WO2017188107A1 - 端末装置、基地局装置、通信方法、および、集積回路 - Google Patents

端末装置、基地局装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2017188107A1
WO2017188107A1 PCT/JP2017/015830 JP2017015830W WO2017188107A1 WO 2017188107 A1 WO2017188107 A1 WO 2017188107A1 JP 2017015830 W JP2017015830 W JP 2017015830W WO 2017188107 A1 WO2017188107 A1 WO 2017188107A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
subframe
spusch
transmission
control information
Prior art date
Application number
PCT/JP2017/015830
Other languages
English (en)
French (fr)
Inventor
翔一 鈴木
立志 相羽
公彦 今村
渉 大内
林 貴志
友樹 吉村
麗清 劉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/096,682 priority Critical patent/US10680786B2/en
Priority to KR1020187021769A priority patent/KR102325600B1/ko
Priority to EP17789390.6A priority patent/EP3451769B1/en
Priority to CN201780014436.8A priority patent/CN109076520B/zh
Priority to RU2018139856A priority patent/RU2018139856A/ru
Publication of WO2017188107A1 publication Critical patent/WO2017188107A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a terminal device, a base station device, a communication method, and an integrated circuit.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • a base station apparatus is also called eNodeB (evolvedvolveNodeB), and a terminal device is also called UE (UserUEEquipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. A single base station apparatus may manage a plurality of cells.
  • Non-Patent Documents 1, 2, 3, and 4 In LTE Release 13, it is specified that PUSCH and PUCCH transmit uplink control information (Non-Patent Documents 1, 2, 3, and 4).
  • Non-Patent Document 5 discusses shortening of TTI (Transmission Time Interval) and reduction of processing time.
  • Non-Patent Document 6 it is considered that sPUCCH and sPUSCH transmit channel state information and HARQ-ACK (Hybrid Automatic Repeat reQuest-ACKnowledgement).
  • HARQ-ACK Hybrid Automatic Repeat reQuest-ACKnowledgement
  • the present invention relates to a terminal device capable of efficiently transmitting uplink control information, a communication method used for the terminal device, an integrated circuit mounted on the terminal device, and efficiently receiving uplink control information.
  • a base station apparatus capable of performing communication, a communication method used for the base station apparatus, and an integrated circuit mounted on the base station apparatus are provided.
  • the first aspect of the present invention is a terminal apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, and is used for scheduling PUSCH.
  • the transmission unit performs transmission of sPUSCH in the primary cell in the first subframe, and transmits PUSCH in the secondary cell in the first subframe, and in the first case, the transmission in the first subframe Using the PUSCH in the secondary cell Transmitting the uplink control information.
  • a second aspect of the present invention is a base station apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, for scheduling PUSCH An uplink grant to be used; a transmission unit that transmits an uplink grant used to schedule sPUSCH; and a reception unit that receives uplink control information.
  • the PUSCH in the secondary cell in the first subframe is used.
  • the uplink control information is received.
  • a third aspect of the present invention is a communication method used for a terminal apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, and uses PUSCH.
  • the uplink control information is transmitted using the PUSCH in the secondary cell in the first subframe.
  • a fourth aspect of the present invention is a communication method used for a base station apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, and PUSCH
  • the uplink grant used for scheduling the uplink grant and the uplink grant used for scheduling the sPUSCH are transmitted, uplink control information is received, and the sPUSCH is received in the primary cell in the first subframe.
  • the uplink control information is received using the PUSCH in the secondary cell in the first subframe.
  • a fifth aspect of the present invention is an integrated circuit mounted on a terminal apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, and PUSCH
  • a sixth aspect of the present invention is an integrated circuit implemented in a base station apparatus that communicates with a base station apparatus using a plurality of serving cells including one primary cell and one secondary cell, An uplink grant used for scheduling the PUSCH; a transmission circuit for transmitting the uplink grant used for scheduling the sPUSCH; and a reception circuit for receiving the uplink control information, the reception circuit comprising: In the first case of receiving sPUSCH in the primary cell in the first subframe and receiving PUSCH in the secondary cell in the first subframe, the secondary cell in the first subframe. The uplink control information using the PUSCH in To receive.
  • the terminal device can efficiently transmit the uplink control information.
  • the base station apparatus can receive uplink control information efficiently.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
  • the terminal devices 1A to 1C are referred to as the terminal device 1.
  • the terminal device 1 is set with a plurality of serving cells.
  • a technique in which the terminal device 1 communicates via a plurality of serving cells is referred to as cell aggregation or carrier aggregation.
  • the present invention may be applied to each of a plurality of serving cells set for the terminal device 1.
  • the present invention may be applied to some of the set serving cells.
  • the present invention may be applied to each of a plurality of set serving cell groups. Further, the present invention may be applied to a part of the set groups of a plurality of serving cells.
  • the plurality of serving cells includes at least one primary cell.
  • the plurality of serving cells may include one or a plurality of secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment (initial connection establishment) procedure has been performed, a serving cell that has started a connection re-establishment procedure, or a cell designated as a primary cell in a handover procedure.
  • a secondary cell may be set when an RRC (Radio-Resource-Control) connection is established or later.
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier.
  • a carrier corresponding to a serving cell is referred to as an uplink component carrier.
  • the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier.
  • the terminal device 1 can perform transmission and / or reception on a plurality of physical channels simultaneously in a plurality of serving cells (component carriers).
  • One physical channel is transmitted in one serving cell (component carrier) among a plurality of serving cells (component carriers).
  • the following uplink physical channels are used in uplink wireless communication from the terminal device 1 to the base station device 3.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • SPUCCH shortened Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SPUSCH shortened Physical Uplink Shared Channel
  • PUCCH and sPUCCH are used for transmitting uplink control information (UPCI).
  • the terminal device 1 may transmit PUCCH only in the primary cell.
  • Uplink control information includes downlink channel state information (CSI), a scheduling request (SR) indicating a request for PUSCH resources, downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC).
  • CSI downlink channel state information
  • SR scheduling request
  • MAC Medium Access Control Protocol Data Unit
  • HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
  • DL-SCH Downlink-Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • HARQ-ACK indicates ACK (acknowledgement) or NACK (negative-acknowledgement).
  • HARQ-ACK is also referred to as ACK / NACK, HARQ feedback, HARQ-ACK feedback, HARQ response, HARQ-ACK response, HARQ information, HARQ-ACK information, HARQ control information, and HARQ-ACK control information.
  • PUSCH and sPUSCH may be used to transmit uplink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Uplink-Shared Channel: UL-SCH).
  • the PUSCH may be used to transmit HARQ-ACK and / or channel state information along with uplink data. Also, the PUSCH may be used to transmit only channel state information or only HARQ-ACK and channel state information.
  • the aperiodic channel state information report is triggered by a field included in the uplink grant corresponding to the PUSCH / sPUSCH transmission.
  • Periodic channel state information reporting is triggered by RRC signaling (upper layer parameters).
  • PUSCH is used for aperiodic channel state information reporting.
  • PUSCH or PUCCH is used for periodic channel state information reporting.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 3 to the terminal apparatus 1.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • DCI Downlink Control Information
  • the downlink control information is also referred to as a DCI format.
  • the downlink control information includes a downlink grant (downlink grant) and an uplink grant (uplink grant).
  • the downlink grant is also referred to as downlink assignment or downlink allocation.
  • One downlink grant may be used for scheduling one PDSCH in one cell.
  • the downlink grant may be used for scheduling the PDSCH in the same subframe as the subframe in which the downlink grant is transmitted.
  • One downlink grant may be used for scheduling one sPDSCH in one cell.
  • the downlink grant may be used for scheduling sPDSCH within the same sTTI as the sTTI (shortened Transmission Time Interval) in which the downlink grant is transmitted.
  • One uplink grant may be used for scheduling one PUSCH in one cell.
  • the uplink grant may be used for scheduling one PUSCH in a subframe four or more times after the subframe in which the uplink grant is transmitted.
  • One uplink grant may be used for scheduling one sPUSCH in one cell.
  • the uplink grant may be used for scheduling one sPUSCH in the sTTI after the sTTI in which the uplink grant is transmitted.
  • PDSCH and sPDSCH are used to transmit downlink data (Downlink Shared Channel: DL-SCH).
  • DL-SCH Downlink Shared Channel
  • UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (Medium Access Control: MAC) layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (transport block: TB) or a MAC PDU (Protocol Data Unit).
  • HARQ HybridbrAutomatic Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to code words, and modulation processing and encoding processing are performed for each code word.
  • One codeword is mapped to one or more layers.
  • FIG. 2 is a diagram illustrating a schematic configuration of a radio frame according to the present embodiment.
  • Each radio frame is 10 ms long.
  • the horizontal axis is a time axis.
  • Each radio frame is composed of 10 subframes.
  • Each subframe is 1 ms long and is defined by two consecutive slots.
  • Each of the slots is 0.5 ms long. That is, 10 subframes can be used in each 10 ms interval.
  • the subframe is TTI (also referred to as Transmission Time Interval).
  • TTI also referred to as Transmission Time Interval
  • FIG. 3 is a diagram illustrating a schematic configuration of the uplink slot in the present embodiment.
  • FIG. 3 shows the configuration of an uplink slot in one cell.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • l is an SC-FDMA symbol number / index
  • k is a subcarrier number / index.
  • a physical signal or physical channel transmitted in each slot is represented by a resource grid.
  • the resource grid is defined by a plurality of subcarriers and a plurality of SC-FDMA symbols.
  • Each element in the resource grid is referred to as a resource element.
  • a resource element is represented by a subcarrier number / index k and an SC-FDMA symbol number / index l.
  • N UL symb indicates the number of SC-FDMA symbols included in one uplink slot.
  • N UL symb is 7 for normal CP (normal cyclic prefix) in the uplink .
  • N UL symb is 6 for extended CP in the uplink.
  • the terminal device 1 receives the parameter UL-CyclicPrefixLength indicating the CP length in the uplink from the base station device 3.
  • the base station apparatus 3 may broadcast the system information including the parameter UL-CyclicPrefixLength corresponding to the cell in the cell.
  • N UL RB is an uplink bandwidth setting for the serving cell, expressed as a multiple of N RB sc .
  • N RB sc is a (physical) resource block size in the frequency domain expressed by the number of subcarriers.
  • Subcarrier spacing ⁇ f is 15 kHz, N RB sc may be 12. That is, N RB sc may be 180 kHz.
  • the subcarrier spacing ⁇ f may be different for each channel and / or for each TTI / sTTI.
  • a resource block is used to represent a mapping of physical channels to resource elements.
  • virtual resource blocks and physical resource blocks are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by N UL symb consecutive SC-FDMA symbols in the time domain and N RB sc consecutive subcarriers in the frequency domain.
  • N UL symb consecutive SC-FDMA symbols in the time domain
  • N RB sc consecutive subcarriers in the frequency domain.
  • One physical resource block is composed of resource elements of (N UL symb ⁇ N RB sc ).
  • One physical resource block corresponds to one slot in the time domain.
  • Physical resource blocks are numbered (0, 1,..., N UL RB ⁇ 1) in order from the lowest frequency in the frequency domain.
  • the downlink slot in this embodiment includes a plurality of OFDM symbols.
  • the configuration of the downlink slot in this embodiment is basically the same except that the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols, and thus description of the configuration of the downlink slot is omitted. To do.
  • FIG. 4 is a diagram illustrating an example of TTI and sTTI in the present embodiment.
  • the TTI may be composed of 2 ⁇ N UL symb SC-FDMA symbols.
  • the number of SC-FDMA symbols constituting the sTTI is any one of ⁇ 2, 3, 4, 7 ⁇ .
  • a TTI / sTTI composed of X SC-FDMA symbols is also referred to as an X symbol TTI.
  • TTI and sTTI may be composed of a plurality of OFDM symbols.
  • FIG. 5 is a diagram showing an example of physical channel assignment in the downlink of this embodiment.
  • the length of sPUCCH and the length of sPUSCH may be individually controlled.
  • the length of sPUCCH may be determined based on information transmitted on sPUCCH.
  • the length of sPUSCH may be determined based on information transmitted on sPUSCH.
  • FIG. 6 is a diagram illustrating an example of physical channel assignment in the uplink according to the present embodiment. Frequency hopping is applied to PUCCH 600, 601 and sPUCCH 602-605.
  • PUSCH and PUCCH may be mapped to 2 ⁇ N UL symb SC-FDMA symbols.
  • the sPUSCH may be mapped to 4 SC-FDMA symbols.
  • the sPUSCH may be mapped to 3 SC-FDMA symbols.
  • sPUCCH may be mapped to 7 SC-FDMA symbols.
  • the sPUSCH mapped to the X SC-FDMA symbol in the X symbol TTI is also referred to as an X symbol sPUSCH.
  • the sPUCCH mapped to the X SC-FDMA symbol in the X symbol TTI is also referred to as an X symbol sPUCCH.
  • FIG. 7 is a schematic block diagram showing the configuration of the terminal device 1 according to the present invention.
  • the terminal device 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna 109.
  • the upper layer processing unit 101 includes a radio resource control unit 1011 and a scheduling unit 1013.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 includes an encoding unit 1071, a PUSCH generation unit 1073, a PUCCH generation unit 1075, a multiplexing unit 1077, a radio transmission unit 1079, and an uplink reference signal generation unit 10711.
  • the upper layer processing unit 101 outputs uplink data generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer. Further, upper layer processing section 101 generates control information for controlling receiving section 105 and transmitting section 107 based on downlink control information received by PDCCH, and outputs the control information to control section 103.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information of the own device. For example, the radio resource control unit 1011 manages the set serving cell. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107. When the received downlink data is successfully decoded, the radio resource control unit 1011 generates an ACK and outputs an ACK to the transmitting unit 107. When the received downlink data fails to be decoded, the radio resource control unit 1011 returns NACK. And NACK is output to the transmission unit 107.
  • the scheduling unit 1013 included in the higher layer processing unit 101 stores the downlink control information received via the receiving unit 105.
  • the scheduling unit 1013 controls the transmission unit 107 via the control unit 103 so as to transmit the PUSCH according to the received uplink grant in a subframe four times after the subframe that has received the uplink grant.
  • the scheduling unit 1013 controls the reception unit 105 via the control unit 103 so as to receive the PDSCH according to the received downlink grant in the subframe that has received the downlink grant.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 109 according to the control signal input from the control unit 103, and sends the decoded information to the upper layer processing unit 101. Output.
  • the radio reception unit 1057 performs orthogonal demodulation on the downlink signal received via the transmission / reception antenna 109, and converts the orthogonally demodulated analog signal into a digital signal.
  • the wireless reception unit 1057 performs fast Fourier transform (FFT) on the digital signal to extract a frequency domain signal.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 separates the extracted signal into a PDCCH, a PDSCH, and a downlink reference signal.
  • the demultiplexing unit 1055 outputs the separated downlink reference signal to the channel measuring unit 1059.
  • Demodulation section 1053 demodulates PDCCH and PDSCH with respect to modulation schemes such as QPSK, 16QAM (Quadrature Amplitude Modulation), 64QAM, and outputs the result to decoding section 1051.
  • modulation schemes such as QPSK, 16QAM (Quadrature Amplitude Modulation), 64QAM, and outputs the result to decoding section 1051.
  • the decoding unit 1051 decodes the downlink data and outputs the decoded downlink data to the higher layer processing unit 101.
  • Channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs the estimated value to demultiplexing section 1055.
  • the channel measurement unit 1059 calculates channel state information and outputs the channel state information to the upper layer processing unit 101.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates uplink data and uplink control information input from the higher layer processing unit 101, and PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109.
  • the encoding unit 1071 encodes the uplink control information and the uplink data input from the higher layer processing unit 101, and outputs the encoded bits to the PUSCH generation unit and / or the PUCCH generation unit.
  • FIG. 8 is a schematic block diagram showing the configuration of the encoding unit 1071 in the present invention.
  • Encoding section 1071 includes data encoding section 1071a, channel state information encoding section 1071b, HARQ-ACK encoding section 1071c, and multiplexing / interleaving section 1071d.
  • Data encoding unit 1071a adds the CRC parity bits generated from the uplink data in the uplink data a i input from the higher layer 101, an error correction coding on the uplink data to which the CRC parity bits are added applying the outputs coded bits f i of the uplink data to the multiplexing and interleaving unit 1071D.
  • A is the payload size (number of bits) of uplink data.
  • F is the number of encoded bits of uplink data.
  • Channel state information encoding unit 1071b encodes the channel state information o i.
  • channel state information coding section 1071b outputs coded bits q i of channel state information to multiplexing / interleaving section 1071d. If the channel state information is transmitted using the PUCCH, the channel state information coding section 1071b outputs the encoded bits q i of the channel state information to the PUCCH generation section 1075.
  • O is the number of bits of the channel state information.
  • Q is the number of encoded bits of channel state information.
  • the HARQ-ACK encoding unit 1071c encodes HARQ-ACKb i . If HARQ-ACK is transmitted using PUSCH, HARQ-ACK coding unit 1071c outputs the coded bits g i of HARQ-ACK to the multiplexing and interleaving unit 1071D. If HARQ-ACK is transmitted using PUCCH, HARQ-ACK coding unit 1071c outputs the coded bits g i of HARQ-ACK to the PUCCH generation section 1075.
  • B is the number of bits of HARQ-ACK.
  • G is the number of encoded bits of HARQ-ACK.
  • the encoding unit 1071 outputs the SR to the PUCCH generation unit 1075.
  • the multiplexing / interleaving unit 1071d multiplexes and interleaves the encoded bits f i of the uplink data, the encoded bits q i of the channel state information, and / or the encoded bits g i of the HARQ-ACK, and concatenated codes
  • the generated bits h i are output to the PUSCH generation unit 1073.
  • FIG. 9 is a diagram showing an example of a method for interleaving coded modulation symbols in the present embodiment.
  • a coded modulation symbol is a group of coded bits.
  • One modulation symbol is generated by modulating one encoded symbol.
  • FIG. 9 there are as many columns as the number of SC-FDMA symbols to which PUSCH / sPUSCH is mapped. However, since the fourth SC-FDMA symbol is used for transmission of the uplink reference signal, the coded modulation symbol is not arranged in the fourth column. In FIG. 9, there are the same number of rows as the number of PUSCH / sPUSCH subcarriers assigned by the uplink grant.
  • PUSCH signal generation unit 1073 a plurality of modulation symbols corresponding to the coded modulation symbols arranged in the same column in FIG. 9 are subjected to discrete Fourier transform (Transform Precoding), and the DFT signal is wirelessly transmitted by the uplink grant.
  • the resource allocation is arranged in the PUSCH / sPUSCH resource element indicated.
  • the DFT signal generated from the i-th encoded symbol is arranged in a resource element corresponding to the i-th SC-FDMA symbol.
  • the PUSCH generation unit 1073 generates a modulation symbol by modulating the encoded bit h i input from the encoding unit 1071, generates a PUSCH / sPUSCH signal by performing DFT on the modulation symbol, and is also subjected to DFT.
  • the PUSCH / sPUSCH signal is output to multiplexing section 1077.
  • PUCCH generation section 1075 generates a PUCCH / sPUCCH signal based on encoded bits q i / g i and / or SR input from encoding section 1071, and multiplexes the generated PUCCH / sPUCCH signal Output to the unit 1077.
  • the uplink reference signal generation unit 10711 generates an uplink reference signal and outputs the generated uplink reference signal to the multiplexing unit 1077.
  • the multiplexing unit 1075 receives the signal input from the PUSCH generation unit 1073 and / or the signal input from the PUCCH generation unit 1075 and / or the uplink reference signal generation unit 10711 according to the control signal input from the control unit 103.
  • the uplink reference signal input from is multiplexed to the uplink resource element for each transmission antenna port.
  • Radio transmission section 1077 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates a baseband digital signal, and converts the baseband digital signal to analog Convert to signal, generate in-phase and quadrature components of intermediate frequency from analog signal, remove excess frequency component for intermediate frequency band, convert intermediate frequency signal to high frequency signal (up-convert: up convert) Then, excess frequency components are removed, power amplification is performed, and the signal is output to the transmission / reception antenna 109 and transmitted.
  • IFFT inverse fast Fourier transform
  • FIG. 10 is a schematic block diagram showing the configuration of the base station apparatus 3 in the present invention.
  • the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309.
  • the upper layer processing unit 301 includes a radio resource control unit 3011 and a scheduling unit 3013.
  • the reception unit 305 includes a data demodulation / decoding unit 3051, a control information demodulation / decoding unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059.
  • the transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • the radio resource control unit 3011 included in the higher layer processing unit 301 generates downlink data, RRC signal, MAC CE (Control Element) arranged in the downlink PDSCH, or obtains it from the higher node, and the HARQ control unit 3013. Output to. Further, the radio resource control unit 3011 manages various setting information of each mobile station apparatus 1. For example, the radio resource control unit 3011 performs management of the serving cell set in the mobile station device 1.
  • the scheduling unit 3013 included in the higher layer processing unit 301 manages PUSCH and PUCCH radio resources allocated to the mobile station apparatus 1.
  • the scheduling unit 3013 When the PUSCH radio resource is allocated to the mobile station apparatus 1, the scheduling unit 3013 generates an uplink grant indicating the allocation of the PUSCH radio resource, and outputs the generated uplink grant to the transmission unit 307.
  • the control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
  • the receiving unit 305 separates, demodulates and decodes the received signal received from the mobile station apparatus 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301. To do.
  • the radio reception unit 3057 orthogonally demodulates the uplink signal received via the transmission / reception antenna 309, and converts the orthogonally demodulated analog signal into a digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT) on the digital signal, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each mobile station device 1.
  • the demultiplexing unit 3055 compensates for the propagation paths of the PUCCH and the PUSCH from the propagation path estimation value input from the channel measurement unit 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demultiplexing unit 3055 acquires the modulation symbol of the uplink data and the modulation symbol of the uplink control information (HARQ-ACK) from the separated PUCCH and PUSCH signals.
  • the demultiplexing unit 3055 outputs the uplink data modulation symbol acquired from the PUSCH signal to the data demodulation / decoding unit 3051.
  • the demultiplexing unit 3055 outputs the modulation symbol of the uplink control information (HARQ-ACK) acquired from the PUCCH signal or the PUSCH signal to the control information demodulation / decoding unit 3053.
  • the channel measurement unit 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from the demultiplexing unit 3055, and outputs it to the demultiplexing unit 3055 and the upper layer processing unit 301.
  • the data demodulation / decoding unit 3051 decodes the uplink data from the modulation symbol of the uplink data input from the demultiplexing unit 3055.
  • the data demodulation / decoding unit 3051 outputs the decoded uplink data to the higher layer processing unit 301.
  • Control information demodulation / decoding section 3053 decodes HARQ-ACK from the modulation symbol of HARQ-ACK input from demultiplexing section 3055. Control information demodulation / decoding section 3053 outputs the decoded HARQ-ACK to higher layer processing section 301.
  • the transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the downlink control information and downlink data input from the higher layer processing unit 301, and performs PDCCH , The PDSCH, and the downlink reference signal are multiplexed, and the signal is transmitted to the mobile station apparatus 1 via the transmission / reception antenna 309.
  • the encoding unit 3071 encodes downlink control information and downlink data input from the higher layer processing unit 301.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 using a modulation scheme such as BPSK, QPSK, 16QAM, or 64QAM.
  • the downlink reference signal generation unit 3079 generates a downlink reference signal.
  • Multiplexer 3075 multiplexes the modulation symbols and downlink reference signals for each channel.
  • Radio transmission section 3077 performs inverse fast Fourier transform (Inverse Fastier Transform: IFFT) on the modulated modulation symbols and the like to perform OFDM modulation, generate a baseband digital signal, and convert the baseband digital signal to Converts to an analog signal, generates in-phase and quadrature components of the intermediate frequency from the analog signal, removes excess frequency components for the intermediate frequency band, and converts the intermediate frequency signal to a high-frequency signal (up-convert: upconvert) Then, excess frequency components are removed, power amplification is performed, and output to the transmission / reception antenna 309 is transmitted.
  • IFFT inverse fast Fourier transform
  • Each of the units included in the terminal device 1 and the base station device 3 may be configured as a circuit.
  • FIG. 11 is a diagram illustrating an example of a processing period for PUCCH / PUSCH / sPUSCH in the present embodiment.
  • the horizontal axis is time.
  • Tx1 is PUSCH transmission.
  • Tx2 to Tx14 are sPUSCH transmissions.
  • Tx1 to Tx14 correspond to one subframe.
  • the PUCCH transmission processing period is a period during which transmission processing for PUCCH transmission is performed.
  • UGi is a PDCCH / sPDCCH including an uplink grant used for scheduling Txi.
  • RPi is a period during which reception processing for UGi is performed.
  • the terminal device 1 performs decoding of PDCCH / sPDCCH including an uplink grant and CRC (Cyclic Redundancy Check) check in RPi.
  • the terminal device 1 considers that the detection of the PDCCH / sPDCCH addressed to itself is successful based on the success of the CRC check.
  • the timing at which the terminal device 1 regards that each of the UG1 to UG14 has been successfully detected may be different.
  • TPi is a period during which transmission processing for Txi is performed based on the received uplink grant.
  • the length of TPi may be related to the length of the corresponding Txi. The shorter the corresponding Txi length, the shorter the length of TPi.
  • Transmission processing in the present embodiment includes (i) encoding processing, (ii) modulation symbol generation processing, (iii) discrete Fourier transform (Transform Precoding) processing, (iv) resource element multiplexing processing, and (v) baseband signal generation. Processing may be included.
  • the PUCCH transmission may be transmission of uplink control information (periodic channel state information report and / or HARQ-ACK) using PUCCH.
  • the sPUCCH transmission may be transmission of uplink control information (periodic channel state information report and / or HARQ-ACK) using sPUCCH.
  • the PUSCH transmission may be a transport block transmission using the PUSCH.
  • the sPUSCH transmission may be a transport block transmission using the sPUSCH.
  • one or more transmissions of uplink control information using PUCCH, one or more transmissions of uplink control information using sPUCCH, one or more transmissions using PUSCH And / or one or more transmissions using sPUSCH occurs in the “same subframe”, based on at least some or all of the following elements B to L: Some may be dropped.
  • the terminal device 1 may drop a part of the transmission based on the difference between the two values for the two transmissions in the same element.
  • Element A Cell index (ServCellIndex) of the serving cell in which transmission is performed
  • Element B Transmission bandwidth
  • Element C Transmission length (number of SC-FDMA symbols) -Element
  • D SC-FDMA symbol where transmission starts-Element
  • E SC-FDMA symbol where transmission ends-Element
  • F Transmission subcarrier interval-Element
  • G Uplink grant corresponding to PUSCH / sPUSCH transmission Included field value / element H: size of transmitted uplink data (number of bits)
  • Element I Code rate of uplink data to be transmitted
  • Element J Number of bits of uplink control information to be transmitted
  • Element K Code rate of uplink control information to be transmitted
  • L Transmitted Type of uplink control information (HARQ-ACK, CSI, SR)
  • the transmission in each of element A to element F may include part or all of PUCCH transmission, s
  • Each of the transmissions from element A to element F may include a transmission of a different channel.
  • Each transmission in element A to element F may include transmissions on the same channel.
  • the PDCCH / EPDCCH / sPDCCH transmission includes an uplink grant corresponding to the PUSCH / sPUSCH transmission.
  • the cell index is used to identify the serving cell.
  • the cell index of the primary cell is “0”.
  • the cell index of the secondary cell is an integer greater than '0'.
  • the cell index of the secondary cell may be indicated by information / parameters transmitted by the base station device 3.
  • transmissions other than channel transmissions including uplink control information may not be dropped.
  • one or more transmissions of uplink control information using PUCCH, one or more transmissions of uplink control information using sPUCCH, one or more transmissions using PUSCH And / or one or more transmissions using sPUSCH occurs in the “same subframe”, the uplink control based on at least some or all of the elements B to L above
  • the channel used for the transmission of information may be selected.
  • transmissions other than channel transmissions including uplink control information may not be dropped.
  • one or more transmissions of uplink control information using PUCCH, one or more transmissions of uplink control information using sPUCCH, one or more transmissions using PUSCH And / or one or more transmissions using sPUSCH occurs in the “same subframe”, based on at least some or all of the above elements A to L, Some may be dropped.
  • the uplink is based on at least some or all of the elements L above A channel used for transmission of link control information may be selected.
  • transmissions other than channel transmissions including uplink control information may not be dropped.
  • the channel used for the transmission of information may be selected.
  • transmissions other than channel transmissions including uplink control information may not be dropped.
  • FIG. 12 is a diagram showing an example of channel drop / selection in the present embodiment.
  • PUCCH transmission and 7-symbol sPUSCH transmission Tx3 occur in the same subframe / same SC-FDMA symbol in the primary cell.
  • the terminal device 1 may stop the PUCCH transmission process after detecting the PDCCH / EPDCCH / sPDCCH including the uplink grant UG3 corresponding to the 7-symbol sPUSCH transmission Tx3.
  • the terminal device 1 may transmit the uplink control information corresponding to the PUCCH transmission using the 7 symbol sPUSCH transmission Tx3.
  • FIG. 13 is a diagram showing an example of channel drop / selection in the present embodiment.
  • PUCCH transmission and 2-symbol sPUSCH transmission Tx13 occur in the subframe / SC-FDMA symbol in the primary cell.
  • the terminal device 1 may stop the PUCCH transmission.
  • the terminal device 1 may transmit the uplink control information corresponding to the PUCCH transmission using the 2-symbol sPUSCH transmission Tx13.
  • the terminal device 1 transmits uplink control information corresponding to the PUCCH transmission using the 2-symbol sPUSCH transmission Tx13, so that the uplink control information before encoding is transmitted by PUCCH transmission. It may be stored until completion. Or the terminal device 1 does not need to transmit the uplink control information corresponding to the said PUCCH transmission using 2 symbol sPUSCH transmission Tx13.
  • FIG. 14 is a diagram showing an example of channel drop / selection in the present embodiment.
  • PUCCH transmission and 7-symbol sPUSCH transmissions Tx2 and Tx3 occur in the subframe / SC-FDMA symbol in the primary cell.
  • the 7-symbol sPUSCH transmissions Tx2 and Tx3 are not generated in the same SC-FDMA symbol.
  • the terminal device 1 may stop the PUCCH transmission process after detecting the PDCCH / EPDCCH / sPDCCH including the uplink grant UG2 corresponding to the 7-symbol sPUSCH transmission Tx2.
  • the terminal device 1 may transmit uplink control information corresponding to the PUCCH transmission using the 7-symbol sPUSCH transmission Tx2.
  • the terminal device 1 Even if the terminal device 1 detects the PDCCH / EPDCCH / sPDCCH including the uplink grant UG3 corresponding to the 7 symbol sPUSCH transmission Tx3, the terminal device 1 transmits the uplink control information corresponding to the PUCCH transmission using the 7 symbol sPUSCH transmission Tx3. do not do. After detecting PDCCH / EPDCCH / sPDCCH including uplink grant UG3 corresponding to 7 symbol sPUSCH transmission Tx3, in order for terminal apparatus 1 to stop transmission of uplink control information using 7 symbol sPUSCH transmission Tx2, multiplexing / interleaving is performed. It is necessary to repeat the transmission process from the process of the unit 1071d.
  • the terminal apparatus 1 (i) that the SC-FDMA symbol where the 7-symbol sPUSCH transmission Tx2 is started is earlier than the SC-FDMA symbol where the 7-symbol sPUSCH transmission Tx3 is started, and (ii) the 7-symbol sPUSCH transmission The SC-FDMA symbol for which Tx2 is terminated is earlier than the SC-FDMA symbol for which 7-symbol sPUSCH transmission Tx3 is terminated.
  • SPUSCH transmission Tx2 may be selected based on being earlier than the SC-FDMA symbol at which PDCCH / EPDCCH / sPDCCH transmission including is terminated.
  • the terminal device 1 may transmit uplink control information (periodic channel state information report and / or HARQ-ACK) using the selected sPUSCH transmission Tx2.
  • FIG. 15 is a diagram showing an example of channel drop / selection in the present embodiment.
  • PUCCH transmission in the primary cell, PUSCH transmission Tx0 in the primary cell, and PUSCH transmission Tx3 in the primary cell occur in the subframe / SC-FDMA symbol.
  • PUCCH transmission in the primary cell, PUSCH transmission Tx0 in the primary cell, and PUSCH transmission Tx3 in the primary cell are mapped to SC-FDMA symbols with the same index.
  • the terminal apparatus 1 After detecting the PDCCH / EPDCCH / sPDCCH including the uplink grant UG0 corresponding to the PUSCH transmission Tx0 and / or the PDCCH / EPDCCH / sPDCCH including the uplink grant UG1 corresponding to the PUSCH transmission Tx1, the terminal apparatus 1 detects the PUCCH The transmission process may be stopped.
  • the uplink control information includes only a periodic channel state information report and / or HARQ-ACK
  • the terminal device 1 may select PUSCH based on the cell index. For example, the terminal device 1 may select the PUSCH transmission Tx0 in the primary cell having the smallest cell index.
  • the terminal device 1 may transmit uplink control information (periodic channel state information report and / or HARQ-ACK) corresponding to the PUCCH transmission using the selected PUSCH transmission Tx0.
  • the terminal device 1 may select the PUSCH based on the cell index.
  • the terminal device 1 may transmit uplink control information (periodic channel state information report and / or HARQ-ACK) using the selected PUSCH transmission.
  • FIG. 16 is a diagram showing an example of channel drop / selection in the present embodiment.
  • PUCCH transmission in the primary cell, 7-symbol sPUSCH transmission Tx2 in the primary cell, and PUSCH transmission Tx1 in the secondary cell occur in the subframe / SC-FDMA symbol.
  • PUCCH transmission in the primary cell, PUSCH transmission Tx0 in the primary cell, and PUSCH transmission Tx3 in the primary cell are started from the SC-FDMA symbol of the same index.
  • the terminal device 1 may stop the PUCCH transmission process after detecting the PDCCH / EPDCCH / sPDCCH including the uplink grant UG1 corresponding to the PUSCH transmission Tx1.
  • the terminal device 1 may transmit uplink control information corresponding to the PUCCH transmission using the PUSCH transmission Tx1. Even if the terminal device 1 detects the PDCCH / EPDCCH / sPDCCH including the uplink grant UG2 corresponding to the 7 symbol sPUSCH transmission Tx2, the terminal device 1 transmits the uplink control information corresponding to the PUCCH transmission using the 7 symbol sPUSCH transmission Tx2. do not do.
  • the terminal apparatus 1 To detect the PDCCH / EPDCCH / sPDCCH including the uplink grant UG2 corresponding to the 7-symbol sPUSCH transmission Tx2, the terminal apparatus 1 stops the transmission of the uplink control information using the PUSCH transmission Tx1, and the multiplexing / interleaving unit 1071d It is necessary to redo the transmission process from the above process. However, after detecting PDCCH / EPDCCH / sPDCCH including uplink grant UG2 corresponding to 7-symbol sPUSCH transmission Tx2, there is not sufficient time for performing transmission processing of PUSCH transmission Tx1.
  • the terminal device 1 may select the PUSCH regardless of the cell index when PUSCH transmission and sPUSCH transmission occur in the subframe.
  • the terminal device 1 may transmit uplink control information (periodic channel state information report and / or HARQ-ACK) using the selected PUSCH transmission. That is, the terminal device 1 has the length of the PUSCH transmission Tx1, the length of the 7 symbol sPUSCH transmission Tx2, the SC-FDMA symbol at which the PUSCH transmission Tx1 is started, and / or the SC- at which the 7 symbol sPUSCH transmission Tx2 is started. Channels may be selected based on FDMA symbols.
  • the terminal device 1 may not transmit the uplink control information using X symbol sPUSCH transmission or PUSCH transmission. .
  • Uplink control information including at least an aperiodic channel state information report may be transmitted using the symbol sPUSCH transmission Tx3.
  • the periodic channel state information report is dropped, and 2 Uplink control information including at least an aperiodic channel state information report may be transmitted using the symbol sPUSCH transmission Tx13.
  • Uplink control information including at least an aperiodic channel state information report may be transmitted using the symbol sPUSCH transmission Tx2.
  • the terminal device 1 selects the sPUSCH transmission Tx3, In addition, uplink control information including at least an aperiodic channel state information report may be transmitted using the selected PUSCH transmission Tx3.
  • the periodic channel state information report is not dropped. That is, uplink control information (periodic channel state information report and / or HARQ-ACK) corresponding to PUCCH transmission may be transmitted using 7-symbol sPUSCH transmission Tx2.
  • the periodic channel state information report is dropped, and the PUSCH Uplink control information including at least an aperiodic channel state information report may be transmitted using transmission Tx0.
  • the terminal device 1 selects the PUSCH transmission Tx1, In addition, uplink control information (aperiodic channel state information report and / or HARQ-ACK) may be transmitted using the selected PUSCH transmission Tx1.
  • the periodic channel state information report is dropped. That is, uplink control information (periodic channel state information report and / or HARQ-ACK) corresponding to PUCCH transmission is not transmitted using PUSCH transmission Tx0.
  • uplink control information including at least an aperiodic channel state information report may be transmitted.
  • the terminal device 1 selects the sPUSCH transmission Tx2, In addition, uplink control information including at least an aperiodic channel state information report may be transmitted using the selected PUSCH transmission Tx2.
  • the periodic channel state information report is not dropped. That is, uplink control information (periodic channel state information report and / or HARQ-ACK) corresponding to PUCCH transmission may be transmitted using 7-symbol sPUSCH transmission Tx1.
  • simultaneous transmission of PUCCH and PUSCH is not set.
  • processing different from the present embodiment may be applied.
  • a first aspect of the present embodiment is a terminal apparatus 1, and a receiving unit 105 that receives a plurality of uplink grants used for scheduling a plurality of sPUSCHs in one subframe in one serving cell. And a transmitting unit 107 that transmits uplink control information using one of the plurality of sPUSCHs that starts transmission first.
  • uplink data without uplink control information is transmitted using the plurality of sPUSCHs except for the first one to start transmission.
  • the plurality of sPUSCHs are not transmitted simultaneously.
  • the uplink control information includes a periodic channel state information report and / or HARQ-ACK.
  • the second aspect of the present embodiment is the base station apparatus 3, which transmits a plurality of uplink grants used to schedule a plurality of sPUSCHs in one subframe in one serving cell. 307, and a receiving unit 305 that receives uplink control information using one of the plurality of sPUSCHs that starts transmission first.
  • uplink data without uplink control information is received using the plurality of sPUSCHs except for the first one to start transmission.
  • the plurality of sPUSCHs are not received simultaneously.
  • the uplink control information includes a periodic channel state information report and / or HARQ-ACK.
  • the third aspect of the present embodiment is the terminal device 1, and the receiving unit 105 that receives the uplink grant used for scheduling the PUSCH and the uplink grant used for scheduling the sPUSCH.
  • a transmission unit 107 that transmits uplink control information using the PUSCH and / or the sPUSCH, and the transmission unit 107 transmits the sPUSCH in a primary cell in a first subframe, In addition, in the first case where PUSCH is transmitted in the secondary cell in the first subframe, the uplink control information is transmitted using the PUSCH in the secondary cell in the first subframe.
  • the transmitter 107 performs PUSCH transmission in the primary cell in the second subframe, and PUSCH in the secondary cell in the second subframe.
  • the uplink control information is transmitted using the PUSCH in the primary cell in the second subframe.
  • the cell index of the primary cell is '0'
  • the cell index of the secondary cell is an integer larger than '0'
  • the uplink control information includes a periodic channel state information report and / or HARQ-ACK.
  • the fourth aspect of the present embodiment is the base station apparatus 3, which transmits an uplink grant used for scheduling PUSCH and an uplink grant used for scheduling sPUSCH. 307 and a receiving unit 305 that receives uplink control information using the PUSCH and / or the sPUSCH, and the receiving unit 305 receives the sPUSCH in the primary cell in the first subframe.
  • the uplink control information is received using the PUSCH in the secondary cell in the first subframe.
  • the receiving unit 305 receives PUSCH in the primary cell in the second subframe, and further, PUSCH in the secondary cell in the second subframe.
  • the uplink control information is received using the PUSCH in the primary cell in the second subframe.
  • the cell index of the primary cell is '0'
  • the cell index of the secondary cell is an integer greater than '0'
  • the uplink control information includes a periodic channel state information report and / or HARQ-ACK.
  • the aperiodic channel state information report is performed using the sPUSCH in the primary cell in the first subframe If the periodic channel state information report is not dropped, and in the first case, the aperiodic channel state information report is performed using the PUSCH in the secondary cell in the first subframe. For example, the periodic channel state information report is dropped.
  • the aperiodic channel state information report is performed using the PUSCH in the primary cell in the second subframe If the periodic channel state information report is dropped, and in the second case, the aperiodic channel state information report is performed using the PUSCH in the secondary cell in the second subframe. The periodic channel state information report is dropped.
  • a fifth aspect of the present embodiment is the terminal device 1, and a receiving unit 105 that receives a plurality of uplink grants used to schedule a plurality of sPUSCHs in one subframe in one serving cell. And a transmission unit 107 that periodically reports channel state information using one sPUSCH that starts transmission first among the plurality of sPUSCHs in the one subframe, and the transmission unit 107 includes: , If the value of one uplink grant field of the plurality of uplink grants is set to trigger an aperiodic channel state information report, the one uplink of the plurality of sPUSCHs The aperiodic channel state information using sPUSCH corresponding to the link grant If the one sPUSCH corresponding to the one uplink grant is the first sPUSCH to be transmitted first, the periodic channel state information report is dropped and the one uplink If the one sPUSCH corresponding to the link grant is not the one sPUSCH to be transmitted first, the periodic channel state information report is not dropped.
  • a sixth aspect of the present embodiment is a base station device 3 that transmits a plurality of uplink grants used to schedule a plurality of sPUSCHs in one subframe in one serving cell. 307, and a receiving unit 305 that receives a periodic channel state information report using one sPUSCH that is first started to receive among the plurality of sPUSCHs in the one subframe.
  • the unit 305 includes the sPUSCH among the plurality of sPUSCHs.
  • the aperiodic channel using sPUSCH corresponding to one uplink grant Receiving the status information report, and if the one sPUSCH corresponding to the one uplink grant is the first sPUSCH to be received first, the periodic channel state information report is dropped, If the one sPUSCH corresponding to the one uplink grant is not the one sPUSCH that starts reception first, the periodic channel state information report is not dropped.
  • the terminal device can efficiently transmit the uplink control information.
  • the base station apparatus can receive uplink control information efficiently.
  • a program that operates in the base station device 3 and the terminal device 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a computer is functioned) so as to realize the functions of the above-described embodiments related to the present invention Program).
  • Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors,
  • the present invention can also be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • Terminal apparatus 3 Base station apparatus 101 Upper layer processing section 103 Control section 105 Reception section 107 Transmission section 301 Upper layer processing section 303 Control section 305 Reception section 307 Transmission section 1011 Radio resource control section 1013 Scheduling section 3011 Radio resource control unit 3013 Scheduling unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

効率的に上りリンク制御情報を伝送することができる。端末装置(1)は、(i)PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信し、(ii)上りリンク制御情報を送信し、(iii)第1のサブフレームにおけるプライマリセルにおいてsPUSCHの送信を行い、尚且つ、第1のサブフレームにおけるセカンダリセルにおいてPUSCHの送信を行う第1の場合、第1のサブフレームにおけるセカンダリセルにおけるPUSCHを用いて、上りリンク制御情報を送信する。

Description

端末装置、基地局装置、通信方法、および、集積回路
 本発明は、端末装置、基地局装置、通信方法、および、集積回路に関する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access : EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置をeNodeB(evolved NodeB)、端末装置をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 LTEリリース13において、PUSCHおよびPUCCHが上りリンク制御情報が伝送することが仕様化されている(非特許文献1、2、3、4)。非特許文献5において、TTI(Transmission Time Interval)の短縮、および、処理時間の削減について検討されている。非特許文献6において、sPUCCH、および、sPUSCHがチャネル状態情報およびHARQ-ACK(Hybrid Automatic Repeat reQuest-ACKnowledgement)を伝送することが検討されている。
"3GPP TS 36.211 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.212 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.213 V13.1.1 (2016-03)", 31th March, 2016. "3GPP TS 36.300 V13.2.0 (2015-12)", 13th January, 2015. "New SI proposal: Study on Latency reduction techniques for LTE", RP-150465, Ericsson, Huawei, 3GPP TSG RAN Meeting#67, Shanghai, China, 9th- 12th March 2015. " Physical layer aspects for PUSCH for short TTI", R1-163320, Ericsson, 3GPP TSG RAN WG1 Meeting#84 bis, Busan, 11th - 15th April 2016.
 本発明は、効率的に上りリンク制御情報を送信することができる端末装置、該端末装置に用いられる通信方法、該端末装置に実装される集積回路、効率的に上りリンク制御情報を受信することができる基地局装置、該基地局装置に用いられる通信方法、および、該基地局装置に実装される集積回路を提供する。
 (1)本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部と、前記PUSCH、および/または、前記sPUSCHを用いて上りリンク制御情報を送信する送信部と、を備え、前記送信部は、第1のサブフレームにおけるプライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおけるセカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する。
 (2)本発明の第2の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する基地局装置であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部と、上りリンク制御情報を受信する受信部と、を備え、前記受信部は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する。
 (3)本発明の第3の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置に用いられる通信方法であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信し、上りリンク制御情報を送信し、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する。
 (4)本発明の第4の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する基地局装置に用いられる通信方法であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信し、上りリンク制御情報を受信し、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する。
 (5)本発明の第5の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置に実装される集積回路であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信回路と、上りリンク制御情報を送信する送信回路と、を備え、前記送信回路は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する。
 (6)本発明の第6の態様は、1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する基地局装置に実装される集積回路であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信回路と、上りリンク制御情報を受信する受信回路と、を備え、前記受信回路は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する。
 この発明によれば、端末装置は効率的に上りリンク制御情報を送信することができる。また、基地局装置は効率的に上りリンク制御情報を受信することができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態における上りリンクスロットの概略構成を示す図である。 本実施形態におけるTTIおよびsTTIの一例を示す図である。 本実施形態の下りリンクにおける物理チャネルの割り当ての一例を示す図である。 本実施形態の上りリンクにおける物理チャネルの割り当ての一例を示す図である。 本発明における端末装置1の構成を示す概略ブロック図である。 本発明における符号化部1071の構成を示す概略ブロック図である。 本実施形態における符号化変調シンボルのインタリーブの方法の一例を示す図である。 本発明における基地局装置3の構成を示す概略ブロック図である。 本実施形態におけるPUCCH/PUSCH/sPUSCHに対する処理期間の一例を示す図である。 本実施形態におけるチャネルのドロップ/選択の一例を示す図である。 本実施形態におけるチャネルのドロップ/選択の一例を示す図である。 本実施形態におけるチャネルのドロップ/選択の一例を示す図である。 本実施形態におけるチャネルのドロップ/選択の一例を示す図である。 本実施形態におけるチャネルのドロップ/選択の一例を示す図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1という。
 以下、キャリアアグリゲーションについて説明する。
 本実施形態では、端末装置1は、複数のサービングセルが設定される。端末装置1が複数のサービングセルを介して通信する技術をセルアグリゲーション、またはキャリアアグリゲーションと称する。端末装置1に対して設定される複数のサービングセルのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のサービングセルの一部において、本発明が適用されてもよい。また、設定された複数のサービングセルのグループのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のサービングセルのグループの一部において、本発明が適用されてもよい。
 複数のサービングセルは、少なくとも1つのプライマリセルを含む。複数のサービングセルは、1つ、または、複数のセカンダリセルを含んでもよい。プライマリセルは、初期コネクション確立(initial connection establishment)手順が行なわれたサービングセル、コネクション再確立(connection re-establishment)手順を開始したサービングセル、または、ハンドオーバ手順においてプライマリセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、セカンダリセルが設定されてもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリアと称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリアと称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリアと称する。
 端末装置1は、複数のサービングセル(コンポーネントキャリア)において同時に複数の物理チャネルでの送信、および/または受信を行うことができる。1つの物理チャネルは、複数のサービングセル(コンポーネントキャリア)のうち1つのサービングセル(コンポーネントキャリア)において送信される。
 本実施形態の物理チャネルおよび物理信号について説明する。
 図1において、端末装置1から基地局装置3への上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・sPUCCH(shortened Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・sPUSCH(shortened Physical Uplink Shared Channel)
 PUCCH、および、sPUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。本実施形態において、端末装置1は、プライマリセルのみにおいてPUCCHの送信を行ってもよい。上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH)に対するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)を含む。HARQ-ACKは、ACK(acknowledgement)またはNACK(negative-acknowledgement)を示す。HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ-ACKフィードバック、HARQ応答、HARQ-ACK応答、HARQ情報、HARQ-ACK情報、HARQ制御情報、および、HARQ-ACK制御情報とも称する。
 PUSCH、および、sPUSCHは、上りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Uplink-Shared Channel: UL-SCH)を送信するために用いられてもよい。PUSCHは、上りリンクデータと共にHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。また、PUSCHはチャネル状態情報のみ、または、HARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
 非周期的なチャネル状態情報報告は、PUSCH/sPUSCH送信に対応する上りリンクグラントに含まれるフィールドによってトリガーされる。周期的なチャネル状態情報報告は、RRCシグナリング(上位層のパラメータ)によってトリガーされる。非周期的なチャネル状態情報報告のために、PUSCHが用いられる。周期的なチャネル状態情報報告のために、PUSCHまたはPUCCHが用いられる。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PDCCH(Physical Downlink Control Channel)
・EPDCCH(Enhanced Physical Downlink Control Channel)
・sPDCCH(shortened Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
・sPDSCH(shortened Physical Downlink Shared Channel)
 PDCCH、EPDCCH、および、sPDCCHは、下りリンク制御情報(DownlinkControl Information: DCI)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。下りリンク制御情報は、下りリンクグラント(downlink grant)および上りリンクグラント(uplink grant)を含む。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。
 1つの下りリンクグラントは、1つのセル内の1つのPDSCHのスケジューリングに用いられてもよい。下りリンクグラントは、該下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられてもよい。1つの下りリンクグラントは、1つのセル内の1つのsPDSCHのスケジューリングに用いられてもよい。下りリンクグラントは、該下りリンクグラントが送信されたsTTI(shortened Transmission Time Interval)と同じsTTI内のsPDSCHのスケジューリングに用いられてもよい。
 1つの上りリンクグラントは、1つのセル内の1つのPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、該上りリンクグラントが送信されたサブフレームより4つ以上後のサブフレーム内の1つのPUSCHのスケジューリングに用いられてもよい。1つの上りリンクグラントは、1つのセル内の1つのsPUSCHのスケジューリングに用いられてもよい。上りリンクグラントは、該上りリンクグラントが送信されたsTTIより後のsTTI内の1つのsPUSCHのスケジューリングに用いられてもよい。
 PDSCH、および、sPDSCHは、下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる。
 UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理、および、符号化処理が行なわれる。1つのコードワードは、1つ、または、複数のレイヤにマップされる。
 以下、本実施形態の無線フレーム(radio frame)の構成の一例について説明する。図2は、本実施形態の無線フレームの概略構成を示す図である。無線フレームのそれぞれは、10ms長である。図2において、横軸は時間軸である。また、無線フレームのそれぞれは10のサブフレームから構成される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。つまり、10ms間隔のそれぞれにおいて、10個のサブフレームが利用できる。サブフレームをTTI(Transmission Time Intervalとも称する。)
 以下、本実施形態のスロットの構成の一例について説明する。図3は、本実施形態における上りリンクスロットの概略構成を示す図である。図3において、1つのセルにおける上りリンクスロットの構成を示す。図3において、横軸は時間軸であり、縦軸は周波数軸である。図3において、lはSC-FDMAシンボル番号/インデックスであり、kはサブキャリア番号/インデックスである。
 スロットのそれぞれにおいて送信される物理シグナルまたは物理チャネルは、リソースグリッドによって表現される。上りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のSC-FDMAシンボルによって定義される。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリア番号/インデックスk、および、SC-FDMAシンボル番号/インデックスlによって表される。
 上りリンクスロットは、時間領域において、複数のSC-FDMAシンボルl(l=0,1,…,NUL symb)を含む。NUL symbは、1つの上りリンクスロットに含まれるSC-FDMAシンボルの数を示す。上りリンクにおけるノーマルCP(normal Cyclic Prefix)に対して、NUL symbは7である。上りリンクにおける拡張CP(extended CP)に対して、NUL symbは6である。
 端末装置1は、上りリンクにおけるCP長を示すパラメータUL-CyclicPrefixLengthを基地局装置3から受信する。基地局装置3は、セルに対応する該パラメータUL-CyclicPrefixLengthを含むシステムインフォメーションを、該セルにおいて報知してもよい。
 上りリンクスロットは、周波数領域において、複数のサブキャリアk(k=0,1,…,NUL RB×NRB sc)を含む。NUL RBは、NRB scの倍数によって表現される、サービングセルに対する上りリンク帯域幅設定である。NRB scは、サブキャリアの数によって表現される、周波数領域における(物理)リソースブロックサイズである。サブキャリア間隔Δfは15kHzであり、NRB scは12であってもよい。すなわち、NRB scは、180kHzであってもよい。サブキャリア間隔Δfはチャネル毎、および/または、TTI/sTTI毎に異なってもよい。
 リソースブロックは、物理チャネルのリソースエレメントへのマッピングを表すために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域においてNUL symbの連続するSC-FDMAシンボルと周波数領域においてNRB scの連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(NUL symb×NRB sc)のリソースエレメントから構成される。1つの物理リソースブロックは、時間領域において1つのスロットに対応する。物理リソースブロックは周波数領域において、周波数の低いほうから順に番号(0,1,…, NUL RB-1)が付けられる。
 本実施形態における下りリンクのスロットは、複数のOFDMシンボルを含む。本実施形態における下りリンクのスロットの構成は、リソースグリッドが複数のサブキャリアと複数のOFDMシンボルによって定義される点を除いて基本的に同じであるため、下りリンクのスロットの構成の説明は省略する。
 図4は、本実施形態におけるTTIおよびsTTIの一例を示す図である。TTIは、2×NUL symbのSC-FDMAシンボルから構成されてもよい。sTTIを構成するSC-FDMAシンボルの数は、{2、3、4、7}の何れかである。XのSC-FDMAシンボルから構成されるTTI/sTTIをXシンボルTTIとも称する。下りリンクにおいて、TTI、および、sTTIは、複数のOFDMシンボルから構成されてもよい。
 図5は、本実施形態の下りリンクにおける物理チャネルの割り当ての一例を示す図である。
 sPUCCHの長さ、および、sPUSCHの長さは個別に制御されてもよい。sPUCCHで伝送される情報に基づいて、sPUCCHの長さが決定されてもよい。sPUSCHで伝送される情報に基づいて、sPUCSHの長さが決定されてもよい。
 図6は、本実施形態の上りリンクにおける物理チャネルの割り当ての一例を示す図である。PUCCH600、601、および、sPUCCH602-605に対して、周波数ホッピングが適用される。サブフレーム/TTIにおいて、PUSCH、および、PUCCHは、2×NUL symbのSC-FDMAシンボルにマップされてもよい。4シンボルTTIにおいて、sPUSCHは4つのSC-FDMAシンボルにマップされてもよい。3シンボルTTIにおいて、sPUSCHは3つのSC-FDMAシンボルにマップされてもよい。7シンボルTTIにおいて、sPUCCHは7つのSC-FDMAシンボルにマップされてもよい。XシンボルTTIにおけるXのSC-FDMAシンボルにマップされるsPUSCHを、XシンボルsPUSCHとも称する。XシンボルTTIにおけるXのSC-FDMAシンボルにマップされるsPUCCHを、XシンボルsPUCCHとも称する。
 以下、本発明の端末装置1の装置構成について説明する。
 図7は、本発明における端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107および、送受信アンテナ109を含んで構成される。上位層処理部101は、無線リソース制御部1011、スケジューリング部1013を含んで構成される。受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057とチャネル測定部1059を含んで構成される。送信部107は、符号化部1071、PUSCH生成部1073、PUCCH生成部1075、多重部1077、無線送信部1079と上りリンク参照信号生成部10711を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータを、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101はPDCCHで受信された下りリンク制御情報などに基づき、受信部105、および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理を行なう。例えば、無線リソース制御部1011は、設定されたサービングセルの管理を行なう。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。無線リソース制御部1011は、受信した下りリンクデータの復号に成功した場合には、ACKを生成し送信部107にACKを出力し、受信した下りリンクデータの復号に失敗した場合には、NACKを生成し、送信部107にNACKを出力する。
 上位層処理部101が備えるスケジューリング部1013は、受信部105を介して受信した下りリンク制御情報を記憶する。スケジューリング部1013は、上りリンクグラントを受信したサブフレームから4つ後のサブフレームにおいて、受信された上りリンクグラントに従ってPUSCHを送信するよう、制御部103を介して送信部107を制御する。スケジューリング部1013は、下りリンクグラントを受信したサブフレームにおいて、受信された下りリンクグラントに従ってPDSCHを受信するよう、制御部103を介して受信部105を制御する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ109を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、ディジタル信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号をPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。
 復調部1053は、PDCCH、および、PDSCHに対して、QPSK、16QAM(Quadrature Amplitude Modulation)、64QAM等の変調方式に対する復調を行ない、復号化部1051へ出力する。
 復号化部1051は、下りリンクデータの復号を行い、復号した下りリンクデータを上位層処理部101へ出力する。チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。チャネル測定部1059は、チャネル状態情報を算出し、尚且つ、チャネル状態情報を上位層処理部101へ出力する。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータや上りリンク制御情報を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報と上りリンクデータを符号化し、符号化ビットをPUSCH生成部および/またはPUCCH生成部に出力する。
 図8は、本発明における符号化部1071の構成を示す概略ブロック図である。符号化部1071は、データ符号化部1071a、チャネル状態情報符号化部1071b、HARQ-ACK符号化部1071c、および、多重・インタリーブ部1071dを含む。
 データ符号化部1071aは、上位層101から入力された上りリンクデータaに上りリンクデータから生成されたCRCパリティビットを付加し、当該CRCパリティビットが付加された上りリンクデータに誤り訂正符号化を適用し、上りリンクデータの符号化ビットfを多重・インタリーブ部1071dへ出力する。Aは上りリンクデータのペイロードサイズ(ビット数)である。Fは上りリンクデータの符号化ビット数である。
 チャネル状態情報符号化部1071bは、チャネル状態情報oを符号化する。チャネル状態情報がPUSCHを用いて送信される場合、チャネル状態情報符号化部1071bは、チャネル状態情報の符号化ビットqiを多重・インタリーブ部1071dへ出力する。チャネル状態情報がPUCCHを用いて送信される場合、チャネル状態情報符号化部1071bは、チャネル状態情報の符号化ビットqiをPUCCH生成部1075へ出力する。Oはチャネル状態情報のビット数である。Qはチャネル状態情報の符号化ビット数である。
 HARQ-ACK符号化部1071cは、HARQ-ACKbを符号化する。HARQ-ACKがPUSCHを用いて送信される場合、HARQ-ACK符号化部1071cは、HARQ-ACKの符号化ビットgiを多重・インタリーブ部1071dへ出力する。HARQ-ACKがPUCCHを用いて送信される場合、HARQ-ACK符号化部1071cは、HARQ-ACKの符号化ビットgiをPUCCH生成部1075へ出力する。BはHARQ-ACKのビット数である。GはHARQ-ACKの符号化ビット数である。
 符号化部1071は、SRをPUCCH生成部1075へ出力する。
 多重・インタリーブ部1071dは、上りリンクデータの符号化ビットfi、チャネル状態情報の符号化ビットqi、および/または、HARQ-ACKの符号化ビットgiを多重およびインタリーブし、連結された符号化ビットhiをPUSCH生成部1073へ出力する。
 図9は、本実施形態における符号化変調シンボルのインタリーブの方法の一例を示す図である。符号化変調シンボルは、符号化ビットのグループである。1つの符号化シンボルが変調されることによって1つの変調シンボルが生成される。1つの符号化変調シンボルは、上りリンクデータに対する変調方式の変調次数Qと同じ数の符号化ビットを含む。
 図9において、PUSCH/sPUSCHがマップされるSC-FDMAシンボルの数と同じ数の列がある。ただし、4番目のSC-FDMAシンボルは上りリンク参照信号の送信のために用いられるため、4列目に符号化変調シンボルは配置されない。図9において、上りリンクグラントによって割り当てを示されたPUSCH/sPUSCHのサブキャリアの数と同じ数の行がある。
 PUSCH信号生成部1073において、図9の同一の列に配置される符号化変調シンボルに対応する複数の変調シンボルは、ともに離散フーリエ変換(Transform Precoding)され、DFTされた信号は上りリンクグラントによって無線リソースの割り当てを示されたPUSCH/sPUSCHのリソースエレメントに配置される。i列目の符号化シンボルから生成されたDFTされた信号はi番目のSC-FDMAシンボルに対応するリソースエレメントに配置される。
 PUSCH生成部1073は、符号化部1071から入力された符号化ビットhiを変調して変調シンボルを生成し、変調シンボルをDFTすることによってPUSCH/sPUSCHの信号を生成し、尚且つ、DFTされたPUSCH/sPUSCHの信号を多重部1077へ出力する。
 PUCCH生成部1075は、符号化部1071から入力された符号化ビットqi/gi、および/または、SRに基づいて、PUCCH/sPUCCHの信号を生成し、生成したPUCCH/sPUCCHの信号を多重部1077へ出力する。
 上りリンク参照信号生成部10711は上りリンク参照信号を生成し、生成した上りリンク参照信号を多重部1077へ出力する。
 多重部1075は、制御部103から入力された制御信号に従って、PUSCH生成部1073から入力された信号および/またはPUCCH生成部か1075ら入力された信号、および/または、上りリンク参照信号生成部10711から入力された上りリンク参照信号を、送信アンテナポート毎に上りリンクのリソースエレメントに多重する。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast FourierTransform: IFFT)して、SC-FDMA方式の変調を行い、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
 以下、本発明の基地局装置3の装置構成について説明する。
 図10は、本発明における基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011とスケジューリング部3013を含んで構成される。また、受信部305は、データ復調/復号部3051、制御情報復調/復号部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ、RRCシグナル、MAC CE(Control Element)を生成し、又は上位ノードから取得し、HARQ制御部3013に出力する。また、無線リソース制御部3011は、移動局装置1各々の各種設定情報の管理をする。例えば、無線リソース制御部3011は、移動局装置1に設定したサービングセルの管理などを行なう。
 上位層処理部301が備えるスケジューリング部3013は、移動局装置1に割り当てるPUSCHやPUCCHの無線リソースの管理をしている。スケジューリング部3013は、移動局装置1にPUSCHの無線リソースを割り当てた場合には、PUSCHの無線リソースの割り当てを示す上りリンクグラントを生成し、生成した上りリンクグラントを送信部307へ出力する。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して移動局装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。
 無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部3057は、ディジタル信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各移動局装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。
 多重分離部3055は、分離したPUCCHとPUSCHの信号から、上りリンクデータの変調シンボルと上りリンク制御情報(HARQ-ACK)の変調シンボルを取得する。多重分離部3055は、PUSCHの信号から取得した上りリンクデータの変調シンボルをデータ復調/復号部3051へ出力する。多重分離部3055は、PUCCHの信号またはPUSCHの信号から取得した上りリンク制御情報(HARQ-ACK)の変調シンボルを制御情報復調/復号部3053へ出力する。
 チャネル測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 データ復調/復号部3051は、多重分離部3055から入力された上りリンクデータの変調シンボルから上りリンクデータを復号する。データ復調/復号部3051は、復号された上りリンクデータを上位層処理部301へ出力する。
 制御情報復調/復号部3053は、多重分離部3055から入力されたHARQ-ACKの変調シンボルからHARQ-ACKを復号する。制御情報復調/復号部3053は、復号したHARQ-ACKを上位層処理部301へ出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力された下りリンク制御情報、下りリンクデータを符号化、および変調し、PDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ309を介して移動局装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力された下りリンク制御情報、および、下りリンクデータの符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の変調方式で変調する。
 下りリンク参照信号生成部3079は下りリンク参照信号として生成する。多重部3075は、各チャネルの変調シンボルと下りリンク参照信号を多重する。
 無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: upconvert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。
 端末装置1、および、基地局装置3に含まれる部のそれぞれは、回路として構成されてもよい。
 図11は、本実施形態におけるPUCCH/PUSCH/sPUSCHに対する処理期間の一例を示す図である。図11において、横軸は時間である。Tx1はPUSCH送信である。Tx2からTx14は、sPUSCH送信である。Tx1からTx14は、1つのサブフレームに対応する。
 PUCCH送信処理期間は、PUCCH送信のための送信処理が行われる期間である。UGiはTxiをスケジューリングするために用いられる上りリンクグラントを含むPDCCH/sPDCCHである。RPiは、UGiのための受信処理が行われる期間である。端末装置1は、RPiにおいて上りリンクグラントを含むPDCCH/sPDCCHの復号、および、CRC(Cyclic Redundancy Check)チェックを行う。端末装置1は、CRCチェックの成功に基づいて、自装置宛てのPDCCH/sPDCCHの検出に成功したとみなす。端末装置1がUG1からUG14のそれぞれの検出に成功したとみなすタイミングは異なってもよい。
 TPiは、受信した上りリンクグラントに基づいてTxiのための送信処理が行われる期間である。TPiの長さは、対応するTxiの長さに関連してもよい。対応するTxiの長さが短くなるほど、TPiの長さは短くなってもよい。
 本実施形態における送信処理は、(i)符号化処理、(ii)変調シンボル生成処理、(iii)離散フーリエ変換(Transform Precoding)処理、(iv)リソースエレメント多重処理、(v)ベースバンド信号生成処理などを含んでもよい。
 PUCCH送信は、PUCCHを用いた上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)の送信であってもよい。sPUCCH送信は、sPUCCHを用いた上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)の送信であってもよい。PUSCH送信は、PUSCHを用いたトランスポートブロックの送信であってもよい。sPUSCH送信は、sPUSCHを用いたトランスポートブロックの送信であってもよい。
 1つのサービングセル(1つのキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じSC-FDMAシンボル」において発生した場合、以下の要素Bから要素Lの一部、または、全部に少なくとも基づいて、当該送信の一部はドロップされてもよい。
 1つのサービングセル(1つのキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じサブフレーム」において発生した場合、以下の要素Bから要素Lの一部、または、全部に少なくとも基づいて、当該送信の一部はドロップされてもよい。
 端末装置1は、同じ要素における2つの送信に対する2つの値の差に基づいて、当該送信の一部をドロップしてもよい。
・要素A:送信が行われるサービングセルのセルインデックス(ServCellIndex)
・要素B:送信の帯域幅
・要素C:送信の長さ(SC-FDMAシンボルの数)
・要素D:送信が開始されるSC-FDMAシンボル
・要素E:送信が終了されるSC-FDMAシンボル
・要素F:送信のサブキャリア間隔
・要素G:PUSCH/sPUSCH送信に対応する上りリンクグラントに含まれるフィールドの値
・要素H:送信される上りリンクデータのサイズ(ビット数)
・要素I:送信される上りリンクデータの符号化率
・要素J:送信される上りリンク制御情報のビット数
・要素K:送信される上りリンク制御情報の符号化率
・要素L:送信される上りリンク制御情報のタイプ(HARQ-ACK、CSI、SR)
 要素Aから要素Fのそれぞれにおける送信は、PUCCH送信、sPUCCH送信、PUSCH送信、sPUSCH送信、PDCCH/EPDCCH/sPDCCH送信の一部、または、全部を含んでもよい。要素Aから要素Fにおける送信のそれぞれは、異なるチャネルの送信を含んでもよい。要素Aから要素Fにおける送信のそれぞれは、同じチャネルの送信を含んでもよい。ここで、当該PDCCH/EPDCCH/sPDCCH送信は、PUSCH/sPUSCH送信に対応する上りリンクグラントを含む。
 セルインデックスは、サービングセルを識別するために用いられる。プライマリセルのセルインデックスは‘0’である。セカンダリセルのセルインデックスは‘0’より大きい整数である。セカンダリセルのセルインデックスは、基地局装置3によって送信される情報/パラメータによって示されてもよい。
 1つのサービングセル(1つのキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じSC-FDMAシンボル」において発生した場合、上記の要素Bから要素Lの一部、または、全部に少なくとも基づいて、上りリンク制御情報の送信のために用いられるチャネルが選択されてもよい。ここで、上りリンク制御情報を含むチャネル送信以外の送信はドロップされなくてもよい。
 1つのサービングセル(1つのキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じサブフレーム」において発生した場合、上記の要素Bから要素Lの一部、または、全部に少なくとも基づいて、上りリンク制御情報の送信のために用いられるチャネルが選択されてもよい。ここで、上りリンク制御情報を含むチャネル送信以外の送信はドロップされなくてもよい。
 複数のサービングセル(複数のキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じSC-FDMAシンボル」において発生した場合、上記の要素Aから要素Lの一部、または、全部に少なくとも基づいて、当該送信の一部はドロップされてもよい。
 複数のサービングセル(複数のキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じサブフレーム」において発生した場合、上記の要素Aから要素Lの一部、または、全部に少なくとも基づいて、当該送信の一部はドロップされてもよい。
 複数のサービングセル(複数のキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じSC-FDMAシンボル」において発生した場合、上記の要素Aから要素Lの一部、または、全部に少なくとも基づいて、上りリンク制御情報の送信のために用いられるチャネルが選択されてもよい。ここで、上りリンク制御情報を含むチャネル送信以外の送信はドロップされなくてもよい。
 複数のサービングセル(複数のキャリア)において、PUCCHを用いた上りリンク制御情報の1つまたは複数の送信、sPUCCHを用いた上りリンク制御情報の1つまたは複数の送信、PUSCHを用いた1つまたは複数の送信、および/または、sPUSCHを用いた1つまたは複数の送信が「同じサブフレーム」において発生した場合、上記の要素Aから要素Lの一部、または、全部に少なくとも基づいて、上りリンク制御情報の送信のために用いられるチャネルが選択されてもよい。ここで、上りリンク制御情報を含むチャネル送信以外の送信はドロップされなくてもよい。
 以下、図12から図16を用いて、チャネルのドロップ/選択の例を説明する。
 図12は、本実施形態におけるチャネルのドロップ/選択の一例を示す図である。図12において、プライマリセルにおける同じサブフレーム/同じSC-FDMAシンボルにおいて、PUCCH送信、および、7シンボルsPUSCH送信Tx3が発生する。端末装置1は、7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUCCH送信処理をストップしてもよい。端末装置1は、7シンボルsPUSCH送信Tx3を用いて当該PUCCH送信に対応する上りリンク制御情報を送信してもよい。
 図13は、本実施形態におけるチャネルのドロップ/選択の一例を示す図である。図13において、プライマリセルにおけるサブフレーム/SC-FDMAシンボルにおいて、PUCCH送信、および、2シンボルsPUSCH送信Tx13が発生する。端末装置1は、2シンボルsPUSCH送信Tx13に対応する上りリンクグラントUG13を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUCCH送信が開始されていたとしても、PUCCH送信をストップしてもよい。端末装置1は、2シンボルsPUSCH送信Tx13を用いて当該PUCCH送信に対応する上りリンク制御情報を送信してもよい。端末装置1は、PUCCH送信処理が終了しとしても、2シンボルsPUSCH送信Tx13を用いて当該PUCCH送信に対応する上りリンク制御情報を送信するために、符号化前の上りリンク制御情報をPUCCH送信が完了するまで記憶していてもよい。または、端末装置1は、2シンボルsPUSCH送信Tx13を用いて当該PUCCH送信に対応する上りリンク制御情報を送信しなくてもよい。
 図14は、本実施形態におけるチャネルのドロップ/選択の一例を示す図である。図14において、プライマリセルにおけるサブフレーム/SC-FDMAシンボルにおいて、PUCCH送信、および、7シンボルsPUSCH送信Tx2、Tx3が発生する。ここで、7シンボルsPUSCH送信Tx2、Tx3は、同じSC-FDMAシンボルにおいて発生していない。端末装置1は、7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUCCH送信処理をストップしてもよい。端末装置1は、7シンボルsPUSCH送信Tx2を用いて当該PUCCH送信に対応する上りリンク制御情報を送信してもよい。端末装置1は、7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCHを検出したとしても、7シンボルsPUSCH送信Tx3を用いて当該PUCCH送信に対応する上りリンク制御情報を送信しない。7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCHを検出した後に、端末装置1が7シンボルsPUSCH送信Tx2を用いる上りリンク制御情報の送信を止めるためには、多重・インタリーブ部1071dの処理から送信処理をやり直す必要がある。しかし、7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCHを検出した後に、7シンボルsPUSCH送信Tx2の送信処理を行うための十分な時間はない。
 すなわち、端末装置1は、(i)7シンボルsPUSCH送信Tx2が開始されるSC-FDMAシンボルが、7シンボルsPUSCH送信Tx3が開始されるSC-FDMAシンボルよりも早いこと、(ii)7シンボルsPUSCH送信Tx2が終了されるSC-FDMAシンボルが、7シンボルsPUSCH送信Tx3が終了されるSC-FDMAシンボルよりも早いこと、(iii)7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCH送信が開始されるSC-FDMAシンボルが、7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCH送信が開始されるSC-FDMAシンボルよりも早いこと、および/または、(iv)7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCH送信が終了されるSC-FDMAシンボルが、7シンボルsPUSCH送信Tx3に対応する上りリンクグラントUG3を含むPDCCH/EPDCCH/sPDCCH送信が終了されるSC-FDMAシンボルよりも早いことに基づいて、sPUSCH送信Tx2を選択してもよい。端末装置1は、当該選択したsPUSCH送信Tx2を用いて、上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)を送信してもよい。
 図15は、本実施形態におけるチャネルのドロップ/選択の一例を示す図である。図15において、サブフレーム/SC-FDMAシンボルにおいて、プライマリセルにおけるPUCCH送信、プライマリセルにおけるPUSCH送信Tx0、および、プライマリセルにおけるPUSCH送信Tx3が発生する。図15において、プライマリセルにおけるPUCCH送信、プライマリセルにおけるPUSCH送信Tx0、および、プライマリセルにおけるPUSCH送信Tx3は、同じインデックスのSC-FDMAシンボルにマップされる。端末装置1は、PUSCH送信Tx0に対応する上りリンクグラントUG0を含むPDCCH/EPDCCH/sPDCCH、および/または、PUSCH送信Tx1に対応する上りリンクグラントUG1を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUCCH送信処理をストップしてもよい。上りリンク制御情報が周期的なチャネル状態情報報告、および/または、HARQ-ACKのみを含む場合、端末装置1は、セルインデックスに基づいてPUSCHを選択してもよい。例えば、端末装置1は、セルインデックスが最も小さいプライマリセルにおけるPUSCH送信Tx0を選択してもよい。端末装置1は、選択したPUSCH送信Tx0を用いて、当該PUCCH送信に対応する上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)を送信してもよい。
 すなわち、端末装置1は、サブフレームにおいて複数のPUSCH送信が発生する場合、セルインデックスに基づいてPUSCHを選択してもよい。端末装置1は、当該選択したPUSCH送信を用いて、上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)を送信してもよい。
 図16は、本実施形態におけるチャネルのドロップ/選択の一例を示す図である。図16において、サブフレーム/SC-FDMAシンボルにおいて、プライマリセルにおけるPUCCH送信、プライマリセルにおける7シンボルsPUSCH送信Tx2、および、セカンダリセルにおけるPUSCH送信Tx1が発生する。図16において、プライマリセルにおけるPUCCH送信、プライマリセルにおけるPUSCH送信Tx0、および、プライマリセルにおけるPUSCH送信Tx3は、同じインデックスのSC-FDMAシンボルから開始される。端末装置1は、PUSCH送信Tx1に対応する上りリンクグラントUG1を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUCCH送信処理をストップしてもよい。端末装置1は、PUSCH送信Tx1を用いて当該PUCCH送信に対応する上りリンク制御情報を送信してもよい。端末装置1は、7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCHを検出したとしても、7シンボルsPUSCH送信Tx2を用いて当該PUCCH送信に対応する上りリンク制御情報を送信しない。7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCHを検出した後に、端末装置1がPUSCH送信Tx1を用いる上りリンク制御情報の送信を止めるためには、多重・インタリーブ部1071dの処理から送信処理をやり直す必要がある。しかし、7シンボルsPUSCH送信Tx2に対応する上りリンクグラントUG2を含むPDCCH/EPDCCH/sPDCCHを検出した後に、PUSCH送信Tx1の送信処理を行うための十分な時間はない。
 すなわち、端末装置1は、サブフレームにおいてPUSCH送信、および、sPUSCH送信が発生する場合、セルインデックスに関わらず、PUSCHを選択してもよい。端末装置1は、当該選択したPUSCH送信を用いて、上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)を送信してもよい。すなわち、端末装置1は、PUSCH送信Tx1の長さ、7シンボルsPUSCH送信Tx2の長さ、PUSCH送信Tx1が開始されるSC-FDMAシンボル、および/または、7シンボルsPUSCH送信Tx2が開始されるSC-FDMAシンボルに基づいて、チャネルを選択してもよい。
 ここで、図12から図16の例において、上りリンク制御情報がSRである場合、端末装置1はXシンボルsPUSCH送信、または、PUSCH送信を用いて当該上りリンク制御情報を送信しなくてもよい。
 非周期的なチャネル状態情報報告が行われるサブフレームにおいて、周期的なチャネル状態情報報告がドロップされるかどうかは、上記の要素Aから要素Lの一部、または、全部に少なくとも基づいて決定されてもよい。以下、図12から図16における非周期的なチャネル状態情報報告の一例について説明する。上記で説明した図12から図16の動作に関しては、説明の簡略化のために以下では説明をしない。
 図12において、上りリンクグラントUG3に含まれるフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、周期的なチャネル状態情報の報告はドロップされ、尚且つ、7シンボルsPUSCH送信Tx3を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報が送信されてもよい。
 図13において、上りリンクグラントUG13に含まれるフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、周期的なチャネル状態情報の報告はドロップされ、尚且つ、2シンボルsPUSCH送信Tx13を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報が送信されてもよい。
 図14において、上りリンクグラントUG2に含まれるフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、周期的なチャネル状態情報の報告はドロップされ、尚且つ、7シンボルsPUSCH送信Tx2を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報が送信されてもよい。
 図14において、sPUSCH送信Tx3に対応する上りリンクグラントUG3のフィールドの値が悲周期的なチャネル状態情報報告をトリガーするようにセットされている場合、端末装置1は、sPUSCH送信Tx3を選択し、尚且つ、選択したPUSCH送信Tx3を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報を送信してもよい。ここで、周期的なチャネル状態情報報告はドロップされない。すなわち、PUCCH送信に対応する上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)は、7シンボルsPUSCH送信Tx2を用いて送信されてもよい。
 図15において、上りリンクグラントUG0に含まれるフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、周期的なチャネル状態情報の報告はドロップされ、尚且つ、PUSCH送信Tx0を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報が送信されてもよい。
 図15において、PUSCH送信Tx1に対応する上りリンクグラントUG1のフィールドの値が悲周期的なチャネル状態情報報告をトリガーするようにセットされている場合、端末装置1は、PUSCH送信Tx1を選択し、尚且つ、選択したPUSCH送信Tx1を用いて、上りリンク制御情報(非周期的なチャネル状態情報報告、および/または、HARQ-ACK)を送信してもよい。ここで、周期的なチャネル状態情報報告はドロップされる。すなわち、PUCCH送信に対応する上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)は、PUSCH送信Tx0を用いて送信されない。
 図16において、上りリンクグラントUG1に含まれるフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、周期的なチャネル状態情報の報告はドロップされ、尚且つ、PUSCH送信Tx1を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報が送信されてもよい。
 図16において、sPUSCH送信Tx2に対応する上りリンクグラントUG2のフィールドの値が悲周期的なチャネル状態情報報告をトリガーするようにセットされている場合、端末装置1は、sPUSCH送信Tx2を選択し、尚且つ、選択したPUSCH送信Tx2を用いて、非周期的なチャネル状態情報報告を少なくとも含む上りリンク制御情報を送信してもよい。ここで、周期的なチャネル状態情報報告はドロップされない。すなわち、PUCCH送信に対応する上りリンク制御情報(周期的なチャネル状態情報報告、および/または、HARQ-ACK)は、7シンボルsPUSCH送信Tx1を用いて送信されてもよい。
 本実施形態の端末装置1は、PUCCHおよびPUSCH同時送信が設定されていない。PUCCHおよびPUSCH同時送信が設定されている場合、本実施形態とは異なる処理が適用されてもよい。
 以下、本実施形態における、端末装置1および基地局装置3の種々の態様について説明する。
 (1)本実施形態の第1の態様は、端末装置1であって、1つのサービングセルにおける1つのサブフレームにおける複数のsPUSCHをスケジュールするために用いられる複数の上りリンクグラントを受信する受信部105と、前記複数のsPUSCHのうち、最初に送信が開始される1つを用いて上りリンク制御情報を送信する送信部107と、を備える。
 (2)本実施形態の第1の態様において、前記最初に送信が開始される1つを除く前記複数のsPUSCHを用いて、上りリンク制御情報をともなわない上りリンクデータが送信される。
 (3)本実施形態の第1の態様において、前記複数のsPUSCHは、同時に送信されない。
 (4)本実施形態の第1の態様において、前記上りリンク制御情報は、周期的なチャネル状態情報報告、および/または、HARQ-ACKを含む。
 (5)本実施形態の第2の態様は、基地局装置3であって、1つのサービングセルにおける1つのサブフレームにおける複数のsPUSCHをスケジュールするために用いられる複数の上りリンクグラントを送信する送信部307と、前記複数のsPUSCHのうち、最初に送信が開始される1つを用いて上りリンク制御情報を受信する受信部305と、を備える。
 (6)本実施形態の第2の態様において、前記最初に送信が開始される1つを除く前記複数のsPUSCHを用いて、上りリンク制御情報をともなわない上りリンクデータが受信される。
 (7)本実施形態の第2の態様において、前記複数のsPUSCHは、同時に受信されない。
 (8)本実施形態の第2の態様において、前記上りリンク制御情報は、周期的なチャネル状態情報報告、および/または、HARQ-ACKを含む。
 (9)本実施形態の第3の態様は、端末装置1であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部105と、前記PUSCH、および/または、前記sPUSCHを用いて上りリンク制御情報を送信する送信部107と、を備え、前記送信部107は、第1のサブフレームにおけるプライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおけるセカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する。
 (10)本実施形態の第3の態様において、前記送信部107は、第2のサブフレームにおける前記プライマリセルにおいてPUSCHの送信を行い、尚且つ、前記第2のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第2の場合、前記第2のサブフレームにおける前記プライマリセルにおけるPUSCHを用いて、前記上りリンク制御情報を送信する。
 (11)本実施形態の第3の態様において、前記プライマリセルのセルインデックスは ‘0’であり、前記セカンダリセルのセルインデックスは‘0’よりも大きい整数である。
 (12)本実施形態の第3の態様において、前記上りリンク制御情報は、周期的なチャネル状態情報報告、および/または、HARQ-ACKを含む。
 (13)本実施形態の第3の態様において、前記第1の場合において、前記第1のサブフレームにおける前記プライマリセルにおける前記sPUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされず、前記第1の場合において、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる。
 (14)本実施形態の第3の態様において、前記第2の場合において、前記第2のサブフレームにおける前記プライマリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされ、前記第2の場合において、前記第2のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる。
 (15)本実施形態の第4の態様は、基地局装置3であって、PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部307と、前記PUSCH、および/または、前記sPUSCHを用いて上りリンク制御情報を受信する受信部305と、を備え、前記受信部305は、第1のサブフレームにおけるプライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおけるセカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する。
 (16)本実施形態の第4の態様において、前記受信部305は、第2のサブフレームにおける前記プライマリセルにおいてPUSCHの受信を行い、尚且つ、前記第2のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第2の場合、前記第2のサブフレームにおける前記プライマリセルにおけるPUSCHを用いて、前記上りリンク制御情報を受信する。
 (17)本実施形態の第4の態様において、前記プライマリセルのセルインデックスは‘0’であり、前記セカンダリセルのセルインデックスは‘0’よりも大きい整数である。
 (18)本実施形態の第4の態様において、前記上りリンク制御情報は、周期的なチャネル状態情報報告、および/または、HARQ-ACKを含む。
 (19)本実施形態の第4の態様において、前記第1の場合において、前記第1のサブフレームにおける前記プライマリセルにおける前記sPUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされず、前記第1の場合において、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる。
 (20)本実施形態の第4の態様において、前記第2の場合において、前記第2のサブフレームにおける前記プライマリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされ、前記第2の場合において、前記第2のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる。
 (21)本実施形態の第5の態様は、端末装置1であって、1つのサービングセルにおける1つのサブフレームにおける複数のsPUSCHをスケジュールするために用いられる複数の上りリンクグラントを受信する受信部105と、前記1つのサブフレームにおける前記複数のsPUSCHのうち、最初に送信が開始される1つのsPUSCHを用いて周期的なチャネル状態情報報告を行う送信部107と、を備え、前記送信部107は、前記複数の上りリンクグラントのうちの1つの上りリンクグラントのフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、前記複数のsPUSCHのうち、前記1つの上りリンクグラントに対応するsPUSCHを用いて前記非周期的なチャネル状態情報報告を行い、前記1つの上りリンクグラントに対応する前記1つのsPUSCHが、前記最初に送信が開始される1つのsPUSCHである場合、前記周期的なチャネル状態情報報告はドロップされ、前記1つの上りリンクグラントに対応する前記1つのsPUSCHが、前記最初に送信が開始される1つのsPUSCHではない場合、前記周期的なチャネル状態情報報告はドロップされない。
 (22)本実施形態の第6の態様は、基地局装置3であって、1つのサービングセルにおける1つのサブフレームにおける複数のsPUSCHをスケジュールするために用いられる複数の上りリンクグラントを送信する送信部307と、前記1つのサブフレームにおける前記複数のsPUSCHのうち、最初に受信が開始される1つのsPUSCHを用いて周期的なチャネル状態情報報告の受信を行う受信部305と、を備え、前記受信部305は、前記複数の上りリンクグラントのうちの1つの上りリンクグラントのフィールドの値が非周期的なチャネル状態情報報告をトリガーするようにセットされている場合、前記複数のsPUSCHのうち、前記1つの上りリンクグラントに対応するsPUSCHを用いて前記非周期的なチャネル状態情報報告の受信を行い、前記1つの上りリンクグラントに対応する前記1つのsPUSCHが、前記最初に受信が開始される1つのsPUSCHである場合、前記周期的なチャネル状態情報報告はドロップされ、前記1つの上りリンクグラントに対応する前記1つのsPUSCHが、前記最初に受信が開始される1つのsPUSCHではない場合、前記周期的なチャネル状態情報報告はドロップされない。
 これにより、端末装置は効率的に上りリンク制御情報を送信することができる。また、基地局装置は効率的に上りリンク制御情報を受信することができる。
 本発明に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 (関連出願の相互参照)
 本出願は、2016年4月28日に出願された日本国特許出願:特願2016-090466に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
1(1A、1B、1C) 端末装置
3 基地局装置
101 上位層処理部
103 制御部
105 受信部
107 送信部
301 上位層処理部
303 制御部
305 受信部
307 送信部
1011 無線リソース制御部
1013 スケジューリング部
3011 無線リソース制御部
3013 スケジューリング部

Claims (16)

  1.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信部と、
     上りリンク制御情報を送信する送信部と、を備え、
     前記送信部は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する
     端末装置。
  2.  前記送信部は、第2のサブフレームにおける前記プライマリセルにおいてPUSCHの送信を行い、尚且つ、前記第2のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第2の場合、前記第2のサブフレームにおける前記プライマリセルにおけるPUSCHを用いて、前記上りリンク制御情報を送信する
     請求項1に記載の端末装置。
  3.  前記プライマリセルのセルインデックスは‘0’であり、前記セカンダリセルのセルインデックスは‘0’よりも大きい整数である
     請求項1に記載の端末装置。
  4.  前記上りリンク制御情報は、周期的なチャネル状態情報報告である
     請求項2に記載の端末装置。
  5.  前記第1の場合において、前記第1のサブフレームにおける前記プライマリセルにおける前記sPUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされず、
     前記第1の場合において、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる
     請求項4に記載の端末装置。
  6.  前記第2の場合において、前記第2のサブフレームにおける前記プライマリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされ、
     前記第2の場合において、前記第2のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる
     請求項4に記載の端末装置。
  7.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて端末装置と通信する基地局装置であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信部と、
     上りリンク制御情報を受信する受信部と、を備え、
     前記受信部は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する
     基地局装置。
  8.  前記受信部は、第2のサブフレームにおける前記プライマリセルにおいてPUSCHの受信を行い、尚且つ、前記第2のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第2の場合、前記第2のサブフレームにおける前記プライマリセルにおけるPUSCHを用いて、前記上りリンク制御情報を受信する
     請求項7に記載の基地局装置。
  9.  前記プライマリセルのセルインデックスは‘0’であり、前記セカンダリセルのセルインデックスは‘0’よりも大きい整数である
     請求項7に記載の基地局装置。
  10.  前記上りリンク制御情報は、周期的なチャネル状態情報報告である
     請求項8に記載の基地局装置。
  11.  前記第1の場合において、前記第1のサブフレームにおける前記プライマリセルにおける前記sPUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされず、
     前記第1の場合において、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる
     請求項10に記載の基地局装置。
  12.  前記第2の場合において、前記第2のサブフレームにおける前記プライマリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされ、
     前記第2の場合において、前記第2のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、非周期的なチャネル状態情報報告が行われるならば、前記周期的なチャネル状態情報報告はドロップされる
     請求項10に記載の基地局装置。
  13.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置に用いられる通信方法であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信し、
     上りリンク制御情報を送信し、
     第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する
     通信方法。
  14.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する基地局装置に用いられる通信方法であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信し、
     上りリンク制御情報を受信し、
     第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する
     通信方法。
  15.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する端末装置に実装される集積回路であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを受信する受信回路と、
     上りリンク制御情報を送信する送信回路と、を備え、
     前記送信回路は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの送信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの送信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を送信する
     集積回路。
  16.  1つのプライマリセル、および、1つのセカンダリセルを含む複数のサービングセルを用いて基地局装置と通信する基地局装置に実装される集積回路であって、
     PUSCHをスケジュールするために用いられる上りリンクグラントと、sPUSCHをスケジュールするために用いられる上りリンクグラントを送信する送信回路と、
     上りリンク制御情報を受信する受信回路と、を備え、
     前記受信回路は、第1のサブフレームにおける前記プライマリセルにおいてsPUSCHの受信を行い、尚且つ、前記第1のサブフレームにおける前記セカンダリセルにおいてPUSCHの受信を行う第1の場合、前記第1のサブフレームにおける前記セカンダリセルにおける前記PUSCHを用いて、前記上りリンク制御情報を受信する
     集積回路。
PCT/JP2017/015830 2016-04-28 2017-04-20 端末装置、基地局装置、通信方法、および、集積回路 WO2017188107A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/096,682 US10680786B2 (en) 2016-04-28 2017-04-20 Terminal apparatus, base station apparatus, communication method, and integrated circuit
KR1020187021769A KR102325600B1 (ko) 2016-04-28 2017-04-20 단말 장치, 기지국 장치, 통신 방법 및 집적 회로
EP17789390.6A EP3451769B1 (en) 2016-04-28 2017-04-20 Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN201780014436.8A CN109076520B (zh) 2016-04-28 2017-04-20 终端装置、基站装置、通信方法以及集成电路
RU2018139856A RU2018139856A (ru) 2016-04-28 2017-04-20 Терминальное устройство, устройство базовой станции, способ связи и интегральная схема

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-090466 2016-04-28
JP2016090466A JP2019110359A (ja) 2016-04-28 2016-04-28 端末装置、基地局装置、通信方法、および、集積回路

Publications (1)

Publication Number Publication Date
WO2017188107A1 true WO2017188107A1 (ja) 2017-11-02

Family

ID=60161348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015830 WO2017188107A1 (ja) 2016-04-28 2017-04-20 端末装置、基地局装置、通信方法、および、集積回路

Country Status (7)

Country Link
US (1) US10680786B2 (ja)
EP (1) EP3451769B1 (ja)
JP (1) JP2019110359A (ja)
KR (1) KR102325600B1 (ja)
CN (1) CN109076520B (ja)
RU (1) RU2018139856A (ja)
WO (1) WO2017188107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4072061A1 (en) * 2018-01-12 2022-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for information transmission

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110358A (ja) * 2016-04-28 2019-07-04 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
WO2019031998A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) ORDER INFORMATION CODE RATE
US11863315B2 (en) * 2017-12-04 2024-01-02 Qualcomm Incorporated Techniques and apparatuses for avoiding collisions on an uplink data channel and a cell-specific or UE-specific uplink control channel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641577B (zh) * 2012-09-19 2018-03-02 Lg电子株式会社 发送上行链路控制信息的方法和装置
US10278091B2 (en) * 2013-12-04 2019-04-30 Lg Electronics Inc. Method for steering traffic in wireless communication system and device using same
US10028235B2 (en) * 2014-08-05 2018-07-17 Lg Electronics Inc. Method for performing transmission power control in wireless communication system and device therefor
US10299235B2 (en) * 2014-09-05 2019-05-21 Lg Electronics Inc. Method for performing communication between devices in wireless communication system and device for performing same
US9980257B2 (en) * 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
WO2016064048A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
EP4145757A1 (en) * 2015-01-28 2023-03-08 Interdigital Patent Holdings, Inc. Triggering aperiodic sounding reference signals
WO2016119198A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission
US10477578B2 (en) * 2015-03-24 2019-11-12 Lg Electronics Inc. Uplink data transmission method and user equipment, and uplink data reception method and base station
US10608730B2 (en) * 2015-05-15 2020-03-31 Sony Corporation Mobile communications system, communications terminals and methods for coordinating relay communications
CN108028747A (zh) * 2015-08-25 2018-05-11 瑞士优北罗股份有限公司 调制解调器装置、通信***和处理子载波的方法
WO2017099832A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Multi-subframe uplink scheduling in unlicensed spectrum

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Physical layer aspects for PUSCH for short TTI", 3GPP TSG-RAN WG1#84B R1- 163320, 15 April 2016 (2016-04-15), XP051079810, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/> *
HUAWEI ET AL.: "Views on TTI length", 3GPP TSG-RAN WG1#84B R1-162108, 15 April 2016 (2016-04-15), XP051079955, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/> *
NOKIA ET AL.: "WF on sTTI operation", 3GPP TSG- RAN WG1#84B R1-163724, 15 April 2016 (2016-04-15), XP051088715, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/> *
NTT DOCOMO, INC.: "Discussions on TTI shortening", 3GPP TSG-RAN WG1#84 R1- 160966, 19 February 2016 (2016-02-19), XP051063955, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/> *
See also references of EP3451769A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4072061A1 (en) * 2018-01-12 2022-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for information transmission

Also Published As

Publication number Publication date
EP3451769B1 (en) 2021-03-31
RU2018139856A3 (ja) 2020-06-19
KR102325600B1 (ko) 2021-11-12
US10680786B2 (en) 2020-06-09
EP3451769A4 (en) 2019-11-13
JP2019110359A (ja) 2019-07-04
KR20180137476A (ko) 2018-12-27
EP3451769A1 (en) 2019-03-06
CN109076520B (zh) 2022-11-01
US20190280842A1 (en) 2019-09-12
RU2018139856A (ru) 2020-05-28
CN109076520A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017187810A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2015107850A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2015002237A1 (ja) 端末装置、基地局装置、集積回路、および通信方法
JP6417599B2 (ja) 端末装置、無線通信方法、および集積回路
JP6732922B2 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6260031B2 (ja) ユーザ装置、基地局装置、集積回路、および、通信方法
WO2016175172A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017188075A1 (ja) 端末装置、基地局装置、および、通信方法
TW201924476A (zh) 終端裝置、基地台裝置、及通訊方法
WO2017188107A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017188188A1 (ja) 端末装置、基地局装置、および通信方法
WO2017195623A1 (ja) 端末装置、通信方法、および、集積回路
WO2018051702A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6332643B2 (ja) 端末装置、集積回路、および通信方法
US11051318B2 (en) Terminal apparatus, base station apparatus, and communication method
WO2019117253A1 (ja) 端末装置、基地局装置、および、通信方法
JP2018196077A (ja) 端末装置、基地局装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187021769

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789390

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017789390

Country of ref document: EP

Effective date: 20181128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP