WO2017191872A1 - 플랜트 이상 감지 방법 및 시스템 - Google Patents

플랜트 이상 감지 방법 및 시스템 Download PDF

Info

Publication number
WO2017191872A1
WO2017191872A1 PCT/KR2016/009554 KR2016009554W WO2017191872A1 WO 2017191872 A1 WO2017191872 A1 WO 2017191872A1 KR 2016009554 W KR2016009554 W KR 2016009554W WO 2017191872 A1 WO2017191872 A1 WO 2017191872A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
plant
prediction
model
unit
Prior art date
Application number
PCT/KR2016/009554
Other languages
English (en)
French (fr)
Inventor
박지훈
김영민
조인석
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to EP16901098.0A priority Critical patent/EP3454289B1/en
Priority to CN201680080886.2A priority patent/CN108604360B/zh
Priority to US16/082,267 priority patent/US11092952B2/en
Publication of WO2017191872A1 publication Critical patent/WO2017191872A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/027Alarm generation, e.g. communication protocol; Forms of alarm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0281Quantitative, e.g. mathematical distance; Clustering; Neural networks; Statistical analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold

Definitions

  • the present invention relates to a method and system for detecting abnormalities of plants, and more particularly, to collect plant data in real time, to learn collected data, to predict steady state data, and to compare real-time plant data with predicted steady state data. To diagnose abnormalities, and to generate abnormalities by diagnosing abnormalities by combining predictions based on multiple predictive models with different characteristics of Parametric and Non Parametric models.
  • the present invention relates to a method and a system for detecting abnormalities of a plant so as to accurately detect a plant abnormality and give an alarm.
  • a monitoring device that detects in real time whether or not the main components of the plant are damaged and generates an alarm to the driver when abnormal signs are found in the parts is used.
  • An object of the present invention for solving the above problems is to collect plant data in real time, learn the collected data to predict the steady state data, compare the real time plant data with the predicted steady state data to solve the abnormality. Diagnosis is performed by combining the predictions based on a plurality of prediction models with different characteristics of Parametric and Non Parametric models to generate and learn the most accurate predictions to diagnose abnormalities early.
  • the present invention provides a plant anomaly detection learning system and method for accurately detecting an anomaly and giving an alarm.
  • Plant abnormality detection system for achieving the above object is a data collection unit for collecting the plant data, Parametric model and non-parametric model for predicting the plant data value
  • a prediction algorithm section having a learning model selection section for selecting a plurality of models to include, a plurality of prediction algorithms applying an optimization algorithm to each of the plurality of models selected by the learning model selection section, and a prediction output from the prediction algorithm section.
  • An ensemble learning unit that performs ensemble learning based on the data and outputs final prediction data, and compares the final prediction data with data collected by the data collecting unit to determine whether the plant is abnormal.
  • An abnormality alarm unit may be included.
  • the modeling unit may further include a modeling unit configured to optimize each of the predictive models by learning each of the predictive models using the generated training data to generate output similar to that of the plant, wherein the learning model selecting unit may select some or all of the predictive models. You can choose it as a model.
  • the prediction model may include a first principle model (First Principles based Model), a state space model (State Space Model), an ARX (Auto Regressive eXogenous) model, a NARX (Nonlinear Auto Regressive eXogenous) model, a Finite Impulse Response (FIR) model, It may include at least one of an ARMAX (Auto Regressive Moving Average with eXogenous terms) model, a non parametric model (NPM), a tree model (TM), and a neural network model (NNM).
  • a first principle model First Principles based Model
  • State Space Model State Space Model
  • ARX Auto Regressive eXogenous
  • NARX Nonar Auto Regressive eXogenous
  • FIR Finite Impulse Response
  • It may include at least one of an ARMAX (Auto Regressive Moving Average with eXogenous terms) model, a non parametric model (NPM), a tree model (TM), and a neural network model (NNM).
  • the alarm logic calculates a difference between the final predicted data and the plant data collected by the data collector and generates the residual. When the generated residual exceeds the preset allowable value, the alarm logic determines that the plant is in an abnormal state.
  • the plurality of prediction algorithms apply different optimization algorithms to each of the plurality of models, and the prediction algorithm combines a regression method for predicting a relationship between variables and a cluster having similar properties to predict a cluster. It may include a clustering method for performing the (clustering) method.
  • the method may further include optimizing the predictive model to generate a similar output to the plant by learning each of the predictive models using the training data generated by the data learner, and the step (b) may include the predictive model.
  • the method may include selecting some or all of the plurality of models.
  • the method may include outputting the prediction data by applying different optimization algorithms to each of the plurality of models, and the plurality of prediction algorithms may include regression for predicting a relationship between variables. It may include a clustering method of performing a prediction by combining clusters having a regression method and similar properties.
  • ensemble learning using a plurality of predictive models such as a parametric model and a non-parametric model, for predictive data for collecting sensor data from a plant to detect an abnormal state ) Can improve prediction accuracy.
  • one single model of the training model can benefit from the weaknesses of the single model, and the weaknesses can be compensated for to provide the highest accuracy.
  • Prediction data can be provided.
  • the improved accuracy of the forecast enables accurate detection of plant abnormalities, which not only inform early warning, but also greatly reduce the rate of false alarms, resulting in a reliable plant anomaly detection system.
  • FIG. 1 is a block diagram schematically illustrating a functional block of a plant abnormality detection system according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating a modeling unit 160 generating a predictive model including a plurality of parametric models 161 and 163 and nonparametric models 165 and 167 according to an exemplary embodiment.
  • each model 161, 163, 165, and 167 of the modeling unit 160 includes a model unit 310 and an optimizer 320.
  • FIG. 4 is a diagram illustrating an abnormality alarm unit 140 including a prediction algorithm unit 410, an ensemble learner 420, and an alarm logic 430.
  • FIG. 5 is a simplified block diagram of a plant abnormality detection system according to an exemplary embodiment.
  • FIG. 6 is a flowchart illustrating a plant abnormality detection method according to an exemplary embodiment.
  • FIG. 7 is a diagram illustrating a combination of a parametric model and a nonparametric model and an accuracy of a prediction result by ensemble learning and a prediction result of a conventional method according to an embodiment of the present invention.
  • portion When a portion is referred to as being “above” another portion, it may be just above the other portion or may be accompanied by another portion in between. In contrast, when a part is mentioned as “directly above” another part, no other part is involved between them.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • FIG. 1 is a block diagram schematically illustrating a functional block of a plant abnormality detection system according to an exemplary embodiment.
  • the plant abnormality detecting system may include a data collecting unit 110, a learning model selecting unit 120, and an abnormality alarming unit 140.
  • the data learning unit 130, the modeling unit 160, the controller 150, and the diagnostic database (DB) 170 may be further included.
  • the data collector 110 may collect plant data in real time through measurement sensors installed at a specific facility or a specific point of the plant. Data collected in real time can be collected at regular intervals and used for modeling, prediction, and diagnosis. For example, if the interval is 5 minutes, the data for every 5 minutes is collected into one data group, and the data group is continuously generated every 5 minutes to be used for modeling, prediction, and diagnosis.
  • the data learner 130 may process the data collected by the data collector 110 to extract training data for making a prediction model.
  • the collected real-time data may include not only steady state data when the plant is operating in a steady state but also abnormal state data when the plant is operating in an abnormal state. 130 may extract or generate only steady state data from real-time data collected through pre-processing to extract training data for making a prediction model.
  • the pre-processing process is a process for deleting data in an abnormal state.
  • the pre-processing process may determine the abnormality by various methods by examining the measured data in real time.
  • the learning data can be extracted or generated by deleting the data in the case of the abnormal state.
  • the modeling unit 160 may generate a predictive model using the training data extracted by the data learning unit 130.
  • the prediction model may include a plurality of parametric models 161 and 163 and a plurality of non-parametric models 165 and 167.
  • Each model of the modeling unit 160 may be composed of a model unit 310 and an optimizer 320.
  • FIG. 2 is a diagram illustrating a modeling unit 160 generating a predictive model including a plurality of parametric models 161 and 163 and nonparametric models 165 and 167 according to an exemplary embodiment.
  • each model 161, 163, 165, and 167 of the modeling unit 160 includes a model unit 310 and an optimizer 320.
  • the parametric model is a model representing a system using finite number of parameters.
  • the parametric model can describe the system using a limited number of parameters.
  • the parametric model may include a first principle model, a transfer function model, a state space model, and the like.
  • the first principle model is a model using parameters defined by the first and fundamental laws of physics
  • the state space model is a model using state variables as a parameter
  • the transfer function model is a transfer function between input and output. It can be a model that uses defining variables as parameters.
  • the transfer function model may include ARX (Auto Regressive eXogenous), NARX (Nonlinear Auto Regressive eXogenous), Finite Impulse Response (FIR), and ARMAX (Auto Regressive Moving Average with eXogenous terms) models.
  • ARX Auto Regressive eXogenous
  • NARX Nonar Auto Regressive eXogenous
  • FIR Finite Impulse Response
  • ARMAX Automatic Regressive Moving Average with eXogenous terms
  • the non-parametric model is a model that can use an infinite number of parameters to represent a plant may include a non parametric model (NPM), a tree model (TM), a neural network model (NNM). Although a nonparametric model can conceptually use an infinite number of parameters, it actually represents only a finite number of models.
  • NPM non parametric model
  • TM tree model
  • NPM neural network model
  • Each model 161, 163, 165, and 167 of the modeling unit 160 may use the training data (x (k); 210) extracted by the data learning unit 130 based on each of the aforementioned methods for modeling the plant.
  • the optimization algorithm used here includes the Least Squares Method (LSM), which minimizes the square of the error, the Maximum Likelihood Method (MLM), which finds the most similar value, and the linear correlation of the correlated learning data.
  • LSM Least Squares Method
  • MLM Maximum Likelihood Method
  • PCA Principal Component Analysis
  • DPCA Dynamic Principal Component Analysis
  • PLS Partial Least Squares
  • the model unit 310 may define parameters and equations necessary for the ARX method.
  • the following equation shows the formula to obtain the output for the general ARX method.
  • a (z) y (k) B (z) x (k-n) + e (k)
  • e (k) is error-related information of the plant to be modeled
  • a (z) and B (z) are polynomials for the post-delay operator (z -1 ).
  • the model unit 310 may determine how many polynomials to use in the general ARX scheme as described above. Increasing the number of polynomials can produce a more optimized ARX model for the plant, but it can increase the computing power required to calculate or the time it takes to stabilize.
  • the optimizer 320 uses parameters A (z) and B (z) to optimize the model selected by the model unit 310 to be similar to the plant using the input data (x (k)) 210. Can be determined.
  • the training model selector 120 may select and combine an optimal predictive model suitable for the current plant situation from the plurality of predictive models generated by the modeling unit 160.
  • the parametric and nonparametric models have their advantages and disadvantages.
  • Table 1 shows the advantages and disadvantages of one parametric model and one nonparametric model that can be applied to the present invention.
  • a prediction model may be generated by combining a plurality of models having different features.
  • an ARX and an ARMAX model may be selected as a parametric model among a plurality of prediction models generated by the modeling unit 160, and an NPM or an NNM may be selected as a nonparametric model.
  • the predicted model may be generated by combining a plurality of the selected models.
  • the alarm unit 140 estimates a prediction value at each prediction algorithm that performs optimization based on the prediction model generated by the training model selecting unit 120, and performs an ensemble learning based on the predictions to create an optimal prediction value. It is possible to determine whether or not an abnormality by comparing the predicted value and the measured value, and may generate an alarm if it is determined that the abnormality.
  • FIG. 4 is a diagram illustrating an abnormality alarm unit 140 including a prediction algorithm unit 410, an ensemble learner 420, and an alarm logic 430.
  • the prediction algorithm unit 410 may obtain a prediction value for each prediction algorithm that applies optimization to the prediction model generated by the training model selection unit 120.
  • the optimization algorithm used in the prediction algorithm may use the optimization algorithm used by the modeling unit 160 described above.
  • [Table 2] shows the performance constraints and the review results for the core technology of the prediction algorithm. Based on the review results, it is possible to determine which model to use in the learning model selection unit 120 and which optimization algorithm to apply. Can be.
  • a clustering method in which clustering is performed by grouping a group having similar properties as a regression method for predicting a relationship between variables.
  • a regression method and a clustering method may be used. Only the use of the regression method will be described below.
  • the regression method can be divided into a model-based method and an algorithm-based method.
  • the model based method may use a plurality of linear / nonlinear regression models.
  • the regression model is to model the correlation between the dependent variable (predictions in the present invention) and one or more independent variables (plant data in the present invention), linearly or nonlinearly.
  • Algorithm-based method is k-NN method. In the present invention, the optimal prediction value is extracted using both model-based and algorithm-based methods.
  • the prediction algorithm unit 410 uses an algorithm based on MLRM, which is an optimized model using the LSM, for the ARX model, which is one of the models selected by the training model selection unit 120. Extract the predicted value of Estimated Value_mlrm (k) and error value (Residual_mlrm (k)), and apply another k-NN based algorithm to another model, NPM, which is another predicted value (Estimated Value_kNN (k)) and error value. (Residual_kNN (k)) can be extracted.
  • the prediction algorithm unit 410 selects and optimizes two models in the learning model selection unit 120 to generate a prediction value, but may select the more models to perform optimization to generate the prediction value. That is, four or eight models may be selected, and prediction may be extracted by performing optimization on each model.
  • the ensemble learner 420 may extract an optimal predicted value based on the predicted value extracted for each model.
  • Ensemble learning is the use of multiple learning algorithms to achieve better prediction performance than writing separately.
  • a plurality of prediction models having different characteristics are selected, and ensemble learning is used to estimate the optimal prediction value based on the prediction values in each prediction model.
  • the ensemble learner 420 may use various algorithms to estimate the most accurate predictions based on the predictions estimated by each prediction model. Bagging by majority vote without multiplying the predictions estimated by each prediction model by weight. ), Or a weighted voting method of multiplying and adding the prediction value estimated by each prediction model. In addition, there may be a Mixture of Experts approach that allows you to use different predictive model values for specific areas of the data.
  • the prediction algorithm of each prediction model of the prediction algorithm unit 410 generates an estimated value and a residual value and delivers the estimated value and the residual value to the ensemble learner 420.
  • the ensemble learner 420 to which the bagging method is applied may select a prediction model having the smallest error value and select the prediction value of the prediction model as an optimal prediction value.
  • the optimal prediction value 421 estimated by the ensemble learner 420 is transferred to the alarm logic 430 to determine an abnormal state of the plant.
  • the alarm logic 430 generates a residual value obtained by subtracting the predicted value from the measured value using the optimal predicted value 421 and the measured value estimated by the ensemble learner 420, and is abnormal when the generated residual value exceeds the allowable value. Judging by the status, it can output an alarm and display a warning about an error.
  • the controller 150 may perform control such as setting parameters required for each part of the aforementioned plant abnormality detection system. That is, the data collected in real time from the data collector 110 may be collected by a predetermined interval (for example, 5 minutes or 10 minutes) to be used for modeling, prediction, diagnosis, and the like. Information may be transferred to the data collector 110.
  • the learning model selector 120 may select a plurality of predictive models according to the plant environment to be modeled. For this purpose, the controller 150 transmits information about the plant environment to the learning model selector 120. Can be.
  • the controller 150 may provide the abnormality alarm unit 140 with information about an allowable value used by the abnormality alarm unit 140 to determine the abnormal state.
  • the diagnostic database 170 may store cases in which an abnormality occurs in the plant as diagnostic data.
  • the diagnostic database 170 may store the cause of each abnormal state in correspondence with the plant data of each abnormal state.
  • the manager may check the plant and thus may know the cause and effect of the abnormal condition.
  • the controller 150 may store the cause and result of the abnormal state to be input by the administrator in the diagnostic database 170 together with the plant data of each abnormal state.
  • the controller 150 compares the plant data in the abnormal state determined by the abnormal alarm unit 140 with the plant data in the abnormal state stored in the diagnostic database 170, and if similar data exists, the control database 150 may be included in the diagnostic database 170. Based on the stored cause and effect information, the administrator can be notified of the cause automatically and the action can be taken accordingly.
  • the plant abnormality detection system generates a prediction value based on the prediction model generator 510 generating the prediction model and the prediction model generated by the prediction model generator 510, and based on this, the abnormal state of the plant. It may be divided into an abnormal state determination unit 520 for determining.
  • 5 is a simplified block diagram of a plant abnormality detection system according to an exemplary embodiment.
  • the prediction model generator 510 may generate an optimal prediction model using the plant data 210 input based on the plurality of parametric models or the plurality of nonparametric models, and may determine the abnormal state determination unit ( 520 may estimate the prediction value for each of the plurality of prediction models generated from the plant data, and estimate the optimal prediction value through an ensemble learning method.
  • the prediction model generator 510 may include the data learning unit 130, the modeling unit 160, and the learning model selecting unit 120, and the abnormal state determination unit 520 may include the prediction algorithm unit 410. ), An ensemble learner 420, and an alarm unit 140 including an alarm logic 430.
  • the predictive model generator 510 and the abnormal state determiner 520 may operate independently.
  • the predictive model generation unit 510 and the abnormal state determination unit 520 are described as being executed at the same time, but may be executed at different times.
  • a predictive model may be generated based on data during trial run, and during operation, an abnormal state may be determined by comparing the predicted value obtained based on the sensor actual value and the predictive model.
  • the prediction model generator 510 and the abnormal state determination unit 520 may operate at different times.
  • the modeling unit 160 may be used as the prediction algorithm unit 410 as it is.
  • FIG. 6 is a flowchart illustrating a plant abnormality detection method according to an exemplary embodiment.
  • the data collection unit 110 may collect plant data in real time through each sensor (S310).
  • the data collecting unit 110 collects the corresponding sensor data through each measuring sensor installed in each device or branch of the plant (Data Collecting), sequentially from each measuring sensor according to the batch scheduler (Batch Scheduler).
  • the sensor data can be received and stored in the database as raw data.
  • the data learner 130 generates learning data through pre-processing on the collected real-time data (S320). That is, the data learning unit 130 generates the learning data used to make the prediction model by deleting the abnormal data through the preprocessing process on the collected real-time data. Therefore, the pre-processing process is a process for deleting the data in the abnormal state, and by examining the measured data in real time, it is possible to determine whether or not the abnormality.
  • the learning data can be extracted or generated by deleting the data in the case of the abnormal state.
  • the learning model selection unit 120 may select and combine an optimal prediction model suitable for the current system situation among the plurality of prediction models.
  • a prediction model is selected by combining a parametric model and a non-parametric model to predict the prediction based on a plurality of models having different characteristics. S330).
  • the learning model selection unit 120 selects a function corresponding to the merits of specific single models and complements the functions corresponding to the weak points in the parametric model and the nonparametric model. You can select a learning model by combining the models. That is, since each model has its own characteristics and performance constraints, it is possible to grasp the constraints and characteristics existing in the system to predict and select a plurality of models.
  • Table 1 The advantages and disadvantages of the parametric and nonparametric models are shown in Table 1 above.
  • the modeling unit 160 may generate a predictive model using the training data extracted by the data learning unit 130. That is, the prediction model generated by the modeling unit 160 includes ARX (Auto Regressive eXogenous), NARX (Nonlinear Auto Regressive eXogenous), FIR (Finite Impulse Response), ARMAX (Auto Regressive Moving Average with eXogenous terms) model, and SSM (State Space). It is optimized using data collected from the plant to be predicted based on models such as Model (FPBM), First Principles based Model (FPBM), Non Parametric Model (NPM), Tree Model (TM), and Neural Network Model (NNM). Can be.
  • FPBM Model
  • FPBM First Principles based Model
  • NPM Non Parametric Model
  • TM Tree Model
  • NVM Neural Network Model
  • the prediction model generated by the modeling unit 160 may be a model optimized for a plant to be predicted based on a specific model.
  • the training model selector 120 may select and combine a plurality of predictive models suitable for the plant among the optimized predictive models generated by the modeling unit 160.
  • the alarm unit 140 estimates a prediction value in each prediction algorithm for optimization based on the prediction model generated by the training model selecting unit 120, and performs an ensemble learning based on the predictions to output an optimal prediction value. S340), and if the difference between the predicted value and the measured value measured in real time in the plant is greater than the preset allowable value, it may be determined as an abnormality and an alarm (S350).
  • Estimation of the prediction value in each prediction algorithm may be performed by a regression method for predicting the relationship between the variables or by a clustering method in which clusters are made by grouping similar objects and performing prediction. Both regression and clustering methods can be used.
  • the regression method can be divided into a model-based method and an algorithm-based method.
  • the model based method may use a plurality of linear / nonlinear regression models.
  • a regression model is to model the correlation between a dependent variable (prediction in the present invention) and one or more independent variables (plant data in the present invention), linearly or nonlinearly.
  • the algorithm based method is the k-NN method. In the present invention, optimal prediction data can be extracted using both model-based and algorithm-based methods.
  • ensemble learning it is possible to output the optimal prediction data based on the prediction data extracted for each prediction algorithm.
  • Various algorithms for ensemble learning can be used, and the estimation data estimated by each prediction model can be estimated without multiplying the weight by multiplying the bagging method or multiplying and adding the prediction data estimated by each prediction model.
  • there may be a Mixture of Experts approach that allows you to use different predictive model values for specific areas of the data.
  • prediction data of a prediction model having the smallest error value may be selected as optimal prediction data by comparing error values obtained while generating prediction data in each prediction algorithm.
  • FIG. 7 is a diagram illustrating a combination of a parametric model and a nonparametric model and an accuracy of a prediction result by ensemble learning and a prediction result of a conventional method according to an embodiment of the present invention.
  • the prediction result of the first example (Proposed Method *) in which ensemble learning was performed based on MLRM, PLS, DPCA, and k-NN models was 95.1% accurate.
  • Method ** has a 97.9% accuracy.
  • the plant abnormality detection system and method proposed in the present invention can accurately detect and alert the plant abnormality early by calculating predictive data with much higher accuracy than the conventional method.
  • the controller 150 may diagnose an abnormality of the plant and track the root cause using the diagnosis logic based on the diagnosis database 170.
  • the diagnostic logic is an algorithm that finds the root cause of the plant abnormality based on the diagnostic data when the early alarm occurs because the real time plant data and the steady state data differ by a degree exceeding the allowable value. Accordingly, the controller 150 may analyze and track the root cause of the abnormality of the plant by using the diagnostic logic based on the diagnostic data stored in the diagnostic database 170.
  • the present invention collects plant data in real time, extracts steady-state data from the collected data, and has a plurality of characteristics having different characteristics of a parametric model and a non parametric model.
  • the plant abnormality detection learning system and method can be realized by combining the predictions based on the predictive model to generate the most accurate prediction value and diagnosing the abnormality so that the plant abnormality can be detected and alarmed early.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Marketing (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)
  • Emergency Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computational Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은 실시간으로 수집한 플랜트 데이터에 대해 서로 다른 특징을 지닌 복수의 예측 모델들을 통해 학습하여 가장 정확도가 높은 예측치를 생성해 이상을 진단함으로써 플랜트 이상을 정확하게 감지하여 조기에 경보를 줄 수 있도록 하는, 플랜트 이상 감지 시스템 및 방법이 개시된다. 개시된 플랜트 이상 감지 시스템은, 상기 플랜트 데이터를 수집하는 데이터 수집부, 상기 플랜트 데이터 값을 예측하기 위해 복수의 모델을 선택하는 학습모델 선택부, 복수의 예측 알고리즘을 구비한 예측 알고리즘부, 상기 예측 알고리즘부에서 출력하는 예측 데이터들을 바탕으로 앙상블 학습(Ensemble Learning)을 수행하여 최종 예측 데이터를 출력하는 앙상블 학습부, 및 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 데이터를 비교하여 상기 플랜트의 이상 여부를 판단하는 알람로직을 포함하는 이상 경보부를 포함할 수 있다.

Description

플랜트 이상 감지 방법 및 시스템
본 발명은 플랜트 이상 감지 방법 및 시스템에 관한 것으로서, 더욱 자세하게는 실시간으로 플랜트 데이터를 수집하고, 수집된 데이터를 학습하여 정상상태의 데이터를 예측하고, 실시간 플랜트 데이터와 예측된 정상 상태의 데이터를 비교하여 이상을 진단하되, 모수성(Parametric) 모델과 비모수성(Non Parametric) 모델의 서로 다른 특징을 지닌 복수의 예측 모델을 기반으로 예측치들을 조합하여 가장 정확도가 높은 예측치를 생성해 이상을 진단함으로써 조기에 플랜트 이상을 정확하게 감지하여 경보를 줄 수 있도록 하는, 플랜트 이상 감지 방법 및 시스템에 관한 것이다.
일반적으로 발전 또는 화학 등의 대형 플랜트들은 다양한 종류의 수백 개의 기계 및 전기 설비들이 복잡하게 연결되어 운전되고 있다. 이런 플랜트들은 신뢰성을 확보하여 안정적으로 전력을 공급하기 위해, 사고의 발단이 되는 이상 징후를 상시로 감시해야 한다.
이에, 플랜트를 구성하는 주요 구성 부품의 파손 여부를 실시간으로 감지하고 부품에 이상 징후가 발견되는 경우 운전자에게 알람을 발생시키는 감시장치가 이용되고 있다.
종래의 감시 장치는 단순히 부품에 크랙(crack)이 발생한 것으로 감지된 경우 운전자에게 알람을 발생시킨다. 운전자는 부품에 크랙이 발생한 것을 인지할 수 있지만, 그 손상 정도는 알 수 없기 때문에 알람을 확인한 즉시 운전을 중단하고 보수 여부를 결정한다.
이에 따라, 크랙 발생 정도가 경미할 경우에도 운전을 중단한 후 평가 및 보수를 수행하므로 운전 효율이 떨어질 수 있다는 문제점이 있다.
따라서, 플랜트의 특정기기 관련 운전변수가 정상 운전 상태를 벗어나 위험한 상태에 접근할 경우 그 위험을 조기에 미리 경고하여 신속한 조치를 취하도록 하기 위한 기술이 요구되고 있다.
전술한 문제점을 해결하기 위한 본 발명의 목적은, 실시간으로 플랜트 데이터를 수집하고, 수집된 데이터를 학습하여 정상상태의 데이터를 예측하고, 실시간 플랜트 데이터와 예측된 정상 상태의 데이터를 비교하여 이상을 진단하되, 모수성(Parametric) 모델과 비모수성(Non Parametric) 모델의 서로 다른 특징을 지닌 복수의 예측 모델을 기반으로 예측치들을 조합하여 가장 정확도가 높은 예측치를 생성해 학습하여 이상을 진단함으로써 조기에 플랜트 이상을 정확하게 감지하여 경보를 줄 수 있도록 하는, 플랜트 이상 감지 학습 시스템 및 방법을 제공함에 있다.
전술한 목적을 달성하기 위한 본 발명에 따른 플랜트 이상 감지 시스템은 상기 플랜트 데이터를 수집하는 데이터 수집부, 상기 플랜트 데이터 값을 예측하기 위해 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델을 포함하는 복수의 모델을 선택하는 학습모델 선택부, 및 상기 학습모델 선택부에 의해 선택된 복수의 모델 각각에 최적화 알고리즘을 적용한 복수의 예측 알고리즘을 구비한 예측 알고리즘부, 상기 예측 알고리즘부에서 출력하는 예측 데이터들을 바탕으로 앙상블 학습(Ensemble Learning)을 수행하여 최종 예측 데이터를 출력하는 앙상블 학습부, 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 데이터를 비교하여 상기 플랜트의 이상 여부를 판단하는 알람로직을 포함하는 이상 경보부를 포함할 수 있다. 이에 더하여 상기 데이터 수집부에서 수집한 플랜트 데이터 중에서 이상 상태로 판단된 데이터는 삭제하고, 상기 플랜트가 정상상태로 판단되었을 때의 데이터만을 추출하여 학습 데이터를 생성하는 데이터 학습부 및 상기 데이터 학습부에서 생성한 상기 학습 데이터를 이용하여 예측 모델 각각을 학습시켜 상기 플랜트와 유사한 출력을 생성하도록 상기 예측 모델을 최적화하는 모델링부를 더 포함하고, 상기 학습모델 선택부는 상기 예측 모델 중의 일부 또는 전부를 상기 복수의 모델로 선택할 수 있다. 여기서 상기 예측 모델은 제1원칙 모델(First Principles based Model), 상태공간모델(State Space Model), ARX(Auto Regressive eXogenous) 모델, NARX(Nonlinear Auto Regressive eXogenous) 모델, FIR(Finite Impulse Response) 모델, ARMAX(Auto Regressive Moving Average with eXogenous terms) 모델, NPM(Non Parametric Model), TM(Tree Model), 및 NNM(Neural Network Model) 중의 적어도 하나를 포함할 수 있다.
그리고 상기 알람로직은 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 플랜트 데이터 간의 차이를 계산하여 잔차로 생성하고, 생성된 잔차가 미리 설정된 허용치를 초과하는 경우, 상기 플랜트가 이상 상태에 있다고 판단하고, 상기 복수의 예측 알고리즘은 상기 복수의 모델 각각에 서로 다른 최적화 알고리즘을 적용한 것이고, 또한, 상기 예측 알고리즘은 변수들 간의 관계를 예측하는 회귀(Regression)방식 및 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering)방식을 포함할 수 있다.
전술한 목적을 달성하기 위한 본 발명에 따른 플랜트 이상 감지 방법은 (a) 데이터 수집부가 플랜트에 대해 플랜트 데이터를 수집하는 단계, (b) 학습모델 선택부가 상기 플랜트 데이터 값을 예측하기 위해 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델을 포함하는 복수의 모델을 선택하는 단계, (c) 상기 복수의 모델 각각에 최적화 알고리즘을 적용한 복수의 예측 알고리즘이 예측 데이터를 생성하는 단계, (d) 앙상블 학습부가 상기 예측 데이터를 바탕으로 앙상블 학습(Ensemble Learning)을 수행하여 최종 예측 데이터를 출력하는 단계 및 (e) 알람로직이 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 데이터를 비교하여 상기 플랜트의 이상 여부를 판단하는 단계를 포함할 수 있다. 이에 더하여 (f) 상기 데이터 수집부에서 수집한 플랜트 데이터 중에서 상기 플랜트가 이상 상태의 데이터는 삭제하고, 상기 플랜트가 정상상태로 판단되었을 때의 데이터만을 추출하여 학습 데이터를 생성하는 단계 및 (g) 상기 데이터 학습부에서 생성한 상기 학습 데이터를 이용하여 예측 모델 각각을 학습시켜 상기 플랜트와 유사한 출력을 생성하도록 상기 예측 모델을 최적화하는 단계를 더 포함할 수 있고, 상기 (b) 단계는 상기 예측 모델 중의 일부 또는 전부를 상기 복수의 모델로 선택하는 단계를 포함할 수 있다.
그리고 상기 (e) 단계는 상기 최종 예측 데이터와 상기 플랜트 데이터 간의 차이를 계산하여 잔차로 생성하고, 생성된 잔차가 미리 설정된 허용치를 초과하는 경우, 상기 플랜트가 이상 상태에 있다고 판단하는 단계를 포함할 수 있고, 상기 (c) 단계는 상기 복수의 모델 각각에 대하여 서로 다른 최적화 알고리즘을 적용하여 상기 예측 데이터를 출력하는 단계를 포함할 수 있고, 상기 복수의 예측 알고리즘은 변수들 간의 관계를 예측하는 회귀(Regression)방식 및 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering)방식을 포함할 수 있다.
본 발명에 의하면, 플랜트로부터 센서 데이터를 수집하여 이상 상태를 감지하기 위한 예측 데이터에 대해, 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델 등 다수 개의 예측 모델을 이용한 앙상블 학습(Ensemble Learning)을 통하여 예측 정확도를 향상시킬 수 있다.
또한, 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델의 서로 다른 특징을 지닌 복수의 예측 모델을 사용함으로써 학습 모델에 대한 특정 단일 모델들의 장점은 더욱 살리고 약점은 보완하여 가장 정확도가 높은 예측 데이터를 제공할 수 있다.
그리고 예측 정확도 향상으로 플랜트 이상을 정확하게 감지하여 조기에 경보(Alarm)를 알릴 뿐만 아니라 잘못된 경보 발생 비율을 대폭 줄일 수 있어, 신뢰성 있는 플랜트 이상 감지 시스템을 구축할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 플랜트 이상 감지 시스템의 기능 블록을 개략적으로 나타낸 구성도이다.
도 2는 본 발명의 일 실시 예에 따른 복수 개의 모수성 모델(161, 163)과 비모수성 모델(165, 167)을 포함하는 예측 모델을 생성하는 모델링부(160)를 도시한 도면이다.
도 3은 모델링부(160)의 각 모델(161, 163, 165, 167)이 모델부(310)와 최적화부(320)로 구성되는 것을 도시한 도면이다.
도 4는 예측 알고리즘부(410), 앙상블 학습부(420), 및 알람로직(430)을 포함하는 이상 경보부(140)를 도시한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 플랜트 이상 감지 시스템의 간략화된 블록도를 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 플랜트 이상 감지 방법을 설명하기 위한 흐름도이다.
도 7은 본 발명의 일 실시 예에 따른 모수성 모델 및 비모수성 모델의 조합과 앙상블 학습에 의한 예측 결과와 종래의 방식의 예측 결과의 정확도를 도시한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
어느 부분이 다른 부분의 "위에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 수반되지 않는다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시 예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
"아래", "위" 등의 상대적인 공간을 나타내는 용어는 도면에서 도시된 한 부분의 다른 부분에 대한 관계를 보다 쉽게 설명하기 위해 사용될 수 있다. 이러한 용어들은 도면에서 의도한 의미와 함께 사용 중인 장치의 다른 의미나 동작을 포함하도록 의도된다. 예를 들면, 도면 중의 장치를 뒤집으면, 다른 부분들의 "아래"에 있는 것으로 설명된 어느 부분들은 다른 부분들의 "위"에 있는 것으로 설명된다. 따라서 "아래"라는 예시적인 용어는 위와 아래 방향을 전부 포함한다. 장치는 90˚ 회전 또는 다른 각도로 회전할 수 있고, 상대적인 공간을 나타내는 용어도 이에 따라서 해석된다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.
도 1은 본 발명의 일 실시 예에 따른 플랜트 이상 감지 시스템의 기능 블록을 개략적으로 나타낸 구성도이다.
도 1을 참조하면, 본 발명에 따른 플랜트 이상 감지 시스템은, 데이터 수집부(110), 학습모델 선택부(120), 및 이상 경보부(140)를 포함할 수 있다. 여기에, 데이터 학습부(130), 모델링부(160), 제어부(150), 및 진단 데이터베이스(DB)(170)를 더 포함할 수 있다.
데이터 수집부(110)는 플랜트의 특정 설비 또는 특정 지점에 설치된 측정 센서들을 통해 실시간으로 플랜트 데이터를 수집할 수 있다. 실시간으로 수집되는 데이터는 일정 간격 별로 모아 모델링, 예측, 진단 등에 사용될 수 있다. 일 예로서 5분 간격이면 매 5분 동안의 데이터를 모아 하나의 데이터군으로 하고, 5분 단위로 계속 데이터군을 생성하여 모델링, 예측, 진단 등에 사용할 수 있다.
데이터 학습부(130)는 데이터 수집부(110)에서 수집된 데이터를 처리하여 예측 모델을 만들기 위한 학습 데이터를 추출할 수 있다. 좀 더 자세히 설명하면, 수집된 실시간 데이터는 플랜트가 정상상태에서 운용되는 때의 데이터인 정상상태 데이터뿐만 아니라 플랜트가 이상 상태에서 운용되는 때의 데이터인 이상 상태 데이터를 포함할 수 있기 때문에 데이터 학습부(130)는 전처리 과정(Pre-Processing)을 통해 수집된 실시간 데이터로부터 정상상태 데이터만을 추출 또는 생성하여 예측 모델을 만들기 위한 학습 데이터를 추출할 수 있다.
여기서, 전처리(Pre-Processing) 과정은 이상 상태의 데이터를 삭제하기 위한 과정으로 실시간으로 측정된 데이터를 검토하여 다양한 방법으로 이상 여부를 판단할 수 있다. 이상 상태로 판단된 경우의 데이터들을 삭제함으로써 학습 데이터를 추출 또는 생성할 수 있다.
모델링부(160)는 데이터 학습부(130)에서 추출한 학습 데이터를 이용하여 예측 모델을 생성할 수 있다. 예측 모델은 복수 개의 모수성(Parametric) 모델(161, 163)과 복수 개의 비모수성(Non-Parametric) 모델(165, 167)을 포함할 수 있다. 그리고 모델링부(160)의 각 모델은 모델부(310)와 최적화부(320)로 구성될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 복수 개의 모수성 모델(161, 163)과 비모수성 모델(165, 167)을 포함하는 예측 모델을 생성하는 모델링부(160)를 도시한 도면이다.
도 3은 모델링부(160)의 각 모델(161, 163, 165, 167)이 모델부(310)와 최적화부(320)로 구성되는 것을 도시한 도면이다.
모수성 모델은 유한 개의 파라미터를 이용하여 시스템을 나타내는 모델이다. 즉 모수성 모델은 한정된 몇 개의 파라미터를 이용하여 시스템을 묘사할 수 있다. 이러한 모수성 모델에는 제1원칙 모델(First Principles based Model), 전달함수모델(Transfer Function Model), 상태공간모델(State Space Model) 등이 사용될 수 있다. 여기서 제1원칙 모델은 기초적이고 기본적인 물리학 제1 법칙에 의해 정해지는 것들을 파라미터로 사용하는 모델이고, 상태공간모델은 상태 변수를 파라미터로 사용하는 모델이고, 전달함수모델은 입력과 출력 간의 전달함수를 규정하는 변수들을 파라미터로 사용하는 모델일 수 있다. 여기서 전달함수모델은 ARX(Auto Regressive eXogenous), NARX(Nonlinear Auto Regressive eXogenous), FIR(Finite Impulse Response), ARMAX(Auto Regressive Moving Average with eXogenous terms) 모델 등이 포함될 수 있다.
비모수성 모델은 플랜트를 표현하기 위하여 무한 개의 파라미터를 사용할 수 있는 모델로서 NPM(Non Parametric Model), TM(Tree Model), NNM(Neural Network Model) 등이 포함될 수 있다. 비록 비모수성 모델이 개념상 무한 개의 파라미터를 사용할 수 있지만 실제로는 유한 개만을 사용하여 모델을 표현한다.
모델링부(160)의 각 모델(161, 163, 165, 167)은 플랜트를 모델링하고자 하는 전술한 각 방식을 기본으로 하여 데이터 학습부(130)에서 추출한 학습 데이터(x(k); 210)를 적용하여 최적화부(320)에서 최적화함으로써 각 방식별 최적화된 예측 모델을 생성할 수 있다. 이때 사용되는 최적화 알고리즘으로는 에러를 제곱한 값을 최소화되도록 하는 LSM(Least Squares Method), 가장 유사한 값을 찾아가는 MLM(Maximum Likelihood Method), 상관관계가 있는 학습데이터를 선형의 상관관계가 없는 값의 집합으로 변형하는 직교변환을 사용하여 데이터의 차원을 감소시켜서 더 정확한 모델링을 하기 위한 PCA(Principal Component Analysis), PCA에 시간 개념을 결합시켜 시계열성을 고려한 차원 감소 기술인 DPCA(Dynamic Principal Component Analysis), PCA에 회귀(Regression) 기술을 결합한 PLS(Partial Least Squares) 등이 사용될 수 있다.
일 실시 예로서 ARX 방식에 대한 최적화 예측 모델을 생성하기 위하여 모델부(310)는 ARX 방식에 필요한 파라미터와 수식 등을 정의할 수 있다. 다음 식은 일반적인 ARX 방식에 대하여 출력을 구하는 수식을 나타낸 것이다.
A(z)y(k)=B(z)x(k-n) + e(k)
여기서, e(k)는 모델링하고자 하는 플랜트의 에러 관련 정보이고, A(z)와 B(z)는 후방지연연산자(z-1)에 대한 다항식(polynomial)으로서 ARX 방식을 규정하는 파라미터라 할 수 있다. 그러므로 모델부(310)에서는 상기 식과 같은 일반적인 ARX 방식에서 다항식의 개수를 얼마로 할 것인지를 결정할 수 있다. 이때 다항식의 개수를 늘리면 플랜트에 좀 더 최적화된 ARX 모델을 생성할 수 있지만 계산하는데 필요한 컴퓨팅파워(computing power)나 안정화 하는데 까지 걸리는 시간이 길어질 수 있다. 최적화부(320)는 입력되는 데이터(x(k); 210)를 이용하여 상기 모델부(310)에서 선정된 모델을 플랜트와 유사하게 만들 수 있도록 최적화하는 파라미터 A(z)와 B(z)를 결정할 수 있다.
학습모델 선택부(120)는 모델링부(160)에서 생성한 복수 개의 예측 모델 중에서 현 플랜트의 상황에 맞는 최적의 예측 모델을 선택하여 조합할 수 있다. 전술한 바처럼 모수성 모델과 비모수성 모델은 각자의 장점과 단점을 가지고 있다.
[표 1]은 본 발명에 적용될 수 있는 일 모수성 모델과 일 비모수성 모델의 장점과 단점을 표시한 것이다.
Figure PCTKR2016009554-appb-T000001
[표 1]에 보이는 바와 같이 각 모델의 장점과 단점이 뚜렷할 수 있기 때문에 좀 더 정확한 예측 모델을 생성하기 위하여 각 모델의 장점에 해당하는 기능을 선택하고 약점에 해당하는 기능들을 보완할 수 있도록 서로 다른 특징을 갖는 복수의 모델을 조합하여 예측 모델을 생성할 수 있다.
일 예로로서 모델링부(160)에서 생성한 복수 개의 예측 모델 중에서 모수성 모델로 ARX와 ARMAX 모델을 선정할 수 있고, 비모수성 모델로 NPM 이나 NNM을 선정할 수 있다. 이렇게 선정된 복수 개의 모델을 조합하여 예측 모델을 생성할 수 있다.
이상 경보부(140)는 학습모델 선택부(120)에서 생성한 예측 모델을 바탕으로 최적화를 수행하는 각 예측 알고르즘에서 예측치를 추정하고, 이 예측치들을 바탕으로 앙상블 학습을 수행하여 최적의 예측치를 만들어 내고, 예측치와 실측치를 비교하여 이상 여부를 판단하고, 이상이라고 판단되는 경우 경보를 발생할 수 있다.
도 4는 예측 알고리즘부(410), 앙상블 학습부(420), 및 알람로직(430)을 포함하는 이상 경보부(140)를 도시한 도면이다.
도 4를 참조하면 예측 알고리즘부(410)는 학습모델 선택부(120)에서 생성한 예측 모델에 최적화를 적용하는 각 예측 알고리즘 별로 예측치를 획득할 수 있다. 이때 예측 알고리즘에서 사용하는 최적화 알고리즘은 전술한 모델링부(160)에서 사용하는 최적화 알고리즘을 사용할 수 있다. [표 2]는 예측 알고리즘의 핵심 기술에 대한 성능 제약 사항 및 검토 결과를 보여주는 것으로 이 검토 결과를 바탕으로 학습모델 선택부(120)에서 어떤 모델을 사용할 것인지 그리고 어떤 최적화 알고리즘을 적용할 것인지를 결정할 수 있다.
Figure PCTKR2016009554-appb-T000002
예측 알고리즘으로는 변수들 간의 관계를 예측하는 회귀(Regression)방식과 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering) 방식이 있으며 본 발명에서는 회귀방식과 군집방식 모두를 사용할 수 있으나 이하 회귀방식을 사용하는 것에 대하여만 설명한다.
회귀방식은 모델 기반 방식(Model-based method)과 알고리즘 기반 방식(Algorithm-based Method)으로 나누어질 수 있다. 모델 기반 방식은 복수 개의 선형/비선형 회귀 모델을 이용할 수 있다. 회귀 모델은 종속변수(본 발명에서는 예측치)와 한 개 이상의 독립변수(본 발명에서는 플랜트 데이터)와의 상관 관계를 선형 또는 비선형으로 모델링하는 것이다. 알고리즘 기반 방식은 k-NN 방식이 있다. 본 발명에서는 모델 기반 방식과 알고리즘 기반 방식 모두를 사용하여 최적의 예측치를 추출하고자 하였다.
도 4의 일 예를 참고하면 예측 알고리즘부(410)는 학습모델 선택부(120)에서 선택한 모델 중의 하나인 ARX 모델에 대하여 LSM을 이용하여 최적화한 모델인 MLRM을 기반으로 하는 알고리즘을 사용하여 하나의 예측치(Estimated Value_mlrm(k)) 및 에러값(Residual_mlrm(k))을 추출하고, 또 다른 모델인 NPM에 대하여는 k-NN 기반 알고리즘을 적용하여 또 다른 예측치(Estimated Value_kNN(k)) 및 에러값(Residual_kNN(k))을 추출할 수 있다. 본 예에서 예측 알고리즘부(410)는 학습모델 선택부(120)에서 2개의 모델을 선택하여 최적화하여, 예측치를 생성하고 있지만 그 이상의 모델을 선택하여 최적화를 수행하여 예측치를 생성할 수도 있다. 즉, 4개, 8개의 모델을 선택하고, 각 모델에 대하여 최적화를 수행하여 예측치를 추출할 수 있다.
앙상블 학습부(420)는 각 모델 별 추출된 예측치를 바탕으로 최적 예측치를 추출할 수 있다. 앙상블학습은 따로 쓰는 경우에 비해 더 좋은 예측 성능을 얻기 위해 복수의 학습 알고리즘을 이용하는 것을 말한다. 본 발명에서는 예측치의 정확도를 높이기 위하여 서로 특성이 다른 복수의 예측 모델을 선정하고 각 예측 모델에서의 예측치를 바탕으로 최적 예측치를 추정하기위하여 앙상블 학습을 사용하도록 하였다.
앙상블 학습부(420)는 각 예측 모델에서 추정한 예측치들은 바탕으로 가장 정확한 예측치를 추정하기 위하여 다양한 알고리즘 방식을 사용할 수 있는데 각 예측 모델에서 추정한 예측치에 가중치를 곱함이 없이 다수결에 의한 배깅(bagging) 방식, 또는 각 예측 모델에서 추정한 예측치에 가중치를 곱하고 더하여서 추정하는 가중치 투표(boosting) 방식 등이 있을 수 있다. 이 외에도 데이터의 특정 영역별로 다른 예측 모델의 값을 사용하도록 하는 전문가혼합(Mixture of Experts)방식 등이 있을 수 있다. 전술한 배깅방식을 적용한 일 실시 예로서, 예측 알고리즘부(410)의 각 예측 모델에 대한 예측 알고리즘은 예측치(Estimated Value)와 에러(Residual)값을 생성하여 앙상블 학습부(420)로 전달한다. 배깅방식이 적용된 앙상블 학습부(420)는 에러값이 가장 작은 예측 모델을 선택하고 그 예측 모델의 예측치를 최적의 예측치로 선정할 수 있다.
이처럼 앙상블 학습부(420)에서 추정된 최적의 예측치(421)는 플랜트의 이상 상태를 판단하기 위하여 알람 로직(430)으로 전달된다. 알람로직(430)은 앙상블 학습부(420)에서 추정한 최적의 예측치(421)와 실측치를 이용하여 실측치에서 예측치를 뺀 값을 잔차로 생성하고, 생성된 잔차 값이 허용치를 초과하는 경우에 이상 상태로 판단하고 알람을 출력하고, 이상에 대한 경고를 표시할 수 있다.
제어부(150)는 전술한 플랜트 이상 감지 시스템의 각 부에 필요한 파라미터를 설정하는 등의 제어를 수행할 수 있다. 즉, 데이터 수집부(110)에서 실시간으로 수집되는 데이터는 모델링, 예측, 진단 등에 사용되기 위해 일정 간격(일 예로서 5분 또는 10분) 별로 모아질 수 있는데 제어부(150)는 상기 일정 간격에 대한 정보를 데이터 수집부(110)에 전달할 수 있다. 또한, 학습모델 선택부(120)는 모델링하고자 하는 플랜트 환경에 따라 복수 개의 예측 모델을 선정할 수 있는데 이를 위하여 제어부(150)는 플랜트 환경에 대한 정보를 학습모델 선택부(120)로 전달하여 줄 수 있다. 또한 제어부(150)는 이상 경보부(140)에서 이상 상태 판단을 위하여 사용하는 허용치에 대한 정보를 이상 경보부(140)에 제공할 수도 있다.
진단 데이터베이스(170)는 플랜트에서 이상이 발생한 사례들을 진단 데이터로 저장하고 있을 수 있다. 여기서, 이상이 발생한 사례들에 대한 데이터는 실시간으로 측정한 플랜트 데이터를 실측치로 하고, 전술한 본 발명에 따라 학습한 정상상태 데이터를 예측치로 하여, 실측치에서 예측치를 뺀 값을 잔차로 생성하고, 생성된 잔차 값이 허용치를 초과하는 경우에 이상 상태로 판단할 수 있고, 이상 상태가 발생한 때의 비정상 상태의 플랜트 데이터들과, 정상 상태의 플랜트 데이터를 별도로 분리해 저장할 수 있다. 또한, 진단 데이터베이스(170)는 각 이상 상태에 대한 원인을 각 비정상 상태의 플랜트 데이터들과 대응하여 저장할 수 있다. 좀 더 상세히 설명하면, 이상 상태가 발생한 경우에 생성된 알람에 대한 대응으로 관리자는 플랜트를 점검할 수 있고, 그에 따라 이상 상태의 원인 및 결과 등을 알 수 있다. 제어부(150)는 관리자에 의해 입력받을 이상 상태의 원인 및 결과를 각 비정상 상태의 플랜트 데이터와 대응하여 함께 진단 데이터베이스(170)에 저장할 수 있다.
차후 제어부(150)는 이상 경보부(140)에 의해 이상 상태로 판단한 경우의 플랜트 데이터들과 진단 데이터베이스(170)에 저장된 비정상 상태의 플랜트 데이터를 비교하여 유사한 데이터가 존재하는 경우 진단 데이터베이스(170)에 저장된 이상 상태의 원인과 결과 정보를 바탕으로 자동으로 원인을 관리자에게 알려줄 수도 있고, 그에 따른 조치를 취하게도 할 수 있다.
지금까지 플랜트 이상 감지 시스템에 대하여 설명하였다. 전술한 설명에서 플랜트 이상 감지 시스템은 예측 모델을 생성하는 예측 모델 생성부(510)와 상기 예측 모델 생성부(510)에서 생성된 예측 모델을 바탕으로 예측치를 생성하여, 이를 바탕으로 플랜트의 이상 상태를 판단하는 이상 상태 판단부(520)로 나눌 수 있다. 도 5는 본 발명의 일 실시 예에 따른 플랜트 이상 감지 시스템의 간략화된 블록도를 도시한 도면이다.
전술한 바처럼 예측모델 생성부(510)는 복수 개의 모수성 모델 또는 복수 개의 비모수성 모델을 바탕으로 입력되는 플랜트 데이터(210)를 이용하여 최적 예측 모델을 생성할 수 있고, 이상 상태 판단부(520)는 플랜트 데이터에서 생성된 복수의 예측 모델별로 예측치를 추정하고, 앙상블 학습 방법을 통하여 최적의 예측치를 추정할 수 있다. 여기서 예측모델 생성부(510)는 전술한 데이터학습부(130), 모델링부(160) 및 학습모델 선택부(120)를 포함할 수 있고, 이상 상태 판단부(520)는 예측 알고리즘부(410), 앙상블 학습부(420), 및 알람로직(430)을 포함하는 이상 경고부(140)를 포함할 수 있다. 그리고 예측모델 생성부(510)와 이상 상태 판단부(520)는 독립적으로 동작할 수 있다. 즉, 전술한 설명에서는 예측모델 생성부(510)와 이상 상태 판단부(520)가 동시에 실행되는 것처럼 묘사되었지만 서로 다른 시간에 실행될 수도 있다. 예를 들면, 시운전 동안의 자료를 바탕으로 예측 모델을 생성할 수 있고, 이후 운용 중에는 센서 실측치와 예측 모델을 바탕으로 구한 예측치를 비교하여 이상 상태를 판단할 수 있다. 이 경우 예측모델 생성부(510)와 이상 상태 판단부(520)는 서로 다른 시간에 동작할 수도 있다. 이와 다르게 예측모델 생성부(510)와 이상 상태 판단부(520)가 동시에 실행되면서 모델링부(160)가 그대로 예측 알고리즘부(410)로 사용될 수도 있다.
도 6은 본 발명의 일 실시 예에 따른 플랜트 이상 감지 방법을 설명하기 위한 흐름도이다.
도 6을 참조하면, 본 발명에 따른 플랜트 이상 감지 시스템(100)은, 데이터 수집부(110)가 각 센서를 통해 실시간으로 플랜트 데이터를 수집할 수 있다(S310).
즉, 데이터 수집부(110)는 플랜트의 각 장치 또는 지점에 설치된 각각의 측정센서를 통해 해당 센서 데이터를 수집하게 되는데(Data Collecting), 배치 스케줄러(Batch Scheduler)에 따라 각 측정센서들로부터 순차적으로 센서 데이터를 수신하여 원본 데이터(Raw Data)로 데이터베이스에 저장할 수 있다.
이어, 데이터 학습부(130)는 수집된 실시간 데이터에 대해 전처리 과정(Pre-Processing)을 통해 학습 데이터를 생성한다(S320). 즉, 데이터 학습부(130)는 수집된 실시간 데이터에 대해 전처리 과정을 통해 비정상 데이터를 삭제하여 예측 모델을 만들기 위해 사용되는 학습 데이터를 생성하는 것이다. 그러므로 전처리(Pre-Processing) 과정은 이상 상태의 데이터를 삭제하기 위한 과정으로 실시간으로 측정된 데이터를 검토하여 다양한 방법으로 이상 여부를 판단할 수 있다. 이상 상태로 판단된 경우의 데이터들을 삭제함으로써 학습 데이터를 추출 또는 생성할 수 있다.
학습모델 선택부(120)는 복수 개의 예측 모델 중에서 현 시스템의 상황에 맞는 최적의 예측 모델을 선택하여 조합할 수 있다. 특히, 도 2에 도시된 바와 같이 서로 다른 특징을 지닌 복수의 모델 기반으로 예측하여 예측의 신뢰성을 높이기 위해 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델을 조합하여 예측 모델을 선택(S330)할 수 있다.
이때, 학습모델 선택부(120)는, 모수성 모델과 비모수성 모델에서, 특정 단일 모델들의 장점에 해당하는 기능을 선택하고 약점에 해당하는 기능들을 보완하기 위해, 서로 다른 특징을 갖는 복수의 예측 모델을 조합하여 학습 모델을 선택할 수 있다. 즉, 각각의 모델은 저마다 특징과 성능 제약 사항이 존재하므로 예측하고자 하는 시스템에 존재하는 제약 사항과 특징을 파악하여 이에 알맞은 모델을 복수 개 선택할 수 있다. 모수성 모델과 비모수성 모델의 장점과 단점은 전술한 [표 1]에 나타나 있다.
또한, 학습모델 선택부(120)에서 모델을 선정하는데 있어서 각 모델을 플랜트에 맞도록 모델링을 할 필요가 있다. 이를 위하여 모델링부(160)는 데이터 학습부(130)에서 추출한 학습 데이터를 이용하여 예측 모델을 생성할 수 있다. 즉 모델링부(160)에서 생성한 예측 모델은 ARX(Auto Regressive eXogenous), NARX(Nonlinear Auto Regressive eXogenous), FIR(Finite Impulse Response), ARMAX(Auto Regressive Moving Average with eXogenous terms) 모델, SSM(State Space Model), FPBM(First Principles based Model), NPM(Non Parametric Model), TM(Tree Model), NNM(Neural Network Model) 등의 모델을 기반으로 예측하고자 하는 플랜트로부터 수집한 데이터를 이용하여 최적화시킨 것일 수 있다. 그러므로 모델링부(160)에서 생성한 예측 모델은 특정 모델을 기반으로 예측하고자 하는 플랜트에 최적화된 모델일 수 있다. 학습모델 선택부(120)는 모델링부(160)에서 생성한 최적화된 예측 모델 중에 플랜트에 알맞은 복수의 예측 모델을 선택하여 조합할 수 있다.
이상 경보부(140)는 학습모델 선택부(120)에서 생성한 예측 모델을 바탕으로 최적화를 수행하는 각 예측 알고리즘에서 예측치를 추정하고, 이 예측치들을 바탕으로 앙상블 학습을 수행하여 최적의 예측치를 출력(S340)할 수 있고, 예측치와 플랜트에서 실시간으로 측정된 실측치를 비교하여 미리 설정된 허용치 이상의 차이가 나면 이상으로 판단하고 경보(S350)할 수 있다.
각 예측 알고리즘에서의 예측치의 추정은 변수들 간의 관계를 예측하는 회귀(Regression)방식에 의하거나 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering) 방식에 의하여 할 수 있으며 본 발명에서는 회귀방식과 군집방식 모두를 사용할 수 있다. 회귀방식은 모델 기반 방식(Model-based method)과 알고리즘 기반 방식(Algorithm-based Method)으로 나누어질 수 있다. 모델 기반 방식은 복수 개의 선형/비선형 회귀 모델을 이용할 수 있다. 회귀 모델은 종속변수(본 발명에서는 예측치)와 한 개 이상의 독립변수(본 발명에서는 플랜트 데이터)와의 상관관계를 선형 또는 비선형으로 모델링하는 것이다. 알고리즘에 기초한 방식은 k-NN 방식이 있다. 본 발명에서는 모델 기반 방식과 알고리즘기반 방식 모두를 사용하여 최적의 예측 데이터를 추출할 수 있다.
그리고 앙상블학습을 통해 각 예측 알고리즘 별 추출된 예측 데이터를 바탕으로 최적 예측 데이터를 출력할 수 있다. 앙상블학습을 위한 다양한 알고리즘이 사용될 수 있는데, 각 예측 모델에서 추정한 예측 데이터에 가중치를 곱함이 없이 다수결에 의한 배깅(bagging) 방식, 또는 각 예측 모델에서 추정한 예측 데이터에 가중치를 곱하고 더하여서 추정하는 가중치 투표(boosting)방식 등이 있을 수 있다. 이 외에도 데이터의 특정 영역별로 다른 예측 모델의 값을 사용하도록 하는 전문가혼합(Mixture of Experts)방식 등이 있을 수 있다. 특히 전술한 배깅방식을 적용한 일 실시 예로서, 각 예측 알고리즘에서 예측 데이터를 생성하면서 같이 구한 에러값을 비교하여 에러값이 가장 작은 예측 모델의 예측 데이터를 최적의 예측 데이터로 선정할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 모수성 모델 및 비모수성 모델의 조합과 앙상블 학습에 의한 예측 결과와 종래의 방식의 예측 결과의 정확도를 도시한 도면이다. 도 7을 참조하면, MLRM, PLS, DPCA, k-NN 모델을 바탕으로 앙상블 학습을 수행한 제1 실시 예(Proposed Method*)의 경우 예측 결과가 95.1%의 정확도를 갖는 것으로 나타났다. 이에 더하여 모델링부(160)에서 입력되는 정상상태의 플랜트 데이터를 바탕으로 예측 모델의 파라미터들을 구하도록 하는 자동 학습 알고리즘(Auto-Learning Algorithm)을 적용하여 모델을 좀 더 최적화한 제2 실시 예(Proposed Method**)의 경우 예측 결과가 97.9%의 정확도를 갖는 것으로 나타났다. 이에 비하여 종래의 DPCA 방식에 의한 경우 정확도가 79.4%로 나타났으며, NN(Neural Network)의 경우에는 68%로 나타났다. 상기 결과로부터 본 발명에서 제시하는 플랜트 이상 감지 시스템 및 방법은 종래의 방법에 비해 훨씬 높은 정확도를 가지고 예측 데이터를 산출함으로써 조기에 플랜트 이상을 정확하게 감지하여 경보해 줄 수 있다.
한편, 제어부(150)는 진단 데이터베이스(170)에 근거해 진단 로직(Diagnosis Logic)을 이용하여 플랜트의 이상을 진단하고 근본 원인을 추적할 수 있다. 여기서, 진단 로직은 실시간 플랜트 데이터와 정상상태 데이터가 허용치를 초과하는 정도로 차이가 나서 조기 알람이 발생하게 되면, 플랜트 이상에 대한 근본적인 원인을 진단 데이터에 근거해 분석하여 찾게 되는 알고리즘이다. 이에, 제어부(150)는 진단 데이터베이스(170)에 저장된 진단 데이터에 근거해 진단 로직을 이용하여 플랜트의 이상에 대한 근본적인 원인을 분석하여 추적할 수 있게 되는 것이다.
전술한 바와 같이 본 발명에 의하면, 실시간으로 플랜트 데이터를 수집하고, 수집된 데이터 중에서 정상 상태의 데이터를 추출하며, 모수성(Parametric) 모델과 비모수성(Non Parametric) 모델의 서로 다른 특징을 지닌 복수의 예측 모델을 기반으로 예측치들을 조합하여 가장 정확도가 높은 예측치를 생성하여 이상을 진단함으로써 조기에 플랜트 이상을 정확하게 감지하여 경보를 줄 수 있도록 하는, 플랜트 이상 감지 학습 시스템 및 방법을 실현할 수 있다.
본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 플랜트의 이상을 감지하기 위한 플랜트 이상 감지 시스템으로서,
    상기 플랜트 데이터를 수집하는 데이터 수집부;
    상기 플랜트 데이터 값을 예측하기 위해 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델을 포함하는 복수의 모델을 선택하는 학습모델 선택부; 및
    상기 학습모델 선택부에 의해 선택된 복수의 모델 각각에 최적화 알고리즘을 적용한 복수의 예측 알고리즘을 구비한 예측 알고리즘부, 상기 예측 알고리즘부에서 출력하는 예측 데이터들을 바탕으로 앙상블 학습(Ensemble Learning)을 수행하여 최종 예측 데이터를 출력하는 앙상블 학습부, 및 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 데이터를 비교하여 상기 플랜트의 이상 여부를 판단하는 알람로직을 포함하는 이상 경보부; 를 포함하는,
    플랜트 이상 감지 시스템.
  2. 제 1 항에 있어서,
    상기 데이터 수집부에서 수집한 플랜트 데이터 중에서 상기 플랜트가 이상 상태로 판단된 데이터는 삭제하고, 상기 플랜트가 정상상태로 판단되었을 때의 데이터만을 추출하여 학습 데이터를 생성하는 데이터 학습부; 및
    상기 데이터 학습부에서 생성한 상기 학습 데이터를 이용하여 예측 모델 각각을 학습시켜 상기 플랜트와 유사한 출력을 생성하도록 상기 예측 모델을 최적화하는 모델링부; 를 더 포함하고,
    상기 학습모델 선택부는 상기 예측 모델 중의 일부 또는 전부를 상기 복수의 모델로 선택하는,
    플랜트 이상 감지 시스템.
  3. 제 2 항에 있어서, 상기 예측 모델은,
    제1원칙 모델(First Principles based Model), 상태공간모델(State Space Model), ARX(Auto Regressive eXogenous) 모델, NARX(Nonlinear Auto Regressive eXogenous) 모델, FIR(Finite Impulse Response) 모델, ARMAX(Auto Regressive Moving Average with eXogenous terms) 모델, NPM(Non Parametric Model), TM(Tree Model), 및 NNM(Neural Network Model) 중의 적어도 하나를 포함하는,
    플랜트 이상 감지 시스템.
  4. 제 1 항 내지 제 3 항중 어느 하나의 항에 있어서,
    상기 알람로직은 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 플랜트 데이터 간의 차이를 계산하여 잔차로 생성하고, 생성된 잔차가 미리 설정된 허용치를 초과하는 경우, 상기 플랜트가 이상 상태에 있다고 판단하는,
    플랜트 이상 감지 시스템.
  5. 제 1 항 내지 제 3 항중 어느 하나의 항에 있어서,
    상기 복수의 예측 알고리즘은 상기 복수의 모델 각각에 서로 다른 최적화 알고리즘을 적용한,
    플랜트 이상 감지 시스템.
  6. 제 5 항에 있어서,
    상기 복수의 예측 알고리즘은 변수들 간의 관계를 예측하는 회귀(Regression)방식 및 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering)방식을 포함하는,
    플랜트 이상 감지 시스템.
  7. 제 6 항에 있어서,
    상기 회귀방식은 복수 개의 선형 및/또는 비선형 회귀모델(Linear Regression Model)을 이용하는,
    플랜트 이상 감지 시스템.
  8. (a) 데이터 수집부가 플랜트에 대해 플랜트 데이터를 수집하는 단계;
    (b) 학습모델 선택부가 상기 플랜트 데이터 값을 예측하기 위해 모수성(Parametric) 모델과 비모수성(Non-Parametric) 모델을 포함하는 복수의 모델을 선택하는 단계;
    (c) 상기 복수의 모델 각각에 최적화 알고리즘을 적용한복수의 예측 알고리즘이 예측 데이터를 생성하는 단계;
    (d) 앙상블 학습부가 상기 예측 데이터를 바탕으로 앙상블 학습(Ensemble Learning)을 수행하여 최종 예측 데이터를 출력하는 단계; 및
    (e) 알람로직이 상기 최종 예측 데이터와 상기 데이터 수집부에서 수집한 데이터를 비교하여 상기 플랜트의 이상 여부를 판단하는 단계;를 포함하는
    플랜트 이상 감지 방법.
  9. 제 8 항에 있어서,
    (f) 데이터 학습부가 상기 데이터 수집부에서 수집한 플랜트 데이터 중에서 이상 상태의 데이터는 삭제하고, 상기 플랜트가 정상상태로 판단되었을 때의 데이터만을 추출하여 학습 데이터를 생성하는 단계; 및
    (g) 모델링부가 상기 데이터 학습부에서 생성한 상기 학습 데이터를 이용하여 예측 모델 각각을 학습시켜 상기 플랜트와 유사한 출력을 생성하도록 상기 예측 모델을 최적화하는 단계;를 더 포함하고,
    상기 (b) 단계는 상기 예측 모델 중의 일부 또는 전부를 상기 복수의 모델로 선택하는 단계를 포함하는,
    플랜트 이상 감지 방법.
  10. 제 8 항 내지 제 9 항중 어느 하나의 항에 있어서,
    상기 (e) 단계는 상기 최종 예측 데이터와 상기 플랜트 데이터 간의 차이를 계산하여 잔차로 생성하고, 생성된 잔차가 미리 설정된 허용치를 초과하는 경우, 상기 플랜트가 이상 상태에 있다고 판단하는 단계를 포함하는,
    플랜트 이상 감지 방법.
  11. 제 8 항 내지 제 9항중 어느 하나의 항에 있어서,
    상기 (c) 단계는 상기 복수의 모델 각각에 대하여 서로 다른 최적화 알고리즘을 적용하여 상기 예측 데이터를 출력하는 단계를 포함하는,
    플랜트 이상 감지 방법.
  12. 제 9 항에 있어서,
    상기 복수의 예측 알고리즘은 변수들 간의 관계를 예측하는 회귀(Regression)방식 및 유사한 속성을 가지는 것을 묶어서 군집을 만들어 예측을 수행하는 군집(clustering)방식을 포함하는,
    플랜트 이상 감지 방법.
PCT/KR2016/009554 2016-05-04 2016-08-26 플랜트 이상 감지 방법 및 시스템 WO2017191872A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16901098.0A EP3454289B1 (en) 2016-05-04 2016-08-26 Plant abnormality detection method and system
CN201680080886.2A CN108604360B (zh) 2016-05-04 2016-08-26 设施异常监测方法及其***
US16/082,267 US11092952B2 (en) 2016-05-04 2016-08-26 Plant abnormality detection method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160055411A KR101827108B1 (ko) 2016-05-04 2016-05-04 플랜트 이상 감지 학습 시스템 및 방법
KR10-2016-0055411 2016-05-04

Publications (1)

Publication Number Publication Date
WO2017191872A1 true WO2017191872A1 (ko) 2017-11-09

Family

ID=60203618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009554 WO2017191872A1 (ko) 2016-05-04 2016-08-26 플랜트 이상 감지 방법 및 시스템

Country Status (5)

Country Link
US (1) US11092952B2 (ko)
EP (1) EP3454289B1 (ko)
KR (1) KR101827108B1 (ko)
CN (1) CN108604360B (ko)
WO (1) WO2017191872A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156449A (zh) * 2017-12-01 2018-06-12 北京世纪东方通讯设备有限公司 一种视频质量诊断处理方法及装置
CN109637090A (zh) * 2019-01-30 2019-04-16 深圳市地质局 一种基于soa架构的灾害监测预警平台建设方法
CN110751170A (zh) * 2019-09-06 2020-02-04 武汉精立电子技术有限公司 面板质量检测方法、***、终端设备及计算机可读介质
EP3640759A1 (en) * 2018-10-16 2020-04-22 Aida Engineering, Ltd. Press machine and method for monitoring abnormality of press machine
CN112184037A (zh) * 2020-09-30 2021-01-05 华中科技大学 一种基于加权svdd的多模态过程故障检测方法
CN112884167A (zh) * 2019-11-29 2021-06-01 中国信托登记有限责任公司 一种基于机器学习的多指标异常检测方法及其应用***
CN113657018A (zh) * 2021-07-01 2021-11-16 广州中国科学院工业技术研究院 一种气体储罐发生泄漏后实时预测泄漏流量的方法及装置
EP3866132A4 (en) * 2018-10-12 2022-06-29 Korea Hydro & Nuclear Power Co., Ltd Power plant early warning device and method employing multiple prediction model
CN115033591A (zh) * 2022-06-01 2022-09-09 广东技术师范大学 一种电费数据异常智能检测方法、***、存储介质及计算机设备
CN115049173A (zh) * 2022-08-17 2022-09-13 中国石油大学(华东) 深度学习和Eaton法耦合驱动地层孔隙压力预测方法
CN117575423A (zh) * 2024-01-10 2024-02-20 湖南工商大学 基于联邦学习***的工业产品质量检测方法及相关设备
CN117592823A (zh) * 2024-01-19 2024-02-23 天津路联智通交通科技有限公司 一种土木建筑污水处理方法及***

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116545A (ja) * 2017-01-19 2018-07-26 オムロン株式会社 予測モデル作成装置、生産設備監視システム、及び生産設備監視方法
EP3598257B1 (en) * 2017-03-17 2022-02-23 Nec Corporation Information processing device, information processing method, and recording medium in which information processing program is recorded
KR102025145B1 (ko) 2017-09-01 2019-09-25 두산중공업 주식회사 플랜트 데이터 예측 장치 및 방법
KR102089772B1 (ko) * 2017-12-18 2020-03-17 두산중공업 주식회사 전력 사용량 예측 시스템 및 방법
KR101984730B1 (ko) 2018-10-23 2019-06-03 (주) 글루시스 서버 장애 자동 예측 시스템 및 자동 예측 방법
KR102130096B1 (ko) * 2018-11-16 2020-07-03 두산중공업 주식회사 해석을 진단하기 위한 장치 및 이를 위한 방법
KR102176765B1 (ko) * 2018-11-26 2020-11-10 두산중공업 주식회사 연소 최적화를 위한 학습 데이터를 생성하기 위한 장치 및 이를 위한 방법
KR102245922B1 (ko) * 2018-11-30 2021-04-30 두산중공업 주식회사 CFD(Computational Fluid Dynamics) 해석 이상 징후 예측 시스템 및 방법
KR102124779B1 (ko) 2018-12-21 2020-06-19 한국수력원자력 주식회사 다중 예측 모델을 이용한 발전소 기동 및 정지에 관한 조기 경보 장치 및 방법
KR102095389B1 (ko) * 2018-12-24 2020-03-31 강릉원주대학교산학협력단 에너지 사용 시설물의 고장 진단 시스템
JP6992774B2 (ja) * 2019-02-13 2022-01-13 セイコーエプソン株式会社 情報処理装置、学習装置及び学習済モデル
KR102257716B1 (ko) 2019-03-05 2021-05-28 한국수력원자력 주식회사 다중 예측 모델의 스위칭 기술을 이용한 발전소의 조기 경보 장치 및 방법
CN109991956B (zh) * 2019-04-03 2020-07-07 中国人民解放军国防科技大学 一种液体火箭发动机稳态故障预测方法
CN111835541B (zh) * 2019-04-18 2021-10-22 华为技术有限公司 一种流量识别模型老化检测方法、装置、设备及***
CN110224852A (zh) * 2019-04-28 2019-09-10 中电长城网际安全技术研究院(北京)有限公司 基于htm算法的网络安全监测方法及装置
JP7347969B2 (ja) * 2019-06-18 2023-09-20 ファナック株式会社 診断装置及び診断方法
CN110517774A (zh) * 2019-08-06 2019-11-29 国云科技股份有限公司 一种预测体温异常的方法
KR102634916B1 (ko) 2019-08-29 2024-02-06 주식회사 엘지에너지솔루션 온도 추정 모델 결정 방법 및 장치, 온도 추정 모델이 적용된 배터리 관리 시스템
CN110610233B (zh) * 2019-09-19 2023-04-07 福建宜准信息科技有限公司 基于领域知识和数据驱动的健身跑心率预测方法
JP2021060633A (ja) * 2019-10-02 2021-04-15 ファナック株式会社 診断装置
KR102270347B1 (ko) * 2019-11-26 2021-06-30 한국전력공사 딥러닝 앙상블 모델을 이용한 이상 상황 탐지 장치 및 그 방법
CN111027679A (zh) * 2019-12-06 2020-04-17 深圳鲲云信息科技有限公司 异常数据检测方法及***
CN111102699A (zh) * 2019-12-25 2020-05-05 Tcl华星光电技术有限公司 一种洁净室智能控制***
KR102340395B1 (ko) * 2020-01-02 2021-12-15 두산중공업 주식회사 플랜트의 고장을 진단하기 위한 장치 및 이를 위한 방법
CN111625516B (zh) * 2020-01-10 2024-04-05 京东科技控股股份有限公司 检测数据状态的方法、装置、计算机设备和存储介质
US20230057943A1 (en) * 2020-02-04 2023-02-23 Daicel Corporation Prediction apparatus, prediction method, and program
KR102350636B1 (ko) 2020-02-18 2022-01-14 두산중공업 주식회사 플랜트 고장 예지 장치 및 방법
KR102350637B1 (ko) 2020-02-11 2022-01-14 두산중공업 주식회사 고장 예지 모델 생성 장치 및 방법
CN111340072B (zh) * 2020-02-12 2023-06-20 江南大学 一种基于数据整体信息和邻域结构的工业过程故障检测方法
EP3865963A1 (en) * 2020-02-14 2021-08-18 Mobility Asia Smart Technology Co. Ltd. Method and device for analyzing vehicle failure
KR102350635B1 (ko) 2020-02-18 2022-01-14 두산중공업 주식회사 플랜트 고장 예지 장치 및 방법
KR102362843B1 (ko) 2020-02-28 2022-02-15 두산중공업 주식회사 플랜트 보일러 수명 예지 장치 및 방법
KR102372729B1 (ko) 2020-03-02 2022-03-10 두산중공업 주식회사 플랜트 수명 예지 장치 및 방법
JP2021144484A (ja) * 2020-03-12 2021-09-24 横河電機株式会社 アラーム発生システム、及びアラーム発生方法
KR102383775B1 (ko) 2020-04-27 2022-04-05 두산중공업 주식회사 플랜트의 고장 및 연소 최적화를 관리하는 방법 및 이를 위한 시스템
KR102383774B1 (ko) 2020-05-07 2022-04-05 두산중공업 주식회사 플랜트 고장을 예측 하는 방법 및 이를 위한 시스템
DE112020006948B4 (de) 2020-05-28 2024-06-20 Mitsubishi Electric Corporation Überwachungsvorrichtung eines anlagenzustands und verfahren zur überwachung eines anlagenzustands
KR102440073B1 (ko) * 2020-08-24 2022-09-05 주식회사 테스트웍스 최적화 모델 선택 장치 및 방법
CN112001561A (zh) * 2020-09-01 2020-11-27 国网安徽省电力有限公司信息通信分公司 一种电力行业风险预测方法及***
KR102415711B1 (ko) 2020-09-23 2022-07-05 주식회사 티라유텍 실시간 데이터 전처리 및 이상치 감지를 위한 모니터링 시스템
DE102020213439A1 (de) * 2020-10-26 2022-04-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum kontinuierlichen Bestimmen eines Gütemaßes
KR102248536B1 (ko) 2020-11-17 2021-05-06 한국수력원자력 주식회사 다중 예측 모델의 스위칭 기술을 이용한 발전소의 조기 경보 장치 및 방법
KR102516187B1 (ko) * 2020-11-18 2023-03-30 (주)글루시스 시스템 장애 예측 방법 및 시스템
CN112654060B (zh) * 2020-12-18 2023-03-24 中国计量大学 一种装置异常检测方法及***
TW202311961A (zh) * 2021-09-02 2023-03-16 遠傳電信股份有限公司 應用程式異常偵測方法及其系統
KR20240061824A (ko) * 2022-11-01 2024-05-08 한국전력공사 조기경보 운영 최적화를 위한 오탐지 평가 시스템 및 방법
CN115471994B (zh) * 2022-11-15 2023-02-07 淄博威世能净油设备有限公司 一种基于数据分析的净油机运行故障预测***
CN117056846B (zh) * 2023-10-08 2023-12-22 南通银河水泵有限公司 一种基于人工智能的轴流泵转子运行稳定性预测***及方法
CN117093946A (zh) * 2023-10-20 2023-11-21 国网天津市电力公司营销服务中心 一种关口电能计量装置异常分析方法与装置
CN118091476A (zh) * 2024-04-23 2024-05-28 中铁七局集团南京工程有限公司 一种轨道交通供电***检测方法、***及存储介质
CN118092404A (zh) * 2024-04-29 2024-05-28 哈尔滨宇龙自动化有限公司 一种基于人工智能的plc控制器网络预防性维护方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135412A (ja) * 2004-11-02 2006-05-25 Tokyo Gas Co Ltd 遠隔監視システム
JP2006258535A (ja) * 2005-03-16 2006-09-28 Omron Corp 検査装置および検査方法
JP2009512097A (ja) * 2005-10-18 2009-03-19 ハネウェル・インターナショナル・インコーポレーテッド 早期イベント検出のためのシステム、方法、およびコンピュータプログラム
JP2011227706A (ja) * 2010-04-20 2011-11-10 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム
US20150100284A1 (en) * 2011-04-14 2015-04-09 The Trustees Of Columbia University In The City Of New York Metrics and Semiparametric Model Estimating Failure Rate and Mean time Between Failures

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205429A (ja) * 1996-01-29 1997-08-05 Toshiba Corp ネットワーク故障診断装置及び故障予測装置並びにその診断及び予測方法
US5764509A (en) * 1996-06-19 1998-06-09 The University Of Chicago Industrial process surveillance system
JP2003044126A (ja) * 2001-08-02 2003-02-14 Mitsui Eng & Shipbuild Co Ltd リモートメンテナンスシステムおよび在庫管理システム
WO2007087729A1 (en) * 2006-02-03 2007-08-09 Recherche 2000 Inc. Intelligent monitoring system and method for building predictive models and detecting anomalies
US7720641B2 (en) * 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
US7917240B2 (en) * 2006-09-29 2011-03-29 Fisher-Rosemount Systems, Inc. Univariate method for monitoring and analysis of multivariate data
US8515719B2 (en) * 2009-01-14 2013-08-20 Hitachi, Ltd. Apparatus anomaly monitoring method and system
WO2012073289A1 (ja) 2010-12-02 2012-06-07 株式会社日立製作所 プラントの診断装置及びプラントの診断方法
US9152610B2 (en) * 2012-11-16 2015-10-06 Johnson Controls Technology Company Systems and methods for generating an energy use model for a building
CN103064289B (zh) * 2012-12-19 2015-03-11 华南理工大学 一种垃圾发电厂多目标运行优化及协调的控制方法及装置
US10373065B2 (en) * 2013-03-08 2019-08-06 Oracle International Corporation Generating database cluster health alerts using machine learning
GB2522926A (en) * 2014-02-11 2015-08-12 Ge Aviat Systems Ltd Method of identifying anomalies
WO2015161198A1 (en) 2014-04-17 2015-10-22 Lockheed Martin Corporation Prognostics and health management system
CN103974311B (zh) * 2014-05-21 2017-06-20 哈尔滨工业大学 基于改进高斯过程回归模型的状态监测数据流异常检测方法
CN104102773B (zh) * 2014-07-05 2017-06-06 山东鲁能软件技术有限公司 一种设备故障预警及状态监测方法
CN104317778A (zh) * 2014-10-30 2015-01-28 国家电网公司 基于海量监测数据的变电设备故障诊断方法
CA2972973A1 (en) * 2015-01-09 2016-07-14 Ecorithm, Inc. Machine learning-based fault detection system
CN105372581B (zh) * 2015-11-18 2018-05-15 华南理工大学 挠性电路板制造过程自动监测和智能分析***及方法
US20170308802A1 (en) * 2016-04-21 2017-10-26 Arundo Analytics, Inc. Systems and methods for failure prediction in industrial environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135412A (ja) * 2004-11-02 2006-05-25 Tokyo Gas Co Ltd 遠隔監視システム
JP2006258535A (ja) * 2005-03-16 2006-09-28 Omron Corp 検査装置および検査方法
JP2009512097A (ja) * 2005-10-18 2009-03-19 ハネウェル・インターナショナル・インコーポレーテッド 早期イベント検出のためのシステム、方法、およびコンピュータプログラム
JP2011227706A (ja) * 2010-04-20 2011-11-10 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム
US20150100284A1 (en) * 2011-04-14 2015-04-09 The Trustees Of Columbia University In The City Of New York Metrics and Semiparametric Model Estimating Failure Rate and Mean time Between Failures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454289A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108156449A (zh) * 2017-12-01 2018-06-12 北京世纪东方通讯设备有限公司 一种视频质量诊断处理方法及装置
US11960271B2 (en) 2018-10-12 2024-04-16 Korea Hydro & Nuclear Power Co., Ltd Power plant early warning device and method employing multiple prediction model
EP3866132A4 (en) * 2018-10-12 2022-06-29 Korea Hydro & Nuclear Power Co., Ltd Power plant early warning device and method employing multiple prediction model
JP2020062650A (ja) * 2018-10-16 2020-04-23 アイダエンジニアリング株式会社 プレス機械及びプレス機械の異常監視方法
US11571870B2 (en) 2018-10-16 2023-02-07 Aida Engineering, Ltd. Press machine and method for monitoring abnormality of press machine
EP3640759A1 (en) * 2018-10-16 2020-04-22 Aida Engineering, Ltd. Press machine and method for monitoring abnormality of press machine
CN109637090A (zh) * 2019-01-30 2019-04-16 深圳市地质局 一种基于soa架构的灾害监测预警平台建设方法
CN110751170A (zh) * 2019-09-06 2020-02-04 武汉精立电子技术有限公司 面板质量检测方法、***、终端设备及计算机可读介质
CN112884167A (zh) * 2019-11-29 2021-06-01 中国信托登记有限责任公司 一种基于机器学习的多指标异常检测方法及其应用***
CN112884167B (zh) * 2019-11-29 2023-11-10 中国信托登记有限责任公司 一种基于机器学习的多指标异常检测方法及其应用***
CN112184037A (zh) * 2020-09-30 2021-01-05 华中科技大学 一种基于加权svdd的多模态过程故障检测方法
CN112184037B (zh) * 2020-09-30 2022-11-11 华中科技大学 一种基于加权svdd的多模态过程故障检测方法
CN113657018A (zh) * 2021-07-01 2021-11-16 广州中国科学院工业技术研究院 一种气体储罐发生泄漏后实时预测泄漏流量的方法及装置
CN115033591A (zh) * 2022-06-01 2022-09-09 广东技术师范大学 一种电费数据异常智能检测方法、***、存储介质及计算机设备
CN115049173A (zh) * 2022-08-17 2022-09-13 中国石油大学(华东) 深度学习和Eaton法耦合驱动地层孔隙压力预测方法
CN117575423A (zh) * 2024-01-10 2024-02-20 湖南工商大学 基于联邦学习***的工业产品质量检测方法及相关设备
CN117575423B (zh) * 2024-01-10 2024-04-16 湖南工商大学 基于联邦学习***的工业产品质量检测方法及相关设备
CN117592823A (zh) * 2024-01-19 2024-02-23 天津路联智通交通科技有限公司 一种土木建筑污水处理方法及***
CN117592823B (zh) * 2024-01-19 2024-03-29 天津路联智通交通科技有限公司 一种土木建筑污水处理方法及***

Also Published As

Publication number Publication date
US20190101908A1 (en) 2019-04-04
US11092952B2 (en) 2021-08-17
EP3454289A4 (en) 2020-03-04
EP3454289B1 (en) 2023-02-22
EP3454289A1 (en) 2019-03-13
CN108604360B (zh) 2021-09-03
KR20170125238A (ko) 2017-11-14
CN108604360A (zh) 2018-09-28
KR101827108B1 (ko) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2017191872A1 (ko) 플랜트 이상 감지 방법 및 시스템
US9483049B2 (en) Anomaly detection and diagnosis/prognosis method, anomaly detection and diagnosis/prognosis system, and anomaly detection and diagnosis/prognosis program
CN104390657B (zh) 一种发电机组运行参数测量传感器故障诊断方法及***
CN104767482B (zh) 一种光伏组件老化和短路故障在线诊断方法
KR20170125265A (ko) 플랜트 이상 감지를 위한 자동 학습 시스템 및 방법
GB2476246A (en) Diagnosing an operation mode of a machine
JP3651693B2 (ja) プラント監視診断装置および方法
KR20200001903A (ko) 발전소 고장 예측 및 진단시스템과 그 방법
WO2020076081A1 (ko) 신경망 모델을 이용한 비정상 운전 상태 판단 장치 및 방법
CN112734977B (zh) 一种基于物联网的设备风险预警***及算法
WO2021172723A1 (ko) 원전의 지능형 상태감시 방법 및 시스템
CN113296032A (zh) 一种电缆接头柔性防爆装置的运行监测方法及装置
CN113888353A (zh) 分布式光伏发电设备的能效诊断方法、***及介质
CN115640860B (zh) 一种工业云服务的机电设备远程维护方法及***
WO2020004996A1 (ko) 발전소 고장 예측 및 진단시스템의 학습모델을 위한 학습데이터 생성장치 및 방법
CN117612345A (zh) 一种电力设备状态监测报警***及方法
WO2018044041A1 (ko) 조기경보시스템에서 외부 영향을 고려한 최신 데이터 학습 방법 및 그 시스템
CN206833239U (zh) 一种基于数据驱动的火电厂控制***故障检测***
CN117471346A (zh) 用于确定退役电池模组剩余寿命和健康状态的方法及***
CN115310693A (zh) 一种综合能源数据清洗方法、***、设备和介质
CN102289577B (zh) 一种基于最大修复时间最小化的排故方法
CN109613851B (zh) 一种基于多阶组合的网络化在线监控方法
CN117893955B (zh) 一种环网柜故障检测***
Wang et al. Complex equipment diagnostic reasoning based on neural network algorithm
RU150919U1 (ru) Устройство прогнозирования работоспособности многопараметрических электромеханических систем

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901098

Country of ref document: EP

Effective date: 20181204