 中兴通讯股份有限公司 导频发送方法、信道信息测量反馈方法、发送端及接收端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055508A (zh) * 2009-11-02 2011-05-11 富士通株式会社 导频发送方法及相应信道估计方法
CN102118867A (zh) * 2009-12-31 2011-07-06 电信科学技术研究院 一种测量导频的传输方法及装置
CN103763071A (zh) * 2010-08-02 2014-04-30 华为技术有限公司 通知参考信号配置信息的方法及设备
CN102195673A (zh) * 2011-02-25 2011-09-21 福建三元达通讯股份有限公司 一种导频污染消除方法
US20140376464A1 (en) * 2013-06-21 2014-12-25 Electronics & Telecommunications Research Institute Method for communication using large-scale antenna in multi-cell environment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019222882A1 (en) * 2018-05-21 2019-11-28 Nokia Shanghai Bell Co., Ltd. Channel state information feedback
CN110943819A (zh) * 2019-10-30 2020-03-31 深圳供电局有限公司 导频分配方法和装置、计算机设备、计算机可读存储介质
CN110943819B (zh) * 2019-10-30 2022-08-30 深圳供电局有限公司 导频分配方法和装置、计算机设备、计算机可读存储介质

Also Published As

Publication number Publication date
CN107370584A (zh) 2017-11-21
CN107370584B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
US10827375B2 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
JP7337747B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
JP6704618B2 (ja) データ送信方法、シグナリング送信方法、装置、およびシステム
KR102402529B1 (ko) 감소된 밀도 csi-rs를 위한 메커니즘들
JP6955000B2 (ja) 無線通信システムにおいて干渉測定のための方法及びそのための装置
EP3295724B1 (en) Systems and methods for adaptive pilot allocation
CN107733549B (zh) 信道质量信息计算方法、装置及***
US8711716B2 (en) Multiple CQI feedback for cellular networks
CN105991222B (zh) 配置信息通知方法、获取方法、装置、基站及终端
WO2017194010A1 (zh) 一种导频信息的发送方法和装置以及接收方法和装置
EP2828984B1 (en) Artificial interference injection for channel state information reporting
JP2015514351A5 (zh)
US20150195071A1 (en) Method and Apparatus Providing Inter-Transmission Point Phase Relationship Feed-Back for Joint Transmission CoMP
WO2018082578A1 (zh) 一种导频参数的反馈、配置方法及装置、用户终端、基站
JP2020520151A (ja) マルチユーザ複数入力複数出力のための、干渉測定およびチャネル状態情報フィードバック
WO2014063647A1 (zh) 一种确定信道状态信息的方法及终端
US20130301447A1 (en) Method and System for Reporting Feedback in Cooperative Multipoint Transmission
CN107733611B (zh) 准共位置信息的处理方法及装置
US9615280B2 (en) Calculating and reporting channel characteristics
US9119082B1 (en) Reference signal design for interference measurement
EP3335351B1 (en) Cluster-specific reference signal configuration for cell coordination

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795628

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795628

Country of ref document: EP

Kind code of ref document: A1