WO2017188230A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2017188230A1
WO2017188230A1 PCT/JP2017/016334 JP2017016334W WO2017188230A1 WO 2017188230 A1 WO2017188230 A1 WO 2017188230A1 JP 2017016334 W JP2017016334 W JP 2017016334W WO 2017188230 A1 WO2017188230 A1 WO 2017188230A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
construction machine
unit
lower traveling
detection
Prior art date
Application number
PCT/JP2017/016334
Other languages
English (en)
French (fr)
Inventor
洋一郎 山崎
昌之 小見山
玲央奈 高村
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016120614A external-priority patent/JP6468444B2/ja
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to NZ747654A priority Critical patent/NZ747654A/en
Priority to AU2017255011A priority patent/AU2017255011B2/en
Priority to EP17789512.5A priority patent/EP3450636B1/en
Priority to CN201780025289.4A priority patent/CN109072589B/zh
Priority to US16/095,724 priority patent/US10876275B2/en
Publication of WO2017188230A1 publication Critical patent/WO2017188230A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a construction machine that stores information on obstacles located around the construction machine.
  • This monitoring mobile body includes a foreign object detection sensor that detects obstacles on the road surface.
  • the monitoring mobile body includes a positioning device that outputs travel position information of the mobile body, a foreign object detection sensor that acquires foreign object detection information by monitoring foreign objects on the road surface, travel position information, and foreign object detection information.
  • An object of the present invention is to provide a construction machine that can grasp not only the position of an obstacle but also the time zone when the obstacle is detected.
  • the present invention is a construction machine, which is a lower traveling body, an upper revolving body that is disposed on the lower traveling body and is rotatable with respect to the lower traveling body, and the construction machine
  • An obstacle detection sensor that detects the presence or absence of an obstacle in a monitoring area set in advance around the obstacle and a distance to the obstacle, and a reference that is preset for the construction machine based on a detection result by the obstacle detection sensor
  • a first calculation unit that calculates first position information including position coordinates of the obstacle with respect to a position; a time information possessing unit that includes time information for specifying a time when the obstacle is detected; and the first position.
  • a construction machine is provided that includes a storage unit that stores log data in which information and time information are associated with each other.
  • the present invention since the time when the obstacle is detected and the position of the obstacle with respect to the reference position of the construction machine are stored in association with each other, not only the position of the obstacle but also the obstacle is detected. It is also possible to grasp the time zone.
  • the construction machine according to the present invention is suitable for a hydraulic excavator or the like that stores information on obstacles in the vicinity of the machine.
  • FIG. 1 is a side view showing a hydraulic excavator according to an embodiment of the present invention. It is II arrow directional view (plan view) of FIG. It is a functional block diagram including the control part of a hydraulic excavator. It is a top view of the hydraulic shovel 1 for demonstrating the angle which a lower traveling body and an upper turning body make. It is a top view of the hydraulic shovel for demonstrating the monitoring area
  • FIG. 6 is a view taken in the direction of arrow VI in FIG. 5 (a rear view with respect to the upper swing body).
  • FIG. 1 A construction machine according to an embodiment of the present invention will be described with reference to FIGS.
  • a hydraulic excavator 1 shown in FIG. 1 is illustrated as a construction machine according to the present invention.
  • the longitudinal direction and the lateral direction of the machine are appropriately defined as necessary.
  • a hydraulic excavator 1 includes a crawler-type lower traveling body 2 and an upper revolving body 3 provided on the lower traveling body 2 in a state of being able to swivel about a vertical axis with respect to the lower traveling body 2. And an attachment 40 attached to the upper swing body 3 so as to be raised and lowered.
  • the attachment 40 has a boom 41 having a base end portion that is attached to the upper swing body 3 so as to be rotatable around a horizontal axis, and is attached to the distal end portion of the boom 41 so as to be rotatable around the horizontal axis.
  • An arm 42 having a base end portion and a bucket 43 attached to the tip end portion of the arm 42 so as to be rotatable about a horizontal axis are provided.
  • the attachment 40 includes a boom cylinder (not shown) that rotates the boom 41 with respect to the upper swing body 3, an arm cylinder 44 that rotates the arm 42 with respect to the boom 41, and a bucket 43 with respect to the arm 42. And a bucket cylinder 45 for rotating the.
  • the upper turning body 3 is a guard that covers a turning frame 3a that is turnably mounted on the lower traveling body 2, a cabin 3b that is provided on the turning frame 3a, and an engine and other devices that are provided on the turning frame 3a.
  • 3c and a counterweight 3d provided at the rear part of the turning frame 3a.
  • An attachment 40 is attached to the front portion of the swivel frame 3a so as to be raised and lowered. In FIG. 2, illustration of the guard 3c and the counterweight 3d is omitted.
  • the upper swing body 3 includes a left sensor 31L, a right sensor 31R, and a rear sensor 31B.
  • the left sensor 31L is provided along the left side surface of the upper swing body 3. Specifically, the left sensor 31L is attached to the turning frame 3a with its detection area facing the left side.
  • the right sensor 31 ⁇ / b> R is provided along the right side surface of the upper swing body 3. Specifically, the right sensor 31R is attached to the turning frame 3a with its detection area directed to the right side.
  • the rear sensor 31 ⁇ / b> B is provided along the rear side surface of the upper swing body 3. Specifically, the rear sensor 31B is attached to the turning frame 3a with its detection range directed rearward.
  • Each of the sensors 31L, 31R, and 31B is a three-dimensional distance measuring sensor (distance sensor), and calculates the distance based on the time for which the infrared laser projected on the object reciprocates.
  • the detection area of each sensor 31L, 31R, 31B is defined by the area (angle of view) irradiated with the infrared laser and the distance to be detected by each sensor 31L, 31R, 31B.
  • each sensor 31L, 31R, 31B can detect an obstacle as an obstacle when something is present at a different distance from a certain distance.
  • each of the sensors 31L, 31R, and 31B is an example of an obstacle detection sensor having a detection area that can detect the presence or absence of an obstacle and the distance to the obstacle.
  • FIG. 3 is a block diagram showing an electrical configuration provided in the excavator 1 of FIG.
  • the excavator 1 further includes an angle detector 33, a work state detector 35, and a GPS receiver 37 in addition to the sensors 31 ⁇ / b> L, 31 ⁇ / b> R, and 31 ⁇ / b> B.
  • the angle detector 33 can detect the relative angle ⁇ between the lower traveling body 2 and the upper rotating body 3 in the turning direction of the upper rotating body 3.
  • the angle detection unit 33 can be configured by, for example, a rotary encoder or a gyro sensor.
  • the work state detection unit 35 detects a work state indicating whether the excavator 1 is “working” or “stopped”. Specifically, the work state detection unit 35 detects the work state as “stopped” in a state where the excavator 1 is idling (a state in which the attachment 40 has not been operated for a certain period of time), for example. Is detected as “work in progress”.
  • the work state detection unit 35 is, for example, a sensor that detects an operation state of the getting-on / off block lever that makes the attachment 40 inoperable when operated by an operator, or a sensor that detects a non-operation state of the operation lever for the attachment 40 Can be configured.
  • the GPS receiving unit 37 uses GPS (Global information) to specify second position information including position coordinates (second position coordinates CP2 described later) of a reference position RP (see FIG. 10) preset in the excavator 1. Positioning System) Receives from satellite. Specifically, the GPS receiver 37 calculates the position coordinates of the reference position RP based on a plurality of signals received from a plurality of GPS satellites (three-dimensional positioning).
  • the excavator 1 further includes a control unit 4, a storage unit 5, a display unit 6, a communication unit 7, a time measuring unit 8, an alarm output unit 9, and an input unit 10.
  • the control unit 4 is a processing unit that controls various processes including the process (described later) in the flowchart of FIG. Specifically, the control unit 4 includes a first calculation unit 4a, a monitoring area setting unit 4b, a generation unit 4c, a second calculation unit 4d, and a count unit 4e.
  • the first calculation unit 4a calculates first position information including the position coordinates of the obstacle with respect to the reference position RP set in advance on the excavator 1 based on the detection results by the sensors 31L, 31R, and 31B. Specifically, as shown in FIG. 10, when the three-dimensional coordinate of the reference position RP is (0, 0, 0), the first calculation unit 4a uses the three-dimensional coordinates (x1, y1, z1) of the obstacle. ) As the first position coordinate CP1. In the example shown in FIG. 10, since the obstacle is located on the right side of the excavator 1, the first calculation unit 4a calculates the first position coordinate CP1 mainly based on the detection result by the right sensor 31R.
  • the monitoring region setting unit 4b places monitoring regions 310L, 310R, and 310B around the excavator 1 as shown in FIGS. Set.
  • the monitoring areas 310L, 310R, and 310B will be described.
  • the monitoring areas 310L, 310R, and 310B are areas set in advance to detect a person or an object approaching the hydraulic excavator 1 as an obstacle.
  • the monitoring areas 310L, 310R, and 310B are set to areas that are difficult for the operator in the cabin 3b to see.
  • the monitoring area 310L is set on the left side of the upper swing body 3
  • the monitoring area 310R is set on the right side of the upper swing body 3
  • the monitoring area 310B is set behind the upper swing body 3.
  • the positions of the monitoring areas 310L, 310R, and 310B are not limited to these positions, and the monitoring area may be set in an area that can be easily viewed by the operator.
  • the monitoring areas 310L, 310R, and 310B show the monitoring areas 310L, 310R, and 310B in a state where the lower traveling body 2 and the upper swing body 3 face the same direction.
  • the state in which the lower traveling body 2 and the upper swing body 3 are directed in the same direction means the traveling direction of the lower traveling body 2 and the front-rear direction of the upper swing body 3 (the front-rear direction as viewed from the operator in the cabin 3b). : The same shall apply hereinafter).
  • FIGS. 7 and 8 show the monitoring areas 310L, 310R, and 310B in a state in which the upper swing body 3 turns and the lower traveling body 2 and the upper swing body 3 face different directions.
  • the state in which the lower traveling body 2 and the upper swing body 3 are directed in different directions refers to a state in which the traveling direction of the lower traveling body 2 and the front-rear direction of the upper swing body 3 do not match.
  • the monitoring area 310L is an area set on the left side of the excavator 1 based on the detection area of the left sensor 31L.
  • the monitoring area 310R is an area set on the right side of the excavator 1 based on the detection area of the right sensor 31R.
  • the monitoring area 310B is an area set based on the detection area of the rear sensor 31B on the rear side of the excavator 1.
  • the monitoring region setting unit 4b determines whether or not the lower traveling body is located in the detection region of the sensors 31L, 31R, and 31B based on the relative angle ⁇ (see FIG. 4) detected by the angle detection unit 33.
  • the areas excluding the lower traveling body 2 from the detection area are set as the monitoring areas 310L, 310R, and 310B.
  • the monitoring area setting unit 4b sets the same areas as the detection areas of the sensors 31L, 31R, and 31B in the monitoring areas 310L, 310R, and 310B.
  • the monitoring area setting unit 4b sets the areas excluding the lower traveling body 2 from the detection areas of the sensors 31L, 31R, and 31B in the monitoring areas 310L, 310R, and 310B.
  • the lower traveling body 2 is removed from the detection areas of both the sensors 31L and 31R by narrowing the angle of view of the left sensor 31L and the right sensor 31R upward.
  • illustration is abbreviate
  • the monitoring areas 310L, 310R, and 310B when the lower traveling body 2 and the upper turning body 3 are facing different directions are when they are facing the same direction (FIG. 8). 5) is set narrower in the vertical direction than the monitoring areas 310L, 310R, 310B.
  • the sensor field angles of the monitoring areas 310L and 310R are ⁇ 1 in FIG. 6 and ⁇ 2 smaller than ⁇ 1 in FIG.
  • the monitoring areas 310L and 310R when the lower traveling body 2 and the upper swing body 3 are facing different directions are when the both are facing the same direction (in the case of FIG. 5). It is set wider in the horizontal direction than the monitoring areas 310L and 310R. The reason is that when the lower traveling body 2 and the upper swing body 3 are directed in different directions, the rear side of the traveling direction of the lower traveling body 2 needs to be detected by the left sensor 31L or the right sensor 31R. Because.
  • the second calculation unit 4 d uses the second position coordinate CP ⁇ b> 2 (the first position coordinate CP ⁇ b> 2) including the GPS coordinate of the reference position RP (see FIG. 10) of the hydraulic excavator 1 based on the information received by the GPS reception unit 37. 2 position information) is calculated.
  • the timer unit 8 has time information for specifying the time when the obstacle is detected by each of the sensors 31L, 31R, and 31B. Specifically, the timer unit 8 has a function of updating a preset time, and outputs the current time in response to an output instruction from the control unit 4.
  • the timekeeping unit 8 is an example of a time information possessing unit.
  • the storage unit 5 includes first position information (first position coordinate CP1), second position information (second position coordinate CP2), time information by the time measuring unit 8, and work of the excavator 1 by the work state detection unit 35.
  • the log data shown in FIG. 11 in which the state is associated is stored.
  • the storage unit 5 stores a log data table TB (see FIG. 11) shown in FIG.
  • the log data table TB is a table for recording information about obstacles detected in the monitoring areas 310L, 310R, 310B (around the hydraulic excavator 1) as log data.
  • the time information by the time measuring unit 8 the relative position coordinates of the obstacle with respect to the reference position RP (first position coordinates CP1), and the position coordinates of the reference position RP by the GPS receiving unit 37 ( The second position coordinate CP2) and the work state of the excavator 1 by the work state detection unit 35 are stored in association with each other.
  • the first position coordinate CP1, the second position coordinate CP2, and the working state of the excavator 1 are stored in time series.
  • step S ⁇ b> 1 the control unit 4 acquires the relative angle ⁇ between the lower traveling body 2 and the upper swing body 3 from the angle detection unit 33.
  • step S ⁇ b> 2 the control unit 4 (monitoring region setting unit 4 b) determines whether the lower traveling body 2 is located in the detection region of each sensor 31 ⁇ / b> L, 31 ⁇ / b> R, 31 ⁇ / b> B based on the relative angle ⁇ detected by the angle detection unit 33. It is determined whether or not, and the monitoring areas 310L, 310R, 310B are set.
  • the monitoring areas 310L, 310R, 310B Is set in the range shown in FIGS.
  • the monitoring areas 310L, 310R, 310B Is set in the range shown in FIGS. 7 and 8, for example.
  • step S3 the control unit 4 operates the left sensor 31L, the right sensor 31R, and the rear sensor 31B, and determines whether an obstacle is detected by the monitoring areas 310L, 310R, and 310B.
  • the distance from each sensor 31L, 31R, 31B to the obstacle is also detected.
  • the processes of steps S1 to S3 are repeated.
  • step S4 the control unit 4 acquires the current time of the time measuring unit 8 as the time when the obstacle is detected.
  • step S5 the control unit 4 (first calculation unit 4a) performs first obstacle detection with respect to the reference position RP of the excavator 1 based on the detection results of the sensors 31L, 31R, and 31B.
  • a position coordinate CP1 (first position information) is calculated. Specifically, the control unit 4 calculates the coordinates (x1, y1, z1) of the obstacle when the three-dimensional coordinates of the reference position RP are (0, 0, 0) as the first position coordinates CP1.
  • the first position coordinate CP1 is an example of first position information.
  • step S6 the control unit 4 determines the GPS coordinates of the reference position RP of the excavator 1 based on the information received by the GPS receiving unit 37 to identify the second position coordinate CP2 of the reference position RP at the work site. Calculated as two-position coordinates CP2 (X1, Y1, Z1).
  • the second position coordinate CP2 is an example of second position information.
  • step S7 the work state detection unit 35 detects the work state (working or stopped) of the hydraulic excavator 1, and the detection result is input to the control unit 4.
  • step S8 the control unit 4 determines the time acquired in step S4, the first position coordinate CP1 calculated in step S5, the second position coordinate CP2 calculated in step S6, and the work state detected in step S7.
  • the associated log data is created and recorded in the log data table TB shown in FIG.
  • the control unit 4 records the log data in the log data table TB in chronological order from the oldest one.
  • step S9 the control unit 4 determines whether or not an obstacle is detected in the monitoring areas 310L, 310R, and 310B based on the detection results of the sensors 31L, 31R, and 31B.
  • the control unit 4 executes the above-described steps S4 to S8 again. That is, during a period in which obstacles exist in the monitoring areas 310L, 310R, and 310B, the control unit 4 repeats recording log data at a predetermined interval.
  • the control unit 4 ends the log data recording process.
  • log data regarding obstacles is recorded in time series in the log data table TB shown in FIG.
  • the control unit 4 also executes an alarm output process in addition to the log data recording process described above.
  • an alarm output process in addition to the log data recording process described above.
  • the configuration of the excavator 1 for performing the alarm output process will be described.
  • the storage unit 5 stores a boundary BD set in the vicinity of the excavator 1 as shown in FIG.
  • This boundary BD is set separately from the above-described monitoring areas 310L, 310R, 310B.
  • the boundary BD is set in advance in the detection area of each sensor 31L, 31R, 31B that can detect the presence or absence of an obstacle and the distance to the obstacle.
  • the storage unit 5 stores the coordinates of the boundary BD with respect to the reference position RP.
  • the control unit 4 includes a counting unit 4 e that counts the number of times the obstacle approaches the hydraulic excavator 1 beyond the boundary BD. Specifically, the counting unit 4e determines the obstacle based on the first position coordinate CP1 of the obstacle with respect to the reference position RP calculated by the first calculation unit 4a and the coordinates of the boundary BD stored in the storage unit 5. It is determined whether or not an object is close to the excavator 1 beyond the boundary BD.
  • the counting unit 4e counts (increments) the number of times of approach, and the number of times of approach exceeds a preset threshold value. In this case, an instruction to perform an alarm is output to an alarm output unit 9 described later.
  • the warning output unit 9 outputs a warning to the operator of the hydraulic excavator 1 when the number of times of proximity counted by the counting unit 4e exceeds a threshold value. Specifically, the alarm output unit 9 outputs an alarm with a buzzer sound in response to an output instruction from the control unit 4 (count unit 4e).
  • the alarm output unit 9 can be configured by an alarm buzzer.
  • steps S1 to S3 in FIG. 12 are the same as steps S1 to S3 in FIG. 9, and thus description thereof is omitted.
  • step S10 When an obstacle is detected in the monitoring areas 310L, 310R, 310B (S3: YES), in step S10, the control unit 4 (first calculation unit 4a) is based on the detection results by the sensors 31L, 31R, 31B. Thus, the first position coordinate CP1 of the obstacle with respect to the reference position RP of the excavator 1 is calculated. Since the process of step S10 is the same as step S5 of FIG. 9, the description thereof is omitted.
  • step S11 the control unit 4 (counting unit 4e) determines that the obstacle exceeds the boundary BD based on the coordinates of the boundary BD stored in the storage unit 5 and the first position coordinates CP1 calculated in step S5. It is determined whether or not the excavator 1 is close.
  • step S1 if it is determined that the obstacle is not close to the excavator 1 beyond the boundary BD (S11: NO), the process returns to step S1.
  • control unit 4 (counting unit 4e) sets one counter indicating the number of times of proximity in step S12. Increment. Note that the initial value of the counter indicating the number of times of proximity is set to “0”.
  • step S13 the control unit 4 (counting unit 4e) determines whether or not the proximity count exceeds a preset threshold value. If the proximity count is equal to or less than the threshold value (S13: NO), the processing is performed. The process returns to step S1.
  • step S14 the control unit 4 (counting unit 4e) outputs an instruction to perform an alarm to the alarm output unit 9, and the alarm An alarm by the output unit 9 is output for a certain time.
  • step S15 a counter indicating the number of times of proximity is initialized (that is, set to “0”), and the process returns to step S1.
  • the hydraulic excavator 1 also has a function of displaying a work site diagram on the display unit 6 (see FIG. 3).
  • a configuration for displaying a work site diagram will be described.
  • the storage unit 5 further stores work site map data.
  • the map data of the work site includes information on the position and size of the work site (information including latitude, longitude, elevation, shape, area, etc.) and the position of the installation (walls, utility poles, etc.) installed at the work site. And information on the size (information including latitude, longitude, shape, size, etc.).
  • the second calculation unit 4d calculates the position (coordinates) of the obstacle on the work site based on the first position coordinates CP1 and the second position coordinates CP2 associated with the log data and the map data.
  • control unit 4 includes a generation unit 4c that generates a work site map based on the map data stored in the storage unit 5. Specifically, the generation unit 4c determines the shape of the work site based on the information on the position and size of the work site and the information on the position and size of the installed object installed in the work site, which are included in the map data. In addition, the position and size of the installation object at the work site are specified, and a work site map for describing them is generated.
  • the excavator 1 includes a display unit 6 for displaying the work site diagram generated by the generation unit 4 c and the position of the obstacle on the work site calculated by the second calculation unit 4 d. Is further provided.
  • the display unit 6 is a display such as an LCD provided in the cabin 3b, and has a function of displaying various screens.
  • the hydraulic excavator 1 also includes an input unit 10 for inputting a command for causing the display unit 6 to display the work site map and the position of the obstacle in the work site map to the control unit.
  • the control unit 4 In response to the operator in the cabin 3 b operating the input unit 10, the control unit 4 outputs to the display unit 6 a command for displaying a work site map and an obstacle.
  • the screen SC includes a work site map corresponding to a plan view of the work site, an obstacle (indicated by an asterisk) arranged on the work site map, and an obstacle detection time arranged adjacent to the * mark. , Including.
  • the obstacle detection time can be omitted on the screen SC.
  • step S16 the control unit 4 waits for an instruction to display a work site map to be input by operating the input unit 10 by an operator in the cabin 3b.
  • control unit 4 When it is determined that the display instruction of the work site diagram has been input (S16: NO), the control unit 4 (generation unit 4c) reads the map data stored in the storage unit 5 (step S17), and the work site. A figure is generated (step S18).
  • step S19 the control unit 4 (second calculation unit 4d) reads log data from the log data table TB in the storage unit 5.
  • step S20 the control unit 4 (second calculation unit 4d) calculates the coordinates of the obstacle in the work site map based on the first position coordinates CP1 and the second position coordinates CP2.
  • step S21 the control unit 4 (second calculation unit 4d) displays the work site map and the screen SC (FIG. 12) showing the position of the obstacle ("*" mark) in the work site map. 6 to display.
  • the “*” mark present along the outline of the wall or electric wire indicates that the wall or electric wire is detected as an obstacle.
  • those who look at the work site map indicate that the “*” mark that exists along the outline of the wall or wire means the wall or wire. I can understand that.
  • the “*” mark which is present in the approximate center of the work site diagram, that is, in the portion where there is no installation such as walls, utility poles, and electric wires, is an obstacle for workers approaching the excavator 1 and other obstacles. It is detected as an object. A person who looks at this work site diagram can understand that there are some obstacles in the work site where there is no installation.
  • the excavator 1 includes a communication unit 7 that can transmit and receive data including log data to and from an external device OM via a network N (for example, a mobile phone communication network).
  • the communication unit 7 exchanges data with the external device OM in response to a command from the control unit 4.
  • the communication unit 7 is generated not only by log data but also by information stored in the storage unit 5, information calculated by the control unit 4, and the control unit 4 in response to a command from the control unit 4.
  • Information (including the work site diagram and the number of counts by the counting unit 4e) can be transmitted to the external device OM.
  • the log data in which the time when the obstacle is detected and the first position coordinate CP1 are associated is recorded in time series. Therefore, it is possible to grasp not only the position of the obstacle but also the time zone when the obstacle is detected.
  • the upper swing body 3 is swung at a specific angle to be within the detection area of each sensor 31L, 31R, and 31B.
  • the lower traveling body 2 may enter and the lower traveling body 2 may be erroneously detected as an obstacle. Therefore, as described above, it is determined whether or not the lower traveling body 2 is located in the detection area based on the relative angle ⁇ by the angle detection unit 33, and when the lower traveling body 2 is located in the detection area.
  • the area excluding the lower traveling body 2 from the detection area to the monitoring areas 310L, 310R, and 310B, it is possible to suppress the occurrence of the erroneous detection as described above.
  • the second position coordinate CP2 which is the GPS coordinate of the reference position RP of the excavator 1
  • the log data so that only the relative position of the obstacle with respect to the excavator 1 is used. It is also possible to grasp the absolute position of the obstacle.
  • the work state (working or stopped) of the excavator 1 is further associated with the log data, it is possible to grasp the work state of the excavator 1 when an obstacle is detected. Is possible.
  • the communication unit 7 that can transmit log data to the external device OM via the network N since the communication unit 7 that can transmit log data to the external device OM via the network N is provided, a third party other than the operator (such as an on-site supervisor) makes an obstacle close to the excavator 1. It becomes possible to grasp in real time.
  • a third party other than the operator such as an on-site supervisor
  • an alarm when an obstacle is detected, an alarm is not simply output, but the position of the obstacle is stored as log data associated with the time when the obstacle is detected. Therefore, not only the operator but also a third party on-site supervisor can grasp the position of the obstacle and the time zone when the obstacle is detected.
  • the log data is recorded in time series, whether or not the obstacle is a stationary object, and if the obstacle is not a stationary object, the movement of the obstacle (that is, a hydraulic excavator). It is also possible to grasp whether it is approaching 1 or away.
  • the safety management of the work at the work site can be efficiently performed.
  • a work site map can be generated by the generation unit 4c based on the map data stored in the storage unit 5.
  • the case where the monitoring areas 310L, 310R, and 310B are set based on the relative angle ⁇ calculated by the angle detection unit 33 is illustrated.
  • the ranges shown in FIGS. 5 and 6 are set in the monitoring areas 310L, 310R, and 310B.
  • the ranges shown in FIGS. 7 and 8 are set in the monitoring areas 310L, 310R, and 310B.
  • the present invention is not limited to this.
  • a range designated in advance may be uniformly set as the monitoring area.
  • log data is recorded in the log data table TB in the storage unit 5
  • the recording destination of the log data is not limited to the storage unit 5.
  • the log data may be transmitted to the designated external device via the communication unit 7 and recorded in the external device.
  • a third party other than the operator such as a field supervisor
  • log data may be recorded in both the storage unit 5 and the external device.
  • the criterion for determining whether or not to count is not limited to the boundary BD.
  • the number of times that an obstacle has entered the monitoring areas 310L, 310R, and 310B may be counted as the proximity number without setting the boundary BD.
  • the time, the first position coordinate CP1, the second position coordinate CP2, and the work state are associated with each other, but the association target is not limited to these.
  • the orientation data received by the GPS receiving unit 37 may be further associated in the log data. In this way, it is possible to grasp in which direction the upper swing body 3 is directed and the obstacle is detected.
  • a two-dimensional map is illustrated as an example of the work site diagram, but the work site diagram is not limited to the two-dimensional map.
  • the work site map may be a three-dimensional map.
  • the present invention is a construction machine, which is a lower traveling body, an upper revolving body that is disposed on the lower traveling body and is rotatable with respect to the lower traveling body, and the construction machine
  • An obstacle detection sensor that detects the presence or absence of an obstacle in a monitoring area set in advance around the obstacle and a distance to the obstacle, and a reference that is preset for the construction machine based on a detection result by the obstacle detection sensor
  • a first calculation unit that calculates first position information including position coordinates of the obstacle with respect to a position; a time information possessing unit that includes time information for specifying a time when the obstacle is detected; and the first position.
  • a construction machine including a storage unit that stores log data in which information and the time information are associated with each other.
  • the log data in which the time when the obstacle is detected and the first position information are associated is recorded in the storage unit in time series. Therefore, it is possible to grasp not only the position of the obstacle but also the time zone when the obstacle is detected.
  • the obstacle detection sensor has a detection region capable of detecting the presence / absence of the obstacle and a distance to the obstacle, and is provided in the upper swing body, and the construction machine is provided with the upper swing body.
  • An angle detection unit that detects a relative angle between the lower traveling body and the upper swinging body in a turning direction, and whether the lower traveling body is positioned in the detection area based on the relative angle detected by the angle detection unit
  • a monitoring area setting unit that determines whether or not the lower traveling body is excluded from the detection area when the lower traveling body is located in the detection area. Is preferred.
  • the lower turning body enters the detection area of the obstacle detection sensor by turning the upper turning body at a specific angle, and the lower running body becomes the obstacle. May be mistakenly detected. Therefore, as in the above-described aspect, it is determined whether or not the lower traveling body is located in the detection area based on the relative angle by the angle detection unit. By setting the area excluding the lower traveling body as the monitoring area, it is possible to suppress the occurrence of the erroneous detection as described above.
  • the construction machine further includes a position information receiving unit that receives information for specifying second position information including the position coordinates of the reference position, and the storage unit further associates the second position information with the log. It is preferred to store the data.
  • the second position coordinates including the position coordinates of the reference position of the excavator 1 are further associated with the log data, not only the relative position of the obstacle with respect to the construction machine but also the absolute position of the obstacle. It is possible to grasp the correct position.
  • the construction machine further includes a work state detection unit that detects a work state indicating whether the construction machine is in a working state or a stopped state, and the storage unit further associates the working state. It is preferable to store log data.
  • the construction machine further includes a communication unit capable of transmitting the log data to an external device via a network.
  • the storage unit further stores map data of a work site, and the construction machine includes the first position information and the second position information associated with the log data, the map data, A second calculation unit that calculates the position of the obstacle on the work site, a work site diagram generated based on the map data, and the work site map calculated by the second calculation unit. It is preferable to further include a display unit for displaying the position of the obstacle.
  • the safety management of the work at the work site can be efficiently performed.
  • the construction machine may further include a generation unit that generates the work site map based on the map data.
  • the work site map can be generated by the generation unit based on the map data stored in the storage unit.
  • the information processing apparatus further includes a counting unit that counts a warning and a warning output unit that outputs a warning to an operator of the construction machine when the number of times of proximity exceeds a preset threshold value.
  • a warning is output, so that the operator can reliably recognize that the obstacle is approaching. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

障害物の位置のみならず、その障害物が検知された時間帯をも把握することが可能な建設機械の提供。油圧ショベル(1)は、下部走行体(2)と、上部旋回体(3)と、油圧ショベル(1)の周囲に予め設定された監視領域における障害物の有無及び障害物までの距離を検知するセンサ(31L、31R、31B)と、センサ(31L、31R、31B)による検知結果に基づいて油圧ショベル(1)に予め設定された基準位置に対する障害物の位置座標を含む第1位置情報を算出する制御部(4)と、障害物が検知された時刻を含む時刻情報を取得する計時部(8)と、第1位置情報と時刻情報とを関連付けたログデータを記憶する記憶部(5)と、を備えている。

Description

建設機械
 本発明は、建設機械の周囲に位置する障害物の情報を記憶する建設機械に関する。
 従来、道路の安全管理を行うために異物の位置情報を検出することが可能な監視移動体が提案されている(例えば、特許文献1)。この監視移動体は、路面の障害物を検知する異物検知センサ等を備えている。具体的には、この監視移動体は、移動体の走行位置情報を出力する測位器と、路面の異物を監視して異物検知情報を取得する異物検知センサと、走行位置情報と異物検知情報とから異物位置情報を検出する異物位置演算器とを備えている。
 ところで、建設機械が用いられる作業現場では、建設機械の周囲近傍で作業者が作業を行ったり、上部旋回体の旋回により上部旋回体が各種構造物に接近したりすることがある。その場合、建設機械の周辺の作業者や上部旋回体の旋回により当該上部旋回体に接近する各種構造物を障害物として検知できることが好ましい。この点、特許文献1に記載の技術を用いれば、建設機械において障害物の位置を検知することは可能である。
 しかしながら、建設機械が用いられる作業現場では、特定の時間帯において作業者が作業機械の周辺で作業を行うというような場合もあり、どの時間帯にどの位置で障害物が検知されたのかを把握できればより安全性が高まる。
特開2005-275723号
 本発明の目的は、障害物の位置のみならず、その障害物が検知された時間帯をも把握することが可能な建設機械を提供することにある。
 上記課題を解決するために、本発明は、建設機械であって、下部走行体と、前記下部走行体上に配置され、前記下部走行体に対して旋回可能な上部旋回体と、前記建設機械の周囲に予め設定された監視領域における障害物の有無及び障害物までの距離を検知する障害物検知センサと、前記障害物検知センサによる検知結果に基づいて、前記建設機械に予め設定された基準位置に対する前記障害物の位置座標を含む第1位置情報を算出する第1算出部と、前記障害物が検知された時刻を特定するための時刻情報を有する時刻情報所持部と、前記第1位置情報と前記時刻情報とを関連付けたログデータを記憶する記憶部と、備えている、建設機械を提供する。
 本発明によれば、障害物が検知された時刻と建設機械の基準位置に対する障害物の位置とが関連付けられて記憶されているので、障害物の位置のみならず、その障害物が検知された時間帯をも把握することが可能である。
 また、本発明にかかる建設機械は、機械周囲に近接する障害物の情報を記憶する油圧ショベル等に適している。
本発明の実施形態に係る油圧ショベルを示す側面図である。 図1のII矢視図(平面図)である。 油圧ショベルの制御部を含む機能ブロック図である。 下部走行体と上部旋回体とがなす角度を説明するための油圧ショベル1の平面図である。 下部走行体と上部旋回体とが同じ方向を向いている場合における監視領域を説明するための油圧ショベルの平面図である。 図5のVI矢視図(上部旋回体を基準としたときの背面図)である。 下部走行体と上部旋回体とが異なる方向を向いている場合における監視領域を説明するための油圧ショベルの平面図である。 図7のVIII矢視図(上部旋回体を基準としたときの背面図)である。 ログデータ記録処理を示すフローチャートである。 障害物が検知された位置及び油圧ショベルに設定された境界を説明するための平面図である。 ログデータテーブルの一例を示す図である。 警報出力処理を示すフローチャートである。 表示処理を示すフローチャートである。 ログデータに基づいて障害物の位置が示された状態の作業現場図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 本発明の実施形態に係る建設機械について図1乃至図12に基づき説明する。以下、本発明に係る建設機械として図1に示す油圧ショベル1を例示する。なお、各図面では、機械の前後方向及び左右方向を必要に応じて適宜定義している。
 図1に示すように、油圧ショベル1は、クローラ式の下部走行体2と、下部走行体2に対して鉛直軸回りに旋回可能な状態で下部走行体2上に設けられた上部旋回体3と、上部旋回体3に対して起伏可能に取り付けられたアタッチメント40と、を備えている。
 アタッチメント40は、上部旋回体3に対して水平軸回りに回動可能に取り付けられた基端部を有するブーム41と、ブーム41の先端部に対して水平軸回りに回動可能に取り付けられた基端部を有するアーム42と、アーム42の先端部に対して水平軸回りに回動可能に取り付けられたバケット43と、を備えている。
 また、アタッチメント40は、上部旋回体3に対してブーム41を回動させるブームシリンダ(図示省略)と、ブーム41に対してアーム42を回動させるアームシリンダ44と、アーム42に対してバケット43を回動させるバケットシリンダ45と、を備えている。
 上部旋回体3は、下部走行体2上に旋回可能に取り付けられた旋回フレーム3aと、旋回フレーム3a上に設けられたキャビン3bと、旋回フレーム3a上に設けられたエンジン等の機器を覆うガード3cと、旋回フレーム3aの後部に設けられたカウンタウェイト3dと、を有する。旋回フレーム3aの前部には、アタッチメント40が起伏可能に取り付けられている。なお、図2では、ガード3c及びカウンタウェイト3dの図示を省略する。
 図2に示すように、上部旋回体3は、左側センサ31Lと、右側センサ31Rと、後側センサ31Bとを備えている。左側センサ31Lは、上部旋回体3の左側面に沿って設けられている。具体的に、左側センサ31Lは、その検知領域を左側方に向けた状態で旋回フレーム3aに取り付けられている。右側センサ31Rは、上部旋回体3の右側面に沿って設けられている。具体的に、右側センサ31Rは、その検知領域を右側方に向けた状態で旋回フレーム3aに取り付けられている。後側センサ31Bは、上部旋回体3の後側面に沿って設けられている。具体的に、後側センサ31Bは、その検出範囲を後方に向けた状態で旋回フレーム3aに取り付けられている。
 各センサ31L,31R,31Bは、何れも3次元測距センサ(距離センサ)であり、対象物に投射した赤外線レーザが往復する時間に基づいて距離を算出する。赤外線レーザを照射する領域(画角)及び各センサ31L,31R,31Bの検出対象となる距離により各センサ31L,31R,31Bの検知領域が定義される。また、各センサ31L,31R,31Bは、ある距離を基準としてこれと異なる距離に何かが存在する場合にこれを障害物として検出可能である。例えば、赤外線レーザが地面に照射されている状況において各センサ31L,31R,31Bから地面までの距離を基準としてこれよりも近く又は遠くに存在するものを障害物として検出可能である。また、赤外線レーザが水平方向に照射されている状況において各センサ31L,31R,31Bの検出対象となる距離を基準としてこれよりも近くに存在するものを障害物として検出可能である。つまり、各センサ31L,31R,31Bは、障害物の有無及び障害物までの距離を検知可能な検知領域を有する障害物検知センサの一例である。
 図3は、図1の油圧ショベル1に設けられた電気的構成を示すブロック図である。
 図3に示すように、油圧ショベル1は、各センサ31L,31R,31Bに加え、角度検出部33、作業状態検知部35及びGPS受信部37をさらに備えている。
 角度検出部33は、図4に示すように、上部旋回体3の旋回方向における下部走行体2と上部旋回体3との相対角度αを検出可能である。角度検出部33は、例えば、ロータリーエンコーダやジャイロセンサにより構成することができる。
 作業状態検知部35は、油圧ショベル1が「作業中」と「停止中」との何れの状態であるかを示す作業状態を検知する。具体的に、作業状態検知部35は、例えば油圧ショベル1がアイドリング中の状態(アタッチメント40が一定時間操作されていない状態)には作業状態を「停止中」として検知し、それ以外の場合には「作業中」として検知する。作業状態検知部35は、例えば、オペレータが操作することによりアタッチメント40を操作不能な状態とする乗降遮断レバーの操作状態を検出するセンサやアタッチメント40のための操作レバーの不操作状態を検知するセンサにより構成することができる。
 GPS受信部37は、油圧ショベル1に予め設定された基準位置RP(図10参照)の位置座標(後述の第2位置座標CP2)を含む第2位置情報を特定するための情報をGPS(Global Positioning System)衛星から受信する。具体的に、GPS受信部37は、複数のGPS衛星から受信した複数の信号に基づいて基準位置RPの位置座標を算出する(三次元測位)。
 図3に示すように、油圧ショベル1は、制御部4、記憶部5、表示部6、通信部7、計時部8、警報出力部9及び入力部10をさらに備えている。
 制御部4は、図9のフローチャートの処理(後述)を含む各種の処理を制御する処理部である。具体的に、制御部4は、第1算出部4aと、監視領域設定部4bと、生成部4cと、第2算出部4dと、カウント部4eと、を備えている。
 第1算出部4aは、各センサ31L,31R,31Bによる検出結果に基づいて、油圧ショベル1に予め設定された基準位置RPに対する障害物の位置座標を含む第1位置情報を算出する。具体的には、図10に示すように、基準位置RPの3次元座標を(0,0,0)とした場合、第1算出部4aは、障害物の三次元座標(x1,y1,z1)を第1位置座標CP1として算出する。図10に示す例では、障害物が油圧ショベル1の右側に位置しているため、第1算出部4aは、主に右側センサ31Rによる検出結果に基づいて第1位置座標CP1を算出する。
 監視領域設定部4bは、図4に示すように角度検出部33によって検出された相対角度αに基づいて、図5~8に示すように油圧ショベル1の周囲に監視領域310L,310R,310Bを設定する。以下、まず、監視領域310L,310R,310Bについて説明する。
 監視領域310L,310R,310Bは、油圧ショベル1に接近する人や物を障害物として検知するために予め設定される領域である。また、監視領域310L,310R,310Bは、キャビン3b内のオペレータから見難い領域に設定されている。具体的に、監視領域310Lは、上部旋回体3の左側方に設定され、監視領域310Rは、上部旋回体3の右側方に設定され、監視領域310Bは、上部旋回体3の後方に設定されている。ただし、監視領域310L,310R,310Bの位置は、これらの位置に限定されず、オペレータから見易い領域に監視領域を設定してもよい。
 図5及び図6は、下部走行体2と上部旋回体3とが同じ方向を向いている状態における監視領域310L,310R,310Bを示す。ここで、下部走行体2と上部旋回体3とが同じ方向を向いている状態とは、下部走行体2の進行方向と上部旋回体3の前後方向(キャビン3b内のオペレータから見た前後方向:以下同じ)とが一致する状態をいう。
 一方、図7及び図8は、上部旋回体3が旋回して下部走行体2と上部旋回体3とが異なる方向を向いている状態における監視領域310L,310R,310Bを示す。ここで、下部走行体2と上部旋回体3とが異なる方向を向いている状態とは、下部走行体2の進行方向と上部旋回体3の前後方向とが一致しない状態をいう。
 監視領域310Lは、油圧ショベル1の左側方において左側センサ31Lの検知領域に基づいて設定される領域である。監視領域310Rは、油圧ショベル1の右側方において右側センサ31Rの検知領域に基づいて設定される領域である。監視領域310Bは、油圧ショベル1の後側方において後側センサ31Bの検知領域に基づいて設定される領域である。
 具体的に、監視領域設定部4bは、角度検出部33によって検出された相対角度α(図4参照)に基づいてセンサ31L,31R,31Bの検知領域内に下部走行体が位置するか否かを判定し、検知領域内に下部走行体2が位置する場合に検知領域から下部走行体2を除く領域を監視領域310L,310R,310Bに設定する。
 図5及び図6に示されるように、下部走行体2と上部旋回体3とが同じ方向を向いている場合、下部走行体2は、センサ31L,31R,31Bの検知領域内に存在しない。そのため、監視領域設定部4bは、センサ31L,31R,31Bの検知領域と同一の領域を監視領域310L,310R,310Bに設定する。
 一方、図7及び図8に示されるように、下部走行体2と上部旋回体3とが異なる方向を向いている場合、下部走行体2の一部がセンサ31L,31R,31B内に位置する。そのため、監視領域設定部4bは、センサ31L,31R,31Bの検知領域から下部走行体2を除く領域を監視領域310L,310R,310Bに設定する。具体的に、図8に示されるように、左側センサ31L及び右側センサ31Rの画角を上側に狭めることにより両センサ31L,31Rの検知領域から下部走行体2が除かれる。なお、図示は省略するが、後側センサ31Bの画角も上側に狭められ、これにより、後側センサ31Bの検知領域から下部走行体2が除かれる。
 その結果、図8に示されるように、下部走行体2と上部旋回体3とが異なる方向を向いている場合の監視領域310L,310R,310Bは、両者が同じ方向を向いている場合(図5の場合)の監視領域310L,310R,310Bに比べて、鉛直方向に狭く設定される。具体的に、監視領域310L,310Rのセンサ画角は、図6ではβ1であるの対し、図8ではβ1よりも小さいβ2である。このような画角調整が行われることにより、図8の場合において、下部走行体2を障害物として誤検知されるのを抑制することができる。
 なお、下部走行体2と上部旋回体3とが異なる方向を向いている場合(図7の場合)の監視領域310L,310Rは、両者が同じ方向を向いている場合(図5の場合)の監視領域310L,310Rに比べて水平方向に広く設定されている。その理由は、下部走行体2と上部旋回体3とが異なる方向を向いている場合には、下部走行体2の進行方向の後側を左側センサ31L又は右側センサ31Rにより検知する必要性が生じるためである。
 再び図3を参照して、第2算出部4dは、GPS受信部37が受信した情報に基づいて油圧ショベル1の基準位置RP(図10参照)のGPS座標を含む第2位置座標CP2(第2位置情報)を算出する。
 計時部8は、各センサ31L,31R,31Bにより障害物が検知された時刻を特定するための時刻情報を有する。具体的に、計時部8は、予め設定された時刻を更新する機能を有し、制御部4からの出力指示に応答して、現在時刻を出力する。計時部8は、時刻情報所持部の一例である。
 記憶部5は、第1位置情報(第1位置座標CP1)と、第2位置情報(第2位置座標CP2)と、計時部8による時刻情報と、作業状態検知部35による油圧ショベル1の作業状態と、を関連付けた図11に示すログデータを記憶する。また、記憶部5は、図11に示すログデータテーブルTB(図11参照)、及び作業現場の地図データ等を記憶している。ログデータテーブルTBは、監視領域310L,310R,310B内(油圧ショベル1の周囲)で検知された障害物に関する情報をログデータとして記録するためのテーブルである。具体的に、ログデータテーブルTBには、計時部8による時刻情報と、基準位置RPに対する障害物の相対位置座標(第1位置座標CP1)と、GPS受信部37による基準位置RPの位置座標(第2位置座標CP2)と、作業状態検知部35による油圧ショベル1の作業状態と、が関連付けて格納されている。また、ログデータテーブルTBには、第1位置座標CP1、第2位置座標CP2、及び油圧ショベル1の作業状態が時系列で格納されている。
 次に、図9のフローチャートを参照しながら、制御部4によるログデータの記録処理について説明する。
 まず、ステップS1において、制御部4は、下部走行体2と上部旋回体3との相対角度αを角度検出部33から取得する。
 ステップS2において、制御部4(監視領域設定部4b)は、角度検出部33により検出された相対角度αに基づいて各センサ31L,31R,31Bの検知領域内に下部走行体2が位置するか否かを判定し、監視領域310L,310R,310Bを設定する。
 例えば、下部走行体2と上部旋回体3とが同じ方向を向いている場合(各センサ31L,31R,31Bの検知領域内に下部走行体2が位置しない場合)、監視領域310L,310R,310Bは、図5及び図6に示す範囲に設定される。また、下部走行体2と上部旋回体3とが異なる方向を向いている場合(各センサ31L,31R,31Bの検知領域内に下部走行体2が位置する場合)、監視領域310L,310R,310Bは、例えば図7及び図8に示す範囲に設定される。
 ステップS3において、制御部4は、左側センサ31L、右側センサ31R及び後側センサ31Bを動作させ、監視領域310L,310R,310Bにより障害物が検知されたか否かを判定する。また、障害物が検知された場合には、各センサ31L,31R,31Bから障害物までの距離も検出する。一方、障害物が検知されるまでの期間中は、ステップS1~S3の処理が繰り返される。
 そして、障害物が検知されると(S3:YES)、処理はステップS4に進む。ステップS4において、制御部4は、計時部8の有する現在時刻を障害物が検知された時刻として取得する。
 ステップS5において、制御部4(第1算出部4a)は、図10に示すように、各センサ31L,31R,31Bによる検知結果に基づいて、油圧ショベル1の基準位置RPに対する障害物の第1位置座標CP1(第1位置情報)を算出する。具体的に、制御部4は、基準位置RPの3次元座標を(0,0,0)とした場合の障害物の座標(x1,y1,z1)を第1位置座標CP1として算出する。なお、第1位置座標CP1は、第1位置情報の一例である。
 ステップS6において、制御部4は、基準位置RPの第2位置座標CP2を特定するためにGPS受信部37が受信した情報に基づいて、油圧ショベル1の基準位置RPのGPS座標を作業現場における第2位置座標CP2(X1,Y1,Z1)として算出する。第2位置座標CP2は、第2位置情報の一例である。
 ステップS7において、作業状態検知部35によって油圧ショベル1の作業状態(作業中または停止中)が検知され、その検出結果が制御部4に入力される。
 ステップS8において、制御部4は、ステップS4で取得した時刻と、ステップS5で算出した第1位置座標CP1と、ステップS6で算出した第2位置座標CP2と、ステップS7で検知した作業状態とを関連付けたログデータを作成し、図11に示すログデータテーブルTBに記録する。制御部4は、ログデータを古いものから順に時系列でログデータテーブルTBに記録する。
 ステップS9において、制御部4は、各センサ31L,31R,31Bの検知結果に基づいて障害物が監視領域310L,310R,310B内において検知されない状態となったか否かを判定する。障害物が監視領域310L,310R,310B内において未だ検知されている場合(S9:NO)、制御部4は、上述のステップS4~S8の処理を再度実行する。すなわち、障害物が監視領域310L,310R,310B内に存在する期間中、制御部4は、所定の間隔でログデータの記録を繰り返す。一方、障害物が監視領域310L,310R,310B内において検出されなくなった場合(S9:YES)、制御部4は、ログデータ記録処理を終了する。
 上述のようなログデータ記録処理が実行されることによって、図11に示すログデータテーブルTBには、障害物に関するログデータが時系列で記録される。
 また、制御部4は、上述のログデータ記録処理の他に警報出力処理も実行する。以下、警報出力処理を行うための油圧ショベル1の構成について説明する。
 記憶部5は、図10に示すように、油圧ショベル1の近傍に設定された境界BDが記憶されている。この境界BDは、上述の監視領域310L,310R,310Bとは別に設定される。具体的に、境界BDは、障害物の有無及び障害物までの距離を検知可能な各センサ31L,31R,31Bの検知領域内に予め設定されている。記憶部5は、基準位置RPに対する境界BDの座標を記憶している。
 図3を参照して、制御部4は、境界BDを超えて障害物が油圧ショベル1に近接する近接回数をカウントするカウント部4eを備えている。具体的に、カウント部4eは、第1算出部4aにより算出された基準位置RPに対する障害物の第1位置座標CP1と、記憶部5に記憶された境界BDの座標と、に基づいて、障害物が境界BDを超えて油圧ショベル1に近接しているか否かを判定する。ここで、障害物が境界BDを超えて油圧ショベル1に近接していると判定された場合、カウント部4eは、近接回数をカウント(インクリメント)し、近接回数が予め設定された閾値を超えた場合に後述の警報出力部9に対して警報を行う旨の指示を出力する。
 警報出力部9は、カウント部4eによりカウントされた近接回数が閾値を超えた場合に油圧ショベル1のオペレータに警告を出力する。具体的に、警報出力部9は、制御部4(カウント部4e)からの出力指示に応答してブザー音による警報を出力する。警報出力部9は、警報ブザーにより構成することができる。
 以下、制御部4により実行される警報出力処理について図12のフローチャートを参照して説明する。なお、図12のステップS1~S3は、図9のステップS1~S3と同様であるため、それらについての説明を省略する。
 監視領域310L,310R,310B内に障害物が検知されると(S3:YES)、ステップS10において、制御部4(第1算出部4a)は、各センサ31L,31R,31Bによる検知結果に基づいて、油圧ショベル1の基準位置RPに対する障害物の第1位置座標CP1を算出する。ステップS10の処理は、図9のステップS5と同様であるため、その説明は省略する。
 ステップS11において、制御部4(カウント部4e)は、記憶部5に記憶された境界BDの座標とステップS5で算出された第1位置座標CP1とに基づいて、障害物が境界BDを超えて油圧ショベル1に近接しているか否かを判定する。
 ここで、障害物が境界BDを超えて油圧ショベル1に近接していないと判定されると(S11:NO)、処理はステップS1にリターンする。
 一方、障害物が境界BDを超えて油圧ショベル1に近接していると判定されると(S11:YES)、制御部4(カウント部4e)は、ステップS12において近接回数を示すカウンタを1つインクリメントする。なお、近接回数を示すカウンタの初期値は、「0」に設定されている。
 次いで、ステップS13において、制御部4(カウント部4e)は、近接回数が予め設定された閾値を超えているか否かを判定し、近接回数が閾値以下である場合(S13:NO)、処理はステップS1にリターンする。
 一方、近接回数が閾値を超えている場合(S13:YES)、ステップS14において、制御部4(カウント部4e)は、警報出力部9に対して警報を行う旨の指示を出力し、当該警報出力部9による警報が一定時間出力される。
 次いで、一定時間警報が出力された後、ステップS15において、近接回数を示すカウンタは初期化(すなわち「0」に設定)され、処理はステップS1にリターンする。
 また、油圧ショベル1は、作業現場図を表示部6(図3参照)に表示する機能も備えている。以下、作業現場図の表示のための構成について説明する。
 記憶部5は、作業現場の地図データを更に記憶している。作業現場の地図データは、作業現場の位置及び広さに関する情報(緯度、経度、標高、形状、面積等を含む情報)、及び、作業現場に設置された設置物(壁や電柱等)の位置及び大きさに関する情報(緯度、経度、形状、大きさ等を含む情報)を含んでいる。
 第2算出部4dは、ログデータに関連付けられた第1位置座標CP1及び第2位置座標CP2と、地図データとに基づいて作業現場における障害物の位置(座標)を算出する。
 また、制御部4は、記憶部5に記憶された地図データに基づいて作業現場図を生成する生成部4cを備えている。具体的に、生成部4cは、地図データに含まれる、作業現場の位置及び広さに関する情報、及び、作業現場に設置された設置物の位置及び大きさに関する情報に基づいて、作業現場の形状及び大きさを特定するとともに当該作業現場における設置物の位置及び大きさを特定し、これらを描写するための作業現場図を生成する。
 図3を参照して、油圧ショベル1は、生成部4cにより生成される作業現場図と、第2算出部4dによって算出された作業現場における障害物の位置と、を表示するための表示部6を更に備えている。表示部6は、キャビン3b内に設けられたLCD等のディスプレイであり、各種画面を表示する機能を有する。
 また、油圧ショベル1は、作業現場図及び作業現場図における障害物の位置を表示部6に表示させるための指令を制御部に入力するための入力部10を備えている。キャビン3b内のオペレータが入力部10を操作することに応じて、制御部4は、作業現場図及び障害物を表示させるための指令を表示部6に出力する。
 具体的に、表示部6には、図14に示される画面SCが表示される。画面SCは、作業現場の平面図に相当する作業現場図と、作業現場図上に配置された障害物(*印で示す)と、*印に隣接して配置された障害物の検知時刻と、を含んでいる。なお、画面SCにおいて障害物の検知時刻を省略することもできる。
 以下、図13を参照して、制御部4による作業現場図の表示処理について説明する。
 ステップS16において、制御部4は、キャビン3b内のオペレータによる入力部10の操作により作業現場図の表示指示が入力されることを待機する。
 作業現場図の表示指示が入力されたと判定されると(S16:NO)、制御部4(生成部4c)は、記憶部5に記憶されている地図データを読み出すとともに(ステップS17)、作業現場図を生成する(ステップS18)。
 ステップS19において、制御部4(第2算出部4d)は、記憶部5内のログデータテーブルTBからログデータを読み出す。
 次いで、ステップS20において、制御部4(第2算出部4d)は、第1位置座標CP1及び第2位置座標CP2に基づいて作業現場図における障害物の座標を算出する。
 そして、ステップS21において、制御部4(第2算出部4d)は、作業現場図、及び、作業現場図における障害物の位置(「*」印)を示した画面SC(図12)を表示部6に表示させる。
 図12において、壁や電線の輪郭に沿って存在する「*」印は、壁や電線が障害物として検知されたものである。このように作業現場図上に障害物の位置を併せて表示させることにより、作業現場図を見た者は、壁や電線の輪郭に沿って存在する「*」印が壁や電線を意味していることを理解することができる。
 一方、作業現場図の略中央部、つまり、壁、電柱及び電線等の設置物の存在しない部分に存在する「*」印は、油圧ショベル1に近づいた作業者や他の障害物等が障害物として検知されたものである。この作業現場図を見た者は、作業現場において設置物の存在しない部分にも何らかの障害物が存在することを理解することができる。
 また、図3に示すように、油圧ショベル1は、ネットワークN(例えば、携帯電話通信網等)を介してログデータを含むデータを外部機器OMに送受信可能な通信部7を備えている。通信部7は、制御部4からの指令に応じて外部機器OMとの間でデータをやり取りする。例えば、通信部7は、制御部4からの指令に応じて、ログデータだけでなく、記憶部5に記憶された情報、及び、制御部4により算出された情報、及び制御部4により生成された情報(作業現場図、及びカウント部4eによるカウント回数を含む)を外部機器OMに送信可能である。
 以上説明したように、本実施形態によれば、障害物が検知された時刻と第1位置座標CP1とが関連付けられたログデータが時系列で記録されている。そのため、障害物の位置のみならず、当該障害物が検知された時間帯をも把握することが可能である。
 上述のように、各センサ31L,31R,31Bが上部旋回体3に設けられている場合、当該上部旋回体3が特定の角度に旋回することにより各センサ31L,31R,31Bの検知領域内に下部走行体2が入り込み、当該下部走行体2が障害物と誤って検知されてしまうおそれがある。そこで、上述のように、角度検出部33による相対角度αに基づいて検知領域内に下部走行体2が位置するか否かを判定し、下部走行体2が検知領域内に位置する場合には検知領域から下部走行体2を除く領域を監視領域310L,310R,310Bに設定することにより、上記のような誤検知の発生を抑制することができる。
 また、本実施形態では、油圧ショベル1の基準位置RPのGPS座標である第2位置座標CP2がログデータに対して更に関連付けられているため、油圧ショベル1に対する障害物の相対的な位置だけでなく障害物の絶対的な位置も把握することが可能である。
 また、本実施形態では、油圧ショベル1の作業状態(作業中又は停止中)がログデータに更に関連付けられているため、障害物が検知された際の油圧ショベル1の作業状態も把握することも可能である。
 本実施形態によれば、ネットワークNを介してログデータを外部機器OMに送信可能な通信部7を有するため、オペレータ以外の第三者(現場監督等)が油圧ショベル1に対する障害物の近接をリアルタイムに把握することが可能となる。
 また、本実施形態では、障害物が検知された場合に単に警報を出力するのではなく、障害物の位置を当該障害物が検知された時刻に関連付けたログデータとして記憶する。そのため、オペレータのみならず、第三者である現場監督等も障害物の位置や障害物が検知された時間帯等を把握することが可能である。
 また、本実施形態では、ログデータが時系列で記録されているため、障害物が静止物であるか否か、また、障害物が静止物でない場合は、障害物の動き(すなわち、油圧ショベル1に近づいてきたのか、あるいは、離れたのか等)を把握することも可能である。
 本実施形態によれば、作業現場(作業現場図)における障害物の位置を特定することができるため、当該作業現場での作業の安全管理を効率的に行うことができる。
 本実施形態によれば、記憶部5に記憶された地図データに基づいて生成部4cによって作業現場図を生成することができる。
 また、本実施形態では、障害物が境界BDを越えて油圧ショベル1に近接した近接回数が閾値を超えた場合、ブザー音が出力されるので、オペレータは障害物が近接していることを確実に認識することができる。
 本発明による建設機械は上述した実施の形態に限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。
 例えば、上記実施形態では、角度検出部33で算出された相対角度αに基づき監視領域310L,310R,310Bが設定される場合を例示した。詳細には、下部走行体2と上部旋回体3とが同じ方向に向いている場合に図5及び図6に示す範囲が監視領域310L,310R,310Bに設定される。また、下部走行体2と上部旋回体3とが異なる方向を向いている場合に図7及び図8に示す範囲が監視領域310L,310R,310Bに設定される。ただし、これに限定されず、例えば、事前に指定された範囲を監視領域として一律に設定するようにしてもよい。この場合、上記実施形態とは異なり、相対角度αを参照する必要がないため、角度検出部33を省略することができる。
 また、上記実施形態では、ログデータを記憶部5内のログデータテーブルTBに記録する場合を例示したが、ログデータの記録先は記憶部5に限定されない。例えば、通信部7を介してログデータを指定された外部装置に送信するとともにこの外部装置にログデータを記録してもよい。このようにすれば、オペレータ以外の第三者(現場監督等)が障害物の近接をリアルタイムに把握することが可能である。また、記憶部5及び外部装置の双方にログデータを記録してもよい。
 また、上記実施形態では、障害物が境界BDを越えて油圧ショベル1側に近接した近接回数をカウントする場合を例示したが、カウントするか否かの基準は境界BDに限定されない。例えば、境界BDを設定することなく、障害物が監視領域310L,310R,310Bに進入した回数を近接回数としてカウントするようにしてもよい。
 また、上記実施形態では、ログデータにおいて、時刻と、第1位置座標CP1と、第2位置座標CP2と、作業状態と、を関連付けているが、関連付けの対象はこれらに限定されない。例えば、GPS受信部37で受信する方位データをログデータにおいて更に関連付けてもよい。このようにすれば、上部旋回体3がどの方位を向いている状態で障害物が検知されたのかを把握することが可能である。
 また、上記実施形態では、図12に示すように、作業現場図の一例として2次元マップを例示したが、作業現場図は2次元マップに限定されない。作業現場図は、3次元マップでもよい。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 上記課題を解決するために、本発明は、建設機械であって、下部走行体と、前記下部走行体上に配置され、前記下部走行体に対して旋回可能な上部旋回体と、前記建設機械の周囲に予め設定された監視領域における障害物の有無及び障害物までの距離を検知する障害物検知センサと、前記障害物検知センサによる検知結果に基づいて、前記建設機械に予め設定された基準位置に対する前記障害物の位置座標を含む第1位置情報を算出する第1算出部と、前記障害物が検知された時刻を特定するための時刻情報を有する時刻情報所持部と、前記第1位置情報と前記時刻情報とを関連付けたログデータを記憶する記憶部と、を備えている、建設機械を提供する。
 本発明によれば、障害物が検知された時刻と第1位置情報とが関連付けられたログデータが時系列で記憶部に記録されている。そのため、障害物の位置のみならず、当該障害物が検知された時間帯をも把握することが可能である。
 前記建設機械において、前記障害物検知センサは、前記障害物の有無及び障害物までの距離を検知可能な検知領域を有するとともに前記上部旋回体に設けられ、前記建設機械は、前記上部旋回体の旋回方向における前記下部走行体と前記上部旋回体との相対角度を検出する角度検出部と、前記角度検出部によって検出された前記相対角度に基づいて前記検知領域内に下部走行体が位置するか否かを判定し、前記検知領域内に前記下部走行体が位置する場合に前記検知領域から前記下部走行体を除く領域を前記監視領域に設定する監視領域設定部と、を更に備えていることが好ましい。
 障害物検知センサが上部旋回体に設けられている場合、当該上部旋回体が特定の角度に旋回することにより障害物検知センサの検知領域内に下部走行体が入り込み、当該下部走行体が障害物と誤って検知されてしまうおそれがある。そこで、前記態様のように、角度検出部による相対角度に基づいて検知領域内に下部走行体が位置するか否かを判定し、下部走行体が検知領域内に位置する場合には検知領域から下部走行体を除く領域を監視領域に設定することにより、上記のような誤検知の発生を抑制することができる。
 前記建設機械は、前記基準位置の位置座標を含む第2位置情報を特定するための情報を受信する位置情報受信部を更に備え、前記記憶部は、前記第2位置情報を更に関連付けた前記ログデータを記憶することが好ましい。
 この態様では、油圧ショベル1の基準位置の位置座標を含む第2位置座標がログデータに対して更に関連付けられているため、建設機械に対する障害物の相対的な位置だけでなく障害物の絶対的な位置も把握することが可能である。
 前記建設機械は、前記建設機械が作業中と停止中との何れの状態であるかを示す作業状態を検知する作業状態検知部を更に備え、前記記憶部は、前記作業状態を更に関連付けた前記ログデータを記憶することが好ましい。
 この態様では、油圧ショベル1の作業状態(作業中又は停止中)がログデータに更に関連付けられているため、障害物が検知された際の油圧ショベル1の作業状態を把握することも可能となる。
 前記建設機械は、ネットワークを介して前記ログデータを外部機器に送信可能な通信部を更に備えていることが好ましい。
 この態様によれば、オペレータ以外の第三者(現場監督等)が建設機械に対する障害物の近接をリアルタイムに把握することが可能となる。
 前記建設機械において、前記記憶部は、作業現場の地図データを更に記憶しており、前記建設機械は、前記ログデータに関連付けられた前記第1位置情報及び前記第2位置情報と前記地図データとに基づいて、前記作業現場における前記障害物の位置を算出する第2算出部と、前記地図データに基づいて生成される作業現場図と、前記第2算出部によって算出された前記作業現場における前記障害物の位置と、を表示するための表示部と、を更に備えていることが好ましい。
 前記態様によれば、作業現場(作業現場図)における障害物の位置を特定することができるため、当該作業現場での作業の安全管理を効率的に行うことができる。
 具体的に、前記建設機械は、前記地図データに基づいて前記作業現場図を生成する生成部を更に備えていてもよい。
 この態様によれば、記憶部に記憶された地図データに基づいて生成部によって作業現場図を生成することができる。
 前記建設機械は、前記障害物の有無及び障害物までの距離を検知可能な前記障害物検知センサの検知領域内に予め設定された境界を越えて前記障害物が前記建設機械に近接する近接回数をカウントするカウント部と、前記近接回数が予め設定された閾値を超えた場合に前記建設機械のオペレータに警告を出力する警告出力部と、を更に備えていることが好ましい。
 この態様では、障害物が境界を越えて建設機械側に近接した近接回数が閾値を超えた場合、警告が出力されるので、オペレータは障害物が近接していることを確実に認識することができる。

Claims (8)

  1.  建設機械であって、
     下部走行体と、
     前記下部走行体上に配置され、前記下部走行体に対して旋回可能な上部旋回体と、
     前記建設機械の周囲に予め設定された監視領域における障害物の有無及び障害物までの距離を検知する障害物検知センサと、
     前記障害物検知センサによる検知結果に基づいて、前記建設機械に予め設定された基準位置に対する前記障害物の位置座標を含む第1位置情報を算出する第1算出部と、
     前記障害物が検知された時刻を特定するための時刻情報を有する時刻情報所持部と、
     前記第1位置情報と前記時刻情報とを関連付けたログデータを記憶する記憶部と、
    を備えている、建設機械。
  2.  前記障害物検知センサは、前記障害物の有無及び障害物までの距離を検知可能な検知領域を有するとともに前記上部旋回体に設けられ、
     前記建設機械は、
     前記上部旋回体の旋回方向における前記下部走行体と前記上部旋回体との相対角度を検出する角度検出部と、
     前記角度検出部によって検出された前記相対角度に基づいて前記検知領域内に下部走行体が位置するか否かを判定し、前記検知領域内に前記下部走行体が位置する場合に前記検知領域から前記下部走行体を除く領域を前記監視領域に設定する監視領域設定部と、を更に備えている、請求項1に記載の建設機械。
  3.  前記建設機械は、前記基準位置の位置座標を含む第2位置情報を特定するための信号を受信する位置情報受信部を更に備え、
     前記記憶部は、前記第2位置情報を更に関連付けた前記ログデータを記憶する、請求項1又は2に記載の建設機械。
  4.  前記建設機械は、前記建設機械が作業中と停止中との何れの状態であるかを示す作業状態を検知する作業状態検知部を更に備え、
     前記記憶部は、前記作業状態を更に関連付けた前記ログデータを記憶する、請求項1から3のうち何れか一項に記載の建設機械。
  5.  前記建設機械は、ネットワークを介して前記ログデータを外部機器に送信可能な通信部を更に備えている、請求項1から4のうち何れか一項に記載の建設機械。
  6.  前記記憶部は、作業現場の地図データを更に記憶しており、
     前記建設機械は、
     前記ログデータに関連付けられた前記第1位置情報及び前記第2位置情報と前記地図データとに基づいて、前記作業現場における前記障害物の位置を算出する第2算出部と、
     前記地図データに基づいて生成される作業現場図と、前記第2算出部によって算出された前記作業現場における前記障害物の位置と、を表示するための表示部と、を更に備えている、請求項3に記載の建設機械。
  7.  前記建設機械は、前記地図データに基づいて前記作業現場図を生成する生成部を更に備えている、請求項6に記載の建設機械。
  8.  前記建設機械は、
     前記障害物の有無及び障害物までの距離を検知可能な前記障害物検知センサの検知領域内に予め設定された境界を越えて前記障害物が前記建設機械に近接する近接回数をカウントするカウント部と、
     前記近接回数が予め設定された閾値を超えた場合に前記建設機械のオペレータに警告を出力する警告出力部と、
    を更に備えている、請求項1から6のうち何れか一項に記載の建設機械。
PCT/JP2017/016334 2016-04-28 2017-04-25 建設機械 WO2017188230A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NZ747654A NZ747654A (en) 2016-04-28 2017-04-25 Construction machine
AU2017255011A AU2017255011B2 (en) 2016-04-28 2017-04-25 Construction machine
EP17789512.5A EP3450636B1 (en) 2016-04-28 2017-04-25 Construction machine
CN201780025289.4A CN109072589B (zh) 2016-04-28 2017-04-25 工程机械
US16/095,724 US10876275B2 (en) 2016-04-28 2017-04-25 Construction machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-090067 2016-04-28
JP2016090067 2016-04-28
JP2016120614A JP6468444B2 (ja) 2016-04-28 2016-06-17 建設機械
JP2016-120614 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017188230A1 true WO2017188230A1 (ja) 2017-11-02

Family

ID=60161662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016334 WO2017188230A1 (ja) 2016-04-28 2017-04-25 建設機械

Country Status (1)

Country Link
WO (1) WO2017188230A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457745A (zh) * 2018-12-07 2019-03-12 上海华兴数字科技有限公司 一种施工场地安全控制方法
US20210010236A1 (en) * 2018-03-26 2021-01-14 Sumitomo Construction Machinery Co., Ltd. Shovel
WO2021025123A1 (ja) * 2019-08-08 2021-02-11 住友建機株式会社 ショベル、情報処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051057A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Works Ltd 車両用障害物検知システム
JP2002290596A (ja) * 2001-03-23 2002-10-04 Shin Caterpillar Mitsubishi Ltd 機械のモーションレコーダおよび機械の監視システム
JP2007323117A (ja) * 2006-05-30 2007-12-13 Kenwood Corp 道路通信システム、移動体装置、および、移動体装置の情報処理方法
JP2008163719A (ja) * 2007-01-05 2008-07-17 Hitachi Constr Mach Co Ltd 作業機械の周囲監視装置
JP2010211613A (ja) * 2009-03-11 2010-09-24 Omron Corp 情報処理装置及び方法、プログラム、並びに情報処理システム
WO2012144150A1 (ja) * 2011-04-19 2012-10-26 マツダ株式会社 車両用障害物検出装置
JP2012225732A (ja) * 2011-04-19 2012-11-15 Mazda Motor Corp 車両用障害物検出装置
WO2015198410A1 (ja) * 2014-06-25 2015-12-30 株式会社日立製作所 外界認識装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051057A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Works Ltd 車両用障害物検知システム
JP2002290596A (ja) * 2001-03-23 2002-10-04 Shin Caterpillar Mitsubishi Ltd 機械のモーションレコーダおよび機械の監視システム
JP2007323117A (ja) * 2006-05-30 2007-12-13 Kenwood Corp 道路通信システム、移動体装置、および、移動体装置の情報処理方法
JP2008163719A (ja) * 2007-01-05 2008-07-17 Hitachi Constr Mach Co Ltd 作業機械の周囲監視装置
JP2010211613A (ja) * 2009-03-11 2010-09-24 Omron Corp 情報処理装置及び方法、プログラム、並びに情報処理システム
WO2012144150A1 (ja) * 2011-04-19 2012-10-26 マツダ株式会社 車両用障害物検出装置
JP2012225732A (ja) * 2011-04-19 2012-11-15 Mazda Motor Corp 車両用障害物検出装置
WO2015198410A1 (ja) * 2014-06-25 2015-12-30 株式会社日立製作所 外界認識装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3450636A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210010236A1 (en) * 2018-03-26 2021-01-14 Sumitomo Construction Machinery Co., Ltd. Shovel
CN109457745A (zh) * 2018-12-07 2019-03-12 上海华兴数字科技有限公司 一种施工场地安全控制方法
CN109457745B (zh) * 2018-12-07 2021-10-29 上海华兴数字科技有限公司 一种施工场地安全控制方法
WO2021025123A1 (ja) * 2019-08-08 2021-02-11 住友建機株式会社 ショベル、情報処理装置
JPWO2021025123A1 (ja) * 2019-08-08 2021-02-11

Similar Documents

Publication Publication Date Title
US10876275B2 (en) Construction machine
US10544567B2 (en) Method and system for monitoring a rotatable implement of a machine
JP6734260B2 (ja) 作業機械
JP7037393B2 (ja) 作業車両用旋回制御システム
KR20190117626A (ko) 작업 기계
CN113728141B (zh) 挖土机
JP2017071915A (ja) 施工管理システム及び施工管理方法
JP2005029338A (ja) 建設機械の動作監視システム及び方法
JPWO2019049288A1 (ja) 建設機械
AU2020299301A1 (en) System and method for managing tools at a worksite
JP6559464B2 (ja) 作業車両の周囲監視装置
WO2017188230A1 (ja) 建設機械
JP6918716B2 (ja) 建設機械
KR20220002343A (ko) 표시장치, 쇼벨, 정보처리장치
JP2020051156A (ja) 作業機械
JP2019190193A (ja) 作業機械
KR20210152493A (ko) 쇼벨, 작업현장의 안전장비확인시스템
JP2020056169A (ja) 地上及び地下での接近報知機能を備え、かつ新規埋設物の施工デ−タを取得可能な建設機械
JP6473648B2 (ja) 遠隔操作ロボット
JP6529058B1 (ja) 建設機械管理システム、建設機械管理プログラム、建設機械管理方法、建設機械および建設機械の外部管理装置
KR20220002938A (ko) 쇼벨
JP7159914B2 (ja) 作業者検出装置、作業者検出方法、および、作業者検出プログラム
US20220389682A1 (en) Overturning-risk presentation device and overturning-risk presentation method
JP7349947B2 (ja) 情報処理装置、作業機械、情報処理方法、情報処理プログラム
US20220375157A1 (en) Overturning-risk presentation device and overturning-risk presentation method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017255011

Country of ref document: AU

Date of ref document: 20170425

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017789512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017789512

Country of ref document: EP

Effective date: 20181128