WO2017191816A1 - 生体情報測定システム、及び生体情報測定方法 - Google Patents

生体情報測定システム、及び生体情報測定方法 Download PDF

Info

Publication number
WO2017191816A1
WO2017191816A1 PCT/JP2017/017001 JP2017017001W WO2017191816A1 WO 2017191816 A1 WO2017191816 A1 WO 2017191816A1 JP 2017017001 W JP2017017001 W JP 2017017001W WO 2017191816 A1 WO2017191816 A1 WO 2017191816A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
biological information
wavelength
information
Prior art date
Application number
PCT/JP2017/017001
Other languages
English (en)
French (fr)
Inventor
塁太 ▲高▼木
Original Assignee
株式会社トリロバイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トリロバイト filed Critical 株式会社トリロバイト
Priority to EP17754591.0A priority Critical patent/EP3318190B1/en
Priority to US15/554,474 priority patent/US10285630B2/en
Publication of WO2017191816A1 publication Critical patent/WO2017191816A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation

Definitions

  • the present invention relates to a biological information measuring system including a biological information measuring unit and a biological information output unit, and a biological information measuring method.
  • information measured by a measuring device is output between a measuring device that measures biological information of a subject such as a patient and an output device that outputs information measured by the measuring device.
  • a communication cable wireless for transmission to the Internet.
  • the presence of the communication cable imposes a burden on the subject such as the patient because the output unit 16 is restricted for the subject such as the patient to keep the posture to some extent when measuring the biological information. It was over.
  • the presence of the communication cable is due to the possibility that the signal of the measurement information is attenuated in the process of transmitting the measurement information obtained by the measurement device that measures the biological information to the output device, or the measurement device that measures the biological information. Disturbance effects have also been pointed out when other communication equipment is used in the vicinity.
  • Patent Document 1 describes that a pulse oximetry sensor is attached to a patient, and modulated red light and infrared plethysmographic signals are sent through a patient cable to a general purpose / upgrade pulse oximeter (UPO) for patient monitoring. It is described that the UPO calculates the oxygen saturation and pulse rate of the patient from the sensor signal, and displays the oxygen state of the patient as necessary.
  • UPO pulse oximeter
  • the present invention uses the measurement information obtained by the biological information measurement unit 100 as the biological information output unit without using a communication cable between the biological information measurement unit 100 and the biological information output unit 200.
  • This can be realized by wireless transmission to 200.
  • a medical worker performs measurement of biological information on a subject such as a patient
  • the medical worker can easily perform a medical practice, and for a subject such as a patient
  • a biological information measurement system is a biological information measurement system that includes a biological information measurement unit and a biological information output unit, and is applied to a subject who needs cardiopulmonary resuscitation.
  • the biological information measurement unit receives a light emitting unit that irradiates the subject's head with near-infrared light, and light that is transmitted from the light-emitting unit through the inside of the subject's head.
  • a light receiving unit that detects the light intensity received by the light receiving unit, and a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit.
  • a biometric information output unit that identifies a change according to an increase or decrease in the concentration or amount of hemoglobin wirelessly transmitted from the radio transmission unit of the biometric information measurement unit.
  • Information to do And information on changes in blood flow over time based on information for identifying changes in response to increases or decreases in the concentration or amount of hemoglobin received by the receiving unit,
  • a determination unit that determines whether or not the rate of change in blood flow exceeds a predetermined reference value when information about the change in blood flow changes according to the timing at which the sternum is compressed To do.
  • the light emitting unit of the biological information measurement unit uses near-infrared light of three different wavelengths with respect to the head of the subject, and the three different wavelengths are The first wavelength ⁇ 1 (770 nm ⁇ 20 nm), the second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and the third wavelength ⁇ 3 (870 nm ⁇ 20 nm) are preferable.
  • the light emitting unit and the light receiving unit of the biological information measuring unit include the light emitting unit (o1) and the light receiving unit (p1) that measure the left side, and the light emitting unit that measures the right side.
  • a ⁇ B ⁇ C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H, B ⁇ C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H ⁇ A, C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H ⁇ A ⁇ B D ⁇ E ⁇ F ⁇ G ⁇ H ⁇ A ⁇ B ⁇ C, E ⁇ F ⁇ G ⁇ H ⁇ A ⁇ B ⁇ C ⁇ D, F ⁇ G ⁇ H ⁇ A ⁇ B ⁇ C ⁇ D, F ⁇ G ⁇ H ⁇ A ⁇ B ⁇ C ⁇ D ⁇ E, G ⁇ H ⁇ A ⁇ B ⁇ C ⁇ D ⁇ E, G ⁇ H ⁇ A ⁇ B ⁇ C ⁇ D ⁇ E, and H ⁇ A ⁇ B ⁇ C ⁇ D ⁇ E ⁇ F ⁇ G are preferable.
  • the biological information measurement system includes A: o1 (left side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) and C: o1 (left side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm).
  • E o2 (right side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) and G: o2 (right side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm).
  • one set of irradiation from the first cycle to the eighth cycle is performed, and one or more sets of irradiation are performed.
  • the light emitting unit and the light receiving unit of the biological information measuring unit include the light emitting unit (o1) and the light receiving unit (p1) that measure the left side, and the light emitting unit that measures the right side. (O2) and the light receiving part (p2) are installed in pairs on the left and right sides, respectively, and three different wavelengths are emitted from the light emitting parts of o1 (left side) and o2 (right side) in the above irradiation order, and p1 ( The light intensity respectively received by the light receiving units on the left side and p2 (right side) is detected by the light detection unit for each cycle, and the determination unit is adjacent in each data detected by the light detection unit for each cycle.
  • the light detection unit including the light emitting unit, the light receiving unit, and the light detection unit has a first terminal, and includes a wireless transmission unit.
  • the wireless transmission unit may have a second terminal, and the first terminal and the second terminal may be directly connected in a detachable manner.
  • the light detection unit including the light emitting unit, the light receiving unit, and the light detection unit has a first terminal, and includes a wireless transmission unit.
  • the wireless transmission unit may have a second terminal, and the first terminal and the second terminal may be connected via a wire.
  • the biological information measurement unit further includes information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin detected by the light detection unit.
  • a display unit for displaying display information based on the display information can be included.
  • the biological information output unit is further based on information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin received by the reception unit.
  • a display unit for displaying the display information can be included.
  • the biological information measurement unit further includes information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin detected by the light detection unit.
  • An arithmetic unit for arithmetic processing can be included.
  • the biological information output unit further calculates information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin received by the reception unit.
  • An arithmetic unit to be processed can be included.
  • the biological information output unit when the determination unit determines that the predetermined reference value has been exceeded, the biological information output unit outputs output information based on the notification information notified to the outside. be able to.
  • a biological information measuring method includes a biological information measuring step executed in a biological information measuring unit and a biological information output step executed in a biological information output unit.
  • a biological information measuring method applied to a subject who needs cardiopulmonary resuscitation by a biological information measuring system wherein the biological information measuring step includes: a light emitting step of irradiating the subject's head with near infrared light; and A near-infrared light irradiated from the light emission step receives the light propagated through the subject's head, a light detection step for detecting the light intensity received by the light reception step, and the light detection step.
  • the biological information output step includes a reception step of receiving information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin wirelessly transmitted from the wireless transmission step of the biological information measurement step; , Monitoring information on blood flow changes over time based on information for identifying changes in response to increases or decreases in the concentration or amount of hemoglobin received in the receiving step, and at the timing when the subject's sternum is compressed And a determination step in which the biological information output unit determines whether or not the rate of change in blood flow exceeds a predetermined reference value when a change occurs in information related to the change in blood flow. To do.
  • the present invention it is possible to transmit measurement information obtained by the biological information measurement unit to the biological information output unit between the biological information measurement unit and the biological information output unit without using a communication cable. To do. For this reason, when a medical worker performs measurement of biological information on a subject such as a patient, the medical worker has an effect of facilitating the smooth implementation of medical practice, and for a subject such as a patient, There is an effect of relaxing the restriction imposed on the posture at the time of measurement.
  • Embodiment of biological information measurement system 300 in which biological information measurement unit 100 is attached (pasted) to the head of a subject such as a patient, and measurement information obtained by biological information measurement unit 100 is wirelessly transmitted to biological information output unit 200
  • FIG. 2 is a block diagram illustrating an example of a main configuration of a biological information measuring unit 100 and a biological information output unit 200 that constitute the biological information measuring system 300.
  • FIG. It is a figure which shows 1st Embodiment of the biometric information measurement part 100 which concerns on this invention.
  • FIG. 1 shows a biological information measurement system in which a biological information measuring unit 100 is attached (pasted) to the head of a subject such as a patient, and measurement information obtained by the biological information measuring unit 100 is wirelessly transmitted to a biological information output unit 200. It is a figure which shows an example of 300 embodiment.
  • the biological information measuring system 300 provided by the present invention includes a biological information measuring unit 100 and a biological information output unit 200.
  • the biological information measuring unit 100 receives a light emitting unit that irradiates the subject's head with near-infrared light, and light received by the near-infrared light emitted from the light-emitting unit that propagates inside the subject's head.
  • a light detecting unit that detects the light intensity received by the light receiving unit, and a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detecting unit
  • a wireless transmission unit that wirelessly transmits information for the purpose.
  • the biological information output unit 200 includes a reception unit that receives information for specifying a change in the concentration or amount of hemoglobin wirelessly transmitted from the wireless transmission unit of the biological information measurement unit, and hemoglobin received by the reception unit. And an output unit that outputs output information based on information for specifying a change in the concentration or amount.
  • the biological information measuring system 300 is obtained by the biological information measuring unit 100 without using a communication cable between the biological information measuring unit 100 and the biological information output unit 200. This is realized by wirelessly transmitting measurement information to the biological information output unit 200.
  • the biological information measurement system 300 when a medical worker measures biological information on a subject such as a patient, the medical worker can easily perform medical practice smoothly.
  • the restriction imposed on the posture at the time of measurement can be relaxed for a subject such as a patient.
  • the irradiated near-infrared region light is emitted from the head.
  • the amount absorbed in the head increases, and the amount of light in the near-infrared region that passes through the head (transmission amount) decreases accordingly.
  • the amount of received light When there is a decrease in the amount of light received by the light receiving unit (the amount of received light), and when there is a decrease in the concentration or amount of hemoglobin in the blood, the irradiated near-infrared light will enter the head A decrease occurs in the amount absorbed (absorption amount), and an increase in the amount (transmission amount) of light in the near-infrared region corresponding to the inside of the head increases accordingly.
  • the amount of light received (the amount of received light) is increased.
  • the present invention can be designed such that a current is output from the light receiving unit according to the amount (light receiving amount) received by the light receiving unit such as a photodiode (PD).
  • a current is output from the light receiving unit according to the amount (light receiving amount) received by the light receiving unit such as a photodiode (PD).
  • PD photodiode
  • the present invention there is a difference in the amount of light transmitted in the near-infrared region through the head (transmission amount) according to the increase or decrease in the concentration or amount of hemoglobin in the blood inside the subject's head.
  • the biological information measurement system 300 when the biological information measurement system 300 according to the present invention is applied to a subject such as a patient who needs cardiopulmonary resuscitation, a medical worker can check the blood flow (change in blood flow) in real time while performing heart massage.
  • the position for performing (chest compression) and the amount of force can be adjusted accurately, and the success probability of cardiopulmonary resuscitation can be improved.
  • FIG. 2 is a block diagram illustrating an example of a main configuration of the biological information measuring unit 100 and the biological information output unit 200 that configure the biological information measuring system 300.
  • the biological information measuring system 300 provided by the present invention includes a biological information measuring unit 100 and a biological information output unit 200 as illustrated in FIG.
  • the biological information measuring unit 100 includes a light emitting unit 11, a light receiving unit 12, a light detection unit 13, and a wireless transmission unit 14. Furthermore, the biological information measurement unit 100 can include a calculation unit and a display unit.
  • the biological information output unit 200 includes a receiving unit 15 and an output unit 16. Furthermore, the biometric information output unit 200 can include a calculation unit, a display unit, and a determination unit.
  • the light emission part 11 has a function which irradiates near infrared light with respect to a test subject's head.
  • a light emitting diode LED
  • the light receiving unit 12 has a function of receiving light transmitted from the near-infrared light emitted from the light emitting unit 11 through the head of the subject.
  • a photodiode PD
  • PD photodiode
  • the light detector 13 has a function of detecting the light intensity received by the light receiver 12.
  • a light detector that detects the light intensity received by the light receiving unit 12, that is, the intensity of light transmitted through the subject's head (the intensity of transmitted light) can be used.
  • the wireless transmission unit 14 has a function of wirelessly transmitting information for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13.
