WO2017188507A1 - Tactile actuator and control method therefor - Google Patents

Tactile actuator and control method therefor Download PDF

Info

Publication number
WO2017188507A1
WO2017188507A1 PCT/KR2016/006548 KR2016006548W WO2017188507A1 WO 2017188507 A1 WO2017188507 A1 WO 2017188507A1 KR 2016006548 W KR2016006548 W KR 2016006548W WO 2017188507 A1 WO2017188507 A1 WO 2017188507A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mode
current
driving
tactile actuator
Prior art date
Application number
PCT/KR2016/006548
Other languages
French (fr)
Korean (ko)
Inventor
김형준
이종훈
이정범
강지구
정종형
Original Assignee
주식회사 씨케이머티리얼즈랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160076452A external-priority patent/KR101790880B1/en
Application filed by 주식회사 씨케이머티리얼즈랩 filed Critical 주식회사 씨케이머티리얼즈랩
Priority to EP16900581.6A priority Critical patent/EP3379378A4/en
Priority to JP2018562484A priority patent/JP6708757B2/en
Priority to US15/763,208 priority patent/US11123767B2/en
Priority to CN201680081631.8A priority patent/CN108700935A/en
Publication of WO2017188507A1 publication Critical patent/WO2017188507A1/en
Priority to US17/377,540 priority patent/US11623244B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • An embodiment relates to a tactile actuator and a control method thereof.
  • haptic providing apparatus for haptic technology includes an inertial actuator, a piezoelectric actuator, an electro-active polymer actuator (EAP), and the like.
  • the inertial actuator has the strength of vibration by using an eccentric rotation motor (ERM) that vibrates with eccentric force generated by the weight connected to the magnetic circuit, and the resonant frequency generated by the elastic spring and the weight connected to the magnetic circuit.
  • EPM eccentric rotation motor
  • LRA linear resonant actuator
  • a piezoelectric actuator is a device that is driven in the form of a bar or a disk by using an elastic body, mainly on a piezoelectric element whose appearance changes instantaneously by an electric field.
  • Korean Patent Publication No. 10-1603957 (name: piezoelectric actuator, piezoelectric vibrator and portable terminal)
  • Korean Patent Publication No. 10-2011-0118584 (name: transparent synthesis Piezoelectric combined touch sensors and haptic actuators).
  • the electroactive polymer actuator is driven by providing a repetitive motion by attaching an electroactive polymer film to the mass based on the principle that the appearance is changed by a functional group on the polymer backbone having a specific mechanism by external power. It is an element to make.
  • the conventional haptic providing device as described above is not only to transmit a simple vibration, but also in the case of the linear resonant actuator has the disadvantage that effective vibration is possible only by using the resonance frequency determined by the mass and the spring, piezoelectric actuator
  • the material used is a fragile material and has a limitation that it can not achieve sufficient endurance life for the practitioner.
  • durability is a problem with respect to external oxidation, and a large amount of voltage is applied for practical driving. There was a problem that is difficult to apply to a variety of devices required.
  • the conventional haptic providing device as described above may seem to solve the above problem by widening the width of the driving frequency that can efficiently provide vibration, but the vibration due to the structure to provide the vibration and sound of 160 Hz or more at the same time The problem with the noise was very clear.
  • the embodiment has been devised to solve the problems of the prior art as well as the market needs for a new haptic in accordance with the development of haptic technology, a haptic providing device, tactile actuator to provide a more emotional tactile response to various situations
  • the purpose is to provide a (tactile actuator).
  • SUMMARY Embodiments provide a tactile actuator having at least two operation modes capable of presenting different tactile sensations in two or more distinguishable frequency bands and a control method thereof.
  • the combination of the elastic member and the vibrating portion (mass) has at least one resonant frequency at 160 Hz or less, and at this point, it is possible to provide the vibration provided by the prior art, and at the same time, 1/3 point of the resonant frequency.
  • An object of the present invention is to provide a tactile actuator having a driving section capable of presenting another tactile sensation.
  • the tactile actuator includes: a housing defining an accommodation space therein; A cap covering at least a portion of the accommodation space; A vibrator disposed in the accommodation space; An elastic member connecting the housing and the vibrator to allow the vibrator to vibrate with respect to the housing; A coil forming a magnetic field for driving the vibrator; And a controller configured to determine any one driving mode based on the collected driving information among a plurality of preset driving modes, and determine a characteristic of a current to be applied to the coil according to the driving mode.
  • the vibration portion may have a mass of 2 g or less, an elastic modulus of the elastic member may be 2.021 N / mm or less, and a resonant frequency of the tactile actuator may be 160 Hz or less.
  • the control unit determines the frequency of the current as the first setting frequency, and if the driving mode is a setting mode other than the first setting mode, the controller determines the frequency of the current.
  • the second set frequency may be determined to be lower than the first set frequency.
  • the first set frequency may be a value of 160 Hz or less.
  • the second set frequency may be a value equal to or less than 1/3 of the resonance frequency of the tactile actuator.
  • the control unit determines the waveform of the current as a square wave or a pulse wave, and if the driving mode is the third setting mode, the control unit is the current.
  • the waveform of may be determined as a sine wave.
  • the driving mode may include a general vibration mode, a tapping mode, and a rocking mode.
  • the controller determines the frequency of the current as the first set frequency, and if the driving mode is the tapping mode, the controller sets the frequency of the current to be lower than the first set frequency.
  • the control unit may determine the frequency of the current as the third set frequency higher than the second set frequency and lower than the first set frequency if the driving frequency is determined as the second set frequency.
  • the tactile actuator further includes information providing means for providing information collected by the controller, wherein the information providing means includes a user interface for receiving a user's command, a sensor for sensing an external environment, and data is stored. It may include any one or more of a memory, a communication unit for receiving information through communication with other communication devices.
  • a control method of a tactile actuator may include collecting driving information; Determining a driving mode of any one of a plurality of preset driving modes based on the collected driving information; And determining a frequency of a current to be applied to the coil based on the determined driving mode. And applying a current to the coil.
  • the control method of the tactile actuator may further include determining a waveform of a current to be applied to the coil based on the determined driving mode.
  • the driving information may be an image or a sound source reproduced by a device connected to the tactile actuator, and the determining of the driving mode may be determined in real time according to whether a predetermined image pattern or sound pattern is included in the image or sound source. Can be.
  • various touches may be more emotionally transmitted.
  • more efficient tactile sensation may be provided than a conventional technology in a frequency range of 160 Hz or less among the frequency ranges that the human body can detect.
  • At least two different tactile sensations may be provided through a single tactile provision device within a frequency range of 160 Hz or less.
  • 1 is a view showing the inside of the tactile actuator according to an embodiment.
  • FIG. 2 is a diagram illustrating an elastic member according to an exemplary embodiment.
  • FIG. 3 is a view showing an elastic member according to another embodiment.
  • FIG. 4 is a block diagram of a tactile actuator according to one embodiment.
  • FIG. 5 is a graph conceptually illustrating a driving region according to frequency in a tactile actuator or the like according to an embodiment.
  • FIG. 6 is a graph illustrating a relationship between a frequency and an acceleration actually measured in a tactile actuator according to an exemplary embodiment.
  • FIG. 7 is a graph illustrating a relationship between a frequency and an acceleration measured when a square wave current having a low frequency is applied to a tactile actuator or the like according to an embodiment.
  • FIG. 8 is a graph illustrating a relationship between frequency and acceleration measured when a sinusoidal current having a low frequency is applied to a tactile actuator or the like according to an embodiment.
  • FIG. 9 is a diagram illustrating a control method of a tactile actuator according to an exemplary embodiment.
  • FIG. 10 is a diagram illustrating an embodiment in which the tactile actuator operates in the first setting mode.
  • 11 is a diagram illustrating another embodiment in which the tactile actuator operates in the second setting mode.
  • FIG. 12 is a graph showing a change in acceleration according to a change in current magnitude of an input current that is a square wave of 5 Hz in tactile actuators having different resonance frequencies.
  • FIG. 13 is a graph showing a change in acceleration according to a change in frequency of an input current which is a square wave of 90 mA in tactile actuators having different resonance frequencies.
  • FIG. 14 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonant frequency characteristic of 80 Hz.
  • FIG. 15 is a diagram showing waveforms of a vibrator that appears according to a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 120 Hz.
  • FIG. 16 is a view showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
  • FIG. 17 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
  • FIG. 18 is a graph showing the threshold frequencies of tapping and vibration when a square wave current is applied in tactile actuators having different resonance frequency characteristics.
  • FIG. 19 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a pulse wave current input to a tactile actuator having a resonant frequency characteristic of 80 Hz.
  • FIG. 20 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current of a pulse wave input to a tactile actuator having a resonant frequency characteristic of 120 Hz.
  • FIG. 21 is a diagram showing waveforms of a vibrator that appears in accordance with a change in current, which is a pulse wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
  • FIG. 22 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current which is a pulse wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
  • FIG. 23 is a graph showing the threshold frequencies of tapping and vibration when a pulsing current is applied in tactile actuators having different resonance frequency characteristics.
  • FIG. 24 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 80 Hz.
  • FIG. 25 is a diagram showing waveforms of a vibrator that appears in accordance with a change of a sine wave current input to a tactile actuator having a resonance frequency characteristic of 120 Hz.
  • FIG. 25 is a diagram showing waveforms of a vibrator that appears in accordance with a change of a sine wave current input to a tactile actuator having a resonance frequency characteristic of 120 Hz.
  • FIG. 26 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
  • FIG. 27 is a view showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
  • FIG. 28 is a graph showing threshold frequencies of rocking and oscillation when sine waves are applied in tactile actuators having different resonance frequency characteristics.
  • 29 is a view illustrating a control method of a tactile actuator according to another embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a view showing the interior of the tactile actuator according to an embodiment
  • Figure 2 is a view showing an elastic member according to an embodiment
  • Figure 3 is a view showing an elastic member according to another embodiment
  • Figure 4 A block diagram of a tactile actuator according to one embodiment.
  • the tactile actuator 1 may include a housing 11, a cap 12, a vibrator 13, an elastic member 14, a coil 15, and a user interface. 16, a sensor 17, a memory 18, a communication unit 19, and a control unit 20 may be included.
  • the housing 11 may include, for example, an accommodation space with an open top surface. Although the housing 11 is shown in a box shape, it is noted that the shape of the housing 11 is not limited thereto.
  • the cap 12 may cover at least a portion of the accommodation space. Cover 12 may be fixed to the side wall portion of the housing 11, the edge portion of the cap 12. Vibration generated by the vibrator 13 may be transmitted through the body of the user in direct or indirect contact with the cap 12.
  • the cap 12 may be formed of a material that is more flexible than the housing 11 so that a touch such as vibration, tapping or rocking of the vibrator 13 may be transmitted to the user.
  • the vibrator 13 is disposed in the accommodation space of the housing 11 and may be driven by a magnetic field generated by a current applied to the coil 15.
  • the vibrator 13 may include a material that can be driven by the magnetic field.
  • the vibrator portion 13 may be understood to be a "magnetic circuit portion and mass body".
  • the vibrator 13 is made of soft magnetic materials having an intrinsic coercivity of at least 1000 A / m or less among ferromagnetic materials, and include Fe, Ni, Si, Mn, and Zn.
  • a material having a structure such as steel, powder, alloy, alloy powder, composites, nanostructures, etc. containing at least one of elements such as This can be used, and the entire configuration need not be a single material.
  • the vibrator 13 may be made of pure paramagnetic materials such as Cu, W, or the like having a specific gravity of at least 8, or Fe, Ni, Si, Mn, Zn, or the like. Materials that form at least one of the elements and structures such as alloys, alloy powders, composites, nanostructures, and the like may be used. The materials and structures that make up need not be uniform.
  • Part of the vibrator 13 is a ferromagnetic material (Steel), powder (powder), alloy (containing at least one or more of the elements, such as Fe, Co, Ni, Nd, Ni, B, Zn, etc.
  • a ferromagnetic material such as Fe, Co, Ni, Nd, Ni, B, Zn, etc.
  • Materials having structures such as alloys, alloy powders, composites, nanostructures, and the like may be used, and magnetized to distinguish the N pole and the S pole in the up and down direction based on FIG. 1. Substances can be used.
  • the elastic member 14 may connect the housing 11 and the vibrator 13 to allow the vibrator 13 to vibrate with respect to the housing 11.
  • the elastic member 14 may be made of a material having low paramagnetic or diamagnetic properties, for example, stainless steel, plastic, or rubber. Even if the appearance of the material is deformed, an external force may be lost and at the same time an elastic material may be used to restore the original shape.
  • the elastic member 14 includes a fixing portion 14a fixed to the housing 11, a supporting portion 14b for supporting the vibrating portion 13, and a connecting portion for connecting the fixing portion 14a and the supporting portion 14b ( 14c).
  • the diameter of the fixing part 14a may be larger than the diameter of the support part 14b.
  • FIG. 1 and 2 exemplarily show a case in which the fixing portion 14a and the supporting portion 14a are annular, but as shown in FIG. 3, the supporting portion 24a of the elastic member 24 includes a plurality of segments. ), Which is the same with the fixing part 14a.
  • the coil 15 may form a magnetic field for driving the vibrator 13 using the applied current.
  • the coil 15 may be a planar coil, a solenoid coil, or an electromagnet coil having a core portion including soft magnetic materials.
  • the user interface 16 may receive a command directly from the user.
  • the user interface 16 may be a keyboard, a mouse, a touch panel, or the like, and does not limit the type of the user interface 16.
  • the sensor 17 may detect an external environment of the tactile actuator 1.
  • the sensor 17 detects temperature, humidity, pressure, or light quantity, and converts the light into an electrical signal to the controller 20, and does not limit the type of the sensor 17. To reveal.
  • the memory 18 can store data.
  • the memory 18 may store data such as an image, a sound source, a photo, or text.
  • data received from the user interface 16, the sensor 17, and / or the communication unit 19 may be stored.
  • the plurality of driving modes preset may be stored in the memory 18.
  • the communication unit 19 may receive information through wired or wireless communication with other communication devices. For example, data such as an external image, a sound source, a photo, or text may be received and transmitted to the controller 20 through the Internet.
  • data such as an external image, a sound source, a photo, or text may be received and transmitted to the controller 20 through the Internet.
  • the user interface 16, the sensor 17, the memory 18, and the communication unit 19 may be collectively referred to as "information providing means".
  • the information providing means may provide driving information collected by the control unit 20.
  • the embodiment relates to a tactile actuator that can be driven in a plurality of driving modes based on the information provided from the information providing means to the controller, and the type of information to be collected and the kind of means for providing the information are limited. no.
  • the controller 20 may determine any one driving mode based on the collected driving information among a plurality of preset driving modes.
  • the driving information collected by the control unit 20 may be information received from the information providing means.
  • the controller 20 may determine the characteristic of the current to be applied to the coil 15 according to the determined driving mode.
  • the characteristics of the current may be voltage, frequency, waveform, or the like.
  • the physical properties of the elastic member 14 are changed to enable vibration in the low frequency region.
  • Table 1 shows the elasticity coefficient of the elastic member derived from the resonant frequency of the conventional tactile actuator and the mass of the vibrating unit based on Equation 1 below, and the elastic member of the tactile actuator 1 according to the embodiment ( [Table 2] showing the modulus of elasticity of 14) is presented as follows.
  • an elastic member ( 14) may be set to 0.2 N / mm or more and 0.35 N / mm or less.
  • FIG. 5 is a graph conceptually illustrating a driving region according to frequency in a tactile actuator or the like according to an embodiment.
  • FIG. 6 is a graph illustrating a relationship between a frequency and an acceleration actually measured in a tactile actuator according to an exemplary embodiment.
  • the solid line is a graph showing the driving of the tactile actuator 1 according to the embodiment
  • the dashed-dotted line is a graph showing the driving of the conventional general linear resonant actuator
  • the dotted line shows the driving frequency band in the conventional general resonant actuator. It is a graph which shows the drive of the improved multifunctional vibration actuator.
  • the tactile actuator 1 according to the embodiment has at least two driving modes, depending on the current applied to the coil 15.
  • a frequency band having a maximum vibration force at one resonant frequency f_c located at 170 Hz or more, and capable of being driven at a relatively narrow frequency band A3 is described. It can be seen that.
  • the conventional haptic is provided in a frequency band A11 having one or more resonance frequencies f_a1 at least 160 Hz or less and including the corresponding resonance frequency f_a1. It is possible to present a tactile sensation such as vibration that the device outputs.
  • It also includes at least one or more different frequency bands A12 capable of providing a force other than vibration in a region below a threshold frequency f_a2 which is approximately one third of the resonant frequency f_a1.
  • Corresponding forces are tactile and may include tapping and rocking.
  • the threshold frequency may be referred to as a minimum frequency for forming a vibration of a periodic shape without exhibiting a collapse of the waveform generated according to the input current.
  • FIG. 7 is a graph illustrating a frequency and acceleration relationship measured when a square wave current having a low frequency is applied in a tactile actuator according to an embodiment
  • FIG. 8 is a graph having a low frequency in a tactile actuator according to an embodiment. A graph showing the relationship between frequency and acceleration measured when sinusoidal current is applied.
  • the solid line is a graph showing the driving of the tactile actuator 1 according to the embodiment
  • the dashed-dotted line is a graph showing the driving of a conventional general linear resonant actuator.
  • the conventional general linear resonant actuator shows noise that is not suitable for practical use, but the tactile actuator 1 according to the embodiment is a method of providing a given external current. You can see that it showed a vibration pattern that matches the waveform.
  • FIG. 9 is a diagram illustrating a control method of a tactile actuator according to an embodiment
  • FIG. 10 is a view illustrating a form in which a tactile actuator operates according to an embodiment
  • FIG. 11 is a diagram illustrating an operation of a tactile actuator according to an embodiment. It is a figure which shows another form to make.
  • driving information input through the information providing means 16, 17, 18, and 19 may be collected by the controller 20 (100). Based on the driving information collected in step 100, the controller 20 may determine one driving mode among a plurality of preset driving modes (110).
  • the plurality of preset driving modes may include, for example, a general vibration mode, a tapping mode, and / or a rocking mode.
  • the first setting mode is a general vibration mode
  • the second setting mode is a tapping mode
  • the third setting mode is a rocking mode
  • the driving information is an image or a sound source to be reproduced by a device connected to the tactile actuator 1, and step 110 is a real time depending on whether a preset image pattern or sound pattern is included in the reproduced image or sound source. Can be determined.
  • the controller 20 may determine the frequency of the current to be applied to the coil 15 based on the determined driving mode.
  • the control unit 20 forms a periodic sinusoidal vibration force of the frequency of the current.
  • the controller 20 may apply the current having the set frequency to the coil 15, at a first set frequency f_H higher than the threshold frequency, which is the minimum frequency.
  • the first set frequency f_H may be set to a value belonging to a frequency band A11 (see FIG. 5) around the resonant frequency of the tactile actuator 1.
  • the first set frequency f_H may be a value of 160 Hz or less.
  • the vibrator 13 vibrates up and down in the accommodation space of the housing 11, and the vibration is performed by the elastic member 14.
  • the housing 11 and the cap 12 may be sequentially delivered to the user.
  • the first setting mode since a sufficiently high frequency is input to form a periodic vibration force, similar vibration can be generated without being greatly influenced by the type of the input waveform. In other words, the type of input waveform in the first setting mode is not limited.
  • the controller 20 may determine the frequency of the current as the second setting frequency f_L lower than the first setting frequency f_H (140). ).
  • the second set frequency f_L is determined to be lower than the threshold frequency.
  • the second set frequency f_L may be a value equal to or less than 1/3 of the resonance frequency of the tactile actuator 1.
  • the controller 20 may determine whether the driving mode is the second setting mode (tap mode) (150).
  • the controller 20 may determine the waveform of the current as a square wave or a pulse wave.
  • the controller 20 may determine the waveform of the current as a sine wave.
  • the controller 20 may apply a current to the coil 15 at a set frequency and waveform (180).
  • the vibrator 13 may not form a periodic vibration force, and thus may transmit different touch to the user according to an input waveform as follows.
  • the vibrator 13 that does not form a periodic vibration force is a vertical movement up and down aperiodic.
  • the magnitude of the current input to the coil 15 is softly changed due to the characteristics of the sinusoidal wave, the user may feel the feel of rocking by the above motion.
  • "slack" can be understood to collectively refer to a series of tactile sensations that cannot feel periodicity.
  • the user could feel the touch of the rocking.
  • the vibrator 13 which does not form a periodic vibration force performs vertical movement aperiodically.
  • the tactile sensation at the moment when the magnitude of the current changes increases the threshold value of the tactile sensation of the user, resulting in sensory adaptation so that the tactile adaptation is not felt in the rest of the section. Tapping "can feel the touch.
  • tap can be understood as a general term for a touch in which an impulse that is high enough to be distinguished from the rest of the interval is repeated periodically.
  • the user could feel the touch of the tapping.
  • the user when inputting a current having a frequency of 1/3 or less of the resonant frequency of the haptic actuator 1, the user may feel at least two different tactile sensations according to the waveform of the current.
  • the vibrating portion 13 when the distance between the vibrating portion 13 and the cap 12 is sufficiently close or a sufficient voltage is input, the vibrating portion 13 is directly connected to the cap 12 as shown in FIG. 11. By contacting, the force may be transmitted directly to the user through the cap 12.
  • FIG. 12 is a graph illustrating a change in acceleration according to a change in current magnitude of an input current that is a square wave of 5 Hz in tactile actuators having different resonant frequencies
  • FIG. 13 is a tactile actuator having different resonant frequencies. It is a graph showing the change of acceleration according to the frequency change of the input current which is a square wave of 90mA.
  • 12 and 13 when the resonant frequency of the tactile actuator 1 is 160 Hz or less, even if a small current of 90 mA and a frequency of 5 Hz is applied, the vibrator 13 may be driven with an acceleration of 0.2 G or more. It could be confirmed.
  • the resonant frequency of the tactile actuator is 180 Hz, which is slightly larger than 160 Hz, it can be seen that a current of 130 mA or more, which is about 1.5 times 90 mA, must be applied to be driven with an acceleration of 0.2 G or more.
  • the elastic modulus of the elastic member 14 when the mass of the vibrating portion 13 is 2 g or less, the elastic modulus of the elastic member 14 may be 2.021 N / mm or less, so that the resonance frequency may be 160 Hz or less.
  • the elastic modulus of the elastic member 14 when the mass of the vibrating portion 13 is 2 g or more, the elastic modulus of the elastic member 14 is 2.021 N / mm or more, so that the resonance frequency can be 160 Hz or less.
  • FIG. 14 to 17 are diagrams showing waveforms of a vibration part according to a change in current, which is a square wave input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 18 shows different resonance frequency characteristics.
  • tactile actuators having a graph it is a graph showing the threshold frequencies of tapping and vibration when a square wave current is applied.
  • the waveform of the vibrating unit forms a periodic sinusoidal vibration force when a current that is a square wave of a specific frequency or more is applied as shown in a graph shown in the right column of each drawing.
  • the haptic actuator can provide a "vibration" sensation to the user.
  • the vibration part does not form a periodic vibration force in a region below a specific frequency, and the graph is partially collapsed.
  • the acceleration of the vibration unit changes much more at every periodic moment when the magnitude of current changes.
  • the haptic actuator can provide the user with a "tap" feel.
  • the touch provided by the tactile actuator to the user based on the specific frequency may be divided into vibration or tapping.
  • the specific frequency may be referred to as a threshold frequency or a division frequency.
  • the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 18.
  • FIG. 19 to 22 are diagrams showing waveforms of a vibrating unit in accordance with a change in a pulse wave current input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 23 shows different resonance frequency characteristics.
  • tactile actuators having a graph it is a graph showing the threshold frequencies of tapping and oscillation when a pulse fine current is applied.
  • the waveform of the vibrating unit when inputting the pulse wave current has a form similar to that when inputting the square wave current.
  • the tactile actuator when a pulsating actuator is applied with a pulse wave current below the threshold frequency, the tactile actuator provides a tactile feel to the user, and when a pulsing pulse current above the threshold frequency is applied, the tactile actuator gives the user a ⁇ vibration '' feel Can be provided.
  • the threshold frequency at the time of inputting the pulse wave current is about twice the threshold frequency at the time of inputting the square wave current.
  • the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 23.
  • FIG. 24 to 27 are diagrams showing waveforms of a vibrating unit in response to a change in a sinusoidal current input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 28 shows different resonance frequency characteristics.
  • tactile actuators having a graph it is a graph showing the threshold frequencies of oscillation and vibration when a sinusoidal current is applied.
  • the waveform of the vibrating unit forms a periodic sinusoidal vibration force when a current that is a square wave of a specific frequency or more is applied as shown in a graph shown in the right column of each drawing.
  • the haptic actuator can provide a "vibration" sensation to the user.
  • the vibration part does not form a periodic vibration force in a region below a specific frequency, and the graph is partially collapsed.
  • the vibrator which does not form a periodic vibration force, has an acceleration of vertical movement aperiodically.
  • the magnitude of the current is smoothly changed, the user can feel the "slack" by the above motion.
  • the touch provided by the tactile actuator to the user based on the specific frequency may be divided into vibration or rocking.
  • the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 28.
  • FIG. 29 is a view illustrating a control method of a tactile actuator according to another embodiment. Unless otherwise stated, the method of controlling the tactile actuator according to the exemplary embodiment described in FIG. 9 may be applied to other exemplary embodiments.
  • the controller may determine the frequency of the applied current as the first set frequency f_H.
  • the first set frequency f_H may be set to a value greater than the first threshold frequency, which is the minimum frequency that provides a "vibration" sensation under a given condition, with reference to FIGS. 18, 23 or 28.
  • the controller may determine whether the driving mode is a tapping mode (150).
  • the controller may determine the frequency of the applied current as the second set frequency f_L1 (151).
  • the second set frequency f_L1 may be set to a value smaller than the second threshold frequency, which is the maximum frequency that provides a “tap” feel under a given condition, with reference to FIG. 18 or FIG. 23.
  • the controller may determine the frequency of the applied current as the third set frequency f_L2 (152).
  • the third set frequency f_L2 may be set to a value smaller than the third threshold frequency, which is the maximum frequency that provides a "swing" sensation under a given condition with reference to FIG. 28.
  • the third threshold frequency which is the maximum frequency that provides the feel of “swaying” under the same conditions, is the maximum frequency that provides the touch of “beating”. Since it is greater than the second threshold frequency, the third set frequency f_L2 may be set higher than the second set frequency f_L1. Meanwhile, the first set frequency f_H may be set to a value greater than the second set frequency f_L1 and the third set frequency f_L2. In other words, the third set frequency f_L2 may be greater than the second set frequency f_L1, and the first set frequency f_H may be greater than the third set frequency f_L2.
  • various touches may be more emotionally transmitted.
  • a more efficient tactile sensation can be provided in the frequency range of 160 Hz or less.
  • at least two different tactile sensations may be provided within a frequency range of 160 Hz or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

According to one embodiment, a tactile actuator can comprise: a housing having an accommodation space therein; a cap covering at least a portion of the accommodation space; a vibration unit disposed inside the accommodation space; an elastic member for connecting the housing and the vibration unit such that the vibration unit can vibrate with respect to the housing; a coil for forming a magnetic field to drive the vibration unit; and a control unit for determining any one driving mode on the basis of collected driving information from among a plurality of preset driving modes and determining, according to the driving mode, the characteristic of a current to be applied to the coil.

Description

촉각 액추에이터 및 그 제어 방법Tactile actuator and its control method
실시 예는 촉각 액추에이터 및 그 제어 방법에 관한 것이다. An embodiment relates to a tactile actuator and a control method thereof.
기존에는 전자기기와 인간이 정보를 주고받을 때 시각적 또는 청각적인 전달이 주를 이루었으나, 최근 들어 더욱 구체적이고 실감나는 정보 전달을 위해 햅틱 기술이 주목 받고 있다. Conventionally, visual or audio transmission has been mainly used when electronic devices and humans exchange information, but recently, haptic technology has attracted attention for more specific and realistic information transmission.
일반적으로 햅틱 기술을 위한 햅틱 제공 장치로는 관성형 액추에이터(Inertial actuator), 압전형 액추에이터(Piezoelectric actuator), 전기활성폴리머 액추에이터(Electro-active polymer actuator, EAP) 등이 있다.Generally, haptic providing apparatus for haptic technology includes an inertial actuator, a piezoelectric actuator, an electro-active polymer actuator (EAP), and the like.
관성형 액추에이터에는 자기 회로에 연결된 중량체에 의해 발생하는 편심력으로 진동하는 편심 모터(Eccentric rotation motor, ERM), 탄성 스프링과 자기회로에 연결된 중량체에 의해 발생하는 공진 주파수를 이용하여 진동의 세기를 최대화 시키는 선형 공진 액추에이터(Linear resonant actuator, LRA)가 있다.The inertial actuator has the strength of vibration by using an eccentric rotation motor (ERM) that vibrates with eccentric force generated by the weight connected to the magnetic circuit, and the resonant frequency generated by the elastic spring and the weight connected to the magnetic circuit. There is a linear resonant actuator (LRA) that maximizes the
압전형 액추에이터는 전기장에 의해 순간적으로 외형이 변하는 압전 소자를 중심으로, 탄성체 등을 이용하여 바(Bar)나 디스크(Disk)형태로 구동하는 소자이다. A piezoelectric actuator is a device that is driven in the form of a bar or a disk by using an elastic body, mainly on a piezoelectric element whose appearance changes instantaneously by an electric field.
종래 기술인 햅틱 제공 장치 중 압전형 액추에이이터에 대하여, 대한민국 등록특허공보 10-1603957(명칭: 압전 액추에이터, 압전 진동장치 및 휴대 단말), 대한민국 공개특허공보 제10-2011-0118584(명칭: 투명한 합성 압전 조합된 터치 센서 및 햅틱 액추에이터)가 있다. Regarding the piezoelectric actuator of the prior art haptic providing apparatus, Korean Patent Publication No. 10-1603957 (name: piezoelectric actuator, piezoelectric vibrator and portable terminal), Korean Patent Publication No. 10-2011-0118584 (name: transparent synthesis Piezoelectric combined touch sensors and haptic actuators).
전기활성폴리머 액추에이터는 외부 전력에 의해 특정한 메커니즘을 갖는 고분자 백본(Backbone) 위 기능기(Functional group)에 의해 외형이 변하는 것을 주요 원리로 하여 전기활성 폴리머 필름을 질량체에 붙여 반복된 움직임을 제공하여 구동하는 소자이다. The electroactive polymer actuator is driven by providing a repetitive motion by attaching an electroactive polymer film to the mass based on the principle that the appearance is changed by a functional group on the polymer backbone having a specific mechanism by external power. It is an element to make.
또한 상기한 햅틱 제공 장치 외 형상기억합금, 정전기력, 초음파 등을 이용한 햅틱 제공 장치들이 개발되고 있다. In addition, haptic providing devices using shape memory alloys, electrostatic forces, ultrasonic waves, and the like, have been developed.
위와 같은 종래의 햅틱 제공 장치는 단순한 진동을 전달하는 것에 불과함과 동시에, 선형 공진 액추에이터의 경우 질량체와 스프링에 의해 결정되는 공진 주파수를 이용해야만 효과적인 진동이 가능하다는 단점이 있으며, 압전형 액추에이터의 경우 사용하는 소재가 깨지기 쉬운 물질로서 실시자에게 충분한 내구 수명을 달성할 수 없다는 한계를 지니고 있고, 마지막으로 전기활성폴리머 액추에이터의 경우 외부 산화에 대하여 내구성이 문제되며, 실질적인 구동을 위해 많은 양의 전압이 요구되어 다양한 기기에 적용하기 어려운 문제가 있었다.The conventional haptic providing device as described above is not only to transmit a simple vibration, but also in the case of the linear resonant actuator has the disadvantage that effective vibration is possible only by using the resonance frequency determined by the mass and the spring, piezoelectric actuator The material used is a fragile material and has a limitation that it can not achieve sufficient endurance life for the practitioner. Finally, in the case of the electroactive polymer actuator, durability is a problem with respect to external oxidation, and a large amount of voltage is applied for practical driving. There was a problem that is difficult to apply to a variety of devices required.
더불어, 2010년 세계적인 학술지 IEEE TRANSACTIONS ON ROBOTICS에 기재된 논문(제목: Tactile sensing-from humans to humanoids)에 따르면 인체가 수용가능 한 촉각 감각의 주파수 범위는 0.4Hz에서 500Hz 이상까지 이르나 종래의 햅틱 기술을 이용할 경우, 160Hz~210Hz 범위 내의 진동만을 제공할 수 있어, 더욱 다채롭고 복잡한 정보를 효과적으로 전달 할 수 없는 문제가 있으며, 이를 효과적으로 해결하기 위하여 다양한 주파수 범위 내에서 촉각 신호를 효과적으로 전달 할 수 있는 장치의 연구가 필요한 상황이다. In addition, according to a 2010 article published in the international journal IEEE TRANSACTIONS ON ROBOTICS (title: Tactile sensing-from humans to humanoids), the frequency range of tactile sensation acceptable to the human body ranges from 0.4 Hz to over 500 Hz, but with conventional haptic technology. In this case, there is a problem in that it can only provide vibration in the range of 160Hz to 210Hz, and it is not possible to effectively deliver more colorful and complex information, and to solve this problem, a research of a device that can effectively transmit tactile signals in various frequency ranges has been conducted. It is a necessary situation.
위와 같은 종래의 햅틱 제공 장치는 효율적으로 진동을 제공 할 수 있는 구동 주파수의 폭(Bandwidth)을 넓혀 상기한 문제를 해결한 듯 보일 수 있으나, 160 Hz 이상의 진동과 소리를 동시에 제공하려는 구조로 인하여 진동 제공시 소음이 동반하는 문제점이 확실하였다. The conventional haptic providing device as described above may seem to solve the above problem by widening the width of the driving frequency that can efficiently provide vibration, but the vibration due to the structure to provide the vibration and sound of 160 Hz or more at the same time The problem with the noise was very clear.
더불어 160Hz 이하의 저주파수 영역에서 진동을 비롯한 촉각을 제공할 수 있는 장치는 전무한 실정이다. In addition, there is no device capable of providing tactile sensation including vibration in the low frequency region below 160 Hz.
따라서 160Hz 이하의 영역에서 촉각을 제공할 수 있으며, 단순히 한 가지 주파수 영역이 아닌 여러 범위에서 촉각이 제공 가능한 장치의 개발이 필요한 실정이다.Therefore, it is necessary to develop a device capable of providing tactile sensation in an area of 160 Hz or less, and capable of providing tactile sensation in several ranges, not just one frequency range.
실시 예는 햅틱 기술의 발전에 따라 새로운 촉각에 대한 시장의 니즈와 더불어, 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 다양한 상황에 대하여 더욱 감성적인 촉각을 제공하기 위한 촉각 제공 장치, 촉각 액추에이터(Tactile actuator)를 제공하는 것을 목적으로 한다. The embodiment has been devised to solve the problems of the prior art as well as the market needs for a new haptic in accordance with the development of haptic technology, a haptic providing device, tactile actuator to provide a more emotional tactile response to various situations The purpose is to provide a (tactile actuator).
실시 예는 구분 가능한 둘 이상의 주파수 대역에서 서로 다른 촉각을 제시할 수 있는 적어도 둘 이상의 구동 모드(operation mode)를 갖는 촉각 액추에이터 및 그 제어 방법을 제공하기 위한 것이다. SUMMARY Embodiments provide a tactile actuator having at least two operation modes capable of presenting different tactile sensations in two or more distinguishable frequency bands and a control method thereof.
구체적으로, 탄성 부재와 진동부(질량체)의 조합을 통하여 160Hz 이하에서 적어도 하나의 공진 주파수를 갖고, 해당 지점에서 종래 기술이 제공하는 진동을 제공할 수 있음과 동시에, 공진 주파수의 1/3 지점 이하에서 또 다른 촉각을 제시할 수 있는 구동 구간을 갖는 촉각 액추에이터를 제공하는 것을 목적으로 한다. Specifically, the combination of the elastic member and the vibrating portion (mass) has at least one resonant frequency at 160 Hz or less, and at this point, it is possible to provide the vibration provided by the prior art, and at the same time, 1/3 point of the resonant frequency. An object of the present invention is to provide a tactile actuator having a driving section capable of presenting another tactile sensation.
나아가, 같은 주파수에서도, 서로 다른 파형의 전기적 신호로 인한 외부 자기력에 의해 상이한 촉각을 제시할 수 있는 촉각 액추에이터를 제공하는 것을 목적으로 한다.Furthermore, it is an object of the present invention to provide a tactile actuator capable of presenting different tactile sensations by external magnetic forces due to electrical signals of different waveforms at the same frequency.
일 실시 예에 따르면 촉각 액추에이터는, 내부에 수용 공간을 형성하는 하우징; 상기 수용 공간의 적어도 일부를 커버하는 캡; 상기 수용 공간 내에 배치되는 진동부; 상기 진동부가 상기 하우징에 대하여 진동 가능하도록 상기 하우징 및 진동부를 연결하는 탄성 부재; 상기 진동부를 구동하기 위한 자기장을 형성하는 코일; 및 미리 설정된 복수 개의 구동 모드 중 수집된 구동 정보에 기초하여 어느 하나의 구동 모드를 결정하고, 상기 구동 모드에 따라서 상기 코일로 인가될 전류의 특성을 결정하는 제어부를 포함할 수 있다. According to one embodiment, the tactile actuator includes: a housing defining an accommodation space therein; A cap covering at least a portion of the accommodation space; A vibrator disposed in the accommodation space; An elastic member connecting the housing and the vibrator to allow the vibrator to vibrate with respect to the housing; A coil forming a magnetic field for driving the vibrator; And a controller configured to determine any one driving mode based on the collected driving information among a plurality of preset driving modes, and determine a characteristic of a current to be applied to the coil according to the driving mode.
상기 진동부의 질량은 2g 이하이고, 상기 탄성 부재의 탄성 계수는 2.021 N/mm 이하이고, 상기 촉각 액추에이터의 공진 주파수는 160Hz 이하일 수 있다. The vibration portion may have a mass of 2 g or less, an elastic modulus of the elastic member may be 2.021 N / mm or less, and a resonant frequency of the tactile actuator may be 160 Hz or less.
상기 구동 모드가 제 1 설정 모드이면, 상기 제어부는 상기 전류의 주파수는 제 1 설정 주파수로 결정하고, 상기 구동 모드가 상기 제 1 설정 모드 이외의 설정 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 1 설정 주파수보다 낮은 제 2 설정 주파수로 결정할 수 있다. If the driving mode is the first setting mode, the control unit determines the frequency of the current as the first setting frequency, and if the driving mode is a setting mode other than the first setting mode, the controller determines the frequency of the current. The second set frequency may be determined to be lower than the first set frequency.
상기 제 1 설정 주파수는, 160Hz 이하의 값일 수 있다.The first set frequency may be a value of 160 Hz or less.
상기 제 2 설정 주파수는, 상기 촉각 액추에이터의 공진 주파수의 1/3 이하의 값일 수 있다.The second set frequency may be a value equal to or less than 1/3 of the resonance frequency of the tactile actuator.
상기 구동 모드가 제 2 설정 모드이면, 상기 제어부는 상기 전류의 파형을 방형파(square wave) 또는 펄스파(pulse wave)로 결정하고, 상기 구동 모드가 제 3 설정 모드이면, 상기 제어부는 상기 전류의 파형을 정현파(sine wave)로 결정할 수 있다.If the driving mode is the second setting mode, the control unit determines the waveform of the current as a square wave or a pulse wave, and if the driving mode is the third setting mode, the control unit is the current. The waveform of may be determined as a sine wave.
상기 구동 모드는, 일반 진동 모드, 두드림 모드 및 출렁거림 모드를 포함할 수 있다. The driving mode may include a general vibration mode, a tapping mode, and a rocking mode.
상기 구동 모드가 상기 일반 진동 모드이면, 상기 제어부는 상기 전류의 주파수를 제 1 설정 주파수로 결정하고, 상기 구동 모드가 상기 두드림 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 1 설정 주파수보다 낮은 제 2 설정 주파수로 결정하고, 상기 구동 모드가 상기 출렁거림 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 2 설정 주파수보다 높고 상기 제 1 설정 주파수보다 낮은 제 3 설정 주파수로 결정할 수 있다. If the driving mode is the general vibration mode, the controller determines the frequency of the current as the first set frequency, and if the driving mode is the tapping mode, the controller sets the frequency of the current to be lower than the first set frequency. The control unit may determine the frequency of the current as the third set frequency higher than the second set frequency and lower than the first set frequency if the driving frequency is determined as the second set frequency.
상기 촉각 액추에이터는, 상기 제어부에서 수집되는 정보를 제공하는 정보 제공 수단을 더 포함하고, 상기 정보 제공 수단은, 사용자의 명령을 입력 받기 위한 사용자 인터페이스, 외부 환경을 감지하기 위한 센서, 데이터가 저장되는 메모리, 다른 통신 기기와의 통신을 통하여 정보를 입력 받는 통신부 중 어느 하나 이상을 포함할 수 있다.The tactile actuator further includes information providing means for providing information collected by the controller, wherein the information providing means includes a user interface for receiving a user's command, a sensor for sensing an external environment, and data is stored. It may include any one or more of a memory, a communication unit for receiving information through communication with other communication devices.
일 실시 예에 따르면 촉각 액추에이터의 제어 방법은, 구동 정보를 수집하는 단계; 상기 수집된 구동 정보에 기초하여, 미리 설정된 복수 개의 구동 모드 중 어느 하나의 구동 모드를 결정하는 단계; 및 상기 결정된 구동 모드에 기초하여, 상기 코일로 인가할 전류의 주파수를 결정하는 단계; 및 상기 코일로 전류를 인가하는 단계를 포함할 수 있다.According to an embodiment, a control method of a tactile actuator may include collecting driving information; Determining a driving mode of any one of a plurality of preset driving modes based on the collected driving information; And determining a frequency of a current to be applied to the coil based on the determined driving mode. And applying a current to the coil.
상기 촉각 액추에이터의 제어 방법은, 상기 결정된 구동 모드에 기초하여, 상기 코일로 인가할 전류의 파형을 결정하는 단계를 더 포함할 수 있다.The control method of the tactile actuator may further include determining a waveform of a current to be applied to the coil based on the determined driving mode.
상기 구동 정보는, 상기 촉각 액추에이터와 연결된 디바이스에서 재생되는 영상 또는 음원이고, 상기 구동 모드를 결정하는 단계는, 상기 영상 또는 음원에 미리 설정된 영상 패턴 또는 음향 패턴이 포함되어 있는지 여부에 따라서 실시간으로 결정될 수 있다. The driving information may be an image or a sound source reproduced by a device connected to the tactile actuator, and the determining of the driving mode may be determined in real time according to whether a predetermined image pattern or sound pattern is included in the image or sound source. Can be.
일 실시 예에 따르면, 다양한 촉감을 더욱 감성적으로 전달할 수 있다.According to one embodiment, various touches may be more emotionally transmitted.
일 실시 예에 따르면, 인체가 감지할 수 있는 주파수 범위 중, 160Hz 이하의 주파수 범위에서 종래의 기술보다 더 효율적인 촉각이 제공 가능하다. According to an embodiment of the present disclosure, more efficient tactile sensation may be provided than a conventional technology in a frequency range of 160 Hz or less among the frequency ranges that the human body can detect.
일 실시 예에 따르면, 하나의 촉각 제공 장치를 통하여, 160Hz 이하의 주파수 범위 내에서 적어도 둘 이상의 서로 다른 촉각을 제공 가능하다.According to an embodiment of the present disclosure, at least two different tactile sensations may be provided through a single tactile provision device within a frequency range of 160 Hz or less.
도 1은 일 실시 예에 따른 촉각 액추에이터의 내부를 나타내는 도면이다. 1 is a view showing the inside of the tactile actuator according to an embodiment.
도 2는 일 실시 예에 따른 탄성 부재를 나타내는 도면이다.2 is a diagram illustrating an elastic member according to an exemplary embodiment.
도 3은 다른 실시 예에 따른 탄성 부재를 나타내는 도면이다.3 is a view showing an elastic member according to another embodiment.
도 4는 일 실시 예에 따른 촉각 액추에이터의 블록도이다.4 is a block diagram of a tactile actuator according to one embodiment.
도 5는 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 주파수에 따른 구동 영역을 개념적으로 나타내는 그래프이다.5 is a graph conceptually illustrating a driving region according to frequency in a tactile actuator or the like according to an embodiment.
도 6은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 실제로 측정된 주파수 및 가속도 관계를 나타내는 그래프이다.FIG. 6 is a graph illustrating a relationship between a frequency and an acceleration actually measured in a tactile actuator according to an exemplary embodiment.
도 7은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 저주파수를 갖는 방형파 전류를 인가할 때 측정된 주파수 및 가속도 관계를 나타내는 그래프이다.FIG. 7 is a graph illustrating a relationship between a frequency and an acceleration measured when a square wave current having a low frequency is applied to a tactile actuator or the like according to an embodiment.
도 8은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 저주파수를 갖는 정현파 전류를 인가할 때 측정된 주파수 및 가속도 관계를 나타내는 그래프이다.8 is a graph illustrating a relationship between frequency and acceleration measured when a sinusoidal current having a low frequency is applied to a tactile actuator or the like according to an embodiment.
도 9는 일 실시 예에 따른 촉각 액추에이터의 제어 방법을 나타내는 도면이다.9 is a diagram illustrating a control method of a tactile actuator according to an exemplary embodiment.
도 10은 일 실시 예에 따른 촉각 액추에이터가 제 1 설정 모드에서 동작하는 일 형태를 나타내는 도면이다.10 is a diagram illustrating an embodiment in which the tactile actuator operates in the first setting mode.
도 11은 일 실시 예에 따른 촉각 액추에이터가 제 2 설정 모드에서 동작하는 다른 형태를 나타내는 도면이다.11 is a diagram illustrating another embodiment in which the tactile actuator operates in the second setting mode.
도 12는 서로 다른 공진 주파수를 갖는 촉각 액추에이터들에 있어서, 5Hz의 방형파인 입력 전류의 전류 크기 변화에 따른 가속도의 변화를 나타내는 그래프이다.12 is a graph showing a change in acceleration according to a change in current magnitude of an input current that is a square wave of 5 Hz in tactile actuators having different resonance frequencies.
도 13은 서로 다른 공진 주파수를 갖는 촉각 액추에이터들에 있어서, 90mA의 방형파인 입력 전류의 주파수 변화에 따른 가속도의 변화를 나타내는 그래프이다.FIG. 13 is a graph showing a change in acceleration according to a change in frequency of an input current which is a square wave of 90 mA in tactile actuators having different resonance frequencies.
도 14는 80Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 방형파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 14 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonant frequency characteristic of 80 Hz.
도 15는 120Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 방형파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 15 is a diagram showing waveforms of a vibrator that appears according to a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 120 Hz.
도 16은 160Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 방형파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 16 is a view showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
도 17은 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 방형파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 17 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a square wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
도 18은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 방형파인 전류가 인가될 때 두드림 및 진동의 임계 주파수를 나타내는 그래프이다. FIG. 18 is a graph showing the threshold frequencies of tapping and vibration when a square wave current is applied in tactile actuators having different resonance frequency characteristics.
도 19는 80Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 펄스파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 19 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a pulse wave current input to a tactile actuator having a resonant frequency characteristic of 80 Hz.
도 20은 120Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 펄스파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 20 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current of a pulse wave input to a tactile actuator having a resonant frequency characteristic of 120 Hz.
도 21은 160Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 펄스파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 21 is a diagram showing waveforms of a vibrator that appears in accordance with a change in current, which is a pulse wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
도 22는 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 펄스파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 22 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current which is a pulse wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
도 23은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 펄스파인 전류가 인가될 때 두드림 및 진동의 임계 주파수를 나타내는 그래프이다. FIG. 23 is a graph showing the threshold frequencies of tapping and vibration when a pulsing current is applied in tactile actuators having different resonance frequency characteristics.
도 24는 80Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 정현파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 24 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 80 Hz.
도 25는 120Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 정현파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 25 is a diagram showing waveforms of a vibrator that appears in accordance with a change of a sine wave current input to a tactile actuator having a resonance frequency characteristic of 120 Hz. FIG.
도 26은 160Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 정현파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 26 is a diagram showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 160 Hz.
도 27은 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 정현파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이다.FIG. 27 is a view showing waveforms of a vibrator that appears in accordance with a change in a current that is a sinusoidal wave input to a tactile actuator having a resonance frequency characteristic of 180 Hz.
도 28은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 정현파인 전류가 인가될 때 출렁거림 및 진동의 임계 주파수를 나타내는 그래프이다. FIG. 28 is a graph showing threshold frequencies of rocking and oscillation when sine waves are applied in tactile actuators having different resonance frequency characteristics.
도 29는 다른 실시 예에 따른 촉각 액추에이터의 제어 방법을 나타내는 도면이다.29 is a view illustrating a control method of a tactile actuator according to another embodiment.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in any one embodiment and components including common functions will be described using the same names in other embodiments. Unless stated to the contrary, the description in any one embodiment may be applied to other embodiments, and detailed descriptions thereof will be omitted in the overlapping range.
도 1은 일 실시 예에 따른 촉각 액추에이터의 내부를 나타내는 도면이고, 도 2는 일 실시 예에 따른 탄성 부재를 나타내는 도면이고, 도 3은 다른 실시 예에 따른 탄성 부재를 나타내는 도면이고, 도 4는 일 실시 예에 따른 촉각 액추에이터의 블록도이다.1 is a view showing the interior of the tactile actuator according to an embodiment, Figure 2 is a view showing an elastic member according to an embodiment, Figure 3 is a view showing an elastic member according to another embodiment, Figure 4 A block diagram of a tactile actuator according to one embodiment.
도 1 내지 도 4를 참조하면, 일 실시 예에 따른 촉각 액추에이터(1)는, 하우징(11), 캡(12), 진동부(13), 탄성 부재(14), 코일(15), 사용자 인터페이스(16), 센서(17), 메모리(18), 통신부(19) 및 제어부(20)를 포함할 수 있다.1 to 4, the tactile actuator 1 according to an embodiment may include a housing 11, a cap 12, a vibrator 13, an elastic member 14, a coil 15, and a user interface. 16, a sensor 17, a memory 18, a communication unit 19, and a control unit 20 may be included.
하우징(11)은, 예를 들어, 상면이 개방된 수용 공간을 포함할 수 있다. 하우징(11)은, 박스 형상으로 도시하였으나, 이와 달리 하우징(11)의 형상은 제한되지 않음을 밝혀둔다.The housing 11 may include, for example, an accommodation space with an open top surface. Although the housing 11 is shown in a box shape, it is noted that the shape of the housing 11 is not limited thereto.
캡(12)은, 상기 수용 공간의 적어도 일부를 커버할 수 있다. 커버(12)는, 캡(12)의 테두리부는 하우징(11)의 측벽부에 고정될 수 있다. 캡(12)에 직접 또는 간접적으로 접촉된 사용자의 신체를 통하여, 진동부(13)에 의해 발생되는 진동이 전달될 수 있다. 예를 들어, 캡(12)은, 진동부(13)의 진동, 두드림 또는 출렁임 등의 촉감이 사용자에게 잘 전달될 수 있도록, 하우징(11) 보다 유연한 소재로 형성될 수 있다. The cap 12 may cover at least a portion of the accommodation space. Cover 12 may be fixed to the side wall portion of the housing 11, the edge portion of the cap 12. Vibration generated by the vibrator 13 may be transmitted through the body of the user in direct or indirect contact with the cap 12. For example, the cap 12 may be formed of a material that is more flexible than the housing 11 so that a touch such as vibration, tapping or rocking of the vibrator 13 may be transmitted to the user.
진동부(13)는, 하우징(11)의 수용 공간 내에 배치되고, 코일(15)에 인가되는 전류에 의하여 발생되는 자기장에 의해 구동될 수 있다. 진동부(13)는, 상기 자기장에 의해 구동될 수 있는 물질을 포함할 수 있다. 진동부(13)는, "자기 회로부 겸 질량체"인 것으로 이해될 수도 있다. The vibrator 13 is disposed in the accommodation space of the housing 11 and may be driven by a magnetic field generated by a current applied to the coil 15. The vibrator 13 may include a material that can be driven by the magnetic field. The vibrator portion 13 may be understood to be a "magnetic circuit portion and mass body".
예를 들어, 진동부(13)는, 강자성체(Ferromagnetic materials)들 중, 고유 보자력(Intrinsic Coercivity)이 적어도 1000A/m 이하인 연자성체(Soft magnetic materials)로 이루어지며 Fe, Ni, Si, Mn, Zn 등의 원소들 중 적어도 하나 이상이 포함된 스틸(Steel), 가루(Powder), 합금(Alloy), 합금 가루(Alloy powder), 합성체(Composites), 나노구조(Nanostructure) 등의 구조를 갖는 물질이 사용될 수 있으며, 전체 구성이 단일 물질일 필요는 없다. For example, the vibrator 13 is made of soft magnetic materials having an intrinsic coercivity of at least 1000 A / m or less among ferromagnetic materials, and include Fe, Ni, Si, Mn, and Zn. A material having a structure such as steel, powder, alloy, alloy powder, composites, nanostructures, etc. containing at least one of elements such as This can be used, and the entire configuration need not be a single material.
다른 예로, 진동부(13)는, 상자성체(Paramagnetic materials)들 중, 그 비중이 적어도 8 이상인 Cu, W등이 순수하게 사용되거나 또는 상기한 연자성체인 Fe, Ni, Si, Mn, Zn 등의 원소들 중 적어도 하나 이상과 합금(Alloy), 합금 가루(Alloy powder), 합성체(Composites), 나노구조(Nanostructure) 등의 구조를 이루는 물질이 사용될 수 있으며, 마찬가지로 자기 회로부 겸 질량체(1)를 구성하는 물질 및 구조는 균일할 필요는 없다.As another example, the vibrator 13 may be made of pure paramagnetic materials such as Cu, W, or the like having a specific gravity of at least 8, or Fe, Ni, Si, Mn, Zn, or the like. Materials that form at least one of the elements and structures such as alloys, alloy powders, composites, nanostructures, and the like may be used. The materials and structures that make up need not be uniform.
진동부(13)의 일부는 강자성체(Ferromagnetic materials)로서 Fe, Co, Ni, Nd, Ni, B, Zn 등의 원소들 중 적어도 하나 이상이 포함된 스틸(Steel), 가루(Powder), 합금(Alloy), 합금 가루(Alloy powder), 합성체(Composites), 나노구조(Nanostructure) 등의 구조를 갖는 물질이 사용될 수 있으며 도 1을 기준으로 상하 방향으로 N극과 S극이 구분 가능하도록 착자된 물질을 사용할 수 있다.Part of the vibrator 13 is a ferromagnetic material (Steel), powder (powder), alloy (containing at least one or more of the elements, such as Fe, Co, Ni, Nd, Ni, B, Zn, etc. Materials having structures such as alloys, alloy powders, composites, nanostructures, and the like may be used, and magnetized to distinguish the N pole and the S pole in the up and down direction based on FIG. 1. Substances can be used.
탄성 부재(14)는, 진동부(13)가 하우징(11)에 대하여 진동 가능하도록 하우징(11) 및 진동부(13)를 연결할 수 있다. 예를 들어, 탄성 부재(14)는, 낮은 상자성(Paramagnetic) 또는 반자성(Diamagnetic)을 갖는 물질을 사용할 수 있으며 그 예로 스테인레스 스틸(Stainless steel), 플라스틱(Plastic) 또는 고무(Rubber)등 외력에 의해 물질의 외관이 변형되어도 외력이 사라짐과 동시에 원래 형상으로 복원할 수 있는 탄성을 갖는 물질이 사용 될 수 있다. The elastic member 14 may connect the housing 11 and the vibrator 13 to allow the vibrator 13 to vibrate with respect to the housing 11. For example, the elastic member 14 may be made of a material having low paramagnetic or diamagnetic properties, for example, stainless steel, plastic, or rubber. Even if the appearance of the material is deformed, an external force may be lost and at the same time an elastic material may be used to restore the original shape.
탄성 부재(14)는, 하우징(11)에 고정되는 고정부(14a)와, 진동부(13)를 지지하는 지지부(14b)와, 고정부(14a) 및 지지부(14b)를 연결하는 연결부(14c)를 포함할 수 있다. 예를 들어, 고정부(14a)의 직경은, 지지부(14b)의 직경보다 클 수 있다. The elastic member 14 includes a fixing portion 14a fixed to the housing 11, a supporting portion 14b for supporting the vibrating portion 13, and a connecting portion for connecting the fixing portion 14a and the supporting portion 14b ( 14c). For example, the diameter of the fixing part 14a may be larger than the diameter of the support part 14b.
한편, 도 1 및 도 2에는 고정부(14a) 및 지지부(14a)가 환형인 경우를 예시적으로 도시하였으나, 도 3과 같이 탄성 부재(24)의 지지부(24a)는, 복수 개의 세그먼트(segment)로 이루어질 수도 있으며, 이는 고정부(14a) 역시 마찬가지이다. 1 and 2 exemplarily show a case in which the fixing portion 14a and the supporting portion 14a are annular, but as shown in FIG. 3, the supporting portion 24a of the elastic member 24 includes a plurality of segments. ), Which is the same with the fixing part 14a.
코일(15)은, 인가받은 전류를 이용하여 진동부(13)를 구동하기 위한 자기장을 형성할 수 있다. 예를 들어, 코일(15)로는, 평면 코일, 솔레노이드 코일 또는 연자성체(soft magnetic materials)를 포함한 코어(core)부를 갖는 전자석 코일 등이 사용될 수 있다. The coil 15 may form a magnetic field for driving the vibrator 13 using the applied current. For example, the coil 15 may be a planar coil, a solenoid coil, or an electromagnet coil having a core portion including soft magnetic materials.
사용자 인터페이스(16)는, 사용자로부터 직접적으로 명령을 입력 받을 수 있다. 예를 들어, 사용자 인터페이스(16)는, 키보드, 마우스 또는 터치 패널 등일 수 있으며, 사용자 인터페이스(16)의 종류를 제한하는 것은 아님을 밝혀둔다.The user interface 16 may receive a command directly from the user. For example, the user interface 16 may be a keyboard, a mouse, a touch panel, or the like, and does not limit the type of the user interface 16.
센서(17)는, 촉각 액추에이터(1)의 외부 환경을 감지할 수 있다. 예를 들어, 센서(17)는, 온도, 습도, 압력 또는 빛의 광량 등을 감지하여, 이를 전기적인 신호로 바꾸어 제어부(20)로 전달할 수 있으며, 센서(17)의 종류를 제한하는 것은 아님을 밝혀둔다.The sensor 17 may detect an external environment of the tactile actuator 1. For example, the sensor 17 detects temperature, humidity, pressure, or light quantity, and converts the light into an electrical signal to the controller 20, and does not limit the type of the sensor 17. To reveal.
메모리(18)는, 데이터를 저장할 수 있다. 예를 들어, 메모리(18)에는 영상, 음원, 사진 또는 텍스트 등의 데이터가 저장될 수 있다. 메모리(18)에는, 사용자 인터페이스(16), 센서(17) 및/또는 통신부(19)로부터 전달받은 데이터가 저장될 수도 있다. 메모리(18)에는 미리 설정된 복수 개의 구동 모드가 저장될 수도 있다. The memory 18 can store data. For example, the memory 18 may store data such as an image, a sound source, a photo, or text. In the memory 18, data received from the user interface 16, the sensor 17, and / or the communication unit 19 may be stored. The plurality of driving modes preset may be stored in the memory 18.
통신부(19)는, 다른 통신 기기와의 유무선 통신을 통하여 정보를 입력 받을 수 있다. 예를 들면, 인터넷을 통하여 외부의 영상, 음원, 사진 또는 텍스트 등의 데이터를 수신받아 제어부(20)로 전달할 수 있다. The communication unit 19 may receive information through wired or wireless communication with other communication devices. For example, data such as an external image, a sound source, a photo, or text may be received and transmitted to the controller 20 through the Internet.
사용자 인터페이스(16), 센서(17), 메모리(18) 및 통신부(19)를 통칭하여, "정보 제공 수단"이라고 할 수 있다. 정보 제공 수단은, 제어부(20)에서 수집되는 구동 정보를 제공할 수 있다. 실시 예는, 정보 제공 수단으로부터 제어부로 제공된 정보에 기초하여, 복수 개의 구동 모드로 구동될 수 있는 촉각 액추에이터에 관한 것이며, 수집되는 정보의 종류나, 해당 정보를 제공하는 수단의 종류가 제한되는 것은 아니다. The user interface 16, the sensor 17, the memory 18, and the communication unit 19 may be collectively referred to as "information providing means". The information providing means may provide driving information collected by the control unit 20. The embodiment relates to a tactile actuator that can be driven in a plurality of driving modes based on the information provided from the information providing means to the controller, and the type of information to be collected and the kind of means for providing the information are limited. no.
제어부(20)는, 미리 설정된 복수 개의 구동 모드 중 수집된 구동 정보에 기초하여 어느 하나의 구동 모드를 결정할 수 있다. 여기서, 제어부(20)에서 수집되는 구동 정보는, 정보 제공 수단으로부터 전달받은 정보일 수 있다. 제어부(20)는, 결정된 구동 모드에 따라서 코일(15)로 인가될 전류의 특성을 결정할 수 있다. 여기서, 전류의 특성이란, 전압, 주파수 및 파형 등일 수 있다. The controller 20 may determine any one driving mode based on the collected driving information among a plurality of preset driving modes. Here, the driving information collected by the control unit 20 may be information received from the information providing means. The controller 20 may determine the characteristic of the current to be applied to the coil 15 according to the determined driving mode. Here, the characteristics of the current may be voltage, frequency, waveform, or the like.
실시 예는, 탄성 부재(14)의 물성을 변화시켜 낮은 주파수 영역에서 진동이 가능하도록 한 것이다. 아래의 [수학식 1]을 바탕으로 종래 촉각 액추에이터의 공진 주파수와 진동부의 질량으로부터 유도된 탄성 부재의 탄성 계수에 대하여 나타낸 [표 1]과, 실시 예에 따른 촉각 액추에이터(1)의 탄성 부재(14)의 탄성 계수를 나타낸 [표 2]를 아래와 같이 제시한다. In the embodiment, the physical properties of the elastic member 14 are changed to enable vibration in the low frequency region. Table 1 shows the elasticity coefficient of the elastic member derived from the resonant frequency of the conventional tactile actuator and the mass of the vibrating unit based on Equation 1 below, and the elastic member of the tactile actuator 1 according to the embodiment ( [Table 2] showing the modulus of elasticity of 14) is presented as follows.
Figure PCTKR2016006548-appb-I000001
Figure PCTKR2016006548-appb-I000001
Figure PCTKR2016006548-appb-I000002
Figure PCTKR2016006548-appb-I000002
Figure PCTKR2016006548-appb-I000003
Figure PCTKR2016006548-appb-I000003
[표 1] 및 [표 2]를 참조하면, 예를 들어, 진동부(13)의 질량이 0.6 이상 1.1g인 촉각 액추에이터에 있어서, 100 Hz 이하의 낮은 공진 주파수를 갖도록 하기 위하여, 탄성 부재(14)의 탄성 계수는 0.2 N/mm 이상 0.35 N/mm 이하로 설정될 수 있다. Referring to Tables 1 and 2, for example, in the tactile actuator whose mass of the vibrating portion 13 is 0.6 or more and 1.1 g, in order to have a low resonance frequency of 100 Hz or less, an elastic member ( 14) may be set to 0.2 N / mm or more and 0.35 N / mm or less.
도 5는 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 주파수에 따른 구동 영역을 개념적으로 나타내는 그래프이고. 도 6은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 실제로 측정된 주파수 및 가속도 관계를 나타내는 그래프이다. 5 is a graph conceptually illustrating a driving region according to frequency in a tactile actuator or the like according to an embodiment. FIG. 6 is a graph illustrating a relationship between a frequency and an acceleration actually measured in a tactile actuator according to an exemplary embodiment.
실선은 실시 예에 따른 촉각 액추에이터(1)의 구동을 나타내는 그래프이고, 1점 쇄선은 종래의 일반적인 선형 공진형 액추에이터의 구동을 나타내는 그래프이고, 점선은 종래의 일반적인 선형 공진형 액추에이터에서 구동 주파수 대역을 향상시킨 다기능 진동 액추에이터의 구동을 나타내는 그래프이다. The solid line is a graph showing the driving of the tactile actuator 1 according to the embodiment, the dashed-dotted line is a graph showing the driving of the conventional general linear resonant actuator, and the dotted line shows the driving frequency band in the conventional general resonant actuator. It is a graph which shows the drive of the improved multifunctional vibration actuator.
도 5 및 도 6을 참조하면, 실시 예에 따른 촉각 액추에이터(1)는 코일(15)에 인가하는 전류에 따라서, 적어도 둘 이상의 구동 모드를 가진다. 5 and 6, the tactile actuator 1 according to the embodiment has at least two driving modes, depending on the current applied to the coil 15.
종래의 일반적인 선형 공진형 액추에이터의 그래프(1점 쇄선)를 참조하면, 170Hz 이상에 위치한 하나의 공진 주파수(f_c)에서 최대 진동력을 가지며, 상대적으로 좁은 주파수 대역(A3)에서 구동 가능한 주파수 대역을 가짐을 알 수 있다. Referring to a graph of a conventional general linear resonant actuator (dotted and dashed line), a frequency band having a maximum vibration force at one resonant frequency f_c located at 170 Hz or more, and capable of being driven at a relatively narrow frequency band A3 is described. It can be seen that.
기존의 경우 촉각 제공 방법이 진동에 국한된 점 때문에, 주기적인 진동을 형성하지 못하는 주파수 대역에서의 출력을 노이즈로 정의하여 무시하였기 때문에 다양한 촉각을 제시할 수 없었다. In the conventional case, since the method of providing tactile sensation is limited to vibration, various tactile sensations could not be presented because the output in the frequency band that cannot form periodic vibration was defined as noise and ignored.
반면, 실시 예에 따른 촉각 액추에이터의 그래프(실선)를 참조하면, 적어도 160Hz 이하에서 하나 이상의 공진 주파수(f_a1)를 가지며, 해당 공진 주파수(f_a1)를 포함하는 주파수 대역(A11)에서 종래의 햅틱 제공 장치가 출력하는 진동과 같은 형태의 촉각을 제시할 수 있다. On the other hand, referring to the graph (solid line) of the tactile actuator according to the embodiment, the conventional haptic is provided in a frequency band A11 having one or more resonance frequencies f_a1 at least 160 Hz or less and including the corresponding resonance frequency f_a1. It is possible to present a tactile sensation such as vibration that the device outputs.
또한, 해당 공진 주파수(f_a1)의 대략 1/3이 되는 임계 주파수(f_a2) 이하의 영역에서, 진동이 아닌 힘을 제공할 수 있는 적어도 하나 이상의 서로 다른 주파수 대역(A12)을 포함하며, 여기에 해당되는 힘은 촉각으로서 두드림 및 출렁거림 등이 해당 될 수 있다. 여기서, 상기 임계 주파수란, 입력된 전류에 따라 발생되는 파형이 무너지는 모습을 나타내지 않고 주기적인 형상의 진동을 형성하는 최소 주파수라고 할 수 있다. It also includes at least one or more different frequency bands A12 capable of providing a force other than vibration in a region below a threshold frequency f_a2 which is approximately one third of the resonant frequency f_a1. Corresponding forces are tactile and may include tapping and rocking. Here, the threshold frequency may be referred to as a minimum frequency for forming a vibration of a periodic shape without exhibiting a collapse of the waveform generated according to the input current.
도 7은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 저주파수를 갖는 방형파 전류를 인가할 때 측정된 주파수 및 가속도 관계를 나타내는 그래프이고, 도 8은 일 실시 예에 따른 촉각 액추에이터 등에 있어서, 저주파수를 갖는 정현파 전류를 인가할 때 측정된 주파수 및 가속도 관계를 나타내는 그래프이다.7 is a graph illustrating a frequency and acceleration relationship measured when a square wave current having a low frequency is applied in a tactile actuator according to an embodiment, and FIG. 8 is a graph having a low frequency in a tactile actuator according to an embodiment. A graph showing the relationship between frequency and acceleration measured when sinusoidal current is applied.
실선은 실시 예에 따른 촉각 액추에이터(1)의 구동을 나타내는 그래프이고, 1점 쇄선은 종래의 일반적인 선형 공진형 액추에이터의 구동을 나타내는 그래프이다. The solid line is a graph showing the driving of the tactile actuator 1 according to the embodiment, and the dashed-dotted line is a graph showing the driving of a conventional general linear resonant actuator.
도 7 및 도 8을 참조하면, 저주파수의 전류를 흘러 주었을 때, 종래의 일반적인 선형 공진형 액추에이터는 실제 사용에 걸맞지 않는 노이즈를 보여주었으나, 실시 예에 따른 촉각 액추에이터(1)는 주어진 외부 전류의 파형에 걸맞는 진동 패턴을 보여주었음을 확인 할 수 있다.Referring to FIGS. 7 and 8, when a low frequency current flows, the conventional general linear resonant actuator shows noise that is not suitable for practical use, but the tactile actuator 1 according to the embodiment is a method of providing a given external current. You can see that it showed a vibration pattern that matches the waveform.
도 9는 일 실시 예에 따른 촉각 액추에이터의 제어 방법을 나타내는 도면이고, 도 10은 일 실시 예에 따른 촉각 액추에이터가 동작하는 일 형태를 나타내는 도면이고, 도 11은 일 실시 예에 따른 촉각 액추에이터가 동작하는 다른 형태를 나타내는 도면이다.9 is a diagram illustrating a control method of a tactile actuator according to an embodiment, and FIG. 10 is a view illustrating a form in which a tactile actuator operates according to an embodiment, and FIG. 11 is a diagram illustrating an operation of a tactile actuator according to an embodiment. It is a figure which shows another form to make.
도 9 내지 도 11을 참조하면, 정보 제공 수단(16, 17, 18, 19)을 통하여 입력된 구동 정보는, 제어부(20)에서 수집될 수 있다(100). 단계 100에서 수집된 구동 정보에 기초하여, 제어부(20)는, 미리 설정된 복수 개의 구동 모드 중 어느 하나의 구동 모드를 결정할 수 있다(110). 여기서, 미리 설정된 복수 개의 구동 모드는, 예를 들어, 일반 진동 모드, 두드림 모드 및/또는 출렁거림 모드 등을 포함할 수 있다. 이하 제 1 설정 모드는 일반 진동 모드이고, 제 2 설정 모드는 두드림 모드이고, 제 3 설정 모드는 출렁거림 모드인 경우를 예시적으로 설명하기로 한다. 9 to 11, driving information input through the information providing means 16, 17, 18, and 19 may be collected by the controller 20 (100). Based on the driving information collected in step 100, the controller 20 may determine one driving mode among a plurality of preset driving modes (110). Here, the plurality of preset driving modes may include, for example, a general vibration mode, a tapping mode, and / or a rocking mode. Hereinafter, a case in which the first setting mode is a general vibration mode, the second setting mode is a tapping mode, and the third setting mode is a rocking mode will be described.
예를 들면, 상기 구동 정보는, 촉각 액추에이터(1)와 연결된 디바이스에서 재생되는 영상 또는 음원이고, 단계 110은, 재생되는 영상 또는 음원에 미리 설정된 영상 패턴 또는 음향 패턴이 포함되어 있는지 여부에 따라서 실시간으로 결정될 수 있다. For example, the driving information is an image or a sound source to be reproduced by a device connected to the tactile actuator 1, and step 110 is a real time depending on whether a preset image pattern or sound pattern is included in the reproduced image or sound source. Can be determined.
단계 110에서 구동 단계가 결정되면, 제어부(20)는 결정된 구동 모드에 기초하여, 코일(15)로 인가할 전류의 주파수를 결정할 수 있다.When the driving step is determined in operation 110, the controller 20 may determine the frequency of the current to be applied to the coil 15 based on the determined driving mode.
단계 110 에서 결정된 구동 단계가 일반 진동 모드인지 여부를 결정하고(120), 제 1 설정 모드(일반 진동 모드)인 경우, 제어부(20)는 전류의 주파수를 주기적인 사인파 형상의 진동력을 형성하는 최소 주파수인 임계 주파수보다 높은 제 1 설정 주파수(f_H)로 결정하고(130), 제어부(20)는, 설정된 주파수의 전류를 코일(15)로 인가할 수 있다(180). 제 1 설정 주파수(f_H)는, 촉각 액추에이터(1)의 공진 주파수 주변의 주파수 대역(A11, 도 5 참조)에 속하는 값으로 설정될 수 있다. 예를 들어, 제 1 설정 주파수(f_H)는, 160Hz 이하의 값일 수 있다. It is determined whether the driving step determined in step 110 is a general vibration mode (120), and in the first setting mode (general vibration mode), the control unit 20 forms a periodic sinusoidal vibration force of the frequency of the current. In operation 130, the controller 20 may apply the current having the set frequency to the coil 15, at a first set frequency f_H higher than the threshold frequency, which is the minimum frequency. The first set frequency f_H may be set to a value belonging to a frequency band A11 (see FIG. 5) around the resonant frequency of the tactile actuator 1. For example, the first set frequency f_H may be a value of 160 Hz or less.
단계 180에서 제 1 설정 주파수(f_H)를 갖는 전류가 인가되면, 도 10과 같이, 진동부(13)는, 하우징(11)의 수용 공간 내에서 상하로 진동하고, 상기 진동은 탄성 부재(14), 하우징(11) 및 캡(12)을 순차적으로 거쳐 사용자에게 전달될 수 있다. 제 1 설정 모드에서는, 주기적인 형상의 진동력을 형성할 수 있도록 충분히 높은 주파수가 입력되므로, 입력 파형의 종류에 큰 영향을 받지 않고, 유사한 진동을 발생시킬 수 있다. 다시 말하면, 제 1 설정 모드에서 입력 파형의 종류는 제한되지 않는다. When the current having the first set frequency f_H is applied in step 180, as shown in FIG. 10, the vibrator 13 vibrates up and down in the accommodation space of the housing 11, and the vibration is performed by the elastic member 14. ), The housing 11 and the cap 12 may be sequentially delivered to the user. In the first setting mode, since a sufficiently high frequency is input to form a periodic vibration force, similar vibration can be generated without being greatly influenced by the type of the input waveform. In other words, the type of input waveform in the first setting mode is not limited.
한편, 단계 110에서 결정된 구동 모드가 제 1 설정 모드 이외의 설정 모드이면, 제어부(20)는 전류의 주파수를 제 1 설정 주파수(f_H)보다 낮은 제 2 설정 주파수(f_L)로 결정할 수 있다(140). 제 2 설정 주파수(f_L)는, 상기 임계 주파수보다 낮은 값으로 결정된다. 예를 들어, 제 2 설정 주파수(f_L)는, 촉각 액추에이터(1)의 공진 주파수의 1/3 이하의 값일 수 있다.On the other hand, if the driving mode determined in step 110 is a setting mode other than the first setting mode, the controller 20 may determine the frequency of the current as the second setting frequency f_L lower than the first setting frequency f_H (140). ). The second set frequency f_L is determined to be lower than the threshold frequency. For example, the second set frequency f_L may be a value equal to or less than 1/3 of the resonance frequency of the tactile actuator 1.
단계 140 수행 이후, 제어부(20)는, 구동 모드가 제 2 설정 모드(두드림 모드)인지 여부를 결정할 수 있다(150). 단계 150에서, 구동 모드가 제 2 설정 모드(두드림 모드)로 결정되면, 제어부(20)는, 전류의 파형을 방형파(square wave) 또는 펄스파(pulse wave)로 결정할 수 있다. 반대로 단계 150에서, 구동 모드가 제 3 설정 모드(출렁거림 모드)로 결정되면, 제어부(20)는, 전류의 파형을 정현파(sine wave)로 결정할 수 있다. 그리고 제어부(20)는, 설정된 주파수 및 파형으로 코일(15)에 전류를 인가할 수 있다(180).After performing step 140, the controller 20 may determine whether the driving mode is the second setting mode (tap mode) (150). In operation 150, when the driving mode is determined as the second setting mode (tap mode), the controller 20 may determine the waveform of the current as a square wave or a pulse wave. On the contrary, in step 150, when the driving mode is determined as the third setting mode (the rocking mode), the controller 20 may determine the waveform of the current as a sine wave. The controller 20 may apply a current to the coil 15 at a set frequency and waveform (180).
단계 180에서 제 2 설정 주파수(f_L)를 갖는 전류가 인가되면, 진동부(13)는, 주기적인 진동력을 형성하지 못하므로, 아래와 같이 입력 파형에 따라서 상이한 촉감을 사용자에게 전달할 수 있다. When a current having the second set frequency f_L is applied in operation 180, the vibrator 13 may not form a periodic vibration force, and thus may transmit different touch to the user according to an input waveform as follows.
먼저, 입력되는 전류의 파형이 정현파인 경우, 주기적인 진동력을 형성하지 못하는 진동부(13)는 비주기적으로 상하 운동을 하게 된다. 또한, 정현파의 특성상 코일(15)에 입력되는 전류의 크기는 부드럽게 변화되므로 위와 같은 운동에 의하여, 사용자는 출렁거림의 촉감을 느낄 수 있다. 본 발명에서, "출렁거림"이란 주기성을 느낄 수 없는 일련의 촉감을 통칭하는 것으로 이해될 수 있다. 실제로 실시 예에 따라 제작된 시제품에 위와 같은 조건을 적용할 때, 사용자는 출렁거림의 촉감을 느낄 수 있었다. First, when the waveform of the input current is a sine wave, the vibrator 13 that does not form a periodic vibration force is a vertical movement up and down aperiodic. In addition, since the magnitude of the current input to the coil 15 is softly changed due to the characteristics of the sinusoidal wave, the user may feel the feel of rocking by the above motion. In the present invention, "slack" can be understood to collectively refer to a series of tactile sensations that cannot feel periodicity. In fact, when the above conditions are applied to the prototype manufactured according to the embodiment, the user could feel the touch of the rocking.
다음으로, 입력되는 전류의 파형이 방형파 또는 펄스파인 경우, 주기적인 진동력을 형성하지 못하는 진동부(13)가 비주기적으로 상하 운동을 하는 것은 마찬가지이다. 다만, 방형파 또는 펄스파의 특성상 코일(15)에 입력되는 전류의 크기가 급격하게 변화하므로, 전류의 크기가 변화하는 주기적인 순간마다 진동부(13)의 상하 운동 방향으로의 가속도가 다른 구간에 비하여 훨씬 크게 변화될 수 있다. 그리고 전류의 크기가 변화하는 순간에 느껴지는 촉감은, 사용자의 촉감의 역치(threshold value)를 높이게 되어, 결과적으로 나머지 구간에서 느껴지는 촉감을 느끼지 못할 정도로 감각 적응(sensory adaptation)을 일으키므로, 사용자는 "두드림"의 촉감을 느낄 수 있다. 본 발명에서, "두드림"이란 나머지 구간보다 구별될 수 있을 정도로 높은 임펄스(impulse)가 주기적으로 반복되는 촉감을 통칭하는 것으로 이해될 수 있다. 실제로 실시 예에 따라 제작된 시제품에 위와 같은 조건을 적용할 때, 사용자는 두드림의 촉감을 느낄 수 있었다.Next, when the waveform of the input current is a square wave or a pulse wave, it is the same that the vibrator 13 which does not form a periodic vibration force performs vertical movement aperiodically. However, since the magnitude of the current input to the coil 15 changes abruptly due to the characteristics of the square wave or the pulse wave, the section in which the acceleration in the vertical movement direction of the vibration unit 13 is different at periodic intervals in which the magnitude of the current changes. It can be changed much larger than that. And the tactile sensation at the moment when the magnitude of the current changes increases the threshold value of the tactile sensation of the user, resulting in sensory adaptation so that the tactile adaptation is not felt in the rest of the section. Tapping "can feel the touch. In the present invention, “tap” can be understood as a general term for a touch in which an impulse that is high enough to be distinguished from the rest of the interval is repeated periodically. In fact, when applying the above conditions to the prototype produced according to the embodiment, the user could feel the touch of the tapping.
다시 말하면, 촉각 액추에이터(1)의 공진 주파수의 1/3 이하의 주파수를 갖는 전류를 입력할 경우, 전류의 파형에 따라서, 사용자는 적어도 2 이상의 서로 다른 촉각을 느낄 수 있다. In other words, when inputting a current having a frequency of 1/3 or less of the resonant frequency of the haptic actuator 1, the user may feel at least two different tactile sensations according to the waveform of the current.
한편, 예를 들어, 진동부(13) 및 캡(12) 사이의 거리가 충분히 가깝거나, 충분한 전압이 입력되는 경우, 진동부(13)는, 도 11과 같이, 캡(12)에 직접적으로 접촉함으로써, 캡(12)을 통하여 사용자에게 직접적인 힘을 전달할 수도 있을 것이다. On the other hand, for example, when the distance between the vibrating portion 13 and the cap 12 is sufficiently close or a sufficient voltage is input, the vibrating portion 13 is directly connected to the cap 12 as shown in FIG. 11. By contacting, the force may be transmitted directly to the user through the cap 12.
이하 실시 예에 따른 촉각 액추에이터(1)를 이용하여 실험한 결과 그래프를 통하여 보다 구체적으로 설명하기로 한다.Hereinafter, the result of the experiment using the tactile actuator 1 according to the embodiment will be described in more detail through a graph.
도 12는 서로 다른 공진 주파수를 갖는 촉각 액추에이터들에 있어서, 5Hz의 방형파인 입력 전류의 전류 크기 변화에 따른 가속도의 변화를 나타내는 그래프이고, 도 13은 서로 다른 공진 주파수를 갖는 촉각 액추에이터들에 있어서, 90mA의 방형파인 입력 전류의 주파수 변화에 따른 가속도의 변화를 나타내는 그래프이다.FIG. 12 is a graph illustrating a change in acceleration according to a change in current magnitude of an input current that is a square wave of 5 Hz in tactile actuators having different resonant frequencies, and FIG. 13 is a tactile actuator having different resonant frequencies. It is a graph showing the change of acceleration according to the frequency change of the input current which is a square wave of 90mA.
실험을 통하여 사용자는, 진동부(13)가 0.2G 이상의 가속도로 구동할 때 두드림의 촉감을 느낄 수 있음을 확인하였다. 도 12 및 도 13을 참조하면, 촉각 액추에이터(1)의 공진 주파수가 160Hz 이하인 경우, 크기가 90mA 이고, 주파수가 5Hz인 작은 전류가 인가되더라도 진동부(13)가 0.2G 이상의 가속도로 구동될 수 있음을 확인할 수 있었다. 이에 반하여, 촉각 액추에이터의 공진 주파수가 160Hz 보다 약간 큰 180Hz인 경우, 0.2G 이상의 가속도로 구동되기 위하여는, 90mA의 약 1.5배인 130mA 이상의 전류를 인가하여야 함을 알 수 있다. Through the experiment, the user confirmed that the vibration part 13 can feel the touch of the tapping when driven with an acceleration of 0.2G or more. 12 and 13, when the resonant frequency of the tactile actuator 1 is 160 Hz or less, even if a small current of 90 mA and a frequency of 5 Hz is applied, the vibrator 13 may be driven with an acceleration of 0.2 G or more. It could be confirmed. On the contrary, when the resonant frequency of the tactile actuator is 180 Hz, which is slightly larger than 160 Hz, it can be seen that a current of 130 mA or more, which is about 1.5 times 90 mA, must be applied to be driven with an acceleration of 0.2 G or more.
실시 예에 따른 촉각 액추에이터는, 진동부(13)의 질량이 2g 이하인 경우, 탄성 부재(14)의 탄성 계수는 2.021 N/mm 이하가 되게 함으로써, 공진 주파수가 160Hz 이하가 되게 할 수 있다. 한편, 진동부(13)의 질량이 2g 이상인 경우, 탄성 부재(14)의 탄성 계수는 2.021 N/mm 이상이 되게 함으로써, 공진 주파수가 160Hz 이하가 되게 할 수 있다.In the tactile actuator according to the embodiment, when the mass of the vibrating portion 13 is 2 g or less, the elastic modulus of the elastic member 14 may be 2.021 N / mm or less, so that the resonance frequency may be 160 Hz or less. On the other hand, when the mass of the vibrating portion 13 is 2 g or more, the elastic modulus of the elastic member 14 is 2.021 N / mm or more, so that the resonance frequency can be 160 Hz or less.
도 14 내지 도 17은 각각 80Hz, 120Hz, 160Hz 및 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 방형파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이고, 도 18은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 방형파인 전류가 인가될 때 두드림 및 진동의 임계 주파수를 나타내는 그래프이다. 14 to 17 are diagrams showing waveforms of a vibration part according to a change in current, which is a square wave input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 18 shows different resonance frequency characteristics. For tactile actuators having a graph, it is a graph showing the threshold frequencies of tapping and vibration when a square wave current is applied.
도 14 내지 도 17을 참조하면, 각 도면의 오른쪽 열에 나타난 그래프와 같이 특정한 주파수 이상의 방형파인 전류가 인가되면 진동부의 파형이 주기적인 사인파 형상의 진동력을 형성하는 것을 알 수 있다. 따라서, 상기한 조건에서 촉각 액추에이터는 사용자에게 "진동"의 촉감을 제공할 수 있다. 14 to 17, it can be seen that the waveform of the vibrating unit forms a periodic sinusoidal vibration force when a current that is a square wave of a specific frequency or more is applied as shown in a graph shown in the right column of each drawing. Thus, under the above conditions, the haptic actuator can provide a "vibration" sensation to the user.
반면 각 도면의 왼쪽 열에 나타난 그래프와 같이 특정한 주파수 이하의 영역에서는 진동부가 주기적인 진동력을 형성하지 못하고, 그래프가 부분적으로 무너져 있음을 알 수 있다. 다만, 방형파의 특성상 전류의 크기가 변화하는 주기적인 순간마다 진동부의 가속도가 다른 구간에 비하여 훨씬 크게 변화된다. 따라서, 상기한 조건에서 촉각 액추에이터는 사용자에게 "두드림"의 촉감을 제공할 수 있다. On the other hand, as shown in the graph shown in the left column of each figure, it can be seen that the vibration part does not form a periodic vibration force in a region below a specific frequency, and the graph is partially collapsed. However, due to the characteristics of the square wave, the acceleration of the vibration unit changes much more at every periodic moment when the magnitude of current changes. Thus, under the above conditions, the haptic actuator can provide the user with a "tap" feel.
이상과 같이 상기 특정한 주파수를 기준으로 촉각 액추에이터가 사용자에게 제공하는 촉감은 진동 또는 두드림으로 구분될 수 있다. 상기 특정한 주파수는, 임계 주파수 또는 구분 주파수라고 할 수도 있다. As described above, the touch provided by the tactile actuator to the user based on the specific frequency may be divided into vibration or tapping. The specific frequency may be referred to as a threshold frequency or a division frequency.
도 14 내지 도 17을 참조하면, 촉각 액추에이터의 공진 주파수가 커질수록 상기 임계 주파수가 커지는 경향을 확인할 수 있으며, 상기 경향을 도 18에 나타내었다. 실시 예에 따른 촉각 액추에이터의 제어 방법에 있어서 제 1 설정 주파수(f_H) 및 제 2 설정 주파수(f_L)는, 도 18에서 나타난 임계 주파수를 고려하여 설정될 수 있다. 14 to 17, it can be seen that the tendency of the threshold frequency increases as the resonant frequency of the tactile actuator increases, and the trend is shown in FIG. 18. In the control method of the tactile actuator according to the embodiment, the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 18.
도 19 내지 도 22는 각각 80Hz, 120Hz, 160Hz 및 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 펄스파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이고, 도 23은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 펄스파인 전류가 인가될 때 두드림 및 진동의 임계 주파수를 나타내는 그래프이다. 19 to 22 are diagrams showing waveforms of a vibrating unit in accordance with a change in a pulse wave current input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 23 shows different resonance frequency characteristics. For tactile actuators having a graph, it is a graph showing the threshold frequencies of tapping and oscillation when a pulse fine current is applied.
도 19 내지 도 22를 참조하면, 펄스파인 전류를 입력할 때의 진동부의 파형은 사각파인 전류를 입력할 때와 유사한 형태를 가짐을 알 수 있다. 따라서, 촉각 액추에이터에 임계 주파수 이하의 펄스파인 전류가 인가되면, 촉각 액추에이터는 사용자에게 "두드림"의 촉감을 제공하고, 임계 주파수 이상의 펄스파인 전류가 인가되면, 촉각 액추에이터는 사용자에게 "진동"의 촉감을 제공할 수 있다.19 to 22, it can be seen that the waveform of the vibrating unit when inputting the pulse wave current has a form similar to that when inputting the square wave current. Thus, when a pulsating actuator is applied with a pulse wave current below the threshold frequency, the tactile actuator provides a tactile feel to the user, and when a pulsing pulse current above the threshold frequency is applied, the tactile actuator gives the user a `` vibration '' feel Can be provided.
도 19 내지 도 22를 참조하면, 촉각 액추에이터의 공진 주파수가 커질수록 상기 임계 주파수가 커지는 경향을 확인할 수 있으며, 상기 경향을 도 23에 나타내었다.19 to 22, it can be seen that the tendency of the threshold frequency increases as the resonant frequency of the tactile actuator increases, and the trend is shown in FIG. 23.
한편, 동일한 공진 주파수를 갖는 촉각 액추에이터에 대하여, 펄스파인 전류를 입력할 때의 임계 주파수는, 사각파인 전류를 입력할 때의 임계 주파수보다 약 2배가 됨을 확인할 수 있다. On the other hand, for the tactile actuator having the same resonant frequency, it can be seen that the threshold frequency at the time of inputting the pulse wave current is about twice the threshold frequency at the time of inputting the square wave current.
실시 예에 따른 촉각 액추에이터의 제어 방법에 있어서 제 1 설정 주파수(f_H) 및 제 2 설정 주파수(f_L)는, 도 23에서 나타난 임계 주파수를 고려하여 설정될 수 있다. In the control method of the tactile actuator according to the embodiment, the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 23.
도 24 내지 도 27은 각각 80Hz, 120Hz, 160Hz 및 180Hz의 공진 주파수 특성을 갖는 촉각 액추에이터에 입력되는 정현파인 전류의 변화에 따라 나타나는 진동부의 파형을 나타내는 도면이고, 도 28은 서로 다른 공진 주파수 특성을 갖는 촉각 액추에이터들에 있어서, 정현파인 전류가 인가될 때 출렁거림 및 진동의 임계 주파수를 나타내는 그래프이다. 24 to 27 are diagrams showing waveforms of a vibrating unit in response to a change in a sinusoidal current input to a tactile actuator having resonant frequency characteristics of 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, and FIG. 28 shows different resonance frequency characteristics. For tactile actuators having a graph, it is a graph showing the threshold frequencies of oscillation and vibration when a sinusoidal current is applied.
도 24 내지 도 27을 참조하면, 각 도면의 오른쪽 열에 나타난 그래프와 같이 특정한 주파수 이상의 정형파인 전류가 인가되면 진동부의 파형이 주기적인 사인파 형상의 진동력을 형성하는 것을 알 수 있다. 따라서, 상기한 조건에서 촉각 액추에이터는 사용자에게 "진동"의 촉감을 제공할 수 있다. 24 to 27, it can be seen that the waveform of the vibrating unit forms a periodic sinusoidal vibration force when a current that is a square wave of a specific frequency or more is applied as shown in a graph shown in the right column of each drawing. Thus, under the above conditions, the haptic actuator can provide a "vibration" sensation to the user.
반면 각 도면의 왼쪽 열에 나타난 그래프와 같이 특정한 주파수 이하의 영역에서는 진동부가 주기적인 진동력을 형성하지 못하고, 그래프가 부분적으로 무너져 있음을 알 수 있다. 주기적인 진동력을 형성하지 못하는 진동부는, 비주기적으로 상하 운동의 가속도를 갖게 된다. 한편, 정현파의 특성상 전류의 크기는 부드럽게 변화되므로 위와 같은 운동에 의하여 사용자는 "출렁거림"의 촉감을 느낄 수 있다. On the other hand, as shown in the graph shown in the left column of each figure, it can be seen that the vibration part does not form a periodic vibration force in a region below a specific frequency, and the graph is partially collapsed. The vibrator, which does not form a periodic vibration force, has an acceleration of vertical movement aperiodically. On the other hand, because of the nature of the sine wave, the magnitude of the current is smoothly changed, the user can feel the "slack" by the above motion.
이상과 같이 상기 특정한 주파수를 기준으로 촉각 액추에이터가 사용자에게 제공하는 촉감은 진동 또는 출렁거림으로 구분될 수 있다. As described above, the touch provided by the tactile actuator to the user based on the specific frequency may be divided into vibration or rocking.
도 24 내지 도 27을 참조하면, 촉각 액추에이터의 공진 주파수가 커질수록 상기 임계 주파수가 커지는 경향을 확인할 수 있으며, 상기 경향을 도 28에 나타내었다. 실시 예에 따른 촉각 액추에이터의 제어 방법에 있어서 제 1 설정 주파수(f_H) 및 제 2 설정 주파수(f_L)는, 도 28에서 나타난 임계 주파수를 고려하여 설정될 수 있다. 24 to 27, it can be seen that the tendency of the threshold frequency increases as the resonant frequency of the tactile actuator increases, and the trend is shown in FIG. 28. In the control method of the tactile actuator according to the embodiment, the first set frequency f_H and the second set frequency f_L may be set in consideration of the threshold frequency shown in FIG. 28.
도 29는 다른 실시 예에 따른 촉각 액추에이터의 제어 방법을 나타내는 도면이다. 반대되는 기재가 없는 이상 도 9에서 설명한 일 실시 예에 따른 촉각 액추에이터의 제어 방법에 대한 내용은 다른 실시 예에도 적용될 수 있다. 29 is a view illustrating a control method of a tactile actuator according to another embodiment. Unless otherwise stated, the method of controlling the tactile actuator according to the exemplary embodiment described in FIG. 9 may be applied to other exemplary embodiments.
도 29를 참조하면, 다른 실시 예에 따른 촉각 액추에이터의 제어 방법에 있어서, 단계 120에서 구동 모드가 일반 진동 모드이면, 제어부는 인가되는 전류의 주파수를 제 1 설정 주파수(f_H)로 결정할 수 있다. 상기 제 1 설정 주파수(f_H)는, 도 18, 도 23 또는 도 28을 참조하여, 주어진 조건하에서 "진동"의 촉감을 제공하는 최소 주파수인 제 1 임계 주파수보다 큰 값으로 설정될 수 있다. Referring to FIG. 29, in the control method of a tactile actuator according to another embodiment, when the driving mode is the general vibration mode in step 120, the controller may determine the frequency of the applied current as the first set frequency f_H. The first set frequency f_H may be set to a value greater than the first threshold frequency, which is the minimum frequency that provides a "vibration" sensation under a given condition, with reference to FIGS. 18, 23 or 28.
단계 120에서 구동 모드가 일반 진동 모드가 아니면, 제어부는 구동 모드가 두드림 모드인지 여부를 결정할 수 있다(150). In operation 120, if the driving mode is not the normal vibration mode, the controller may determine whether the driving mode is a tapping mode (150).
단계 150에서 구동 모드가 두드림 모드인 경우, 제어부는 인가되는 전류의 주파수를 제 2 설정 주파수(f_L1)로 결정할 수 있다(151). 상기 제 2 설정 주파수(f_L1)는, 도 18 또는 도 23을 참조하여, 주어진 조건하에서 "두드림"의 촉감을 제공하는 최대 주파수인 제 2 임계 주파수보다 작은 값으로 설정될 수 있다. In operation 150, when the driving mode is the tapping mode, the controller may determine the frequency of the applied current as the second set frequency f_L1 (151). The second set frequency f_L1 may be set to a value smaller than the second threshold frequency, which is the maximum frequency that provides a “tap” feel under a given condition, with reference to FIG. 18 or FIG. 23.
단계 150에서 구동 모드가 두드림 모드가 아닌 경우, 제어부는 인가되는 전류의 주파수를 제 3 설정 주파수(f_L2)로 결정할 수 있다(152). 상기 제 3 설정 주파수(f_L2)는, 도 28을 참조하여, 주어진 조건하에서 "출렁거림"의 촉감을 제공하는 최대 주파수인 제 3 임계 주파수보다 작은 값으로 설정될 수 있다. If the driving mode is not the tapping mode in step 150, the controller may determine the frequency of the applied current as the third set frequency f_L2 (152). The third set frequency f_L2 may be set to a value smaller than the third threshold frequency, which is the maximum frequency that provides a "swing" sensation under a given condition with reference to FIG. 28.
한편, 도 18, 도 23 및 도 28을 참조하면 알 수 있듯이, 동일한 조건 하에서 "출렁거림"의 촉감을 제공하는 최대 주파수인 제 3 임계 주파수는, "두드림"의 촉감을 제공하는 최대 주파수인 제 2 임계 주파수보다 크므로, 제 3 설정 주파수(f_L2)는 제 2 설정 주파수(f_L1) 보다 높게 설정될 수 있다. 한편, 제 1 설정 주파수(f_H)의 경우, 제 2 설정 주파수(f_L1) 및 제 3 설정 주파수(f_L2) 보다 큰 값으로 설정될 수 있다. 다시 말하면, 제 2 설정 주파수(f_L1)보다 제 3 설정 주파수(f_L2)가 크고, 제 3 설정 주파수(f_L2)보다 제 1 설정 주파수(f_H)가 클 수 있다. 18, 23, and 28, on the other hand, the third threshold frequency, which is the maximum frequency that provides the feel of “swaying” under the same conditions, is the maximum frequency that provides the touch of “beating”. Since it is greater than the second threshold frequency, the third set frequency f_L2 may be set higher than the second set frequency f_L1. Meanwhile, the first set frequency f_H may be set to a value greater than the second set frequency f_L1 and the third set frequency f_L2. In other words, the third set frequency f_L2 may be greater than the second set frequency f_L1, and the first set frequency f_H may be greater than the third set frequency f_L2.
이상의 실시 예에 따르면, 다양한 촉감을 더욱 감성적으로 전달할 수 있다. 또한, 인체가 감지할 수 있는 주파수 범위 중, 160Hz 이하의 주파수 범위에서 종래의 기술보다 더 효율적인 촉각이 제공 가능하다. 또한, 하나의 촉각 제공 장치를 통하여, 160Hz 이하의 주파수 범위 내에서 적어도 둘 이상의 서로 다른 촉각을 제공 가능하다.According to the above embodiments, various touches may be more emotionally transmitted. In addition, among the frequency range that can be detected by the human body, a more efficient tactile sensation can be provided in the frequency range of 160 Hz or less. In addition, through one tactile providing device, at least two different tactile sensations may be provided within a frequency range of 160 Hz or less.
이상에서 설명된 실시 예는 본 발명의 바람직한 실시 예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시 예에 한정되는 것은 아니며, 이 분야의 통상의 기술자에 의하여 본 발명의 기술적 사상과 특허청구범위 내에서의 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시 예들은 본 발명의 범위에 속하는 것으로 보아야 한다.The embodiments described above are merely to describe the preferred embodiments of the present invention, the scope of the present invention is not limited to the described embodiments, the technical spirit and patents of the present invention by those skilled in the art Various changes, modifications, or substitutions may be made within the scope of the claims, and such embodiments should be considered to be within the scope of the present invention.

Claims (12)

  1. 내부에 수용 공간을 형성하는 하우징;A housing defining an accommodation space therein;
    상기 수용 공간의 적어도 일부를 커버하는 캡;A cap covering at least a portion of the accommodation space;
    상기 수용 공간 내에 배치되는 진동부;A vibrator disposed in the accommodation space;
    상기 진동부가 상기 하우징에 대하여 진동 가능하도록 상기 하우징 및 진동부를 연결하는 탄성 부재; An elastic member connecting the housing and the vibrator to allow the vibrator to vibrate with respect to the housing;
    상기 진동부를 구동하기 위한 자기장을 형성하는 코일; 및A coil forming a magnetic field for driving the vibrator; And
    미리 설정된 복수 개의 구동 모드 중 수집된 구동 정보에 기초하여 어느 하나의 구동 모드를 결정하고, 상기 구동 모드에 따라서 상기 코일로 인가될 전류의 특성을 결정하는 제어부를 포함하는 촉각 액추에이터.And a controller configured to determine one driving mode based on collected driving information among a plurality of preset driving modes, and to determine a characteristic of a current to be applied to the coil according to the driving mode.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 진동부의 질량은 2g 이하이고, The mass of the vibrating portion is 2g or less,
    상기 탄성 부재의 탄성 계수는 2.021 N/mm 이하이고,The elastic modulus of the elastic member is 2.021 N / mm or less,
    상기 촉각 액추에이터의 공진 주파수는 160Hz 이하인 촉각 액추에이터.Resonant frequency of the haptic actuator is less than 160Hz tactile actuator.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 구동 모드가 제 1 설정 모드이면, 상기 제어부는 상기 전류의 주파수는 제 1 설정 주파수로 결정하고, If the driving mode is the first setting mode, the controller determines the frequency of the current as the first setting frequency,
    상기 구동 모드가 상기 제 1 설정 모드 이외의 설정 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 1 설정 주파수보다 낮은 제 2 설정 주파수로 결정하는 촉각 액추에이터.And when the driving mode is a setting mode other than the first setting mode, the controller determines the frequency of the current to be a second set frequency lower than the first set frequency.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 1 설정 주파수는, 160Hz 이하의 값인 촉각 액추에이터.The first tactile actuator is a value of 160 Hz or less.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 2 설정 주파수는, 상기 촉각 액추에이터의 공진 주파수의 1/3 이하의 값인 촉각 액추에이터.And the second set frequency is a value equal to or less than 1/3 of the resonance frequency of the tactile actuator.
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 구동 모드가 제 2 설정 모드이면, 상기 제어부는 상기 전류의 파형을 방형파(square wave) 또는 펄스파(pulse wave)로 결정하고,If the driving mode is a second setting mode, the controller determines the waveform of the current as a square wave or a pulse wave,
    상기 구동 모드가 제 3 설정 모드이면, 상기 제어부는 상기 전류의 파형을 정현파(sine wave)로 결정하는 촉각 액추에이터.And the control unit determines the waveform of the current as a sine wave when the driving mode is a third setting mode.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 구동 모드는, 일반 진동 모드, 두드림 모드 및 출렁거림 모드를 포함하는 촉각 액추에이터.The drive mode includes a normal vibration mode, a tapping mode and a rocking mode.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 구동 모드가 상기 일반 진동 모드이면, 상기 제어부는 상기 전류의 주파수를 제 1 설정 주파수로 결정하고, If the driving mode is the general vibration mode, the controller determines the frequency of the current as a first set frequency,
    상기 구동 모드가 상기 두드림 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 1 설정 주파수보다 낮은 제 2 설정 주파수로 결정하고,If the driving mode is the tapping mode, the controller determines the frequency of the current as a second set frequency lower than the first set frequency,
    상기 구동 모드가 상기 출렁거림 모드이면, 상기 제어부는 상기 전류의 주파수를 상기 제 2 설정 주파수보다 높고 상기 제 1 설정 주파수보다 낮은 제 3 설정 주파수로 결정하는 촉각 액추에이터.And the control unit determines the frequency of the current as a third set frequency higher than the second set frequency and lower than the first set frequency if the driving mode is the rocking mode.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제어부에서 수집되는 정보를 제공하는 정보 제공 수단을 더 포함하고,Further comprising information providing means for providing the information collected by the control unit,
    상기 정보 제공 수단은,The information providing means,
    사용자의 명령을 입력 받기 위한 사용자 인터페이스, 외부 환경을 감지하기 위한 센서, 데이터가 저장되는 메모리, 다른 통신 기기와의 통신을 통하여 정보를 입력 받는 통신부 중 어느 하나 이상을 포함하는 촉각 액추에이터.A tactile actuator including any one or more of a user interface for receiving a user's command, a sensor for sensing an external environment, a memory in which data is stored, and a communication unit for receiving information through communication with another communication device.
  10. 내부에 수용 공간을 형성하는 하우징, 상기 수용 공간의 적어도 일부를 커버하는 캡, 상기 수용 공간 내에 배치되는 진동부, 상기 진동부가 상기 하우징에 대하여 진동 가능하도록 상기 하우징 및 진동부를 연결하는 탄성 부재 및 상기 진동부를 구동하기 위한 자기장을 형성하는 코일을 포함하는 촉각 액추에이터에 있어서, A housing forming an accommodation space therein, a cap covering at least a portion of the accommodation space, a vibration portion disposed in the accommodation space, an elastic member connecting the housing and the vibration portion to vibrate the housing with the vibration portion, and the In the tactile actuator comprising a coil for forming a magnetic field for driving the vibrator,
    구동 정보를 수집하는 단계;Collecting driving information;
    상기 수집된 구동 정보에 기초하여, 미리 설정된 복수 개의 구동 모드 중 어느 하나의 구동 모드를 결정하는 단계; 및Determining a driving mode of any one of a plurality of preset driving modes based on the collected driving information; And
    상기 결정된 구동 모드에 기초하여, 상기 코일로 인가할 전류의 주파수를 결정하는 단계; 및Determining a frequency of a current to be applied to the coil based on the determined driving mode; And
    상기 코일로 전류를 인가하는 단계를 포함하는 촉각 액추에이터의 제어 방법.And applying a current to the coil.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 결정된 구동 모드에 기초하여, 상기 코일로 인가할 전류의 파형을 결정하는 단계를 더 포함하는 촉각 액추에이터의 제어 방법.And determining a waveform of current to be applied to the coil based on the determined driving mode.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 구동 정보는, 상기 촉각 액추에이터와 연결된 디바이스에서 재생되는 영상 또는 음원이고,The driving information is an image or a sound source reproduced in a device connected to the tactile actuator,
    상기 구동 모드를 결정하는 단계는, 상기 영상 또는 음원에 미리 설정된 영상 패턴 또는 음향 패턴이 포함되어 있는지 여부에 따라서 실시간으로 결정되는 촉각 액추에이터의 제어 방법.The determining of the driving mode may include determining the driving mode in real time according to whether a preset image pattern or sound pattern is included in the image or sound source.
PCT/KR2016/006548 2016-04-29 2016-06-21 Tactile actuator and control method therefor WO2017188507A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16900581.6A EP3379378A4 (en) 2016-04-29 2016-06-21 Tactile actuator and control method therefor
JP2018562484A JP6708757B2 (en) 2016-04-29 2016-06-21 Tactile actuator and control method thereof
US15/763,208 US11123767B2 (en) 2016-04-29 2016-06-21 Tactile actuator and control method therefor
CN201680081631.8A CN108700935A (en) 2016-04-29 2016-06-21 Tactile driver and its control method
US17/377,540 US11623244B2 (en) 2016-04-29 2021-07-16 Tactile actuator and control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0052751 2016-04-29
KR20160052751 2016-04-29
KR1020160076452A KR101790880B1 (en) 2016-04-29 2016-06-20 Tactile actuator and controlling method thereof
KR10-2016-0076452 2016-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/763,208 A-371-Of-International US11123767B2 (en) 2016-04-29 2016-06-21 Tactile actuator and control method therefor
US17/377,540 Division US11623244B2 (en) 2016-04-29 2021-07-16 Tactile actuator and control method therefor

Publications (1)

Publication Number Publication Date
WO2017188507A1 true WO2017188507A1 (en) 2017-11-02

Family

ID=60159665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006548 WO2017188507A1 (en) 2016-04-29 2016-06-21 Tactile actuator and control method therefor

Country Status (1)

Country Link
WO (1) WO2017188507A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121683A1 (en) * 2018-12-12 2020-06-18 アルプスアルパイン株式会社 Tactile sense presentation device, tactile sense presentation system, control method, and program
EP3760286A1 (en) * 2016-05-17 2021-01-06 CK Materials Lab Co., Ltd. A method of generating a tactile signal using a haptic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242525B1 (en) * 2012-07-19 2013-03-12 (주)엠투시스 Haptic actuator
KR101320185B1 (en) * 2012-09-19 2013-10-23 삼성전기주식회사 Vibrating actuator
KR20130129127A (en) * 2012-05-16 2013-11-27 임머숀 코퍼레이션 Systems and methods for haptically enabled metadata
WO2016021834A1 (en) * 2014-08-07 2016-02-11 (주)하이소닉 Haptic actuator
KR20160040062A (en) * 2014-10-02 2016-04-12 주식회사 씨케이머티리얼즈랩 Magnetic tactile supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129127A (en) * 2012-05-16 2013-11-27 임머숀 코퍼레이션 Systems and methods for haptically enabled metadata
KR101242525B1 (en) * 2012-07-19 2013-03-12 (주)엠투시스 Haptic actuator
KR101320185B1 (en) * 2012-09-19 2013-10-23 삼성전기주식회사 Vibrating actuator
WO2016021834A1 (en) * 2014-08-07 2016-02-11 (주)하이소닉 Haptic actuator
KR20160040062A (en) * 2014-10-02 2016-04-12 주식회사 씨케이머티리얼즈랩 Magnetic tactile supply device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379378A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760286A1 (en) * 2016-05-17 2021-01-06 CK Materials Lab Co., Ltd. A method of generating a tactile signal using a haptic device
US11281297B2 (en) 2016-05-17 2022-03-22 Ck Materials Lab Co., Ltd. Method of generating a tactile signal using a haptic device
US11662823B2 (en) 2016-05-17 2023-05-30 Ck Material Lab Co., Ltd. Method of generating a tactile signal using a haptic device
WO2020121683A1 (en) * 2018-12-12 2020-06-18 アルプスアルパイン株式会社 Tactile sense presentation device, tactile sense presentation system, control method, and program
JPWO2020121683A1 (en) * 2018-12-12 2021-10-14 アルプスアルパイン株式会社 Tactile presentation device, tactile presentation system, control method and program
JP7227986B2 (en) 2018-12-12 2023-02-22 アルプスアルパイン株式会社 Tactile sense presentation device, haptic sense presentation system, control method and program
US11776367B2 (en) 2018-12-12 2023-10-03 Alps Alpine Co., Ltd. Tactile sensation providing apparatus, tactile sensation providing system, control method, and non-transitory recording medium

Similar Documents

Publication Publication Date Title
KR102290143B1 (en) Controlling method of tactile actuator and device
WO2018088788A1 (en) Tactile actuator
WO2017200258A2 (en) Method for converting acoustic signal into haptic signal, and haptic device using same
CN112292214B (en) Moving magnet actuator for haptic alerts
CN205810862U (en) Portable electric appts and the vibrator assembly for portable electric appts
WO2017007076A1 (en) Mobile terminal
CN207133804U (en) Electronic equipment
US11670962B2 (en) Electronic device with coil for wireless charging and haptic outputs
WO2014081868A1 (en) System of audio speakers implemented using emp actuators
HUP9900179A2 (en) Vibration transducer and loudspeaker
JP7210603B2 (en) Systems and methods for detecting and responding to touch input using haptic feedback
WO2017188507A1 (en) Tactile actuator and control method therefor
WO2017217671A1 (en) Multi-directional actuating module
JP2007034954A (en) Input/output device and electronic equipment having input/output device
US20210398403A1 (en) Portable Electronic Device Having a Haptic Button Assembly
TW201826083A (en) Electronic device including sensed location based driving of haptic actuators and related methods
WO2013073912A1 (en) Method for generating vibrotactile traveling wave for enabling vibrotactile traveling wave by sequentially actuating plurality of actuators while changing frequencies according to velocity of virtual object, wherein detected location of vibrotactile stimulation changes continuously
WO2019074159A1 (en) Curved haptic actuator and wearable device comprising same
WO2013133514A1 (en) Apparatus for providing texture with highly integrated, highly integrated-performance actuator, actuator array, and apparatus for providing tactile feedback
KR20080057651A (en) Sound recognition system and method for aurally impaired people
WO2013137548A1 (en) Dielectric polymer high-performance driver, actuator and vibrating motor using the driver, method for operating the actuator, apparatus for providing tactile feedback and apparatus for providing tactile feedback to sight and hearing disabled person
WO2016093414A1 (en) Sensor-actuator for touch input apparatus, and terminal apparatus using same
WO2018074674A1 (en) Audio output device
US6875939B2 (en) Suspension control device for electric appliance
WO2016122212A1 (en) Input device using magnetic field and operation method of input device, and electronic device using magnetic field and operation method of electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016900581

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900581

Country of ref document: EP

Effective date: 20180622

ENP Entry into the national phase

Ref document number: 2018562484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE