WO2017191931A1 - Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same - Google Patents

Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same Download PDF

Info

Publication number
WO2017191931A1
WO2017191931A1 PCT/KR2017/004455 KR2017004455W WO2017191931A1 WO 2017191931 A1 WO2017191931 A1 WO 2017191931A1 KR 2017004455 W KR2017004455 W KR 2017004455W WO 2017191931 A1 WO2017191931 A1 WO 2017191931A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
thin film
polymer thin
perfluorinated acid
perfluorinated
Prior art date
Application number
PCT/KR2017/004455
Other languages
French (fr)
Korean (ko)
Inventor
김종만
이찬우
김태근
어경찬
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2017191931A1 publication Critical patent/WO2017191931A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a method for producing a perfluoroacid treated conductive polymer thin film and its use, and more particularly, to a method for producing a conductive polymer thin film capable of maintaining high conductivity for a long time and its use.
  • ITO inorganic metal materials
  • ITO inorganic metal materials
  • the material is made of a metal material, expensive deposition equipment is required to manufacture a thin film.
  • the electrical conductivity of PEDOT: PSS which is widely used as a conductive polymer, has a low electrical conductivity of about 1 S / cm, and is water soluble. When exposed to humidity, the film shape collapses due to swelling and the electrical conductivity is also sensitively reacted. . Therefore, when it comes into contact with the electrolyte layer used in solar cells, etc., it cannot be used in the electrode material due to the rapid electrical conductivity change.
  • polyaniline conductive polymers which are not water-soluble, if left for a long period of time, the air stability is very low and electrical conductivity is inevitable, and electrical conductivity is sensitively sensitive to various chemicals, which has a fatal disadvantage as an electrode material.
  • camphorsulfonic acid is known as the best dopant so far (electric conductivity is about 102 S / cm).
  • the present invention provides a method for producing a perfluorovolatile treated conductive polymer thin film and its use that can compensate for the disadvantages of a conductive polymer having low electrical conductivity and long-term stability.
  • the conductive polymer solution may be coated on a substrate to form a thin film, and then treated with a perfluorinated acid represented by Chemical Formula 1 to prepare a conductive polymer thin film.
  • n 3 to 20
  • A is SO 3 H, OPO 3 H or CO 2 H.
  • n in Chemical Formula 1 may be in the range of 4 to 9, specifically 6 to 8.
  • FIG. 1 is a schematic diagram showing a spontaneous alignment layer structure generated by doping a perfluorofluoric acid to a conductive polymer PEDOT: PSS (n is 6).
  • the perfluorinated acid represented by Chemical Formula 1 has a superhydrophobic, superhydrophobic, and chemical resistance in which a fluorine atom is substituted for hydrogen in a carbon main chain, and has a hydrophilic group having a high hydrophilicity at a terminal of the carbon main chain, a phosphate group, Alternatively, the carboxylic acid group is substituted to have an amphiphilic molecular structure having both hydrophilicity and hydrophobicity in the molecule.
  • an amphiphilic substance has a layered structure in which molecules are spontaneously oriented as in a cell membrane.
  • the hydrophilic functional group (sulfonic acid, etc.) in the perfluorinated acid of the present invention is capable of improving cationic conductivity by conducting cation doping to a conductive polymer. It can be used as, and having a spontaneously oriented layer structure of the super hydrophobic alkyl chain can lead the conductive polymer to the extended structure (to help the electrons flow more easily in the backbone of the conjugated polymer).
  • conductive polymers are oxidized by moisture and various contaminants in the air, and thus have a long term stability in terms of electrical conductivity.
  • Perfluorinated alkyl chain functional groups can act as membranes that induce superhydrophobic properties as well as spontaneously oriented layer structures, effectively blocking moisture or air contaminants in the air.
  • the perfluorinated acid plays a role in unfolding the conductive polymer chain and thus has a molecular structure through which electricity can flow well, and at the same time, it has a long-term stability of electrical conductivity.
  • n may be 3 to 20, and most preferably n may be 4 to 9. If the value of n is less than 3, it is difficult to maintain the electrical conductivity of the conductive polymer in the long term. If the value of n is more than 20, the size of the molecule is large, so that it is difficult to penetrate into the polymer, and thus doping is difficult. There is a problem.
  • the conductive polymer may be PEDOT: PSS, polyaniline or polypyrrole.
  • the conductive polymer may be a compound represented by Formula 2, Formula 3, or Formula 4.
  • PSS When the conductive polymer is PEDOT: PSS shown in Chemical Formula 2, PSS may be replaced with perfluorinated acid by treatment with perfluorinated acid represented by Chemical Formula 1.
  • PEDOT which is a conductive polymer
  • the perfluorinated acid which is a dopant, may exist in the perfluoroacid treated conductive polymer thin film.
  • the conductive polymer is t-Boc-polyaniline represented by the formula (4)
  • some of the t-Boc-polyaniline by the treatment of perfluorinated acid represented by the formula (1) is in the emeraldine base state of the t-Boc desorbed Can return to polyaniline. In this case, an improvement in conductivity may appear.
  • the treating with the perfluorofluoric acid may be performed by applying a perfluorinated acid aqueous solution onto the conductive polymer thin film and then heating at 80 to 120 ° C. for 2 to 60 minutes, more preferably at 100 ° C. for 5 to 30 minutes. Can be.
  • the aqueous solution of perfluorinated acid may be 10 to 50 (wt / v)%, more preferably 30 (wt / v)%.
  • the conductive polymer solution may be mixed with the perfluorofluoric acid represented by Chemical Formula 1 and then coated on a substrate to prepare a conductive polymer thin film.
  • the solute and the perfluorinated acid of the conductive polymer solution may be mixed in a weight ratio of 100: 0.01-50. More preferably, it may be mixed in a weight ratio of 100: 10 to 30.
  • the polyaniline units of Chemical Formulas 3 and 4 and the perfluorinated acid of Chemical Formula 1 may be mixed in a weight ratio of 100: 0.01 to 50, and more preferably 100: 10 to 30 weight ratio. It can be mixed with.
  • the perfluorinated acid may be mixed to suit the weight ratio of the conductive polymer. That is, when mixed with the perfluorinated acid in the above range, the polarization band such as a radical cation is delocalized in the structure of the conductive polymer generated during the doping can be effectively controlled to the doping level through which electrons can flow well in the polymer chain. have. Accordingly, the electrical conductivity and long-term stability of the thin film to be produced can be significantly improved.
  • the substrate may be selected from the group consisting of silicon wafers, glass plates, PET plastic substrates, paper and metal substrates.
  • the thin film may be well formed on a flexible PET substrate as well as glass, a silicon wafer, or the like.
  • the solvent of the conductive polymer solution may be water, methacresol, tetrahydrofuran or chloroform.
  • the thin film may be formed by a spin coating method or a doctor blade method, but is not limited thereto.
  • the same parts as those described above for the conductive polymer are omitted.
  • the present invention provides a transparent electrode material consisting of a conductive polymer thin film treated with a perfluorinated acid represented by the formula (1).
  • a transparent electrode material consisting of a conductive polymer thin film treated with a perfluorinated acid represented by the formula (1). The same parts as those described above for the conductive polymer are omitted.
  • the present invention provides a method for stabilizing the electrical conductivity of a conductive polymer thin film comprising the step of coating a conductive polymer solution on a substrate to form a thin film, and then treating with a perfluorinated acid represented by the formula (1).
  • the present invention provides a method for stabilizing the electrical conductivity of the conductive polymer thin film comprising the step of forming a thin film by mixing the perfluorinated acid represented by the formula (1) in the conductive polymer solution, the coating on the substrate.
  • compositions comprising a conductive polymer and a perfluorinated acid represented by the following Chemical Formula 1, a conductive polymer thin film manufacturing composition.
  • the composition may include a conductive polymer and a perfluorinated acid in a weight ratio of 100: 0.01 to 50.
  • the conductive polymer is a polyaniline emeraldine base
  • the polyaniline emeraldine base and the perfluorinated acid may be included in a weight ratio of 100: 5-30.
  • the same parts as those described above for the conductive polymer are omitted.
  • the perfluorinated acid according to the present invention by applying a perfluorinated acid dopant having an amphiphilic molecular structure, it is possible to significantly improve the electrical conductivity of the conductive polymer thin film and maintain it for a long time.
  • the perfluorinated acid according to the present invention has superhydrophobic properties in which a fluorine atom is substituted for hydrogen in the carbon chain. It also has a structure that can be spontaneously oriented as an amphiphilic monomer compound in which hydrophilic groups such as sulfonic acid, phosphoric acid and carboxylic acid are substituted at the chain ends.
  • the perfluorinated acid according to the present invention has a lower molecular weight than the conductive polymer, so that it is relatively easy to penetrate into the conductive polymer, and can be evenly doped in an unlocalized form throughout the molecule.
  • perfluorinated compounds have inherent properties of superhydrophobic and chemical resistance.
  • Superhydrophobic perfluorinated hydrocarbon compounds are able to push out water and oil components and are used in super water-repellent coatings because of their inherent chemical stability.
  • Perfluorinated acid has a high acidity and dielectric constant of sulfonic acid due to the induction effect of attracting electrons by substitution of F atom having the largest electronegativity. Therefore, perfluorinated acid can effectively increase the electrical conductivity by cationically doping the conductive polymer.
  • spontaneously oriented superhydrophobic alkyl chains can effectively prevent water and chemicals, so that they can be stored in the air for a long time or have no electrical conductivity reduction under various organic acid and base conditions. You can give it.
  • the thin film of the conductive polymer prepared according to the present invention can be used in many organic electronic devices such as various displays, OLED, solar cell hole transport layer.
  • the material of the present invention can ensure high conductivity, high transmittance and long-term stability can be used as a transparent electrode material in place of ITO material.
  • FIG. 1 is a schematic diagram showing a spontaneous alignment layer structure generated by doping a perfluorofluoric acid to a conductive polymer PEDOT: PSS (n is 6).
  • Example 2 is an image of a conductive polymer thin film according to Example 1: (a) glass substrate (before spin coating) (b) after spin coating of conductive polymer solution (c) after perfluorofluoric acid treatment
  • Example 3 is an image of a conductive polymer thin film according to Example 3: (a) before spin coating (b) after perfluorofluoric acid treatment (c) after spin coating of conductive polymer solution
  • Example 4 is a graph showing the electrical conductivity of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
  • Example 5 is a graph showing the results of UV spectrum analysis of the conductive polymer thin film according to Example 1 and Comparative Example 2.
  • Example 6 is a graph showing the infrared spectrum analysis results of the conductive polymer thin film according to Example 1 and Comparative Example 2.
  • Example 7 is a graph showing the Raman spectrum analysis results of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
  • Example 8 is a graph comparing the transmittance of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
  • PEDOT: PSS aqueous solution (Clevious Co., Ltd.) was filtered using a 0.45 mm filter to remove fine particles in the solid state, and then spin-coated to a glass or transparent substrate to obtain a uniform film state.
  • the electrical conductivity of the thin film was about 1 S / cm.
  • an aqueous solution of perfluorinated octane sulfonic acid (PFOSA 40% in water) was applied onto the PEDOT: PSS thin film, and then heated to 100 ° C. for 20 minutes to dope the PEDOT: PSS thin film.
  • the doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity. It was confirmed that the electrical conductivity is about 4500 S / cm.
  • FIG. 2 shows images obtained after (a) glass substrate (before spin coating), (b) after spin coating of conductive polymer solution, and (c) after treatment with perfluoric acid obtained during the preparation of the conductive polymer thin film according to Example 1.
  • FIG. 2 shows images obtained after (a) glass substrate (before spin coating), (b) after spin coating of conductive polymer solution, and (c) after treatment with perfluoric acid obtained during the preparation of the conductive polymer thin film according to Example 1.
  • Example 2 Perfluorovolatiles (PFOSA: 8 carbon atoms) Doped PEDOT: PSS Preparation of Thin Films (PFOSA and PEDOT: PSS Mixture)
  • a 15 wt / v% aqueous solution of PFOSA was mixed with 1 ml of an aqueous PEDOT: PSS solution and treated with an ultrasonic cleaner for 30 minutes.
  • the solution was filtered using a 0.45 mm filter, followed by spin coating on a glass or transparent substrate to prepare a uniform film, and then heating at 100 ° C. for 5 minutes to complete a thin film.
  • Example 3 Perfluorovolatiles (PFOSA: 8 carbon atoms) Doped t- Boc - Polyaniline High conductivity Thin film manufacturing
  • t-Boc-polyaniline 50 mg was dissolved in 1 ml of chloroform and sonicated for 10 minutes and then filtered using a 0.45 mm filter to prepare a composition solution.
  • the composition solution was spin coated onto a glass plate to prepare a thin film.
  • 30 wt% PFOSA aqueous solution was applied and then doped by heating at 100 ° C. for 5 minutes.
  • the doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity. As a result of the measurement, the electrical conductivity was about 200 S / cm.
  • FIG. 3 shows images obtained after (a) t-Boc-polyaniline spin coating and (b) perfluorinated acid obtained during the preparation of a conductive polymer thin film according to Example 3, and (c) polyaniline spin in an emeraldine-based state. The image in the case of coating is shown.
  • the polyaniline (c) of the emeraldine base state is blue, but the t-Boc-polyaniline (a) having a t-Boc functional group introduced into the polyaniline is brown.
  • PFOSA doping a t-Boc-polyaniline thin film with PFOSA (b)
  • Comparative example 3 Perfluorovolatiles (1 carbon) Doped PEDOT: PSS Manufacture of thin film
  • PEDOT: PSS aqueous solution (Clevios Co., Ltd.) was filtered using a 0.45 mm filter to remove fine particles in the solid state, and then spin-coated to a glass or transparent substrate to obtain a uniform film state. Thereafter, an aqueous solution of CF 3 -SO 3 H perfluorinated acid was applied onto the PEDOT: PSS thin film, and then heated at 100 ° C. for 20 minutes to dope the PEDOT: PSS thin film. The doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity.
  • Figure 4 is a graph showing the electrical conductivity over time of the conductive polymer thin film according to Example 1, Comparative Example 1, and Comparative Example 2.
  • PFOSA Perfluorofluoric acid
  • Example 5 is a graph showing the UV-vis absorption spectrum of the conductive polymer thin film according to Example 1 and Comparative Example 2.
  • the absorption bands appearing in the 230 nm region of the PEDOT: PSS thin film (Comparative Example 2) prepared without the doping step are due to the PSS, and the absorption band is a PEDOT: PSS thin film doped with perfluorinated acid (implemented In Example 1, the intensity is reduced.
  • the PSS in the PEDOT: PSS thin film is partially removed during the washing after the perfluorinated dope, and further, the PSS of the PEDOT: PSS may be replaced by the perfluorinated fluoride by the perfluorinated dope.
  • FIG. 6A is a graph showing an infrared spectrum of the conductive polymer thin film according to Example 1 and Comparative Example 2, and FIG. 6B is an enlarged graph showing a region between wave numbers 1500 to 1000 cm ⁇ 1 of FIG. 6A.
  • the PEDOT: PSS thin film doped with perfluorinated sulfonic acid according to Example 1 showed a typical perfluorinated sulfonic acid peak at a 1280 cm ⁇ 1 position. This means that the perfluorinated acid is doped in the PEDOT: PSS thin film.
  • FIG. 7A is a graph showing Raman spectra of conductive polymer thin films according to Example 1, Comparative Example 1, and Comparative Example 2, and FIG. 7B is an enlarged graph showing a region between wave numbers 1200 to 1700 cm ⁇ 1 of FIG. 7A. .
  • Comparative Examples 1 and 2 according to the PEDOT: PSS film is 1445 cm - PEDOT according to the first embodiment shows a peak in the vicinity of 1,: PSS films peak near 1422 cm -1 It can be seen that indicates.
  • Example 8 is a graph showing the transmittance of the conductive polymer thin film according to Example 1, Comparative Example 1, and Comparative Example 2.
  • the thin film according to Example 1 exhibits excellent transmittance (95%) in the visible light region, and thus may be sufficiently replaced by a transparent electrode material such as ITO.
  • the conductive polymer thin film doped with CF 3 -SO 3 H has a high initial electrical conductivity, but is rapidly decreased with time.
  • the short chain length and low boiling point make it difficult to effectively dope the PEDOT polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention relates to a method for preparing a perfluorinated acid-treated conductive polymer thin film and the use of same and, more particularly, to a method for preparing a conductive polymer thin film which enables long-term maintenance of high conductivity and the use of same. The present invention enables novel enhancement and long-term maintenance of the electrical conductivity of a polymer thin film by means of applying a perfluorinated-acid dopant having an amphiphilic molecular structure.

Description

과불소화산 처리된 전도성 고분자 박막의 제조방법 및 이의 용도Method for producing conductive polymer thin film treated with perfluorofluoride and use thereof
본 발명은 과불소화산 처리된 전도성 고분자 박막의 제조방법 및 이의 용도에 관한 것으로, 더욱 구체적으로 장기간 동안 고전도도를 유지시킬 수 있는 전도성 고분자 박막의 제조방법과 이의 용도에 관한 것이다. The present invention relates to a method for producing a perfluoroacid treated conductive polymer thin film and its use, and more particularly, to a method for producing a conductive polymer thin film capable of maintaining high conductivity for a long time and its use.
종래의 ITO와 같은 무기물 금속 소재는 전기전도도가 높고 투명하여 전자소재 분야에 있어서 다양한 분야의 전극소재로 이용되고 있다. 그러나 소재가 금속소재로 구성되어 있어 박막필름 형태로 제조하기 위해서는 고가의 증착 장비가 필요하다. Conventional inorganic metal materials such as ITO have high electrical conductivity and are used as electrode materials in various fields in the field of electronic materials. However, since the material is made of a metal material, expensive deposition equipment is required to manufacture a thin film.
이러한 한계 때문에, 디스플레이 장치 내부의 박막트랜지스터 혹은 배선 전극을 유연한 전도성 고분자로 대체하려는 노력들이 있어 왔다. 이러한 전자소자는 높은 전기전도도와 장기간 안정성을 지닌 전도성 고분자 소재가 절실히 요구된다. 하지만 전도성 고분자의 공액 구조는 가시광선을 흡수하기 때문에 투과도가 낮고 투명전극 ITO에 비해 전기 전도도가 매우 낮을 뿐만 아니라 공기 중 혹은 화학적 환경에 불안정하여 외부에 노출 시 전기 전도도가 급격히 감소되는 치명적인 단점이 있다. 일반적으로 전도성 고분자의 투과도를 높이기 위해서는 얇은 박막으로 코팅하여야 하는데, 이럴 경우 표면 저항이 높아져서 실제 투명전극으로 응용하기에는 어려운 점이 있다. 또한 기존의 ITO 전극 (5000 S/cm 이상)에 비하여 전기전도도가 매우 낮은 문제가 있다. Due to these limitations, efforts have been made to replace thin film transistors or wiring electrodes in display devices with flexible conductive polymers. Such electronic devices desperately need a conductive polymer material having high electrical conductivity and long-term stability. However, since the conjugated polymer of the conductive polymer absorbs visible light, its transmittance is low, its electrical conductivity is very low compared to that of the transparent electrode ITO, and it is unstable in the air or in the chemical environment. . In general, in order to increase the permeability of the conductive polymer should be coated with a thin thin film, in this case it is difficult to apply the actual transparent electrode due to the high surface resistance. In addition, there is a problem that the electrical conductivity is very low compared to the conventional ITO electrode (5000 S / cm or more).
전도성 고분자로서 상업적으로 널리 사용되고 있는 PEDOT:PSS의 전기전도도는 1 S/cm 정도로 전기전도도가 낮으며 수용성이라 습도에 노출될 경우 팽윤 현상에 의해 필름 형상이 무너지며 전기전도도 또한 민감하게 반응하는 문제가 있다. 따라서 태양전지 등에 사용되는 전해질 층과 접촉하면 급격한 전기전도도 변화로 인하여 전극소재에는 사용될 수 없다. 수용성이 아닌 폴리아닐린 전도성 고분자의 경우도 마찬가지로 장기간 방치하면 공기 안정성이 매우 떨어져 전기전도도 감소를 피할 수 없으며 여러 가지 화학물질에 대하여 전기전도도가 민감하게 감응하여 전극소재로서는 치명적인 단점이 있다. 한편, 전도성 고분자의 전기적 특성 향상에 위해 많은 연구가 진행되어 왔으며 폴리아닐린의 경우, 지금까지 캄포술폰산 (CSA)이 가장 좋은 도판트로 알려져 있다(전기전도도 약 102 S/cm). The electrical conductivity of PEDOT: PSS, which is widely used as a conductive polymer, has a low electrical conductivity of about 1 S / cm, and is water soluble. When exposed to humidity, the film shape collapses due to swelling and the electrical conductivity is also sensitively reacted. . Therefore, when it comes into contact with the electrolyte layer used in solar cells, etc., it cannot be used in the electrode material due to the rapid electrical conductivity change. In the case of polyaniline conductive polymers which are not water-soluble, if left for a long period of time, the air stability is very low and electrical conductivity is inevitable, and electrical conductivity is sensitively sensitive to various chemicals, which has a fatal disadvantage as an electrode material. On the other hand, many studies have been conducted to improve the electrical properties of the conductive polymer, and in the case of polyaniline, camphorsulfonic acid (CSA) is known as the best dopant so far (electric conductivity is about 102 S / cm).
최근 발표된 비특허문헌 (Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices, Advanced Materials 2012, 24, 2436-2440)에 의하면, 1.0 M의 황산용액을 PEDOT:PSS 박막에 떨어뜨려 전기전도도 3,065 S/cm를 얻었다는 보고가 있으며 유전상수가 큰 용매일수록 비례하여 전기전도도 증가가 관찰되었다. 하지만 이렇게 제조된 전도성 고분자 박막의 전기전도도에 대한 장기안정성에 대한 보고는 아직 없으며, 일반적으로 거의 대부분의 전도성 고분자의 전기 전도도는 시간이 지남에 따라 급격히 감소되는 현상이 일어나 현실적으로 전자소자에 적용이 불가능하다. According to a recently published non-patent document (Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices, Advanced Materials 2012, 24, 2436-2440), 1.0 M sulfuric acid solution was dropped onto a PEDOT: PSS thin film to conduct electrical conductivity 3,065. It was reported that S / cm was obtained, and electrical conductivity was observed to increase proportionally with the higher dielectric constant solvent. However, there have been no reports on the long-term stability of the conductivity of the conductive polymer thin film thus manufactured, and in general, the electrical conductivity of most conductive polymers decreases rapidly with time, and thus it is impossible to apply them to electronic devices. Do.
본 발명은 전기전도도와 장기안정성이 떨어지는 전도성 고분자의 단점을 보완할 수 있는, 과불소화산 처리된 전도성 고분자 박막의 제조방법과 이의 용도를 제공한다. The present invention provides a method for producing a perfluorovolatile treated conductive polymer thin film and its use that can compensate for the disadvantages of a conductive polymer having low electrical conductivity and long-term stability.
본 발명의 일 실시예에 따르면, 전도성 고분자 용액을 기재 상에 코팅하여 박막을 형성한 후, 하기 화학식 1로 표시되는 과불소화산으로 처리하여 전도성 고분자 박막을 제조할 수 있다.According to an embodiment of the present invention, the conductive polymer solution may be coated on a substrate to form a thin film, and then treated with a perfluorinated acid represented by Chemical Formula 1 to prepare a conductive polymer thin film.
[화학식 1][Formula 1]
CF3-(CF2)n-ACF 3- (CF 2 ) n -A
상기 화학식에서,In the above formula,
n은 3 ~ 20이고, n is 3 to 20,
A는 SO3H, OPO3H 또는 CO2H임.A is SO 3 H, OPO 3 H or CO 2 H.
더욱 바람직하게는, 상기 화학식 1의 n은 4 ~ 9, 구체적으로는 6 ~ 8의 범위일 수 있다.More preferably, n in Chemical Formula 1 may be in the range of 4 to 9, specifically 6 to 8.
도 1은 전도성 고분자 PEDOT:PSS에 과불소화산을 도핑시켜 생성된 자발배향 층구조를 나타내는 모식도이다 (n은 6).1 is a schematic diagram showing a spontaneous alignment layer structure generated by doping a perfluorofluoric acid to a conductive polymer PEDOT: PSS (n is 6).
도 1을 참조하면, 상기 화학식 1의 과불소화산은 분자 내에 탄소 주사슬에 수소 대신 불소원자가 치환되어있어 초소수성, 초발수성, 내화학성을 가지며 또한 탄소 주사슬 말단에 친수성이 큰 술폰산기, 인산기, 혹은 카르복시산기가 치환되어있어 분자 내에 친수성과 소수성을 동시에 가진 양친성 (amphiphilic) 분자 구조를 가지고 있다. 일반적으로 양친성 물질은 세포막에서처럼 분자들이 자발배향된 층구조를 가지게 되는데, 본 발명의 과불소화산에 있는 친수성 작용기(술폰산 등)는 전도성 고분자에 양이온 도핑이 가능하여 전기전도도를 향상시킬 수 있을 작용기로 사용될 수 있고, 초소수성의 알킬 사슬의 자발 배향된 층구조를 가지게 되면 전도성 고분자를 펼쳐진(extended) 구조로 유도할 수 있어 공액 고분자의 주사슬 내에 전자들이 더 쉽게 흐를 수 있게 도와 줄 수 있다. 일반적으로 전도성 고분자의 경우 공기 중 수분 및 각종 오염 물질에 의해서 산화되어 전기전도도 면에서 장기 안정성이 매우 떨어지는 단점이 있다. 과불소화된 알킬 사슬 작용기는 자발배향된 층구조 뿐 만 아니라 초발수 성질을 유도하여 공기 중에 있는 수분 또는 공기 오염 물질을 효과적으로 차단하는 막처럼 작용할 수 있다. 결과적으로 과불소화산의 역할은 전도성 고분자 사슬을 펴주는 역할을 하여 전기가 잘 흐를 수 있는 분자 구조를 가지게 하며 동시에 전기전도도의 장기안정성을 가질 수 있게 한다.Referring to FIG. 1, the perfluorinated acid represented by Chemical Formula 1 has a superhydrophobic, superhydrophobic, and chemical resistance in which a fluorine atom is substituted for hydrogen in a carbon main chain, and has a hydrophilic group having a high hydrophilicity at a terminal of the carbon main chain, a phosphate group, Alternatively, the carboxylic acid group is substituted to have an amphiphilic molecular structure having both hydrophilicity and hydrophobicity in the molecule. In general, an amphiphilic substance has a layered structure in which molecules are spontaneously oriented as in a cell membrane. The hydrophilic functional group (sulfonic acid, etc.) in the perfluorinated acid of the present invention is capable of improving cationic conductivity by conducting cation doping to a conductive polymer. It can be used as, and having a spontaneously oriented layer structure of the super hydrophobic alkyl chain can lead the conductive polymer to the extended structure (to help the electrons flow more easily in the backbone of the conjugated polymer). In general, conductive polymers are oxidized by moisture and various contaminants in the air, and thus have a long term stability in terms of electrical conductivity. Perfluorinated alkyl chain functional groups can act as membranes that induce superhydrophobic properties as well as spontaneously oriented layer structures, effectively blocking moisture or air contaminants in the air. As a result, the perfluorinated acid plays a role in unfolding the conductive polymer chain and thus has a molecular structure through which electricity can flow well, and at the same time, it has a long-term stability of electrical conductivity.
상기 화학식 1에서, n은 3 ~ 20일 수 있고 가장 바람직하게는 n은 4 ~ 9일 수 있다. n 값이 3 미만인 경우에는 전도성 고분자의 전기 전도도를 장기적으로 유지하는 것에 어려움이 있고, n 값이 20을 초과하는 경우 분자의 크기가 커서 고분자 내부로 침투가 어려워 도핑이 잘 안되며, 전기 전도도가 낮아지는 문제가 있다. In Formula 1, n may be 3 to 20, and most preferably n may be 4 to 9. If the value of n is less than 3, it is difficult to maintain the electrical conductivity of the conductive polymer in the long term. If the value of n is more than 20, the size of the molecule is large, so that it is difficult to penetrate into the polymer, and thus doping is difficult. There is a problem.
상기 전도성 고분자는 PEDOT:PSS, 폴리아닐린 또는 폴리 피롤일 수 있다.The conductive polymer may be PEDOT: PSS, polyaniline or polypyrrole.
상기 전도성 고분자는 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 화합물일 수 있다.The conductive polymer may be a compound represented by Formula 2, Formula 3, or Formula 4.
[화학식 2][Formula 2]
Figure PCTKR2017004455-appb-I000001
Figure PCTKR2017004455-appb-I000001
[화학식 3][Formula 3]
Figure PCTKR2017004455-appb-I000002
Figure PCTKR2017004455-appb-I000002
[화학식 4] [Formula 4]
Figure PCTKR2017004455-appb-I000003
Figure PCTKR2017004455-appb-I000003
상기 전도성 고분자가 상기 화학식 2에 나타낸 PEDOT:PSS 인 경우, 상기 화학식 1에 나타낸 과불소화산의 처리에 의해 PSS는 과불소화산으로 치환될 수 있다. 다시 말해서, 이 경우, 상기 과불소화산 처리된 전도성 고분자 박막 내에는 전도성 고분자인 PEDOT과 도펀트인 상기 과불소화산이 존재할 수 있다. When the conductive polymer is PEDOT: PSS shown in Chemical Formula 2, PSS may be replaced with perfluorinated acid by treatment with perfluorinated acid represented by Chemical Formula 1. In other words, in this case, PEDOT, which is a conductive polymer, and the perfluorinated acid, which is a dopant, may exist in the perfluoroacid treated conductive polymer thin film.
한편, 상기 전도성 고분자가 상기 화학식 4에 나타낸 t-Boc-폴리아닐린인 경우, 상기 화학식 1에 나타낸 과불소화산의 처리에 의해 t-Boc-폴리아닐린 중 일부는 t-Boc가 탈리된 에메랄딘 베이스 상태의 폴리아닐린으로 돌아갈 수 있다. 이 경우, 전도성의 향상이 나타날 수 있다.On the other hand, when the conductive polymer is t-Boc-polyaniline represented by the formula (4), some of the t-Boc-polyaniline by the treatment of perfluorinated acid represented by the formula (1) is in the emeraldine base state of the t-Boc desorbed Can return to polyaniline. In this case, an improvement in conductivity may appear.
상기 과불소화산으로 처리하는 단계는 과불소화산 수용액을 전도성 고분자 박막 위에 도포 한 후 80 ~ 120 ℃에서 2 ~ 60분 동안, 더욱 바람직하게는 100 ℃에서 5 ~ 30분 동안 가열하는 방법으로 수행할 수 있다. The treating with the perfluorofluoric acid may be performed by applying a perfluorinated acid aqueous solution onto the conductive polymer thin film and then heating at 80 to 120 ° C. for 2 to 60 minutes, more preferably at 100 ° C. for 5 to 30 minutes. Can be.
이 때 과불소화산 수용액은 10 ~ 50(wt/v)%일 수 있고, 더욱 바람직하게는 30 (wt/v)%일 수 있다. At this time, the aqueous solution of perfluorinated acid may be 10 to 50 (wt / v)%, more preferably 30 (wt / v)%.
또한 본 발명의 다른 실시예에 따르면, 전도성 고분자 용액에 상기 화학식 1로 표시되는 과불소화산을 혼합한 후, 기재 상에 코팅하여 전도성 고분자 박막을 제조할 수 있다.According to another embodiment of the present invention, the conductive polymer solution may be mixed with the perfluorofluoric acid represented by Chemical Formula 1 and then coated on a substrate to prepare a conductive polymer thin film.
이 때, 상기 전도성 고분자 용액의 용질과 과불소화산은 100:0.01~50의 중량비로 혼합될 수 있다. 더욱 바람직하게는 100:10~30 중량비로 혼합될 수 있다.At this time, the solute and the perfluorinated acid of the conductive polymer solution may be mixed in a weight ratio of 100: 0.01-50. More preferably, it may be mixed in a weight ratio of 100: 10 to 30.
전도성 고분자가 화학식 3,4의 폴리아닐린인 경우, 화학식 3, 4의 폴리아닐린 단위체와 상기 화학식 1의 과불소화산은 100:0.01~50의 중량비로 혼합될 수 있고, 더욱 바람직하게는 100:10~30 중량비로 혼합될 수 있다.When the conductive polymer is polyaniline of Chemical Formulas 3 and 4, the polyaniline units of Chemical Formulas 3 and 4 and the perfluorinated acid of Chemical Formula 1 may be mixed in a weight ratio of 100: 0.01 to 50, and more preferably 100: 10 to 30 weight ratio. It can be mixed with.
전도성 고분자 용액에 과불소화산을 혼합하여 박막을 제조하는 경우, 과불소화산을 전도성 고분자의 중량비에 알맞게 조절하여 혼합할 수 있다. 즉 과불소화산을 상기 범위로 혼합하여 이용하는 경우, 도핑시에 생기는 전도성 고분자의 구조에 라디칼 양이온과 같은 폴라론 밴드가 비편재화 됨으로써 고분자 사슬 내에서 전자가 잘 흐를 수 있는 도핑 레벨로 효과적으로 조절될 수 있다. 이에 따라, 제조되는 박막의 전기전도도 및 장기안정성을 획기적으로 개선할 수 있다. When the thin film is prepared by mixing the perfluorinated acid with the conductive polymer solution, the perfluorinated acid may be mixed to suit the weight ratio of the conductive polymer. That is, when mixed with the perfluorinated acid in the above range, the polarization band such as a radical cation is delocalized in the structure of the conductive polymer generated during the doping can be effectively controlled to the doping level through which electrons can flow well in the polymer chain. have. Accordingly, the electrical conductivity and long-term stability of the thin film to be produced can be significantly improved.
상기 기재(기판 또는 모재)는 실리콘 웨이퍼, 유리판, PET 플라스틱 기판, 종이 및 금속기판으로 이루어진 군에서 선택될 수 있다. 본 발명에 따른 방법은 유리, 실리콘 웨이퍼 등뿐만 아니라 플렉서블한 PET 기판에서도 박막이 잘 형성될 수 있다.The substrate (substrate or base material) may be selected from the group consisting of silicon wafers, glass plates, PET plastic substrates, paper and metal substrates. In the method according to the present invention, the thin film may be well formed on a flexible PET substrate as well as glass, a silicon wafer, or the like.
상기 전도성 고분자 용액의 용매는 물, 메타크레졸, 테트라하이드로퓨란 또는 클로로포름일 수 있다. The solvent of the conductive polymer solution may be water, methacresol, tetrahydrofuran or chloroform.
상기 박막은 스핀 코팅법 또는 닥터 블레이드 법 등으로 형성할 수 있으나, 이에 제한되는 것은 아니다. 전도성 고분자 등 위에서 설명한 것과 동일한 부분은 생략한다.The thin film may be formed by a spin coating method or a doctor blade method, but is not limited thereto. The same parts as those described above for the conductive polymer are omitted.
또한 본 발명은, 상기 화학식 1로 표시되는 과불소화산으로 처리한 전도성 고분자 박막으로 이루어진 투명전극소재를 제공한다. 전도성 고분자 등 위에서 설명한 것과 동일한 부분은 생략한다.In another aspect, the present invention provides a transparent electrode material consisting of a conductive polymer thin film treated with a perfluorinated acid represented by the formula (1). The same parts as those described above for the conductive polymer are omitted.
또한 본 발명은 전도성 고분자 용액을 기재 상에 코팅하여 박막을 형성한 후, 상기 화학식 1로 표시되는 과불소화산으로 처리하는 단계를 포함하여 구성되는 전도성 고분자 박막의 전기 전도도 안정화 방법을 제공한다.In another aspect, the present invention provides a method for stabilizing the electrical conductivity of a conductive polymer thin film comprising the step of coating a conductive polymer solution on a substrate to form a thin film, and then treating with a perfluorinated acid represented by the formula (1).
아울러 본 발명은 전도성 고분자 용액에 상기 화학식 1로 표시되는 과불소화산을 혼합한 후, 기재 상에 코팅하여 박막을 형성하는 단계를 포함하여 구성되는 전도성 고분자 박막의 전기 전도도 안정화 방법을 제공한다.In addition, the present invention provides a method for stabilizing the electrical conductivity of the conductive polymer thin film comprising the step of forming a thin film by mixing the perfluorinated acid represented by the formula (1) in the conductive polymer solution, the coating on the substrate.
또한 전도성 고분자 및 하기 화학식 1로 표시되는 과불소화산을 포함하여 구성되는, 전도성 고분자 박막 제조용 조성물을 제공한다. 상기 조성물에는 전도성 고분자와 과불소화산이 100:0.01~50의 중량비로 포함될 수 있다. 전도성 고분자가 폴리아닐린 에머랄딘 염기일 때, 폴리아닐린 에머랄딘 염기와 과불소화산은 100:5~30의 중량비로 포함될 수 있다. 전도성 고분자 등 위에서 설명한 것과 동일한 부분은 생략한다.Also provided is a composition comprising a conductive polymer and a perfluorinated acid represented by the following Chemical Formula 1, a conductive polymer thin film manufacturing composition. The composition may include a conductive polymer and a perfluorinated acid in a weight ratio of 100: 0.01 to 50. When the conductive polymer is a polyaniline emeraldine base, the polyaniline emeraldine base and the perfluorinated acid may be included in a weight ratio of 100: 5-30. The same parts as those described above for the conductive polymer are omitted.
본 발명에 따르면 양친성 분자 구조를 가진 과불소화산 도펀트를 적용함으로 써 전도성 고분자 박막의 전기전도도를 획기적으로 향상시키고 이를 장기간 유지할 수 있다. 본 발명에 따른 과불소화산은 탄소사슬에 수소 대신에 불소원자가 치환되어 초소수성 성질을 가진다. 또한 사슬 말단에 술폰산, 인산, 카르복시산과 같은 친수성기가 치환된 양친성 단량체 화합물로서 자발 배향될 수 있는 구조를 가지고 있다. 또한 본 발명에 따른 과불소화산은 전도성 고분자에 비해 분자량이 적어서 전도성 고분자에 상대적으로 침투하기도 쉬워 분자 전체에 비편재화된 형태로 골고루 도핑이 가능하다. According to the present invention, by applying a perfluorinated acid dopant having an amphiphilic molecular structure, it is possible to significantly improve the electrical conductivity of the conductive polymer thin film and maintain it for a long time. The perfluorinated acid according to the present invention has superhydrophobic properties in which a fluorine atom is substituted for hydrogen in the carbon chain. It also has a structure that can be spontaneously oriented as an amphiphilic monomer compound in which hydrophilic groups such as sulfonic acid, phosphoric acid and carboxylic acid are substituted at the chain ends. In addition, the perfluorinated acid according to the present invention has a lower molecular weight than the conductive polymer, so that it is relatively easy to penetrate into the conductive polymer, and can be evenly doped in an unlocalized form throughout the molecule.
일반적으로 과불소화 화합물은 고유한 성질로 초발수성 및 내화학성을 가진다. 초소수성의 과불소화된 탄화수소 화합물은 물과 기름 성분을 밀어낼 수 있으며 화학적 안정성이 매우 큰 고유의 성질로 인하여 초발수용 코팅 재료에 응용된다. 과불소화산은 전기음성도가 가장 큰 F 원자가 치환되어 전자를 끌어당기는 유도효과로 인하여 술폰산 등의 산성도 및 유전상수가 커지게 된다. 따라서 과불소화산은 전도성 고분자를 효과적으로 양이온 도핑시켜 전기전도도를 획기적으로 높일 수 있다. 또한 과불소화산이 전도성 고분자에 도핑되면 자발 배향된 초소수성의 알킬 사슬 때문에 물이나 화학물질을 효과적으로 막을 수 있어서 공기 중에 장기간 보관하거나 다양한 유기산 및 염기 조건에서도 전기전도도 감소가 일어나지 않는 공기안정성 및 화학안정성을 부여할 수 있다. In general, perfluorinated compounds have inherent properties of superhydrophobic and chemical resistance. Superhydrophobic perfluorinated hydrocarbon compounds are able to push out water and oil components and are used in super water-repellent coatings because of their inherent chemical stability. Perfluorinated acid has a high acidity and dielectric constant of sulfonic acid due to the induction effect of attracting electrons by substitution of F atom having the largest electronegativity. Therefore, perfluorinated acid can effectively increase the electrical conductivity by cationically doping the conductive polymer. In addition, when perfluorinated acid is doped with a conductive polymer, spontaneously oriented superhydrophobic alkyl chains can effectively prevent water and chemicals, so that they can be stored in the air for a long time or have no electrical conductivity reduction under various organic acid and base conditions. You can give it.
또한 본 발명에 따라 제조되는 전도성 고분자의 박막은 각종 디스플레이, OLED, 태양전지 정공 수송층 등 수많은 유기전자소자에 사용될 수 있다. 특히 본 발명의 소재는 고전도성, 높은 투과도 및 장기안정성이 확보될 수 있어 ITO 소재를 대체하여 투명전극 소재로 사용될 수 있다. In addition, the thin film of the conductive polymer prepared according to the present invention can be used in many organic electronic devices such as various displays, OLED, solar cell hole transport layer. In particular, the material of the present invention can ensure high conductivity, high transmittance and long-term stability can be used as a transparent electrode material in place of ITO material.
도 1은 전도성 고분자 PEDOT:PSS에 과불소화산을 도핑시켜 생성된 자발배향 층구조를 나타내는 모식도이다 (n은 6).1 is a schematic diagram showing a spontaneous alignment layer structure generated by doping a perfluorofluoric acid to a conductive polymer PEDOT: PSS (n is 6).
도 2는 실시예 1에 따른 전도성 고분자 박막의 이미지이다: (a) 유리기판 (스핀 코팅 전) (b) 전도성 고분자 용액 스핀 코팅 후 (c) 과불소화산 처리 후2 is an image of a conductive polymer thin film according to Example 1: (a) glass substrate (before spin coating) (b) after spin coating of conductive polymer solution (c) after perfluorofluoric acid treatment
도 3은 실시예 3에 따른 전도성 고분자 박막의 이미지이다: (a) 스핀 코팅 전 (b) 과불소화산 처리 후 (c) 전도성 고분자 용액 스핀 코팅 후3 is an image of a conductive polymer thin film according to Example 3: (a) before spin coating (b) after perfluorofluoric acid treatment (c) after spin coating of conductive polymer solution
도 4는 실시예 1 및 비교예 1, 2에 따른 전도성 고분자 박막의 전기전도도를 나타내는 그래프이다.4 is a graph showing the electrical conductivity of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
도 5는 실시예 1 및 비교예 2에 따른 전도성 고분자 박막의 UV 스펙트럼 분석 결과를 나타내는 그래프이다.5 is a graph showing the results of UV spectrum analysis of the conductive polymer thin film according to Example 1 and Comparative Example 2.
도 6은 실시예 1 및 비교예 2에 따른 전도성 고분자 박막의 적외선 스펙트럼 분석 결과를 나타내는 그래프이다.6 is a graph showing the infrared spectrum analysis results of the conductive polymer thin film according to Example 1 and Comparative Example 2.
도 7은 실시예 1 및 비교예 1, 2에 따른 전도성 고분자 박막의 라만 스펙트럼 분석 결과를 나타내는 그래프이다.7 is a graph showing the Raman spectrum analysis results of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
도 8은 실시예 1 및 비교예 1, 2에 따른 전도성 고분자 박막의 투과도를 비교한 그래프이다. 8 is a graph comparing the transmittance of the conductive polymer thin film according to Example 1 and Comparative Examples 1 and 2.
도 9는 비교예 3에 따른 전도성 고분자 박막의 전기전도도를 나타내는 그래프이다. 9 is a graph showing the electrical conductivity of a conductive polymer thin film according to Comparative Example 3.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서 이하의 실시예에 의해 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples. The objects, features and advantages of the present invention will be readily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced herein are provided to sufficiently convey the spirit of the present invention to those skilled in the art. Therefore, the present invention should not be limited by the following examples.
실시예 1: 과불소화산(PFOSA: 탄소수 8)이 도핑된 PEDOT:PSS 박막의 제조Example 1 Preparation of PEDOT: PSS Thin Film Doped with Perfluorinated Acid (PFOSA: 8 Carbons)
PEDOT:PSS 수용액(Clevious사)을 0.45 mm의 필터를 사용하여 여과하여 고체상의 미세 입자를 제거한 후 유리 혹은 투명 기판에 스핀 코팅하여 균일한 필름상태로 만들었다. 박막의 전기전도도는 1 S/cm 정도를 나타내었다. 그 후, 상기 PEDOT:PSS 박막 상에 과불소화산(perfluorinated octane sulfonic acid: PFOSA 40% in water) 수용액을 도포한 다음 100 ℃로 20분 동안 가열하여 PEDOT:PSS 박막 을 도핑하였다. 도핑된 박막은 증류수 및 에탄올 용매로 세척하여 건조시킨 후 전기전도도를 측정하였다. 4500 S/cm 정도의 전기전도도를 나타내는 것으로 확인되었다. PEDOT: PSS aqueous solution (Clevious Co., Ltd.) was filtered using a 0.45 mm filter to remove fine particles in the solid state, and then spin-coated to a glass or transparent substrate to obtain a uniform film state. The electrical conductivity of the thin film was about 1 S / cm. Thereafter, an aqueous solution of perfluorinated octane sulfonic acid (PFOSA 40% in water) was applied onto the PEDOT: PSS thin film, and then heated to 100 ° C. for 20 minutes to dope the PEDOT: PSS thin film. The doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity. It was confirmed that the electrical conductivity is about 4500 S / cm.
도 2는 실시예 1에 따른 전도성 고분자 박막의 제조과정 중 얻어진 (a) 유리기판 (스핀 코팅 전), (b) 전도성 고분자 용액 스핀 코팅 후, 그리고 (c) 과불소화산 처리 후의 이미지들을 나타낸다.FIG. 2 shows images obtained after (a) glass substrate (before spin coating), (b) after spin coating of conductive polymer solution, and (c) after treatment with perfluoric acid obtained during the preparation of the conductive polymer thin film according to Example 1. FIG.
실시예Example 2:  2: 과불소화산(PFOSA: 탄소수 8)이Perfluorovolatiles (PFOSA: 8 carbon atoms) 도핑된Doped PEDOT:PSSPEDOT: PSS 박막의 제조(PFOSA와 PEDOT:PSS 혼합물) Preparation of Thin Films (PFOSA and PEDOT: PSS Mixture)
PEDOT:PSS 수용액 1ml에 과불소화산(PFOSA) 15 wt/v% 수용액을 혼합하여 초음파 세척기로 30분간 처리하였다. 이 용액을 0.45 mm 필터를 사용하여 여과한 다음 유리 혹은 투명기판에 스핀코팅하여 균일한 필름을 제조한 다음 100 ℃로 5분 동안 가열하여 박막을 완성하였다. A 15 wt / v% aqueous solution of PFOSA was mixed with 1 ml of an aqueous PEDOT: PSS solution and treated with an ultrasonic cleaner for 30 minutes. The solution was filtered using a 0.45 mm filter, followed by spin coating on a glass or transparent substrate to prepare a uniform film, and then heating at 100 ° C. for 5 minutes to complete a thin film.
실시예Example 3:  3: 과불소화산(PFOSA: 탄소수 8)이Perfluorovolatiles (PFOSA: 8 carbon atoms) 도핑된Doped t- t- BocBoc -- 폴리아닐린Polyaniline 고전도성High conductivity 박막 제조 Thin film manufacturing
t-Boc-폴리아닐린의 제조Preparation of t-Boc-Polyaniline
500 ㎎의 폴리아닐린(에머랄딘 염기)을 NMP 50 ㎖에 충분한 시간 동안 녹인 후, 1.3g의 DMAP(4-DIMETHYLAMINOPYRIDINE)을 넣고, 곧바로 D-t-Boc(Di-tert-butyl dicarbonate) 2.47 ㎖를 넣었다. 이때 D-t-Boc은 액체 상태에서 천천히 한 방울씩 떨어뜨렸다. D-t-Boc이 1.5 ㎖ 이상 들어가게 되면 용액의 색이 청색에서 갈색으로 변한다. D-t-Boc을 넣어준 후 1~2시간 정도 교반시켜 반응시킨 용액을 헥산에 침전시켰다. 침전 방법으로, 과량의 헥산을 비커에서 교반시키면서, D-t-Boc을 넣어준 후 1~2시간 정도 교반시켜 반응시킨 용액을 천천히 한방울씩 떨어뜨리는 방법을 사용하였다. 한 방울씩 떨어뜨리게 되면 비커 바닥으로 눌어붙는 것을 볼 수 있고 용액을 모두 침전시킨 후에 헥산을 제거하였다. 비커의 바닥에 원하는 물질이 눌어붙어 있는 상태에서 메탄올을 500 ㎖ 정도 넣어준 후 교반시키고 다시 메탄올을 제거하였다. 이를 2~3회 반복한 후, 남아 있는 물질을 클로로포름에 녹여주고 여과하여 용매에 녹아있는 상태의 t-Boc-폴리아닐린(tert-butoxycarbonyl-polyaniline) 600.5 ㎎을 제조하였다.After dissolving 500 mg of polyaniline (emeraldine base) in 50 ml of NMP for a sufficient time, 1.3 g of DMAP (4-DIMETHYLAMINOPYRIDINE) was added, and immediately 2.47 ml of D-t-Boc (Di-tert-butyl dicarbonate) was added thereto. At this time, D-t-Boc was slowly dropped dropwise in the liquid state. When more than 1.5 ml of D-t-Boc is added, the color of the solution changes from blue to brown. After adding D-t-Boc, the solution was stirred for about 1 to 2 hours to precipitate in hexane. As a precipitation method, while adding an excess of hexane in a beaker, D-t-Boc was added and then stirred for about 1 to 2 hours to slowly drop the reacted solution drop by drop. Dropping dropwise can be seen sticking to the bottom of the beaker and hexane was removed after all the solution had precipitated. 500 ml of methanol was added to the bottom of the beaker while the desired substance was pressed. Then, the mixture was stirred and the methanol was removed again. After repeating this two to three times, the remaining material was dissolved in chloroform and filtered to prepare 600.5 mg of t-Boc-polyaniline (tert-butoxycarbonyl-polyaniline) dissolved in a solvent.
t-Boc-폴리아닐린 고전도성 박막 제조t-Boc-Polyaniline High Conductivity Thin Film Preparation
t-Boc-폴리아닐린 50 ㎎을 1 ㎖의 클로로포름에 용해시킨 다음 10분 동안 초음파 처리한 후 0.45 mm의 필터를 사용하여 여과하여 조성물 용액을 제조하였다. 조성물 용액을 유리판에 스핀코팅하여 박막을 제조하였다. 제조된 박막 상에, PFOSA 30wt% 수용액을 도포한 다음 100 ℃로 5분 간 가열하여 도핑하였다. 도핑된 박막은 증류수 및 에탄올 용매로 세척하여 건조시킨 후 전기전도도를 측정하였다. 측정 결과 200 S/cm 정도의 전기전도도를 나타내었다. 50 mg of t-Boc-polyaniline was dissolved in 1 ml of chloroform and sonicated for 10 minutes and then filtered using a 0.45 mm filter to prepare a composition solution. The composition solution was spin coated onto a glass plate to prepare a thin film. On the prepared thin film, 30 wt% PFOSA aqueous solution was applied and then doped by heating at 100 ° C. for 5 minutes. The doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity. As a result of the measurement, the electrical conductivity was about 200 S / cm.
도 3은 실시예 3에 따른 전도성 고분자 박막의 제조과정 중 얻어진 (a) t-Boc-폴리아닐린 스핀 코팅 후, 그리고 (b) 과불소화산 처리 후의 이미지들과 (c) 에메랄딘 베이스 상태의 폴리아닐린 스핀 코팅 한 경우의 이미지를 나타낸다.FIG. 3 shows images obtained after (a) t-Boc-polyaniline spin coating and (b) perfluorinated acid obtained during the preparation of a conductive polymer thin film according to Example 3, and (c) polyaniline spin in an emeraldine-based state. The image in the case of coating is shown.
도 3을 참조하면, 에메랄딘 베이스 상태의 폴리아닐린(c)이 청색을 나타내나 폴리아닐린에 t-Boc 작용기가 도입된 t-Boc-폴리아닐린(a)은 갈색을 나타내는 것을 알 수 있다. 그러나, PFOSA를 사용하여 t-Boc-폴리아닐린 박막을 도핑한 경우(b)에는 녹색을 나타내는데, 이는 PFOSA에 의해 t-Boc-폴리아닐린 중 일부는 t-Boc가 탈리된 에메랄딘 베이스 상태의 폴리아닐린으로 돌아간 것을 의미할 수 있다.Referring to FIG. 3, it can be seen that the polyaniline (c) of the emeraldine base state is blue, but the t-Boc-polyaniline (a) having a t-Boc functional group introduced into the polyaniline is brown. However, when doping a t-Boc-polyaniline thin film with PFOSA (b), it is green, which indicates that some of the t-Boc-polyaniline is returned to polyaniline in the emeraldine-based state where t-Boc is released by PFOSA. Can mean.
실시예 4: 과불소화산(PFOSA: 탄소수 8)이 도핑된 폴리아닐린 박막의 제조Example 4 Preparation of Polyaniline Thin Film Doped with Perfluorinated Acid (PFOSA: C8)
폴리아닐린 에머랄딘 염기 1g을 메타크레졸 용매에 대하여 2vol%로 혼합한 후 PFOSA 30wt% 수용액 1.5 mL을 첨가하고 초음파 처리하여 박막제작용 조성물을 제조하였다. 그 후 용액을 스핀코팅하여 박막을 제조한 다음 100 ℃로 5분간 가열하였다. 도핑된 박막은 300 S/cm 정도의 전기전도도를 나타내었다1 g of polyaniline emeraldine base was mixed at 2 vol% with respect to the methacresol solvent, and 1.5 mL of 30 wt% PFOSA aqueous solution was added thereto, followed by sonication to prepare a thin film-forming composition. Thereafter, the solution was spin coated to prepare a thin film, and then heated to 100 ° C. for 5 minutes. The doped thin film exhibited electrical conductivity of about 300 S / cm.
비교예 1: 황산이 도핑된 PEDOT:PSS 박막의 제조Comparative Example 1: Preparation of Sulfur-doped PEDOT: PSS Thin Film
도핑제로 황산 수용액을 사용하였고, 나머지 과정은 실시예 1과 동일한 방법을 적용하여 황산이 도핑된 PEDOT:PSS 박막을 제조하였다.An aqueous sulfuric acid solution was used as a dopant, and the remaining process was performed in the same manner as in Example 1 to prepare a sulfuric acid-doped PEDOT: PSS thin film.
비교예 2: 도핑단계가 포함되지 않은 PEDOT:PSS 박막의 제조Comparative Example 2: Preparation of PEDOT: PSS Thin Film Without Doping Step
도핑 단계를 제외하고, 나머지 과정은 나머지 과정은 실시예 1과 동일한 방법을 적용하여 PEDOT:PSS 박막을 제조하였다.Except for the doping step, the rest of the process was the same process as in Example 1 to prepare a PEDOT: PSS thin film.
비교예Comparative example 3:  3: 과불소화산(탄소수 1)이Perfluorovolatiles (1 carbon) 도핑된Doped PEDOT:PSSPEDOT: PSS 박막의 제조 Manufacture of thin film
PEDOT:PSS 수용액(Clevios 사)을 0.45 mm의 필터를 사용하여 여과하여 고체상의 미세 입자를 제거한 후 유리 혹은 투명 기판에 스핀 코팅하여 균일한 필름상태로 만들었다. 그 후, 상기 PEDOT:PSS 박막 상에 CF3-SO3H 과불소화산 수용액을 도포한 다음 100 ℃로 20분 동안 가열하여 PEDOT:PSS 박막 을 도핑하였다. 도핑된 박막은 증류수 및 에탄올 용매로 세척하여 건조시켜 전기전도도를 측정하였다. PEDOT: PSS aqueous solution (Clevios Co., Ltd.) was filtered using a 0.45 mm filter to remove fine particles in the solid state, and then spin-coated to a glass or transparent substrate to obtain a uniform film state. Thereafter, an aqueous solution of CF 3 -SO 3 H perfluorinated acid was applied onto the PEDOT: PSS thin film, and then heated at 100 ° C. for 20 minutes to dope the PEDOT: PSS thin film. The doped thin film was washed with distilled water and ethanol and dried to measure electrical conductivity.
실험예 1: PEDOT:PSS 박막의 장기안정성 테스트Experimental Example 1: Long-term stability test of PEDOT: PSS thin film
실시예 1, 비교예 1, 및 비교예 2에 따라 제조된 박막을 공기 중에 보관하면서 시간이 경과됨에 따라 전기전도도 변화를 관찰하고 그 결과를 도 4에 나타내었다.While maintaining the thin film prepared according to Example 1, Comparative Example 1, and Comparative Example 2 in the air over time, the change in electrical conductivity was observed and the results are shown in FIG.
도 4는 실시예 1, 비교예 1, 및 비교예 2에 따른 전도성 고분자 박막의 시간에 따른 전기전도도를 나타내는 그래프이다.Figure 4 is a graph showing the electrical conductivity over time of the conductive polymer thin film according to Example 1, Comparative Example 1, and Comparative Example 2.
도 4를 참조하면, 실시예 1에 따른 박막의 경우 한 달 또는 그 이상 전도도가 감소하지 않고 유지되는 것으로 확인되었다. 하지만, 비교예 1에서처럼 황산으로 처리된 샘플의 경우 초기에는 전기전도도가 높게 나타나지만 전기전도도가 시간에 따라 급격히 감소됨이 확인되었는 바, 과불소화산(PFOSA)이 전도성 고분자의 전도도를 향상시키는 도펀트로 작용할 뿐 아니라 장기안정성을 부여함을 알 수 있다.4, it was confirmed that the conductivity of the thin film according to Example 1 was maintained for one month or more without decreasing. However, in the case of the sample treated with sulfuric acid as in Comparative Example 1, the electrical conductivity was initially high, but it was confirmed that the electrical conductivity was rapidly decreased with time. Perfluorofluoric acid (PFOSA) may act as a dopant to improve the conductivity of the conductive polymer. In addition, it provides long-term stability.
실험예 2: PEDOT:PSS 박막의 광학 특성 분석Experimental Example 2: Optical Characterization of PEDOT: PSS Thin Film
실시예 1, 비교예 1, 및 비교예 2에 따라 제조된 고분자 박막의 광학 특성을 분석하고 그 결과를 도 5(UV-vis 스펙트럼), 도 6(적외선 스펙트럼), 도 7(라만 스펙트럼) 및 도 8(투과도)에 나타내었다. Analyzing the optical properties of the polymer thin film prepared according to Example 1, Comparative Example 1, and Comparative Example 2 and the results are shown in Figure 5 (UV-vis spectrum), Figure 6 (Infrared spectrum), Figure 7 (Raman spectrum) and It is shown in FIG. 8 (transmission diagram).
도 5는 실시예 1 및 비교예 2에 따른 전도성 고분자 박막의 UV-vis 흡수 스펙트럼을 나타내는 그래프이다.5 is a graph showing the UV-vis absorption spectrum of the conductive polymer thin film according to Example 1 and Comparative Example 2.
도 5를 참조하면, 도핑 단계없이 제조된 PEDOT:PSS 박막 (비교예 2)에서 나타나는 230 nm 영역에서 나타나는 흡수 밴드는 PSS에 의한 것으로, 이 흡수 밴드는 과불소화산이 도핑된 PEDOT:PSS 박막 (실시예 1)에서는 세기가 감소되었다. 이는 과불소화산 도핑 후 세척과정에서 PEDOT:PSS 박막 내의 PSS가 일부 제거된 것을 의미하며, 나아가 과불소화산 도핑에 의해 PEDOT:PSS의 PSS는 과불소화산으로 치환된 것을 의미할 수 있다.Referring to FIG. 5, the absorption bands appearing in the 230 nm region of the PEDOT: PSS thin film (Comparative Example 2) prepared without the doping step are due to the PSS, and the absorption band is a PEDOT: PSS thin film doped with perfluorinated acid (implemented In Example 1, the intensity is reduced. This means that the PSS in the PEDOT: PSS thin film is partially removed during the washing after the perfluorinated dope, and further, the PSS of the PEDOT: PSS may be replaced by the perfluorinated fluoride by the perfluorinated dope.
도 6a은 실시예 1 및 비교예 2에 따른 전도성 고분자 박막의 적외선 스펙트럼을 나타내는 그래프이고, 도 6b는 도 6a의 파수 1500 ~ 1000 cm-1 사이의 영역을 확대하여 나타낸 그래프이다.6A is a graph showing an infrared spectrum of the conductive polymer thin film according to Example 1 and Comparative Example 2, and FIG. 6B is an enlarged graph showing a region between wave numbers 1500 to 1000 cm −1 of FIG. 6A.
도 6a 및 도 6b를 참조하면, 실시예 1에 따른 과불소화술폰산이 도핑된 PEDOT:PSS 박막은 1280 cm-1 위치에서 전형적인 과불소화술폰산 피크가 확인되었다. 이는 PEDOT:PSS 박막 내에 과불소화산이 도핑되어 있음을 의미한다. 6A and 6B, the PEDOT: PSS thin film doped with perfluorinated sulfonic acid according to Example 1 showed a typical perfluorinated sulfonic acid peak at a 1280 cm −1 position. This means that the perfluorinated acid is doped in the PEDOT: PSS thin film.
도 7a은 실시예 1, 비교예 1, 및 비교예 2에 따른 전도성 고분자 박막의 라만 스펙트럼을 나타내는 그래프이고, 도 7b는 도 7a의 파수 1200 ~ 1700 cm-1 사이의 영역을 확대하여 나타낸 그래프이다.FIG. 7A is a graph showing Raman spectra of conductive polymer thin films according to Example 1, Comparative Example 1, and Comparative Example 2, and FIG. 7B is an enlarged graph showing a region between wave numbers 1200 to 1700 cm −1 of FIG. 7A. .
도 7a 및 도 7b를 참조하면, 비교예 1 및 비교예 2에 따른 PEDOT:PSS 박막은 1445 cm- 1 근처에서 피크를 나타내고, 실시예 1에 따른 PEDOT:PSS 박막은 1422 cm-1 근처에서 피크를 나타내는 것을 알 수 있다. 이는, 실시예 1과 같이 과불소화산이 도핑된 경우 PEDOT:PSS의 산화 상태가 벤즈오이드 (Benzoid, 1445 cm-1) 구조에서 퀴노이드 (Quinoid, 1422 cm-1) 구조로 변화된 것을 의미하고, 도핑이 효과적으로 일어난 것을 의미할 수 있다.When FIG. 7a and FIG. 7b, Comparative Examples 1 and 2 according to the PEDOT: PSS film is 1445 cm - PEDOT according to the first embodiment shows a peak in the vicinity of 1,: PSS films peak near 1422 cm -1 It can be seen that indicates. This means that when the perfluorinated acid is doped as in Example 1, the oxidation state of PEDOT: PSS is changed from the benzoid (Benzoid, 1445 cm -1 ) structure to the quinoid (Quinoid, 1422 cm -1 ) structure. This may mean that doping has taken place effectively.
도 8은 실시예 1, 비교예 1, 및 비교예 2에 따른 전도성 고분자 박막의 투과도 그래프이다. 8 is a graph showing the transmittance of the conductive polymer thin film according to Example 1, Comparative Example 1, and Comparative Example 2.
도 8을 참조하면, 실시예 1에 따른 박막은, 가시광선 영역에서 우수한 투과도 (95%)를 나타내는 것으로 확인되는 바, ITO와 같은 투명전극 소재로 충분히 대체가 가능할 것으로 판단된다.Referring to FIG. 8, it is confirmed that the thin film according to Example 1 exhibits excellent transmittance (95%) in the visible light region, and thus may be sufficiently replaced by a transparent electrode material such as ITO.
도 9는 비교예 3에 따른 전도성 고분자 박막의 시간에 따른 전기전도도를 나타내는 그래프이다.9 is a graph showing the electrical conductivity over time of the conductive polymer thin film according to Comparative Example 3.
도 9를 참조하면, CF3-SO3H로 도핑된 전도성 고분자 박막은 초기 전기전도도 는 높으나, 시간이 지날수록 급격히 감소되는 것으로 확인되었다. 이는 CF3-SO3H의 경우 사슬길이가 짧고 끓는점이 낮아 PEDOT 고분자에 효과적으로 도핑되기 어렵기 때문에 이러한 결과가 나타나는 것으로 판단된다.Referring to FIG. 9, the conductive polymer thin film doped with CF 3 -SO 3 H has a high initial electrical conductivity, but is rapidly decreased with time. In the case of CF3-SO3H, the short chain length and low boiling point make it difficult to effectively dope the PEDOT polymer.

Claims (13)

  1. 하기 화학식 1로 표시되는 과불소화산과 전도성 고분자를 준비하는 단계; 및Preparing a perfluorinated acid and a conductive polymer represented by Formula 1; And
    기재 상에 상기 과불소화산으로 도핑된 전도성 고분자 박막을 형성하는 단계를 포함하는 전도성 고분자 박막의 제조방법:Method for producing a conductive polymer thin film comprising the step of forming a conductive polymer thin film doped with the perfluorinated acid on a substrate:
    [화학식 1][Formula 1]
    CF3-(CF2)n-ACF 3- (CF 2 ) n -A
    상기 화학식에서,In the above formula,
    n은 3 ~ 20이고, A는 SO3H, OPO3H 또는 CO2H이다.n is 3 to 20 and A is SO 3 H, OPO 3 H or CO 2 H.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 1의 n은 4 ~ 9인 전도성 고분자 박막의 제조방법.N is a method for producing a conductive polymer thin film of 4 to 9.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 과불소화산으로 도핑된 전도성 고분자 박막을 형성하는 단계는,Forming the conductive polymer thin film doped with the perfluorinated acid,
    상기 기재 상에 전도성 고분자 용액을 코팅하여 전도성 고분자 박막을 형성하는 단계와Coating a conductive polymer solution on the substrate to form a conductive polymer thin film;
    상기 전도성 고분자 박막을 상기 과불소화산으로 처리하는 단계를 포함하는 전도성 고분자 박막의 제조방법.Converting the conductive polymer thin film into the perfluorinated acid Method for producing a conductive polymer thin film comprising the step of treating.
  4. 청구항 3에 있어서,상기 전도성 고분자 박막을 과불소화산으로 처리하는 단계는 The method of claim 3, wherein the treating of the conductive polymer thin film with perfluorinated acid
    과불소화산 수용액을 상기 전도성 고분자 박막에 도포한 후 80 ~ 120 ℃에서 2 ~ 60분 동안 가열하는 단계를 포함하는 전도성 고분자 박막의 제조방법.Method for producing a conductive polymer thin film comprising the step of applying a perfluorinated aqueous solution to the conductive polymer thin film and heating at 80 ~ 120 ℃ for 2 to 60 minutes.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 과불소화산 수용액의 농도는 10 ~ 50wt/v%인 전도성 고분자 박막의 제조방법.The concentration of the perfluorinated acid solution is a method for producing a conductive polymer thin film of 10 ~ 50wt / v%.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 과불소화산으로 도핑된 전도성 고분자 박막을 형성하는 단계는,Forming the conductive polymer thin film doped with the perfluorinated acid,
    전도성 고분자 용액에 상기 과불소화산을 혼합하여 혼합액을 얻는 단계; 및 Mixing the perfluorinated acid with a conductive polymer solution to obtain a mixed solution; And
    상기 기재 상에 상기 혼합액을 코팅하는 단계를 포함하는 전도성 고분자 박막의 제조방법.Method for producing a conductive polymer thin film comprising the step of coating the mixed solution on the substrate.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 기재는 실리콘 웨이퍼, 유리판, PET 플라스틱 기판, 종이 및 금속기판으로 이루어진 군에서 선택되는 전도성 고분자 박막의 제조방법.The substrate is a method of manufacturing a conductive polymer thin film selected from the group consisting of silicon wafer, glass plate, PET plastic substrate, paper and metal substrate.
  8. 하기 화학식 1로 표시되는 과불소화산으로 처리된 전도성 고분자 박막을 포함하는 투명전극.A transparent electrode comprising a conductive polymer thin film treated with a perfluorinated acid represented by Formula 1 below.
    [화학식 1][Formula 1]
    CF3-(CF2)n-ACF 3- (CF 2 ) n -A
    상기 화학식에서,In the above formula,
    n은 3 ~ 20이고, A는 SO3H, OPO3H 또는 CO2H임.n is 3 to 20 and A is SO 3 H, OPO 3 H or CO 2 H.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 전도성 고분자는 PEDOT, PEDOT:PSS, 폴리아닐린 또는 폴리 피롤인 투명전극.The conductive polymer is PEDOT, PEDOT: PSS, polyaniline or polypyrrole transparent electrode.
  10. 청구항 8의 투명전극을 구비하는 유기전자소자.An organic electronic device having a transparent electrode of claim 8.
  11. 전도성 고분자 및 하기 화학식 1로 표시되는 과불소화산을 포함하는, 전도성 고분자 박막 제조용 조성물:A composition for producing a conductive polymer thin film, including a conductive polymer and a perfluorinated acid represented by Formula 1 below:
    [화학식 1][Formula 1]
    CF3-(CF2)n-ACF 3- (CF 2 ) n -A
    상기 화학식에서,In the above formula,
    n은 3 ~ 20이고, A는 SO3H, OPO3H 또는 CO2H이다.n is 3 to 20 and A is SO 3 H, OPO 3 H or CO 2 H.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 전도성 고분자는 PEDOT-PSS, 폴리아닐린 또는 폴리 피롤인 전도성 고분자 박막 제조용 조성물.The conductive polymer is PEDOT-PSS, polyaniline or polypyrrole is a composition for producing a conductive polymer thin film.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 전도성 고분자와 과불소화산은 100:0.01~50의 중량비로 포함되는 전도성 고분자 박막 제조용 조성물.The conductive polymer and the perfluorinated acid is a composition for producing a conductive polymer thin film comprising a weight ratio of 100: 0.01 ~ 50.
PCT/KR2017/004455 2016-05-02 2017-04-26 Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same WO2017191931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160054148A KR102534789B1 (en) 2016-05-02 2016-05-02 Method for manufacturing thin film of conductive polymer treated with perfluorinated acid and uses thereof
KR10-2016-0054148 2016-05-02

Publications (1)

Publication Number Publication Date
WO2017191931A1 true WO2017191931A1 (en) 2017-11-09

Family

ID=60202883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004455 WO2017191931A1 (en) 2016-05-02 2017-04-26 Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same

Country Status (2)

Country Link
KR (1) KR102534789B1 (en)
WO (1) WO2017191931A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102379726B1 (en) 2020-03-04 2022-03-28 한양대학교 산학협력단 Method for manufacturing of electronic device based on post-treatment using acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462929A (en) * 1982-09-30 1984-07-31 Allied Corporation Solution of a chalcogen-containing polymer in acids and process of forming polymer articles therefrom
KR20080036056A (en) * 2005-06-27 2008-04-24 이 아이 듀폰 디 네모아 앤드 캄파니 Electrically conductive polymer compositions
KR20080039884A (en) * 2005-06-28 2008-05-07 이 아이 듀폰 디 네모아 앤드 캄파니 Buffer compositions
JP2013505565A (en) * 2009-09-18 2013-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic electronic devices and dopants for doping organic semiconductor matrix materials
US20140060602A1 (en) * 2011-03-28 2014-03-06 Fujifilm Corporation Electrically conductive composition, an electrically conductive film using the composition and a method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462929A (en) * 1982-09-30 1984-07-31 Allied Corporation Solution of a chalcogen-containing polymer in acids and process of forming polymer articles therefrom
KR20080036056A (en) * 2005-06-27 2008-04-24 이 아이 듀폰 디 네모아 앤드 캄파니 Electrically conductive polymer compositions
KR20080039884A (en) * 2005-06-28 2008-05-07 이 아이 듀폰 디 네모아 앤드 캄파니 Buffer compositions
JP2013505565A (en) * 2009-09-18 2013-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic electronic devices and dopants for doping organic semiconductor matrix materials
US20140060602A1 (en) * 2011-03-28 2014-03-06 Fujifilm Corporation Electrically conductive composition, an electrically conductive film using the composition and a method of producing the same

Also Published As

Publication number Publication date
KR20170124674A (en) 2017-11-13
KR102534789B1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
DE60305541T2 (en) Polythiophene and devices made therewith
JP4668916B2 (en) Organic polymers, electronic devices, and methods
US7005672B2 (en) Thin film transistor with a semiconductor layer that includes a gelable self-organizable polymer
KR100961251B1 (en) Composition, electronic device and method of manufacturing the electronic device
DE60307687T2 (en) Polythiophene and devices made therewith
US20060231829A1 (en) TFT gate dielectric with crosslinked polymer
WO2017191932A1 (en) Water-soluble diacetylene, photolithography composition comprising water-soluble diacetylene monomer and conductive polymer, and fine pattern preparation method using same
DE102012216530A1 (en) THIN-LAYER TRANSISTORS FOR APPLICATIONS WITH CHEMICAL SENSORS
CN104105726A (en) Planarization layer for organic electronic devices
EP3373354B1 (en) Composition for hole trapping layer of organic photoelectric conversion element
DE102012200896A1 (en) Electronic component
KR20100125396A (en) Composition for forming underlayer film for image formation
Farrokhzadeh et al. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline]
WO2017191931A1 (en) Method for preparing perfluorinated acid-treated conductive polymer thin film and use of same
KR20170088127A (en) N type thermoelectric element
US20150188054A1 (en) Cellulose-polymer composites for solar cells
Wu et al. Selenophene Substitution Enabled High‐Performance n‐Type Polymeric Mixed Ionic‐Electronic Conductors for Organic Electrochemical Transistors and Glucose Sensors
JP2005507180A (en) Insulators for organic electronic devices
KR100242220B1 (en) Electrically conductive alternating copolymer and method of preparing such a copolymer
KR101856563B1 (en) Organic thin film transistor having liquid crystalline properties and method for fabricating the same
WO2013154248A1 (en) Method for transferring graphene thin films, and device using same
WO2013124029A2 (en) Polymers containing dibenzocycloheptene structural units
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
WO2020040361A1 (en) Thin film, formation method therefor, and perovskite solar cell comprising thin film
US20090242878A1 (en) Optimization of new polymer semiconductors for better mobility and processibality

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792833

Country of ref document: EP

Kind code of ref document: A1