  • a device capable of wireless transmission is used, and a Bluetooth (registered trademark) system can be adopted.
  • “information for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin” is information relating to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13. Alternatively, it may be information on the result of converting the information on the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13 into the concentration or amount of hemoglobin.
  • the biological information measurement unit 100 includes the light emitting unit 11, the light receiving unit 12, the light detection unit 13, and the wireless transmission unit 14 described above, and further includes a calculation unit and a display unit described below. It can also be included (not shown).
  • the calculation unit has a function of calculating and processing information for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13. For example, the calculation unit performs calculation processing in order to convert information related to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13 into information related to the concentration or amount of hemoglobin.
  • the display unit has a function of displaying display information based on information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13.
  • the display unit displays, for example, display information based on information on the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13 on a monitor or the like.
  • the storage unit 30 stores information acquired by each unit included in the biological information measurement unit 100.
  • the storage unit 30 is configured by, for example, a nonvolatile semiconductor memory such as a flash memory.
  • the receiving unit 15 has a function of receiving information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity wirelessly transmitted from the wireless transmission unit 14 of the biological information measurement unit 100.
  • a device capable of wireless reception can be used and a Bluetooth (registered trademark) system can be adopted.
  • the output unit 16 has a function of outputting output information based on information received by the receiving unit 15 for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity.
  • the output unit 16 outputs, for example, output information based on information about the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 to a monitor, a speaker, or the like.
  • the biological information output unit 200 can include a calculation unit, a display unit, and a determination unit in addition to the reception unit 15 and the output unit 16 described above (not illustrated).
  • the calculating unit has a function of calculating and processing information received by the receiving unit 15 for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity. For example, the calculation unit performs calculation processing in order to convert information related to the detection result of the light intensity (transmitted light intensity) received by the reception unit 15 into information related to the concentration or amount of hemoglobin.
  • the display unit has a function of displaying display information based on information received by the receiving unit 15 for specifying a change in accordance with an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity.
  • the display unit displays, for example, display information based on information about the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 on a monitor or the like.
  • the determination unit has received the output information based on the information received by the receiving unit 15 for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity. It has a function to determine whether or not. For example, when the determination unit determines that the output information based on the information regarding the detection result of the light intensity (transmitted light intensity) received by the reception unit 15 has exceeded a predetermined reference value, the output unit 16 performs external ( For example, output information based on notification information notified to a medical worker is output to a monitor, a speaker, or the like.
  • the “predetermined reference value” refers to, for example, monitoring a change in the intensity of light transmitted without being absorbed in the head (intensity of transmitted light) over time, and setting a constant reference to the ratio of the change. This can be set as a predetermined reference value.
  • the intensity of light transmitted without being absorbed inside the head of the subject the intensity of transmitted light
  • the change in the intensity of transmitted light changes when the concentration or amount of hemoglobin in the blood increases within the subject's head according to the timing when the subject's sternum is compressed. appear.
  • the rate of change exceeds a certain reference value, it can be notified to the medical staff using display means, sound means, or the like.
  • the storage unit 40 stores information acquired by each unit included in the biological information output unit 200.
  • the storage unit 40 is configured by, for example, a nonvolatile semiconductor memory such as a flash memory.
  • the form of the biological information measuring unit 100 according to the present invention is not particularly limited as long as it can be attached (pasted) to the head of a subject such as a patient.
  • a subject such as a patient
  • FIGS. 7 and FIG. 8 the first embodiment shown in FIGS. 7 and FIG. 8 can be cited as a preferred embodiment.
  • FIG. 3 is a diagram showing a first embodiment of the biological information measuring unit 100 according to the present invention.
  • the light detection unit A including the light emitting unit 11, the light receiving unit 12, and the light detection unit 13 has the first terminal x
  • the wireless transmission unit 14 including the second terminal y has the second terminal y, and the first terminal x and the second terminal y can be directly connected in a detachable manner.
  • FIG. 3A is a diagram illustrating a state in which the first terminal x included in the light detection unit A and the second terminal y included in the wireless communication unit B are directly connected.
  • FIG. 3B is a diagram illustrating a state before the first terminal x included in the light detection unit A and the second terminal y included in the wireless communication unit B are directly connected.
  • FIG. 6 is a side view of a state in which the biological information measuring unit 100 according to the first embodiment is attached to the head of a subject such as a patient (pasted state).
  • the biological information measuring unit 100 includes a first terminal x included in the light detection unit A and a second terminal y included in the wireless transmission unit B. It is a connected form. Note that the shapes of the first terminal x and the second terminal y are not particularly limited as long as they can be connected to each other.
  • the biological information measuring unit 100 As shown in FIG. 3, the first terminal x included in the light detection unit A and the second terminal y included in the wireless transmission unit B are included.
  • the biological information measuring unit 100 that is connected to each other and in which the light detection unit A and the wireless transmission unit B are integrated is attached to (attached to) the head of a subject such as a patient as shown in FIG. Information can be measured.
  • the biological information measuring system 300 includes the biological information measuring unit 100 and the biological information output unit 200 according to the first embodiment, a communication cable is not interposed between the biological information measuring unit 100 and the biological information output unit 200.
  • the measurement information obtained by the biological information measuring unit 100 can be wirelessly transmitted to the biological information output unit 200.
  • the medical staff measures biological information on a subject such as a patient.
  • the restrictions imposed on the posture at the time of measurement are relaxed, and the posture applied to the subjects such as the patient at the time of measurement can be reduced. it can.
  • FIG. 7 is a diagram showing a second embodiment of the biological information measuring unit 100 according to the present invention.
  • the light detection unit A including the light emitting unit 11, the light receiving unit 12, and the light detection unit 13 has the first terminal x
  • the wireless transmission unit 14 including the second terminal y has the second terminal y, and the first terminal x and the second terminal y can be connected via a wire.
  • FIG. 8 is a side view of a state in which the biological information measuring unit 100 according to the second embodiment is attached to the head of a subject such as a patient (attached state).
  • the biological information measuring unit 100 is wired such that the first terminal x included in the light detection unit A and the second terminal y included in the wireless transmission unit B are wired. It is the form connected via.
  • the shape of the 1st terminal x and the 2nd terminal y will not be specifically limited if it is a shape which can be mutually connected via a wire.
  • the biological information measuring unit 100 As illustrated in FIG. 7, the first terminal x included in the light detection unit A and the second terminal y included in the wireless transmission unit B are included. As shown in FIG. 8, the biological information measuring unit 100, which is connected to each other via a wire and separates the light detection unit A and the wireless transmission unit B, is attached to the head of a subject such as a patient ( Measurement of biological information can be performed.
  • the biological information measuring system 300 includes the biological information measuring unit 100 and the biological information output unit 200 according to the second embodiment, the biological information measuring unit similar to the biological information measuring unit 100 according to the first embodiment.
  • Measurement information obtained by the biological information measurement unit 100 can be wirelessly transmitted to the biological information output unit 200 without using a communication cable between the biological information output unit 200 and the biological information output unit 200.
  • the medical worker can inspect a subject such as a patient during sleep, for example.
  • the weight applied to the head of the subject such as the patient is only the light detection unit A, and the wireless transmission unit B is left at the bedside of the subject such as the patient and sleeps. It is also possible to reduce the load on the subject's head such as a patient during long-time continuous measurement.
  • the configuration of the light emitting unit 11 is not particularly limited as long as the head of a subject such as a patient can be irradiated with near infrared light in the near infrared region.
  • the light emitting unit 11 emits light from a light emitting diode (LED) or the like.
  • An element may be provided on an element substrate (not shown), and the element substrate may be attached to installation positions o1 (left side) and o2 (right side) shown in FIG.
  • the method of irradiating near infrared light to the subject's head is not particularly limited, but three different wavelengths (first wavelength ⁇ 1 (770 nm ⁇ 20 nm), second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and near-infrared light having a third wavelength ⁇ 3 (870 nm ⁇ 20 nm)), and each is preferably irradiated (lighted) in a predetermined order.
  • the first wavelength ⁇ 1 (770 nm ⁇ 20 nm) and the third wavelength ⁇ 3 (870 nm ⁇ 20 nm) are irradiation wavelengths used for calculating rSO 2 (oxygen saturation).
  • the second wavelength ⁇ 2 (805 nm ⁇ 20 nm) is an irradiation wavelength used to calculate HbI (hemoglobin index).
  • rSO 2 (oxygen saturation) is preferably calculated using two wavelengths (first wavelength ⁇ 1 and third wavelength ⁇ 3 ), either one of the wavelengths (first wavelength ⁇ 1 or third wavelength ⁇ 1 or third wavelength ⁇ 3 ) is used. It is also possible to calculate using only the wavelength ⁇ 3 ).
  • FIG. 4 is a diagram showing, in time series, the order in which near infrared light of three different wavelengths (first wavelength ⁇ 1 , second wavelength ⁇ 2 , and third wavelength ⁇ 3 ) is irradiated eight times per cycle. is there.
  • FIG. 5 is a diagram showing, in time series, the order in which near infrared light of three different wavelengths (first wavelength ⁇ 1 , second wavelength ⁇ 2 , and third wavelength ⁇ 3 ) is irradiated six times per cycle. is there.
  • the number of times of irradiation performed in one cycle is not particularly limited, but the viewpoint of obtaining data with higher reliability when the number of times of irradiation is 8 than when the number of times of irradiation is 6. To preferred.
  • first wavelength ⁇ 1 , second wavelength ⁇ 2 , third wavelength ⁇ 3 are eight times in a predetermined order in the first cycle. Irradiation is performed, and after the second cycle, the irradiation is performed eight times in the same order as in the first cycle, and it is preferable that one set of irradiation is repeated until the eighth cycle, and one or more sets are performed.
  • the eight irradiation sequences performed in the first cycle are performed in the order of “A ⁇ B ⁇ C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H” as shown below (first mode).
  • ⁇ First form of the eight irradiation sequence> A: o1 (left side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) B: o1 (left side) the second wavelength lambda 2 (805 nm ⁇ 20 nm) C: o1 (left side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm) D: o2 (right side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm) E: o2 (right side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) F: o1 (left side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm) G: o2 (right side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm) H:
  • the first wavelength ⁇ 1 (770 nm ⁇ 20 nm) and the third wavelength ⁇ 3 (870 nm ⁇ 20 nm) are both irradiation wavelengths used for calculating rSO 2 (oxygen saturation)
  • the first wavelength The order of ⁇ 1 (770 nm ⁇ 20 nm) and the third wavelength ⁇ 3 (870 nm ⁇ 20 nm) may be changed, and irradiation may be performed in the following order (second embodiment).
  • ⁇ Second form of 8 irradiation sequence> A: o1 (left side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm) B: o1 (left side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm) C: o1 (left side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) D: o2 (right side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm) E: o2 (right side) third wavelength ⁇ 3 (870 nm ⁇ 20 nm) F: o1 (left side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm) G: o2 (right side) first wavelength ⁇ 1 (770 nm ⁇ 20 nm) H: o2 (right side) second wavelength ⁇ 2 (805 nm ⁇ 20 nm)
  • the first irradiation is started from “A”, but the irradiation may be started from any of “B” to “H”.
  • irradiation is started from other than “A”, “A” is irradiated after “H”.
  • the eighth irradiation is performed in the order of “C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H ⁇ A ⁇ B”.
  • irradiation from the 1st cycle to the 8th cycle that is, a total of 64 irradiations as one set, and perform one or more sets of irradiation.
  • At least one set of irradiation (8 cycles, 64 irradiations) is preferably performed within 1 second.
  • four sets of irradiation 32 cycles, 256 irradiations can be performed within one second.
  • the irradiation time of 1 second performed in at least one set includes the standby time of irradiation, and actually three different wavelengths (first wavelength ⁇ 1 , second wavelength ⁇ 2 , and third wavelength ⁇ 3 ) once each.
  • the irradiation time is about 90 to 180 ⁇ sec.
  • the number of times of irradiation performed in one cycle is preferably 8 times from the viewpoint of obtaining highly reliable data, but the number of times of irradiation may be 6 times.
  • first wavelength ⁇ 1 , second wavelength ⁇ 2 , third wavelength ⁇ 3 are obtained six times in a predetermined order in the first cycle. Irradiation is performed, and after the second cycle, it is preferable to perform irradiation six times in the same order as in the first cycle, and to repeat irradiation up to the eighth cycle as one set, and to perform one or more sets of irradiation.
  • the second wavelength ⁇ 2 (805 nm ⁇ 20 nm) is an irradiation wavelength used to calculate HbI (hemoglobin index).
  • HbI hemoglobin index
  • the first irradiation is started from “A”, but the irradiation may be started from any of “B” to “F”.
  • irradiation is started from other than “A”, “A” is irradiated after “F”.
  • the sixth irradiation is performed in the order of “C ⁇ D ⁇ E ⁇ F ⁇ A ⁇ B”.
  • irradiation from the first cycle to the eighth cycle that is, a total of 48 irradiations as one set, and perform one or more sets of irradiation.
  • At least one set of irradiation (8 cycles, 48 irradiations) is preferably performed within 1 second.
  • four sets of irradiation 24 cycles, 144 irradiations can be performed within one second.
  • the irradiation time of 1 second performed in at least one set includes the standby time of irradiation, and actually three different wavelengths (first wavelength ⁇ 1 , second wavelength ⁇ 2 , and third wavelength ⁇ 3 ) once each.
