WO2017193382A1 - 控制信息发送、接收方法和设备 - Google Patents

控制信息发送、接收方法和设备 Download PDF

Info

Publication number
WO2017193382A1
WO2017193382A1 PCT/CN2016/082071 CN2016082071W WO2017193382A1 WO 2017193382 A1 WO2017193382 A1 WO 2017193382A1 CN 2016082071 W CN2016082071 W CN 2016082071W WO 2017193382 A1 WO2017193382 A1 WO 2017193382A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
terminal device
base station
control information
Prior art date
Application number
PCT/CN2016/082071
Other languages
English (en)
French (fr)
Inventor
李�远
吕永霞
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680085434.3A priority Critical patent/CN109076512B/zh
Priority to PCT/CN2016/082071 priority patent/WO2017193382A1/zh
Publication of WO2017193382A1 publication Critical patent/WO2017193382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to communication technologies, and in particular, to a method and a device for transmitting and receiving control information.
  • the resource allocation is based on the Transmission Time Interval (TTI), and the length of one TTI is 14 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, The abbreviation OFDM) symbol, that is, a 1 ms subframe, contains two slots, each of which is 7 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the Release 14 technology introduces a Latency Reduction technology to shorten the time domain granularity of resource allocation to a short transmission time interval (short transmission time interval, sTTI for short). ), reducing the time of grouping and demodulation coding, thereby achieving the purpose of reducing the physical layer air interface delay.
  • the optional length that the sTTI may support includes 7 OFDM symbols or 2 OFDM symbols or 3 & 4 OFDM symbols.
  • each slot contains two sTTIs, and the first sTTI is 3 OFDM in length.
  • the second sTTI is 4 OFDM symbols in length.
  • the control information contained in the control channel is divided into two levels of downlink control information (Downlink Control Information, DCI for short), the first level
  • the DCI that is, the slow DCI (slow DCI) includes control information that is slowly changing in the time domain, such as frequency domain resource allocation information, and optionally, time-frequency resource information occupied by the second-level DCI; the information indicated in the Slow DCI is All sTTIs included in a 1ms subframe are applicable;
  • the second-level DCI that is, Fast DCI, contains control information specific to each sTTI, such as a Hybrid Automatic Repeat ReQuest (HARQ) process number.
  • HARQ Hybrid Automatic Repeat ReQuest
  • Uplink grant referred to as UL grant
  • the UL grant is a scheduling indication for an uplink sTTI or a legacy 1 ms TTI after the current downlink sTTI.
  • the terminal device jointly determines all downlink control information by using the detected slow DCI and fast DCI.
  • the terminal device needs to detect the slow DCI and the fast DCI to obtain All the control information is received, and the data information of the Short Physical Downlink Shared Channel (SPDSCH) of the sTTI is received, or the Physical Uplink Shared Channel (PUSCH) or the short physical layer uplink is sent.
  • the data information of the shared channel sPUSCH Therefore, when the base station is slow DCI, it is required to estimate whether there is a downlink service or uplink scheduling requirement for the user in the 1 ms subframe. If there is no downlink service or uplink scheduling requirement for a terminal device, the base station is in the slow DCI.
  • the frequency domain resource allocation information in the current subframe for the terminal device is not included.
  • the base station does not include control information for a certain terminal device in the slow DCI, and needs to temporarily send downlink data or uplink scheduling information for the terminal device during the 1 ms subframe transmission, the previously transmitted slow DCI does not include the If the control information of the terminal device is used, the terminal device cannot obtain the downlink resource allocation information or the uplink resource scheduling information. Even if the base station transmits and the terminal device correctly receives the fast DCI, the terminal device cannot correctly receive the sPDSCH data due to the lack of the resource allocation information. The information or the data information of the uplink (s) PUSCH is transmitted, resulting in an increase in the delay of the downlink transmission or the uplink transmission.
  • the embodiment of the present invention provides a method and a device for transmitting and receiving control information, which is used to solve the problem that the downlink DCI sent by the base station does not include the control information of the terminal device in the prior art, and the delay of the downlink transmission or the uplink transmission is large. problem.
  • an embodiment of the present invention provides a method for receiving control information, including:
  • the terminal device detects second control information, where the second control information includes second frequency domain resource allocation information
  • the terminal device detects at least one of the first control information and the third control information, where the first control information includes first frequency domain resource allocation information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information.
  • the terminal device detects the second control information, and detects at least one of the first control information and the third control information; the second control information includes the second frequency domain resource allocation information.
  • the first control information includes first frequency domain resource allocation information; the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, even if the terminal device has In the case of sudden business, it can also be based on
  • the first frequency domain resource allocation information included in the first control information is used for data transmission with the base station, which solves the problem that the delay of the downlink transmission or the uplink transmission is caused by the slow DCI sent by the base station not including the control information of the terminal equipment in the prior art. Big problem.
  • the second control information is corresponding to the at least one TTI, and the first control information and the third control information are used to indicate that the terminal device is The first TTI performs data transmission with the base station, and the at least one TTI includes the first TTI.
  • the terminal device detects at least one of the first control information and the third control information, include:
  • the terminal device detects the third control information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the second frequency domain resource allocation information
  • the terminal device If the terminal device does not detect the second control information, the terminal device detects the first control information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information.
  • the receiving method of the control information provided by the foregoing embodiment if the terminal device detects the second control information, performing data transmission with the base station according to the second frequency domain resource allocation information included in the second control information; If the terminal device does not detect the second control information, the data transmission may be performed directly with the base station according to the first frequency domain resource allocation information.
  • the terminal device detects at least one of the first control information and the third control information, include:
  • the terminal device detects the second control information, and the terminal device detects the first control Information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and the second frequency domain resource allocation information.
  • the first frequency domain resource allocation information and the second frequency domain resource allocation information may be The base station performs data transmission, or performs data transmission with the base station only according to the first frequency domain resource allocation information.
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, including:
  • the frequency domain resource allocation set includes a preset or a base station, the frequency domain resource allocation set includes at least two frequency domain resources, and the first frequency domain resource allocation information includes the first frequency domain resource. a sequence number in the frequency domain resource allocation set;
  • the terminal device performs data transmission with the base station by using the first frequency domain resource.
  • the terminal device may determine, according to the first frequency domain resource allocation information and the frequency domain resource allocation set, the first frequency domain resource, by using the first frequency domain resource and the base station The data transmission is performed. Since the frequency domain resource allocation set is preset or configured by the base station, the signaling overhead of the first control information may be saved.
  • the detecting, by the terminal device, the first control information includes:
  • the terminal device detects the first control information according to the time-frequency resource detection set, where the time-frequency resource detection set includes at least one time-frequency resource location, and the at least one time-frequency resource location includes the first control The location of the time-frequency resource occupied by the information.
  • the resource detection set detects the first control information, which reduces the complexity of blind detection of the terminal device.
  • the time-frequency resource detection set is preset or configured by a base station.
  • the detecting, by the terminal device, the first control information includes:
  • the terminal device detects the first control information according to a cell radio network temporary identifier C-RNTI.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, and specifically includes:
  • the terminal device receives downlink data sent by the base station according to the downlink frequency domain resource allocation information.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, and specifically includes:
  • the terminal device sends uplink data to the base station according to the uplink frequency domain resource allocation information.
  • the terminal device when performing data transmission with the base station according to the first frequency domain resource allocation information, the modulation and coding strategy MCS of the data transmission is a preset or MCS configured by the base station.
  • the method for receiving the control information provided by the foregoing embodiment may save the signaling overhead of the first control information because the MCS is preset or the MCS configured by the base station.
  • the first control information further includes indication information, where the indication information is used to indicate
  • the first control information includes the first frequency domain resource allocation information.
  • the first control information may include the first control information or the third control information by including the indication information.
  • an embodiment of the present invention provides a method for sending control information, including:
  • the base station generates first control information, where the first control information includes first frequency domain resource allocation information, and the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station;
  • the base station sends the first control information to the terminal device.
  • the method further includes:
  • the base station generates second control information, where the second control information corresponds to at least one TTI; the second control information includes second frequency domain resource allocation information; and the second frequency domain resource allocation information is used to indicate the terminal
  • the device performs data transmission with the base station;
  • the at least one TTI includes a first TTI, and the first TTI includes the TTI corresponding to the first control information indicating that the terminal device performs data transmission with the base station;
  • the base station sends the second control information to the terminal device.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station, including:
  • the first frequency domain resource allocation information is used to instruct the terminal device to receive downlink data sent by the base station.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station, including:
  • the first frequency domain resource allocation information is used to instruct the terminal device to send uplink data to the base station.
  • the first frequency domain resource allocation information includes a frequency domain resource allocation set of the first frequency domain resource Serial number in
  • the frequency domain resource allocation set is preset or configured by a base station, and the frequency domain resource allocation set includes at least two sets of frequency domain resources; the first frequency domain resource is data transmission between the terminal device and the base station. resource of.
  • the method further includes:
  • the base station sends the time-frequency resource detection set to the terminal device, where the time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes the time occupied by the first control information. Frequency resource location.
  • the first control information further includes indication information, where the indication information is used to indicate the first The first frequency domain resource allocation information is included in a control information.
  • the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station
  • the modulation and coding policy MCS of the data transmission is a preset or base station configured MCS.
  • an embodiment of the present invention provides a method for receiving control information, including:
  • the terminal device detects the first control information sent by the base station
  • the terminal device Determining, by the terminal device, the first frequency domain resource according to the second frequency domain resource occupied by the first control information; the second frequency domain resource has a corresponding relationship with the first frequency domain resource;
  • the terminal device performs data transmission with the base station by using the first frequency domain resource.
  • the terminal device detects the first control information sent by the base station by using the method for receiving the control information provided by the third aspect; the terminal device determines the first frequency domain resource according to the second frequency domain resource occupied by the first control information; The second frequency domain resource has a corresponding relationship with the first frequency domain resource; the terminal device performs data transmission with the base station by using the first frequency domain resource, even if the terminal device has a burst service in the first TTI
  • the data transmission may be performed with the base station according to the first frequency domain resource allocation information included in the first control information, and the downlink transmission or uplink is determined in the prior art because the slow DCI sent by the base station does not include the control information of the terminal device.
  • the delay of transmission is large question.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, the first frequency domain resource includes the frequency domain resource group, and the frequency domain resource group includes at least one first frequency domain resource. unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit includes an RE or a resource block RB or a resource block group RBG, where The two-frequency domain resource unit includes a resource particle RE or a resource block RB or a control channel element CCE.
  • the corresponding relationship includes:
  • the detecting, by the terminal device, the first control information that is sent by the base station specifically includes:
  • the terminal device detects the first control information according to the time-frequency resource detection set, where the time-frequency resource detection set includes at least one time-frequency resource location, and the at least one time-frequency resource location includes the first control The location of the time-frequency resource occupied by the information;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the terminal device detects the first control information according to the time-frequency resource detection set, which reduces the complexity of blind detection of the terminal device.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the terminal device performs data transmission with the base station by using the first frequency domain resource, and specifically includes:
  • the terminal device receives downlink data sent by the base station by using the downlink frequency domain resource.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the terminal device performs data transmission with the base station by using the first frequency domain resource, and specifically includes:
  • the terminal device sends uplink data to the base station by using the uplink frequency domain resource.
  • an embodiment of the present invention provides a method for sending control information, including:
  • the base station generates first control information, where the first control information is used to indicate that the terminal device performs data transmission with the base station by using a first frequency domain resource, where the first frequency domain resource is determined by the second frequency domain resource.
  • the second frequency domain resource has a corresponding relationship with the first frequency domain resource, and the second frequency domain resource includes a frequency domain resource occupied by the first control information;
  • the base station sends the first control information to the terminal device.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, the first frequency domain resource includes the frequency domain resource group, and the frequency domain resource group includes at least one first frequency domain resource. unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit includes an RE or a resource block RB or a resource block group RBG
  • the second The frequency domain resource unit includes a resource particle RE or a resource block RB or a control channel element CCE.
  • the corresponding relationship includes:
  • the method further includes:
  • the base station sends the time-frequency resource detection set to the terminal device, where the time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes the time occupied by the first control information.
  • Frequency resource location
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the downlink frequency domain resource is used by the terminal device to receive data sent by the base station.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the uplink frequency domain resource is used by the terminal device to send data to the base station.
  • the present invention provides a terminal device, including:
  • a detecting module configured to detect second control information, where the second control information includes second frequency domain resource allocation information
  • the detecting module is further configured to detect at least one of the first control information and the third control information, where the first control information includes first frequency domain resource allocation information;
  • a processing module configured to perform data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information.
  • the second control information is corresponding to the at least one TTI
  • the first control information and the third control information are used to indicate that the terminal device is
  • the first TTI performs data transmission with the base station
  • the at least one TTI includes the first TTI
  • the detecting module is specifically configured to:
  • processing module is specifically configured to:
  • the detecting module is further specifically configured to:
  • processing module is specifically configured to:
  • the detecting module is further configured to:
  • processing module is specifically configured to:
  • the processing module is specifically configured to:
  • the frequency domain resource allocation set includes a preset or a base station, the frequency domain resource allocation set includes at least two frequency domain resources, and the first frequency domain resource allocation information includes the first frequency domain resource. a sequence number in the frequency domain resource allocation set;
  • Data transmission is performed with the base station by using the first frequency domain resource.
  • the detecting module is specifically configured to:
  • the time-frequency resource detection set includes at least one time-frequency resource location; and the at least one time-frequency resource location includes the first control information Time-frequency resource location.
  • the time-frequency resource detection set is preset or configured by a base station.
  • the detecting module is specifically configured to:
  • the first control information is detected according to the cell radio network temporary identifier C-RNTI.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • processing module is specifically configured to:
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • processing module is specifically configured to:
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information.
  • the modulation and coding policy MCS of the data transmission is a preset or MCS configured by the base station.
  • the first control information further includes indication information, where the indication information is used to indicate the first The first frequency domain resource allocation information is included in a control information.
  • the present invention provides a base station, including:
  • a generating module configured to generate first control information, where the first control information includes first frequency domain resource allocation information, where the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station;
  • a sending module configured to send the first control information to the terminal device.
  • the generating module Also used for:
  • the second control information corresponds to at least one TTI;
  • the second control information includes second frequency domain resource allocation information; and the second frequency domain resource allocation information is used to indicate the terminal device and the base station Performing data transmission;
  • the at least one TTI includes a first TTI, and the first TTI includes the TTI corresponding to the first control information indicating that the terminal device performs data transmission with the base station;
  • the sending module is further configured to send the second control information to the terminal device.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the downlink frequency domain resource allocation information is used to indicate that the terminal device receives the downlink data sent by the base station.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the uplink frequency domain resource allocation information is used to instruct the terminal device to send uplink data to the base station.
  • the first frequency domain resource allocation information includes: the first frequency domain resource in the frequency domain resource allocation set Serial number in
  • the frequency domain resource allocation set is preset or configured by a base station, and the frequency domain resource allocation set includes at least two sets of frequency domain resources; the first frequency domain resource is data transmission between the terminal device and the base station. resource of.
  • the sending module is further configured to:
  • time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information .
  • the first control information further includes indication information, where the indication information is used by The first frequency domain resource allocation information is included in the first control information.
  • the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station
  • the modulation and coding policy MCS of the data transmission is a preset or base station configured MCS.
  • a seventh aspect of the present invention provides a terminal device, including:
  • a detecting module configured to detect first control information sent by the base station
  • a processing module configured to determine, according to the second frequency domain resource that is occupied by the first control information, a first frequency domain resource; the second frequency domain resource has a corresponding relationship with the first frequency domain resource;
  • the processing module is further configured to perform data transmission with the base station by using the first frequency domain resource.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, the first frequency domain resource includes the frequency domain resource group, and the frequency domain resource group includes at least one first frequency domain resource. unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit includes an RE or a resource block RB or a resource block group RBG, where The two-frequency domain resource unit includes a resource particle RE or a resource block RB or a control channel element CCE.
  • the corresponding relationship includes:
  • the detecting module is specifically configured to:
  • the time-frequency resource detection set includes at least one time-frequency resource location; and the at least one time-frequency resource location includes the first control information Time-frequency resource location;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • processing module is specifically configured to:
  • the first frequency domain resource includes an uplink frequency domain resource
  • processing module is specifically configured to:
  • the present invention provides a base station, including:
  • a generating module configured to generate first control information, where the first control information is used to indicate that the terminal device performs data transmission with the base station by using a first frequency domain resource, and the first frequency domain resource is configured by a second frequency
  • the second frequency domain resource has a corresponding relationship with the first frequency domain resource, and the second frequency domain resource includes a frequency domain resource occupied by the first control information
  • a sending module configured to send the first control information to the terminal device.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, where the a frequency domain resource includes the frequency domain resource group; the frequency domain resource group includes at least one first frequency domain resource unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit includes an RE or a resource block RB or a resource block group RBG, where The two-frequency domain resource unit includes a resource particle RE or a resource block RB or a control channel element CCE.
  • the corresponding relationship includes:
  • the sending module is further configured to:
  • time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information ;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the downlink frequency domain resource is used by the terminal device to receive data sent by the base station.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the uplink frequency domain resource is used by the terminal device to send data to the base station.
  • the present invention provides a terminal device, including:
  • processors and a memory; wherein the memory is configured to store execution instructions, and the processor uses Executing the execution instructions in the memory, performing any of the possible aspects of the first aspect and the first aspect, and the third aspect and any of the possible implementations of the third aspect Methods.
  • the present invention provides a base station, including:
  • processors and memory wherein the memory is for storing execution instructions, the processor is configured to invoke execution instructions in the memory, and perform any of the possible implementations of the second aspect and the second aspect, And the method of any of the possible embodiments of the fourth and fourth aspects.
  • an embodiment of the present invention provides a communication system, where the communication system may include the terminal device according to the fifth aspect and the possible implementation manners of the fifth aspect, or the foregoing seventh and seventh aspects.
  • the terminal device or the station involved in the possible implementation manner or the terminal device according to the ninth aspect may further include the base station or the eighth aspect and the foregoing aspect related to the possible embodiments of the sixth aspect and the sixth aspect.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for receiving control information according to an embodiment of the present invention
  • FIG. 1b is a signaling flowchart of Embodiment 1 of a method for receiving control information according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of control information distribution according to an embodiment of a method for receiving control information according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of distribution of control information according to another embodiment of a method for receiving control information according to an embodiment of the present disclosure
  • Embodiment 4 is a flowchart of Embodiment 1 of a method for transmitting control information according to an embodiment of the present invention
  • FIG. 5 is a flowchart of another embodiment of a method for receiving control information according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of control information mapping according to another embodiment of a method for receiving control information according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of control information mapping according to another embodiment of a method for receiving control information according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of mapping of control information according to another embodiment of a method for receiving control information according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of Embodiment 3 of a base station according to an embodiment of the present invention.
  • the method for transmitting and receiving control information according to the embodiment of the present invention may be applied to a wireless communication system supporting short TTI transmission, where the base station device of the wireless communication system may
  • the normal TTI transmission format or the short TTI transmission format transmits downlink information
  • the wireless communication system terminal device can transmit uplink information in a normal TTI transmission format or a short TTI transmission format.
  • the terminal device may include a mobile phone, a notebook computer that can access the LTE system, and a terminal device such as a tablet computer.
  • the base station involved in the embodiments of the present invention may include a macro base station, a micro cell, a pico cell, a home base station, a remote radio head, a relay, and the like.
  • the method for transmitting and receiving control information according to the embodiment of the present invention is to solve the problem that the downlink device does not include the control information of the terminal device, and the terminal device cannot obtain the downlink resource allocation information or the uplink resource scheduling information.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for receiving control information according to an embodiment of the present invention.
  • FIG. 1b is a signaling flowchart of Embodiment 1 of a method for receiving control information according to an embodiment of the present invention.
  • the embodiment relates to a specific process for the terminal device to perform data transmission according to the first frequency domain resource allocation information included in the first control information and/or the second frequency domain resource allocation information included in the second control information. .
  • the method includes the following steps:
  • the terminal device detects second control information, where the second control information includes second frequency domain resource allocation information.
  • the terminal device detects at least one of the first control information and the third control information, where the first control information includes first frequency domain resource allocation information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information.
  • the base station may directly generate the first control information and send the control information to the terminal device, where the first control information includes the terminal device demodulating the data on the sPDSCH. And all control information required for transmitting data through the PUSCH, that is, including frequency domain resource allocation information, transmission indication information, and indication information, including at least a HARQ process number, and further including a redundancy version of HARQ
  • the control information such as the Redundancy Version (RV), the Modulation and Coding Scheme (MCS), and the sTTI length; or the base station may generate the second control information and the third control information by using the existing method.
  • the second control information and the third control information involved in the embodiment of the present invention refer to a slow DCI and an existing fast DCI, respectively.
  • the terminal device detects the second control information, and detects at least one of the first control information and the third control information, according to the first frequency domain resource allocation information included in the first control information, and/or the second control information includes The second frequency domain resource allocation information is transmitted with the base station.
  • the first frequency domain resource allocation information and the second frequency domain resource allocation information may be the same, and may be different. Specifically, the first frequency domain resource allocation information and the second frequency domain resource allocation information may be the same as the frequency domain resources. It can also be different.
  • the first control information is used to indicate that the terminal device performs data transmission with the base station in the corresponding sTTI, and the terminal device determines the first control information by using a monitor, that is, blindly detecting the first control information.
  • the terminal device is time-frequency.
  • the resource is detected, and the first control information is carried on the time-frequency resource by using a Cyclic Redundancy Check (CRC) to determine that the sTTI corresponding to the first control information includes the base station allocated to the terminal device.
  • CRC Cyclic Redundancy Check
  • the Slow DCI includes at least frequency domain resource allocation information.
  • the existing fast DCI includes at least a HARQ process number, and further includes control information such as a Redundancy Version (RV), a Modulation and Coding Scheme (MCS), and an sTTI length of the HARQ. Does not include frequency domain resource allocation information.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • sTTI length of the HARQ Does not include frequency domain resource allocation information.
  • the first control information has more frequency domain resource allocation information than the existing fast DCI, so that the terminal device can complete data transmission with the base station without acquiring the slow DCI.
  • the base station when the downlink DCI group packet is used, the base station does not determine that there is downlink/uplink traffic for a certain terminal device, and before transmitting the next slow DCI, the downlink/uplink service for the terminal device temporarily appears.
  • the base station may send the first control information to configure control information for the terminal device, where at least the frequency domain resource allocation information of the downlink or uplink transmission is included. If the terminal device does not detect the slow DCI for the terminal device but detects the first control information, the terminal device may perform data transmission with the base station according to the first frequency domain resource allocation information in the first control information.
  • the slow DCI includes indications that UE1, UE2, and UE3 are in 1ms.
  • the resource allocation information (Resource Allocation, RA for short) includes 7 sTTIs, where the base station allocates the first to fourth sTTIs for the current subframe to the UE3 through the four existing fast DCIs; the base station passes the first control.
  • the information is allocated to the UE 4 with resource allocation information for the 5th sTTI of the current subframe.
  • the terminal device detects the second control information, and detects at least one of the first control information and the third control information; the second control information includes the second frequency domain resource allocation information
  • the first control information includes first frequency domain resource allocation information; the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, even if the terminal device has In the case of a burst service, the data transmission can be performed with the base station according to the first frequency domain resource allocation information included in the first control information, and the first frequency domain resource allocation information and the first frequency domain can be allocated according to the presence or absence of the burst service.
  • the second frequency domain resource allocation information and the base station perform data transmission, which solves the problem that the delay of the downlink transmission or the uplink transmission is large due to the fact that the slow DCI sent by the base station does not include the control information of the terminal equipment in the prior art.
  • the second control information is corresponding to the at least one TTI, where the first control information and the third control information are used to indicate that the terminal device performs the first TTI with the base station.
  • the first TTI may be a TTI or an sTTI.
  • detecting at least one of the first control information and the third control information may be implemented in the following manner:
  • the terminal device detects the third control information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the second frequency domain resource allocation information
  • the terminal device If the terminal device does not detect the second control information, the terminal device detects the first control information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information.
  • the terminal device may detect the third control information by using an existing manner, and then the terminal device performs data transmission with the base station according to the second frequency domain resource allocation information. Specifically, the terminal device determines a frequency domain resource according to the second frequency domain resource allocation information, and the terminal device performs data transmission with the base station by using the frequency domain resource.
  • the first control information may be detected, and then the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information. Specifically, the terminal device determines the first frequency domain resource according to the first frequency domain resource allocation information, and the terminal device performs data transmission with the base station by using the first frequency domain resource.
  • the terminal device detects at least one of the first control information and the third control information, including:
  • the terminal device detects the first control information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and the second frequency domain resource allocation information.
  • the base station has determined that there is downlink or uplink service for the terminal device, but before transmitting the next slow DCI, more downlink or uplink services for the terminal device temporarily appear, resulting in slow DCI resources. If the allocation is insufficient and the additional resources need to be allocated, the base station may send the first control information, where at least the frequency domain resource allocation information of the downlink or uplink transmission is included.
  • the first mode if the terminal device detects the second control information and then detects the first control information, the first frequency domain resource allocation information included in the second control information and the first control information may be The second frequency domain resource allocation information and the base station perform data transmission; specifically, the frequency domain resource determined by the first frequency domain resource allocation information and the second frequency domain resource allocation information and the base station perform data transmission, and the frequency domain resource Include the frequency domain resource indicated by the second control information to And the frequency domain resource indicated by the first control information; for example, the slow DCI in FIG. 3 allocates the frequency domain resource to the UE4, but the frequency domain resource is insufficient, so the first control information further allocates the corresponding information in the fifth sTTI in the subframe to the UE4. Frequency domain resources.
  • the terminal device may also be configured according to the second manner, and if the terminal device detects the second control information and then detects the first control information, the terminal device may also include only the first control information.
  • the first frequency domain resource allocation information is transmitted with the base station. Specifically, the frequency domain resource determined by the first frequency domain resource allocation information may be used for data transmission, where the frequency domain resource includes a frequency domain resource indicated by the first control information.
  • the advantage of the first mode compared to the second mode is that a larger range of frequency domain resources can be indicated; the advantage of the second mode compared to the first mode is that if the base station transmits a slow DCI and the terminal device does not detect a slow
  • the DCI is that the frequency domain resource determined by the terminal device is erroneous, so that the data transmission cannot be correctly performed with the base station according to the indication of the first control information.
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, including:
  • the frequency domain resource allocation set includes a preset or a base station, the frequency domain resource allocation set includes at least two frequency domain resources, and the first frequency domain resource allocation information includes the first frequency domain resource. a sequence number in the frequency domain resource allocation set;
  • the terminal device performs data transmission with the base station by using the first frequency domain resource.
  • the first control information additionally includes frequency domain resource allocation information compared to the existing fast DCI, and may directly instruct the terminal device to determine the frequency domain resource according to the frequency domain resource allocation information, so as to perform data transmission between the first TTI and the base station, but
  • directly putting the resource allocation information on the PDCCH into the sPDCCH greatly increases the control signaling overhead and the blind detection complexity of the terminal device.
  • the number of bits of the first control information is different from the existing fast DCI, and the destruction is performed. Both use the same bitfield size design.
  • the number of indication bits of the resource allocation information may be compressed. At the expense of indication flexibility, the indication signaling overhead remains unchanged.
  • a set of frequency domain resources includes at least one physical resource block (PRB), and the at least one PRB may be continuous in the frequency domain. It can also be discontinuous.
  • PRB physical resource block
  • the frequency domain resource allocation set of the first TTI is configured by using a preset or a base station, and the first frequency domain resource allocation information in the first control information includes only the corresponding sequence number of the first frequency domain resource in the frequency domain resource set, thereby
  • the terminal device determines the domain frequency domain resource for the first TTI by using the sequence number; because the number of elements in the set is limited, the first control information is used to indicate that the number of bits of the first resource allocation information is greatly reduced.
  • the terminal device may be notified by sending a high-level signaling configuration, for example, by using a Radio Resource Control (RRC) layer signaling.
  • RRC Radio Resource Control
  • the frequency domain resource allocation set corresponding to the preset first TTI is ⁇ 0 to 24 PRB, 25 to 49 PRB, 50 to 74 PRB, and 75 to 99 PRB ⁇ , and the first frequency domain resource allocation information indicates four segments in the specific corresponding set. Which segment of the frequency domain resource.
  • frequency domain resources in the preset or base station configured frequency domain resource allocation set may be continuous or discontinuous.
  • the base station sends the frequency domain resource allocation set to the terminal device by using the high layer signaling. And the receiving, by the terminal device, the frequency domain resource allocation set sent by the base station by using the high layer signaling, before determining the first frequency domain resource according to the first frequency domain resource allocation information and the frequency domain resource allocation set.
  • the terminal device detects the first control information, specifically:
  • the terminal device detects the first control information according to the time-frequency resource detection set, where the time-frequency resource detection set includes at least one time-frequency resource location, and the at least one time-frequency resource location includes the first control The location of the time-frequency resource occupied by the information.
  • the time-frequency resource detection set is preset or configured by a base station.
  • the potential time-frequency resource location corresponding to the existing fast DCI may be indicated by a slow DCI, and in the embodiment of the present invention, if the time-frequency resource location is as flexible as the existing fast DCI, the terminal device may be caused.
  • the complexity of blind detection of the first control information is too high, for example blind detection on all PRBs of each symbol to determine if first control information is present.
  • the terminal device detects the first control information in the time-frequency resource detection set, where the time-frequency resource detection set includes the base station transmitting the first control information.
  • Potential time-frequency resource location may be preset.
  • the terminal device blindly detects the first control information only on the preset time-frequency resource of each subframe.
  • the time-frequency resource detection set in which the time-frequency resource location occupied by the first control information is located may also be configured by the base station. If the time-frequency resource detection set is configured by the base station, the high-level signaling configuration may be sent. For example, the terminal device is notified by the RRC layer signaling.
  • the base station semi-statically configures the potential time-frequency resource detection set by the high-layer signaling, and the terminal device blindly detects the first control information only on the time-frequency resource detection set configured by the high-level signaling.
  • the time-frequency resource detection set includes at least one time-frequency resource location; and the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information.
  • the base station When the time-frequency resource detection set is a time-frequency resource detection set configured by the base station, the base station sends the time-frequency resource detection set to the terminal device.
  • the preset or the base station is configured by the high-level signaling, which reduces the complexity of blind detection of the terminal device. For example, if the terminal device does not detect the slow DCI, the first control information may be detected only on the specific time-frequency resource detection set, for example, Blind detection on certain symbols, or on certain PRBs, without blind detection on all symbols and all PRBs.
  • the time-frequency resource detection set includes at least one time-frequency resource location, including at least one of the following:
  • At least one time domain resource location ie a time domain resource defining blind detection of first control information on at least one particular OFDM symbol.
  • the first control information may only be carried on the 0th, 2nd, ..., and 12th symbols of a subframe, so that the terminal device does not need to be in the first, third, and fifth symbols. ..., the 13th blind test, reducing the complexity of blind detection.
  • the potential frequency domain resource detection set may not be limited, or the potential frequency domain resource detection set may be defined as a preset or the base station is configured by high layer signaling.
  • At least one frequency domain resource location that is, a frequency domain resource detection set that defines blind detection of the first control information is on at least one specific PRB or a control channel element (CCE).
  • the CCE of a control channel has a frequency domain length of 3 PRBs
  • the control channel length of a terminal device may be 1, 2, 4, or 8 CCEs, which may be preset or the base station configures the first control by using high layer signaling.
  • the potential frequency domain resource detection set of the information includes: a first control channel selectable control channel frequency domain length (the number of CCEs included), and/or a start of the control channel for the terminal device to blindly detect the first control information and/or Or knot The location of the bundle's frequency domain resources.
  • the terminal device does not need to blindly detect the first control information in the full frequency domain of a certain symbol, and only blindly detects the frequency domain resource that meets the qualified condition.
  • the preset frequency domain resource detection set configured by the base station or the base station may include a continuous PRB, or may include a discrete PRB, or may include a discrete RE, or at least two types of patterns. Combination is not limited.
  • the potential time domain resource detection set may not be limited, and the potential time domain resource detection set may be defined as a preset or the base station is configured by high layer signaling.
  • the time-frequency resource detection set includes at least one time-frequency resource location, and may also include a combination of at least one time-domain resource location and at least one frequency-domain resource location, that is, a time domain resource that defines blind detection of the first control information is At least one specific PRB or CCE of at least one particular OFDM symbol.
  • the terminal device detects the first control information, and specifically includes:
  • the terminal device detects the first control information according to a Cell Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • the terminal device detects the first control information according to the C-RNTI, and does not detect the first control information according to the Semi-Persistent Scheduling Radio Network Temporary Identifier (SPS-RNTI).
  • SPS-RNTI Semi-Persistent Scheduling Radio Network Temporary Identifier
  • the terminal device extracts the C-RNTI according to the received information to perform a CRC check to detect whether it is the first control information for itself.
  • the first control information further includes hybrid automatic repeat request (HARQ information), including a HARQ process ID, a redundancy version, and a new data indicator. , referred to as NDI).
  • HARQ information including a HARQ process ID, a redundancy version, and a new data indicator. , referred to as NDI).
  • the first control information may further include a time domain resource, a Pre-coding Matrix Indication (PMI), a Modulation and Coding Scheme (MCS), and a Sounding Reference (Sounding Reference).
  • PMI Pre-coding Matrix Indication
  • MCS Modulation and Coding Scheme
  • Sounding Reference Sounding Reference
  • SRS Sounding Reference
  • the second frequency domain resource allocation information includes downlink frequency domain resource allocation information, or the second frequency domain resource information includes uplink frequency domain resource allocation information.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information, or the first frequency domain resource allocation information includes uplink frequency domain resource allocation information, or the first frequency domain resource.
  • the allocation information includes downlink frequency domain resource allocation information and uplink frequency domain resource allocation information.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, and specifically includes:
  • the terminal device receives downlink data sent by the base station according to the downlink frequency domain resource allocation information.
  • the first frequency domain resource allocation information in the first control information includes downlink frequency domain resource allocation information, which is used to instruct the terminal device to demodulate data on the sPDSCH of the downlink sTTI, and the terminal device receives the base station according to the downlink frequency domain resource allocation information.
  • the downlink data to be sent may be determined by using the downlink frequency domain resource allocation information to determine the downlink frequency domain resource allocated to the terminal device, and receiving the downlink data sent by the base station in the first TTI by using the downlink frequency domain resource.
  • the first control information additionally adds downlink frequency domain resource allocation information compared to the existing fast DCI; after acquiring the downlink frequency domain resource allocation information in the first control information, the terminal device receives the demodulated sPDSCH on the corresponding downlink frequency domain resource.
  • the data is not limited to the existing fast DCI.
  • the second frequency domain resource allocation information in the second control information includes downlink frequency domain resource allocation information
  • the detecting, by the terminal device, at least one of the first control information and the third control information includes:
  • the terminal device detects that the second frequency domain resource allocation information in the second control information includes downlink frequency domain resource allocation information, the terminal device detects the third control information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device If the terminal device does not detect that the second frequency domain resource allocation information in the second control information includes downlink frequency domain resource allocation information, the terminal device detects the first control information;
  • the terminal device is configured according to the first frequency domain resource allocation information and/or the second frequency
  • the domain resource allocation information and the base station perform data transmission, including:
  • the terminal device receives the downlink data sent by the base station according to the downlink frequency domain resource allocation information included in the first frequency domain resource allocation information.
  • the terminal device detects that the second frequency domain resource allocation information in the second control information includes downlink frequency domain resource allocation information, and the terminal device detects the first control information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device receives the downlink data sent by the base station according to the downlink frequency domain resource allocation information included in the first frequency domain resource allocation information and the downlink frequency domain resource allocation information included in the second frequency domain resource allocation information.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information, and specifically includes:
  • the terminal device sends uplink data to the base station according to the uplink frequency domain resource allocation information.
  • the first frequency domain resource allocation information in the first control information includes the uplink frequency domain allocation information, and the terminal device sends the uplink data to the base station according to the uplink frequency domain resource allocation information, which may be, according to the uplink frequency domain resource allocation information.
  • the uplink frequency domain resource allocated to the terminal device is determined, and the uplink data is sent to the base station by using the uplink frequency domain resource in the first TTI.
  • the first control information additionally adds uplink frequency domain resource allocation information to the existing fast DCI. After acquiring the uplink frequency domain resource allocation information in the first control information, the terminal device sends data through the sPUSCH on the corresponding uplink frequency domain resource. .
  • the second frequency domain resource allocation information in the second control information includes an uplink frequency domain. Resource allocation information
  • the detecting, by the terminal device, at least one of the first control information and the third control information includes:
  • the terminal device detects that the second frequency domain resource allocation information in the second control information includes uplink frequency domain resource allocation information, the terminal device detects the third control information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device sends uplink data to the base station according to the uplink frequency domain resource allocation information included in the second frequency domain resource allocation information;
  • the terminal device If the terminal device does not detect that the second frequency domain resource allocation information in the second control information includes uplink frequency domain resource allocation information, the terminal device detects the first control information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device sends uplink data to the base station according to the uplink frequency domain resource allocation information included in the first frequency domain resource allocation information.
  • the terminal device detects that the second frequency domain resource allocation information in the second control information includes uplink frequency domain resource allocation information, and the terminal device detects the first control information;
  • the terminal device performs data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information, including:
  • the terminal device sends uplink data to the base station according to the uplink frequency domain resource allocation information included in the first frequency domain resource allocation information and the uplink frequency domain resource allocation information included in the second frequency domain resource allocation information.
  • the first control information further includes indication information, where the indication information is used to indicate that the first control information includes the first frequency domain resource allocation information.
  • the indication information is used to indicate that the control information is the first control information or the third control information
  • the terminal device determines, according to the indication information, that the detected control information is the first
  • the control information is also the third control information.
  • the first control information is different from the third control information in that the first control information includes the first frequency domain resource allocation information, so indicating whether the control information is the first control information or the third control information is equivalent to indicating whether the control information includes the first A frequency domain resource allocation information.
  • the first control information may adopt a new DCI format, or may reuse an existing DCI format, and the DCI format of the first control information may be the same as or different from the existing fast DCI format, and the different advantages are: the first control There is no additional restriction on the bit field size of the information; since the first control information additionally contains frequency domain resource information compared to the existing fast DCI, the new format does not require additional adjustment of the bits in the DCI format.
  • the terminal device blindly detects (s) the PDCCH, it uses two DCI formats (corresponding to different antenna modes, that is, one antenna mode only corresponds to one DCI format) to perform blind detection, and determines the DCI format actually used by the base station. If a new DCI format is introduced, the terminal device may use both the DCI format corresponding to the existing fast DCI and the DCI format corresponding to the new fast DCI, and the base station additionally notifies the terminal device of the new DCI format. .
  • the DCI format adopted by the first control information may be multiplexed with the DCI format of the existing fast DCI, and thus the bit field sizes of the two are required to be the same. It should be noted that the bit field includes all or part of the first control information, and at least one of the bits carries one of the first control information.
  • an indication information may be added to the DCI format shared by the two, for example, 1 bit is used to distinguish whether the DCI format corresponds to the existing fast DCI or the new fast DCI.
  • both the existing fast DCI and the first control information include the indication information, but the indication information values are different to distinguish the two types of control information.
  • the terminal device does not need to simultaneously blindly detect the potential time-frequency resources of the first control information by using two DCI formats, and can detect by using the same DCI format, if the control information is detected (the control information may be an existing fast DCI or The first control information is obtained by extracting the indication information in the corresponding bit region to determine whether the current control information is the existing fast DCI or the first control information, thereby achieving the purpose of reducing the blind detection complexity.
  • the first control information is the same as the DCI bit field of the existing fast DCI, but the content indicated by each bit in some or all of the bits is different, for example, some bits, and the first control information is used. Indicates frequency domain resource allocation information, while existing fast DCI is used to indicate MCS information.
  • the modulation and coding policy MCS of the data transmission is preset or configured by the base station. MCS.
  • the terminal device may directly instruct the terminal device to determine the frequency domain resource according to the frequency domain resource allocation information, so as to perform data transmission with the base station in the first TTI, but
  • directly putting the resource allocation information on the PDCCH into the sPDCCH greatly increases the control signaling overhead and the blind detection complexity of the terminal device.
  • the number of bits of the first control information is different from the existing fast DCI, and the destruction is performed. Both use the same bitfield size design.
  • the indication of the resource allocation information may be compressed. The number of bits. At the expense of indication flexibility, the indication signaling overhead remains unchanged.
  • the MCS used by the terminal device in the first TTI may be preset or the MCS configured by the base station by using the high layer signaling, and the MCS indication is removed. Bits; or reduce the number of bits occupied by the MCS, use a coarser-grained MCS indication in the first control information; or make the first TTI only used for the initial data, and remove the bits corresponding to the NDI.
  • the existing fast DCI includes 5 bits of information for indicating the predefined 32 types of MCS, and the first control information may indicate only 4 types of predefined MCS by using 2 bits, which saves 3-bit DCI control signaling overhead;
  • the subset is selected semi-statically from the first MCS set (eg, 32 MCSs) as a second MCS set (eg, 4 MCSs).
  • the terminal device then notifies the MCS of the specific MCS in the second MCS set by using the first control information, thereby saving the 3-bit DCI control signaling overhead; thus configuring the high-level signaling through the predefined or the base station. And the manner of the first control information notification, which realizes the saving of the MCS indication signaling overhead.
  • the existing fast DCI includes a 1-2 bit new data indication (NDI) for indicating whether the data is a retransmission or a new transmission.
  • NDI 1-2 bit new data indication
  • the application scenario is considered for the burst service.
  • the NDI information can be removed and used only to indicate the newly transmitted data, thus saving 1 to 2 bits of control signaling.
  • the following table 1 shows the partial control signaling included in the existing fast DCI.
  • the redundancy version (RV) occupies 4 bits
  • the MCS occupies 10 bits
  • the HARQ process number occupies 3 bits
  • the PMI occupies 3 bits.
  • the length is 2 bits.
  • FIG. 4 is a flowchart of Embodiment 1 of a method for transmitting control information according to an embodiment of the present invention.
  • the embodiment relates to a specific process in which a base station generates first control information and sends the first control information to a terminal device. As shown in FIG. 4, the method includes the following steps:
  • the base station generates first control information, where the first control information includes first frequency domain resource allocation information, where the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station.
  • the base station sends the first control information to the terminal device.
  • the base station may directly generate the first control information to send control information to the terminal device, where the first control information includes the terminal device demodulating data on the sPDSCH and All control information required to transmit data through the PUSCH, that is, includes both frequency domain resource allocation information and transmission indication information, and transmission indication information, including at least a HARQ process number, and further, a redundancy version of HARQ (Redundancy Version, RV), Modulation and Coding Scheme (MCS), sTTI length and other control information.
  • the first control information includes the terminal device demodulating data on the sPDSCH and All control information required to transmit data through the PUSCH, that is, includes both frequency domain resource allocation information and transmission indication information, and transmission indication information, including at least a HARQ process number, and further, a redundancy version of HARQ (Redundancy Version, RV), Modulation and Coding Scheme (MCS), sTTI length and other control information.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • the first control information is used to indicate that the terminal device performs data transmission with the base station in the corresponding sTTI, and the terminal device determines the first control information by using a monitor, that is, blindly detecting the first control information.
  • the terminal device is time-frequency.
  • the resource is detected, and the first control information is carried on the time-frequency resource by using a Cyclic Redundancy Check (CRC) to determine that the sTTI corresponding to the first control information includes the base station allocated to the terminal device.
  • CRC Cyclic Redundancy Check
  • the Slow DCI includes at least frequency domain resource allocation information.
  • the existing fast DCI includes at least a HARQ process number, and further includes control information such as a Redundancy Version (RV), a Modulation and Coding Scheme (MCS), and an sTTI length of the HARQ. Does not include frequency domain resource allocation information.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • sTTI length of the HARQ Does not include frequency domain resource allocation information.
  • the first control information has more frequency domain resource allocation information than the existing fast DCI, so that the terminal device can complete data transmission with the base station without acquiring the slow DCI.
  • the base station when the downlink DCI group packet is used, the base station does not determine that there is downlink/uplink traffic for a certain terminal device, and before transmitting the next slow DCI, the downlink/uplink service for the terminal device temporarily appears.
  • the base station may send the first control information to configure control information for the terminal device, where at least the frequency domain resource allocation information of the downlink or uplink transmission is included. If the terminal device does not detect the slow DCI for the terminal device but detects the first control information, the terminal device may perform data transmission with the base station according to the first frequency domain resource allocation information in the first control information.
  • the downlink DCI includes resource allocation information (Resource Allocation, RA for short) indicating UE1, UE2, and UE3 in a 1ms subframe, including 7 sTTIs, where the base station sends UE3 through 4 existing fast DCIs.
  • the first to fourth sTTIs for the current subframe are respectively allocated; the base station allocates, by the first control information, the resource allocation information for the fifth sTTI of the current subframe to the UE4.
  • the base station generates first control information; the first control information includes first frequency domain resource allocation information; and the first frequency domain resource allocation information is used to indicate the terminal device and the The base station performs data transmission, and sends the first control information to the terminal device, and the terminal device can perform the first frequency domain resource allocation information included in the first control information, and the base station, even if the first TTI has the burst service.
  • Performing data transmission which solves the problem that the downlink DCI sent by the base station does not include the control information of the terminal device in the prior art, and the downlink transmission or the uplink transmission The delay of the loss is small.
  • the base station generates second control information, where the second control information corresponds to at least one TTI; the second control information includes second frequency domain resource allocation information; and the second frequency domain resource allocation information And indicating that the terminal device performs data transmission with the base station; the at least one TTI includes a first TTI, where the first TTI includes the first control information, where the terminal device indicates that the terminal device performs data transmission with the base station. TTI;
  • the base station sends the second control information to the terminal device.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the downlink frequency domain resource allocation information is used to indicate that the terminal device receives the downlink data sent by the base station.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the uplink frequency domain resource allocation information is used to instruct the terminal device to send uplink data to the base station.
  • the first frequency domain resource allocation information includes a sequence number of the first frequency domain resource in the frequency domain resource allocation set
  • the frequency domain resource allocation set is preset or configured by a base station, and the frequency domain resource allocation set includes at least two sets of frequency domain resources; the first frequency domain resource is data transmission between the terminal device and the base station. resource of.
  • it also includes:
  • the base station sends the time-frequency resource detection set to the terminal device, where the time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes the time occupied by the first control information. Frequency resource location.
  • the first control information further includes indication information, where the indication information is used to indicate that the first frequency domain resource allocation information is included in the first control information.
  • the first frequency domain resource allocation information is used to indicate that the modulation and coding policy MCS of the data transmission is a preset or MCS configured by the base station when the terminal device performs data transmission with the base station.
  • FIG. 5 is a flowchart of another embodiment of a method for receiving control information according to an embodiment of the present invention.
  • the embodiment relates to a specific process of determining, by the terminal device, the first frequency domain resource according to the second frequency domain resource occupied by the first control information, and performing data transmission by using the first frequency domain resource and the base station.
  • the method includes the following steps:
  • the base station generates first control information.
  • the first control information is used to indicate that the terminal device performs data transmission with the base station by using a first frequency domain resource; the first frequency domain resource is determined by a second frequency domain resource, and the second The frequency domain resource includes a time-frequency resource occupied by the first control information, the second frequency domain resource has a corresponding relationship with the first frequency domain resource, and the second frequency domain resource includes the first control information.
  • the frequency domain resource S502 the base station sends the first control information to the terminal device;
  • the terminal device detects first control information sent by the base station.
  • the terminal device determines, according to the second frequency domain resource that is occupied by the first control information, a first frequency domain resource, where the second frequency domain resource has a corresponding relationship with the first frequency domain resource;
  • the terminal device performs data transmission with the base station by using the first frequency domain resource.
  • the first control information in the embodiment is sent to the terminal device, and the first control information in the embodiment is compared with the first control information in the foregoing embodiment.
  • the control information format of the first control information and the included information may be the same as the existing fast DCI, such as sTTI specific information such as MCS, HARQ, sTTI length, and the like.
  • the first control information involved in the embodiment of the present invention refers to a new fast DCI
  • the second control information refers to a slow DCI.
  • the location of the second frequency domain resource occupied by the first control information is designed to have a corresponding relationship with the location of the first frequency domain resource allocated to the terminal device, and the corresponding first frequency is implicitly The location of the domain resource is indicated to the terminal device. If the terminal device does not detect the slow DCI, the first control information may be blindly detected on the potential new fast DCI time-frequency resource location, and the second frequency domain resource occupied by the detected first control information is mapped to the base station.
  • the first frequency domain resource of the terminal device includes: 1. a frequency domain resource corresponding to the sPDSCH, thereby implementing data reception, or 2, (s) a frequency domain resource corresponding to the PUSCH, thereby implementing data transmission.
  • the advantage of this embodiment is that the resource allocation information for the terminal device does not need to be displayed in the first control information, but the resource allocation information corresponding to the terminal device is implicitly notified by the frequency domain resource occupied by the first control information. , thereby saving the overhead of notifying the resource allocation information, so that It is not necessary to compress other control information in the first control information to carry additional resource allocation information as in the foregoing embodiment, and improve the notification accuracy of control signaling such as MCS.
  • the terminal device detects the first control information sent by the base station; the terminal device determines the first frequency domain resource according to the second frequency domain resource occupied by the first control information; The second frequency domain resource has a corresponding relationship with the first frequency domain resource; the terminal device performs data transmission with the base station by using the first frequency domain resource, even if the terminal device has a burst service in the first TTI
  • the data transmission is performed with the base station according to the first frequency domain resource allocation information included in the first control information, which solves the problem that the downlink DCI sent by the base station does not include the control information of the terminal device in the prior art, resulting in downlink transmission or uplink.
  • the problem of large transmission delay is performed with the base station according to the first frequency domain resource allocation information included in the first control information, which solves the problem that the downlink DCI sent by the base station does not include the control information of the terminal device in the prior art, resulting in downlink transmission or uplink.
  • the terminal device determines the first frequency domain resource according to the second frequency domain resource occupied by the first control information, including:
  • the terminal device detects second control information, where the second control information includes third frequency domain resource allocation information
  • the terminal device determines the first frequency domain resource according to the second frequency domain resource
  • the terminal device determines the first frequency domain resource according to the second frequency domain resource, or The terminal device determines the first frequency domain resource according to the third frequency domain resource determined by the second frequency domain resource and the third frequency domain resource allocation.
  • the second control information is corresponding to the at least one TTI
  • the first control information is used to indicate that the terminal device performs data transmission with the base station in a first TTI
  • the at least one TTI includes the first TTI .
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, where the a frequency domain resource includes the frequency domain resource group; the frequency domain resource group includes at least one first frequency domain resource unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the at least one second frequency domain resource unit of the time-frequency resources occupied by the first control information may correspond to one of the first frequency domain resources.
  • the frequency domain resource group includes at least one first frequency domain resource unit.
  • a first frequency domain resource unit includes at least one RE.
  • a second frequency domain resource unit includes at least one RE.
  • the size of the second frequency domain resource unit may be the same as or different from the size of the first frequency domain resource unit.
  • the second frequency domain resource unit is an RE
  • the corresponding first frequency domain resource unit is a resource block (Resource Block, RB for short, or a resource block group (RBG); or, the second frequency domain resource unit It is an RB or a CCE, and the corresponding first frequency domain resource unit is an RBG.
  • one RBG includes multiple consecutive RBs, for example, six; one CCE includes three RBs, and each RB includes 12 REs, that is, one CCE includes 36 REs.
  • At least one second frequency domain resource unit occupied by the first control information corresponds to one frequency domain resource group of the first frequency domain resource, and includes the following situations: 1.
  • the second frequency domain Each of the second frequency domain resource units in the resource corresponds to one frequency domain resource group, and the first frequency domain resource allocated by the base station to the terminal device includes all frequency domain resource groups, for example, the second frequency domain resource unit is an RB, and the first frequency The domain resource unit is an RB, the frequency domain resource group is an RBG composed of a plurality of consecutive RBs, and the RBs occupied by the second frequency domain resource unit correspond to the RBG of one frequency domain resource group, and if the second frequency domain resource includes two CCE, that is, 6 RBs, and therefore corresponds to 6 frequency domain resource groups; 2.
  • Each of the second frequency domain resource elements in the second frequency domain resource corresponds to one frequency domain resource group, for example, the second frequency.
  • the domain resource unit is a CCE
  • the second frequency domain resource includes two frequency domain resource units ⁇ CCE#1, CCE#2 ⁇ , wherein the frequency domain resource group corresponding to the CCE#1 is the first frequency allocated by the base station to the terminal device.
  • Domain resource, CCE#2 does not correspond to the frequency domain resource group; 3.
  • At least two The second frequency domain resource unit corresponds to one frequency domain resource group, for example, the frequency domain resource unit of the second frequency domain resource is RE, and the RE#0 to RE#35 (1 CCE includes 36 REs) corresponds to one frequency domain resource group. If the second frequency domain resource is RE#0-RE#35, the frequency domain resource group is the first frequency domain resource allocated by the base station to the terminal device.
  • the at least one first frequency domain resource unit included in the frequency domain resource group may be continuous in the frequency domain or may be discontinuous in the frequency domain.
  • the first frequency domain resource unit is an RB
  • the frequency domain resource group corresponding to the second frequency domain resource unit CCE#1 includes 10 RBs, and the 10 RBs may be consecutive PRB#0 to PRB#9, or may be Discontinuous PRB#0, PRB#10, PRB#20,..., PRB#90.
  • the first frequency domain resource unit includes an RE or a resource block RB or a resource block group RBG
  • the second frequency domain resource unit includes a resource particle RE or a resource block RB or a control channel unit CCE.
  • the frequency domain location of a frequency domain resource group included in the first frequency domain resource corresponding to the frequency domain location of the second frequency domain resource unit may be different; for example, the second frequency domain resource includes three second frequency domain resources.
  • the frequency domain locations of the frequency domain resource groups included in the first frequency domain resource corresponding to the frequency domain locations of the second frequency domain resource units do not overlap; the two frequency domain resource groups corresponding to the two frequency domain resource groups do not overlap.
  • the frequency domain resources do not overlap, or two different frequency domain resource groups do not simultaneously contain the same first frequency domain resource unit.
  • the second frequency domain resource includes four second frequency domain resource units ⁇ CCE#1, CCE#2, CCE#3, CCE#4 ⁇ , wherein the sTTI frequency domain resource group corresponding to CCE#1 is the RB set RB#.
  • the sTTI frequency domain resource group corresponding to CCE#2 is RB#25 to RB#49
  • the sTTI frequency domain resource group corresponding to CCE#3 is RB#50 to RB#74
  • the sTTI corresponding to CCE#4 The frequency domain resource group is RB#75 ⁇ RB#99.
  • At least one second frequency domain resource unit of the time-frequency resource occupied by the first control information corresponds to one frequency domain resource group of the first frequency domain resource, and there may be two mapping modes: the first frequency domain resource includes the first control information.
  • the second frequency domain resource that is occupied, the first frequency domain resource does not include the second frequency domain resource occupied by the first control information.
  • the first frequency domain resource includes the second frequency domain resource occupied by the first control information.
  • the frequency domain resources occupied by each first control information are included in the frequency domain range of the first frequency domain resource indicated by the first frequency information.
  • the first control information cannot reuse the area of the existing fast DCI, but needs to redesign its time-frequency resource location so as to be within the frequency domain corresponding to the first frequency domain resource.
  • the mapping of the second frequency domain resource to the first frequency domain resource may be embodied as a mapping formula.
  • a first control information is occupied by RB#n may be mapped to the frequency domain resource group RB#n to RB#n+4, or the RB#n occupied by the first control information may be mapped to the frequency domain resource group RB#n-4 to RB#n, or The RB#n occupied by the first control information may be mapped to the frequency domain resource group RB#n-2 to RB#n+2; where n is an integer.
  • the second frequency domain resource occupied by the first control information of the UE2 and the UE4 is included in the mapped first frequency domain resource range.
  • the first control information of the mapping mode has a wide distribution area, for example, can be distributed to the full frequency band.
  • the advantage is that the resource indication flexibility is higher, and the first frequency domain resource that is not continuous is more convenient to be indicated.
  • the disadvantage is that the potential second frequency is There are many domain resources, so UEs have more blind detections.
  • the first frequency domain resource does not include the second frequency domain resource occupied by the first control information.
  • the first control information multiplexes the distribution area of the existing fast DCI, in a specific (for example, base station indication or preset) time-frequency resource area occupied by the first control information, for example, RB#0-RB#29.
  • a cross-frequency domain indication is required.
  • RB#0-RB#2 of the second frequency domain resource indicates that the RB#0-RB#9 of the first frequency domain resource is an intra-frequency indication, that is, the first frequency domain resource includes the frequency occupied by the first control information.
  • the RB#3 to RB#5 of the second frequency domain resource indicates the RB#10 to RB#19 of the first frequency domain resource
  • the RB#27 to RB#29 of the second frequency domain resource indicate the first RB#90-RB#99 of a frequency domain resource are cross-frequency domain indications, that is, the frequency domain of the first frequency domain resource does not include the frequency domain resource occupied by the first control information.
  • the second frequency domain resource occupied by the first control information of the UE2 and the UE4 is not included in the mapped first frequency domain resource range.
  • the terminal device may determine the corresponding first frequency domain resource according to the absolute frequency domain location of the second frequency domain resource occupied by the first control information, for example, the sequence number of the occupied RB or the CCE, for example,
  • the second frequency domain resource unit included in the second frequency domain resource is RB#0-RB#2, corresponding to the frequency domain resource group of the three groups of the first frequency domain resources, and the frequency domain resource group includes 10 RBs, that is, RB#0.
  • the base station may determine, according to the frequency domain resource occupied by the first control information, the corresponding first frequency domain resource in the time-frequency resource detection set, for example, the time-frequency resource detection set includes 20 RB, RB#0 ⁇ RB#19, corresponding to 10 groups of frequency domain resource groups of the first frequency domain resource, and the frequency domain resource group includes 10 RBs, and RB#0 corresponds to RB#0 ⁇ RB#9, RB#2 Corresponding to RB#10 to RB#19, RB#4 corresponds to RB#20 to RB#29, and so on.
  • mapping mode 2 The advantage of the mapping mode 2 is that the time-frequency region of the existing fast DCI is reused, and the time-frequency region occupied by the first control information is not required to be designed, and the optional time-frequency location of the first control information is small, and the terminal device blindly detects the complexity. Lower.
  • a disadvantage of the mapping mode 2 is that the frequency domain resources occupied by the first control information are in a specific area and cannot be distributed over the full bandwidth, so the indicated resource indication is less flexible.
  • the corresponding relationship includes:
  • the lowest frequency domain boundary includes a minimum frequency point of the frequency domain bandwidth occupied by the second frequency domain resource, and the highest frequency domain boundary includes a maximum frequency point of the frequency domain bandwidth occupied by the second frequency domain resource;
  • the lowest frequency domain boundary includes the RE or RB corresponding to the minimum frequency point in the frequency domain bandwidth of the second frequency domain resource, and the highest frequency domain boundary includes the corresponding maximum frequency point in the frequency domain bandwidth occupied by the second frequency domain resource.
  • RE or RB corresponding to the minimum frequency point in the frequency domain bandwidth of the second frequency domain resource
  • the highest frequency domain boundary includes the corresponding maximum frequency point in the frequency domain bandwidth occupied by the second frequency domain resource.
  • the corresponding relationship between the second frequency domain resource and the first frequency domain resource may include: a lowest frequency domain boundary corresponding to the second frequency domain resource (ie, a minimum frequency point) and a lowest frequency domain corresponding to the first frequency domain resource Corresponding relationship between the boundary (ie, the minimum frequency point) and the highest frequency domain boundary corresponding to the second frequency domain resource (ie, the maximum frequency point) and the highest frequency domain boundary corresponding to the first frequency domain resource (ie, the maximum Corresponding relationship of frequency points; the first frequency domain resource is a continuous resource in the frequency domain.
  • the minimum frequency point corresponding to the second frequency domain resource is the same as the minimum frequency point corresponding to the first frequency domain resource
  • the maximum frequency point corresponding to the second frequency domain resource is corresponding to the first frequency domain resource.
  • the maximum frequency point is the same, so that the first frequency domain resource can be directly determined according to the second frequency domain resource.
  • the lowest frequency domain boundary of the second frequency domain resource occupied by the first control information of UE2 and UE4 is The highest frequency domain boundary is the same as the lowest frequency domain boundary and the highest frequency domain boundary of the first frequency domain resource mapped thereto.
  • the minimum frequency point corresponding to the second frequency domain resource has a predefined mapping relationship with the minimum frequency point corresponding to the first frequency domain resource, and the maximum frequency point corresponding to the second frequency domain resource is the first frequency point.
  • the maximum frequency corresponding to the frequency domain resource has a predefined mapping relationship; the predefined mapping relationship includes the pre-defined mapping relationship Defined frequency domain offset;
  • a second frequency domain resource is #RB0 to #RB49, and the corresponding first frequency domain resource is 2600 MHz to 2610 MHz, and the minimum frequency point is 2600 MHz (the lowest frequency domain boundary of #RB0), and the maximum frequency point is 2610 MHz (# The highest frequency domain boundary of RB49); if a discontinuous second frequency domain resource is ⁇ #RB0 ⁇ #RB19, #RB30 ⁇ #RB49 ⁇ corresponds to the first frequency domain resource 2600MHz ⁇ 2610MHz, then the lowest frequency domain boundary is still At 2600 MHz (the lowest frequency domain boundary of #RB0), the highest frequency domain boundary is 2610 MHz (the highest frequency domain boundary of #RB49).
  • the frequency domain resources occupied by the first control information may be continuous or discontinuous; for the first frequency domain resources, the frequency domain resources are continuous.
  • the frequency domain resource occupied by the first control information may be scattered into 3 RBs and placed on the first frequency domain resource by assuming that one CCE is occupied, wherein one of the two ends of the second frequency domain resource The RB is placed at one end of the frequency domain range of the corresponding first frequency domain resource, and one RB is placed at the other end of the frequency domain range of the corresponding first frequency domain resource.
  • the terminal device detects the first control information sent by the base station, and specifically includes:
  • the terminal device detects the first control information according to the time-frequency resource detection set, where the time-frequency resource detection set includes at least one time-frequency resource location, and the at least one time-frequency resource location includes the first control The location of the time-frequency resource occupied by the information;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the potential time-frequency resource location corresponding to the existing fast DCI may be indicated by a slow DCI, and in the embodiment of the present invention, if the time-frequency resource location is as flexible as the existing fast DCI, the terminal device may be caused.
  • the complexity of blind detection of the first control information is too high, for example blind detection on all PRBs of each symbol to determine if first control information is present.
  • the terminal device detects the first control information in the time-frequency resource detection set, where the time-frequency resource detection set includes the potential time-frequency resource location at which the base station sends the first control information.
  • the time-frequency resource detection set in which the time-frequency resource location occupied by the first control information is located may be preset.
  • the terminal device blindly detects the first control information only on the preset time-frequency resource of each subframe.
  • the time-frequency resource detection set in which the time-frequency resource location occupied by the first control information is located may also be configured by the base station, if the time-frequency resource detection set is configured.
  • the configuration of the base station can be configured by sending a high-level signaling, for example, to the terminal device through RRC layer signaling.
  • the base station semi-statically configures the potential time-frequency resource detection set by the high-layer signaling, and the terminal device blindly detects the first control information only on the time-frequency resource detection set configured by the high-level signaling.
  • the time-frequency resource detection set includes at least one time-frequency resource location; and the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information.
  • the base station When the time-frequency resource detection set is a time-frequency resource detection set configured by the base station, the base station sends the time-frequency resource detection set to the terminal device.
  • the preset or the base station is configured by the high-level signaling, which reduces the complexity of blind detection of the terminal device. For example, if the terminal device does not detect the slow DCI, the first control information may be detected only on the specific time-frequency resource detection set, for example, Blind detection on certain symbols, or on certain PRBs, without blind detection on all symbols and all PRBs.
  • the time-frequency resource detection set includes at least one time-frequency resource location, including at least one of the following:
  • At least one time domain resource location ie a time domain resource defining blind detection of first control information on at least one particular OFDM symbol.
  • the first control information may only be carried on the 0th, 2nd, ..., and 12th symbols of a subframe, so that the terminal device does not need to be in the first, third, and fifth symbols. ..., the 13th blind test, reducing the complexity of blind detection.
  • the potential frequency domain resource detection set may not be limited, or the potential frequency domain resource detection set may be defined as a preset or the base station is configured by high layer signaling.
  • At least one frequency domain resource location that is, a frequency domain resource detection set that defines blind detection of the first control information is on at least one specific PRB or a control channel element (CCE).
  • a CCE has a frequency domain length of 3 PRBs
  • a control channel length of a terminal device may be 1, 2, 4, or 8 CCEs, which may be preset or the base station configures the first control information through high layer signaling.
  • the frequency domain resource detection set includes: a control channel frequency domain length (the number of CCEs included) of the first control information, and/or a start and/or an end of the control channel of the terminal device blindly detecting the first control information Frequency domain resource location.
  • the terminal device does not need to blindly detect the first control information in the full frequency domain of a certain symbol, and only blindly detects the frequency domain resource that meets the qualified condition.
  • the preset frequency domain resource detection set configured by the base station or the base station may include a continuous PRB, a discrete PRB, or a discrete RE, or at least the foregoing. The combination of the two patterns is not limited.
  • the potential time domain resource detection set may not be limited, and the potential time domain resource detection set may be defined as a preset or the base station is configured by high layer signaling.
  • the time-frequency resource detection set includes at least one time-frequency resource location, and may also include a combination of at least one time-domain resource location and at least one frequency-domain resource location, that is, a time domain resource that defines blind detection of the first control information is At least one specific PRB or CCE of at least one particular OFDM symbol.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the terminal device performs data transmission with the base station by using the first frequency domain resource, and specifically includes:
  • the terminal device receives downlink data sent by the base station by using the downlink frequency domain resource.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the terminal device performs data transmission with the base station by using the first frequency domain resource, and specifically includes:
  • the terminal device sends uplink data to the base station by using the uplink frequency domain resource.
  • the base station may adopt one of two manners.
  • the first control information is sent only to the terminal device not included in the slow DCI, and the terminal device included in the slow DCI still sends the existing fast DCI, where the frequency domain resources occupied by the existing fast DCI are allocated by the base station.
  • the first frequency domain resource has no mapping relationship.
  • the terminal device For the terminal device, if the slow DCI is detected and the existing fast DCI is detected, the resource allocation information indicated by the slow DCI is obtained, and the HARQ information (further, MCS, sTTI length, etc.) indicated by the existing fast DCI is combined with The base station performs data transmission; if the slow DCI is not detected, and the first control information is detected, the first frequency domain resource is obtained according to the frequency domain resource mapping occupied by the first control information, and the first The HARQ information (further, MCS, sTTI length, etc.) indicated by the control information is transmitted with the base station. Both the mapping method 1 and the mapping method 2 described above are applicable.
  • the first control information is sent for all terminal devices. Even if the terminal device of the RA is allocated in the slow DCI, the first frequency domain resource is obtained by the frequency domain resource location mapping of the first control information. For the terminal device, if the terminal device detects the slow DCI, the terminal device can save the blind detection complexity because the slow DCI may include the time-frequency domain location indication of the first control information. If the slow DCI is not detected, and the new first control information is detected, the first frequency domain resource is obtained according to the frequency domain resource mapping occupied by the first control information, and the HARQ information indicated by the first control information is combined (further, MCS, Information such as sTTI length) is transmitted with the base station.
  • MCS Information such as sTTI length
  • the advantage of the mode 2 is that, in addition to solving the problem that the existing base station temporarily has downlink or uplink burst service and needs to perform low-latency transmission with the terminal device, another problem can be solved: if the base station sends a slow DCI to the terminal device, The terminal device can still determine the first frequency domain resource according to the first control information because the channel condition of the legacy PDCCH is not good and the slow DCI is not correctly received.
  • the base station sends a time-frequency resource detection set to the terminal device, where the time-frequency resource detection set includes at least one time-frequency resource location, and the at least one time-frequency resource location includes the first control information.
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the downlink frequency domain resource is used by the terminal device to receive data sent by the base station.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the uplink frequency domain resource is used by the terminal device to send data to the base station.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present disclosure.
  • the terminal device may include: a detection module 901 and a processing module 902;
  • the detecting module 901 is configured to detect second control information, where the second control information includes second frequency domain resource allocation information.
  • the detecting module 901 is further configured to detect at least one of the first control information and the third control information, where the first control information includes first frequency domain resource allocation information;
  • the processing module 902 is configured to perform data transmission with the base station according to the first frequency domain resource allocation information and/or the second frequency domain resource allocation information.
  • the second control information is corresponding to the at least one TTI, where the first control information and the third control information are used to indicate that the terminal device performs data transmission with the base station in the first TTI, where the at least One TTI includes the first TTI.
  • the detecting module 901 is specifically configured to:
  • processing module 902 is specifically configured to:
  • the detecting module 901 is further specifically configured to:
  • processing module 902 is specifically configured to:
  • the detecting module 901 is further configured to:
  • processing module 902 is specifically configured to:
  • processing module 902 is specifically configured to:
  • the frequency domain resource allocation set includes a preset or a base station, the frequency domain resource allocation set includes at least two frequency domain resources, and the first frequency domain resource allocation information includes the first frequency domain resource. a sequence number in the frequency domain resource allocation set;
  • Data transmission is performed with the base station by using the first frequency domain resource.
  • the detecting module 901 is specifically configured to:
  • the time-frequency resource detection set is preset or configured by a base station.
  • the detecting module 901 is specifically configured to:
  • the first control information is detected according to the cell radio network temporary identifier C-RNTI.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • processing module 902 is specifically configured to:
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • processing module 902 is specifically configured to:
  • the modulation and coding policy MCS of the data transmission is preset or an MCS configured by the base station.
  • the first control information further includes indication information, where the indication information is used to indicate that the first frequency domain resource allocation information is included in the first control information.
  • the terminal device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present invention.
  • the base station may include: a generating module 1001 and a sending module 1002;
  • the generating module 1001 is configured to generate first control information, where the first control information includes first frequency domain resource allocation information, where the first frequency domain resource allocation information is used to indicate that the terminal device performs data transmission with the base station. ;
  • the sending module 1002 is configured to send the first control information to the terminal device.
  • the generating module 1001 is further configured to:
  • the second control information corresponds to at least one TTI;
  • the second control information includes second frequency domain resource allocation information; and the second frequency domain resource allocation information is used to indicate the terminal device and the base station Performing data transmission;
  • the at least one TTI includes a first TTI, where the first TTI includes the first control information indicating that the terminal device performs data transmission with the base station Corresponding TTI;
  • the sending module 1002 is further configured to send the second control information to the terminal device.
  • the first frequency domain resource allocation information includes downlink frequency domain resource allocation information
  • the downlink frequency domain resource allocation information is used to indicate that the terminal device receives the downlink data sent by the base station.
  • the first frequency domain resource allocation information includes uplink frequency domain resource allocation information
  • the uplink frequency domain resource allocation information is used to instruct the terminal device to send uplink data to the base station.
  • the first frequency domain resource allocation information includes a sequence number of the first frequency domain resource in the frequency domain resource allocation set
  • the frequency domain resource allocation set is preset or configured by a base station, and the frequency domain resource allocation set includes at least two sets of frequency domain resources; the first frequency domain resource is data transmission between the terminal device and the base station. resource of.
  • the sending module 1002 is further configured to:
  • time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information .
  • the first control information further includes indication information, where the indication information is used to indicate that the first frequency domain resource allocation information is included in the first control information.
  • the modulation and coding policy MCS of the data transmission is a preset or MCS configured by the base station.
  • the base station provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present disclosure.
  • the terminal device may include: a detecting module 1101 and a processing module 1102;
  • the detecting module 1101 is configured to detect first control information sent by the base station
  • the processing module 1102 is configured to determine, according to the second frequency domain resource occupied by the first control information a first frequency domain resource; the second frequency domain resource has a corresponding relationship with the first frequency domain resource;
  • the processing module 1102 is further configured to perform data transmission with the base station by using the first frequency domain resource.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, the first frequency domain resource includes the frequency domain resource group, and the frequency domain resource group includes at least one first frequency domain resource. unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit comprises an RE or a resource block RB or a resource block group RBG
  • the second frequency domain resource unit comprises a resource particle RE or a resource block RB or a control channel unit CCE.
  • the corresponding relationship includes:
  • the detecting module 1101 is specifically configured to:
  • the time-frequency resource detection set includes at least one time-frequency resource location; and the at least one time-frequency resource location includes the first control information Time-frequency resource location;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • processing module 1102 is specifically configured to:
  • the first frequency domain resource includes an uplink frequency domain resource
  • processing module 1102 is specifically configured to:
  • the terminal device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a base station according to an embodiment of the present invention.
  • the base station may include: a generating module 1201 and a sending module 1202;
  • the generating module 1201 is configured to generate first control information, where the first control information is used to indicate that the terminal device performs data transmission with the base station by using a first frequency domain resource, and the first frequency domain resource is second And determining, by the frequency domain resource, the second frequency domain resource has a corresponding relationship with the first frequency domain resource, where the second frequency domain resource includes a frequency domain resource occupied by the first control information;
  • the sending module 1202 is configured to send the first control information to the terminal device.
  • the corresponding relationship includes:
  • the second frequency domain resource includes the at least one second frequency domain resource unit, the first frequency domain resource includes the frequency domain resource group, and the frequency domain resource group includes at least one first frequency domain resource. unit;
  • the first frequency domain resource unit includes at least one resource particle RE
  • the second frequency domain resource unit includes at least one resource particle RE.
  • the first frequency domain resource unit comprises an RE or a resource block RB or a resource block group RBG
  • the second frequency domain resource unit comprises a resource particle RE or a resource block RB or a control channel unit CCE.
  • the corresponding relationship includes:
  • the sending module 1202 is further configured to:
  • time-frequency resource detection set includes at least one time-frequency resource location, where the at least one time-frequency resource location includes a time-frequency resource location occupied by the first control information ;
  • the time-frequency resource detection set is preset or configured by a base station.
  • the first frequency domain resource includes a downlink frequency domain resource
  • the downlink frequency domain resource is used by the terminal device to receive data sent by the base station.
  • the first frequency domain resource includes an uplink frequency domain resource
  • the uplink frequency domain resource is used by the terminal device to send data to the base station.
  • the base station provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 13, the terminal device may include:
  • the processor 1301 and the memory 1302 may further include a transceiver 1303.
  • the transceiver 1303 is configured to send or receive data information
  • the memory 1302 is configured to store execution instructions
  • the processor 1301 is configured to invoke an execution instruction in the memory 1302 to perform any method implementation corresponding to the terminal device. The method steps of the example.
  • the functions of the detection module and the processing module in the above terminal device may be implemented by the processor 1301.
  • the transceiver 1303 may be configured to receive data information sent by a base station or send data information to a base station.
  • FIG. 14 is a schematic structural diagram of Embodiment 3 of a base station according to an embodiment of the present invention. As shown in FIG. 14, the base station may include:
  • the processor 1401 and the memory 1402 may further include a transceiver 1403.
  • the transceiver 1303 is configured to send or receive data information
  • the memory 1402 is configured to store execution instructions
  • the processor 1401 is configured to invoke an execution instruction in the memory 1402 to perform any method embodiment corresponding to the base station. Method steps.
  • the functions of the generation modules in the above base stations may be implemented by the processor 1401.
  • the function of the transmitting module in the above base station can be implemented by the transceiver 1403.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a A computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the base station embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, base station or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种控制信息的发送、接收方法和设备。方法包括:终端设备检测第二控制信息;终端设备检测第一控制信息和第三控制信息中至少一个;终端设备根据第一频域资源分配信息和/或第二频域资源分配信息与基站进行数据传输。本发明实施例提供的方法能够根据第一和/或第二频域资源分配信息进行数据传输,传输的时延较小。

Description

控制信息发送、接收方法和设备 技术领域
本发明涉及通信技术,尤其涉及一种控制信息发送、接收方法和设备。
背景技术
长期演进(Long Term Evolution,简称LTE)***中,资源分配以传输时间间隔(Transmission Time Interval,简称TTI)为粒度,1个TTI的长度为14个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,即1ms子帧,包含两个时隙,每个时隙为7个OFDM符号。为了进一步降低LTE***的传输时延,提高用户体验,版本Release 14中引入了时延降低(Latency Reduction)技术,将资源分配的时域粒度缩短为短传输时间间隔(short Transmission Time Interval,简称sTTI),减小组包和解调制编码的时间,从而达到减小物理层空口时延的目的。sTTI可能支持的可选长度包括7个OFDM符号或2个OFDM符号或3&4个OFDM符号等,其中3&4个OFDM符号结构中,每个时隙包含两个sTTI,第一个sTTI长度为3个OFDM符号,第二个sTTI长度为4个OFDM符号。
现有技术中,为了减小控制信令的开销,同时保证资源分配的灵活性,将控制信道中包含的控制信息分到两级下行控制信息(Downlink Control Information,简称DCI)中,第一级DCI,即慢DCI(slow DCI)包含时域上慢变的控制信息,例如频域资源分配信息,以及可选的,第二级DCI所占的时频资源信息;Slow DCI中指示的信息对于1ms子帧内包含的所有sTTI都适用;第二级DCI,即快DCI(Fast DCI),包含每个sTTI特定的控制信息,例如混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)进程号、功率控制信息、调制编码方式、上行授权(UpLink grant,简称UL grant)等。其中,UL grant为针对当前下行sTTI之后的一个上行sTTI或传统1ms TTI的调度指示。终端设备通过检测到的slow DCI和fast DCI共同确定全部的下行控制信息。
但是,现有技术中,终端设备需要检测到slow DCI和fast DCI才能获取 全部控制信息,对sTTI的短物理层下行共享信道(Short Physical Downlink Shared Channel,简称sPDSCH)的数据信息进行接收,或者发送物理层上行共享信道(Physical Uplink Shared Channel,简称PUSCH)或短物理层上行共享信道sPUSCH的数据信息。因此,基站在组包slow DCI的时候需要预估1ms子帧内是否有针对用户的下行业务或上行调度需求,如果没有针对某个终端设备的下行业务或上行调度需求,则基站在slow DCI中不包含针对该终端设备在当前子帧内的频域资源分配信息。如果基站在slow DCI中没有包括针对某个终端设备的控制信息,而在1ms子帧传输过程中需要临时发送针对该终端设备的下行数据或者上行调度信息,则由于之前发送的slow DCI未包含该终端设备的控制信息,则该终端设备无法获取下行资源分配信息或上行资源调度信息,即使基站发送且终端设备正确接收了fast DCI,由于资源分配信息的缺失,终端设备也无法正确接收sPDSCH的数据信息或者发送上行(s)PUSCH的数据信息,导致下行传输或上行传输的时延增大。
发明内容
本发明实施例提供控制信息发送、接收方法和设备,用以解决现有技术现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,导致下行传输或上行传输的时延较大的问题。
第一方面,本发明实施例提供一种控制信息的接收方法,包括:
终端设备检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
所述终端设备检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
通过第一方面提供的控制信息的接收方法,终端设备检测第二控制信息,并检测第一控制信息和第三控制信息中的至少一个;所述第二控制信息包括第二频域资源分配信息;所述第一控制信息包括第一频域资源分配信息;所述终端设备根据所述第一频域资源分配信息和/或第二频域资源分配信息与基站进行数据传输,即使终端设备有突发业务的情况下,也能够根据 第一控制信息包括的第一频域资源分配信息,与基站进行数据传输,解决了现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,导致下行传输或上行传输的时延较大的问题。
结合第一方面,在第一方面的一种可能的实施方式中,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
结合第一方面以及上述第一方面的一种可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
若所述终端设备检测到所述第二控制信息,所述终端设备检测所述第三控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第二频域资源分配信息与所述基站进行数据传输;
若所述终端设备没有检测到所述第二控制信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输。
通过上述实施方式提供的控制信息的接收方法,若所述终端设备检测到所述第二控制信息,则可以根据第二控制信息包含的第二频域资源分配信息与所述基站进行数据传输;若所述终端设备没有检测到所述第二控制信息,则可以直接根据所述第一频域资源分配信息与所述基站进行数据传输。
结合第一方面以及上述第一方面的一种可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
所述终端设备检测到所述第二控制信息,所述终端设备检测所述第一控 制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
所述终端设备根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基站进行数据传输。
通过上述实施方式提供的控制信息的接收方法,若终端设备检测到所述第二控制信息,则也可以根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基站进行数据传输,或只根据第一频域资源分配信息与所述基站进行数据传输。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
所述终端设备通过所述第一频域资源与所述基站进行数据传输。
通过上述实施方式提供的控制信息的接收方法,终端设备可以根据第一频域资源分配信息和频域资源分配集合确定所述第一频域资源,通过所述第一频域资源与所述基站进行数据传输,由于所述频域资源分配集合为预设的或基站配置的,则可以节省第一控制信息的信令开销。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备检测第一控制信息,具体包括:
所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
通过上述实施方式提供的控制信息的接收方法,所述终端设备根据时频 资源检测集合,检测所述第一控制信息,减少了终端设备盲检测的复杂度。
结合上述第一方面的另一种可能的实施方式,在第一方面的另一种可能的实施方式中,所述时频资源检测集合为预设的、或基站配置的。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备检测第一控制信息,具体包括:
所述终端设备根据小区无线网络临时标识C-RNTI检测所述第一控制信息。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
所述终端设备根据所述下行频域资源分配信息接收所述基站发送的下行数据。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
所述终端设备根据所述上行频域资源分配信息向所述基站发送上行数据。
结合上述第一方面的各可能的实施方式,在第一方面的另一种可能的实施方式中,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者所述基站配置的MCS。
通过上述实施方式提供的控制信息的接收方法,由于MCS为预设的或者所述基站配置的MCS,则可以节省第一控制信息的信令开销。
结合第一方面以及上述第一方面的一种可能的实施方式,在第一方面的另一种可能的实施方式中,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
通过上述实施方式提供的控制信息的接收方法,第一控制信息中通过包含指示信息,可以区分是第一控制信息还是第三控制信息。
第二方面,本发明实施例提供一种控制信息的发送方法,包括:
基站生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
所述基站向所述终端设备发送所述第一控制信息。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:
所述基站生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所对应的TTI;
所述基站向所述终端设备发送所述第二控制信息。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述第一频域资源分配信息用于指示所述终端设备与所述基站进行数据传输,包括:
所述第一频域资源分配信息用于指示所述终端设备接收所述基站发送的下行数据。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述第一频域资源分配信息用于指示所述终端设备与所述基站进行数据传输,包括:
所述第一频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,还包括:
所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
结合第二方面以及第二方面的各可能的实施方式,在第二方面的另一种可能的实施方式中,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
上述第二方面以及上述第二方面的各可能的实施方式所提供的控制信息的发送方法,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本发明实施例提供一种控制信息的接收方法,包括:
终端设备检测基站发送的第一控制信息;
所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
所述终端设备通过所述第一频域资源与所述基站进行数据传输。
通过第三方面提供的控制信息的接收方法,终端设备检测基站发送的第一控制信息;所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;所述终端设备通过所述第一频域资源与所述基站进行数据传输,即使终端设备在第一TTI有突发业务的情况下,也能够根据第一控制信息包括的第一频域资源分配信息,与基站进行数据传输,解决了现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,下行传输或上行传输的时延较大的问 题。
结合第三方面,在第三方面的一种可能的实施方式中,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
结合上述第三方面的一种可能的实施方式,在第三方面的另一种可能的实施方式中,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
结合第三方面,在第三方面的另一种可能的实施方式中,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
结合第三方面以及第三方面的各可能的实施方式,在第三方面的另一种可能的实施方式中,所述终端设备检测基站发送的第一控制信息,具体包括:
所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
通过上述实施方式提供的控制信息的接收方法,所述终端设备根据时频资源检测集合,检测所述第一控制信息,减少了终端设备盲检测的复杂度。
结合第三方面以及第三方面的各可能的实施方式,在第三方面的另一 种可能的实施方式中,所述第一频域资源包括下行频域资源;
相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
所述终端设备通过所述下行频域资源接收所述基站发送的下行数据。
结合第三方面以及第三方面的各可能的实施方式,在第三方面的另一种可能的实施方式中,所述第一频域资源包括上行频域资源;
相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
所述终端设备通过所述上行频域资源向所述基站发送上行数据。
第四方面,本发明实施例提供一种控制信息的发送方法,包括:
基站生成第一控制信息;所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源;
所述基站向所述终端设备发送所述第一控制信息。
结合第四方面,在第四方面的一种可能的实施方式中,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
结合第四方面的一种可能的实施方式,在第四方面的另一种可能的实施方式中,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
结合第四方面,在第四方面的另一种可能的实施方式中,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
结合第四方面以及第四方面的各可能的实施方式,在第四方面的另一种可能的实施方式中,还包括:
所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
结合第四方面以及第四方面的各可能的实施方式,在第四方面的另一种可能的实施方式中,所述第一频域资源包括下行频域资源;
所述下行频域资源用于所述终端设备接收所述基站发送的数据。
结合第四方面以及第四方面的各可能的实施方式,在第四方面的另一种可能的实施方式中,所述第一频域资源包括上行频域资源;
所述上行频域资源用于所述终端设备向所述基站发送数据。
上述第四方面以及上述第四方面的各可能的实施方式所提供的控制信息的发送方法,其有益效果可以参见上述第三方面以及第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本发明提供一种终端设备,包括:
检测模块,用于检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
所述检测模块,还用于检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
处理模块,用于根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
结合第五方面,在第五方面的一种可能的实施方式中,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述检测模块,具体用于:
若检测到所述第二控制信息,则检测所述第三控制信息;
相应的,所述处理模块,具体用于:
根据所述第二频域资源分配信息与所述基站进行数据传输;
所述检测模块,还具体用于:
若没有检测到所述第二控制信息,则检测所述第一控制信息;
相应的,所述处理模块,具体用于:
根据所述第一频域资源分配信息与所述基站进行数据传输。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述检测模块,还具体用于:
检测到所述第二控制信息,则检测所述第一控制信息;
相应的,所述处理模块,具体用于:
根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基站进行数据传输。
结合第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述处理模块,具体用于:
根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
通过所述第一频域资源与所述基站进行数据传输。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述检测模块,具体用于:
根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
结合上述第五方面的一种可能的实施方式,在第五方面的另一种可能 的实施方式中,所述时频资源检测集合为预设的、或基站配置的。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述检测模块,具体用于:
根据小区无线网络临时标识C-RNTI检测所述第一控制信息。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述处理模块,具体用于:
根据所述下行频域资源分配信息接收所述基站发送的下行数据。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述处理模块,具体用于:
根据所述上行频域资源分配信息向所述基站发送上行数据。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者所述基站配置的MCS。
结合第五方面以及第五方面的各可能的实施方式,在第五方面的另一种可能的实施方式中,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
上述第五方面以及上述第五方面的各可能的实施方式所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第六方面,本发明提供一种基站,包括:
生成模块,用于生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
发送模块,用于向所述终端设备发送所述第一控制信息。
结合第六方面,在第六方面的一种可能的实施方式中,所述生成模块, 还用于:
生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所对应的TTI;
相应的,所述发送模块,还用于向所述终端设备发送所述第二控制信息。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述下行频域资源分配信息用于指示所述终端设备接收所述基站发送的下行数据。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述上行频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述发送模块,还用于:
将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述第一控制信息还包括指示信息,所述指示信息用 于指示所述第一控制信息中包括所述第一频域资源分配信息。
结合第六方面以及第六方面的各可能的实施方式,在第六方面的另一种可能的实施方式中,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
上述第六方面以及上述第六方面的各可能的实施方式所提供的基站,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第七方面,本发明实施例提供一种终端设备,包括:
检测模块,用于检测基站发送的第一控制信息;
处理模块,用于根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
所述处理模块,还用于通过所述第一频域资源与所述基站进行数据传输。
结合第七方面,在第七方面的一种可能的实施方式中,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
结合第七方面的一种可能的实施方式中,在第七方面的另一种可能的实施方式中,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
结合第七方面,在第七方面的另一种可能的实施方式中,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的 最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
结合第七方面以及第七方面的各可能的实施方式,在第七方面的另一种可能的实施方式中,所述检测模块,具体用于:
根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
结合第七方面以及第七方面的各可能的实施方式,在第七方面的另一种可能的实施方式中,所述第一频域资源包括下行频域资源;
相应的,所述处理模块,具体用于:
通过所述下行频域资源接收所述基站发送的下行数据。
结合第七方面以及第七方面的各可能的实施方式,在第七方面的另一种可能的实施方式中,所述第一频域资源包括上行频域资源;
相应的,所述处理模块,具体用于:
通过所述上行频域资源向所述基站发送上行数据。
上述第七方面所提供的终端设备,其有益效果可以参见上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第八方面,本发明提供一种基站,包括:
生成模块,用于生成第一控制信息;所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源;
发送模块,用于向所述终端设备发送所述第一控制信息。
结合第八方面,在第八方面的一种可能的实施方式中,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第 一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
结合第八方面的一种可能的实施方式中,在第八方面的另一种可能的实施方式中,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
结合第八方面,在第八方面的另一种可能的实施方式中,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
结合第八方面以及第八方面的各可能的实施方式,在第八方面的另一种可能的实施方式中,所述发送模块,还用于:
将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
结合第八方面以及第八方面的各可能的实施方式,在第八方面的另一种可能的实施方式中,所述第一频域资源包括下行频域资源;
所述下行频域资源用于所述终端设备接收所述基站发送的数据。
结合第八方面以及第八方面的各可能的实施方式,在第八方面的另一种可能的实施方式中,所述第一频域资源包括上行频域资源;
所述上行频域资源用于所述终端设备向所述基站发送数据。
上述第八方面所提供的基站,其有益效果可以参见上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第九方面,本发明提供一种终端设备,包括:
处理器和存储器;其中,所述存储器用于存储执行指令,所述处理器用 于调用所述存储器中的执行指令,执行如第一方面和第一方面的各可能的实施方式中任一项,以及第三方面和第三方面的各可能的实施方式中任一项所述的方法。
上述第九方面所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十方面,本发明提供一种基站,其特征在于,包括:
处理器和存储器;其中,所述存储器用于存储执行指令,所述处理器用于调用所述存储器中的执行指令,执行如第二方面和第二面的各可能的实施方式中任一项,以及如第四方面和第四面的各可能的实施方式中任一项所述的方法。
上述第十方面所提供的基站,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第十一方面,本发明实施例提供一种通信***,该通信***可以包括上述第五方面和第五方面的各可能的实施方式所涉及的终端设备或上述第七方面和第七方面的各可能的实施方式所涉及的终端设备或站或上述第九方面所涉及的终端设备,还可以包括上述第六方面和第六方面的各可能的实施方式所涉及的基站或上述第八方面和第八方面的各可能的实施方式所涉及的基站或上述第十方面所涉及的基站。
上述第十一方面所提供的通信***,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及上述第三方面和第三方面的各可能的实施方式所带来的有益效果,在此不再赘述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的控制信息的接收方法实施例一的流程图;
图1b为本发明实施例提供的控制信息的接收方法实施例一的信令流程图;
图2为本发明实施例提供的控制信息的接收方法一实施例的控制信息分布示意图;
图3为本发明实施例提供的控制信息的接收方法另一实施例的控制信息分布示意图;
图4为本发明实施例提供的控制信息的发送方法实施例一的流程图;
图5为本发明实施例提供的控制信息的接收方法另一实施例的流程图;
图6为本发明实施例提供的控制信息的接收方法另一实施例的控制信息映射示意图;
图7为本发明实施例提供的控制信息的接收方法另一实施例的控制信息映射示意图;
图8为本发明实施例提供的控制信息的接收方法另一实施例的控制信息映射示意图;
图9为本发明实施例提供的终端设备实施例一的结构示意图;
图10为本发明实施例提供的基站实施例一的结构示意图;
图11为本发明实施例提供的终端设备实施例二的结构示意图;
图12为本发明实施例提供的基站实施例二的结构示意图;
图13为本发明实施例提供的终端设备实施例三的结构示意图;
图14为本发明实施例提供的基站实施例三的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例所涉及的控制信息的发送、接收方法,可以适用于支持短TTI传输的无线通信***,其中所述无线通信***的基站设备可以以 普通TTI传输格式或短TTI传输格式发送下行信息,所述无线通信***终端设备可以以普通TTI传输格式或短TTI传输格式发送上行信息。
另外,本发明实施例涉及的终端设备,可以包括手机、能接入LTE***的笔记本电脑、平板电脑等终端设备。
本发明实施例所涉及的基站,可以站包括宏基站、微小区、微微小区、家庭基站、远端射频头、中继等。
本发明实施例所涉及的控制信息的发送、接收方法,旨在解决现有技术由于基站发送的slow DCI未包含终端设备的控制信息,则该终端设备无法获取下行资源分配信息或上行资源调度信息,终端设备无法正确接收sPDSCH的数据信息或者发送上行(s)PUSCH的数据信息,导致下行传输或上行传输的时延增大的技术问题。
下面以具体地实施例对本发明的技术方案以及本发明的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1a为本发明实施例提供的控制信息的接收方法实施例一的流程图。图1b为本发明实施例提供的控制信息的接收方法实施例一的信令流程图。本实施例涉及的是终端设备根据第一控制信息包括的所述第一频域资源分配信息和/或所述第二控制信息包括的第二频域资源分配信息与基站进行数据传输的具体过程。如图1a、图1b所示,该方法包括如下步骤:
S101:终端设备检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
S102:所述终端设备检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
S103:所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
具体来说,为了解决现有的两级DCI带来的问题,本发明实施例中基站可以直接生成第一控制信息向终端设备发送控制信息,第一控制信息包含终端设备解调sPDSCH上的数据和通过PUSCH发送数据所需要的全部控制信息,即既包含频域资源分配信息,也包含传输指示信息,输指示信息,至少包括HARQ进程号,进一步的,还包括HARQ的冗余版 本(Redundancy Version,简称RV)、调制与编码策略(Modulation and Coding Scheme,简称MCS)、sTTI长度等控制信息;或者,也可以采用现有的方式基站生成第二控制信息和第三控制信息,向终端设备发送,本发明实施例中涉及到的第二控制信息和第三控制信息分别指的是slow DCI和现有fast DCI。终端设备检测第二控制信息,并检测第一控制信息和第三控制信息中至少一个,则根据第一控制信息中包括的第一频域资源分配信息,和/或,第二控制信息中包括的第二频域资源分配信息与基站进行数据传输。其中,第一频域资源分配信息和第二频域资源分配信息可以相同,可以不同;具体地,第一频域资源分配信息和第二频域资源分配信息所指示的频域资源可以相同,也可以不同。
其中,第一控制信息用于指示终端设备在对应的sTTI与基站进行数据传输,终端设备通过检测(monitor),即盲检测第一控制信息确定第一控制信息,具体的,终端设备对时频资源进行检测,并通过验证循环冗余校验(Cyclic Redundancy Check,简称CRC)确定时频资源上承载了第一控制信息,从而确定该第一控制信息对应的sTTI上包含基站分配给该终端设备的频域资源。
Slow DCI中至少包含频域资源分配信息。现有fast DCI中至少包含HARQ进程号,进一步的,还包括HARQ的冗余版本(Redundancy Version,简称RV)、调制与编码策略(Modulation and Coding Scheme,简称MCS)、sTTI长度等控制信息,但是不包含频域资源分配信息。
第一控制信息相比于现有fast DCI多了频域资源分配信息,使终端设备可以在未获取到slow DCI的情况下能够完成与基站的数据传输。
例如,如图2所示,对于slow DCI组包时基站未确定存在针对某一终端设备的下行/上行业务,而在发送下一个slow DCI之前,临时出现了针对该终端设备的下行/上行业务的情况,基站可以发送第一控制信息配置针对该终端设备的控制信息,其中至少包含下行或上行传输的频域资源分配信息。终端设备若未检测到针对该终端设备的slow DCI但是检测到第一控制信息,则可以根据第一控制信息中的第一频域资源分配信息与基站进行数据传输。
例如图2中的UE4,slow DCI中包含指示UE1、UE2、UE3在1ms子 帧内的资源分配信息(Resource Allocation,简称RA),包括7个sTTI,其中基站通过4个现有fast DCI给UE3分别分配针对当前子帧的第1~第4个sTTI;基站通过第一控制信息给UE4分配针对当前子帧的第5个sTTI的资源分配信息。
本发明实施例提供的控制信息的接收方法,终端设备检测第二控制信息,并检测第一控制信息和第三控制信息中的至少一个;所述第二控制信息包括第二频域资源分配信息;所述第一控制信息包括第一频域资源分配信息;所述终端设备根据所述第一频域资源分配信息和/或第二频域资源分配信息与基站进行数据传输,即使终端设备有突发业务的情况下,也能够根据第一控制信息包括的第一频域资源分配信息,与基站进行数据传输,无论有无突发业务,都能够根据所述第一频域资源分配信息和/或第二频域资源分配信息与基站进行数据传输,解决了现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,导致下行传输或上行传输的时延较大的问题。
在上述实施例的基础上,进一步,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
需要说明的是,第一TTI可以是TTI也可以是sTTI。
进一步,可选地,检测第一控制信息和第三控制信息中的至少一个,具体可以采用如下方式实现:
若所述终端设备检测到所述第二控制信息,所述终端设备检测所述第三控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第二频域资源分配信息与所述基站进行数据传输;
若所述终端设备没有检测到所述第二控制信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输。
具体的,终端设备若检测到第二控制信息,则可以采用现有的方式,再检测第三控制信息,然后所述终端设备根据所述第二频域资源分配信息与所述基站进行数据传输;具体的,所述终端设备根据所述第二频域资源分配信息确定频域资源,所述终端设备通过该频域资源与基站进行数据传输。
若没有检测到第二控制信息,则可以检测第一控制信息,然后终端设备根据所述第一频域资源分配信息与所述基站进行数据传输。具体的,所述终端设备根据所述第一频域资源分配信息确定第一频域资源,所述终端设备通过第一频域资源与基站进行数据传输。
进一步的,可选地,所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
若所述终端设备检测到所述第二控制信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
所述终端设备根据所述第一频域资源分配信息和第二频域资源分配信息与所述基站进行数据传输。
具体的,对于slow DCI组包时基站已经确定存在针对终端设备的下行或上行业务,但是在发送下一个slow DCI之前,临时出现了更多的针对终端设备的下行或上行业务,导致slow DCI资源分配不足,需要分配额外资源的情况,基站可以发送第一控制信息,其中至少包含下行或上行传输的频域资源分配信息。这种场景下,第一种方式,终端设备若检测到第二控制信息然后检测第一控制信息,则可以根据第二控制信息和第一控制信息包括的所述第一频域资源分配信息和第二频域资源分配信息与基站进行数据传输;具体的可以是通过所述第一频域资源分配信息和第二频域资源分配信息确定的频域资源与基站进行数据传输,该频域资源包含第二控制信息指示的频域资源以 及第一控制信息指示的频域资源;例如图3中slow DCI给UE4分配了频域资源,但是频域资源不够,因此第一控制信息又给UE4分配了子帧中第5个sTTI中对应的频域资源。
需要说明的是,在本发明实施例中,还可以根据第二种方式实现,终端设备若检测到第二控制信息,然后又检测到第一控制信息,则还可以只根据第一控制信息包括的第一频域资源分配信息与基站进行数据传输。具体的,可以是通过所述第一频域资源分配信息确定的频域资源与基站进行数据传输,该频域资源包含第一控制信息指示的频域资源。第一种方式相比于第二种方式的优点在于可以指示更大范围的频域资源;第二种方式相比于第一种方式的优点在于如果基站发送slow DCI而终端设备未检测到slow DCI,则终端设备确定的频域资源为错误的,使得根据第一控制信息的指示也无法正确与基站进行数据传输。
在上述实施例的基础上,进一步,可选的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
所述终端设备通过所述第一频域资源与所述基站进行数据传输。
具体的,第一控制信息相比现有fast DCI额外包含了频域资源分配信息,可以直接指示终端设备根据频域资源分配信息确定频域资源,以在第一TTI与基站进行数据传输,但是一方面直接将PDCCH上的资源分配信息放到sPDCCH上大大增加了控制信令开销和终端设备盲检测复杂度,另一方面,会使得第一控制信息的比特数与现有fast DCI不同,破坏两者采用相同比特域大小的设计。为了减小指示信令开销,可以压缩资源分配信息的指示比特数。以牺牲指示灵活度为代价,换取指示信令开销保持不变。
需要说明的是,一组频域资源包括至少一个物理资源块(Physical Resource Block,简称PRB),所述至少一个PRB可以是频域上连续的, 也可以是不连续的。
首先通过预设的或者基站配置第一TTI的频域资源分配集合,并且第一控制信息中的第一频域资源分配信息仅包括第一频域资源在频域资源集合中对应的序号,从而使终端设备通过序号确定针对第一TTI的域频域资源;由于集合中元素数目有限,因此第一控制信息用于指示第一资源分配信息的比特数大大减少。若所述频域资源分配集合为基站配置的,可以通过发送高层信令配置,例如通过无线资源控制(Radio Resource Control,简称RRC)层信令通知给终端设备。例如,预设的第一TTI所对应的频域资源分配集合为{0~24PRB,25~49PRB,50~74PRB,75~99PRB},通过第一频域资源分配信息指示具体对应集合中4段频域资源中的哪一段。
需要说明的是,预设的或基站配置的频域资源分配集合中的频域资源可以是连续的,也可以是不连续的。
若频域资源分配集合为基站通过发送高层信令配置的,则基站通过高层信令向终端设备发送频域资源分配集合。所述终端设备在根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源之前,接收基站通过高层信令发送的频域资源分配集合。
在上述实施例的基础上,进一步的,可选的,所述终端设备检测第一控制信息,具体包括:
所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
其中,在实际应用中,可选的,所述时频资源检测集合为预设的、或基站配置的。
具体的,现有的fast DCI所对应的潜在的时频资源位置可以由slow DCI指示,而在本发明实施例中,如果其时频资源位置像现有fast DCI一样灵活,则会导致终端设备在对第一控制信息进行盲检测时复杂度过高,例如在每个符号的所有PRB上进行盲检测以确定是否存在第一控制信息。为了降低终端设备盲检测的复杂度,终端设备在时频资源检测集合中检测第一控制信息,时频资源检测集合包括基站发送第一控制信息的 潜在时频资源位置。可选的,第一控制信息所占用的时频资源位置所在的时频资源检测集合可以是预设的,例如终端设备只在每个子帧预设的时频资源上盲检测第一控制信息。可选的,第一控制信息所占用的时频资源位置所在的时频资源检测集合也可以是基站配置的,若所述时频资源检测集合为基站配置的,可以通过发送高层信令配置,例如通过RRC层信令通知给终端设备。基站通过高层信令半静态地配置潜在的时频资源检测集合,终端设备只在高层信令配置的时频资源检测集合上盲检测第一控制信息。
其中,时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
当时频资源检测集合为基站配置的时频资源检测集合时,基站会向终端设备发送所述时频资源检测集合。
通过预设的或者基站通过高层信令配置,降低了终端设备盲检测的复杂度,例如终端设备如果未检测到slow DCI,可以只在特定的时频资源检测集合上检测第一控制信息,例如某些特定的符号上,或者某些特定的PRB上盲检测,而不需要在所有符号和所有PRB上盲检测。
时频资源检测集合包括至少一个时频资源位置,包括以下至少一种:
1)至少一个时域资源位置,即限定盲检测第一控制信息的时域资源在至少一个特定的OFDM符号上。例如,第一控制信息只可能承载在一个子帧的符号第0个、第2个、…、第12个上,这样终端设备就不需要在符号第1个、第3个、第5个、…、第13个上盲检,降低了盲检测复杂度。需要说明的是,在具体实现过程中,可以不限定潜在的频域资源检测集合,也可以限定潜在的频域资源检测集合为预设的或者基站通过高层信令配置的。
2)至少一个频域资源位置,即限定盲检测第一控制信息的频域资源检测集合在至少一个特定的PRB或者控制信道单元(control channel element,简称CCE)上面。例如,一个控制信道的CCE的频域长度为3个PRB,通常针对一个终端设备的控制信道长度可能为1、2、4或8个CCE,可以预设或者基站通过高层信令配置第一控制信息潜在的频域资源检测集合,包括:第一控制信息可选的控制信道频域长度(包含的CCE数目),和/或,终端设备盲检测第一控制信息的控制信道的起始和/或结 束的频域资源位置。这样终端设备不需要在某个符号的全频域范围内盲检测第一控制信息,只在符合限定条件的频域资源上盲检测。需要说明的是,预设的或者基站通过高层信令配置的潜在的频域资源检测集合可以包括连续的PRB,也可以包括离散的PRB,也可以包括离散的RE,或者上述至少两种图样的组合,并不作限定。需要说明的是,在具体实现过程中,可以不限定潜在的时域资源检测集合,也可以限定潜在的时域资源检测集合为预设的或者基站通过高层信令配置的。
需要说明的是,时频资源检测集合包括至少一个时频资源位置,也可以包括至少一个时域资源位置和至少一个频域资源位置的组合,即限定盲检测第一控制信息的时域资源在至少一个特定的OFDM符号的至少一个特定的PRB或CCE上。
在上述实施例的基础上,可选的,所述终端设备检测第一控制信息,具体包括:
终端设备根据小区无线网络临时标识(Cell Radio Network Temporary Identifier,简称C-RNTI)检测所述第一控制信息。
具体的,终端设备只根据C-RNTI检测所第一控制信息,而不根据半持久调度的无线网络临时标识(Semi-Persistent Scheduling Radio Network Temporary Identifier,简称SPS-RNTI)检测第一控制信息。
终端设备根据接收的信息提取C-RNTI进行CRC校验,以检测是否为针对自身的第一控制信息。
其中,在实际应用中,可选的,所述第一控制信息还包括混合自动重传请求HARQ信息,包括HARQ进程号(HARQ process ID)、冗余版本RV、新传数据指示(New Data Indicator,简称NDI)。
可选的,第一控制信息还可以包括时域资源、预编码矩阵指示(Pre-coding matrix Indication,简称PMI)、调制与编码策略(Modulation and Coding Scheme,简称MCS)、探测参考信号(Sounding Reference Signal,简称SRS)触发信令等。
需要说明的是,所述第二频域资源分配信息包括下行频域资源分配信息,或者,所述第二频域资源信息包括上行频域资源分配信息;
需要说明的是,所述第一频域资源分配信息包括下行频域资源分配信息,或者,所述第一频域资源分配信息包括上行频域资源分配信息,或者,所述第一频域资源分配信息包括下行频域资源分配信息和上行频域资源分配信息。
在上述实施例的基础上,可选的,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
所述终端设备根据所述下行频域资源分配信息接收所述基站发送的下行数据。
具体的,第一控制信息中的第一频域资源分配信息包括下行频域资源分配信息,用于指示终端设备解调下行sTTI的sPDSCH上的数据,终端设备根据下行频域资源分配信息接收基站发送的下行数据,具体可以是根据下行频域资源分配信息确定出分配给终端设备的下行频域资源,通过下行频域资源在第一TTI接收基站发送的下行数据。第一控制信息相比于现有fast DCI额外增加了下行频域资源分配信息;终端设备在第一控制信息中获取下行频域资源分配信息后,在对应的下行频域资源上接收解调sPDSCH的数据。
进一步的,所述第二控制信息中的第二频域资源分配信息包括下行频域资源分配信息;
所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
若所述终端设备检测到所述第二控制信息中的第二频域资源分配信息包括下行频域资源分配信息,所述终端设备检测所述第三控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第二频域资源分配信息包括的下行频域资源分配信息接收基站发送的下行数据;
若所述终端设备没有检测到所述第二控制信息中的第二频域资源分配信息包括下行频域资源分配信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频 域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息包括的下行频域资源分配信息接收基站发送的下行数据。
可选地,所述终端设备检测到所述第二控制信息中的第二频域资源分配信息包括下行频域资源分配信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息包括的下行频域资源分配信息接收基站发送的下行数据;或者,
所述终端设备根据所述第一频域资源分配信息包括的下行频域资源分配信息和所述第二频域资源分配信息包括的下行频域资源分配信息接收基站发送的下行数据。
在上述实施例的基础上,可选的,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
所述终端设备根据所述上行频域资源分配信息向所述基站发送上行数据。
具体的,第一控制信息中的第一频域资源分配信息包括上行频域分配信息,终端设备根据上行频域资源分配信息向所述基站发送上行数据,具体可以是根据上行频域资源分配信息确定出分配给终端设备的上行频域资源,通过上行频域资源在第一TTI向基站发送上行数据。第一控制信息相比于现有fast DCI额外增加了上行频域资源分配信息;终端设备在第一控制信息中获取上行频域资源分配信息后,在对应的上行频域资源上通过sPUSCH发送数据。
进一步的,所述第二控制信息中的第二频域资源分配信息包括上行频域 资源分配信息;
所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
若所述终端设备检测到所述第二控制信息中的第二频域资源分配信息包括上行频域资源分配信息,所述终端设备检测所述第三控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第二频域资源分配信息包括的上行频域资源分配信息向所述基站发送上行数据;
若所述终端设备没有检测到所述第二控制信息中的第二频域资源分配信息包括上行频域资源分配信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息包括的上行频域资源分配信息向所述基站发送上行数据。
可选地,所述终端设备检测到所述第二控制信息中的第二频域资源分配信息包括上行频域资源分配信息,所述终端设备检测所述第一控制信息;
相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
所述终端设备根据所述第一频域资源分配信息包括的上行频域资源分配信息向所述基站发送上行数据;或者,
所述终端设备根据所述第一频域资源分配信息包括的上行频域资源分配信息和所述第二频域资源分配信息包括的上行频域资源分配信息向所述基站发送上行数据。
在上述实施例的基础上,可选的,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
需要说明的是,所述指示信息用于指示控制信息为第一控制信息还是第三控制信息,所述终端设备根据所述指示信息确定检测到的控制信息为第一 控制信息还是第三控制信息。由于第一控制信息与第三控制信息的区别在于第一控制信息中包含第一频域资源分配信息,因此指示控制信息为第一控制信息还是第三控制信息等同于指示控制信息中是否包括第一频域资源分配信息。
具体的,第一控制信息可以采用新的DCI格式,也可以复用现有DCI格式,第一控制信息的DCI格式可以与现有fast DCI格式相同或不同,不同的优点在于,对第一控制信息的比特域大小没有额外的限制;由于第一控制信息相比于现有fast DCI额外包含了频域资源信息,因此采用新的格式不需要额外调整DCI格式中的比特位。但是,引入新的DCI格式会增加终端设备的盲检测复杂度;例如,可用的下行频域资源分配信息的格式包括DCI格式1/1A/1B/1C/1D/2/2A/2B/2C,终端设备盲检测(s)PDCCH时分别用其中的两种DCI格式(分别对应不同的天线模式,即一种天线模式只对应一种DCI格式)去盲检测,确定基站实际使用的DCI格式。如果引入新的DCI格式,则终端设备可能既要采用现有fast DCI对应的DCI格式,又要用新fast DCI对应的DCI格式盲检测,而且基站还要额外将新的DCI格式通知给终端设备。为了不增加终端设备的盲检测复杂度以及标准化复杂度,可以使第一控制信息采用的DCI格式复用现有fast DCI的DCI格式,因此要求两者的比特域大小相同。需要说明的是,比特域包括第一控制信息中的全部或部分比特位,其中至少一个比特位承载第一控制信息中的一种信息。
进一步的,为了区分现有fast DCI和第一控制信息两种控制信息,在两者共用的DCI格式中可以加入一个指示信息,例如1bit用于区分该DCI格式对应现有fast DCI还是新fast DCI。需要说明的是,现有fast DCI和第一控制信息都包含该指示信息,但是指示信息取值不同以区分两种控制信息。这样终端设备不需要同时用两种DCI格式在第一控制信息潜在的时频资源上盲检测,而可以用同一种DCI格式检测,若检测到控制信息(该控制信息可能是现有fast DCI或第一控制信息)则在对应的比特区域提取该指示信息确定当前控制信息为现有fast DCI还是第一控制信息,从而达到降低盲检测复杂度的目的。需要说明的是,第一控制信息和现有fast DCI的DCI比特域大小相同,但是其中部分或全部比特位中每个比特所指示的内容不同,例如某些比特位,第一控制信息用于指示频域资源分配信息,而现有fast DCI用于指示 MCS信息。
在上述实施例的基础上,可选的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
具体的,虽然第一控制信息相比现有fast DCI额外包含了频域资源分配信息可以直接指示终端设备根据频域资源分配信息确定频域资源,以在第一TTI与基站进行数据传输,但是一方面直接将PDCCH上的资源分配信息放到sPDCCH上大大增加了控制信令开销和终端设备盲检测复杂度,另一方面,会使得第一控制信息的比特数与现有fast DCI不同,破坏两者采用相同比特域大小的设计。为了使第一控制信息和现有fast DCI配置为相同的DCI格式并具有相同的比特数,需要减少第一控制信息中MCS、HARQ等信息所占用的比特数,同时可以压缩资源分配信息的指示比特数。以牺牲指示灵活度为代价,换取指示信令开销保持不变。
可选的,为了减小MCS、HARQ等信息所占用的比特数,可以使第一TTI上针对所述终端设备采用的MCS为预设的或者基站通过高层信令配置的MCS,去掉MCS指示对应的比特位;或者缩减MCS所占比特数,在第一控制信息中采用更粗粒度的MCS指示;或者使第一TTI只用于初传数据,去掉NDI对应的比特位。例如,现有fast DCI包含5比特信息用于指示预定义的32种MCS,而第一控制信息中,可以仅采用2比特指示预定义的4种MCS,节省了3比特DCI控制信令开销;或者,考虑到信道状态信息可能是慢变的,通过高层信令半静态地从第一MCS集合(例如,32种MCS)中选择子集作为第二MCS集合(例如,4种MCS)通知给终端设备,然后通过第一控制信息采用2比特动态将第二MCS集合中具体哪一种MCS通知给终端设备,节省了3比特DCI控制信令开销;这样通过预定义或基站通过高层信令配置以及第一控制信息通知的方式,实现MCS指示信令开销的节省。可选的,现有fast DCI包含1~2比特新数据指示(New Data Indication,简称NDI)用于指示数据是重传还是新传,在第一控制信息中,考虑到应用场景针对突发业务到达的情况,可以去掉NDI信息,仅用于指示新传数据,这样节省1~2比特控制信令。
例如下表1中为现有fast DCI中包含的部分控制信令,其中冗余版本(RedundancyVersion,简称RV)占4比特,MCS占10比特,HARQ进程号占3比特,PMI占3比特,TTI长度占2比特。
表1
比特域 比特数 解释
MCS 2×5 2个传输块
RV 2×2 2个传输块
NDI 2×1 2个传输块
HARQ进程号 3 8个HARQ进程
PMI 3 可选的
TTI长度 2 4种长度(可选的)
CRC 16  
图4为本发明实施例提供的控制信息的发送方法实施例一的流程图。本实施例涉及的是基站生成第一控制信息以及向终端设备发送所述第一控制信息的具体过程。如图4所示,该方法包括如下步骤:
S401、基站生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
S402、所述基站向所述终端设备发送所述第一控制信息。
具体的,为了解决现有的两级DCI带来的问题,本发明实施例中基站可以直接生成第一控制信息向终端设备发送控制信息,第一控制信息包含终端设备解调sPDSCH上的数据和通过PUSCH发送数据所需要的全部控制信息,即既包含频域资源分配信息,也包含传输指示信息,传输指示信息,至少包括HARQ进程号,进一步的,还包括HARQ的冗余版本(Redundancy Version,简称RV)、调制与编码策略(Modulation and Coding Scheme,简称MCS)、sTTI长度等控制信息。
其中,第一控制信息用于指示终端设备在对应的sTTI与基站进行数据传输,终端设备通过检测(monitor),即盲检测第一控制信息确定第一控制信息,具体的,终端设备对时频资源进行检测,并通过验证循环冗余校验(Cyclic Redundancy Check,简称CRC)确定时频资源上承载了第一控制信息,从而确定该第一控制信息对应的sTTI上包含基站分配给该终端设备的频域资源。
Slow DCI中至少包含频域资源分配信息。现有fast DCI中至少包含HARQ进程号,进一步的,还包括HARQ的冗余版本(Redundancy Version,简称RV)、调制与编码策略(Modulation and Coding Scheme,简称MCS)、sTTI长度等控制信息,但是不包含频域资源分配信息。
第一控制信息相比于现有fast DCI多了频域资源分配信息,使终端设备可以在未获取到slow DCI的情况下能够完成与基站的数据传输。
例如,如图2所示,对于slow DCI组包时基站未确定存在针对某一终端设备的下行/上行业务,而在发送下一个slow DCI之前,临时出现了针对该终端设备的下行/上行业务的情况,基站可以发送第一控制信息配置针对该终端设备的控制信息,其中至少包含下行或上行传输的频域资源分配信息。终端设备若未检测到针对该终端设备的slow DCI但是检测到第一控制信息,则可以根据第一控制信息中的第一频域资源分配信息与基站进行数据传输。
例如图2中的UE4,slow DCI中包含指示UE1、UE2、UE3在1ms子帧内的资源分配信息(Resource Allocation,简称RA),包括7个sTTI,其中基站通过4个现有fast DCI给UE3分别分配针对当前子帧的第1~第4个sTTI;基站通过第一控制信息给UE4分配针对当前子帧的第5个sTTI的资源分配信息。
本发明实施例提供的控制信息的发送方法,基站生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输,并向终端设备发送第一控制信息,即使终端设备在第一TTI有突发业务的情况下,也能够根据第一控制信息包括的第一频域资源分配信息,与基站进行数据传输,解决了现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,下行传输或上行传 输的时延较小。
进一步,可选地,所述基站生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所对应的TTI;
所述基站向所述终端设备发送所述第二控制信息。
可选地,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述下行频域资源分配信息用于指示所述终端设备接收所述基站发送的下行数据。
可选地,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述上行频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
可选地,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
可选地,还包括:
所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
可选地,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
可选地,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
需要说明的是,基站侧的实施例,其实现原理和技术效果与终端设备侧的实施例类似,此处不再赘述。
图5为本发明实施例提供的控制信息的接收方法另一实施例的流程图。本实施例涉及的是终端设备根据第一控制信息所占用的第二频域资源确定第一频域资源,并通过第一频域资源与基站进行数据传输的具体过程。如图4所示,该方法包括如下步骤:
S501、基站生成第一控制信息;
其中,所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源包括所述第一控制信息占用的时频资源,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源S502、所述基站向所述终端设备发送所述第一控制信息;
S503、终端设备检测基站发送的第一控制信息;
S504、所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
S505、所述终端设备通过所述第一频域资源与所述基站进行数据传输。
具体的,为了解决现有的两级DCI带来的问题,本发明实施例中基站通过向终端设备发送第一控制信息,本实施例中的第一控制信息与前述实施例的第一控制信息不同,第一控制信息的控制信息格式以及包含的信息与现有fast DCI可以是相同,例如MCS,HARQ,sTTI长度等sTTI特定信息。本发明实施例中涉及到的第一控制信息指的是新fast DCI,第二控制信息指的是slow DCI。但是本实施例中通过设计第一控制信息所占用的第二频域资源的位置,使之与分配给终端设备的第一频域资源的位置具有对应关系,隐式地将对应的第一频域资源的位置指示给终端设备。终端设备若未检测到slow DCI,可以在潜在的新fast DCI时频资源位置上盲检测第一控制信息,通过检测到的第一控制信息所占用的第二频域资源,映射得到基站分配给终端设备的第一频域资源,第一频域资源包括:1、sPDSCH对应的频域资源,从而实现数据接收,或者2、(s)PUSCH对应的频域资源,从而实现数据发送。
本实施例的好处在于,不需要在第一控制信息中显示地包含针对终端设备的资源分配信息,而是通过第一控制信息自己占用的频域资源隐式地通知终端设备对应的资源分配信息,从而节省了通知资源分配信息的开销,使之 不需要像前述实施例一样,压缩第一控制信息中的其他控制信息以承载额外的资源分配信息,提高了MCS等控制信令的通知精度。
本实施例提供的控制信息的接收方法,终端设备检测基站发送的第一控制信息;所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;所述终端设备通过所述第一频域资源与所述基站进行数据传输,即使终端设备在第一TTI有突发业务的情况下,也能够根据第一控制信息包括的第一频域资源分配信息,与基站进行数据传输,解决了现有技术中由于基站发送的slow DCI未包含终端设备的控制信息,导致下行传输或上行传输的时延较大的问题。
在图5所示实施例的基础上,进一步的,所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源,包括:
所述终端设备检测第二控制信息,所述第二控制信息包括第三频域资源分配信息;
若所述终端设备没有检测到所述第二控制信息,且所述终端设备检测到所述第一控制信息,则所述终端设备根据所述第二频域资源确定第一频域资源;
若所述终端设备检测到所述第二控制信息,且所述终端设备检测到所述第一控制信息,则所述终端设备根据第二频域资源确定第一频域资源,或者,所述终端设备根据第二频域资源和所述第三频域资源分配确定出的第三频域资源确定第一频域资源。
进一步的,所述第二控制信息对应至少一个TTI,所述第一控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
在图5所示实施例的基础上,进一步的,可选地,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第 一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
具体的,第一控制信息所占的时频资源中的至少一个第二频域资源单元可以对应第一频域资源中的一个频域资源组。频域资源组包含至少一个第一频域资源单元。一个第一频域资源单元包括至少一个RE。一个第二频域资源单元包括至少一个RE。
需要说明的是,所述第二频域资源单元的大小与第一频域资源单元的大小可以相同,也可以不同。例如,第二频域资源单元是RE,对应的第一频域资源单元是资源块(Resource Block,简称RB)或资源块分组(Resource Block Group,简称RBG);或者,第二频域资源单元是RB或CCE,对应的第一频域资源单元是RBG。
其中,一个RBG包括多个连续RB,例如6个;一个CCE包含3个RB,每个RB包含12个RE,即一个CCE包含36个RE。
需要说明的是,第一控制信息所占的时频资源中的至少一个第二频域资源单元对应第一频域资源的一个频域资源组,包含以下几种情况:1、第二频域资源中每个第二频域资源单元分别对应一个频域资源组,基站分配给终端设备的第一频域资源包括所有的频域资源组,例如第二频域资源单元为RB,第一频域资源单元为RB,频域资源组为多个连续的RB组成的一个RBG,每个第二频域资源单元占用的RB对应一个频域资源组的RBG,若第二频域资源包含2个CCE,即6个RB,因此对应6个频域资源组;2、第二频域资源中部分频域资源中的每个第二频域资源单元分别对应一个频域资源组,例如第二频域资源单元为CCE,第二频域资源包括两个频域资源单元{CCE#1,CCE#2},其中仅由CCE#1对应的频域资源组为基站分配给终端设备的第一频域资源,CCE#2并不对应频域资源组;3、至少两个第二频域资源单元对应一个频域资源组,例如第二频域资源的频域资源单元为RE,RE#0~RE#35(1个CCE包括36个RE)对应一个频域资源组,若第二频域资源为RE#0~RE#35,则该频域资源组为基站分配给终端设备的第一频域资源。
需要说明的是,频域资源组中包含的至少一个第一频域资源单元可以是频域连续的,也可以是频域不连续的。例如,第一频域资源单元为RB,第二频域资源单元CCE#1对应的频域资源组包含10个RB,这10个RB可以是连续的PRB#0~PRB#9,也可以是不连续的PRB#0,PRB#10,PRB#20,…,PRB#90。
其中,在实际应用中,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
进一步的,不同第二频域资源单元的频域位置对应的第一频域资源包含的一个频域资源组的频域位置可以不同;例如,第二频域资源包括三个第二频域资源单元{RB#0,RB#1,RB#2},其中RB#0对应频域资源组为RB#0~RB#9,RB#1对应频域资源组为RB#1~RB#10,RB#2对应频域资源组为RB#2~RB#11。
进一步的,不同第二频域资源单元的频域位置对应的第一频域资源包含的一个频域资源组的频域位置不交叠;不交叠即两个不同的频域资源组对应的频域资源不重叠,或者说两个不同的频域资源组不同时包含同一个第一频域资源单元。例如,第二频域资源包括四个第二频域资源单元{CCE#1,CCE#2,CCE#3,CCE#4},其中CCE#1对应的sTTI频域资源组为RB集合RB#0~RB#24,CCE#2对应的sTTI频域资源组为RB#25~RB#49,CCE#3对应的sTTI频域资源组为RB#50~RB#74,CCE#4对应的sTTI频域资源组为RB#75~RB#99。
第一控制信息所占用的时频资源中的至少一个第二频域资源单元对应第一频域资源的一个频域资源组,可能有两种映射方式:第一频域资源包含第一控制信息所占用的第二频域资源,第一频域资源不包含第一控制信息所占用的第二频域资源。
映射方式一:第一频域资源包含第一控制信息所占用的第二频域资源。每个第一控制信息所占用的频域资源都包含在其指示的第一频域资源的频域范围内。第一控制信息不能复用现有fast DCI的区域,而需要重新设计其时频资源位置,使其在对应第一频域资源的频域范围内。第二频域资源到第一频域资源的映射可以体现为映射公式。例如,一个第一控制信息所占用的 RB#n可以映射到频域资源组RB#n~RB#n+4,或者,第一控制信息所占用的RB#n可以映射到频域资源组RB#n-4~RB#n,或者,第一控制信息所占用的RB#n可以映射到频域资源组RB#n-2~RB#n+2;其中n为整数。
例如,如图6所示,UE2和UE4的第一控制信息所占用的第二频域资源包含在映射的第一频域资源范围内。
这种映射方式的第一控制信息分布的区域较广,例如可以分布到全频带,优点是资源指示灵活性更高,更便于指示不连续的第一频域资源,缺点在于潜在的第二频域资源较多,因此UE盲检测次数较多。
映射方式二:第一频域资源不包含第一控制信息所占用的第二频域资源。第一控制信息复用现有fast DCI的分布区域,在第一控制信息所占用的某个特定的(例如基站指示或预设的)时频资源区域内,例如RB#0~RB#29。为了指示全频带的第一频域资源分配,需要跨频域指示。例如,除了第二频域资源的RB#0~RB#2指示第一频域资源的RB#0~RB#9是频域内指示,即第一频域资源包含第一控制信息所占用的频域资源,其余的第二频域资源的RB#3~RB#5指示第一频域资源的RB#10~RB#19,…,第二频域资源的RB#27~RB#29指示第一频域资源的RB#90~RB#99,都是跨频域指示,即第一频域资源频域不包含第一控制信息所占用的频域资源。
例如,如图7所示,UE2和UE4的第一控制信息所占用的第二频域资源不包含在映射的第一频域资源范围内。
需要说明的是,对于映射方式二,终端设备可以根据第一控制信息所占用的第二频域资源的绝对频域位置,例如占用RB或CCE的序号确定对应的第一频域资源,例如,第二频域资源包括的第二频域资源单元为RB#0~RB#2,对应3组第一频域资源的频域资源组,且频域资源组包括10个RB,即RB#0对应RB#0~RB#9,RB#1对应RB#10~RB#19,RB#2对应RB#20~RB#29;另外,若第一控制信息的时频资源检测集合为预设的或基站通知的,终端设备也可以根据第一控制信息占用的频域资源在时频资源检测集合中的相对频域位置确定对应的第一频域资源,例如,时频资源检测集合中包括20个RB,RB#0~RB#19,对应10组第一频域资源的频域资源组,且频域资源组包括10个RB,RB#0对应RB#0~RB#9,RB#2对应RB#10~RB#19,RB#4对应RB#20~RB#29,依次类推。
映射方式二的优点在于复用现有fast DCI的时频区域,不需要设计第一控制信息占用的时频区域,且第一控制信息的可选时频位置较少,终端设备盲检测复杂度较低。映射方式二的缺点在于,考虑到第一控制信息所占用的频域资源在特定区域,而不能分布在全带宽上,因此指示的资源指示的灵活度较差。
在图5所示实施例的基础上,进一步的,可选地,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
可选的,最低频域边界包括第二频域资源所占频域带宽的最小频点,最高频域边界包括第二频域资源所占频域带宽的最大频点;
可选的,最低频域边界包括第二频域资源所占频域带宽中对应最小频点的RE或RB,最高频域边界包括第二频域资源所占频域带宽中对应最大频点的RE或RB;
具体的,第二频域资源与第一频域资源具有的对应关系,可以包括:第二频域资源对应的最低频域边界(即最小频点)与第一频域资源对应的最低频域边界(即最小频点)的对应关系,以及所述第二频域资源对应的最高频域边界(即最大频点)与所述第一频域资源对应的最高频域边界(即最大频点)的对应关系;第一频域资源为频域上连续的资源。
可选的,第二频域资源对应的最小频点与第一频域资源对应的最小频点相同,且所述第二频域资源对应的最大频点与所述第一频域资源对应的最大频点相同,这样可以直接根据第二频域资源确定出第一频域资源,如图8所示,UE2和UE4的第一控制信息所占用的第二频域资源的最低频域边界和最高频域边界分别与其映射的第一频域资源的最低频域边界和最高频域边界相同。
可选的,第二频域资源对应的最小频点与第一频域资源对应的最小频点具有预定义的映射关系,且所述第二频域资源对应的最大频点与所述第一频域资源对应的最大频点具有预定义的映射关系;预定义的映射关系包括预 定义的频域偏移;
例如,一段第二频域资源为#RB0~#RB49,对应的第一频域资源为2600MHz~2610MHz,则最小频点为2600MHz(#RB0的最低频域边界),最大频点为2610MHz(#RB49的最高频域边界);若一段不连续的第二频域资源为{#RB0~#RB19,#RB30~#RB49}对应第一频域资源2600MHz~2610MHz上,则仍然最低频域边界为2600MHz(#RB0的最低频域边界),最高频域边界为2610MHz(#RB49的最高频域边界)。对于第一控制信息占用的频域资源而言,该频域资源可以是连续的或非连续的;对于第一频域资源,该频域资源是连续的。例如,可以通过将第一控制信息所占的频域资源,假设占用1个CCE,将其打散成3个RB离散地放在第一频域资源上,其中第二频域资源两端的一个RB放在对应的第一频域资源的频域范围的一头,一个RB放在对应的第一频域资源的频域范围的另一头。
在上述实施例的基础上,进一步的,可选地,所述终端设备检测基站发送的第一控制信息,具体包括:
所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
其中,在实际应用中,可选的,所述时频资源检测集合为预设的、或基站配置的。
具体的,现有的fast DCI所对应的潜在的时频资源位置可以由slow DCI指示,而在本发明实施例中,如果其时频资源位置像现有fast DCI一样灵活,则会导致终端设备在对第一控制信息进行盲检测时复杂度过高,例如在每个符号的所有PRB上进行盲检测以确定是否存在第一控制信息。为了降低终端设备盲检测的复杂度,终端设备在时频资源检测集合中检测第一控制信息,时频资源检测集合包括基站发送第一控制信息的潜在时频资源位置。可选的,第一控制信息所占用的时频资源位置所在的时频资源检测集合可以是预设的,例如终端设备只在每个子帧预设的时频资源上盲检测第一控制信息。可选的,第一控制信息所占用的时频资源位置所在的时频资源检测集合也可以是基站配置的,若所述时频资源检测集 合为基站配置的,可以通过发送高层信令配置,例如通过RRC层信令通知给终端设备。基站通过高层信令半静态地配置潜在的时频资源检测集合,终端设备只在高层信令配置的时频资源检测集合上盲检测第一控制信息。
其中,时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
当时频资源检测集合为基站配置的时频资源检测集合时,基站会向终端设备发送所述时频资源检测集合。
通过预设的或者基站通过高层信令配置,降低了终端设备盲检测的复杂度,例如终端设备如果未检测到slow DCI,可以只在特定的时频资源检测集合上检测第一控制信息,例如某些特定的符号上,或者某些特定的PRB上盲检测,而不需要在所有符号和所有PRB上盲检测。
时频资源检测集合包括至少一个时频资源位置,包括以下至少一种:
1)至少一个时域资源位置,即限定盲检测第一控制信息的时域资源在至少一个特定的OFDM符号上。例如,第一控制信息只可能承载在一个子帧的符号第0个、第2个、…、第12个上,这样终端设备就不需要在符号第1个、第3个、第5个、…、第13个上盲检,降低了盲检测复杂度。需要说明的是,在具体实现过程中,可以不限定潜在的频域资源检测集合,也可以限定潜在的频域资源检测集合为预设的或者基站通过高层信令配置的。
2)至少一个频域资源位置,即限定盲检测第一控制信息的频域资源检测集合在至少一个特定的PRB或者控制信道单元(control channel element,简称CCE)上面。例如,一个CCE的频域长度为3个PRB,通常针对一个终端设备的控制信道长度可能为1、2、4或8个CCE,可以预设或者基站通过高层信令配置第一控制信息潜在的频域资源检测集合,包括:第一控制信息可选的控制信道频域长度(包含的CCE数目),和/或,终端设备盲检测第一控制信息的控制信道的起始和/或结束的频域资源位置。这样终端设备不需要在某个符号的全频域范围内盲检测第一控制信息,只在符合限定条件的频域资源上盲检测。需要说明的是,预设的或者基站通过高层信令配置的潜在的频域资源检测集合可以包括连续的PRB,也可以包括离散的PRB,也可以包括离散的RE,或者上述至少 两种图样的组合,并不作限定。需要说明的是,在具体实现过程中,可以不限定潜在的时域资源检测集合,也可以限定潜在的时域资源检测集合为预设的或者基站通过高层信令配置的。
需要说明的是,时频资源检测集合包括至少一个时频资源位置,也可以包括至少一个时域资源位置和至少一个频域资源位置的组合,即限定盲检测第一控制信息的时域资源在至少一个特定的OFDM符号的至少一个特定的PRB或CCE上。
在上述实施例的基础上,进一步的,可选地,所述第一频域资源包括下行频域资源;
相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
所述终端设备通过所述下行频域资源接收所述基站发送的下行数据。
在上述实施例的基础上,进一步的,可选地,所述第一频域资源包括上行频域资源;
相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
所述终端设备通过所述上行频域资源向所述基站发送上行数据。
具体来说,本实施例中的方法其实现原理和技术效果与上述实施例类似,此处不再赘述。
进一步的,对于基站针对哪些终端设备配置第一控制信息,基站可以采用两种方式中的一种。
1、仅针对slow DCI中未包含的终端设备发送第一控制信息,而slow DCI中已包含的终端设备,仍然发送现有fast DCI,其中,现有fast DCI占用的频域资源与基站分配的第一频域资源并无映射关系。对于终端设备而言,若检测到slow DCI且检测到现有fast DCI,则获取slow DCI指示的资源分配信息,结合现有fast DCI指示的HARQ信息(进一步的,MCS、sTTI长度等信息)与基站进行数据传输;若未检测到slow DCI,且检测到第一控制信息,则根据第一控制信息占用的频域资源映射得到第一频域资源,结合第一 控制信息指示的HARQ信息(进一步的,MCS、sTTI长度等信息)与基站进行数据传输。上述映射方式一和映射方式二都适用。
2、针对所有的终端设备都发送第一控制信息。即使slow DCI中分配RA的终端设备,第一频域资源通过第一控制信息的频域资源位置映射得到。对于终端设备而言,若终端设备检测到slow DCI,则,由于slow DCI中可能包含第一控制信息的时频域位置指示,因此终端设备可以节省盲检测复杂度。若未检测到slow DCI,且检测到新第一控制信息,则根据第一控制信息占用的频域资源映射得到第一频域资源,结合第一控制信息指示的HARQ信息(进一步的,MCS、sTTI长度等信息)与基站进行数据传输。
方式2的优点在于,除了可以解决现有的基站临时有了下行或上行突发业务需与终端设备进行低时延传输问题,还可以解决另一个问题:如果基站向终端设备发送了slow DCI,而终端设备由于传统PDCCH的信道条件不好,没有正确接收slow DCI,那么这个终端设备仍然可以根据第一控制信息确定第一频域资源。
可选地,所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
可选地,所述第一频域资源包括下行频域资源;
所述下行频域资源用于所述终端设备接收所述基站发送的数据。
可选地,所述第一频域资源包括上行频域资源;
所述上行频域资源用于所述终端设备向所述基站发送数据。
需要说明的是,基站侧的实施例,其实现原理和技术效果与终端设备侧的实施例类似,此处不再赘述。
图9为本发明实施例提供的终端设备实施例一的结构示意图。如图9所示,该终端设备,可以包括:检测模块901和处理模块902;
其中,检测模块901,用于检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
所述检测模块901,还用于检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
处理模块902,用于根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
可选地,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
可选地,所述检测模块901,具体用于:
若检测到所述第二控制信息,则检测所述第三控制信息;
相应的,所述处理模块902,具体用于:
根据所述第二频域资源分配信息与所述基站进行数据传输;
所述检测模块901,还具体用于:
若没有检测到所述第二控制信息,则检测所述第一控制信息;
相应的,所述处理模块902,具体用于:
根据所述第一频域资源分配信息与所述基站进行数据传输。
可选地,所述检测模块901,还具体用于:
检测到所述第二控制信息,则检测所述第一控制信息;
相应的,所述处理模块902,具体用于:
根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基站进行数据传输。
可选地,所述处理模块902,具体用于:
根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
通过所述第一频域资源与所述基站进行数据传输。
可选地,所述检测模块901,具体用于:
根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源 检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
可选地,所述时频资源检测集合为预设的、或基站配置的。
可选地,所述检测模块901,具体用于:
根据小区无线网络临时标识C-RNTI检测所述第一控制信息。
可选地,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述处理模块902,具体用于:
根据所述下行频域资源分配信息接收所述基站发送的下行数据。
可选地,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述处理模块902,具体用于:
根据所述上行频域资源分配信息向所述基站发送上行数据。
可选地,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者所述基站配置的MCS。
可选地,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
本发明实施例提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图10为本发明实施例提供的基站实施例一的结构示意图。如图10所示,该基站,可以包括:生成模块1001和发送模块1002;
其中,生成模块1001,用于生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
发送模块1002,用于向所述终端设备发送所述第一控制信息。
可选的,所述生成模块1001,还用于:
生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所 对应的TTI;
相应的,所述发送模块1002,还用于向所述终端设备发送所述第二控制信息。
可选的,所述第一频域资源分配信息包括下行频域资源分配信息;
相应的,所述下行频域资源分配信息用于指示所述终端设备接收所述基站发送的下行数据。
可选的,所述第一频域资源分配信息包括上行频域资源分配信息;
相应的,所述上行频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
可选的,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
可选的,所述发送模块1002,还用于:
将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
可选的,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
可选的,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
本发明实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图11为本发明实施例提供的终端设备实施例二的结构示意图。如图11所示,该终端设备,可以包括:检测模块1101和处理模块1102;
其中,检测模块1101,用于检测基站发送的第一控制信息;
处理模块1102,用于根据所述第一控制信息所占用的第二频域资源确定 第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
所述处理模块1102,还用于通过所述第一频域资源与所述基站进行数据传输。
可选地,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
可选地,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
可选地,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
可选地,所述检测模块1101,具体用于:
根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
可选地,所述第一频域资源包括下行频域资源;
相应的,所述处理模块1102,具体用于:
通过所述下行频域资源接收所述基站发送的下行数据。
可选地,所述第一频域资源包括上行频域资源;
相应的,所述处理模块1102,具体用于:
通过所述上行频域资源向所述基站发送上行数据。
本发明实施例提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图12为本发明实施例提供的基站实施例二的结构示意图。如图12所示,该基站,可以包括:生成模块1201和发送模块1202;
生成模块1201,用于生成第一控制信息;所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源;
发送模块1202,用于向所述终端设备发送所述第一控制信息。
可选地,所述对应关系包括:
至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
可选地,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
可选地,所述对应关系包括:
所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
可选地,所述发送模块1202,还用于:
将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
所述时频资源检测集合为预设的、或基站配置的。
可选地,所述第一频域资源包括下行频域资源;
所述下行频域资源用于所述终端设备接收所述基站发送的数据。
可选地,所述第一频域资源包括上行频域资源;
所述上行频域资源用于所述终端设备向所述基站发送数据。
本发明实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图13为本发明实施例提供的终端设备实施例三的结构示意图。如图13所示,该终端设备可以包括:
处理器1301和存储器1302;还可以包括收发器1303。其中,收发器1303用于发送或接收数据信息,所述存储器1302用于存储执行指令,所述处理器1301用于调用所述存储器1302中的执行指令,执行如终端设备对应的任一方法实施例的方法步骤。
上述终端设备中的检测模块和处理模块的功能可以由处理器1301实现。
上述收发器1303可以用于接收基站发送的数据信息,或向基站发送数据信息。
本发明实施例提供的终端设备,其执行过程可以参见上述方法实施例的具体描述,其实现原理和技术效果类似,在此不再赘述。
图14为本发明实施例提供的基站实施例三的结构示意图。如图14所示,该基站可以包括:
处理器1401和存储器1402;还可以包括收发器1403。其中,收发器1303用于发送或接收数据信息,所述存储器1402用于存储执行指令,所述处理器1401用于调用所述存储器1402中的执行指令,执行如基站对应的任一方法实施例的方法步骤。
上述基站中的生成模块的功能可以由处理器1401实现。
上述基站中的发送模块的功能可以由收发器1403实现。
本发明实施例提供的基站,其执行过程可以参见上述方法实施例的具体描述,其实现原理和技术效果类似,在此不再赘述。
所属领域的技术人员可以清楚地了解到,本发明各实施例之间均可以相 互参照。为描述的方便和简洁,上述描述的设备,设备中的模块或单元的具体工作过程,以及包括上述描述的设备的通信***的工作过程,可以参考前述方法实施例中的对应过程描述。
通过以上的实施例的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的基站实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述***、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它***,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,基站或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替 换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (70)

  1. 一种控制信息的接收方法,其特征在于,包括:
    终端设备检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
    所述终端设备检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
    所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
    若所述终端设备检测到所述第二控制信息,所述终端设备检测所述第三控制信息;
    相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
    所述终端设备根据所述第二频域资源分配信息与所述基站进行数据传输;
    若所述终端设备没有检测到所述第二控制信息,所述终端设备检测所述第一控制信息;
    相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输,包括:
    所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备检测第一控制信息和第三控制信息中的至少一个,包括:
    所述终端设备检测到所述第二控制信息,所述终端设备检测所述第一控制信息;
    相应的,所述终端设备根据所述第一频域资源分配信息和/或所述第二频 域资源分配信息与基站进行数据传输,包括:
    所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
    所述终端设备根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基站进行数据传输。
  5. 根据权利要求3或4所述的方法,其特征在于,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,包括:
    所述终端设备根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
    其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
    所述终端设备通过所述第一频域资源与所述基站进行数据传输。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述终端设备检测第一控制信息,具体包括:
    所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
  7. 根据权利要求6所述的方法,其特征在于,
    所述时频资源检测集合为预设的、或基站配置的。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述终端设备检测第一控制信息,具体包括:
    所述终端设备根据小区无线网络临时标识C-RNTI检测所述第一控制信息。
  9. 根据权利要求3-8任一项所述的方法,其特征在于,所述第一频域资源分配信息包括下行频域资源分配信息;
    相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
    所述终端设备根据所述下行频域资源分配信息接收所述基站发送的下行数据。
  10. 根据权利要求3-8任一项所述的方法,其特征在于,所述第一频域资源分配信息包括上行频域资源分配信息;
    相应的,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输,具体包括:
    所述终端设备根据所述上行频域资源分配信息向所述基站发送上行数据。
  11. 根据权利要求3-10一项所述的方法,其特征在于,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者所述基站配置的MCS。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
  13. 一种控制信息的发送方法,其特征在于,包括:
    基站生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
    所述基站向所述终端设备发送所述第一控制信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述基站生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所对应的TTI;
    所述基站向所述终端设备发送所述第二控制信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一频域资源分配信息包括下行频域资源分配信息;
    相应的,所述第一频域资源分配信息用于指示所述终端设备与所述基站进行数据传输,包括:
    所述第一频域资源分配信息用于指示所述终端设备接收所述基站发送的 下行数据。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第一频域资源分配信息包括上行频域资源分配信息;
    相应的,所述第一频域资源分配信息用于指示所述终端设备与所述基站进行数据传输,包括:
    所述第一频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
    所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,还包括:
    所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
  21. 一种控制信息的接收方法,其特征在于,包括:
    终端设备检测基站发送的第一控制信息;
    所述终端设备根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
    所述终端设备通过所述第一频域资源与所述基站进行数据传输。
  22. 根据权利要求21所述的方法,其特征在于,所述对应关系包括:
    至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应 关系;
    其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
    所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
  23. 根据权利要求22所述的方法,其特征在于,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
  24. 根据权利要求21所述的方法,其特征在于,所述对应关系包括:
    所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述终端设备检测基站发送的第一控制信息,具体包括:
    所述终端设备根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
    所述时频资源检测集合为预设的、或基站配置的。
  26. 根据权利要求21-25任一项所述的方法,其特征在于,所述第一频域资源包括下行频域资源;
    相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
    所述终端设备通过所述下行频域资源接收所述基站发送的下行数据。
  27. 根据权利要求21-25任一项所述的方法,其特征在于,所述第一频域资源包括上行频域资源;
    相应的,所述终端设备通过所述第一频域资源与所述基站进行数据传输,具体包括:
    所述终端设备通过所述上行频域资源向所述基站发送上行数据。
  28. 一种控制信息的发送方法,其特征在于,包括:
    基站生成第一控制信息;所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源;
    所述基站向所述终端设备发送所述第一控制信息。
  29. 根据权利要求28所述的方法,其特征在于,所述对应关系包括:
    至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
    其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
    所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
  30. 根据权利要求29所述的方法,其特征在于,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
  31. 根据权利要求28所述的方法,其特征在于,所述对应关系包括:
    所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
  32. 根据权利要求28-31任一项所述的方法,其特征在于,还包括:
    所述基站将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
    所述时频资源检测集合为预设的、或基站配置的。
  33. 根据权利要求28-32任一项所述的方法,其特征在于,所述第一频域资源包括下行频域资源;
    所述下行频域资源用于所述终端设备接收所述基站发送的数据。
  34. 根据权利要求28-33任一项所述的方法,其特征在于,所述第一频域资源包括上行频域资源;
    所述上行频域资源用于所述终端设备向所述基站发送数据。
  35. 一种终端设备,其特征在于,包括:
    检测模块,用于检测第二控制信息,所述第二控制信息包括第二频域资源分配信息;
    所述检测模块,还用于检测第一控制信息和第三控制信息中的至少一个,所述第一控制信息包括第一频域资源分配信息;
    处理模块,用于根据所述第一频域资源分配信息和/或所述第二频域资源分配信息与基站进行数据传输。
  36. 根据权利要求35所述的终端设备,其特征在于,所述第二控制信息对应至少一个TTI,所述第一控制信息和所述第三控制信息用于指示所述终端设备在第一TTI与所述基站进行数据传输,所述至少一个TTI包含所述第一TTI。
  37. 根据权利要求35或36所述的终端设备,其特征在于,所述检测模块,具体用于:
    若检测到所述第二控制信息,则检测所述第三控制信息;
    相应的,所述处理模块,具体用于:
    根据所述第二频域资源分配信息与所述基站进行数据传输;
    所述检测模块,还具体用于:
    若没有检测到所述第二控制信息,则检测所述第一控制信息;
    相应的,所述处理模块,具体用于:
    根据所述第一频域资源分配信息与所述基站进行数据传输。
  38. 根据权利要求35或36所述的终端设备,其特征在于,所述检测模块,还具体用于:
    检测到所述第二控制信息,则检测所述第一控制信息;
    相应的,所述处理模块,具体用于:
    根据所述第一频域资源分配信息与所述基站进行数据传输;或者,
    根据所述第一频域资源分配信息和所述第二频域资源分配信息与所述基 站进行数据传输。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述处理模块,具体用于:
    根据所述第一频域资源分配信息和频域资源分配集合确定所述第一频域资源;
    其中,所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源,所述第一频域资源分配信息包括所述第一频域资源在所述频域资源分配集合中的序号;
    通过所述第一频域资源与所述基站进行数据传输。
  40. 根据权利要求37-39任一项所述的终端设备,其特征在于,所述检测模块,具体用于:
    根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
  41. 根据权利要求40所述的终端设备,其特征在于,
    所述时频资源检测集合为预设的、或基站配置的。
  42. 根据权利要求37-41任一项所述的终端设备,其特征在于,所述检测模块,具体用于:
    根据小区无线网络临时标识C-RNTI检测所述第一控制信息。
  43. 根据权利要求37-42任一项所述的终端设备,其特征在于,所述第一频域资源分配信息包括下行频域资源分配信息;
    相应的,所述处理模块,具体用于:
    根据所述下行频域资源分配信息接收所述基站发送的下行数据。
  44. 根据权利要求37-42任一项所述的终端设备,其特征在于,所述第一频域资源分配信息包括上行频域资源分配信息;
    相应的,所述处理模块,具体用于:
    根据所述上行频域资源分配信息向所述基站发送上行数据。
  45. 根据权利要求37-44任一项所述的终端设备,其特征在于,所述终端设备根据所述第一频域资源分配信息与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者所述基站配置的MCS。
  46. 根据权利要求35-45任一项所述的终端设备,其特征在于,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
  47. 一种基站,其特征在于,包括:
    生成模块,用于生成第一控制信息;所述第一控制信息包括第一频域资源分配信息;所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输;
    发送模块,用于向所述终端设备发送所述第一控制信息。
  48. 根据权利要求47所述的基站,其特征在于,所述生成模块,还用于:
    生成第二控制信息,所述第二控制信息对应至少一个TTI;所述第二控制信息包括第二频域资源分配信息;所述第二频域资源分配信息用于指示所述终端设备与基站进行数据传输;所述至少一个TTI包括第一TTI,所述第一TTI包括所述第一控制信息指示所述终端设备与所述基站进行数据传输所对应的TTI;
    相应的,所述发送模块,还用于向所述终端设备发送所述第二控制信息。
  49. 根据权利要求47或48所述的基站,其特征在于,所述第一频域资源分配信息包括下行频域资源分配信息;
    相应的,所述下行频域资源分配信息用于指示所述终端设备接收所述基站发送的下行数据。
  50. 根据权利要求47或48所述的基站,其特征在于,所述第一频域资源分配信息包括上行频域资源分配信息;
    相应的,所述上行频域资源分配信息用于指示所述终端设备向所述基站发送上行数据。
  51. 根据权利要求47-50任一项所述的基站,其特征在于,所述第一频域资源分配信息包括第一频域资源在频域资源分配集合中的序号;
    所述频域资源分配集合为预设的或基站配置的,所述频域资源分配集合包括至少两组频域资源;所述第一频域资源为所述终端设备与所述基站进行数据传输的资源。
  52. 根据权利要求47-51任一项所述的基站,其特征在于,所述发送模块,还用于:
    将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置。
  53. 根据权利要求47-52任一项所述的基站,其特征在于,所述第一控制信息还包括指示信息,所述指示信息用于指示所述第一控制信息中包括所述第一频域资源分配信息。
  54. 根据权利要求47-53任一项所述的基站,其特征在于,所述第一频域资源分配信息用于指示终端设备与所述基站进行数据传输时,所述数据传输的调制与编码策略MCS为预设的或者基站配置的MCS。
  55. 一种终端设备,其特征在于,包括:
    检测模块,用于检测基站发送的第一控制信息;
    处理模块,用于根据所述第一控制信息所占用的第二频域资源确定第一频域资源;所述第二频域资源与所述第一频域资源具有对应关系;
    所述处理模块,还用于通过所述第一频域资源与所述基站进行数据传输。
  56. 根据权利要求55所述的终端设备,其特征在于,所述对应关系包括:
    至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
    其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
    所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
  57. 根据权利要求56所述的终端设备,其特征在于,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
  58. 根据权利要求55所述的终端设备,其特征在于,所述对应关系包括:
    所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
  59. 根据权利要求55-58任一项所述的终端设备,其特征在于,所述检测模块,具体用于:
    根据时频资源检测集合,检测所述第一控制信息;其中,所述时频资源检测集合包括至少一个时频资源位置;所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
    所述时频资源检测集合为预设的、或基站配置的。
  60. 根据权利要求55-59任一项所述的终端设备,其特征在于,所述第一频域资源包括下行频域资源;
    相应的,所述处理模块,具体用于:
    通过所述下行频域资源接收所述基站发送的下行数据。
  61. 根据权利要求55-59任一项所述的终端设备,其特征在于,所述第一频域资源包括上行频域资源;
    相应的,所述处理模块,具体用于:
    通过所述上行频域资源向所述基站发送上行数据。
  62. 一种基站,其特征在于,包括:
    生成模块,用于生成第一控制信息;所述第一控制信息用于指示所述终端设备通过第一频域资源与所述基站进行数据传输;所述第一频域资源为由第二频域资源确定的,所述第二频域资源与所述第一频域资源具有对应关系,所述第二频域资源包括所述第一控制信息占用的频域资源;
    发送模块,用于向所述终端设备发送所述第一控制信息。
  63. 根据权利要求62所述的基站,其特征在于,所述对应关系包括:
    至少一个第二频域资源单元的频域位置与频域资源组的频域位置的对应关系;
    其中,所述第二频域资源包括所述至少一个第二频域资源单元,所述第一频域资源包括所述频域资源组;所述频域资源组包括至少一个第一频域资源单元;
    所述第一频域资源单元包括至少一个资源粒子RE,所述第二频域资源单元包括至少一个资源粒子RE。
  64. 根据权利要求63所述的基站,其特征在于,所述第一频域资源单元包括RE或资源块RB或资源块分组RBG,所述第二频域资源单元包括资源粒子RE或资源块RB或控制信道单元CCE。
  65. 根据权利要求62所述的基站,其特征在于,所述对应关系包括:
    所述第二频域资源对应的最低频域边界与所述第一频域资源对应的最低频域边界的对应关系,以及所述第二频域资源对应的最高频域边界与所述第一频域资源对应的最高频域边界的对应关系,其中,所述第一频域资源为频域上连续的资源。
  66. 根据权利要求62-65任一项所述的基站,其特征在于,所述发送模块,还用于:
    将时频资源检测集合发送给所述终端设备,所述时频资源检测集合包括至少一个时频资源位置,所述至少一个时频资源位置包括所述第一控制信息所占用的时频资源位置;
    所述时频资源检测集合为预设的、或基站配置的。
  67. 根据权利要求62-66任一项所述的基站,其特征在于,所述第一频域资源包括下行频域资源;
    所述下行频域资源用于所述终端设备接收所述基站发送的数据。
  68. 根据权利要求62-66任一项所述的基站,其特征在于,所述第一频域资源包括上行频域资源;
    所述上行频域资源用于所述终端设备向所述基站发送数据。
  69. 一种终端设备,其特征在于,包括:
    处理器和存储器;其中,所述存储器用于存储执行指令,所述处理器用于调用所述存储器中的执行指令,执行如权利要求1-12任一项,以及权利要求21-27任一项中所述的方法。
  70. 一种基站,其特征在于,包括:
    处理器和存储器;其中,所述存储器用于存储执行指令,所述处理器用于调用所述存储器中的执行指令,执行如权利要求13-20任一项,以及权利要求28-34任一项中所述的方法。
PCT/CN2016/082071 2016-05-13 2016-05-13 控制信息发送、接收方法和设备 WO2017193382A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680085434.3A CN109076512B (zh) 2016-05-13 2016-05-13 控制信息发送、接收方法和设备
PCT/CN2016/082071 WO2017193382A1 (zh) 2016-05-13 2016-05-13 控制信息发送、接收方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082071 WO2017193382A1 (zh) 2016-05-13 2016-05-13 控制信息发送、接收方法和设备

Publications (1)

Publication Number Publication Date
WO2017193382A1 true WO2017193382A1 (zh) 2017-11-16

Family

ID=60266960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082071 WO2017193382A1 (zh) 2016-05-13 2016-05-13 控制信息发送、接收方法和设备

Country Status (2)

Country Link
CN (1) CN109076512B (zh)
WO (1) WO2017193382A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556529A (zh) * 2019-02-11 2020-08-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11581996B2 (en) * 2017-09-28 2023-02-14 Nokia Technologies Oy Flexible frame structure to support fast control information delivery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296212B (zh) * 2007-04-27 2012-11-07 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
CN101640582B (zh) * 2008-07-28 2012-07-25 电信科学技术研究院 一种数据传输方法、***及装置
EP3340675B1 (en) * 2010-06-21 2020-03-18 Sun Patent Trust Terminal apparatus and communication method thereof
CN101917766B (zh) * 2010-08-12 2015-09-16 中兴通讯股份有限公司 一种确定物理上行控制信道资源的方法及***
CN102724757B (zh) * 2011-03-30 2017-11-07 中兴通讯股份有限公司 一种控制信道信息处理方法和***
CN103209483B (zh) * 2012-01-12 2015-09-09 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN103327591A (zh) * 2012-03-21 2013-09-25 北京三星通信技术研究有限公司 一种探测参考信号的功率控制方法
CN103002449B (zh) * 2012-11-29 2015-08-19 广州市香港科大***研究院 一种基于频域的认知无线电协同感知与频谱竞争的方法
CN105516888B (zh) * 2014-09-26 2019-09-13 上海诺基亚贝尔股份有限公司 一种机器通信设备终端和基站中进行数据传输的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN105099634A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "3GPP TSG RAN WG1 Meeting #84bis Rl-162588", DCI DESIGN FOR SHORT TTI, 15 April 2016 (2016-04-15), XP051080276 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581996B2 (en) * 2017-09-28 2023-02-14 Nokia Technologies Oy Flexible frame structure to support fast control information delivery
CN111556529A (zh) * 2019-02-11 2020-08-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111556529B (zh) * 2019-02-11 2023-08-22 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN109076512B (zh) 2021-02-23
CN109076512A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US11445536B2 (en) Downlink control information transmission method
JP7372393B2 (ja) 基地局、通信方法及び集積回路
EP3278604B1 (en) Monitoring a narrowband control channel for a wideband system to reduce power consumption
EP2584850B1 (en) Contention based uplink transmission
JP6106275B2 (ja) 拡張物理下りリンク制御チャネル(epdcch)に対してtddpucchharqリソースを割り当てる方法及びシステム
CN106664702B (zh) 一种数据传输方法、装置及***
CN107294897B (zh) 下行信息发送、接收方法及装置
CN113196696A (zh) 物理上行链路控制信道资源确定以及物理上行链路控制信道和物理上行链路共享信道上的多个混合自动重传请求确认反馈和其他上行链路控制信息的复用
US9602255B2 (en) System and method for data channel transmission and reception
EP3253108A1 (en) Terminal device, base station device, communication method, and integrated circuit
EP3253110A1 (en) Terminal device, base station device, communication method, and integrated circuit
WO2017118229A1 (zh) 一种资源调度方法、装置及***
US20140161069A1 (en) Wireless terminal and base station
EP3253109A1 (en) Terminal device, base station device, communication method, and integrated circuit
WO2010133043A1 (zh) 多子帧调度方法、***及终端、基站
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
JP2013526088A (ja) 物理上りリンク制御チャネルリソースを割り当てるための通信方法、通信システム、基地局、ユーザ装置、および、集積回路
CN114097290A (zh) 用户装置及由用户装置执行的无线通信方法
JPWO2016121433A1 (ja) 端末装置、基地局装置、通信方法および集積回路
WO2013071754A1 (zh) 下行控制信息传输方法和***
TW201803384A (zh) 傳輸數據的方法及裝置
EP3322212A1 (en) Terminal device, base station device, communication method, and integrated circuit
EP3024269A1 (en) Terminal device, base station device, integrated circuit, and wireless communication method
JP2021535638A (ja) 無線通信システムにおける方法、及び端末デバイスにおける方法
EP3322213A1 (en) Terminal device, base station device, communication method, and integrated circuit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901337

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901337

Country of ref document: EP

Kind code of ref document: A1