WO2017193396A1 - 信息处理方法、终端及基站 - Google Patents

信息处理方法、终端及基站 Download PDF

Info

Publication number
WO2017193396A1
WO2017193396A1 PCT/CN2016/082119 CN2016082119W WO2017193396A1 WO 2017193396 A1 WO2017193396 A1 WO 2017193396A1 CN 2016082119 W CN2016082119 W CN 2016082119W WO 2017193396 A1 WO2017193396 A1 WO 2017193396A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
resource configuration
terminal
interleaving
configuration message
Prior art date
Application number
PCT/CN2016/082119
Other languages
English (en)
French (fr)
Inventor
万莉
程晶
李超君
邵家枫
吴晨璐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/082119 priority Critical patent/WO2017193396A1/zh
Publication of WO2017193396A1 publication Critical patent/WO2017193396A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an information processing method, a terminal, and a base station.
  • the uplink control signaling and the uplink service data need to be transmitted between the terminal and the base station.
  • LTE Long Term Evolution
  • the uplink control signaling and the uplink service data are interleaved.
  • the existing interleaving technology is applicable to a system with a transmission time interval (TTI) length of 1 ms.
  • TTI transmission time interval
  • sTTI short transmission time interval
  • the OS is an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the embodiments of the present invention provide an information processing method, a terminal, and a base station different from the prior art, in order to reduce the complexity of interleaving, and/or improve the interleaving efficiency.
  • an embodiment of the present invention provides an information processing method, including:
  • the terminal receives the first uplink resource configuration message sent by the base station, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal;
  • the interleaving parameter includes: C, C for indicating the minimum number of columns or the total number of columns of the interlace matrix, and C is greater than or equal to the number of orthogonal frequency division multiplexing OFDM symbols occupied by the time-frequency resource block;
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the terminal receives the first uplink resource configuration message sent by the base station, and determines an interleaving parameter that includes C for indicating the minimum number of columns or the total number of columns of the interlace matrix, where C is greater than or equal to The number of OFDM symbols occupied by the time-frequency resource block allocated by the base station to the terminal; Further, the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter; it can be seen that, since the number of columns of the interlace matrix is greater than or equal to the number of OFDM symbols occupied by the time-frequency resource block allocated by the base station to the terminal, therefore, for the sTTI In the system with a short length, the number of columns of the interlace matrix can be adjusted during interleaving, so that systems with different sTTI lengths can be interleaved by using an interleaving manner similar to the existing 3GPP LET protocol, which reduces the complexity of interleaving and thus improves the complexity
  • the terminal determines the interleaving parameters, including:
  • the terminal receives the second uplink resource configuration message sent by the base station, where the second uplink resource configuration message includes: C;
  • the terminal determines C according to the second uplink resource configuration message.
  • the interleaving parameter further includes: C RI , where C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix;
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter, including:
  • the RI is written into the preset C RI column in the 0th column to the C- 1th column of the interleave matrix.
  • the terminal determines the interleaving parameters, including:
  • the terminal receives the third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: C RI ;
  • the terminal determines the C RI according to the third uplink resource configuration message.
  • the interleaving parameters further include: C RI and RI column label, C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate the column occupied by the RI in the interleaving matrix.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter, including:
  • the RI is written into the C RI column corresponding to the RI column label of the interleaving matrix.
  • the terminal determines the interleaving parameters, including:
  • the terminal receives the third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: a C RI and a RI column label;
  • the terminal determines the C RI and the RI column label according to the third uplink resource configuration message.
  • the interleaving parameter further includes: C ACK , where C ACK is used to indicate a hybrid automatic repeat request in the interlace matrix - confirming the number of columns occupied by the HARQ-ACK;
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter, including:
  • the HARQ-ACK is written into a preset C ACK column in the 0th column to the C- 1th column of the interleave matrix.
  • the terminal determines the interleaving parameters, including:
  • the terminal receives the fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: C ACK ;
  • the terminal determines a C ACK according to the fourth uplink resource configuration message.
  • the interleaving parameters further include: C ACK and ACK column label, C ACK is used to indicate the hybrid automatic repeat request in the interlace matrix - the number of columns occupied by the acknowledgment HARQ-ACK, and the ACK column label is used to indicate the interleaving The column number occupied by the HARQ-ACK in the matrix;
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter, including:
  • the HARQ-ACK is written into the C ACK column corresponding to the ACK column label of the interlace matrix.
  • the terminal determines the interleaving parameters, including:
  • a fourth uplink resource configuration message sent by the base station receives, by the terminal, a fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: a C ACK and an ACK column label;
  • the terminal determines a C ACK and an ACK column label according to the fourth uplink resource configuration message.
  • C is greater than or equal to the sum of the number of columns occupied by RI in the interleaving matrix and the number of columns occupied by HARQ-ACK in the interleaving matrix.
  • the terminal may determine the number of columns of the interleave matrix, the number of columns occupied by the RI, the column label, and the number of columns occupied by the HARQ-ACK according to the configuration message sent by the base station or according to a protocol pre-defined rule or the like.
  • Interleaving parameters such as column labels, and then interleaving the information to be transmitted; since the number of columns of the interleaving matrix is greater than or equal to the number of OFDM symbols occupied by the time-frequency resource blocks allocated by the base station to the terminal (ie, for interleaving systems with shorter sTTI lengths)
  • the number of columns of the interleaving matrix can be adjusted, so that systems with different sTTI lengths can be interleaved by using an interleaving manner similar to the existing 3GPP LET protocol, thereby reducing interleaving complexity; further, due to the provision in the interlacing matrix Sufficient RI and HARQ-ACK occupy the number of columns, so that the HARQ-ACK discards the uplink service data discretely, thereby reducing the performance loss of the uplink service data.
  • the terminal after the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter, the terminal further includes:
  • the terminal reads the interlace matrix in columns to obtain an output bit sequence; wherein the number of output bit sequences is less than or equal to the product of the number of rows of the interleave matrix and the total number of columns.
  • the terminal reads the interlace matrix in columns to obtain an output bit sequence, and further includes:
  • the terminal sends the output bit sequence to the base station through the physical uplink shared channel PUSCH, so that the base station deinterleaves the output bit sequence.
  • an embodiment of the present invention provides an information processing method, including:
  • the base station sends a first uplink resource configuration message to the terminal, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal;
  • the base station receives the output bit sequence sent by the terminal through the physical uplink shared channel PUSCH, and deinterleaves the output bit sequence; wherein, the output bit sequence is that the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter, and reads by column
  • the output bit sequence obtained by the interleaving matrix, the number of output bit sequences is less than or equal to the product of the number of rows of the interleaving matrix and the total number of columns.
  • the base station sends a first uplink resource configuration message carrying the time-frequency resource configuration parameter to the terminal; further, the base station receives the output bit sequence sent by the terminal through the PUSCH (the output bit sequence is the terminal according to the time-frequency)
  • the output bit sequence obtained by reading the interleaving matrix is read out in columns, and the number of output bit sequences is less than or equal to the product of the number of rows of the interleave matrix and the total number of columns, and is output.
  • the bit sequence is deinterleaved according to the inverse process of the interleaving by the terminal; since the terminal can uniformly interleave the systems with different sTTI lengths by using an interleaving method similar to the existing 3GPP LET protocol (reducing the interleaving complexity), the base station is also The deinterleaving method similar to the de-interlacing method of the existing 3GPP LTE protocol can be used to deinterleave different sTTI length systems, thereby reducing the understanding of interleaving complexity and improving the interleaving efficiency.
  • the base station before receiving the output bit sequence sent by the terminal and deinterleaving the output bit sequence, the base station further includes:
  • the base station sends a second uplink resource configuration message to the terminal, where the second uplink resource configuration message includes: C, C belongs to the interleaving parameter, C is used to indicate the minimum number of columns or the total number of columns of the interleaving matrix, and C is greater than or equal to the time-frequency resource block.
  • C is greater than or equal to the sum of the number of columns occupied by RI in the interleaving matrix and the number of columns occupied by HARQ-ACK in the interleaving matrix.
  • the system with a shorter sTTI length interleaves the matrix during deinterleaving.
  • the number of columns can be adjusted, so that systems with different sTTI lengths can be deinterleaved by using a deinterleaving method similar to the deinterleaving method of the existing 3GPP LET protocol, thereby reducing the understanding of interleaving complexity; further, since the interleaving matrix provides sufficient
  • the number of columns of the RI and the HARQ-ACK is such that the HARQ-ACK discretizes the uplink service data, thereby reducing the performance loss of the uplink service data.
  • the interleaving parameter further includes: C RI
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence
  • the method further includes:
  • the base station sends a third uplink resource configuration message to the terminal, where the third uplink resource configuration message includes: C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix.
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence, the method further includes:
  • the eNB sends a third uplink resource configuration message to the terminal, where the third uplink resource configuration message includes: a C RI and a RI column label, where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate The column label occupied by RI in the interleaving matrix.
  • the interleaving parameter further includes: C ACK
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence
  • the method further includes:
  • the base station sends a fourth uplink resource configuration message to the terminal, where the fourth uplink resource configuration message includes: C ACK , where the C ACK is used to indicate the number of columns occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix.
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence, the method further includes:
  • the base station sends a fourth uplink resource configuration message to the terminal, where the fourth uplink resource configuration message includes: C ACK and ACK column label, C ACK is used to indicate the number of columns occupied by the HARQ-ACK in the interlace matrix, and the ACK column label is used to indicate Hybrid automatic repeat request in the interleaving matrix - confirms the column label occupied by the HARQ-ACK.
  • the base station transmits, to the terminal, interleaving parameters, such as the number of columns for indicating the interleave matrix, the number of columns and column labels occupied by the RI, the number of columns occupied by the HARQ-ACK, and the column label.
  • interleaving parameters such as the number of columns for indicating the interleave matrix, the number of columns and column labels occupied by the RI, the number of columns occupied by the HARQ-ACK, and the column label.
  • the terminal can determine the interleaving parameter of the interlace matrix according to the configuration message sent by the base station, and then interleave the information to be transmitted; because the system has a short sTTI length
  • the number of columns of the interleaving matrix can be adjusted during interleaving, so that system terminals of different sTTI lengths can be interleaved by using an interleaving manner similar to the interleaving manner of the existing 3GPP LTE protocol, thereby reducing interleaving complexity; correspondingly, the base station can be unified
  • the de-interleaving method similar to the de-interleaving method of the existing 3GPP LET protocol is adopted, thereby reducing the understanding of interleaving complexity.
  • an embodiment of the present invention provides a terminal, including:
  • the receiving module is configured to receive a first uplink resource configuration message sent by the base station, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal;
  • a determining module configured to determine an interleaving parameter, where the interleaving parameter includes: C, C is used to indicate a minimum number of columns or a total number of columns of the interleaving matrix, and C is greater than or equal to an orthogonal frequency division multiplexing OFDM symbol occupied by the time-frequency resource block.
  • the interleaving module is configured to interleave the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the receiving module is also used to:
  • the determining module is specifically configured to: determine C according to the second uplink resource configuration message.
  • the interleaving parameter further includes: C RI , where C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix;
  • the interleaving module is specifically used to:
  • the RI is written into the preset C RI column in the 0th column to the C- 1th column of the interleave matrix.
  • the receiving module is also used to:
  • the determining module is specifically configured to: determine a C RI according to the third uplink resource configuration message.
  • the interleaving parameters further include: C RI and RI column label, C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate the column occupied by the RI in the interleaving matrix.
  • the interleaving module is specifically used to:
  • the RI is written into the C RI column corresponding to the RI column label of the interleaving matrix.
  • the receiving module is also used to:
  • a third uplink resource configuration message including: a C RI and a RI column label;
  • the determining module is specifically configured to: determine a C RI and a RI column label according to the third uplink resource configuration message.
  • the interleaving parameter further includes: C ACK , where C ACK is used to indicate a hybrid automatic repeat request in the interlace matrix - confirming the number of columns occupied by the HARQ-ACK;
  • the interleaving module is specifically used to:
  • the HARQ-ACK is written into a preset C ACK column in the 0th column to the C- 1th column of the interleave matrix.
  • the receiving module is also used to:
  • the determining module is specifically configured to: determine a C ACK according to the fourth uplink resource configuration message.
  • the interleaving parameters further include: C ACK and ACK column label, C ACK is used to indicate the hybrid automatic repeat request in the interlace matrix - the number of columns occupied by the acknowledgment HARQ-ACK, and the ACK column label is used to indicate the interleaving The column number occupied by the HARQ-ACK in the matrix;
  • the interleaving module is specifically used to:
  • the HARQ-ACK is written into the C ACK column corresponding to the ACK column label of the interlace matrix.
  • the receiving module is also used to:
  • a fourth uplink resource configuration message including: a C ACK and an ACK column label;
  • the determining module is specifically configured to: determine a C ACK and an ACK column label according to the fourth uplink resource configuration message.
  • the terminal also includes:
  • a reading module configured to read the interleaving matrix by column to obtain an output bit sequence; wherein the number of output bit sequences is less than or equal to the product of the number of rows of the interlacing matrix and the total number of columns.
  • the terminal also includes:
  • a sending module configured to send the output bit sequence to the base station by using a physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • PUSCH physical uplink shared channel
  • an embodiment of the present invention provides a base station, including:
  • a sending module configured to send a first uplink resource configuration message to the terminal, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal;
  • a receiving module configured to receive an output bit sequence sent by the terminal through the physical uplink shared channel (PUSCH), where the output bit sequence is obtained by interleaving the interleaving matrix by the column after the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • Output bit sequence, the number of output bit sequences is less than or equal to the product of the number of rows of the interleave matrix and the total number of columns;
  • a deinterleaving module is used to deinterleave the output bit sequence.
  • the sending module is also used to:
  • the second uplink resource configuration message includes: C, C is an interleaving parameter, C is used to indicate a minimum number of columns or a total number of columns of the interlace matrix, and C is greater than or equal to the time-frequency resource block.
  • the sending module is also used to:
  • the third uplink resource configuration message is sent to the terminal, where the third uplink resource configuration message includes: C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix.
  • the sending module is further used to:
  • the terminal And sending, by the terminal, a third uplink resource configuration message, where the third uplink resource configuration message includes: a C RI and a RI column label, where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate the interlace The column label occupied by RI in the matrix.
  • the sending module is further used to:
  • the fourth uplink resource configuration message is sent to the terminal, where the fourth uplink resource configuration message includes: C ACK , where the C ACK is used to indicate the number of columns occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix.
  • the sending module is further used to:
  • the fourth uplink resource configuration message includes: C ACK and an ACK column label
  • C ACK is used to indicate the number of columns occupied by the HARQ-ACK in the interleave matrix
  • the ACK column label is used to indicate the interlace Hybrid automatic repeat request in the matrix - confirm the column label occupied by the HARQ-ACK.
  • 1A is a schematic diagram of a multiplexing and interleaving process
  • 1B is a schematic diagram of an interlace matrix of a TTI system
  • Embodiment 1 of an information processing method according to the present invention
  • FIG. 3A is a schematic flowchart of Embodiment 2 of an information processing method according to the present invention.
  • 3B is a schematic diagram 1 of an equivalent interlace
  • 3C is an equivalent interleave diagram 2;
  • FIG. 4A is a schematic flowchart of Embodiment 3 of an information processing method according to the present invention.
  • 4B is a schematic diagram 1 of a time-frequency resource block segmentation
  • 4C is a schematic diagram 2 of a time-frequency resource block segmentation
  • 4D is a schematic diagram 3 of a time-frequency resource block segmentation
  • FIG. 5 is a schematic flowchart diagram of Embodiment 4 of an information processing method according to the present invention.
  • Embodiment 1 of a terminal according to the present invention is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 2 of a terminal according to the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 3 of a terminal according to the present invention.
  • Embodiment 4 of a terminal according to the present invention is a schematic structural diagram of Embodiment 4 of a terminal according to the present invention.
  • Embodiment 1 of a base station according to the present invention is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • Interleaving technology involved in the existing 3rd Generation Partnership Project (3GPP) LTE standard protocols (such as 3GPP 36.211 and 3GPP 36.212) Applicable to a system with a TTI length of 1 ms, where the TTI includes 14 OFDM symbols for a normal Cyclic Prefix (abbreviated as a regular CP) and 12 OFDM symbols for an Extended CP.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 36.211 and 3GPP 36.212 Applicable to a system with a TTI length of 1 ms, where the TTI includes 14 OFDM symbols for a normal Cyclic Prefix (abbreviated as a regular CP) and 12 OFDM symbols for an Extended CP.
  • 3GPP 3rd Generation Partnership Project
  • the number of rows of the interleaving matrix is equal to the quotient of the total number of bits to be transmitted and the total number of columns on each transport block; since the rank indication has been specified in the existing protocol (Rank Indication)
  • the number of columns and column labels occupied by the uplink control signaling in the interleaving matrix such as RI) and/or Hybrid Automatic Repeat Request-Acknowledgement (HARQ-ACK), therefore, in this step
  • the uplink control signaling may be at least one of the following: RI, HARQ-ACK, or Channel Quality Indicator (CQI); 3) multiplexing and interleaving the information to be transmitted according to the target length of the information to be transmitted.
  • FIG. 1A is a schematic diagram of a multiplexing and interleaving process, as shown in FIG. 1A.
  • the step includes: uplink service data and uplink control information.
  • the RB and the HARQ-ACK occupy different columns; 4), as shown in FIG.
  • FIG. 1B is a schematic diagram of the interleaving matrix of the TTI system. Interleaving moments by column The array obtains an output bit sequence, the number of output bit sequences being equal to the product of the number of rows of the interleaving matrix and the total number of columns. Further, after the interleaving, the output bit sequence is sent to the base station through the PUSCH. Optionally, the PUSCH transmission process needs to perform time-frequency transform into a frequency domain and perform carrier mapping to the corresponding frequency domain.
  • the number of OFDM symbols is much less than 14, as specified in the existing protocol.
  • the number of columns of the interleaving matrix is equal to the time-frequency resource block allocated by the base station to the terminal.
  • the occupied OFDM symbols (excluding pilots, such as 12 columns) and the specified RI and HARQ-ACK each occupying the specified 4 columns of the interleaving matrix it can be seen that the existing interleaving technique cannot be directly applied to the length of one OS or In the two OS sTTI systems, separate design is required.
  • the protocol specifies that the total number of columns of the interlace matrix is equal to the pilot-free OFDM symbol occupied by the time-frequency resource block allocated by the base station to the terminal, and then determines that the total number of columns of the interlace matrix is equal to 1, so RI and HARQ-ACK will occupy The same column of the interleaving matrix; it can be seen that the interleaving mode in the sTTI system with a length of 1 OS or 2 OSs (including pilots) is obviously inconsistent with the interleaving manner in the existing protocol, and needs to be separately designed separately, thereby increasing the interleaving. the complexity.
  • the total number of columns of the interlace matrix is equal to the number of time-frequency resource blocks allocated by the base station to the terminal according to the existing protocol.
  • the pilot OFDM symbol determines that the total number of columns of the interlace matrix is equal to 2, and the RI and HARQ-ACK may each occupy one column, but the existing protocol specifies that the RI and the HARQ-ACK each occupy the specified four columns of the interleaving matrix, The number of columns is different, which may result in different interleaving processes.
  • the interleaving mode in the sTTI system with a length of 2 OSs (without pilot) is not uniform with the interleaving mode in the existing protocol, and needs to be separately designed, thereby increasing the interleaving. the complexity.
  • the terminal receives the first uplink resource configuration message sent by the base station, and determines the interleaving parameter, where the interleaving parameter includes C for indicating the minimum number of columns or the total number of columns of the interlace matrix (C is greater than or equal to the base station.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter; it can be seen that the number of columns of the interlace matrix is greater than or equal to the base station assigned to The number of OFDM symbols occupied by the time-frequency resource block of the terminal.
  • the number of columns of the interlace matrix can be adjusted during interleaving, so that systems with different sTTI lengths.
  • the interleaving method similar to the interleaving manner of the existing 3GPP LET protocol can be uniformly used for interleaving, which reduces the interleaving complexity and improves the interleaving efficiency.
  • FIG. 2 is a schematic flowchart diagram of Embodiment 1 of an information processing method according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the terminal receives a first uplink resource configuration message sent by the base station.
  • the terminal receives the first uplink resource configuration message sent by the base station, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal; optionally,
  • the unit of the time-frequency resource block allocated by the base station is sRB (sRB occupies one OFDM symbol in the time domain and M subcarriers in the frequency domain, for example, M is 12), for example, the sTTI system has an sTTI length of 1 OS. Or 2 OS systems.
  • the time-frequency resource configuration parameter is used to indicate a time-frequency resource block size allocated by the base station to the terminal, and the terminal may further determine, according to the time-frequency resource configuration parameter: (indicates the number of OFDM symbols occupied by the time-frequency resource block, without pilot symbols), (indicates the resource bandwidth occupied by the time-frequency resource block, expressed in terms of the number of sRBs included in each OFDM symbol) and Configuration parameter information, such as the resource bandwidth occupied by the time-frequency resource block, represented by the number of subcarriers included in each OFDM symbol.
  • the time-frequency resource configuration parameter may further include other configuration parameters and/or the terminal may Other configuration parameter information and the like may be determined according to the time-frequency resource configuration parameter, which is not limited in the embodiment of the present invention.
  • the terminal determines an interleaving parameter.
  • the terminal determines an interleaving parameter, where the interleaving parameter is used to indicate a parameter of the interlace matrix; optionally, the interleaving parameter may be pre-configured or dynamically indicated by the base station, where different sTTI lengths may correspond to the same interleaving parameter or different Interleaving parameters.
  • the interleaving parameter may include: C (for indicating the minimum number of columns of the interleaving matrix or the total number of columns), C is greater than or equal to the number of OFDM symbols occupied by the time-frequency resource block (excluding pilot symbols), optionally Ground, C is greater than or equal to the sum of the number of columns occupied by RI in the interleaving matrix and the number of columns occupied by HARQ-ACK in the interleaving matrix (for example, if the number of columns occupied by RI and the number of columns occupied by HARQ-ACK in the interleave matrix are 2 columns, respectively) Then, C is greater than or equal to 4), wherein C is too small to cause resources in HARQ-ACK and RI to be more limited.
  • the terminal receives the second uplink resource configuration message that is sent by the base station and carries the C, and determines C according to the second uplink resource configuration message.
  • the second uplink resource configuration message may be configured with the first uplink resource.
  • the second uplink resource configuration message may be a UL Grant message.
  • the second uplink resource configuration message may also be other configuration messages, which is not limited in the embodiment of the present invention.
  • the interleaving parameter may further include: information about the number of columns and column labels occupied by the RI in the interlace matrix, or the number of columns and column labels occupied by the HARQ-ACK in the interleave matrix, and of course, the interleaving parameters in the embodiment of the present invention. Other information may be included, which is not limited in the embodiment of the present invention.
  • the terminal may determine the number of rows of the interlace matrix according to the time-frequency resource configuration parameter and C,
  • the implementation can be implemented in at least two ways:
  • the first embodiment can be achieved: If C is used to indicate the total number of columns of the interleaving matrix MUX C, determined the number of rows of the interleave matrix R mux based on the total number of bits of the total number of columns C MUX to be transmitted on each transport block, for example: The number of rows R mux is equal to the quotient of the total number of bits to be transmitted on each transport block and the total number of columns C mux ; of course, the number of rows R mux of the interlaced matrix can also be determined by other means, which is not used in the embodiment of the present invention. limit.
  • the second implementable mode if C is used to indicate the minimum number of columns of the interleaving matrix, according to Determining the total number of columns of the interlacing matrix C mux , where Indicates an up-rounding operation, , Means rounding down, Indicates the total number of sRBs occupied by time-frequency resource blocks.
  • the determination of the number of rows of the interleave matrix R mux C mux to the total number of columns based on the total number of bits to be transmitted on each transport block, or in accordance with the number of subcarriers contained sRB each R * * * modulation order of layers Determine the number of rows of the interlacing matrix R mux , or according to Determining the number of rows of the interlacing matrix R mux , wherein Indicates the number of subcarriers required for uplink service data, CQI, and RI to be transmitted on each layer of each transport block x.
  • x is a positive integer (for example, 1 or 2) of 1 or more; of course, the number of rows R mux of the interlace matrix can be determined by other means, which is not limited in the embodiment of the present invention.
  • the row numbers of the interlace matrix from top to bottom are 0, 1, 2, ..., R mux -1; optionally, if all elements of each column of the interlace matrix are from top to bottom
  • the elements are divided into 1 unit, and the interleaving matrix is transformed into an interleaving matrix of R' mux rows C mux columns.
  • step S201 and step S202 is not limited.
  • step S201 may be performed in parallel, step S201 may be performed first, then step S202 may be performed, or step S202 may be performed first, and then step S201 may be performed.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the information to be transmitted includes: uplink control signaling and uplink service data, where the uplink control signaling may be at least one of the following: An RI, a HARQ-ACK, or a CQI, of course, the uplink control signaling may also include other signaling, which is not limited in the embodiment of the present invention.
  • interleaving the information to be transmitted includes: first The RI is written into the interleave matrix, and the multiplexed sequence of the CQI and the uplink service data is written into the interleave matrix, and finally the HARQ-ACK is written into the interleave matrix.
  • step S203 includes: writing the RI into the 0th column to the C-1 of the interlace matrix.
  • the protocol pre-determines which column of the interleaving matrix corresponds to the number of columns in the RI, for example, when the C RI is 2, the first column of the interleaving matrix And write RI in column 5; optionally, you can write RI according to the write rule of the first row and the bottom row, or write the RI according to the write rule of the first row and the bottom row and the bottom up rule.
  • the terminal After writing one column and then writing another column, it is of course possible to write the RI according to other writing rules, which is not limited in the embodiment of the present invention.
  • the terminal receives the third uplink resource configuration message that is sent by the base station and carries the C RI , and determines the C RI according to the third uplink resource configuration message.
  • the third uplink resource configuration message may be related to the second uplink.
  • the resource configuration messages are the same or different, and are not limited in this embodiment of the present invention.
  • Step S203 includes: writing the RI into the C RI column corresponding to the RI column label of the interlace matrix; optionally, writing the RI according to the preceding row and the bottom-up writing rule, or following the preceding column
  • the write rule is written to the RI from the bottom to the top (that is, one column is written and the other column is written).
  • the RI can be written according to other write rules, which is not limited in the embodiment of the present invention.
  • the terminal receives the third uplink resource configuration message that is sent by the base station and carries the C RI and the RI column label, and determines the C RI and the RI column label according to the third uplink resource configuration message; optionally, the third uplink The resource configuration message may be the same as or different from the second uplink resource configuration message, which is not limited in the embodiment of the present invention.
  • step S203 includes: writing the HARQ-ACK to the 0th column of the interlace matrix to In the C ACK column preset in the column C-1 (optionally, the protocol pre-determines which columns of the HARQ-ACK occupy the HARH-ACK in the interleaving matrix, and for example, when the C ACK is 2 In the second column and the fourth column of the interleaving matrix, the HARQ-ACK is written; optionally, the HARQ-ACK can be written into the non-RI occupied pre-interpolation matrix according to the pre-row and the bottom-up writing rules.
  • the terminal receives the fourth uplink resource configuration message that is sent by the base station and carries the C ACK , and determines the C ACK according to the fourth uplink resource configuration message.
  • the fourth uplink resource configuration message may be the third uplink.
  • the resource configuration messages are the same or different, and are not limited in this embodiment of the present invention.
  • step S203 includes: writing the HARQ-ACK into the C ACK column corresponding to the ACK column label of the interlace matrix; optionally, the HARQ-ACK may be according to the pre-row and the bottom-up write rule.
  • the HARQ-ACK written in the C ACK column corresponding to the ACK column label occupied by the non-RI in the interleaving matrix, or write the HARQ-ACK into the non-RI occupied ACK column label in the interleaving matrix according to the pre-column and bottom-up writing rules.
  • the HARQ-ACK can be written according to other write rules, which is not limited in the embodiment of the present invention.
  • the terminal receives the fourth uplink resource configuration message that is sent by the base station and carries the C ACK and the ACK column label, and determines the C ACK and the ACK column label according to the fourth uplink resource configuration message; optionally, the fourth uplink The resource configuration message may be the same as or different from the third uplink resource configuration message, which is not limited in the embodiment of the present invention.
  • the process of writing the multiplexed sequence of the CQI and the uplink service data into the interleave matrix may be similar to the process in the existing protocol, which is described in detail in Embodiment 3 of the present application.
  • the terminal receives the first uplink resource configuration message sent by the base station, and determines the interleaving parameter, where the interleaving parameter includes C for indicating the minimum number of columns or the total number of columns of the interlace matrix (C is greater than or equal to the base station.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter; it can be seen that the number of columns of the interlace matrix is greater than or equal to the base station assigned to The number of OFDM symbols occupied by the time-frequency resource block of the terminal.
  • the number of columns of the interlace matrix can be adjusted during interleaving, so that systems with different sTTI lengths.
  • the interleaving method similar to the interleaving manner of the existing 3GPP LET protocol can be uniformly used for interleaving, which reduces the interleaving complexity and improves the interleaving efficiency.
  • FIG. 3A is a schematic flowchart diagram of Embodiment 2 of an information processing method according to the present invention. As shown in FIG. 3A, on the basis of the foregoing embodiment shown in FIG. 2, after step S203, the method further includes:
  • the terminal reads the interlace matrix in columns to obtain an output bit sequence.
  • the terminal reads the interleaving matrix by column (reading the 0th column, reading the 1st column, ..., until reading)
  • the output bit sequence is obtained, as shown in the left side of FIG. 3B or FIG. 3C (FIG. 3B is an equivalent interleave diagram 1 and FIG. 3C is an equivalent interleave diagram 2); optionally, due to uplink control signaling
  • some units in the last column of the interleaving matrix may be empty. Therefore, the number of output bit sequences is less than or equal to the product of the number of rows of the interleave matrix and the total number of columns.
  • the terminal sends the output bit sequence to the base station by using a physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • PUSCH physical uplink shared channel
  • the terminal sends the output bit sequence to the base station through the physical uplink shared channel PUSCH, so that the base station deinterleaves the output bit sequence, where the PUSCH is the PUSCH corresponding to the sTTI; optionally, it is required during the PUSCH transmission process.
  • the process of converting the output bit sequence into the frequency domain and mapping the carrier to the corresponding frequency domain is similar to the process in the existing 3GPP LTE protocol, and details are not described herein again.
  • the base station deinterleaves the output bit sequence according to the reverse process of the interleaving by the terminal. For example, after receiving the output bit sequence, the base station according to the interleaving parameter (such as the total number of interleaved columns, the number of rows, the number of columns occupied by the RI, and the HARQ) - The information of the number of columns occupied by the ACK, etc.)
  • the output bit sequence is arranged in an interleave matrix form as shown in the right side of FIG. 3B or FIG. 3C.
  • the HARQ-ACK may be extracted from the interlace matrix first, and the HARQ-ACK is occupied. The place is filled with 0, and then the CQI and the uplink service data are sequentially extracted from the interleaving matrix (the element in the last column is skipped and demultiplexed), and finally the RI is extracted from the interleave matrix.
  • the HARQ-ACK discards the uplink service data discretely, thereby reducing the performance loss of the uplink service data.
  • FIG. 4A is a schematic flowchart of Embodiment 3 of an information processing method according to the present invention.
  • the method of the embodiment of the present invention includes:
  • the terminal receives a first uplink resource configuration message sent by the base station.
  • the first uplink resource configuration message includes: a time-frequency resource configuration parameter of the time-frequency resource block allocated to the terminal.
  • the terminal determines an interleaving parameter.
  • the terminal may determine the total number of columns C mux , the number of rows R mux of the interlacing matrix, the number of columns occupied by the RI in the interlacing matrix, the RI column label, and the interleaving matrix by determining the interleaving parameters described in step S202 in the first embodiment.
  • Information such as the number of columns and the ACK column number occupied by the HARQ-ACK.
  • the time-frequency resources allocated by the base station may be used.
  • the block is divided into C mux sub-time-frequency resource blocks (the unit of each sub-time-frequency resource block is sRB), and the C mux sub-time-frequency resource blocks are arranged into R rows C mux column structure (for example, as shown in FIG.
  • R mux R* number of subcarriers per sRB * modulation order * number of layers.
  • the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the terminal interleaving the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter may include the following steps:
  • the terminal determines carrier resources required for carrier resources and uplink service data required for uplink control signaling to be transmitted on each layer of each transport block according to time-frequency resource configuration parameters and interleaving parameters; further, according to each The carrier resources required for the uplink control signaling to be transmitted on each layer of the transport block, determining the first target length of the uplink control signaling to be transmitted on each transport block; according to the uplink to be transmitted on each layer of each transport block
  • the carrier resource required by the service data determines the second target length of the uplink service data to be transmitted on each transport block.
  • a sTTI includes a transport block
  • the terminal determines, according to the time-frequency resource configuration parameter and the inter-frequency parameter, the carrier resource and the uplink service data required for the uplink control signaling to be transmitted on each layer of each transport block.
  • Carrier resources including:
  • Determining the carrier resources required for the HARQ-ACK to be transmitted on each layer of the transport block x where Indicates the number of OFDM symbols occupied by time-frequency resource blocks for transmitting uplink service data and uplink control signaling that are initially allocated in the sTTI, and does not include pilot symbols and sounding signals, where O represents the number of bits of the HARQ-ACK, Indicates the resource bandwidth occupied by the time-frequency resource block for transmitting the uplink service data and the uplink control signaling, which is initially allocated, Modulation and Coding Scheme (MCS) offset indicating control information, Indicates the number of subcarriers included in one sRB; C indicates the number of coded blocks CB of the uplink service data included in the transport block x; K r indicates the length of the rth CB block in the CB block included in the transport block x; The value ranges from 1 to 1.
  • MCS Modulation and Coding Scheme
  • L represents the number of cyclic redundancy check CRC bits
  • Representing the resource bandwidth occupied by the time-frequency resource block for transmitting the uplink service data and the uplink control signaling allocated for the initial transmission of the transport block x Representing the number of OFDM symbols occupied by the time-frequency resource block for transmitting the uplink service data and the uplink control signaling allocated for the initial transmission of the transport block x, and excluding the pilot symbols and the sounding signals
  • x has a value range of 1;
  • the carrier resources required to transmit the uplink service data to be transmitted on each layer of the block x are determined.
  • the terminal configures parameters and interleaves according to time-frequency resources.
  • the parameter determines the carrier resources required for the carrier resources and the uplink service data required for the uplink control signaling to be transmitted on each layer of each transport block, including:
  • L represents the number of cyclic redundancy check CRC bits
  • Representing the resource bandwidth occupied by the time-frequency resource block for transmitting the uplink service data and the uplink control signaling allocated for the initial transmission of the transport block x Representing the number of OFDM symbols occupied by the time-frequency resource block for transmitting the uplink service data and the uplink control signaling allocated for the initial transmission of the transport block x, and excluding the pilot symbols and the sounding signals
  • Representing the resource bandwidth occupied by the time-frequency resource block, represented by the number of subcarriers included in each OFDM symbol The number of OFDM symbols occupied by the time-frequency resource block is represented, Represents the number of encoded RI bits on each
  • the carrier resources required to transmit the uplink service data to be transmitted on each layer of the block x are determined.
  • determining, according to the carrier resources required for the uplink control signaling to be transmitted on each layer of each transport block, determining a first target length of the uplink control signaling to be transmitted on each transport block including:
  • the first target length of the uplink control signaling to be transmitted on the transport block x includes: a target length of the HARQ-ACK, a target length of the RI, and a target length of the CQI; Represents the number of layers used to transport transport block x.
  • the second target length of the uplink service data to be transmitted on each transport block is determined according to the carrier resources required for the uplink service data to be transmitted on each layer of each transport block, including:
  • the terminal performs coding and rate matching on the uplink control signaling to be transmitted on the transport block according to the first target length of the uplink control signaling to be transmitted on each transport block, and according to each transport block.
  • the second target length of the transmitted uplink service data encodes and rates the uplink service data to be transmitted on the transport block; further, the terminal compares the uplink service data and the uplink control signaling of each transport block after the rate matching Performing multiplexing to obtain a multiplexed vector sequence; further, the terminal interleaves each transport block with other uplink control signaling and multiplexing sequences other than CQI after rate matching (ie, multiplexing after multiplexing, rate matching) Other uplink control signalings other than CQI are written to the interlace matrix).
  • the terminal performs coding and rate matching on the uplink control signaling to be transmitted on the transport block according to the first target length of the uplink control signaling to be transmitted on each transport block, and according to each transport block.
  • the second target length of the transmitted uplink service data encodes and rates the uplink service data to be transmitted on the transport block, including:
  • the terminal compiles the RI to be transmitted on the transport block according to the target length of the RI to be transmitted on each transport block.
  • the CQI to be transmitted on the transport block is coded and rate matched, and the uplink service data to be transmitted on the transport block is encoded and rate matched according to the second target length of the uplink service data transmitted on each transport block.
  • the RI to be transmitted on the transport block is coded according to the coding mode specified by the 3GPP LTE protocol according to the target length of the RI to be transmitted on each transport block, and then the coded bits are repeated until the total number of bits reaches RI bit sequence (ie, rate matching is completed) Further recording the bits included in each modulation symbol as a column (ie, each RI bits are counted as one column) and repeated RI vector sequence , Column vector , k has a value range of An integer in .
  • the content of the RI bit sequence to be transmitted on each layer of each transport block is the same.
  • the HARQ-ACK to be transmitted on the transport block is encoded according to the target length of the HARQ-ACK to be transmitted on each transport block according to the coding scheme specified by the 3GPP LTE protocol, and then the encoded bit is repeated until the total bit Number reached HARQ-ACK bit sequence (ie, rate matching is completed) Further recording the bits included in each modulation symbol as a column (ie, each HARQ-ACK bits are counted as one column) and repeated Get the HARQ-ACK vector sequence , Column vector , k has a value range of An integer in .
  • the content of the HARQ-ACK bit sequence to be transmitted on each layer of each transport block is the same.
  • the uplink service data to be transmitted on the transport block is encoded according to the coding method specified by the 3GPP LTE protocol according to the second target length of the uplink service data transmitted on each transport block, and then the coded bits are repeated until The total number of bits is reached Data bit sequence (ie, rate matching is completed)
  • the process of multiplexing, by the terminal, the rate-matched uplink service data and the uplink control signaling to obtain a multiplexed vector sequence is as follows: the uplink service data bit sequence And CQI bit sequence Cascading to get cascaded bit sequences ,among them, ; will cascade each bit sequence
  • the elements in the sequence form a column vector in turn, resulting in a multiplexed vector sequence ;among them, , , k has a value range of Integer, multiplexed vector sequence Bank of China Is the sequence that layer i needs to send.
  • RI vector sequence And sequentially input into the C RI column in the 0th column to the C- 1th column of the interlace matrix (optionally, may be a preset C RI column, or a C RI column corresponding to the RI label), optionally, RI can be written in accordance with the write rules in the first and last columns and from bottom to top (for example, when the RI vector sequence is used)
  • the first column and the C 1 C 2 column write interleaving matrix, the first
  • the first write element C 1 penultimate column 0 row - penultimate OK will The element in the middle is written to the last 0th line of the C 2 column - the reciprocal Line, if you have not finished writing the RI vector sequence, continue to The penultimate element writes the first column C 1 Line - countdown Rows, and so on until the RI vector sequence is all written to the interleaving matrix.
  • the RI can also be written by other writing rules, which is not limited in the embodiment of the present invention; for
  • Multiplexed vector sequence Write the interleaving matrix in turn, and skip the cells in the interleaving matrix that have been occupied by the RI and the blanks in the last column; optionally, the multiplexing vector sequence is written according to the pre-row and the top-down write rules, of course
  • the multiplexed vector sequence can also be written by other write rules, which is not limited in the embodiment of the present invention; in the embodiment of the present invention, the multiplex vector is used according to the write rule of the preceding row and the top to the bottom.
  • the sequence is written by the following interleaving matrix, and the number of rows of the interleaving matrix is (Each element in the interleaving matrix is a vector), from the vector Start with Writes the first column of the cell first, and skips the cells that have been occupied by the RI and the blank in the last column, where Each vector is Column vector of row *1; for example; first write the multiplexed vector sequence first If not finished, continue to write to , and so on, until all the multiplexing sequences have been written;
  • the HARQ-ACK can be written according to the write rule according to the preceding row and the bottom-up.
  • the HARQ-ACK can be written by other write rules, which is not limited in the embodiment of the present invention; For example, when writing HARQ-ACK according to the write rule according to the preceding row and the bottom-up, the following pseudo-random code can be implemented:
  • the terminal reads the interlace matrix in columns to obtain an output bit sequence.
  • the terminal reads the interleaving matrix by column to obtain an output bit sequence.
  • x represents a different transport block, the value range is 0 or 1; when the sTTI includes a transport block (marked x is equal to 0), then The output bit sequence is When the sTTI includes two transport blocks (marking x is equal to 0 and 1), the output bit sequence corresponding to transport block 0 is The output bit sequence corresponding to transport block 1 is
  • the terminal sends the output bit sequence to the base station by using a physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • PUSCH physical uplink shared channel
  • the terminal sends the output bit sequence to the base station through the physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • the base station solves the output bit sequence according to the reverse process of the terminal performing interleaving. Interleaving, for example, after receiving the output bit sequence, the base station outputs the bit sequence according to the interleaving parameters (such as the total number of interleaved columns, the number of rows, the number of columns occupied by RI, the number of columns occupied by HARQ-ACK, etc.) Arranged in the form of an interleaving matrix as shown in the right side of FIG. 3B or FIG. 3C.
  • the interleaving parameters such as the total number of interleaved columns, the number of rows, the number of columns occupied by RI, the number of columns occupied by HARQ-ACK, etc.
  • the HARQ-ACK may be extracted from the interleaving matrix, and the occupied area of the HARQ-ACK is filled with 0, and then the CQI is extracted sequentially from the interleaving matrix. And the uplink service data (skip and demultiplex the element in the last column where the element is NULL), and finally extract the RI from the interlace matrix.
  • the terminal when the sTTI includes a transport block 0, the terminal will output a bit sequence. Transmitted to the base station through the PUSCH, so that the base station pairs the output bit sequence Deinterleaving; when sTTI includes transport block 0 and transport block 1, the terminal will output a bit sequence with Transmitted to the base station through the PUSCH, so that the base station pairs the output bit sequence with Deinterlace.
  • the number of columns of the interlace matrix can be adjusted during interleaving, so that systems with different sTTI lengths can adopt an interleaving manner similar to the existing 3GPP LET protocol.
  • the similar interleaving process is interleaved, which reduces the interleaving complexity and improves the interleaving efficiency.
  • the interleaving matrix provides enough RI and HARQ-ACK to occupy the number of columns, the HARQ-ACK discretizes the uplink service data. Punching, thereby reducing the performance loss of uplink business data.
  • the embodiment of the present invention describes an interleaving process in which the sTTI length is 2OS, and the specific process is as follows:
  • R mux R * number of subcarriers per sRB * The number of layers* determines the number of rows of the interleaving matrix R mux (each element in the interleaving matrix is not a vector);
  • the target length of the information to be transmitted is determined according to the time-frequency resource configuration parameter and the interleaving parameter.
  • the uplink control signaling to be transmitted on each transport block may be obtained according to the formula described in step A of step S403 in the foregoing embodiment 3.
  • a first target length and a second target length of uplink traffic data to be transmitted on each transport block wherein it is assumed that one transport block is included in one sTTI (transport block 0 and transport block 1, ie x is equal to 0 and 1) as well as Determining that the target lengths of the RIs to be transmitted on the transport block 0 and the transport block 1 are respectively with The target lengths of HARQ-ACKs to be transmitted on transport block 0 and transport block 1 are respectively with The target lengths of the CQIs to be transmitted on transport block 0 and transport block 1 are respectively with And the target lengths of the uplink service data to be transmitted on the transport block 0 and the transport block 1 are G (0) and G (1), respectively ;
  • the terminal encodes and rates the RIs to be transmitted on the transport block according to the target length of the RI to be transmitted on each transport block to obtain the RI vector sequence corresponding to the transport block 0, respectively.
  • RI vector sequence corresponding to transport block 1 Encoding and rate matching the HARQ-ACK to be transmitted on the transport block according to the target length of the HARQ-ACK to be transmitted on each transport block respectively obtains the HARQ-ACK vector sequence corresponding to the transport block 0 HARQ-ACK vector sequence corresponding to transport block 1 Encoding and rate matching the CQI to be transmitted on the transport block according to the target length of the CQI to be transmitted on each transport block respectively obtains the CQI bit sequence corresponding to the transport block 0 CQI bit sequence corresponding to transport block 1 And encoding and rate matching the uplink service data to be transmitted on the transport block according to the target length of the uplink service data transmitted on each transport block to obtain the data bit sequence corresponding to the transport block 0, respectively.
  • Data bit sequence corresponding to transport block 1 Encoding
  • the terminal multiplexes each transport block with the rate matched uplink service data and the uplink control signaling to obtain a multiplexing vector sequence corresponding to the transport block 0.
  • the RI vector sequence corresponding to the transport block 0 will be transmitted. Can follow the write rules according to the first row and the bottom to the top Write the cells in the 0th column and the 3rd column of the interleaving matrix sequentially, where k1 has a value range of Integer; the sequence of multiplexed vectors corresponding to transport block 0
  • the interleaving matrix can be sequentially written in units of g k2 according to the pre-column and the top-down writing rules, and the RI vector sequence in the interleaving matrix is skipped.
  • the terminal reads the interlace matrix by column, and obtains an output bit sequence corresponding to the transport block 0.
  • the RI vector sequence corresponding to transport block 1 will be transmitted. Can follow the write rules according to the first row and the bottom to the top Write the cells in the 0th column and the 3rd column of the interleaving matrix sequentially, where k1 has a value range of Integer; the sequence of multiplexed vectors corresponding to transport block 1
  • the interleaving matrix can be sequentially written in units of g k2 according to the pre-column and the top-down writing rules, and the RI vector sequence in the interleaving matrix is skipped.
  • the terminal reads the interlace matrix by column, and obtains an output bit sequence corresponding to the transport block 1 as
  • the terminal transmits an output bit sequence corresponding to each transport block through the PUSCH, so that the base station deinterleaves the output bit sequence corresponding to each transport block.
  • the base station allocates 12 sRB time-frequency resource blocks to the terminal, such as with For the time-frequency resource segmentation, as shown in FIG. 4D (FIG. 4D is a time-frequency resource block segmentation diagram 3), the interleaving may be further performed according to the foregoing similar procedure, which is not repeatedly described herein.
  • FIG. 5 is a schematic flowchart diagram of Embodiment 4 of an information processing method according to the present invention.
  • the base station side is described in the embodiment of the present invention.
  • the method in this embodiment includes:
  • the base station sends a first uplink resource configuration message to the terminal.
  • the base station sends a first uplink resource configuration message to the terminal, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter allocated to the time-frequency resource block of the terminal, so that the terminal gives the allocated time-frequency at the base station.
  • the information to be transmitted is sent on the resource block; optionally, in the sTTI system, the unit of the time-frequency resource block allocated by the base station is sRB (sRB occupies one OFDM symbol in the time domain, and M subcarriers in the frequency domain, for example, M is 12
  • the sTTI system is a system with an sTTI length of 1 OS or 2 OSs.
  • the time-frequency resource configuration parameter is used to indicate a time-frequency resource block size allocated by the base station to the terminal, and the terminal may further determine, according to the time-frequency resource configuration parameter: (indicates the number of OFDM symbols occupied by the time-frequency resource block, without pilot symbols), (indicates the resource bandwidth occupied by the time-frequency resource block, expressed in terms of the number of sRBs included in each OFDM symbol) and The configuration parameter information (indicating the resource bandwidth occupied by the time-frequency resource block, represented by the number of subcarriers included in each OFDM symbol), of course, the time-frequency resource configuration parameter may further include other configuration parameters and/or the terminal may be based on The frequency resource configuration parameter may also determine other configuration parameter information and the like, which is not limited in the embodiment of the present invention.
  • the to-be-transmitted information includes: uplink control signaling and uplink service data, where the uplink control signaling may be at least one of the following: RI, HARQ-ACK, or CQI.
  • the uplink control signaling may further include other information. Therefore, this embodiment of the present invention does not limit this.
  • the base station receives an output bit sequence sent by the terminal through the physical uplink shared channel PUSCH, and deinterleaves the output bit sequence.
  • the base station receives the output bit sequence sent by the terminal through the PUSCH, where the PUSCH is the PUSCH corresponding to the sTTI, and the output bit sequence is that the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter, and then interleaves the column according to the column.
  • the output bit sequence obtained by the matrix (as shown in the left side of FIG. 3B or FIG.
  • the number of output bit sequences is less than or equal to the product of the number of rows of the interleave matrix and the total number of columns; optionally, the interleave matrix parameters include: C , C is greater than or equal to the number of OFDM symbols occupied by the time-frequency resource block allocated by the base station to the terminal.
  • a process of outputting a bit sequence for time-frequency transform into a frequency domain and performing carrier mapping to a corresponding frequency domain is performed.
  • the base station deinterleaves the received output bit sequence.
  • the base station deinterleaves the output bit sequence according to the reverse process of the terminal performing interleaving, because the terminal may adopt an interleaving manner similar to the existing 3GPP LET protocol.
  • the interleaving method reduces the complexity of interleaving.
  • the base station can also adopt a deinterleaving method similar to the deinterleaving method of the existing 3GPP LET protocol, thereby reducing the understanding of interleaving complexity.
  • the base station after receiving the output bit sequence, arranges the output bit sequence into an interlace matrix according to the interleaving parameters (such as the total number of interleaved columns, the number of rows, the number of columns occupied by RI, and the number of columns occupied by HARQ-ACK).
  • the HARQ-ACK may be extracted from the interlace matrix (the location occupied by the HARQ-ACK may be filled with 0), and then the CQI and the uplink service data are sequentially extracted from the interlace matrix (will be In the last column, where the element is NULL, it is skipped and demultiplexed.
  • the RI is extracted from the interleaving matrix.
  • the base station receives the output bit sequence corresponding to the transport block 0 sent by the terminal through the PUSCH.
  • the base station will transmit the output bit sequence corresponding to block 0 according to the interleaving parameter Arranged in the form of an interlace matrix, first extracting the HARQ-ACK vector sequence corresponding to transport block 0 from the interlace matrix (You can fill in the place occupied by HARQ-ACK with 0), and secondly extract the sequence of multiplexing vector corresponding to transport block 0 from the interlace matrix.
  • the HARQ-ACK vector sequence corresponding to transport block 0 respectively RI vector sequence corresponding to transport block 0 De-rate matching and decoding in sequence; multiplexing vector sequence corresponding to transport block 0 Demultiplexing to obtain a CQI bit sequence corresponding to transport block 0 Data bit sequence corresponding to transport block 0 And respectively correspond to the CQI bit sequence of transport block 0 Data bit sequence corresponding to transport block 0 Operations such as de-rate matching and decoding are performed in sequence.
  • the process of deinterleaving the received output bit sequence by the base station is not limited to the foregoing description, and the base station may also perform other methods of interleaving corresponding to the terminal interleaving manner, for example, when the terminal performs interleaving according to the interlace mode 1.
  • the base station performs deinterleaving according to the deinterleaving scheme 1 corresponding to the interleaving scheme 1; when the terminal performs interleaving according to the interleaving scheme 2, the base station performs deinterleaving or the like according to the deinterleaving scheme 2 corresponding to the interleaving scheme 2.
  • the base station sends a first uplink resource configuration message carrying the time-frequency resource configuration parameter to the terminal; further, the base station receives the output bit sequence sent by the terminal through the PUSCH (the output bit sequence is the terminal according to the time-frequency resource configuration parameter and After the interleaving parameter is interleaved with the information to be transmitted, the output bit sequence obtained by reading the interleaving matrix is read out in columns, the number of output bit sequences is less than or equal to the product of the number of rows of the interleaving matrix and the total number of columns, and the output bit sequence is followed by the terminal.
  • the de-interleaving process performs de-interleaving; since the terminal can uniformly interleave systems of different sTTI lengths by using an interleaving manner similar to the existing 3GPP LET protocol (reducing the interleaving complexity), the base station can also be uniformly used.
  • the deinterleaving method similar to the deinterleaving method of the existing 3GPP LTE protocol deinterleaves the systems with different sTTI lengths, reduces the understanding of interleaving complexity, and improves the understanding of interleaving efficiency.
  • the base station before receiving the output bit sequence sent by the terminal and deinterleaving the output bit sequence, the base station further includes:
  • the base station sends a second uplink resource configuration message to the terminal, where the second uplink resource configuration message includes: C, C belongs to the interleaving parameter, C is used to indicate the minimum number of columns or the total number of columns of the interleaving matrix, and C is greater than or equal to the time-frequency resource block.
  • the number of OFDM symbols includes:
  • the base station may send a second uplink resource configuration message carrying the C to the terminal, so that the terminal determines C according to the second uplink configuration message, optionally, C is greater than or equal to the interlace matrix.
  • the sum of the number of columns occupied by the RI and the number of columns occupied by the HARQ-ACK in the interleaving matrix (for example, if the number of columns of the RI in the interleaving matrix and the number of columns occupied by the HARQ-ACK are 2 columns, C is greater than or equal to 4), Among them, C is too small, which will make the resources in HARQ-ACK and RI more limited.
  • the second uplink resource configuration message may be the same as or different from the first uplink resource configuration message, where the second uplink resource configuration message may be a UL Grant message, and the second uplink resource configuration message may also be other configuration messages. This is not limited in the embodiments of the invention.
  • the number of columns of the interlace matrix is greater than or equal to the number of OFDM symbols occupied by the time-frequency resource blocks allocated by the base station to the terminal, the number of columns of the interlace matrix can be adjusted when the system with a shorter sTTI length is deinterleaved, so that different sTTIs are obtained.
  • the length system can be deinterleaved by using a deinterleaving method similar to the de-interleaving method of the existing 3GPP LET protocol, thereby reducing the understanding of interleaving complexity; further, since sufficient RI and HARQ-ACK are provided in the interlacing matrix The number of columns is such that the HARQ-ACK discards the uplink service data discretely, thereby reducing the performance loss of the uplink service data.
  • the interleaving parameter further includes: C RI
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence
  • the method further includes:
  • the base station sends a third uplink resource configuration message to the terminal, where the third uplink resource configuration message includes: C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix.
  • the base station may send a third uplink resource configuration message carrying the C RI to the terminal, so that the terminal determines the C RI according to the third uplink configuration message, and then writes the RI into the interlaced matrix.
  • the third uplink resource configuration message may be the same as or different from the second uplink resource configuration message, which is not limited in this embodiment of the present invention.
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence, the method further includes:
  • the eNB sends a third uplink resource configuration message to the terminal, where the third uplink resource configuration message includes: a C RI and a RI column label, where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate The column label occupied by RI in the interleaving matrix.
  • the base station may send a third uplink resource configuration message carrying the C RI and the RI column label to the terminal, so that the terminal determines the C RI and the RI column label according to the third uplink resource configuration message. Further, the RI is written into the C RI column corresponding to the RI column label of the interleaving matrix.
  • the third uplink resource configuration message may be the same as or different from the second uplink resource configuration message, which is not limited in this embodiment of the present invention.
  • the interleaving parameter further includes: C ACK
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence
  • the method further includes:
  • the base station sends a fourth uplink resource configuration message to the terminal, where the fourth uplink resource configuration message includes: C ACK , where the C ACK is used to indicate the number of columns occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix.
  • the base station may send a fourth uplink resource configuration message carrying the C ACK to the terminal, so that the terminal determines the C ACK according to the fourth uplink resource configuration message, and further writes the HARQ-ACK.
  • the fourth uplink resource configuration message may be the same as or different from the third uplink resource configuration message, which is not limited in the embodiment of the present invention.
  • the base station receives the output bit sequence sent by the terminal, and before deinterleaving the output bit sequence, the method further includes:
  • the base station sends a fourth uplink resource configuration message to the terminal, where the fourth uplink resource configuration message includes: C ACK and ACK column label, C ACK is used to indicate the number of columns occupied by the HARQ-ACK in the interlace matrix, and the ACK column label is used to indicate Hybrid automatic repeat request in the interleaving matrix - confirms the column label occupied by the HARQ-ACK.
  • the base station may send a fourth uplink resource configuration message carrying the C ACK and the ACK column label to the terminal, so that the terminal determines the C ACK and the ACK column label according to the fourth uplink resource configuration message. Further, the HARQ-ACK is written into the C ACK column corresponding to the ACK column label of the interleave matrix.
  • the fourth uplink resource configuration message may be the same as or different from the third uplink resource configuration message, which is not limited in the embodiment of the present invention.
  • the system has a small sTTI length (such as one OS or two OSs), and the number of columns of the interlace matrix can be adjusted during deinterleaving, so that systems with different sTTI lengths can be uniformly adopted.
  • the deinterleaving method of the existing 3GPP LET protocol is deinterleaved in a similar manner to reduce the interleaving. Weaving complexity; further, since the number of columns of RI and HARQ-ACK is provided in the interlace matrix, the HARQ-ACK discards the uplink service data discretely, thereby reducing the performance loss of the uplink service data.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • the terminal 60 provided in this embodiment includes: a receiving module 601, a determining module 602, and an interleaving module 603.
  • the receiving module 601 is configured to receive a first uplink resource configuration message sent by the base station, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter allocated to the time-frequency resource block of the terminal;
  • a determining module 602 configured to determine an interleaving parameter, where the interleaving parameter includes: C, the C is used to indicate a minimum number of columns or a total number of columns of the interleaving matrix, and the C is greater than or equal to the time-frequency resource block.
  • the interleaving module 603 is configured to perform interleaving on the information to be transmitted according to the time-frequency resource configuration parameter and the inter-layering parameter.
  • the receiving module 601 is further configured to: receive a second uplink resource configuration message sent by the base station, where the second uplink resource configuration message includes: the C;
  • the determining module 602 is specifically configured to: determine the C according to the second uplink resource configuration message.
  • the interleaving parameter further includes: C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix;
  • the interleaving module 603 is specifically configured to: write RI into a preset C RI column in the 0th column to the C- 1th column of the interlace matrix.
  • the receiving module 601 is further configured to: receive a third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: the C RI ;
  • the determining module 602 is specifically configured to: determine the C RI according to the third uplink resource configuration message.
  • the interleaving parameter further includes: a C RI and a RI column label, where the C RI is used to indicate a number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate the interlace The column number occupied by the RI in the matrix;
  • the interleaving module 603 is specifically configured to: write the RI into a C RI column corresponding to the RI column label of the interlace matrix.
  • the receiving module 601 is further configured to: receive a third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: the C RI and the RI column label;
  • the determining module 602 is specifically configured to: determine the C RI and the RI column label according to the third uplink resource configuration message.
  • the interleaving parameter further includes: C ACK , where the C ACK is used to indicate a hybrid automatic repeat request in the interlace matrix - confirming the number of columns occupied by the HARQ-ACK;
  • the interleaving module 603 is specifically configured to: write the HARQ-ACK into a preset C ACK column in the 0th column to the C- 1th column of the interlace matrix.
  • the receiving module 601 is further configured to: receive a fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: the C ACK ;
  • the determining module 602 is specifically configured to: determine the C ACK according to the fourth uplink resource configuration message.
  • the interleaving parameter further includes: a C ACK and an ACK column label, where the C ACK is used to indicate a number of columns occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix, the ACK column a label is used to indicate a column label occupied by the HARQ-ACK in the interleaving matrix;
  • the interleaving module 603 is specifically configured to: write the HARQ-ACK into a C ACK column corresponding to the ACK column label of the interlace matrix.
  • the receiving module 601 is further configured to: receive a fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: the C ACK and the ACK column label;
  • the determining module 602 is specifically configured to: determine the C ACK and the ACK column label according to the fourth uplink resource configuration message.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a terminal according to the present invention. As shown in FIG. 7, the terminal further includes:
  • the reading module 604 is configured to read the interlace matrix by column to obtain an output bit sequence; wherein the number of the output bit sequences is less than or equal to a product of the number of rows of the interlace matrix and the total number of columns.
  • the terminal further includes:
  • the sending module 605 is configured to send the output bit sequence to the base station by using a physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • PUSCH physical uplink shared channel
  • the terminal in this embodiment may be used to perform the technical solutions in the first to third embodiments of the foregoing information processing method of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 3 of a terminal according to the present invention.
  • the terminal 80 provided in this embodiment may include a processor 801 and a memory 802.
  • Terminal 80 may also include a receiver 803 that may be coupled to processor 801.
  • the receiver 803 is configured to receive a first uplink resource configuration message sent by the base station, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter allocated to the time-frequency resource block of the terminal; Storing execution instructions, the processor 801 is configured to execute the execution instructions in the memory 802, to perform the following operations: determining an interleaving parameter, and interleaving the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter;
  • the interleaving parameter includes: C, the C is used to indicate a minimum number of columns or a total number of columns of the interleaving matrix, and the C is greater than or equal to an orthogonal frequency division multiplexing OFDM symbol occupied by the time-frequency resource block. number.
  • the receiver 803 is further configured to: receive a second uplink resource configuration message sent by the base station, where the second uplink resource configuration message includes: the C;
  • the processor 801 is specifically configured to: determine the C according to the second uplink resource configuration message.
  • the interleaving parameter further includes: C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix;
  • the processor 801 is specifically configured to: write RI into a preset C RI column in the 0th column to the C- 1th column of the interlace matrix.
  • the receiver 803 is further configured to: receive a third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: the C RI ;
  • the processor 801 is specifically configured to: determine the C RI according to the third uplink resource configuration message.
  • the interleaving parameter further includes: a C RI and a RI column label, where the C RI is used to indicate a number of columns occupied by the rank indication RI in the interlace matrix, and the RI column label is used to indicate the interlace The column number occupied by the RI in the matrix;
  • the processor 801 is specifically configured to: write the RI into a C RI column corresponding to the RI column label of the interlace matrix.
  • the receiver 803 is further configured to: receive a third uplink resource configuration message sent by the base station, where the third uplink resource configuration message includes: the C RI and the RI column label;
  • the processor 801 is specifically configured to: determine the C RI and the RI column label according to the third uplink resource configuration message.
  • the interleaving parameter further includes: C ACK , where the C ACK is used to indicate a hybrid automatic repeat request in the interlace matrix - confirming the number of columns occupied by the HARQ-ACK;
  • the processor 801 is specifically configured to: write the HARQ-ACK into a preset C ACK column in the 0th column to the C- 1th column of the interlace matrix.
  • the receiver 803 is further configured to: receive a fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: the C ACK ;
  • the processor 801 is specifically configured to: determine the C ACK according to the fourth uplink resource configuration message.
  • the interleaving parameter further includes: a C ACK and an ACK column label, where the C ACK is used to indicate a number of columns occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix, the ACK column a label is used to indicate a column label occupied by the HARQ-ACK in the interleaving matrix;
  • the processor 801 is specifically configured to: write the HARQ-ACK into a C ACK column corresponding to the ACK column label of the interlace matrix.
  • the receiver 803 is further configured to: receive a fourth uplink resource configuration message sent by the base station, where the fourth uplink resource configuration message includes: the C ACK and the ACK column label;
  • the processor 801 is specifically configured to: determine the C ACK and the ACK column label according to the fourth uplink resource configuration message.
  • the processor 801 is further configured to: read out the interlace matrix by columns to obtain an output bit sequence; wherein, the number of the output bit sequences is less than or equal to the number of rows and total columns of the interlace matrix The product of.
  • FIG. 9 is a schematic structural diagram of Embodiment 4 of a terminal according to the present invention. As shown in FIG. 9, on the basis of the third embodiment of the terminal, the terminal further includes:
  • the transmitter 804 is configured to send the output bit sequence to the base station by using a physical uplink shared channel (PUSCH), so that the base station deinterleaves the output bit sequence.
  • PUSCH physical uplink shared channel
  • the terminal in this embodiment may be used to perform the technical solutions in the first to third embodiments of the foregoing information processing method of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station 100 provided in this embodiment may include: a sending module 1001, a receiving module 1002, and a de-interleaving module 1003.
  • the sending module 1001 is configured to send a first uplink resource configuration message to the terminal, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter allocated to the time-frequency resource block of the terminal;
  • the receiving module 1002 is configured to receive an output bit sequence that is sent by the terminal by using a physical uplink shared channel (PUSCH), where the output bit sequence is after the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the inter-frequency parameter. Reading out an output bit sequence obtained by interleaving a matrix, the number of the output bit sequences being less than or equal to a product of the number of rows of the interlaced matrix and the total number of columns;
  • PUSCH physical uplink shared channel
  • the deinterleaving module 1003 is configured to deinterleave the output bit sequence.
  • the sending module 1001 is further configured to:
  • the terminal And sending, by the terminal, a second uplink resource configuration message, where the second uplink resource configuration message includes: C, the C belongs to the interleaving parameter, and the C is used to indicate a minimum number of columns or totals of the interlace matrix The number of columns is greater than or equal to the number of orthogonal frequency division multiplexing OFDM symbols occupied by the time-frequency resource block.
  • the second uplink resource configuration message includes: C, the C belongs to the interleaving parameter, and the C is used to indicate a minimum number of columns or totals of the interlace matrix The number of columns is greater than or equal to the number of orthogonal frequency division multiplexing OFDM symbols occupied by the time-frequency resource block.
  • the sending module 1001 is further configured to:
  • the third uplink resource configuration message is sent to the terminal, where the third uplink resource configuration message includes: the C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix.
  • the sending module 1001 is further configured to:
  • the terminal Transmitting, by the terminal, a third uplink resource configuration message, where the third uplink resource configuration message includes: the C RI and the RI column label, where the C RI is used to indicate a rank indication RI in the interlace matrix The number of columns occupied, the RI column label is used to indicate the column label occupied by the RI in the interleaving matrix.
  • the sending module 1001 is further configured to:
  • the fourth uplink resource configuration message includes: the C ACK , where the C ACK is used to indicate a hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix The number of columns occupied.
  • the sending module 1001 is further configured to:
  • the fourth uplink resource configuration message includes: the C ACK and the ACK column label, where the C ACK is used to indicate the HARQ-ACK in the interlace matrix The number of columns occupied, the ACK column label is used to indicate the column number occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix.
  • the base station in this embodiment may be used to perform the technical solution in the foregoing embodiment of the information processing method of the present invention, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station 110 provided in this embodiment may include a processor 1101 and a memory 1102.
  • the base station 110 can also include a transmitter 1103 and a receiver 1104, which can be coupled to the processor 1101.
  • the transmitter 1103 is configured to send a first uplink resource configuration message to the terminal, where the first uplink resource configuration message includes: a time-frequency resource configuration parameter allocated to the time-frequency resource block of the terminal; and the receiver 1104 is configured to: Receiving, by the terminal, an output bit sequence transmitted by the terminal through the physical uplink shared channel (PUSCH), wherein the output bit sequence is interleaved by the column after the terminal interleaves the information to be transmitted according to the time-frequency resource configuration parameter and the interleaving parameter; An output bit sequence obtained by the matrix, the number of the output bit sequences being less than or equal to a product of the number of rows of the interleaving matrix and the total number of columns; the memory 1102 is configured to store execution instructions, and the processor 1101 is configured to execute the memory 1102 The instructions are executed to perform the following operations: deinterleaving the output bit sequence.
  • PUSCH physical uplink shared channel
  • the transmitter 1103 is further configured to:
  • the terminal And sending, by the terminal, a second uplink resource configuration message, where the second uplink resource configuration message includes: C, the C belongs to the interleaving parameter, and the C is used to indicate a minimum number of columns or totals of the interlace matrix The number of columns is greater than or equal to the number of orthogonal frequency division multiplexing OFDM symbols occupied by the time-frequency resource block.
  • the second uplink resource configuration message includes: C, the C belongs to the interleaving parameter, and the C is used to indicate a minimum number of columns or totals of the interlace matrix The number of columns is greater than or equal to the number of orthogonal frequency division multiplexing OFDM symbols occupied by the time-frequency resource block.
  • the transmitter 1103 is further configured to:
  • the third uplink resource configuration message is sent to the terminal, where the third uplink resource configuration message includes: the C RI , where the C RI is used to indicate the number of columns occupied by the rank indication RI in the interlace matrix.
  • the transmitter 1103 is further configured to:
  • the terminal Transmitting, by the terminal, a third uplink resource configuration message, where the third uplink resource configuration message includes: the C RI and the RI column label, where the C RI is used to indicate a rank indication RI in the interlace matrix The number of columns occupied, the RI column label is used to indicate the column label occupied by the RI in the interleaving matrix.
  • the transmitter 1103 is further configured to:
  • the fourth uplink resource configuration message includes: the C ACK , where the C ACK is used to indicate a hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix The number of columns occupied.
  • the transmitter 1103 is further configured to:
  • the fourth uplink resource configuration message includes: the C ACK and the ACK column label, where the C ACK is used to indicate the HARQ-ACK in the interlace matrix The number of columns occupied, the ACK column label is used to indicate the column number occupied by the hybrid automatic repeat request-acknowledgment HARQ-ACK in the interlace matrix.
  • the base station in this embodiment may be used to perform the technical solution in the foregoing embodiment of the information processing method of the present invention, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk. The medium to store the program code.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息处理方法、终端及基站,该方法包括:终端接收基站发送的第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;所述终端确定交织参数;其中,所述交织参数包括:C,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数;进一步地,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织,从而降低了交织复杂度。

Description

信息处理方法、终端及基站 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种信息处理方法、终端及基站。
背景技术
在长期演进(Long Term Evolution,简称LTE)技术中,终端和基站之间需要传输上行控制信令和上行业务数据,为了保证上行控制信令和上行业务数据的传输质量,现有技术中,通常将上行控制信令和上行业务数据进行交织。
但现有的交织技术适用于传输时间间隔(Transmission Time Interval,简称TTI)长度为1ms的***,对于短传输时间间隔(ShortTTI,简称sTTI),例如长度为1个OS或者2个OS的sTTI,OS为正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,现有的交织技术并不能直接适用,需要单独设计。
发明内容
本发明实施例提供一种不同于现有技术的信息处理方法、终端及基站,以期降低交织实现复杂度,和/或,提高交织效率。
第一方面,本发明实施例提供一种信息处理方法,包括:
终端接收基站发送的第一上行资源配置消息,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数;
终端确定交织参数;其中,交织参数包括:用于指示交织矩阵的最少列数或者总列数的C,C大于等于时频资源块所占的正交频分复用OFDM符号个数;
终端根据时频资源配置参数和交织参数,对待传输信息作交织。
通过第一方面提供的信息处理方法,终端通过接收基站发送的第一上行资源配置消息,并确定包括用于指示交织矩阵的最少列数或者总列数的C的交织参数,其中,C大于等于基站分配给终端的时频资源块所占的OFDM符号个数; 进一步地,终端根据时频资源配置参数和交织参数对待传输信息作交织;可见,由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数,因此,对于sTTI长度较短的***在交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的交织方式相似的交织方式作交织,降低了交织复杂度,从而提高了交织效率。
在一个可能的设计中,终端确定交织参数,包括:
终端接收基站发送的第二上行资源配置消息,第二上行资源配置消息中包括:C;
终端根据第二上行资源配置消息确定C。
在一个可能的设计中,交织参数还包括:CRI,CRI用于指示交织矩阵中秩指示RI所占的列数;
对应地,终端根据时频资源配置参数和交织参数,对待传输信息作交织,包括:
将RI写入交织矩阵的第0列至第C-1列中预设的CRI列中。
在一个可能的设计中,终端确定交织参数,包括:
终端接收基站发送的第三上行资源配置消息,第三上行资源配置消息中包括:CRI
终端根据第三上行资源配置消息确定CRI
在一个可能的设计中,交织参数还包括:CRI以及RI列标号,CRI用于指示交织矩阵中秩指示RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号;
对应地,终端根据时频资源配置参数和交织参数,对待传输信息作交织,包括:
将RI写入交织矩阵的RI列标号对应的CRI列中。
在一个可能的设计中,终端确定交织参数,包括:
终端接收基站发送的第三上行资源配置消息,第三上行资源配置消息中包括:CRI以及RI列标号;
终端根据第三上行资源配置消息确定CRI以及RI列标号。
在一个可能的设计中,交织参数还包括:CACK,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
对应地,终端根据时频资源配置参数和交织参数,对待传输信息作交织,包括:
将HARQ-ACK写入交织矩阵的第0列至第C-1列中预设的CACK列中。
在一个可能的设计中,终端确定交织参数,包括:
终端接收基站发送的第四上行资源配置消息,第四上行资源配置消息中包括:CACK
终端根据第四上行资源配置消息确定CACK
在一个可能的设计中,交织参数还包括:CACK以及ACK列标号,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中HARQ-ACK所占的列标号;
对应地,终端根据时频资源配置参数和交织参数,对待传输信息作交织,包括:
将HARQ-ACK写入交织矩阵的ACK列标号对应的CACK列中。
在一个可能的设计中,终端确定交织参数,包括:
终端接收基站发送的第四上行资源配置消息,第四上行资源配置消息中包括:CACK以及ACK列标号;
终端根据第四上行资源配置消息确定CACK以及ACK列标号。
在一个可能的设计中,C大于等于交织矩阵中RI所占列数与交织矩阵中HARQ-ACK所占列数之和。
通过该实施方式提供的信息处理方法,终端可根据基站发送的配置消息或者根据协议预先规定规则等确定交织矩阵的列数、RI所占的列数及列标号、HARQ-ACK所占的列数和列标号等交织参数,进而对待传输信息作交织;由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数(即对于sTTI长度较短的***在交织时交织矩阵的列数可调整),使不同sTTI长度的***可统一采用与现有3GPP LET协议的交织方式相似的交织方式作交织,从而降低了交织复杂度;进一步地,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散打孔,从而降低了上行业务数据的性能损失。
在一个可能的设计中,终端根据时频资源配置参数和交织参数,对待传输信息作交织之后,还包括:
终端按列读出交织矩阵,得到输出比特序列;其中,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积。
在一个可能的设计中,终端按列读出交织矩阵,得到输出比特序列之后,还包括:
终端将输出比特序列通过物理上行共享信道PUSCH发送给基站,以使基站对输出比特序列进行解交织。
第二方面,本发明实施例提供一种信息处理方法,包括:
基站向终端发送第一上行资源配置消息,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数;
基站接收终端通过物理上行共享信道PUSCH发送的输出比特序列,并对输出比特序列进行解交织;其中,输出比特序列为终端根据时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积。
通过第二方面提供的信息处理方法,基站向终端发送携带有时频资源配置参数的第一上行资源配置消息;进一步地,基站接收终端通过PUSCH发送的输出比特序列(输出比特序列为终端根据时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积),并对输出比特序列按照终端进行交织的反过程进行解交织;由于终端可统一采用与现有3GPPLET协议的交织方式相似的交织方式(降低了交织复杂度)对不同sTTI长度的***作交织,因此,基站也可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式对不同sTTI长度的***作解交织,降低了解交织复杂度,从而提高了解交织效率。
在一个可能的设计中,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第二上行资源配置消息,第二上行资源配置消息中包括:C,C属于交织参数,C用于指示交织矩阵的最少列数或者总列数,C大于等于时频资源块所占的正交频分复用OFDM符号个数。
在一个可能的设计中,C大于等于交织矩阵中RI所占列数与交织矩阵中HARQ-ACK所占列数之和。
通过该实施方式提供的信息处理方法,由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数,因此,sTTI长度较短的***在解交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式作解交织,从而降低了解交织复杂度;进一步地,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散,从而降低了上行业务数据的性能损失。
在一个可能的设计中,若交织参数还包括:CRI,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI,CRI用于指示交织矩阵中秩指示RI所占的列数。
在一个可能的设计中,若交织参数还包括:CRI以及RI列标号,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI以及RI列标号,CRI用于指示交织矩阵中秩指示RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号。
在一个可能的设计中,若交织参数还包括:CACK,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
在一个可能的设计中,若交织参数还包括:CACK以及ACK列标号,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK以及ACK列标号,CACK用于指示交织矩阵中HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
通过该实施方式提供的信息处理方法,基站通过向终端发送携带有用于指示交织矩阵的列数、RI所占的列数及列标号、HARQ-ACK所占的列数及列标号等交织参数的配置消息,以便终端可根据基站发送的配置消息确定出交织矩阵的交织参数,进而对待传输信息作交织;由于sTTI长度较短的*** 在交织时交织矩阵的列数可调整,使不同sTTI长度的***终端可统一采用与现有3GPP LET协议的交织方式相似的交织方式作交织,从而降低了交织复杂度;对应地,基站可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式,从而降低了解交织复杂度。
第三方面,本发明实施例提供一种终端,包括:
接收模块,用于接收基站发送的第一上行资源配置消息,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数;
确定模块,用于确定交织参数;其中,交织参数包括:C,C用于指示交织矩阵的最少列数或者总列数,C大于等于时频资源块所占的正交频分复用OFDM符号个数;
交织模块,用于根据时频资源配置参数和交织参数,对待传输信息作交织。
在一个可能的设计中,接收模块还用于:
接收基站发送的第二上行资源配置消息,第二上行资源配置消息中包括:C;
确定模块具体用于:根据第二上行资源配置消息确定C。
在一个可能的设计中,交织参数还包括:CRI,CRI用于指示交织矩阵中秩指示RI所占的列数;
对应地,交织模块具体用于:
将RI写入交织矩阵的第0列至第C-1列中预设的CRI列中。
在一个可能的设计中,接收模块还用于:
接收基站发送的第三上行资源配置消息,第三上行资源配置消息中包括:CRI
确定模块具体用于:根据第三上行资源配置消息确定CRI
在一个可能的设计中,交织参数还包括:CRI以及RI列标号,CRI用于指示交织矩阵中秩指示RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号;
对应地,交织模块具体用于:
将RI写入交织矩阵的RI列标号对应的CRI列中。
在一个可能的设计中,接收模块还用于:
接收基站发送的第三上行资源配置消息,第三上行资源配置消息中包括:CRI以及RI列标号;
确定模块具体用于:根据第三上行资源配置消息确定CRI以及RI列标号。
在一个可能的设计中,交织参数还包括:CACK,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
对应地,交织模块具体用于:
将HARQ-ACK写入交织矩阵的第0列至第C-1列中预设的CACK列中。
在一个可能的设计中,接收模块还用于:
接收基站发送的第四上行资源配置消息,第四上行资源配置消息中包括:CACK
确定模块具体用于:根据第四上行资源配置消息确定CACK
在一个可能的设计中,交织参数还包括:CACK以及ACK列标号,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中HARQ-ACK所占的列标号;
对应地,交织模块具体用于:
将HARQ-ACK写入交织矩阵的ACK列标号对应的CACK列中。
在一个可能的设计中,接收模块还用于:
接收基站发送的第四上行资源配置消息,第四上行资源配置消息中包括:CACK以及ACK列标号;
确定模块具体用于:根据第四上行资源配置消息确定CACK以及ACK列标号。
在一个可能的设计中,终端还包括:
读模块,用于按列读出交织矩阵,得到输出比特序列;其中,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积。
在一个可能的设计中,终端还包括:
发送模块,用于将输出比特序列通过物理上行共享信道PUSCH发送给基站,以使基站对输出比特序列进行解交织。
上述第三方面以及上述第三方面的各可能的实施方式所提供的终端,其有益效果可以参见上述第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本发明实施例提供一种基站,包括:
发送模块,用于向终端发送第一上行资源配置消息,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数;
接收模块,用于接收终端通过物理上行共享信道PUSCH发送的输出比特序列;其中,输出比特序列为终端根据时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积;
解交织模块,用于对输出比特序列进行解交织。
在一个可能的设计中,发送模块还用于:
向终端发送第二上行资源配置消息,第二上行资源配置消息中包括:C,C属于交织参数,C用于指示交织矩阵的最少列数或者总列数,C大于等于时频资源块所占的正交频分复用OFDM符号个数。
在一个可能的设计中,若交织参数还包括:CRI,发送模块还用于:
向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI,CRI用于指示交织矩阵中秩指示RI所占的列数。
在一个可能的设计中,若交织参数还包括:CRI以及RI列标号,发送模块还用于:
向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI以及RI列标号,CRI用于指示交织矩阵中秩指示RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号。
在一个可能的设计中,若交织参数还包括:CACK,发送模块还用于:
向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
在一个可能的设计中,若交织参数还包括:CACK以及ACK列标号,发送模块还用于:
向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK以及ACK列标号,CACK用于指示交织矩阵中HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
上述第四方面以及上述第四方面的各可能的实施方式所提供的基站,其 有益效果可以参见上述第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
附图说明
图1A为复用和交织流程示意图;
图1B为TTI***的交织矩阵示意图;
图2为本发明信息处理方法实施例一的流程示意图;
图3A为本发明信息处理方法实施例二的流程示意图;
图3B为等效交织示意图一;
图3C为等效交织示意图二;
图4A为本发明信息处理方法实施例三的流程示意图;
图4B为时频资源块分段示意图一;
图4C为时频资源块分段示意图二;
图4D为时频资源块分段示意图三;
图5为本发明信息处理方法实施例四的流程示意图;
图6为本发明终端实施例一的结构示意图;
图7为本发明终端实施例二的结构示意图;
图8为本发明终端实施例三的结构示意图;
图9为本发明终端实施例四的结构示意图;
图10为本发明基站实施例一的结构示意图;
图11为本发明基站实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有的第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)LTE标准协议(如3GPP 36.211和3GPP 36.212)中涉及的交织技术 适用于TTI长度为1ms的***,其中,对于常规循环前缀(Normal Cyclic Prefix,简称常规CP),TTI包括14个OFDM符号;对于扩展CP(Extended CP),TTI包括12个OFDM符号。以下对现有的交织技术进行简单地描述:1)确定交织矩阵的总列数和行数;1a)、协议规定交织矩阵的总列数等于基站分配给终端的时频资源块所占的OFDM符号(不含导频和探测信号);1b)、交织矩阵的行数等于每个传输块上待传输的总比特数与总列数的商;由于现有协议中已规定秩指示(Rank Indication,简称RI)和/或混合自动重传请求-确认(Hybrid Automatic Repeat request-Acknowledgement,简称HARQ-ACK)等上行控制信令在交织矩阵中所占的列数以及列标号,因此,该步骤中无需确定RI和/或HARQ-ACK等上行控制信令在交织矩阵中所占的列数以及列标号;2)确定待传输信息的目标长度,例如确定出每个传输块上待传输的上行控制信令和上行业务数据分别对应的目标长度,可选地,所述上行控制信令可以为以下至少一种:RI、HARQ-ACK或信道质量指示(Channel Quality Indicator,简称CQI);3)根据待传输信息的目标长度对待传输信息进行复用和交织,图1A为复用和交织流程示意图,如图1A所示,可选地,该步骤包括:对上行业务数据和上行控制信令分别进行信道编码以及速率匹配;将速率匹配后的上行业务数据和CQI进行复用得到复用序列;将速率匹配后的除CQI之外的其它上行控制信令和复用序列进行交织(即将速率匹配后的除CQI之外的其它上行控制信令和复用序列写入交织矩阵),其中,先将RI写入交织矩阵中指定的4列(按照先行后列从下往上的写入规则),再将复用序列写入交织矩阵中(跳过RI已占用的单元),最后将HARQ-ACK写入交织矩阵中指定的4列(按照先行后列从下往上的写入规则,可占用上行业务数据和CQI已占用的单元),得到交织矩阵,如图1B所示(图1B为TTI***的交织矩阵示意图),可见,RI和HARQ-ACK分别占用不同的列;4)按列读出交织矩阵得到输出比特序列,输出比特序列的个数等于交织矩阵的行数与总列数的乘积。进一步地,在交织后将输出比特序列通过PUSCH发送给基站,可选地,通过PUSCH发送过程中需要将输出比特序列作时频变换转变成频域并作载波映射到相应频域等过程。
但对于长度为1个OS(包括1个OFDM符号)的sTTI,或者对于长度为2个OS(包括2个OFDM符号)的sTTI,其OFDM符号个数远远小于14,由于现有协议中规定交织矩阵的列数等于基站分配给终端的时频资源块 所占的OFDM符号(不含导频,如12列)以及规定RI和HARQ-ACK各占交织矩阵的指定4列,可见,现有的交织技术并不能被直接应用于长度为1个OS或2个OS的sTTI***中,需要单独分别设计。
其中,对于长度为1个OS(包括1个OFDM符号)的sTTI,或者对于长度为2个OS(包括2个OFDM符号)的sTTI(若2个OFDM符号中含导频,若假设按照现有协议规定交织矩阵的总列数等于基站分配给终端的时频资源块所占的不含导频的OFDM符号),则确定交织矩阵的总列数等于1,因此,RI和HARQ-ACK会占用交织矩阵的同一列;可见,对于长度为1个OS或者2个OS(含导频)的sTTI***中交织方式与现有协议中的交织方式明显不统一,需要单独分别设计,从而增加了交织复杂度。
对于长度为2个OS(包括2个OFDM符号且不含导频)的sTTI***,若假设按照现有协议规定交织矩阵的总列数等于基站分配给终端的时频资源块所占的不含导频的OFDM符号),则确定交织矩阵的总列数等于2,RI和HARQ-ACK可能各占一列,但现有协议中规定RI和HARQ-ACK各占交织矩阵的指定4列,由于所占列数不同,导致交织过程可能不同;可见,对于长度为2个OS(不含导频)的sTTI***中交织方式与现有协议中的交织方式不统一,需要单独设计,从而增加了交织复杂度。
本发明实施例中,终端通过接收基站发送的第一上行资源配置消息以及确定交织参数,其中,所述交织参数包括用于指示交织矩阵的最少列数或者总列数的C(C大于等于基站分配给终端的时频资源块所占的OFDM符号个数);进一步地,终端根据时频资源配置参数和交织参数,对待传输信息作交织;可见,由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数,因此,对于sTTI长度较短(如1个OS或者2个OS)的***在交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的交织方式相似的交织方式作交织,降低了交织复杂度,从而提高了交织效率。
下面结合附图通过具体实施例对本发明实施例提供的信息处理方法、终端及基站进行详细说明。
图2为本发明信息处理方法实施例一的流程示意图。如图2所示,本实施例的方法可以包括:
S201、终端接收基站发送的第一上行资源配置消息。
本步骤中,终端接收基站发送的第一上行资源配置消息,其中,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;可选地,对于sTTI***中,基站分配的时频资源块的单元为sRB(sRB在时域占一个OFDM符号,在频域占M个子载波,例如M为12),例如sTTI***为sTTI长度为1个OS或2个OS的***。可选地,所述时频资源配置参数用于指示基站分配给终端的时频资源块大小,进一步终端可根据时频资源配置参数确定出:
Figure PCTCN2016082119-appb-000001
(表示时频资源块所占的OFDM符号个数,不含导频符号)、
Figure PCTCN2016082119-appb-000002
(表示时频资源块所占的资源带宽,以每个OFDM符号包含的sRB个数表示)和
Figure PCTCN2016082119-appb-000003
(表示时频资源块所占的资源带宽,以每个OFDM符号中包含的子载波数表示)等配置参数信息,当然,所述时频资源配置参数还可以包括其它配置参数和/或终端可根据时频资源配置参数还可确定出其它配置参数信息等,本发明实施例中对此并不作限制。
S202、终端确定交织参数。
本步骤中,终端确定交织参数,其中,交织参数用于指示交织矩阵的参数;可选地,交织参数可预先配置,或者由基站动态指示,其中,不同sTTI长度可对应相同的交织参数或者不同的交织参数。
可选地,交织参数可包括:C(用于指示交织矩阵的最少列数或者总列数),C大于等于时频资源块所占的OFDM符号个数(不含导频符号),可选地,C大于等于交织矩阵中RI所占列数与交织矩阵中HARQ-ACK所占列数之和(例如,若交织矩阵中RI所占列数和HARQ-ACK所占列数各为2列,则C大于等于4),其中,C太小会导致在HARQ-ACK和RI的资源较易受限。可选地,终端通过接收基站发送的携带有C的第二上行资源配置消息,并根据第二上行资源配置消息确定出C,可选地,第二上行资源配置消息可以与第一上行资源配置消息相同或者不同,第二上行资源配置消息可以为UL Grant消息,当然,第二上行资源配置消息还可以为其它配置消息,本发明实施例中对此并不作限制。
可选地,交织参数还可以包括:交织矩阵中RI所占的列数和列标号、或者交织矩阵中HARQ-ACK所占的列数和列标号等信息,当然,本发明实施例中交织参数还可以包括其它信息,本发明实施例中对此并不作限制。
可选地,终端可根据时频资源配置参数以及C确定出交织矩阵的行数,具体 地实现方式可至少通过以下两种可实现方式:
第一种可实现方式:若C用于指示交织矩阵的总列数Cmux,根据每个传输块上待传输的总比特数与总列数Cmux确定交织矩阵的行数Rmux,例如:行数Rmux等于每个传输块上待传输的总比特数与总列数Cmux的商;当然,还可通过其它方式确定交织矩阵的行数Rmux,本发明实施例中对此并不作限制。
第二种可实现方式:若C用于指示交织矩阵的最少列数,根据
Figure PCTCN2016082119-appb-000004
确定交织矩阵的总列数Cmux,其中,
Figure PCTCN2016082119-appb-000005
表示向上取整运算,
Figure PCTCN2016082119-appb-000006
Figure PCTCN2016082119-appb-000007
表示向下取整运算,
Figure PCTCN2016082119-appb-000008
表示时频资源块所占的总sRB数,
Figure PCTCN2016082119-appb-000009
;进一步地,根据每个传输块上待传输的总比特数与总列数Cmux确定交织矩阵的行数Rmux,或者根据R*每个sRB包含的子载波数*调制阶数*层数确定交织矩阵的行数Rmux,或者根据
Figure PCTCN2016082119-appb-000010
确定交织矩阵的行数Rmux,其中,
Figure PCTCN2016082119-appb-000011
表示上行业务数据、CQI以及RI在每个传输块x每层上传输所需的子载波个数,
Figure PCTCN2016082119-appb-000012
表示用于传输传输块x的层数,
Figure PCTCN2016082119-appb-000013
表示传输块x的调制阶数,x大于等于1的正整数(如1或者2);当然,还可通过其它方式确定交织矩阵的行数Rmux,本发明实施例中对此并不作限制。
可选地,交织矩阵的从上往下的行编号依次为0、1、2、……、Rmux-1;可选地,若将交织矩阵的每列所有元素中从上往下每
Figure PCTCN2016082119-appb-000014
个元素划分为1个单元,则交织矩阵变形为R′mux行Cmux列的交织矩阵。
可选地,本发明实施例中,对步骤S201和步骤S202的执行顺序并不作限制,例如可以并行执行、先执行步骤S201再执行步骤S202、或者先执行步骤S202再执行步骤S201。
S203、终端根据时频资源配置参数和交织参数,对待传输信息作交织。
本步骤中,终端根据时频资源配置参数和交织参数,对待传输信息作交织,可选地,待传输信息包括:上行控制信令和上行业务数据,其中,上行控制信令可以为以下至少一种:RI、HARQ-ACK或CQI,当然,上行控制信令还可包括其它信令,本发明实施例中对此并不作限制。可选地,对待传输信息作交织包括:先将 RI写入交织矩阵中,再将CQI与上行业务数据的复用序列写入交织矩阵中,最后将HARQ-ACK写入交织矩阵中。
可选地,若交织参数还包括:CRI,CRI用于指示交织矩阵中RI所占的列数;对应地,步骤S203包括:将RI写入交织矩阵的第0列至第C-1列中预设的CRI列中(可选地,协议预先规定交织矩阵中RI所占不同列数时对应的哪几列写RI,例如,当CRI为2时,交织矩阵的第1列和第5列写RI);可选地,可以按照先行后列及从下往上的写入规则写入RI,或者按照先列后行及从下往上的写入规则写入RI(即写完一列再写另一列),当然还可按照其它写入规则写入RI,本发明实施例中对此并不作限制。可选地,终端通过接收基站发送的携带有CRI的第三上行资源配置消息,并根据第三上行资源配置消息确定出CRI;可选地,第三上行资源配置消息可以与第二上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
可选地,若交织参数还包括:CRI以及RI列标号,CRI用于指示交织矩阵中RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号;对应地,步骤S203包括:将RI写入交织矩阵的RI列标号对应的CRI列中;可选地,可以按照先行后列及从下往上的写入规则写入RI,或者按照先列后行及从下往上的写入规则写入RI(即写完一列再写另一列),当然还可按照其它写入规则写入RI,本发明实施例中对此并不作限制。可选地,终端通过接收基站发送的携带有CRI以及RI列标号的第三上行资源配置消息,并根据第三上行资源配置消息确定出CRI以及RI列标号;可选地,第三上行资源配置消息可以与第二上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
可选地,若交织参数还包括:CACK,CACK用于指示交织矩阵中HARQ-ACK所占的列数;对应地,步骤S203包括:将HARQ-ACK写入交织矩阵的第0列至第C-1列中预设的CACK列中(可选地,协议预先规定交织矩阵中HARQ-ACK所占不同列数时对应的哪几列写HARQ-ACK,例如,当CACK为2时,交织矩阵的第2列和第4列写HARQ-ACK);可选地,可以按照先行后列及从下往上的写入规则将HARQ-ACK写入交织矩阵中非RI占用的预设CACK列,或者按照先列后行及从下往上的写入规则将HARQ-ACK写入交织矩阵中非RI占用的预设CACK列(即写完一列再写另一列),当然还可按照其它写入规则写入HARQ-ACK,本发明实施例中对此并不作限制。可选地,终端通过接收基站发送的携带有CACK的第四上行资源 配置消息,并根据第四上行资源配置消息确定出CACK;可选地,第四上行资源配置消息可以与第三上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
可选地,若交织参数还包括:CACK以及ACK列标号,CACK用于指示交织矩阵中HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中HARQ-ACK所占的列标号;对应地,步骤S203包括:将HARQ-ACK写入交织矩阵的ACK列标号对应的CACK列中;可选地,可以按照先行后列及从下往上的写入规则将HARQ-ACK写入交织矩阵中非RI占用的ACK列标号对应的CACK列中,或者按照先列后行及从下往上的写入规则将HARQ-ACK写入交织矩阵中非RI占用的ACK列标号对应的CACK列中(即写完一列再写另一列),当然还可按照其它写入规则写入HARQ-ACK,本发明实施例中对此并不作限制。可选地,终端通过接收基站发送的携带有CACK以及ACK列标号的第四上行资源配置消息,并根据第四上行资源配置消息确定出CACK以及ACK列标号;可选地,第四上行资源配置消息可以与第三上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
可选地,本发明实施例中,将CQI与上行业务数据的复用序列写入交织矩阵中的过程可与现有协议中过程类似,本申请中实施例三中会详细说明。
本发明实施例中,终端通过接收基站发送的第一上行资源配置消息以及确定交织参数,其中,所述交织参数包括用于指示交织矩阵的最少列数或者总列数的C(C大于等于基站分配给终端的时频资源块所占的OFDM符号个数);进一步地,终端根据时频资源配置参数和交织参数,对待传输信息作交织;可见,由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数,因此,对于sTTI长度较短(如1个OS或2个OS)的***在交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的交织方式相似的交织方式作交织,降低了交织复杂度,从而提高了交织效率。
图3A为本发明信息处理方法实施例二的流程示意图。如图3A所示,在上述图2所示实施例的基础上,在步骤S203之后,还包括:
S204、终端按列读出交织矩阵,得到输出比特序列。
本步骤中,终端按列读出交织矩阵(先读第0列、再读第1列、…、直至读 完所有列),得到输出比特序列,如图3B或者图3C中左边所示(图3B为等效交织示意图一,图3C为等效交织示意图二);可选地,由于将上行控制信令和上行业务数据写入交织矩阵过程中,交织矩阵的最后一列中可能有部分单元为空,因此,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积。
S205、终端将输出比特序列通过物理上行共享信道PUSCH发送给基站,以使基站对所述输出比特序列进行解交织。
本步骤中,终端将输出比特序列通过物理上行共享信道PUSCH发送给基站,以使基站对输出比特序列进行解交织;其中,PUSCH为sTTI对应的PUSCH;可选地,在通过PUSCH发送过程中需要将输出比特序列作时频变换转变成频域并作载波映射到相应频域等过程,与现有3GPP LTE协议中的过程类似,此处不再赘述。
可选地,基站按照终端进行交织的反过程对输出比特序列进行解交织,例如基站在收到输出比特序列后,根据交织参数(如交织总列数、行数、RI所占列数、HARQ-ACK所占列数等信息)将输出比特序列排列成交织矩阵形式如图3B或者图3C中右边所示,进一步地,可先从交织矩阵中提取HARQ-ACK,并把HARQ-ACK占用的地方填0,其次从交织矩阵中按顺序提取CQI和上行业务数据(将最后一列中元素为NULL的地方跳过,并解复用),最后从交织矩阵中提取RI。
可见,本发明实施例中,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散打孔,从而降低了上行业务数据的性能损失。
图4A为本发明信息处理方法实施例三的流程示意图。在上述实施例的基础上,本发明实施例的方法包括:
S401、终端接收基站发送的第一上行资源配置消息。
其中,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数。
S402、终端确定交织参数。
终端可通过上述实施例一中步骤S202中所述的确定交织参数的方式确定交织矩阵的总列数Cmux、行数Rmux、交织矩阵中RI所占的列数和RI列标号、交织矩阵中HARQ-ACK所占的列数和ACK列标号等信息。
可选地,若终端确定了交织矩阵的总列数Cmux和最少列数Cref,如图4B所 示(图4B为时频资源块分段示意图一),可将基站分配的时频资源块划分为Cmux段子时频资源块(每段子时频资源块的单位都为sRB),并将Cmux段子时频资源块排列为R行Cmux列结构(例如,如图4B中,当时频资源块为4sRB时,排列为1行4列;当时频资源块为5sRB时,排列为1行5列;当时频资源块为6sRB时,排列为1行6列等),其中,R行Cmux列结构的最后一列的最后R-1行可以为空白如图4B中的虚线框部分(如用“NULL”填充,图中未示出),CACK+CRI≤Cref≤Cmux
Figure PCTCN2016082119-appb-000015
。其中,分段原则是在保证至少有Cref段且只有最后一段可能放不满的前提下,最大化行数R,如图4C所示(图4C为时频资源块分段示意图二)。
需要说明的是,考虑到时频资源块分段后的子时频资源块的单位为sRB、每个传输块的调制阶数(即一个调制符号包括的比特数)和分层传输,因此,Rmux=R*每个sRB包含的子载波数*调制阶数*层数。
S403、终端根据时频资源配置参数和交织参数,对待传输信息作交织。
本步骤中,终端根据时频资源配置参数和交织参数,对待传输信息作交织具体可包括如下步骤:
步骤A)、终端根据时频资源配置参数和交织参数确定待传输信息的目标长度。
本步骤中,终端通过根据时频资源配置参数和交织参数确定每个传输块每层上待传输的上行控制信令所需要的载波资源和上行业务数据所需要的载波资源;进一步地,根据每个传输块每层上待传输的上行控制信令所需要的载波资源,确定每个传输块上待传输的上行控制信令的第一目标长度;根据每个传输块每层上待传输的上行业务数据所需要的载波资源,确定每个传输块上待传输的上行业务数据的第二目标长度。
可选地,若一个sTTI中包括一个传输块,终端根据时频资源配置参数和交织参数确定每个传输块每层上待传输的上行控制信令所需要的载波资源和上行业务数据所需要的载波资源,包括:
根据
Figure PCTCN2016082119-appb-000016
确定传输块 x每层上待传输的HARQ-ACK所需要的载波资源,其中,
Figure PCTCN2016082119-appb-000017
表示在sTTI中初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的OFDM符号个数且不包含导频符号和探测信号,O表示HARQ-ACK的比特数,
Figure PCTCN2016082119-appb-000018
表示初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的资源带宽,
Figure PCTCN2016082119-appb-000019
表示控制信息的调制和编码方案(Modulation and Coding Scheme,简称MCS)偏置,
Figure PCTCN2016082119-appb-000020
表示一个sRB包括的子载波个数;C表示传输块x包括的上行业务数据的编码块CB的个数;Kr表示传输块x包括的CB块中的第r个CB块的长度;x的取值范围为1;
根据
Figure PCTCN2016082119-appb-000021
确定传输块x每层上待传输的RI所需要的载波资源;
根据
Figure PCTCN2016082119-appb-000022
确定传输块x每层上待传输的CQI所需要的载波资源,其中,L表示循环冗余校验CRC比特数,
Figure PCTCN2016082119-appb-000023
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的资源带宽,
Figure PCTCN2016082119-appb-000024
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的OFDM符号个数且不包含导频符号和探测信号,
Figure PCTCN2016082119-appb-000025
表示传输块x包括的CB块中的第r个CB块的长度,C(x)表示传输块x包括的上行业务数据的CB块个数,
Figure PCTCN2016082119-appb-000026
表示传输块x的每层上编码后的RI比特数,
Figure PCTCN2016082119-appb-000027
表示传输块x的调制阶数;x的取值范围为1;
根据
Figure PCTCN2016082119-appb-000028
确定传输块x每层上待传输的上行业务数据所需要的载波资源。
可选地,若一个sTTI中包括两个传输块,终端根据时频资源配置参数和交织 参数确定每个传输块每层上待传输的上行控制信令所需要的载波资源和上行业务数据所需要的载波资源,包括:
根据
Figure PCTCN2016082119-appb-000029
确定传输块x每层上待传输的HARQ-ACK所需要的载波资源,其中,
Figure PCTCN2016082119-appb-000030
表示一个sRB包括的子载波个数;
Figure PCTCN2016082119-appb-000031
,O表示HARQ-ACK的比特数,
Figure PCTCN2016082119-appb-000032
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的资源带宽,
Figure PCTCN2016082119-appb-000033
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的OFDM符号个数且不包含导频符号和探测信号,
Figure PCTCN2016082119-appb-000034
表示传输块x包括的CB块中的第r个CB块的长度,C(x)表示传输块x包括的上行业务数据的CB块个数,
Figure PCTCN2016082119-appb-000035
表示控制信息的MCS偏置;x的取值范围为1或2;
根据
Figure PCTCN2016082119-appb-000036
确定传输块x每层上待传输的RI所需要的载波资源;
根据
Figure PCTCN2016082119-appb-000037
确定传输块x每层上待传输的CQI所需要的载波资源,其中,L表示循环冗余校验CRC比特数,
Figure PCTCN2016082119-appb-000038
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的资源带宽,
Figure PCTCN2016082119-appb-000039
表示为传输块x初传分配的用于发送上行业务数据和上行控制信令的时频资源块所占的OFDM符号个数且不包含导频符号和探测信号,
Figure PCTCN2016082119-appb-000040
表示传输块x包括的CB块中的第r个CB块的长度,C(x)表示传输块x包括的上行业务数据的CB块个数,
Figure PCTCN2016082119-appb-000041
表示所述时频资源块所占的资源带宽,以每个OFDM符号中所包含的子载波数表示,
Figure PCTCN2016082119-appb-000042
表 示所述时频资源块所占的OFDM符号个数,
Figure PCTCN2016082119-appb-000043
表示传输块x的每层上编码后的RI比特数,
Figure PCTCN2016082119-appb-000044
表示传输块x的调制阶数;x的取值范围为1或2;
根据
Figure PCTCN2016082119-appb-000045
确定传输块x每层上待传输的上行业务数据所需要的载波资源。
进一步地,根据每个传输块每层上待传输的上行控制信令所需要的载波资源,确定每个传输块上待传输的上行控制信令的第一目标长度,包括:
根据
Figure PCTCN2016082119-appb-000046
确定传输块x所有层上待传输的HARQ-ACK的目标长度;
根据
Figure PCTCN2016082119-appb-000047
确定传输块x所有层上待传输的RI的目标长度;
根据
Figure PCTCN2016082119-appb-000048
确定传输块x所有层上待传输的CQI的目标长度;
其中,传输块x上待传输的上行控制信令的第一目标长度包括:所述HARQ-ACK的目标长度、所述RI的目标长度和所述CQI的目标长度;
Figure PCTCN2016082119-appb-000049
表示用于传输传输块x的层数。
进一步地,根据每个传输块每层上待传输的上行业务数据所需要的载波资源,确定每个传输块上待传输的上行业务数据的第二目标长度,包括:
根据
Figure PCTCN2016082119-appb-000050
确定传输块x所有层上待传输的上行业务数据的第二目标长度;其中,
Figure PCTCN2016082119-appb-000051
表示用于传输传输块x的层数。
步骤B)、终端根据待传输信息的目标长度,对待传输信息进行复用和交织。
可选地,终端根据每个传输块上待传输的上行控制信令的第一目标长度对所述传输块上待传输的上行控制信令进行编码及速率匹配,并根据每个传输块上所传输的上行业务数据的第二目标长度对所述传输块上待传输的上行业务数据进行编码及速率匹配;进一步地,终端将每个传输块在速率匹配后的上行业务数据和上行控制信令进行复用得到复用矢量序列;进一步地,终端将每个传输块在速率匹配后的除CQI之外的其它上行控制信令和复用序列进行交织(即将复用序列、速率匹配后的除CQI之外的其它上行控制信令写入交织矩阵)。
可选地,终端根据每个传输块上待传输的上行控制信令的第一目标长度对所述传输块上待传输的上行控制信令进行编码及速率匹配,并根据每个传输块上所传输的上行业务数据的第二目标长度对所述传输块上待传输的上行业务数据进行编码及速率匹配,包括:
终端根据每个传输块上待传输的RI的目标长度对传输块上待传输的RI进行编 码及速率匹配、根据每个传输块上待传输的HARQ-ACK的目标长度对传输块上待传输的HARQ-ACK进行编码及速率匹配、根据每个传输块上待传输的CQI的目标长度对传输块上待传输的CQI进行编码及速率匹配,并根据每个传输块上所传输的上行业务数据的第二目标长度对传输块上待传输的上行业务数据进行编码及速率匹配。
其中,根据每个传输块上待传输的RI的目标长度按照3GPP LTE协议规定的编码方式对传输块上待传输的RI进行编码,其次对编码后的比特进行重复直到总比特数达到
Figure PCTCN2016082119-appb-000052
个(即完成速率匹配)的RI比特序列
Figure PCTCN2016082119-appb-000053
,进一步将每个调制符号包括的比特记为一列(即将每
Figure PCTCN2016082119-appb-000054
个RI比特记为一列)后并重复
Figure PCTCN2016082119-appb-000055
次得到RI矢量序列
Figure PCTCN2016082119-appb-000056
Figure PCTCN2016082119-appb-000057
是列向量
Figure PCTCN2016082119-appb-000058
,k的取值范围为
Figure PCTCN2016082119-appb-000059
中的整数。其中,每个传输块每层上待传输的RI比特序列内容相同。
类似地,根据每个传输块上待传输的HARQ-ACK的目标长度按照3GPP LTE协议规定的编码方式对传输块上待传输的HARQ-ACK进行编码,其次对编码后的比特进行重复直到总比特数达到
Figure PCTCN2016082119-appb-000060
个(即完成速率匹配)的HARQ-ACK比特序列
Figure PCTCN2016082119-appb-000061
,进一步将每个调制符号包括的比特记为一列(即将每
Figure PCTCN2016082119-appb-000062
个HARQ-ACK比特记为一列)后并重复
Figure PCTCN2016082119-appb-000063
次得到HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000064
Figure PCTCN2016082119-appb-000065
是列向量
Figure PCTCN2016082119-appb-000066
,k的取值范围为
Figure PCTCN2016082119-appb-000067
中的整数。其中,每个传输块每层上待传输的HARQ-ACK比特序列内容相同。
根据每个传输块上待传输的CQI的目标长度按照3GPP LTE协议规定的编码方式对传输块上待传输的CQI进行编码,其次对编码后的比特进行重复直到总比特数达到
Figure PCTCN2016082119-appb-000068
个(即完成速率匹配)的CQI比特序列
Figure PCTCN2016082119-appb-000069
Figure PCTCN2016082119-appb-000070
表示传输块x每层上携带的编码后的CQI比特 数,
Figure PCTCN2016082119-appb-000071
类似地,根据每个传输块上所传输的上行业务数据的第二目标长度按照3GPP LTE协议规定的编码方式对传输块上待传输的上行业务数据进行编码,其次对编码后的比特进行重复直到总比特数达到
Figure PCTCN2016082119-appb-000072
个(即完成速率匹配)的数据比特序列
Figure PCTCN2016082119-appb-000073
进一步地,终端将每个传输块在速率匹配后的上行业务数据和上行控制信令进行复用得到复用矢量序列的过程如下:将上行业务数据比特序列
Figure PCTCN2016082119-appb-000074
和CQI比特序列
Figure PCTCN2016082119-appb-000075
级联得到级联比特序列
Figure PCTCN2016082119-appb-000076
,其中,
Figure PCTCN2016082119-appb-000077
;将级联比特序列中每
Figure PCTCN2016082119-appb-000078
个序列中的元素依次形成列向量,得到复用矢量序列
Figure PCTCN2016082119-appb-000079
;其中,
Figure PCTCN2016082119-appb-000080
Figure PCTCN2016082119-appb-000081
,k的取值范围为
Figure PCTCN2016082119-appb-000082
中的整数,复用矢量序列
Figure PCTCN2016082119-appb-000083
中行
Figure PCTCN2016082119-appb-000084
是层i需要发送的序列。
进一步地,终端将每个传输块在速率匹配后的除CQI之外的其它上行控制信令和复用序列进行交织的过程如下:
将RI矢量序列
Figure PCTCN2016082119-appb-000085
依次写入交织矩阵的第0列至第C-1列中的CRI列中(可选地,可为预设的CRI列,或者为RI标号对应的CRI列),可选地,可以按照按照先行后列及从下往上的写入规则写入RI(例如,当将RI矢量序列
Figure PCTCN2016082119-appb-000086
写入交织矩阵的第C1列和第C2列时,先将
Figure PCTCN2016082119-appb-000087
中的元素写入第C1列的倒数第0行-倒数第
Figure PCTCN2016082119-appb-000088
行,再将
Figure PCTCN2016082119-appb-000089
中的元素写入第C2列的倒数第0行-倒数
Figure PCTCN2016082119-appb-000090
行,若还未将RI矢量序列写完,继续将
Figure PCTCN2016082119-appb-000091
中的元素写入第C1列的倒数第
Figure PCTCN2016082119-appb-000092
行-倒数第
Figure PCTCN2016082119-appb-000093
行,依次类推直至将RI矢量序列全部写入交织矩阵为止),当然,还可通过其它写入规则写入RI,本发明实施例中对此并 不作限制;例如,按照按照先行后列及从下往上的写入规则写入RI时可通过如下伪随机码实现:
Figure PCTCN2016082119-appb-000094
将复用矢量序列
Figure PCTCN2016082119-appb-000095
依次写入交织矩阵中,并跳过交织矩阵中已被RI占用以及最后一列中空白的单元;可选地,按照先行后列及从上往下的写入规则写入复用矢量序列,当然,还可通过其它写入规则写入复用矢量序列,本发明实施例中对此并不作限制;本发明实施例中,以按照先行后列及从上往下的写入规则将复用矢量序列写入如下交织矩阵进行说明,该交织矩阵的行数为
Figure PCTCN2016082119-appb-000096
(该交织矩阵中每个元素都为矢量),从矢量
Figure PCTCN2016082119-appb-000097
Figure PCTCN2016082119-appb-000098
开始,以
Figure PCTCN2016082119-appb-000099
为单元先行后列的写入,并跳过已经被RI占用以及最后一列中空白的单元,其中,
Figure PCTCN2016082119-appb-000100
中每个矢量都为
Figure PCTCN2016082119-appb-000101
行*1列的列向量;例如;先将复用矢量序列依次写入
Figure PCTCN2016082119-appb-000102
,若还未写完,则继续写入至
Figure PCTCN2016082119-appb-000103
,依次类推,直至写完所有复用序列;
交织矩阵
Figure PCTCN2016082119-appb-000104
将HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000105
依次写入交织矩阵的第0列至第C-1列中非RI占用的CACK列中(可选地,可为预设的CACK列,或者 为ACK标号对应的CACK列),可选地,可以按照按照先行后列及从下往上的写入规则写入HARQ-ACK,当然,还可通过其它写入规则写入HARQ-ACK,本发明实施例中对此并不作限制;例如,按照按照先行后列及从下往上的写入规则写入HARQ-ACK时可通过如下伪随机码实现:
Figure PCTCN2016082119-appb-000106
S404、终端按列读出交织矩阵,得到输出比特序列。
终端按列读出交织矩阵,得到输出比特序列
Figure PCTCN2016082119-appb-000107
Figure PCTCN2016082119-appb-000108
;其中,输出比特序列的个数
Figure PCTCN2016082119-appb-000109
小于等于交织矩阵的行数与总列数的乘积(Rmux×Cmux),x表示不同传输块,取值范围为0或1;当sTTI包括一个传输块时(记x等于0),则输出比特序列为
Figure PCTCN2016082119-appb-000110
;当sTTI包括两个传输块时(记x等于0和1),则传输块0对应的输出比特序列为
Figure PCTCN2016082119-appb-000111
和传输块1对应的输出比特序列为
Figure PCTCN2016082119-appb-000112
S405、终端将输出比特序列通过物理上行共享信道PUSCH发送给所述基站,以使基站对输出比特序列进行解交织。
本步骤中,终端将输出比特序列通过物理上行共享信道PUSCH发送给所述基站,以使基站对输出比特序列进行解交织,可选地,基站按照终端进行交织的反过程对输出比特序列进行解交织,例如基站在收到输出比特序列后,根据交织参数(如交织总列数、行数、RI所占列数、HARQ-ACK所占列数等信息)将输出比特序列 排列成交织矩阵形式如图3B或图3C中右边所示,进一步地,可先从交织矩阵中提取HARQ-ACK,并把HARQ-ACK占用的地方填0,其次从交织矩阵中按顺序提取CQI和上行业务数据(将最后一列中元素为NULL的地方跳过,并解复用),最后从交织矩阵中提取RI。
例如:当sTTI包括一个传输块0时,终端将输出比特序列
Figure PCTCN2016082119-appb-000113
通过PUSCH发送给基站,以使基站对输出比特序列
Figure PCTCN2016082119-appb-000114
进行解交织;当sTTI包括传输块0和传输块1时,终端将输出比特序列
Figure PCTCN2016082119-appb-000115
Figure PCTCN2016082119-appb-000116
通过PUSCH发送给基站,以使基站对输出比特序列
Figure PCTCN2016082119-appb-000117
Figure PCTCN2016082119-appb-000118
进行解交织。
可见,本发明实施例中,对于sTTI长度较短的***在交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的交织方式相似的交织方式可采用相似的交织过程作交织,降低了交织复杂度,从而提高了交织效率;进一步地,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散打孔,从而降低了上行业务数据的性能损失。
在上述实施例的基础上,本发明实施例对sTTI长度为2OS的交织过程进行描述,具体过程如下:
假设基站给终端分配了14个sRB的时频资源块,如
Figure PCTCN2016082119-appb-000119
Figure PCTCN2016082119-appb-000120
;基站指示交织矩阵的最少列数Cref=4(即C用于指示最少列数,C=Cref)、CRI=2,CACK=2(假设RI占用的列标号为第0列和第3列,HARQ-ACK占用的列标号为第1列和第2列),则根据
Figure PCTCN2016082119-appb-000121
确定交织矩阵的总列数Cmux=5,其中,
Figure PCTCN2016082119-appb-000122
,可将时频资源块分为3行5列的子时频资源块(如图4B所示中14sRB对应示图),进一步可根据Rmux=R*每个sRB包含 的子载波数*调制阶数*层数确定交织矩阵的行数Rmux(该交织矩阵中每个元素并非矢量);
进一步地,根据时频资源配置参数和交织参数确定待传输信息的目标长度,具体地可根据上述实施例三中步骤S403中步骤A描述的公式出每个传输块上待传输的上行控制信令的第一目标长度以及每个传输块上待传输的上行业务数据的第二目标长度,其中,假设一个sTTI中包括2个传输块(传输块0和传输块1,即x等于0和1)以及
Figure PCTCN2016082119-appb-000123
,确定出传输块0和传输块1上待传输的RI的目标长度分别为
Figure PCTCN2016082119-appb-000124
Figure PCTCN2016082119-appb-000125
、传输块0和传输块1上待传输的HARQ-ACK的目标长度分别为
Figure PCTCN2016082119-appb-000126
Figure PCTCN2016082119-appb-000127
、传输块0和传输块1上待传输的CQI的目标长度分别为
Figure PCTCN2016082119-appb-000128
Figure PCTCN2016082119-appb-000129
,以及传输块0和传输块1上待传输的上行业务数据的目标长度分别为G(0)和G(1)
进一步地,终端根据每个传输块上待传输的RI的目标长度对传输块上待传输的RI进行编码及速率匹配分别得到传输块0对应的RI矢量序列
Figure PCTCN2016082119-appb-000130
和传输块1对应的RI矢量序列
Figure PCTCN2016082119-appb-000131
、根据每个传输块上待传输的HARQ-ACK的目标长度对传输块上待传输的HARQ-ACK进行编码及速率匹配分别得到传输块0对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000132
和传输块1对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000133
、根据每个传输块上待传输的CQI的目标长度对传输块上待传输的CQI进行编码及速率匹配分别得到传输块0对应CQI比特序列
Figure PCTCN2016082119-appb-000134
和传输块1对应的CQI比特序列
Figure PCTCN2016082119-appb-000135
,并根据每个传输块上所传输的上行业务数据的目标长度对传输块上待传输的上行业务数据进行编码及速率匹配分别得到传输块0对应的数据比特序列
Figure PCTCN2016082119-appb-000136
和传输块1对应的数据比特序列
Figure PCTCN2016082119-appb-000137
进一步地,终端将每个传输块在速率匹配后的上行业务数据和上行控制信令进行复用得到传输块0对应的复用矢量序列
Figure PCTCN2016082119-appb-000138
和传输块1对应的复用矢量序列
Figure PCTCN2016082119-appb-000139
进一步地,将传输块0对应的RI矢量序列
Figure PCTCN2016082119-appb-000140
可以按照按照先行后列及从下往上的写入规则以
Figure PCTCN2016082119-appb-000141
为单元依次写入交织矩阵的第0列和第3列中,其中,k1的取值范围为
Figure PCTCN2016082119-appb-000142
的整数;将传输块0对应的复用矢量序列
Figure PCTCN2016082119-appb-000143
可以按照先行后列及从上往下的写入规则以g k2为单元依次写入交织矩阵中,并跳过交织矩阵中已被RI矢量序列
Figure PCTCN2016082119-appb-000144
占用以及最后一列中空白的单元,其中,k2的取值范围为
Figure PCTCN2016082119-appb-000145
的整数;将传输块0对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000146
可以按照先行后列及从下往上的写入规则以
Figure PCTCN2016082119-appb-000147
为单元依次写入交织矩阵中第1列和第2列中,其中,k3的取值范围为
Figure PCTCN2016082119-appb-000148
的整数;进一步地,终端按列读取交织矩阵,得到传输块0对应的输出比特序列为
Figure PCTCN2016082119-appb-000149
类似地,将传输块1对应的RI矢量序列
Figure PCTCN2016082119-appb-000150
可以按照按照先行后列及从下往上的写入规则以
Figure PCTCN2016082119-appb-000151
为单元依次写入交织矩阵的第0列和第3列中,其中,k1的取值范围为
Figure PCTCN2016082119-appb-000152
的整数;将传输块1对应的复用矢量序列
Figure PCTCN2016082119-appb-000153
可以按照先行后列及从上往下的写入规则以g k2为单元依次写入交织矩阵中,并跳过交织矩阵中已被RI矢量序列
Figure PCTCN2016082119-appb-000154
占用以及最后一列中空白的单元,其中,k2的取值范围为
Figure PCTCN2016082119-appb-000155
的整数;将传输块1对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000156
可以按照先 行后列及从下往上的写入规则以
Figure PCTCN2016082119-appb-000157
为单元依次写入交织矩阵中第1列和第2列中,其中,k3的取值范围为
Figure PCTCN2016082119-appb-000158
的整数;进一步地,终端按列读取交织矩阵,得到传输块1对应的输出比特序列为
Figure PCTCN2016082119-appb-000159
进一步地,终端通过PUSCH传输每个传输块对应的输出比特序列,以使所述基站对每个传输块对应的输出比特序列进行解交织。
可选地,假设基站给终端分配了12个sRB的时频资源块,如
Figure PCTCN2016082119-appb-000160
Figure PCTCN2016082119-appb-000161
,其中,对时频资源分段时如图4D所示(图4D为时频资源块分段示意图三),进一步可按照上述类似过程进行交织,本发明实施例中此处不再赘述。
图5为本发明信息处理方法实施例四的流程示意图。在上述各个实施例的基础上,本发明实施例中对基站侧进行描述,如图5所示,本实施例的方法包括:
S501、基站向终端发送第一上行资源配置消息。
本步骤中,基站向终端发送第一上行资源配置消息,其中,第一上行资源配置消息中包括:分配给终端的时频资源块的时频资源配置参数,以便终端在基站给分配的时频资源块上发送待传输信息;可选地,对于sTTI***中,基站分配的时频资源块的单元为sRB(sRB在时域占一个OFDM符号,在频域占M个子载波,例如M为12),例如sTTI***为sTTI长度为1个OS或2个OS的***。可选地,时频资源配置参数用于指示基站分配给终端的时频资源块大小,进一步终端可根据时频资源配置参数确定出:
Figure PCTCN2016082119-appb-000162
(表示时频资源块所占的OFDM符号个数,不含导频符号)、
Figure PCTCN2016082119-appb-000163
(表示时频资源块所占的资源带宽,以每个OFDM符号包含的sRB个数表示)和
Figure PCTCN2016082119-appb-000164
(表示时频资源块所占的资源带宽,以每个OFDM符号中包含的子载波数表示)等配置参数信息,当然,时频资源配置参数还可以包括其它配置参数和/或终端可根据时频资源配置参数还可确定出其它配置参数信息等,本发明实施例中对此并不作限制。可选地,待传输信息包括:上行控制信令和上行业务数据,其中,上行控制信令可以为以下至少一种:RI、HARQ-ACK或CQI,当然,上行控制信令还可包括其它信令,本发明实施例中对此并不作限制。
S502、基站接收终端通过物理上行共享信道PUSCH发送的输出比特序列,并对输出比特序列进行解交织。
本步骤中,基站接收终端通过PUSCH发送的输出比特序列,其中,PUSCH为sTTI对应的PUSCH,输出比特序列为终端根据时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列(如图3B或者图3C中左边所示),输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积;可选地,交织矩阵参数包括:C,C大于等于基站分配给终端的时频资源块所占的OFDM符号个数。可选地,在通过PUSCH发送过程中需要待输出比特序列作时频变换转变成频域并作载波映射到相应频域等过程。
进一步地,基站对接收到的输出比特序列进行解交织,可选地,基站按照终端进行交织的反过程对输出比特序列进行解交织,由于终端可采用与现有3GPP LET协议的交织方式相似的交织方式,降低了交织复杂度,对应地,基站也可采用与现有3GPP LET协议的解交织方式相似的解交织方式,降低了解交织复杂度。例如基站在收到输出比特序列后,根据交织参数(如交织总列数、行数、RI所占列数、HARQ-ACK所占列数等信息)将输出比特序列排列成交织矩阵形式如图3B或者图3C中右边所示,进一步地,可先从交织矩阵中提取HARQ-ACK(可将HARQ-ACK占用的地方填0),其次从交织矩阵中按顺序提取CQI和上行业务数据(将最后一列中元素为NULL的地方跳过,并解复用),最后从交织矩阵中提取RI。
可选地,当sTTI包括两个传输块时(记x等于0和1),则基站收到终端通过PUSCH发送的传输块0对应的输出比特序列
Figure PCTCN2016082119-appb-000165
和传输块1对应的输出比特序列
Figure PCTCN2016082119-appb-000166
进一步地,基站对传输块0对应的输出比特序列
Figure PCTCN2016082119-appb-000167
和传输块1对应的输出比特序列
Figure PCTCN2016082119-appb-000168
分别进行解交织,具体过程如下:
基站根据交织参数将传输块0对应的输出比特序列
Figure PCTCN2016082119-appb-000169
排列为交织矩阵形式,先从交织矩阵中提取传输块0对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000170
(可将HARQ-ACK占用的地方填0),其次从交织 矩阵中提取传输块0对应的复用矢量序列
Figure PCTCN2016082119-appb-000171
,最后从交织矩阵中提取传输块0对应的RI矢量序列
Figure PCTCN2016082119-appb-000172
;进一步地,分别对传输块0对应的HARQ-ACK矢量序列
Figure PCTCN2016082119-appb-000173
和传输块0对应的RI矢量序列
Figure PCTCN2016082119-appb-000174
依次进行解速率匹配和解码;对传输块0对应的复用矢量序列
Figure PCTCN2016082119-appb-000175
进行解复用得到传输块0对应CQI比特序列
Figure PCTCN2016082119-appb-000176
和传输块0对应的数据比特序列
Figure PCTCN2016082119-appb-000177
,并分别对传输块0对应CQI比特序列
Figure PCTCN2016082119-appb-000178
和传输块0对应的数据比特序列
Figure PCTCN2016082119-appb-000179
依次进行解速率匹配和解码等操作。
类似地,对传输块1对应的输出比特序列
Figure PCTCN2016082119-appb-000180
进行解交织,此处不再赘述。
可选地,基站对接收到的输出比特序列进行解交织的过程并不限定于上述描述,基站还可通过其它与终端交织方式相对应的解交织方式,例如,当终端按照交织方式1进行交织,对应地,基站按照与交织方式1对应的解交织方式1进行解交织;当终端按照交织方式2进行交织,对应地,基站按照与交织方式2对应的解交织方式2进行解交织等。
本发明实施例中,基站向终端发送携带有时频资源配置参数的第一上行资源配置消息;进一步地,基站接收终端通过PUSCH发送的输出比特序列(输出比特序列为终端根据时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,输出比特序列的个数小于等于交织矩阵的行数与总列数的乘积),并对输出比特序列按照终端进行交织的反过程进行解交织;由于终端可统一采用与现有3GPP LET协议的交织方式相似的交织方式(降低了交织复杂度)对不同sTTI长度的***作交织,因此,基站也可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式对不同sTTI长度的***作解交织,降低了解交织复杂度,从而提高了解交织效率。
进一步地,基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
基站向终端发送第二上行资源配置消息,第二上行资源配置消息中包括:C,C属于交织参数,C用于指示交织矩阵的最少列数或者总列数,C大于等于时频资源块所占的OFDM符号个数。
本发明实施例中,在步骤S502之前,基站可向终端发送携带有C的第二上行资源配置消息,以使终端根据第二上行配置消息确定出C,可选地,C大于等于交织矩阵中RI所占列数与交织矩阵中HARQ-ACK所占列数之和(例如,若交织矩阵中RI所占列数和HARQ-ACK所占列数各为2列,则C大于等于4),其中,C太小会导致在HARQ-ACK和RI的资源较易受限。可选地,第二上行资源配置消息可以与第一上行资源配置消息相同或者不同,第二上行资源配置消息可以为UL Grant消息,当然,第二上行资源配置消息还可以为其它配置消息,本发明实施例中对此并不作限制。
可见,由于交织矩阵的列数大于等于基站分配给终端的时频资源块所占的OFDM符号个数,因此,sTTI长度较短的***在解交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式作解交织,从而降低了解交织复杂度;进一步地,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散打孔,从而降低了上行业务数据的性能损失。
进一步地,若交织参数还包括:CRI,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI,CRI用于指示交织矩阵中秩指示RI所占的列数。
本发明实施例中,在步骤S502之前,基站可向终端发送携带有CRI的第三上行资源配置消息,以使终端根据第三上行配置消息确定出CRI进而将RI写入交织矩阵的第0列至第C-1列中预设的CRI列中。可选地,第三上行资源配置消息可以与第二上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
进一步地,若交织参数还包括:CRI以及RI列标号,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第三上行资源配置消息,第三上行资源配置消息中包括:CRI以及RI列标号,CRI用于指示交织矩阵中秩指示RI所占的列数,RI列标号用于指示交织矩阵中RI所占的列标号。
本发明实施例中,在步骤S502之前,基站可向终端发送携带有CRI以及RI列标号的第三上行资源配置消息,以使终端根据第三上行资源配置消息确定出CRI以及RI列标号,进而将RI写入交织矩阵的RI列标号对应的CRI列中。可选地,第三上行资源配置消息可以与第二上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
进一步地,若交织参数还包括:CACK,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK,CACK用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
本发明实施例中,在步骤S502之前,基站可向终端发送携带有CACK的第四上行资源配置消息,以使终端根据第四上行资源配置消息确定出CACK,进而将HARQ-ACK写入交织矩阵的第0列至第C-1列中预设的CACK列中。可选地,第四上行资源配置消息可以与第三上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
进一步地,若交织参数还包括:CACK以及ACK列标号,基站接收终端发送的输出比特序列,并对输出比特序列进行解交织之前,还包括:
基站向终端发送第四上行资源配置消息,第四上行资源配置消息中包括:CACK以及ACK列标号,CACK用于指示交织矩阵中HARQ-ACK所占的列数,ACK列标号用于指示交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
本发明实施例中,在步骤S502之前,基站可向终端发送携带有CACK以及ACK列标号的第四上行资源配置消息,以使终端根据第四上行资源配置消息确定出CACK以及ACK列标号,进而将HARQ-ACK写入交织矩阵的ACK列标号对应的CACK列中。可选地,第四上行资源配置消息可以与第三上行资源配置消息相同或者不同,本发明实施例中对此并不作限制。
综上所述,本发明实施例中,由于sTTI长度较短(如1个OS或2个OS)的***在解交织时交织矩阵的列数可调整,使不同sTTI长度的***可统一采用与现有3GPP LET协议的解交织方式相似的解交织方式作解交织,从而降低了解交 织复杂度;进一步地,由于交织矩阵中提供了足够多的RI和HARQ-ACK所占列数,使得HARQ-ACK对上行业务数据离散打孔,从而降低了上行业务数据的性能损失。
图6为本发明终端实施例一的结构示意图。如图6所示,本实施例提供的终端60包括:接收模块601、确定模块602以及交织模块603。
其中,接收模块601,用于接收基站发送的第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
确定模块602,用于确定交织参数;其中,所述交织参数包括:C,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数;
交织模块603,用于根据所述时频资源配置参数和所述交织参数,对待传输信息作交织。
可选地,所述接收模块601还用于:接收所述基站发送的第二上行资源配置消息,所述第二上行资源配置消息中包括:所述C;
所述确定模块602具体用于:根据所述第二上行资源配置消息确定所述C。
可选地,所述交织参数还包括:CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数;
对应地,所述交织模块603具体用于:将RI写入所述交织矩阵的第0列至第C-1列中预设的CRI列中。
可选地,所述接收模块601还用于:接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI
所述确定模块602具体用于:根据所述第三上行资源配置消息确定所述CRI
可选地,所述交织参数还包括:CRI以及RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号;
对应地,所述交织模块603具体用于:将所述RI写入所述交织矩阵的所 述RI列标号对应的CRI列中。
可选地,所述接收模块601还用于:接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号;
所述确定模块602具体用于:根据所述第三上行资源配置消息确定所述CRI以及所述RI列标号。
可选地,所述交织参数还包括:CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
对应地,所述交织模块603具体用于:将HARQ-ACK写入所述交织矩阵的第0列至第C-1列中预设的CACK列中。
可选地,所述接收模块601还用于:接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK
所述确定模块602具体用于:根据所述第四上行资源配置消息确定所述CACK
可选地,所述交织参数还包括:CACK以及ACK列标号,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中HARQ-ACK所占的列标号;
对应地,所述交织模块603具体用于:将所述HARQ-ACK写入所述交织矩阵的所述ACK列标号对应的CACK列中。
可选地,所述接收模块601还用于:接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号;
所述确定模块602具体用于:根据所述第四上行资源配置消息确定所述CACK以及所述ACK列标号。
图7为本发明终端实施例二的结构示意图。如图7所示,在上述终端实施例一的基础上,所述终端,还包括:
读模块604,用于按列读出所述交织矩阵,得到输出比特序列;其中,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积。
可选地,所述终端,还包括:
发送模块605,用于将所述输出比特序列通过物理上行共享信道PUSCH发送给所述基站,以使所述基站对所述输出比特序列进行解交织。
本实施例的终端可以用于执行本发明上述信息处理方法实施例一至实施例三中的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明终端实施例三的结构示意图。如图8所示,本实施例提供的终端80可以包括处理器801和存储器802。终端80还可以包括接收器803,该接收器803可以和处理器801相连。其中,接收器803用于接收基站发送的第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;存储器802用于存储执行指令,处理器801用于执行存储器802中的执行指令,用以执行以下操作:确定交织参数,并根据所述时频资源配置参数和所述交织参数,对待传输信息作交织;其中,所述交织参数包括:C,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数。
可选地,所述接收器803还用于:接收所述基站发送的第二上行资源配置消息,所述第二上行资源配置消息中包括:所述C;
所述处理器801具体用于:根据所述第二上行资源配置消息确定所述C。
可选地,所述交织参数还包括:CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数;
对应地,所述处理器801具体用于:将RI写入所述交织矩阵的第0列至第C-1列中预设的CRI列中。
可选地,所述接收器803还用于:接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI
所述处理器801具体用于:根据所述第三上行资源配置消息确定所述CRI
可选地,所述交织参数还包括:CRI以及RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号;
对应地,所述处理器801具体用于:将所述RI写入所述交织矩阵的所述RI列标号对应的CRI列中。
可选地,所述接收器803还用于:接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号;
所述处理器801具体用于:根据所述第三上行资源配置消息确定所述CRI 以及所述RI列标号。
可选地,所述交织参数还包括:CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
对应地,所述处理器801具体用于:将HARQ-ACK写入所述交织矩阵的第0列至第C-1列中预设的CACK列中。
可选地,所述接收器803还用于:接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK
所述处理器801具体用于:根据所述第四上行资源配置消息确定所述CACK
可选地,所述交织参数还包括:CACK以及ACK列标号,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中HARQ-ACK所占的列标号;
对应地,所述处理器801具体用于:将所述HARQ-ACK写入所述交织矩阵的所述ACK列标号对应的CACK列中。
可选地,所述接收器803还用于:接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号;
所述处理器801具体用于:根据所述第四上行资源配置消息确定所述CACK以及所述ACK列标号。
可选地,所述处理器801还用于:按列读出所述交织矩阵,得到输出比特序列;其中,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积。
图9为本发明终端实施例四的结构示意图。如图9所示,在上述终端实施例三的基础上,所述终端,还包括:
发射器804,用于将所述输出比特序列通过物理上行共享信道PUSCH发送给所述基站,以使所述基站对所述输出比特序列进行解交织。
本实施例的终端可以用于执行本发明上述信息处理方法实施例一至实施例三中的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本发明基站实施例一的结构示意图。如图10所示,本实施例提供的基站100可以包括:发送模块1001、接收模块1002以及解交织模块1003。
其中,发送模块1001用于向终端发送第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
接收模块1002用于接收所述终端通过物理上行共享信道PUSCH发送的输出比特序列;其中,所述输出比特序列为所述终端根据所述时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积;
解交织模块1003用于对所述输出比特序列进行解交织。
可选地,所述发送模块1001还用于:
向所述终端发送第二上行资源配置消息,所述第二上行资源配置消息中包括:C,所述C属于所述交织参数,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数。
可选地,若所述交织参数还包括:CRI,所述发送模块1001还用于:
向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数。
可选地,若所述交织参数还包括:CRI以及RI列标号,所述发送模块1001还用于:
向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号。
可选地,若所述交织参数还包括:CACK,所述发送模块1001还用于:
向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
可选地,若所述交织参数还包括:CACK以及ACK列标号,所述发送模块1001还用于:
向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号,所述CACK用于指示所述交织矩阵中HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中混合自 动重传请求-确认HARQ-ACK所占的列标号。
本实施例的基站可以用于执行本发明上述信息处理方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本发明基站实施例二的结构示意图。如图11所示,本实施例提供的基站110可以包括处理器1101和存储器1102。基站110还可以包括发射器1103和接收器1104,该发射器1103和接收器1104可以和处理器1101相连。其中,发射器1103用于向终端发送第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;接收器1104用于接收所述终端通过物理上行共享信道PUSCH发送的输出比特序列;其中,所述输出比特序列为所述终端根据所述时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积;存储器1102用于存储执行指令,处理器1101用于执行存储器1102中的执行指令,用以执行以下操作:对所述输出比特序列进行解交织。
可选地,所述发射器1103还用于:
向所述终端发送第二上行资源配置消息,所述第二上行资源配置消息中包括:C,所述C属于所述交织参数,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数。
可选地,若所述交织参数还包括:CRI,所述发射器1103还用于:
向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数。
可选地,若所述交织参数还包括:CRI以及RI列标号,所述发射器1103还用于:
向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号。
可选地,若所述交织参数还包括:CACK,所述发射器1103还用于:
向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认 HARQ-ACK所占的列数。
可选地,若所述交织参数还包括:CACK以及ACK列标号,所述发射器1103还用于:
向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号,所述CACK用于指示所述交织矩阵中HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
本实施例的基站可以用于执行本发明上述信息处理方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可 以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种信息处理方法,其特征在于,包括:
    终端接收基站发送的第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
    所述终端确定交织参数;其中,所述交织参数包括:C,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数;
    所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织。
  2. 根据权利要求1所述的方法,其特征在于,所述终端确定交织参数,包括:
    所述终端接收所述基站发送的第二上行资源配置消息,所述第二上行资源配置消息中包括:所述C;
    所述终端根据所述第二上行资源配置消息确定所述C。
  3. 根据权利要求1或2所述的方法,其特征在于,所述交织参数还包括:CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数;
    对应地,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织,包括:
    将RI写入所述交织矩阵的第0列至第C-1列中预设的CRI列中。
  4. 根据权利要求3所述的方法,其特征在于,所述终端确定交织参数,包括:
    所述终端接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI
    所述终端根据所述第三上行资源配置消息确定所述CRI
  5. 根据权利要求1或2所述的方法,其特征在于,所述交织参数还包括:CRI以及RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号;
    对应地,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织,包括:
    将所述RI写入所述交织矩阵的所述RI列标号对应的CRI列中。
  6. 根据权利要求5所述的方法,其特征在于,所述终端确定交织参数,包括:
    所述终端接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号;
    所述终端根据所述第三上行资源配置消息确定所述CRI以及所述RI列标号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述交织参数还包括:CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
    对应地,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织,包括:
    将HARQ-ACK写入所述交织矩阵的第0列至第C-1列中预设的CACK列中。
  8. 根据权利要求7所述的方法,其特征在于,所述终端确定交织参数,包括:
    所述终端接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK
    所述终端根据所述第四上行资源配置消息确定所述CACK
  9. 根据权利要求1-6中任一项所述的方法,其特征在于,所述交织参数还包括:CACK以及ACK列标号,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中HARQ-ACK所占的列标号;
    对应地,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织,包括:
    将所述HARQ-ACK写入所述交织矩阵的所述ACK列标号对应的CACK列中。
  10. 根据权利要求9所述的方法,其特征在于,所述终端确定交织参数,包括:
    所述终端接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号;
    所述终端根据所述第四上行资源配置消息确定所述CACK以及所述ACK列标号。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述终端根据所述时频资源配置参数和所述交织参数,对待传输信息作交织之后,还包括:
    所述终端按列读出所述交织矩阵,得到输出比特序列;其中,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积。
  12. 根据权利要求11所述的方法,其特征在于,所述终端按列读出所述交织矩阵,得到输出比特序列之后,还包括:
    所述终端将所述输出比特序列通过物理上行共享信道PUSCH发送给所述基站。
  13. 一种信息处理方法,其特征在于,包括:
    基站向终端发送第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
    所述基站接收所述终端通过物理上行共享信道PUSCH发送的输出比特序列,并对所述输出比特序列进行解交织;其中,所述输出比特序列为所述终端根据所述时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积。
  14. 根据权利要求13所述的方法,其特征在于,所述基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
    所述基站向所述终端发送第二上行资源配置消息,所述第二上行资源配置消息中包括:C,所述C属于所述交织参数,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数。
  15. 根据权利要求13或14所述的方法,其特征在于,若所述交织参数还包括:CRI,所述基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
    所述基站向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的 列数。
  16. 根据权利要求13或14所述的方法,其特征在于,若所述交织参数还包括:CRI以及RI列标号,所述基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
    所述基站向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,若所述交织参数还包括:CACK,所述基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
    所述基站向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
  18. 根据权利要求13-16中任一项所述的方法,其特征在于,若所述交织参数还包括:CACK以及ACK列标号,所述基站接收所述终端发送的输出比特序列,并对所述输出比特序列进行解交织之前,还包括:
    所述基站向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号,所述CACK用于指示所述交织矩阵中HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
  19. 一种终端,其特征在于,包括:
    接收模块,用于接收基站发送的第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
    确定模块,用于确定交织参数;其中,所述交织参数包括:C,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数;
    交织模块,用于根据所述时频资源配置参数和所述交织参数,对待传输信息作交织。
  20. 根据权利要求19所述的终端,其特征在于,所述接收模块还用于:
    接收所述基站发送的第二上行资源配置消息,所述第二上行资源配置消息中包括:所述C;
    所述确定模块具体用于:根据所述第二上行资源配置消息确定所述C。
  21. 根据权利要求19或20所述的终端,其特征在于,所述交织参数还包括:CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数;
    对应地,所述交织模块具体用于:
    将RI写入所述交织矩阵的第0列至第C-1列中预设的CRI列中。
  22. 根据权利要求21所述的终端,其特征在于,所述接收模块还用于:
    接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI
    所述确定模块具体用于:根据所述第三上行资源配置消息确定所述CRI
  23. 根据权利要求19或20所述的终端,其特征在于,所述交织参数还包括:CRI以及RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号;
    对应地,所述交织模块具体用于:
    将所述RI写入所述交织矩阵的所述RI列标号对应的CRI列中。
  24. 根据权利要求23所述的终端,其特征在于,所述接收模块还用于:
    接收所述基站发送的第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号;
    所述确定模块具体用于:根据所述第三上行资源配置消息确定所述CRI以及所述RI列标号。
  25. 根据权利要求19-24中任一项所述的终端,其特征在于,所述交织参数还包括:CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数;
    对应地,所述交织模块具体用于:
    将HARQ-ACK写入所述交织矩阵的第0列至第C-1列中预设的CACK列中。
  26. 根据权利要求25所述的终端,其特征在于,所述接收模块还用于:
    接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK
    所述确定模块具体用于:根据所述第四上行资源配置消息确定所述CACK
  27. 根据权利要求19-24中任一项所述的终端,其特征在于,所述交织参数还包括:CACK以及ACK列标号,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中HARQ-ACK所占的列标号;
    对应地,所述交织模块具体用于:
    将所述HARQ-ACK写入所述交织矩阵的所述ACK列标号对应的CACK列中。
  28. 根据权利要求27所述的终端,其特征在于,所述接收模块还用于:
    接收所述基站发送的第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号;
    所述确定模块具体用于:根据所述第四上行资源配置消息确定所述CACK以及所述ACK列标号。
  29. 根据权利要求19-28中任一项所述的终端,其特征在于,还包括:
    读模块,用于按列读出所述交织矩阵,得到输出比特序列;其中,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积。
  30. 根据权利要求29所述的终端,其特征在于,还包括:
    发送模块,用于将所述输出比特序列通过物理上行共享信道PUSCH发送给所述基站,以使所述基站对所述输出比特序列进行解交织。
  31. 一种基站,其特征在于,包括:
    发送模块,用于向终端发送第一上行资源配置消息,所述第一上行资源配置消息中包括:分配给所述终端的时频资源块的时频资源配置参数;
    接收模块,用于接收所述终端通过物理上行共享信道PUSCH发送的输出比特序列;其中,所述输出比特序列为所述终端根据所述时频资源配置参数和交织参数对待传输信息作交织之后,按列读出交织矩阵所得到的输出比特序列,所述输出比特序列的个数小于等于所述交织矩阵的行数与总列数的乘积;
    解交织模块,用于对所述输出比特序列进行解交织。
  32. 根据权利要求31所述的基站,其特征在于,所述发送模块还用于:
    向所述终端发送第二上行资源配置消息,所述第二上行资源配置消息中 包括:C,所述C属于所述交织参数,所述C用于指示所述交织矩阵的最少列数或者总列数,所述C大于等于所述时频资源块所占的正交频分复用OFDM符号个数。
  33. 根据权利要求31或32所述的基站,其特征在于,若所述交织参数还包括:CRI,所述发送模块还用于:
    向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数。
  34. 根据权利要求31或32所述的基站,其特征在于,若所述交织参数还包括:CRI以及RI列标号,所述发送模块还用于:
    向所述终端发送第三上行资源配置消息,所述第三上行资源配置消息中包括:所述CRI以及所述RI列标号,所述CRI用于指示所述交织矩阵中秩指示RI所占的列数,所述RI列标号用于指示所述交织矩阵中RI所占的列标号。
  35. 根据权利要求31-34中任一项所述的基站,其特征在于,若所述交织参数还包括:CACK,所述发送模块还用于:
    向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK,所述CACK用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列数。
  36. 根据权利要求31-34中任一项所述的基站,其特征在于,若所述交织参数还包括:CACK以及ACK列标号,所述发送模块还用于:
    向所述终端发送第四上行资源配置消息,所述第四上行资源配置消息中包括:所述CACK以及所述ACK列标号,所述CACK用于指示所述交织矩阵中HARQ-ACK所占的列数,所述ACK列标号用于指示所述交织矩阵中混合自动重传请求-确认HARQ-ACK所占的列标号。
PCT/CN2016/082119 2016-05-13 2016-05-13 信息处理方法、终端及基站 WO2017193396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082119 WO2017193396A1 (zh) 2016-05-13 2016-05-13 信息处理方法、终端及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082119 WO2017193396A1 (zh) 2016-05-13 2016-05-13 信息处理方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2017193396A1 true WO2017193396A1 (zh) 2017-11-16

Family

ID=60266964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082119 WO2017193396A1 (zh) 2016-05-13 2016-05-13 信息处理方法、终端及基站

Country Status (1)

Country Link
WO (1) WO2017193396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019315A (zh) * 2018-08-08 2020-12-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11564219B2 (en) * 2017-04-28 2023-01-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136879A (zh) * 2010-08-24 2011-07-27 华为技术有限公司 一种数据解交织方法及装置
US20130022009A1 (en) * 2010-04-07 2013-01-24 Zte Corporation Method and System for Transmitting Uplink Control Signaling on Physical Uplink Shared Channel
CN104243382A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 符号交织方法
CN105281864A (zh) * 2014-05-30 2016-01-27 华为技术有限公司 一种数据传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022009A1 (en) * 2010-04-07 2013-01-24 Zte Corporation Method and System for Transmitting Uplink Control Signaling on Physical Uplink Shared Channel
CN102136879A (zh) * 2010-08-24 2011-07-27 华为技术有限公司 一种数据解交织方法及装置
CN104243382A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 符号交织方法
CN105281864A (zh) * 2014-05-30 2016-01-27 华为技术有限公司 一种数据传输方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564219B2 (en) * 2017-04-28 2023-01-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control channel
US11910403B2 (en) 2017-04-28 2024-02-20 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control channel
CN112019315A (zh) * 2018-08-08 2020-12-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Similar Documents

Publication Publication Date Title
US11212036B2 (en) Data communication method, device, and system
US8649350B2 (en) Method and system for transmitting uplink control signaling on physical uplink shared channel
JP5567219B2 (ja) フィードバック情報送信方法及びユーザ機器
US9282570B2 (en) Method and apparatus for transmitting uplink control signaling on physical uplink shared channel
KR102014918B1 (ko) 상향링크 데이터 전송 방법 및 장치
JP6100206B2 (ja) アップリンク制御情報の伝送方法及びシステム、符号化されたシンボル数の決定方法及び装置
KR102172052B1 (ko) 정보 처리 방법, 단말 장치, 네트워크 장치 및 통신 시스템
US10764883B2 (en) Method, apparatus, and system for transmitting control information
US11394400B2 (en) Wireless communication data processing method and apparatus for reducing bit error rate
CN112910607A (zh) 上行控制信息的发送方法及装置
CN107846707B (zh) 一种免授予的ue、基站中的方法和装置
CN108155977A (zh) 信道状态信息和混合自动重复请求-确认信息的多路复用
JP2018509017A (ja) 指示情報を伝送するための方法および装置
MX2015003437A (es) Metodo y nodo de comunicacion para mapear un mensaje de epdcch, canal de control de enlace descendente fisico mejorado.
CN113517946A (zh) 一种通信方法及装置
WO2017193396A1 (zh) 信息处理方法、终端及基站
US20230396392A1 (en) Data transmission method and apparatus
CN110519018A (zh) 一种被用于信道编码的ue、基站中的方法和设备
CN106571900B (zh) 一种低延时的无线通信方法和装置
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
WO2023039806A1 (zh) 数据传输方法、装置、设备及存储介质
US20240023039A1 (en) Method and apparatus for data transmission in wireless cellular communication system
CN102064909A (zh) 信道质量指示信息的发送方法、装置及***
CN101984569B (zh) 上行控制信息传输方法和***、编码符号数确定方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901351

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901351

Country of ref document: EP

Kind code of ref document: A1