  • the irradiation time is about 90 to 180 ⁇ sec.
  • the configuration of the light receiving unit 12 is not particularly limited as long as the near-infrared light emitted from the light emitting unit 11 can receive the light propagated in the head of the subject.
  • a photodiode (PD) or the like can be used.
  • a light receiving element may be provided on the element substrate (not shown), and the element substrate may be attached to the installation positions p1 (left side) and p2 (right side) shown in FIG.
  • light propagating through the subject's head refers to light (transmitted light) that is transmitted from the near-infrared light irradiated from the light emitting unit 11 without being absorbed into the head.
  • the light receiving unit 12 is appropriately designed so that light can be received in synchronization with the irradiation timing of near infrared light so that light (transmitted light) transmitted without being absorbed inside the head can be received without missing. be able to.
  • the light emitting unit 11 has three different wavelengths (first wavelength ⁇ 1 (770 nm ⁇ 20 nm), second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and third wavelength ⁇ 3 (870 nm ⁇ 20 nm)). Even when near-infrared light is used and irradiated (lighted) in a predetermined order, the light receiving unit 12 emits three different wavelengths (first wavelength ⁇ 1 (first wavelength ⁇ 1 ( 770 nm ⁇ 20 nm), near-infrared light of the second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and third wavelength ⁇ 3 (870 nm ⁇ 20 nm)) can be received by the light propagated inside the subject's head. .
  • the configuration of the light detection unit 13 is not particularly limited as long as the light intensity received by the light receiving unit 12 can be detected.
  • the light intensity received by the light receiving unit 12 that is, the light transmitted through the head of the subject. It is good also as a structure which installs the photodetector which detects the intensity
  • the light receiving unit 12 has three different wavelengths (first wavelength ⁇ 1 (770 nm ⁇ 20 nm), second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and third wavelength ⁇ 3 (870 nm ⁇ 20 nm)). Even when near-infrared light has received the light propagated inside the head of the subject, the light detection unit 13 receives the light intensity received from the light receiving unit 12, that is, the intensity of the light transmitted through the subject's head. (Intensity of transmitted light) can be detected.
  • the wireless transmission unit 14 can wirelessly transmit information for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13, its configuration Is not particularly limited.
  • a device capable of wireless transmission can be provided in the wireless transmission unit B of the biological information measurement unit 100 and a Bluetooth (registered trademark) system can be adopted.
  • the “information for specifying the change in the concentration or amount of hemoglobin” may be information regarding the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13, or Information regarding the result of converting the information regarding the detection result of the light intensity (the intensity of transmitted light) detected by the light detection unit 13 into the concentration or amount of hemoglobin may be used.
  • the biological information measurement unit 100 can include a calculation unit. If the calculation unit can process information for specifying a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13, the configuration is particularly It is not limited.
  • the calculation unit performs, for example, calculation processing in order to convert information related to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13 into information related to the concentration or amount of hemoglobin.
  • calculation processing is performed in order to digitize or render the information related to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13.
  • the amount of information transmitted by the wireless transmission unit 14 and the amount of information received by the reception unit 15 can be reduced, so that wireless transmission is performed.
  • the load on the unit 14 and the receiving unit 15 can be reduced, and the time required for radio transmission and radio reception can be shortened.
  • the biological information measuring unit 100 can include a display unit. If the display unit can display display information based on information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detection unit 13,
  • the configuration is not particularly limited, and for example, the biological information measuring unit 100 can be provided with a monitor or the like.
  • the display unit displays display information based on information on the detection result of the light intensity (the intensity of transmitted light) detected by the light detection unit 13, for example. Or the display information based on the information regarding the result calculated by the calculation unit in order to convert the information related to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13 into the information related to the concentration or amount of hemoglobin Is displayed. Alternatively, display information is displayed based on information related to the result of calculation processing performed by the calculation unit in order to digitize or render the information related to the detection result of the light intensity (transmitted light intensity) detected by the light detection unit 13.
  • the medical worker when a medical worker performs another medical action while measuring biological information on a subject such as a patient, the medical worker Not only the information output unit 200 but also the biometric information measurement unit 100 can accurately perform other medical actions while checking in real time the change in the amount of blood flowing in the subject's head (change in blood flow). Can do.
  • the receiving unit 15 wirelessly receives information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity wirelessly transmitted from the wireless transmission unit 14 of the biological information measurement unit 100.
  • the configuration is not particularly limited.
  • a device capable of wireless reception can be provided in the biological information output unit 200 and a Bluetooth (registered trademark) system can be adopted.
  • the output unit 16 can output the output information received by the receiving unit 15 based on the information for specifying the change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity
  • the configuration is not particularly limited.
  • the output information based on the information regarding the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 is visually output by a monitor or the like or auditory by a speaker or the like. Output to.
  • a communication device reduced in size and weight such as a smartphone can be cited. It is also possible to realize a form in which the output information output from the communication device reduced in size and weight is further transmitted to another communication device.
  • the biological information output unit 200 can include an arithmetic unit as well as the biological information measuring unit 100 described above. If the calculation unit can process the information received by the reception unit 15 to identify changes according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity, the configuration is particularly It is not limited.
  • the calculation unit performs calculation processing in order to convert information related to the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 into information related to the concentration or amount of hemoglobin, for example.
  • the information about the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 is subjected to arithmetic processing in order to digitize or draw.
  • the biological information measuring unit 100 by including a calculation unit in the biological information output unit 200, a change corresponding to an increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity received by the receiving unit 15 is specified. This is because the biological information output unit 200 performs the arithmetic processing of the information, and the biological information measuring unit 100 does not include the arithmetic processing function, or the arithmetic processing function included in the biological information measuring unit 100 is limited. Therefore, the biological information measuring unit 100 can be designed to be small and light.
  • a display unit can be included in the biological information output unit 200 as well as the biological information measurement unit 100 described above. If the display unit can display the display information received by the receiving unit 15 based on the information for specifying the change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity,
  • the configuration is not particularly limited, and for example, the biological information output unit 200 can be provided with a monitor or the like.
  • the display unit displays display information based on information on the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15, for example.
  • the display information based on the information on the result of the arithmetic processing performed by the arithmetic unit in order to convert the information on the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 into the information on the concentration or amount of hemoglobin. indicate.
  • the display information based on the information regarding the result of arithmetic processing by the arithmetic unit in order to digitize or draw the information regarding the detection result of the light intensity (transmitted light intensity) received by the receiving unit 15 is displayed.
  • the medical worker when a medical worker performs another medical action while measuring biological information on a subject such as a patient, the medical worker
  • the display unit provided in the information output unit 200 can accurately perform other medical actions while confirming in real time a change in the amount of blood flowing in the subject's head (change in blood flow).
  • the biological information output unit 200 can include a determination unit.
  • the determination unit determines whether or not a change has occurred in information related to a change in blood flow based on information for specifying a change according to an increase or decrease in the concentration or amount of hemoglobin in the blood based on light intensity, that is, blood The presence or absence of a flow change can be determined.
  • the method of determining whether there is a change in blood flow is the light receiving unit P1 (left side) paired with the light emitting unit o1 (left side) and the light emitting unit P2 (right side) paired with the light emitting unit o2 (right side).
  • each wavelength first wavelength ⁇ 1 , second wavelength ⁇ 2 , or third wavelength ⁇ 3
  • the light intensity (the intensity of transmitted light) received by the light receiving parts p1 (left side) and p2 (right side) is respectively detected by the light detection part.
  • the difference in data by comparison between adjacent cycles is all in the same direction (for example, all increase direction).
  • the difference in data by comparison with another adjacent cycle is all in the opposite direction (for example, all decrease direction)
  • there is a change in blood flow. Can be determined.
  • each wavelength first wavelength ⁇ 1 , second wavelength ⁇ 2 , or third wavelength
  • Each of the data detected by the light detection unit that irradiates the wavelength ⁇ 3 ) and received by the light receiving unit at p1 (left side) satisfies all the following trends (1) to (3)
  • (ii) o2 The light intensity (the intensity of transmitted light) irradiated from the light emitting part on the right side (first wavelength ⁇ 1 , second wavelength ⁇ 2 , or third wavelength ⁇ 3 ) and received by the light receiving part on p2 (right side) ) Is detected by the light detection unit and all of the following trends (4) to (6) are satisfied, it can be determined that there is a change in blood flow.
  • the following (1) to (3), (ii) the following (4) to (6) a total of six trends
  • the data detected by the light detection unit increases the difference in data by comparing the first and second cycles, while the third and fourth cycles difference data by comparison between the decrease (6) third irradiated with wavelength lambda 3, p1 (left side) of the detected received light intensity (intensity of transmitted light) to 1 for each cycle by the light detector by the light receiving portion
  • Data is 1 cycle and 2 cycles While the difference data by comparing Le th each other is increased, the difference of the data by comparing between the third cycle and the fourth cycle is reduced
  • the first and second cycles are given as examples of adjacent cycles, and the third and fourth cycles are given as examples of other adjacent cycles.
  • the present invention is not limited to this.
  • the near red of three different wavelengths (first wavelength ⁇ 1 (770 nm ⁇ 20 nm), second wavelength ⁇ 2 (805 nm ⁇ 20 nm), and third wavelength ⁇ 3 (870 nm ⁇ 20 nm)).
  • Reliable data can be obtained by using external light and irradiating (lighting) each in a predetermined order.
  • the presence or absence of a change in blood flow can be accurately determined by the above-described determination method for the presence or absence of a change in blood flow. For this reason, according to the present invention, even if the subject's body is shaken due to the subject's chest compression, the influence of the subject's body is hardly affected, and based on highly reliable measurement data, the blood flow is minute. Even if it is a simple change, the presence or absence of a change in blood flow can be accurately determined.
  • the determination unit monitors information regarding changes in blood flow over time based on information received by the reception unit 15 based on information for specifying a change in the concentration or amount of hemoglobin in the blood based on the light intensity.
  • information related to the change in blood flow changes according to the timing of pressing the sternum, it is determined whether or not the rate of change in the blood flow exceeds a predetermined reference value.
  • (1) light intensity (transmittance) can be used as “information related to changes in blood flow based on information for specifying changes according to increase or decrease in the concentration or amount of hemoglobin in blood based on light intensity”.
  • Output information based on information on the detection result of light intensity (2) Information on the detection result of light intensity (transmitted light intensity) was processed by the calculation unit in order to convert it into information on the concentration or amount of hemoglobin Output information based on information related to the result, (3)
  • the determination unit described above can be included in the biological information output unit 200, the determination unit can be included in the biological information measurement unit 100 as well.
  • the biological information output unit 200 outputs output information based on the notification information notified to the outside (for example, a medical worker) to a monitor, a speaker, or the like. Thereby, the medical staff can perform a medical practice accurately based on the notification information output from the biological information output unit 200.
  • the above-described biological information output unit 200 has described that it can be notified to the outside when the determination unit determines that the information related to the change in blood flow exceeds a predetermined reference value. Similarly, when the determination unit determines that the information related to the change in blood flow exceeds a predetermined reference value, it can notify the outside.
  • FIG. 9 is a flowchart illustrating an example of processing executed by the biological information measuring system 300 including the biological information measuring unit 100 and the biological information output unit 200.
  • FIG. 9 is a flowchart corresponding to the block diagram shown in FIG.
  • parenthesized “ ⁇ steps” represent steps performed by the biological information measuring unit 100 and the biological information output unit 200.
  • step 1 S 1
  • step 2 light-emitting step
  • step 2 light receiving step
  • the light intensity received by the light receiving step is detected (S3, light detecting step), and a change according to the increase or decrease in the concentration or amount of hemoglobin in the blood based on the light intensity detected by the light detecting step is specified.
  • wireless transmission For wireless transmission (S4, wireless transmission step).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くすることができると共に、患者等の被験者にとっては、測定時の姿勢に課されていた制限を緩和することができる。 本発明は、生体情報測定部と、生体情報出力部とを備える、心肺蘇生を必要とする被験者に適用する生体情報測定システムであって、生体情報測定部は、被験者の頭部に対して近赤外光を照射する発光部と、当該発光部から照射された近赤外光が被験者の頭部内部を伝播した光を受光する受光部と、当該受光部によって受光した光強度を検出する光検出部と、当該光検出部によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信部とを含み、生体情報出力部は、生体情報測定部の無線送信部から無線送信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する受信部と、当該受信部で受信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、前記被験者の胸骨を圧迫したタイミングに応じて前記血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを判定する判定部とを含む。

Description

生体情報測定システム、及び生体情報測定方法
 本発明は、生体情報測定部と生体情報出力部とを備える生体情報測定システム、及び生体情報測定方法に関するものである。
 従来の医療現場においては、患者等の被験者の生体情報を測定する測定機器と、当該測定機器で測定された情報を出力する出力機器との間には、測定機器で測定された情報を出力機器に伝送するための通信ケーブル(有線)が存在していた。
 このような通信ケーブルの存在は、医療従事者が患者等の被験者の生体情報を測定機器で測定しながら、他の医療行為を実施する際に、医療従事者の動作の妨げとなる場合があった他、通信ケーブルが絡まり医療事故につながることも懸念されていた。
 一方、通信ケーブルの存在は、患者等の被験者にとっては、生体情報の測定時に、姿勢をある程度一定に保たなければいけない等の出力部16制限が課されることから、患者等の被験者に負担がかかっていた。
 更に、通信ケーブルの存在は、生体情報を測定する測定機器で得られた測定情報を、出力機器に伝送する過程において、測定情報の信号が減衰する可能性や、生体情報を測定する測定機器の近傍で他の通信系機器を用いた場合の外乱影響も指摘されてきた。
 例えば、特許文献1には、パルス酸素測定センサを患者に取り付け、変調赤色光及び赤外線プレチスモグラフ信号を、患者用ケーブルを通じて患者監視用の汎用/アップグレード用パルス酸素濃度計(UPO)に送ることが記載され、当該UPOは、センサ信号から患者の酸素飽和度及び脈拍数を計算し、必要に応じて患者の酸素状態を表示することが記載されている。
特開2014-64929号公報
 しかしながら、特許文献1に記載されている患者監視用の汎用/アップグレード用パルス酸素濃度計(UPO)は、間断なく患者の生体情報の監視を行うことが記載されているものの、生体情報の測定機器と出力機器との間には、通信系ケーブルが存在していた。
 このため、特許文献1に記載されたUPOでは、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行うことができず、患者等の被験者にとっては、測定時の姿勢に制限が課され、患者等の被験者に負担がかかるものと考えられる。
 そこで、本発明は、上記事情に鑑み、生体情報測定部100と生体情報出力部200との間に通信ケーブルを介さずとも、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信することにより実現させることができる。これによって、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くすることができると共に、患者等の被験者にとっては、測定時の姿勢に課されていた制限を緩和することができる、生体情報測定システム、及び生体情報測定方法を提供することを目的とするものである。
 上記課題を解決するために、本発明の一態様に係る生体情報測定システムは、生体情報測定部と、生体情報出力部とを備える、心肺蘇生を必要とする被験者に適用する生体情報測定システムであって、生体情報測定部は、被験者の頭部に対して近赤外光を照射する発光部と、当該発光部から照射された近赤外光が被験者の頭部内部を伝播した光を受光する受光部と、当該受光部によって受光した光強度を検出する光検出部と、当該光検出部によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信部とを含み、生体情報出力部は、生体情報測定部の無線送信部から無線送信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する受信部と、当該受信部で受信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、被験者の胸骨を圧迫したタイミングに応じて血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを判定する判定部とを含むことを特徴とする。
 また、本発明の一態様に係る生体情報測定システムは、生体情報測定部の発光部において、被験者の頭部に対して、3つの異なる波長の近赤外光を用い、当該3つの異なる波長が、第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm)であることが好ましい。
 また、本発明の一態様に係る生体情報測定システムは、生体情報測定部の発光部と受光部が、左側を測定する発光部(o1)および受光部(p1)と、右側を測定する発光部(o2)および受光部(p2)とがそれぞれ対になって左右に設置され、3つの異なる波長の近赤外光を用い、1サイクル目において実施される8回の照射順序が、
 下記A→B→C→D→E→F→G→H、下記B→C→D→E→F→G→H→A、下記C→D→E→F→G→H→A→B、下記D→E→F→G→H→A→B→C、下記E→F→G→H→A→B→C→D、下記F→G→H→A→B→C→D→E、下記G→H→A→B→C→D→E→F、および下記H→A→B→C→D→E→F→Gの中から選択されるいずれかであることが好ましい。
  A:o1(左側)第1波長λ(770nm±20nm)
  B:o1(左側)第2波長λ(805nm±20nm)
  C:o1(左側)第3波長λ(870nm±20nm)
  D:o2(右側)第2波長λ(805nm±20nm)
  E:o2(右側)第1波長λ(770nm±20nm)
  F:o1(左側)第2波長λ(805nm±20nm)
  G:o2(右側)第3波長λ(870nm±20nm)
  H:o2(右側)第2波長λ(805nm±20nm)
 また、本発明の一態様に係る生体情報測定システムは、上記A:o1(左側)第1波長λ(770nm±20nm)と上記C:o1(左側)第3波長λ(870nm±20nm)の順序、又は上記E:o2(右側)第1波長λ(770nm±20nm)と上記G:o2(右側)第3波長λ(870nm±20nm)の順序を入れ替えることができる。
 また、本発明の一態様に係る生体情報測定システムは、1サイクル毎に8回の照射を実施する場合、1サイクル目から8サイクル目までの照射を1セットとし、1セット以上の照射を実施し、少なくとも1セットの照射が1秒間内で実施することが好ましい。
 また、本発明の一態様に係る生体情報測定システムは、生体情報測定部の発光部と受光部が、左側を測定する発光部(o1)および受光部(p1)と、右側を測定する発光部(o2)および受光部(p2)とがそれぞれ対になって左右に設置され、o1(左側)およびo2(右側)の発光部から3つの異なる波長を、それぞれ上記照射順序で照射し、p1(左側)およびp2(右側)の受光部によってそれぞれ受光した光強度を光検出部で1サイクル毎にそれぞれ検出し、判定部が、光検出部で1サイクル毎に検出された各データにおいて、隣接するサイクル同士の比較によるデータの差が全て同一方向(例えば全て増加方向)となる一方で、別の隣接するサイクル同士との比較によるデータの差が全て反対方向(例えば全て減少方向)となった場合に、血流の変化が有ったと判定することができる。
 また、本発明の一態様に係る生体情報測定システムは、生体情報測定部において、発光部と受光部と光検出部とを含む光検出ユニットが第1の端子を有し、無線送信部を含む無線送信ユニットが第2の端子を有し、当該第1の端子と第2の端子とが着脱可能に直接接続されていてもよい。
 また、本発明の一態様に係る生体情報測定システムは、生体情報測定部において、発光部と受光部と光検出部とを含む光検出ユニットが第1の端子を有し、無線送信部を含む無線送信ユニットが第2の端子を有し、当該第1の端子と第2の端子とが有線を介して接続されていてもよい。
 また、本発明の一態様に係る生体情報測定システムにおいて、生体情報測定部は、更に、光検出部によって検出されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する表示部を含めることができる。
 また、本発明の一態様に係る生体情報測定システムにおいて、生体情報出力部は、更に、受信部で受信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する表示部を含めることができる。
 また、本発明の一態様に係る生体情報測定システムにおいて、生体情報測定部は、更に、光検出部によって検出されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する演算部を含めることができる。
 また、本発明の一態様に係る生体情報測定システムにおいて、生体情報出力部は、更に、受信部で受信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する演算部を含めることができる。
 また、本発明の一態様に係る生体情報測定システムにおいて、判定部が、当該所定の基準値を超えたと判定した場合、生体情報出力部が、外部に報知する報知情報に基づく出力情報を出力することができる。
 上記課題を解決するために、本発明の一態様に係る生体情報測定方法は、生体情報測定部において実行される生体情報測定ステップと、生体情報出力部において実行される生体情報出力ステップとを備える、生体情報測定システムによる、心肺蘇生を必要とする被験者に適用する生体情報測定方法であって、生体情報測定ステップは、被験者の頭部に対して近赤外光を照射する発光ステップと、当該発光ステップから照射された近赤外光が被験者の頭部内部を伝播した光を受光する受光ステップと、当該受光ステップによって受光した光強度を検出する光検出ステップと、当該光検出ステップによって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信ステップとを含み、生体情報出力ステップは、生体情報測定ステップの無線送信ステップから無線送信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する受信ステップと、当該受信ステップで受信されたヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、被験者の胸骨を圧迫したタイミングに応じて血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを前記生体情報出力部が判定する判定ステップとを含むことを特徴とする。
 本発明によれば、生体情報測定部と生体情報出力部との間に、通信系ケーブルを介さずとも、生体情報測定部で得られた測定情報を生体情報出力部に伝送することを可能とする。
 このため、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くする効果を奏すると共に、患者等の被験者にとっては、測定時の姿勢に課されていた制限を緩和する効果を奏する。
患者等の被験者の頭部に生体情報測定部100を取り付け(貼り付け)、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信する生体情報測定システム300の実施態様の一例を示す図である。 生体情報測定システム300を構成する、生体情報測定部100および生体情報出力部200の要部構成の一例を示すブロック図である。 本発明に係る生体情報測定部100の第1の実施形態を示す図である。 3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)の近赤外光を、1サイクル毎に8回照射させる順序を時系列で示す図である。 3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)の近赤外光を、1サイクル毎に6回照射させる順序を時系列で示す図である。 第1の実施形態に係る生体情報測定部100を患者等の被験者の頭部に取り付けた状態(貼り付けた状態)を横から見た図である。 本発明に係る生体情報測定部100の第2の実施形態を示す図である。 第2の実施形態に係る生体情報測定部100を患者等の被験者の頭部に取り付けた状態(貼り付けた状態)を横から見た図である。 生体情報測定部100および生体情報出力部200を備える、生体情報測定システム300が実行する処理の一例を示すフローチャートである。
 図1~図9に基づいて、本発明の実施の形態を説明する。
(生体情報測定部100と生体情報出力部200とを備える生体情報測定システム300の概要)
 図1は、患者等の被験者の頭部に生体情報測定部100を取り付け(貼り付け)、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信する生体情報測定システム300の実施態様の一例を示す図である。
 本発明によって提供される生体情報測定システム300は、生体情報測定部100と生体情報出力部200とを備える。
 生体情報測定部100は、被験者の頭部に対して近赤外光を照射する発光部と、当該発光部から照射された近赤外光が被験者の頭部内部を伝播した光を受光する受光部と、当該受光部によって受光した光強度を検出する光検出部と、当該光検出部によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信部とを含む。
 一方、生体情報出力部200は、生体情報測定部の無線送信部から無線送信されたヘモグロビンの濃度又は量の変化を特定するための情報を受信する受信部と、当該受信部で受信されたヘモグロビンの濃度又は量の変化を特定するための情報に基づく出力情報を出力する出力部とを含む。
 図1に示されるように、本発明に係る生体情報測定システム300は、生体情報測定部100と生体情報出力部200との間に通信ケーブルを介さずとも、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信することにより実現する。
 本発明に係る生体情報測定システム300であれば、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くすることができると共に、患者等の被験者にとっては、測定時の姿勢に課されていた制限を緩和することもできる。
 本発明に係る生体情報測定システム300に含まれる生体情報測定部100では、患者等の被験者の頭部に対して照射した近赤外光が、頭部内部に吸収されずに伝播した光の強度、すなわち、頭部内部を透過した光の強度(透過光の強度)が測定される。
 生体内において血液が流れると(血流が変化すると)、血液中のヘモグロビンの濃度又は量が変化することが知られている。逆に言えば、血液中のヘモグロビンの濃度又は量が変化すれば、生体内において血液が流れた(血流が変化した)とみなすことができる。
 本発明においては、被験者の頭部に対して近赤外光を発光部から照射し、血液中のヘモグロビンの濃度又は量に増加が有った時、照射された近赤外領域の光が頭部内部に吸収される量(吸収量)に増加が生じ、これに応じて頭部内部を近赤外領域の光が透過する量(透過量)に減少が生じ、これに伴って当該透過量が受光部によって受光される量(受光量)に減少が生じること、並びに、血液中のヘモグロビンの濃度又は量に減少が有った時、照射された近赤外領域の光が頭部内部に吸収される量(吸収量)に減少が生じ、これに応じて頭部内部を近赤外領域の光が透過する量(透過量)に増加が生じ、これに伴って当該透過量が受光部によって受光される量(受光量)に増加が生じることに着眼している。
 なお、本発明においては、例えば、フォトダイオード(PD)等の受光部によって受光される量(受光量)に応じて、受光部から電流が出力される構成に設計することができる。
 本発明においては、被験者の頭部内部に血液中のヘモグロビンの濃度又は量の増加・減少に応じて、頭部内部を近赤外領域の光が透過する量(透過量)に違いが生じることを利用して、頭部内部に吸収されずに透過した光の強度(透過光の強度)を測定することで、血液の流れ(血流の変化)をリアルタイムで知ることができる。
 例えば、本発明に係る生体情報測定システム300を、心肺蘇生が必要な患者等の被験者に適用した場合、医療従事者は、血液の流れ(血流の変化)をリアルタイムで確認しながら、心臓マッサージ(胸骨圧迫)を行う位置や力加減を的確に調整することができ、心肺蘇生の成功確率を向上させることができる。
(生体情報測定システム300の構成)
 図2は、生体情報測定システム300を構成する、生体情報測定部100および生体情報出力部200の要部構成の一例を示すブロック図である。
 本発明によって提供される生体情報測定システム300は、図1に例示されるように、生体情報測定部100および生体情報出力部200を備える。
 生体情報測定部100は、発光部11、受光部12、光検出部13、および無線送信部14を含む。更に、生体情報測定部100は、演算部、および表示部を含めることもできる。
 一方、生体情報出力部200は、受信部15、および出力部16を含む。更に、生体情報出力部200は、演算部、表示部、および判定部を含めることもできる。
(生体情報測定システム300に含まれる生体情報測定部100の構成)
 発光部11は、被験者の頭部に対して近赤外光を照射する機能を有する。発光部11としては、例えば、発光ダイオード(LED)を用いることができる。
 受光部12は、発光部11から照射された近赤外光が被験者の頭部内部を伝播した光を受光する機能を有する。受光部12としては、例えば、フォトダイオード(PD)を用いることができる。
 光検出部13は、受光部12によって受光した光強度を検出する機能を有する。光検出部13としては、例えば、受光部12によって受光した光強度、すなわち被験者の頭部内部を透過した光の強度(透過光の強度)を検出する光検出器を用いることができる。
 無線送信部14は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する機能を有する。無線送信部14としては、例えば、無線送信可能なデバイスを用い、Bluetooth(登録商標)の方式を採用することができる。
 ここで「ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報」とは、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報であってもよいし、あるいは、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報をヘモグロビンの濃度又は量に換算した結果に関する情報であってもよい。
 図2に示されるように、生体情報測定部100は、上述した発光部11、受光部12、光検出部13、および無線送信部14を含む他に、以下に示す演算部、および表示部を含めることもできる(不図示)。
 演算部は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する機能を有する。演算部は、例えば、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算処理する。
 表示部は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する機能を有する。表示部は、例えば、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報に基づく表示情報をモニター等に表示する。
 なお、記憶部30は、生体情報測定部100に含まれる各部で取得された情報を記憶する。記憶部30は、例えば、フラッシュメモリのような不揮発性半導体メモリ等で構成される。
(生体情報測定システム300に含まれる生体情報出力部200の構成)
 受信部15は、生体情報測定部100の無線送信部14から無線送信された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する機能を有する。受信部15としては、例えば、無線受信可能なデバイスを用い、Bluetooth(登録商標)の方式を採用することができる。
 出力部16は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく出力情報を出力する機能を有する。出力部16は、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報に基づく出力情報をモニターやスピーカー等に出力する。
 図2に示されるように、生体情報出力部200は、上述した受信部15、および出力部16を含む他に、演算部、表示部、および判定部を含めることもできる(不図示)。
 演算部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する機能を有する。演算部は、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算処理する。
 表示部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する機能を有する。表示部は、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報に基づく表示情報をモニター等に表示する。
 判定部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく出力情報が所定の基準値を超えたか否かを判定する機能を有する。判定部は、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報に基づく出力情報が所定の基準値を超えたと判定した場合、出力部16が、外部(例えば、医療従事者)に報知する報知情報に基づく出力情報をモニターやスピーカー等に出力する。
 ここで「所定の基準値」とは、例えば、頭部内部に吸収されずに透過した光の強度(透過光の強度)の変化を経時的にモニタリングし、当該変化の割合に一定の基準を設け、これを所定の基準値とすることができる。
 具体的には、本発明に係る生体情報システム300を、心肺蘇生が必要な患者等の被験者に適用した場合、被験者の頭部内部に吸収されずに透過した光の強度(透過光の強度)の変化を経時的にモニタリングし、被験者の胸骨を圧迫したタイミングに応じて、被験者の頭部内部に血液中のヘモグロビンの濃度又は量が増加する変化が生じた場合、透過光の強度に変化が表れる。この変化の割合が一定の基準値を超えた場合に、医療従事者に表示手段や音声手段等を用いて報知することができる。
 なお、記憶部40は、生体情報出力部200に含まれる各部で取得された情報を記憶する。記憶部40は、例えば、フラッシュメモリのような不揮発性半導体メモリ等で構成される。
(本発明に係る生体情報測定部100の実施形態)
 本発明に係る生体情報測定部100の形態は、患者等の被験者の頭部に取り付け(貼り付け)可能な形態であれば、特に限定されないが、例えば、図3および図6に示される第1の実施形態、並びに、図7および図8に示される第2の実施形態を好ましい形態として挙げることができる。
(第1の実施形態に係る生体情報測定部100)
 図3は、本発明に係る生体情報測定部100の第1の実施形態を示す図である。
 本発明の第1の実施形態に係る生体情報測定部100は、発光部11と受光部12と光検出部13とを含む光検出ユニットAが第1の端子xを有し、無線送信部14を含む無線送信ユニットBが第2の端子yを有し、当該第1の端子xと第2の端子yとが着脱可能に直接接続することができる。
 図3aは、光検出ユニットAが有する第1の端子xと、無線通信ユニットBが有する第2の端子yとが、直接接続された状態を示す図である。
 また、図3bは、光検出ユニットAが有する第1の端子xと、無線通信ユニットBが有する第2の端子yとが、直接接続される前の状態を示す図である。
 図6は、第1の実施形態に係る生体情報測定部100を患者等の被験者の頭部に取り付けた状態(貼り付けた状態)を横から見た図である。
 図3aおよび図6に示される、第1の実施形態に係る生体情報測定部100は、光検出ユニットAが有する第1の端子xと、無線送信ユニットBが有する第2の端子yとが直接接続された形態である。
 なお、第1の端子xと第2の端子yの形状は、互いに接続可能な形状であれば、特に限定されない。
 第1の実施形態に係る生体情報測定部100であれば、図3に示されるように、光検出ユニットAが有する第1の端子xと、無線送信ユニットBが有する第2の端子yとを互いに接続し、光検出ユニットAと無線送信ユニットBとを一体化させた生体情報測定部100を、図6に示されるように、患者等の被験者の頭部に取り付けて(貼り付けて)生体情報の測定を行うことができる。
 第1の実施形態に係る生体情報測定部100および生体情報出力部200を備えた生体情報測定システム300であれば、生体情報測定部100と生体情報出力部200との間に通信ケーブルを介さずとも、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信することができる。これにより、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くすることができる。
 更に、第1の実施形態に係る生体情報測定部100は、光検出ユニットAと無線送信ユニットBとが一体化されているため、医療従事者が患者等の被験者に対して生体情報の測定を行う際、患者等の被験者にとっては、測定時の姿勢に課されていた制限が緩和され、ある程度自由な姿勢をとることもでき、測定時に患者等の被験者にかかっていた負荷を軽減することもできる。
(第2の実施形態に係る生体情報測定部100)
 図7は、本発明に係る生体情報測定部100の第2の実施形態を示す図である。
 本発明の第2の実施形態に係る生体情報測定部100は、発光部11と受光部12と光検出部13とを含む光検出ユニットAが第1の端子xを有し、無線送信部14を含む無線送信ユニットBが第2の端子yを有し、当該第1の端子xと第2の端子yとが有線を介して接続することができる。
 図8は、第2の実施形態に係る生体情報測定部100を患者等の被験者の頭部に取り付けた状態(貼り付けた状態)を横から見た図である。
 図7および図8に示される、第2の実施形態に係る生体情報測定部100は、光検出ユニットAが有する第1の端子xと、無線送信ユニットBが有する第2の端子yとが有線を介して接続された形態である。
 なお、第1の端子xと第2の端子yの形状は、有線を介して互いに接続可能な形状であれば、特に限定されない。
 第2の実施形態に係る生体情報測定部100であれば、図7に示されるように、光検出ユニットAが有する第1の端子xと、無線送信ユニットBが有する第2の端子yとを有線を介して互いに接続し、光検出ユニットAと無線送信ユニットBとを別体化させた生体情報測定部100を、図8に示されるように、患者等の被験者の頭部に取り付けて(貼り付けて)生体情報の測定を行うことができる。
 第2の実施形態に係る生体情報測定部100および生体情報出力部200を備えた生体情報測定システム300であれば、第1の実施形態に係る生体情報測定部100と同様に、生体情報測定部100と生体情報出力部200との間に通信ケーブルを介さずとも、生体情報測定部100で得られた測定情報を、生体情報出力部200に無線送信することができる。これにより、医療従事者が患者等の被験者に対して生体情報の測定を行う際、医療従事者にとっては、医療行為の実施を円滑に行い易くすることができる。
 更に、第2の実施形態に係る生体情報測定部100は、光検出ユニットAと無線送信ユニットBとが別体化されているため、医療従事者が患者等の被験者に対して、例えば睡眠時など長時間連続して生体情報の測定を行う際、患者等の被験者の頭部にかかる重みを光検出ユニットAのみとし、患者等の被験者の枕元に無線送信ユニットBを静置し、睡眠時などの長時間の連続測定時に患者等の被験者の頭部にかかっていた負荷を軽減することもできる。
(生体情報測定部と生体情報出力部とを備える生体情報測定システムの詳細)
 発光部11は、患者等の被験者の頭部に対して、近赤外領域の近赤外光を照射させることができれば、その構成は特に限定されず、例えば、発光ダイオード(LED)などの発光素子を素子基板に設け(不図示)、当該素子基板を図3に示される設置位置o1(左側),o2(右側)にそれぞれ取り付ける構成としてもよい。
 本発明において、近赤外光を被験者の頭部に対して照射する方法は、特に限定されないが、3つの異なる波長(第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm))の近赤外光を用い、それぞれ所定の順序で照射(点灯)させることが好ましい。
 ここで、第1波長λ(770nm±20nm)および第3波長λ(870nm±20nm)は、rSO(酸素飽和度)を算出するために用いられる照射波長である。
 一方、第2波長λ(805nm±20nm)は、HbI(ヘモグロビンインデックス)を算出するために用いられる照射波長である。
 rSO(酸素飽和度)は、2つの波長(第1波長λおよび第3波長λ)を用いて算出されることが好ましいが、どちらか一方の波長(第1波長λまたは第3波長λ)のみを用いて算出することもできる。
 図4は、3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)の近赤外光を、1サイクル毎に8回照射させる順序を時系列で示す図である。
 図5は、3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)の近赤外光を、1サイクル毎に6回照射させる順序を時系列で示す図である。
 本発明においては、1サイクルで行う照射回数は特に限定されるものではないが、照射回数が8回の場合の方が、照射回数が6回の場合に比べて信頼性の高いデータを得る観点から好ましい。
 図4に示すように照射回数が8回の場合、3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)は、1サイクル目において所定の順序で8回の照射を行い、2サイクル目以降も1サイクル目と同様の順序で8回の照射を行い、これを8サイクル目まで繰り返す照射を1セットとし、1セット以上の照射を行うことが好ましい。
 1サイクル目において行われる8回の照射順序は、下記に示すとおり「A→B→C→D→E→F→G→H」の順序で照射される(第1形態)。
<8回照射順序の第1形態>
 A:o1(左側)第1波長λ(770nm±20nm)
 B:o1(左側)第2波長λ(805nm±20nm)
 C:o1(左側)第3波長λ(870nm±20nm)
 D:o2(右側)第2波長λ(805nm±20nm)
 E:o2(右側)第1波長λ(770nm±20nm)
 F:o1(左側)第2波長λ(805nm±20nm)
 G:o2(右側)第3波長λ(870nm±20nm)
 H:o2(右側)第2波長λ(805nm±20nm)
 ここで、第1波長λ(770nm±20nm)と第3波長λ(870nm±20nm)は共に、rSO(酸素飽和度)を算出するために用いられる照射波長であるため、第1波長λ(770nm±20nm)と第3波長λ(870nm±20nm)の順序を入れ替えて、下記に示す順序で照射されてもよい(第2形態)。
<8回照射順序の第2形態>
 A:o1(左側)第3波長λ(870nm±20nm)
 B:o1(左側)第2波長λ(805nm±20nm)
 C:o1(左側)第1波長λ(770nm±20nm)
 D:o2(右側)第2波長λ(805nm±20nm)
 E:o2(右側)第3波長λ(870nm±20nm)
 F:o1(左側)第2波長λ(805nm±20nm)
 G:o2(右側)第1波長λ(770nm±20nm)
 H:o2(右側)第2波長λ(805nm±20nm)
 上記8回照射順序の第1形態および第2形態では、第1回目の照射を「A」から開始させているが、「B」~「H」のいずれから照射を開始させてもよい。なお「A」以外から照射を開始させる場合、「H」の次に照射させるのは「A」である。
 例えば、第1回目の照射を「C」から開始させた場合、8回照射は「C→D→E→F→G→H→A→B」の順序で照射させる。
 上述したように、1サイクル毎に8回の照射を行う場合、1サイクル目から8サイクル目までの照射、即ち合計64回の照射を1セットとして、1セット以上の照射を行うことが好ましい。少なくとも1セットの照射(8サイクル,64回照射)は、1秒間内で行うことが好ましい。
 例えば、4セットの照射(32サイクル,256回照射)を、1秒間内で行うこともできる。
 少なくとも1セットで行われる1秒間の照射時間には、照射の待機時間も含まれ、実際に3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)それぞれ1回の照射時間は、90~180μsec程度である。
 本発明においては、1サイクルで行う照射回数は8回の場合の方が信頼性の高いデータを得る観点から好ましいが、照射回数が6回の場合であってもよい。
 図5に示すように照射回数が6回の場合、3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)は、1サイクル目において所定の順序で6回の照射を行い、2サイクル目以降も1サイクル目と同様の順序で6回の照射を行い、これを8サイクル目まで繰り返す照射を1セットとし、1セット以上の照射を行うことが好ましい。
 1サイクル目において行われる6回の照射順序は、下記に示すとおり「A→B→C→D→E→F」の順序で照射される。
<6回照射順序>
 A:o1(左側)第1波長λ(770nm±20nm)
 B:o2(右側)第2波長λ(805nm±20nm)
 C:o1(左側)第3波長λ(870nm±20nm)
 D:o2(右側)第1波長λ(770nm±20nm)
 E:o1(左側)第2波長λ(805nm±20nm)
 F:o2(右側)第3波長λ(870nm±20nm)
 ここで、第2波長λ(805nm±20nm)は、HbI(ヘモグロビンインデックス)を算出するために用いられる照射波長であるが、図4に示される8回照射では左右2回ずつ照射させているのに対して、図5に示される6回照射では左右1回ずつ照射させればよい。
 上記6回照射順序では、第1回目の照射を「A」から開始させているが、「B」~「F」のいずれから照射を開始させてもよい。なお「A」以外から照射を開始させる場合、「F」の次に照射させるのは「A」である。
 例えば、第1回目の照射を「C」から開始させた場合、6回照射は「C→D→E→F→A→B」の順序で照射させる。
 上述したように、1サイクル毎に6回の照射を行う場合、1サイクル目から8サイクル目までの照射、即ち合計48回の照射を1セットとして、1セット以上の照射を行うことが好ましい。少なくとも1セットの照射(8サイクル,48回照射)は、1秒間内で行うことが好ましい。
 例えば、4セットの照射(24サイクル,144回照射)を、1秒間内で行うこともできる。
 少なくとも1セットで行われる1秒間の照射時間には、照射の待機時間も含まれ、実際に3つの異なる波長(第1波長λ,第2波長λ,第3波長λ)それぞれ1回の照射時間は、90~180μsec程度である。
 受光部12は、発光部11から照射された近赤外光が被験者の頭部内部を伝播した光を受光させることができれば、その構成は特に限定されず、例えば、フォトダイオード(PD)などの受光素子を素子基板に設け(不図示)、当該素子基板を図3に示される設置位置p1(左側),p2(右側)にそれぞれ取り付ける構成としてもよい。
 ここで「被験者の頭部内部を伝播した光」とは、発光部11から照射された近赤外光が頭部内部に吸収されずに透過した光(透過光)のことを指していう。
 受光部12は、頭部内部に吸収されずに透過した光(透過光)を逃さず受光することができるよう、近赤外光の照射タイミングに同期させて受光可能となるように適宜設計することができる。
 上述したように、発光部11において、3つの異なる波長(第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm))の近赤外光を用い、それぞれ所定の順序で照射(点灯)させた場合においても、受光部12は、発光部11から所定の順序で照射された、3つの異なる波長(第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm))の近赤外光が被験者の頭部内部を伝播した光をそれぞれ受光させることができる。
 光検出部13は、受光部12によって受光した光強度を検出することができれば、その構成は特に限定されず、例えば、受光部12によって受光した光強度、すなわち被験者の頭部内部を透過した光の強度(透過光の強度)を検出する光検出器を基板に設け(不図示)、当該基板を図3に示される設置位置qに取り付ける構成としてもよい。
 上述したように、受光部12において、3つの異なる波長(第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm))の近赤外光が被験者の頭部内部を伝播した光をそれぞれ受光した場合においても、光検出部13は、受光部12からそれぞれ受光した光強度、すなわち被験者の頭部内部を透過した光の強度(透過光の強度)を検出することができる。
 無線送信部14は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信することができれば、その構成は特に限定されず、例えば、生体情報測定部100の無線送信ユニットBに無線送信可能なデバイスを設け、Bluetooth(登録商標)の方式を採用することができる。
 ここで「ヘモグロビンの濃度又は量の変化を特定するための情報」とは、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報であってもよいし、あるいは、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報をヘモグロビンの濃度又は量に換算した結果に関する情報であってもよい。
 本発明においては、生体情報測定部100に演算部を含めることができる。演算部は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理することができれば、その構成は特に限定されない。
 演算部は、例えば、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算処理する。あるいは、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報を、数値化又は描画化するために演算処理する。
 本発明においては、生体情報測定部100に演算部を含めることにより、無線送信部14が無線送信する情報量、並びに受信部15が受信する情報量を少なくすることができることに起因し、無線送信部14および受信部15にかかる負荷を軽減し、無線送信および無線受信に要する時間を短縮することができる。
 本発明においては、生体情報測定部100に表示部を含めることができる。表示部は、光検出部13によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示することができれば、その構成は特に限定されず、例えば、生体情報測定部100にモニター等を設けることができる。
 表示部は、例えば、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報に基づく表示情報を表示する。または、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算部で演算処理した結果に関する情報に基づく表示情報を表示する。または、光検出部13によって検出された光強度(透過光の強度)の検出結果に関する情報を、数値化又は描画化するために演算部で演算処理した結果に関する情報に基づく表示情報を表示する。
 本発明においては、生体情報測定部100に表示部を含めることにより、医療従事者が患者等の被験者に対して生体情報の測定を行いながら他の医療行為を行う際、医療従事者は、生体情報出力部200だけでなく、生体情報測定部100によっても、被験者の頭部内部に血液が流れる量の変化(血流の変化)をリアルタイムで確認しながら、他の医療行為を的確に行うことができる。
 受信部15は、生体情報測定部100の無線送信部14から無線送信された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線受信することができれば、その構成は特に限定されず、例えば、生体情報出力部200に無線受信可能なデバイスを設け、Bluetooth(登録商標)の方式を採用することができる。
 出力部16は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく出力情報を出力することができれば、その構成は特に限定されず、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報に基づく出力情報をモニター等により視覚的に、又はやスピーカー等により聴覚的に出力する。
 ここで、モニターの例として、スマートフォン等の小型軽量化された通信機器を挙げることができる。当該小型軽量化された通信機器が出力した出力情報を、更に、他の通信機器に伝送する形態も実現可能である。
 本発明においては、上述した生体情報測定部100と同様に生体情報出力部200にも演算部を含めることができる。演算部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理することができれば、その構成は特に限定されない。
 演算部は、例えば、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算処理する。あるいは、受信部15で受信された、光強度(透過光の強度)の検出結果に関する情報を、数値化又は描画化するために演算処理する。
 本発明においては、生体情報出力部200に演算部を含めることにより、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報の演算処理を生体情報出力部200で行うことに起因し、生体情報測定部100に演算処理機能を含めず、あるいは、生体情報測定部100に含める演算処理機能を限定的なものに留めることができるため、生体情報測定部100を小型軽量化した設計にすることができる。
 本発明においては、上述した生体情報測定部100と同様に生体情報出力部200にも表示部を含めることができる。表示部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示することができれば、その構成は特に限定されず、例えば、生体情報出力部200にモニター等を設けることができる。
 表示部は、例えば、受信部15で受信された光強度(透過光の強度)の検出結果に関する情報に基づく表示情報を表示する。または、受信部15で受信された光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算部で演算処理した結果に関する情報に基づく表示情報を表示する。または、受信部15で受信された光強度(透過光の強度)の検出結果に関する情報を、数値化又は描画化するために演算部で演算処理した結果に関する情報に基づく表示情報を表示する。
 本発明においては、生体情報出力部200に表示部を含めることにより、医療従事者が患者等の被験者に対して生体情報の測定を行いながら他の医療行為を行う際、医療従事者は、生体情報出力部200に設けられた表示部によって、被験者の頭部内部に血液が流れる量の変化(血流の変化)をリアルタイムで確認しながら、他の医療行為を的確に行うことができる。
 本発明においては、生体情報出力部200に判定部を含めることができる。判定部は、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づいて、血流の変化に関する情報に変化が生じたか否か、すなわち血流の変化の有無を判定することができる。
 本発明における、血流の変化の有無の判定手法は、o1(左側)の発光部と対になるP1(左側)の受光部、o2(右側)の発光部と対になるP2(右側)の受光部のそれぞれにおいて、o1(左側)およびo2(右側)の発光部から各波長(第1波長λ,第2波長λ,又は第3波長λ)をそれぞれ所定の順序で照射し、p1(左側)およびp2(右側)の受光部によってそれぞれ受光した光強度(透過光の強度)を光検出部でそれぞれ検出する。
 そして、光検出部で1サイクル毎にそれぞれ検出された各データにおいて、隣接するサイクル同士(例えば1サイクル目と2サイクル目同士)の比較によるデータの差が全て同一方向(例えば全て増加方向)となる一方で、別の隣接するサイクル同士(例えば3サイクル目と4サイクル目同士)との比較によるデータの差が全て反対方向(例えば全て減少方向)となった場合に、血流の変化が有ったと判定することができる。
 具体的には、下記に示す<血流の変化の有無の判定手法>によって、(i)o1(左側)の発光部から各波長(第1波長λ,第2波長λ,又は第3波長λ)を照射し、p1(左側)の受光部によって受光した光強度を光検出部で検出した各データが下記(1)~(3)の傾向を全て満たし、且つ、(ii)o2(右側)の発光部から各波長(第1波長λ,第2波長λ,又は第3波長λ)を照射し、p2(右側)の受光部によって受光した光強度(透過光の強度)を光検出部で検出した各データが下記(4)~(6)の傾向を全て満たした場合、血流の変化が有ったと判定することができる。
 逆に言えば、(i)下記(1)~(3),(ii)下記(4)~(6)の合計6つの傾向のうち、1つでも満たさなければ、血流の変化が無かったと判定することができる。
<血流の変化の有無の判定手法>
(i)o1(左側)
 (1)第1波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で1サイクル毎に検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
 (2)第2波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で1サイクル毎に検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
 (3)第3波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で1サイクル毎に検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
(ii)o2(右側)
 (4)第1波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で1サイクル毎に検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
 (5)第2波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
 (6)第3波長λを照射し、p1(左側)の受光部によって受光した光強度(透過光の強度)を光検出部で1サイクル毎に検出したデータが、1サイクル目と2サイクル目同士の比較によるデータの差が増加となる一方で、3サイクル目と4サイクル目同士の比較によるデータの差が減少する
 上記<血流の変化の有無の判定手法>において、隣接するサイクルの一例として1サイクル目と2サイクル目を挙げ、別の隣接するサイクルの一例として3サイクル目と4サイクル目を挙げているが、これに限定されるものではない。
 上述したように、本発明では3つの異なる波長(第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm))の近赤外光を用い、それぞれ所定の順序で照射(点灯)させることによって、信頼性の高いデータを得ることができる。
 そして、このような信頼性の高いデータに基づいて、上述した血流の変化の有無の判定手法よって血流の変化の有無を正確に判断することができる。
 このため、本発明によれば、たとえ被験者の胸骨圧迫に伴い、被験者の体が揺すぶられたとしても、その影響をほとんど受けず、信頼性の高い測定データに基づいて、血流の微小な変化であっても、血流の変化の有無の判断を正確に行うことができる。
 また、判定部は、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、被験者の胸骨を圧迫したタイミングに応じて血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを判定する。
 ここで「光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報」としては、例えば、(1)光強度(透過光の強度)の検出結果に関する情報に基づく出力情報、(2)光強度(透過光の強度)の検出結果に関する情報を、ヘモグロビンの濃度又は量に関する情報に換算するために演算部で演算処理した結果に関する情報に基づく出力情報、(3)光強度(透過光の強度)の検出結果に関する情報を、数値化又は描画化するために演算部で演算処理した結果に関する情報に基づく出力情報などが挙げられる。
 上述した判定部は、生体情報出力部200に含めることができることを述べたが、生体情報測定部100にも同様に判定部を含めることができる。
 更に、判定部が、受信部15で受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報が所定の基準値を超えたと判定した場合、生体情報出力部200は、外部(例えば、医療従事者)に報知する報知情報に基づく出力情報をモニターやスピーカー等に出力する。これにより、医療従事者は生体情報出力部200から出力される報知情報に基づいて、医療行為を的確に行うことができる。
 上述した生体情報出力部200は、判定部が血流の変化に関する情報が所定の基準値を超えたと判定した場合に、外部に報知することができることを述べたが、生体情報測定部100においても、同様に判定部が血流の変化に関する情報が所定の基準値を超えたと判定した場合に、外部に報知することができる。
(生体情報測定システム300が実行する処理)
 図9は、生体情報測定部100および生体情報出力部200を備える、生体情報測定システム300が実行する処理の一例を示すフローチャートである。図9は、図2に示されるブロック図に対応するフローチャートである。
 なお、以下の説明において、括弧書きの「~ステップ」は、生体情報測定部100および生体情報出力部200が実行する各ステップを表す。
 生体情報測定システム300が実行する処理としては、図9に例示される各ステップを経て実現される。
 被験者の頭部に対して近赤外光を照射し(ステップ1(S1)以下「ステップ」を「S」と略記する、発光ステップ)、発光ステップから被験者の頭部に対して近赤外光を照射する(S2、受光ステップ)。
 また、受光ステップによって受光した光強度を検出し(S3、光検出ステップ)、光検出ステップによって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する(S4、無線送信ステップ)。
 次いで、無線送信ステップから無線送信された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信し(S5、受信ステップ)、受信ステップで受信された、光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく出力情報を出力する(S6、出力ステップ)。
[付記事項]
 本発明は上述した実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても、本発明の技術的範囲に含まれる。更に、各実施の形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
 100:生体情報測定部
 200:生体情報出力部
 300:生体情報測定システム
 11:発光部
 12:受光部
 13:光検出部
 14:無線送信部
 15:受信部
 16:出力部
 A:光検出ユニット
 B:無線送信ユニット
 x:第1の端子
 y:第2の端子

Claims (14)

  1.  生体情報測定部と、生体情報出力部とを備える、心肺蘇生を必要とする被験者に適用する生体情報測定システムであって、
     前記生体情報測定部は、
     前記被験者の頭部に対して近赤外光を照射する発光部と、当該発光部から照射された近赤外光が前記被験者の頭部内部を伝播した光を受光する受光部と、当該受光部によって受光した光強度を検出する光検出部と、当該光検出部によって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信部とを含み、
     前記生体情報出力部は、
     前記生体情報測定部の無線送信部から無線送信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する受信部と、当該受信部で受信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、前記被験者の胸骨を圧迫したタイミングに応じて前記血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを判定する判定部とを含む、生体情報測定システム。
  2.  前記生体情報測定部の発光部において、
     前記被験者の頭部に対して、3つの異なる波長の近赤外光を用い、当該3つの異なる波長が、第1波長λ(770nm±20nm)、第2波長λ(805nm±20nm)、および第3波長λ(870nm±20nm)であることを特徴とする、請求項1に記載の生体情報測定システム。
  3.  前記生体情報測定部の前記発光部と前記受光部が、
     左側を測定する発光部(o1)および受光部(p1)と、右側を測定する発光部(o2)および受光部(p2)とがそれぞれ対になって左右に設置され、
     3つの異なる波長の近赤外光を用い、1サイクル毎に実施される8回の照射順序が、
     下記A→B→C→D→E→F→G→H、下記B→C→D→E→F→G→H→A、下記C→D→E→F→G→H→A→B、下記D→E→F→G→H→A→B→C、下記E→F→G→H→A→B→C→D、下記F→G→H→A→B→C→D→E、下記G→H→A→B→C→D→E→F、および下記H→A→B→C→D→E→F→Gの中から選択されるいずれかであることを特徴とする、請求項1に記載の生体情報測定システム。
      A:o1(左側)第1波長λ(770nm±20nm)
      B:o1(左側)第2波長λ(805nm±20nm)
      C:o1(左側)第3波長λ(870nm±20nm)
      D:o2(右側)第2波長λ(805nm±20nm)
      E:o2(右側)第1波長λ(770nm±20nm)
      F:o1(左側)第2波長λ(805nm±20nm)
      G:o2(右側)第3波長λ(870nm±20nm)
      H:o2(右側)第2波長λ(805nm±20nm)
  4.  前記A:o1(左側)第1波長λ(770nm±20nm)と前記C:o1(左側)第3波長λ(870nm±20nm)の順序、又は前記E:o2(右側)第1波長λ(770nm±20nm)と前記G:o2(右側)第3波長λ(870nm±20nm)の順序を入れ替えることを特徴とする、請求項3に記載の生体情報測定システム。
  5.  前記1サイクル毎に8回の照射を実施する場合、
     1サイクル目から8サイクル目までの照射を1セットとし、1セット以上の照射を実施し、少なくとも1セットの照射が1秒間内で実施することを特徴とする、請求項3又は請求項4に記載の生体情報測定システム。
  6.  前記生体情報測定部の前記発光部と前記受光部が、
     左側を測定する発光部(o1)および受光部(p1)と、右側を測定する発光部(o2)および受光部(p2)とがそれぞれ対になって左右に設置され、
     前記o1(左側)およびo2(右側)の発光部から前記3つの異なる波長を、それぞれ前記照射順序で照射し、前記p1(左側)およびp2(右側)の受光部によってそれぞれ受光した光強度を光検出部で1サイクル毎にそれぞれ検出し、
     前記判定部が、
     前記光検出部で1サイクル毎に検出された各データにおいて、隣接するサイクル同士の比較によるデータの差が全て同一方向(例えば全て増加方向)となる一方で、別の隣接するサイクル同士との比較によるデータの差が全て反対方向(例えば全て減少方向)となった場合に、血流の変化が有ったと判定することを特徴とする、請求項3から5のいずれか1項に記載の生体情報測定システム。
  7.  前記生体情報測定部において、
     前記発光部と前記受光部と前記光検出部とを含む光検出ユニットが第1の端子を有し、前記無線送信部を含む無線送信ユニットが第2の端子を有し、当該第1の端子と第2の端子とが着脱可能に直接接続されていることを特徴とする、請求項1から6のいずれか1項に記載の生体情報測定システム。
  8.  前記生体情報測定部において、
     前記発光部と前記受光部と前記光検出部とを含む光検出ユニットが第1の端子を有し、
     前記無線送信部を含む無線送信ユニットが第2の端子を有し、当該第1の端子と第2の端子とが有線を介して接続されていることを特徴とする、請求項1から6のいずれか1項に記載の生体情報測定
    システム。
  9.  前記生体情報測定部は、更に、
     前記光検出部によって検出された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する表示部を含むことを特徴とする、請求項1から8のいずれか1項に記載の生体情報測定システム。
  10.  前記生体情報出力部は、更に、
     前記受信部で受信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく表示情報を表示する表示部を含むことを特徴とする、請求項1から9のいずれか1項に記載の生体情報測定システム。
  11.  前記生体情報測定部は、更に、
     前記光検出部によって検出された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する演算部を含むことを特徴とする、請求項1から10のいずれか1項に記載の生体情報測定システム。
  12.  前記生体情報出力部は、更に、
     前記受信部で受信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を演算処理する演算部を含むことを特徴とする、請求項1から11のいずれか1項に記載の生体情報測定システム。
  13.  前記判定部が、前記所定の基準値を超えたと判定した場合、前記生体情報出力部が、外部に報知する報知情報に基づく出力情報を出力することを特徴とする、請求項1から12のいずれか1項に記載の生体情報測定システム。
  14.  生体情報測定部において実行される生体情報測定ステップと、生体情報出力部において実行される生体情報出力ステップとを備える、生体情報測定システムによる、心肺蘇生を必要とする被験者に適用する生体情報測定方法であって、
     前記生体情報測定ステップは、
     前記被験者の頭部に対して近赤外光を照射する発光ステップと、当該発光ステップから照射された近赤外光が前記被験者の頭部内部を伝播した光を受光する受光ステップと、当該受光ステップによって受光した光強度を検出する光検出ステップと、当該光検出ステップによって検出された光強度に基づく血液中のヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を無線送信する無線送信ステップとを含み、
     前記生体情報出力ステップは、
     前記生体情報測定ステップの無線送信ステップから無線送信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報を受信する受信ステップと、当該受信ステップで受信された前記ヘモグロビンの濃度又は量の増加・減少に応じた変化を特定するための情報に基づく血流の変化に関する情報を経時的にモニタリングし、前記被験者の胸骨を圧迫したタイミングに応じて前記血流の変化に関する情報に変化が生じた場合、当該血流の変化の割合が所定の基準値を超えたか否かを前記生体情報出力部が判定する判定ステップとを含む、生体情報測定方法。
PCT/JP2017/017001 2016-05-02 2017-04-28 生体情報測定システム、及び生体情報測定方法 WO2017191816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17754591.0A EP3318190B1 (en) 2016-05-02 2017-04-28 Bioinformation measurement system and bioinformation measurement method
US15/554,474 US10285630B2 (en) 2016-05-02 2017-04-28 Biological information measurement system and biological information measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092726 2016-05-02
JP2016092726A JP6191977B1 (ja) 2016-05-02 2016-05-02 生体情報測定システム、及び生体情報測定方法

Publications (1)

Publication Number Publication Date
WO2017191816A1 true WO2017191816A1 (ja) 2017-11-09

Family

ID=59798969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017001 WO2017191816A1 (ja) 2016-05-02 2017-04-28 生体情報測定システム、及び生体情報測定方法

Country Status (4)

Country Link
US (1) US10285630B2 (ja)
EP (1) EP3318190B1 (ja)
JP (1) JP6191977B1 (ja)
WO (1) WO2017191816A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3042952A1 (en) * 2016-11-14 2018-05-17 Nuralogix Corporation System and method for camera-based heart rate tracking
JP2021509621A (ja) 2018-01-08 2021-04-01 ヴィヴォニクス・インコーポレーテッド 被験者の脳を冷却するためのシステムおよび方法
US20220008637A1 (en) * 2018-09-27 2022-01-13 Gauss Surgical, Inc. Systems and methods for inline fluid characterization
CN111820912B (zh) * 2019-04-17 2022-06-07 深圳市理邦精密仪器股份有限公司 一种医疗设备及医疗设备光强度的显示方法
WO2021138529A1 (en) * 2020-01-03 2021-07-08 Vivonics, Inc. A system and method for non-invasively determining an indication and/or an assessment of intracranial pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140715A (ja) * 1995-11-29 1997-06-03 Hitachi Ltd 生体光計測装置
JP2008173140A (ja) * 2007-01-16 2008-07-31 Hitachi Ltd 生体光計測装置および光検出モジュール
JP2009101057A (ja) * 2007-10-25 2009-05-14 Sony Corp 生体情報処理装置、生体情報処理方法及びプログラム
JP2013170881A (ja) * 2012-02-20 2013-09-02 Hamamatsu Photonics Kk 濃度測定装置および濃度測定方法
JP2014064929A (ja) 1999-01-25 2014-04-17 Masimo Corp 汎用/アップグレード用パルス酸素濃度計

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569018B1 (en) * 2003-02-18 2009-08-04 Purdue Research Foundation Apparatus and method for noninvasively detecting the quality of cardiac pumping
US7190999B2 (en) * 2003-06-27 2007-03-13 Zoll Medical Corporation Cardio-pulmonary resuscitation device with feedback from measurement of pulse and/or blood oxygenation
US9028259B2 (en) * 2007-01-16 2015-05-12 Physio-Control, Inc. Wearable CPR assist, training and testing device
JP5687106B2 (ja) 2011-03-25 2015-03-18 日本光電工業株式会社 心肺蘇生術モニタリング装置
JP5382666B2 (ja) * 2011-04-21 2014-01-08 学校法人 聖マリアンナ医科大学 濃度測定装置及び濃度測定方法
US20140275888A1 (en) * 2013-03-15 2014-09-18 Venture Gain LLC Wearable Wireless Multisensor Health Monitor with Head Photoplethysmograph
US9848808B2 (en) * 2013-07-18 2017-12-26 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US20150105636A1 (en) * 2013-10-10 2015-04-16 Covidien Lp System and method for emergency resuscitation
US10499836B2 (en) * 2016-03-11 2019-12-10 Fujita Medical Instruments Co., Ltd. Oxygen saturation measuring sensor, and oxygen saturation measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140715A (ja) * 1995-11-29 1997-06-03 Hitachi Ltd 生体光計測装置
JP2014064929A (ja) 1999-01-25 2014-04-17 Masimo Corp 汎用/アップグレード用パルス酸素濃度計
JP2008173140A (ja) * 2007-01-16 2008-07-31 Hitachi Ltd 生体光計測装置および光検出モジュール
JP2009101057A (ja) * 2007-10-25 2009-05-14 Sony Corp 生体情報処理装置、生体情報処理方法及びプログラム
JP2013170881A (ja) * 2012-02-20 2013-09-02 Hamamatsu Photonics Kk 濃度測定装置および濃度測定方法

Also Published As

Publication number Publication date
US20180160948A1 (en) 2018-06-14
JP2017200518A (ja) 2017-11-09
EP3318190B1 (en) 2020-01-29
US10285630B2 (en) 2019-05-14
EP3318190A1 (en) 2018-05-09
JP6191977B1 (ja) 2017-09-06
EP3318190A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2017191816A1 (ja) 生体情報測定システム、及び生体情報測定方法
JP6453770B2 (ja) 被験者のバイタルサインを決定するシステム及び方法
US8965471B2 (en) Tissue profile wellness monitor
JP6467417B2 (ja) リモート検出された電磁放射線から生理学的情報を抽出するシステム及び方法
US8777867B2 (en) Detection of oximetry sensor sites based on waveform characteristics
US20140275825A1 (en) Methods and systems for light signal control in a physiological monitor
US20090247851A1 (en) Graphical User Interface For Monitor Alarm Management
US9996954B2 (en) Methods and systems for dynamic display of a trace of a physiological parameter
KR20180087894A (ko) 귀 착용형 건강관리 모니터링 시스템
WO2019133926A1 (en) Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry using independent component analysis
US11211163B2 (en) Methods and systems for providing the proximity of a process requirement metric to a system process requirement
US9888871B2 (en) Methods and systems for determining a venous signal using a physiological monitor
US11304654B2 (en) Method for detecting abnormal respiration using a photoplethysmography (PPG) signal
AvakhKisomi et al. A novel wireless ring-shaped multi-site pulse oximeter
CN109688929B (zh) 浓度测定装置及浓度测定方法
KR20150110898A (ko) 산소포화도 측정방법
US10022068B2 (en) Systems and methods for detecting held breath events
US10993644B2 (en) SpO2 system and method
KR20230087162A (ko) 독거노인의 응급상황 알림 시스템
JP2016002166A (ja) 生体情報表示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017754591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15554474

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE