WO2017188073A1 - 管理装置および電源システム - Google Patents

管理装置および電源システム Download PDF

Info

Publication number
WO2017188073A1
WO2017188073A1 PCT/JP2017/015644 JP2017015644W WO2017188073A1 WO 2017188073 A1 WO2017188073 A1 WO 2017188073A1 JP 2017015644 W JP2017015644 W JP 2017015644W WO 2017188073 A1 WO2017188073 A1 WO 2017188073A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage detection
power supply
cells
detection circuit
circuit
Prior art date
Application number
PCT/JP2017/015644
Other languages
English (en)
French (fr)
Inventor
公彦 古川
淳 朝倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2018514523A priority Critical patent/JP6869966B2/ja
Priority to CN201780026155.4A priority patent/CN109247036B/zh
Priority to US16/095,888 priority patent/US11196102B2/en
Publication of WO2017188073A1 publication Critical patent/WO2017188073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a management device that manages the state of a power storage module, and a power supply system.
  • HV hybrid vehicles
  • PSV plug-in hybrid vehicles
  • EV electric vehicles
  • the operating power supply of the voltage detection circuit is often supplied from both ends of the assembled battery to be detected in order to simplify the power supply circuit.
  • a design method using both the highest and lowest voltage detection lines of a plurality of cells constituting the assembled battery and the positive and negative power supply lines, and a design method of wiring individually are conceivable.
  • the number of wirings can be reduced and the circuit configuration can be simplified.
  • the latter design method since the operating current of the voltage detection circuit does not flow through the highest and lowest voltage detection lines, it is possible to suppress a decrease in detection accuracy of the highest and lowest node voltages. Further, even when the uppermost / lowermost voltage detection line is disconnected, the power supply to the voltage detection circuit can be continued.
  • the voltage detection circuit Even if the terminal voltage of the voltage detection circuit to which the voltage detection line is connected drops due to the disconnection of the voltage detection line, the voltage detection circuit immediately determines whether the voltage detection line is disconnected or the corresponding cell voltage has dropped. Can not do it. Therefore, there is a method of confirming whether or not a disconnection has occurred by making an equalization circuit provided between the voltage detection line and the voltage detection line adjacent to the voltage detection line conductive and observing a voltage change of the voltage detection line. . Since this method assumes that the equalization circuit is normal, it is necessary to detect a failure of the equalization circuit itself.
  • a configuration in which the voltage detection circuit is made redundant in preparation for a failure of the voltage detection circuit itself is also used. By comparing the detection values of the plurality of voltage detection circuits, a failure of the voltage detection circuit or a disconnection of the voltage detection line can be detected.
  • the present invention has been made in view of such a situation, and an object of the present invention is to disconnect the lowest voltage detection line when the voltage detection circuit for detecting each voltage of a plurality of cells connected in series is made redundant.
  • the object is to provide a technique for easily detecting the above.
  • a management device is a first voltage that is connected to each node of a plurality of cells connected in series by a voltage detection line and detects each voltage of the plurality of cells.
  • a detection circuit; and a second voltage detection circuit that is connected to each node of the plurality of cells by a voltage detection line and detects a voltage of each of the plurality of cells.
  • the operation power of the first voltage detection circuit and the second voltage detection circuit is supplied from both ends of the plurality of cells, respectively, and the lowest voltage node of the plurality of cells and the first voltage detection circuit are Two voltage detection lines and a negative power supply line are connected. Between the lowest node of the plurality of cells and the second voltage detection circuit, one voltage detection line and a negative power supply line are used. Connected by wiring.
  • the disconnection of the lowest voltage detection line can be easily detected.
  • FIG. It is a figure for demonstrating the power supply system which concerns on the comparative example 1.
  • FIG. It is a figure for demonstrating the power supply system which concerns on the comparative example 2.
  • FIG. It is a figure for demonstrating the power supply system which concerns on the comparative example 3.
  • FIG. It is a figure for demonstrating the power supply system which concerns on embodiment of this invention.
  • FIG. 1 is a diagram for explaining a power supply system 1 according to a comparative example 1.
  • the power supply system 1 includes a power storage module 10 and a management device 30.
  • the power storage module 10 includes a plurality of cells connected in series.
  • As the cell a lithium ion battery cell, a nickel metal hydride battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • FIG. 1 illustrates an example in which an assembled battery including eight lithium ion battery cells (first cell S1 to eighth cell S8) connected in series is used.
  • the management device 30 includes an equalization circuit, an input filter, a cell voltage detection circuit 31, and a control circuit 32, which are mounted on a printed wiring board.
  • the cell voltage detection circuit 31 is connected to each node of the plurality of cells S1 to S8 connected in series by a plurality of voltage detection lines L1 to L9, detects a voltage between adjacent voltage detection lines, and detects each cell S1 to S8. The voltage of is detected.
  • the cell voltage detection circuit 31 is configured by, for example, an ASIC (Application Specific Integrated Circuit) which is a dedicated custom IC.
  • the cell voltage detection circuit 31 transmits the detected voltages of the cells S1 to S8 to the control circuit 32.
  • a wire harness is connected to each node of the plurality of cells S1-S8 of the power storage module 10, and a connector at the tip of each wire harness is attached to each connector of the management device 30 mounted on the printed wiring board. That is, the power storage module 10 and the management device 30 are electrically connected via the harness connector 20.
  • Resistors R1-R9 are respectively inserted into the plurality of voltage detection lines L1-L9, and capacitors C1-C8 are respectively connected between two adjacent voltage detection lines. Resistors R1-R9 and capacitors C1-C8 constitute an input filter (low-pass filter), and have a function of stabilizing the voltage input to the cell voltage detection circuit 31.
  • the connectors of the management device 30 and the detection terminals of the cell voltage detection circuit 31 are connected by a plurality of voltage detection lines L1-L9.
  • An equalizing circuit is connected between two adjacent voltage detection lines.
  • the equalizing circuit is constituted by a series circuit of discharge resistors R11-R18 and discharge switches Q1-Q8.
  • the discharge switches Q1-Q8 are constituted by transistors, for example.
  • the control circuit 32 executes equalization control based on the voltages of the plurality of cells S1 to S8 received from the cell voltage detection circuit 31. Specifically, the voltage of the other cell is adjusted to the voltage of the cell having the lowest voltage among the plurality of cells S1-S8. The control circuit 32 turns on the discharge switch of the equalization circuit connected in parallel with the other cell to discharge the other cell. When the voltage of the other cell drops to the voltage of the lowest voltage, the discharge switch of the equalization circuit connected in parallel with the other cell is turned off.
  • the control circuit 32 is constituted by a microprocessor, for example.
  • the operating power supply of the cell voltage detection circuit 31 is supplied from the power storage module 10 to be monitored in order to simplify the power supply circuit.
  • the cell voltage detection circuit 31 receives power supply from a power source other than the power storage module 10, an insulation process is required, so that the circuit becomes large and the cost increases.
  • the uppermost node of the plurality of cells S1 to S8 constituting the power storage module 10 and the cell voltage detection circuit 31 are connected by two lines, the first voltage detection line L1 and the positive power supply line L0. is doing.
  • the lowest voltage node of the plurality of cells S1-S8 and the cell voltage detection circuit 31 are connected by two lines, a ninth voltage detection line L9 and a negative power supply line L10.
  • an ESD (Electro-StaticStatDischarge) protection diode D1 is provided between the ninth detection terminal to which the ninth voltage detection line L9 is connected and the negative power supply terminal to which the negative power supply line L10 is connected. Connected. Although not shown, an ESD protection diode is also connected between the positive power supply terminal to which the positive power supply line L0 is connected and the first detection terminal to which the first voltage detection line L1 is connected. These ESD protection diodes are generally pre-installed during IC manufacture.
  • disconnection is not limited to physical wiring disconnection but includes electrical disconnection).
  • the cell voltage detection circuit 31 cannot correctly detect the cell voltage.
  • cell state monitoring and equalization control by the control circuit 32 cannot be performed correctly.
  • the equalization circuit usually has a function to detect a disconnection state as an abnormal voltage by driving an equalization circuit. For example, after the equalization circuit is turned on, it is determined that the voltage detection line is disconnected when the cell voltage greatly decreases, and when the cell voltage hardly changes, it is determined that the SOC of the cell is decreased.
  • a separate fault detection circuit for the equalization circuit itself is required. A failure of the equalization circuit cannot be detected only by monitoring the cell voltage by the cell voltage detection circuit 31.
  • FIG. 2 is a diagram for explaining the power supply system 1 according to the comparative example 2.
  • a multiplexer or an AD converter is often used for voltage measurement.
  • a slight leakage current usually occurs in the direction from the potential of each detection terminal of the cell voltage detection circuit 31 to the ground potential (see I1 in FIG. 2).
  • the leakage current is usually sufficiently smaller than 1 uA, and is designed so as not to cause a significant detection error even when a filter resistance of about several k ⁇ is used.
  • the leakage current I1 charges the second capacitor C2 constituting the input filter of the third detection terminal, and discharges the third capacitor C3.
  • the potential of the third detection terminal gradually decreases, and the voltage V2 between the second detection terminal and the third detection terminal is detected to be larger than the actual voltage of the second cell S2, and conversely with the third detection terminal.
  • the voltage V3 between the fourth detection terminals is detected smaller than the actual voltage of the third cell S3.
  • the second cell S2 is determined to be overcharged and the third cell S3 is determined to be overdischarged, and the power supply system 1 is stopped by detecting an abnormality.
  • the leakage current is generated with respect to the ground potential, the leakage current does not flow from the potential of the ninth detection terminal in the cell voltage detection circuit 31 which is the same potential as the ground potential. Therefore, even if the ninth voltage detection line L9 is disconnected, a voltage change does not occur, so that the disconnection of the ninth voltage detection line L9 is not detected.
  • the voltage V8 between the eighth detection terminal and the ninth detection terminal may be intentionally changed to an abnormal voltage. It is done. However, additional circuit elements are required. Also, a failure detection circuit for the current source I2 itself is required. When the failure detection circuit of the current source I2 is not provided, even if the ninth voltage detection line L9 is disconnected during the failure of the current source I2, a voltage change between the eighth detection terminal and the ninth detection terminal does not occur. Neither the failure of the current source I2 nor the disconnection of the ninth voltage detection line L9 can be detected.
  • the current source I2 for detecting disconnection of the ninth voltage detection line L9 is illustrated, but a current source is also mounted for detecting disconnection of other voltage detection lines.
  • a current source is also mounted for detecting disconnection of other voltage detection lines.
  • this method has a property that the disconnection is easier to detect in the higher voltage detection line, and the disconnection is more difficult to detect in the lower voltage detection line. As described above, in the lowest voltage detection line, disconnection cannot be detected unless a current source is added.
  • FIG. 3 is a diagram for explaining the power supply system 1 according to the comparative example 3.
  • the cell voltage detection circuit 31 is made redundant.
  • the equalizing circuit is omitted to simplify the drawing.
  • the first cell voltage detection circuit 31a is a main measurement circuit
  • the second cell voltage detection circuit 31b is a redundant measurement circuit.
  • the main measurement circuit is designed with high specifications in order to control the power supply system 1 with high accuracy.
  • the redundant measurement circuit is basically provided to check whether the main measurement circuit is functioning normally, and is designed to have a relatively low specification as compared with the main measurement circuit. For example, the resolution of the AD converter mounted on the redundant measurement circuit can be suppressed lower than that of the AD converter mounted on the main measurement circuit.
  • the detection cycle of the redundant measurement circuit may be longer than that of the main measurement circuit. When the detection cycle is lengthened, the response to a sudden change is lowered, but the power consumption is also suppressed.
  • the redundant measurement circuit is not mainly intended for cell SOC management and equalization control, but is mainly intended for detection of a failure in the main measurement circuit and detection of overcharge / overdischarge of the cell. Therefore, the specification can be allowed to be lower than the main measurement circuit, thereby reducing the circuit cost and current consumption.
  • the first cell voltage detection circuit 31a transmits the detected voltage of each cell S1-S8 to the control circuit 32
  • the second cell voltage detection circuit 31b also transmits the detected voltage of each cell S1-S8 to the control circuit 32.
  • the control circuit 32 compares the voltage of each cell S1-S8 received from the first cell voltage detection circuit 31a with the voltage of each cell S1-S8 received from the second cell voltage detection circuit 31b. Thereby, a failure of the first cell voltage detection circuit 31a or the second cell voltage detection circuit 31b can be detected.
  • the harness connector 20 is mounted alone even if the cell voltage detection circuit 31 is made redundant. Since the harness / connector 20 has a large mounting space / cost unlike an electronic component, the positive power supply line L0, the plurality of voltage detection lines L1-L9, and the negative power supply line L10 are shown in FIG. Each branch is divided into two on the printed wiring board after 20. If redundancy is made from the stage of the wire harness, it is necessary to double the number of wire harnesses, and the number of cells increases as the number of cells in series increases.
  • FIG. 4 is a diagram for explaining the power supply system 1 according to the embodiment of the present invention.
  • the lowest node of the plurality of cells S1 to S8 and the first cell voltage detection circuit 31a are connected by two lines, a ninth voltage detection line L9 and a negative power supply line L10.
  • the lowest node of the plurality of cells S1-S8 and the second cell voltage detection circuit 31b are connected by one negative power supply line L10 that is also used as a voltage detection line.
  • the ninth detection terminal of the second cell voltage detection circuit 31b is connected to the ground via a ninth resistor R9b.
  • the ninth detection terminal of the main measurement circuit (first cell voltage detection circuit 31a) is indefinite (floating), but the redundant measurement circuit (second cell voltage detection circuit 31b).
  • the ninth detection terminal can continuously detect the voltage at the lowest node of the plurality of cells S1-S8. Therefore, even when overcharge / overdischarge occurs in the eighth cell S8, the redundant measurement circuit detects overcharge / overdischarge of the eighth cell S8 and is protected by the control circuit 32.
  • the main measurement circuit detects the voltage of the eighth cell S8 using the ninth voltage detection line L9 in which the operating current of the main measurement circuit and the redundant measurement circuit does not flow. Accordingly, while the ninth voltage detection line L9 is not disconnected, the voltage of the eighth cell S8 is detected with high accuracy by the main measurement circuit, and the power supply system 1 is controlled with high accuracy based on the voltage.
  • the redundant measurement circuit detects the voltage of the eighth cell S8 using the negative power supply line L10. Since the redundant measurement circuit is basically required to detect overcharge / overdischarge, a small detection error caused by using the negative power supply line L10 is allowed.
  • the uppermost node of the plurality of cells S1-S8 and the first cell voltage detection circuit 31a are connected by the first voltage detection line L1 and the positive power supply line L0. Similarly, the uppermost node of the plurality of cells S1-S8 and the first cell voltage detection circuit 31a are also connected by the first voltage detection line L1 and the positive power supply line L0.
  • the disconnection of the first voltage detection line L1 is easily detected. Accordingly, one of the first cell voltage detection circuit 31a and the second cell voltage detection circuit 31b and the uppermost node of the plurality of cells S1 to S8 are connected to a single voltage detection line and a positive power supply line. There is little need to connect by wiring. However, even if the positive power supply line L0 is disconnected, the first cell voltage detection circuit 31a and the first cell voltage detection circuit 31a and the second cell voltage detection circuit 31b are provided for the purpose of securing the power supply of either the first cell voltage detection circuit 31a or the second cell voltage detection circuit 31b. A configuration in which one of the second cell voltage detection circuits 31b (for example, the second cell voltage detection circuit 31b) and the uppermost node are connected by a single wiring that serves both as a voltage detection line and a positive power supply line. It may be used.
  • the cell voltage detection circuit 31 by making the cell voltage detection circuit 31 redundant, it is possible to monitor a plurality of cells S1-S8 by both the main measurement circuit and the redundant measurement circuit, thereby making it safer.
  • the power supply system 1 can be constructed.
  • a special disconnection detection circuit is added to the ninth voltage detection line L9 by changing the connection form between the main measurement circuit and the redundant measurement circuit and the lowest node of the plurality of cells S1-S8. And can be easily detected. Even if the negative power supply line L10 is disconnected, the power supply of the main measurement circuit is secured by providing the ESD protection diode D1, so that a fail-safe operation can be performed. As described above, high reliability can be obtained while ensuring the safety of the power supply system 1.
  • the example of reducing the specification of the redundant measurement circuit from the specification of the main measurement circuit to balance the detection accuracy and the cost is shown.
  • the specification of the main measurement circuit and the redundant measurement circuit is made common Good. If both are designed with high specifications, cell SOC management and equalization control can be performed with high accuracy based on the detection value of the redundant measurement circuit.
  • the example which uses the power supply system 1 for a vehicle power supply device was assumed in the above-mentioned embodiment, it is not limited to a vehicle-mounted application, but for other uses such as an aircraft power supply device, a ship power supply device, a stationary power storage system, etc. Is also available.
  • the ESD protection diode D1 can be achieved by mounting a normal diode in a place where an equivalent effect can be obtained.
  • the first voltage detection line L1 is easily detected when it is disconnected.
  • the connection of the first resistor R1b is performed in the same manner as the connection method of the ninth resistor R9b. It may be connected to a positive power supply line.
  • a first voltage detection circuit (S1) is connected to each node of a plurality of cells (S1-S8) connected in series by voltage detection lines (L1-L9), and detects a voltage of each of the plurality of cells (S1-S8).
  • a second voltage detection circuit (31b) connected to each node of the plurality of cells (S1-S8) by a voltage detection line (L1-L9) and detecting a voltage of each of the plurality of cells (S1-S8); With The operation power of the first voltage detection circuit (31a) and the second voltage detection circuit (31b) is supplied from both ends of the plurality of cells (S1-S8), Between the lowest node of the plurality of cells (S1-S8) and the first voltage detection circuit (31a), the voltage detection line (L9) and the negative power supply line (L10) are connected.
  • the lowermost node of the plurality of cells (S1-S8) and the second voltage detection circuit (31b) are connected by a single wiring (L10) that serves both as the voltage detection line and the negative power supply line.
  • the The management apparatus (30) characterized by the above-mentioned. According to this, disconnection of the voltage detection line (L9) connected to the lowest node of the plurality of cells (S1-S8) can be easily detected.
  • the uppermost node of the plurality of cells (S1-S8) and the first voltage detection circuit (31a) are connected by the two voltage detection lines (L1) and the positive power supply line (L0).
  • the uppermost node of the plurality of cells (S1-S8) and the first voltage detection circuit (31a) are connected by the two voltage detection lines (L1) and the positive power supply line (L0).
  • the uppermost node of the plurality of cells (S1-S8) and the second voltage detection circuit (31b) are connected by the voltage detection line (L1) and the positive power supply line (L0).
  • the management apparatus (30) according to item 1 characterized in that: According to this, it is possible to suppress a decrease in voltage detection accuracy of the uppermost cell (S1) in the first voltage detection circuit (31a) and the second voltage detection circuit (31b).
  • a wire harness is connected to each node of the plurality of cells (S1-S8), and a connector at the tip of each wire harness is connected to each connector of the management device (30), In the management device (30), the wiring connected to each node of the plurality of cells (S1-S8) is branched.
  • the management device (30) according to any one of items 1 to 3, characterized in that: According to this, the increase in the wire harness connector due to redundancy can be suppressed.
  • the first voltage detection circuit (31a) is a main measurement circuit
  • the second voltage detection circuit (31b) is a redundant measurement circuit whose specification is lower than that of the first voltage detection circuit (31a).
  • the management apparatus (30) according to any one of items 1 to 5, characterized in that: According to this, it is possible to achieve a balance between detection accuracy and cost.
  • the management device (30) according to any one of items 1 to 6 for managing the power storage module (10);
  • a power supply system (1) comprising: According to this, disconnection of the voltage detection line (L9) connected to the lowest node of the plurality of cells (S1-S8) can be easily detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Protection Of Static Devices (AREA)

Abstract

直列接続された複数のセルの各電圧を検出するための電圧検出回路を冗長化した場合において、最下位の電圧検出線の断線を簡単に検出できるように、第1電圧検出回路(31a)および第2電圧検出回路(31b)の動作電源は、直列接続された複数のセル(S1-S8)の両端からそれぞれ供給される。複数のセル(S1-S8)の最下位のノードと第1電圧検出回路(31a)の間は、電圧検出線(L9)と負電源供給線(L10)の2本で接続される。複数のセル(S1-S8)の最下位のノードと第2電圧検出回路(31b)の間は、電圧検出線と負電源供給線を兼用する1本の配線(L10)で接続される。

Description

管理装置および電源システム
 本発明は、蓄電モジュールの状態を管理する管理装置、及び電源システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。
車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。
 リチウムイオン電池は常用領域と使用禁止領域が近接しているため、他の種類の電池より厳格な電圧管理が必要である。複数のリチウムイオン電池セルが直列に接続された組電池を使用する場合、各セルの電圧を検出するための電圧検出回路が設けられる。複数のセルの各ノードと電圧検出回路は、複数の電圧検出線で接続される(例えば、特許文献1、2参照)。検出されたセル電圧は、SOC(State Of Charge)管理、均等化制御などに使用される。
 電圧検出回路の動作電源は、電源回路の簡素化のため、検出対象の組電池の両端から供給を受ける構成が多い。この構成において、組電池を構成する複数のセルの最上位・最下位の電圧検出線と、正・負電源供給線を兼用する設計方法と、個別に配線する設計方法が考えられる。前者の設計方法では配線の数を減らすことができ、回路構成を簡素化することができる。一方、後者の設計方法では、最上位・最下位の電圧検出線を電圧検出回路の動作電流が流れないため、最上位・最下位のノード電圧の検出精度が低下することを抑えることができる。また最上位/最下位の電圧検出線が断線した場合でも、電圧検出回路への電源供給を継続することができる。
 電圧検出線の断線により当該電圧検出線が接続された電圧検出回路の端子電圧が低下した場合でも、電圧検出回路は当該電圧検出線が断線したのか、該当するセル電圧が低下したのか直ぐには判定することができない。そこで、当該電圧検出線とそれに隣接する電圧検出線間に設けられた均等化回路を導通させて、当該電圧検出線の電圧変化を見ることにより断線が発生したか否かを確認する方法がある。当該方法では均等化回路が正常であることを前提とするため、均等化回路自身の故障検出が必要となる。
特開2013-50312号公報 特開2013-172544号公報
 電圧検出回路自身の故障に備えて、電圧検出回路を冗長化する構成も一般に用いられている。複数の電圧検出回路の検出値を比較することにより、電圧検出回路の故障や電圧検出線の断線を検出することができる。
 本発明はこうした状況に鑑みなされたものであり、その目的は、直列接続された複数のセルの各電圧を検出するための電圧検出回路を冗長化した場合において、最下位の電圧検出線の断線を簡単に検出する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の管理装置は、直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する第1電圧検出回路と、前記複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する第2電圧検出回路と、を備える。前記第1電圧検出回路および前記第2電圧検出回路の動作電源は、前記複数のセルの両端からそれぞれ供給され、前記複数のセルの最下位のノードと前記第1電圧検出回路の間は、前記電圧検出線と負電源供給線の2本で接続され、前記複数のセルの最下位のノードと前記第2電圧検出回路の間は、前記電圧検出線と負電源供給線を兼用する1本の配線で接続される。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、直列接続された複数のセルの各電圧を検出するための電圧検出回路を冗長化した場合において、最下位の電圧検出線の断線を簡単に検出することができる。
比較例1に係る電源システムを説明するための図である。 比較例2に係る電源システムを説明するための図である。 比較例3に係る電源システムを説明するための図である。 本発明の実施の形態に係る電源システムを説明するための図である。
 図1は、比較例1に係る電源システム1を説明するための図である。電源システム1は、蓄電モジュール10及び管理装置30を備える。蓄電モジュール10は、直列接続された複数のセルを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。図1では、8個のリチウムイオン電池セル(第1セルS1-第8セルS8)が直列に接続されて構成された組電池を使用する例を描いている。
 管理装置30は、均等化回路、入力フィルタ、セル電圧検出回路31及び制御回路32を含み、それらはプリント配線基板上に実装される。セル電圧検出回路31は、直列接続された複数のセルS1-S8の各ノードと複数の電圧検出線L1-L9で接続され、隣接する電圧検出線間の電圧を検出して各セルS1-S8の電圧を検出する。セル電圧検出回路31は例えば、専用のカスタムICであるASIC(Application Specific Integrated Circuit)により構成される。セル電圧検出回路31は、検出した各セルS1-S8の電圧を制御回路32に送信する。
 蓄電モジュール10の複数のセルS1-S8の各ノードにはワイヤーハーネスが接続され、各ワイヤーハーネスの先端のコネクタが、プリント配線基板に実装された管理装置30の各コネクタに装着される。即ち、蓄電モジュール10と管理装置30間は、ハーネス・コネクタ20を介して電気的に接続される。
 複数の電圧検出線L1-L9にそれぞれ抵抗R1-R9が挿入され、隣接する2本の電圧検出線間にそれぞれコンデンサC1-C8が接続される。抵抗R1-R9及びコンデンサC1-C8は入力フィルタ(ローパスフィルタ)を構成し、セル電圧検出回路31に入力される電圧を安定化させる作用を有する。
 管理装置30の各コネクタと、セル電圧検出回路31の各検出端子間は、複数の電圧検出線L1-L9で接続される。隣接する2本の電圧検出線間にそれぞれ均等化回路が接続される。図1に示す例では、均等化回路は放電抵抗R11-R18と放電スイッチQ1-Q8の直列回路で構成されている。放電スイッチQ1-Q8は例えば、トランジスタで構成される。
 制御回路32は、セル電圧検出回路31から受信した複数のセルS1-S8の電圧をもとに均等化制御を実行する。具体的には複数のセルS1-S8の内、最も電圧が低いセルの電圧に他のセルの電圧を合わせる。制御回路32は、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオンして、当該他のセルを放電させる。当該他のセルの電圧が、最も電圧が低いセルの電圧まで低下したら、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオフする。制御回路32は例えば、マイクロプロセッサにより構成される。
 セル電圧検出回路31の動作電源は、電源回路の簡素化のため、監視対象の蓄電モジュール10から供給を受ける。蓄電モジュール10以外の電源からセル電圧検出回路31が電力供給を受ける場合、絶縁処理が必要となるため回路が大型化し、コストが増大する。
 セル電圧検出回路31の回路動作電流として通常、数mA~数十mA発生する。電源供給線と電圧検出線を兼用する場合、当該回路動作電流による電圧降下が検出電圧に影響を与える。特に、高精度な管理が必要となるリチウムイオン電池を用いた電源システム1では無視できないものとなる。そのため、電源供給線と電圧検出線を兼用させず、個別配線とすることが考えられる。
 図1に示す例では、蓄電モジュール10を構成する複数のセルS1-S8の最上位のノードとセル電圧検出回路31間を、第1電圧検出線L1と正電源供給線L0の2本で接続している。同様に複数のセルS1-S8の最下位のノードとセル電圧検出回路31間を、第9電圧検出線L9と負電源供給線L10の2本で接続している。
 セル電圧検出回路31の内部において、第9電圧検出線L9が接続される第9検出端子と、負電源供給線L10が接続される負電源端子間にESD(Electro-Static Discharge)保護ダイオードD1が接続される。なお図示しないが、正電源供給線L0が接続される正電源端子と、第1電圧検出線L1が接続される第1検出端子間にもESD保護ダイオードが接続される。これらのESD保護ダイオードは一般的に、ICの製造時に予め組み込まれる。
 ハーネス・コネクタ20で接続不良または断線(以下、本明細書では両者を包括して断線という。即ち、断線は物理的な配線の切断に限定されず、電気的な切断を含むものとする。)が発生した場合、セル電圧検出回路31によりセル電圧を正しく検出することができなくなる。その場合、制御回路32によるセルの状態監視や均等化制御が正しく行われなくなる。
 そのため通常は均等化回路を駆動するなどして断線状態を異常電圧として検出する機能が備わっている。例えば均等化回路を導通させた後、セル電圧が大きく低下した場合は電圧検出線の断線と判定し、セル電圧が殆ど変化しない場合はセルのSOC低下と判定する。ただしこの方法では、それを実行するための追加機能を実装する必要がある。また均等化回路自身の故障検出回路が別途に必要となる。セル電圧検出回路31によるセル電圧の監視だけでは、均等化回路の故障を検出することはできない。
 正電源供給線L0及び/又は負電源供給線L10が断線した場合、以下の2つの動作のいずれかが発生するため、電源システム1は故障検出されて安全に停止する。
(1)セル電圧検出回路31に電源が供給されなくなるため、セル電圧検出回路31からの応答がなくなり、制御回路32で故障検出される。
(2)セル電圧検出回路31の動作電流は、ESD保護ダイオードD1、断線した電源供給線に隣接する電圧検出線を通じて継続して流れる。ただし当該電圧検出線の電圧は、動作電流がフィルタ抵抗を通過することにより発生する電圧降下の影響を受ける。これによりセル電圧がセルの通常使用範囲から大きく低め検出となり、制御回路32により過放電として検出される。例えば、図1において負電源供給線L10が断線すると、ESD保護ダイオードD1を通じて第9電圧検出線L9に動作電流が流れるが、第9抵抗R9による電圧降下の影響で、第8セルS8の電圧が低め検出となる。なお、図示はしないが、正電源供給線L0が接続される正電源端子と、第1電圧検出線L1が接続される第1検出端子間に接続されるESD保護ダイオードを備える構成の場合には、正電源供給線L0が断線した際に、このESD保護ダイオードを通じて、第1電圧検出線L1に動作電流が流れることになる。
 図2は、比較例2に係る電源システム1を説明するための図である。セル電圧検出回路31の内部では電圧計測のためにマルチプレクサやAD変換器を使用する場合が多い。この場合において通常、セル電圧検出回路31の各検出端子の電位からグラウンド電位の方向に、わずかに漏れ電流が発生する(図2のI1参照)。漏れ電流は通常、1uAより十分に小さく、数kΩ程度のフィルタ抵抗を使用した場合でも、顕著な検出誤差に至らないように設計される。
 この漏れ電流I1により、第3検出端子の入力フィルタを構成する第2コンデンサC2が充電され、第3コンデンサC3が放電される。これにより、第3検出端子の電位が徐々に低下し、第2検出端子と第3検出端子間の電圧V2は、第2セルS2の実際の電圧より大きく検出され、反対に第3検出端子と第4検出端子間の電圧V3は、第3セルS3の実際の電圧より小さく検出される。その結果、第2セルS2は過充電、第3セルS3は過放電と判定され、電源システム1は異常検出により停止する。
 ただし漏れ電流はグラウンド電位に対して発生するため、セル電圧検出回路31内において、グラウンド電位と同電位になる第9検出端子の電位からは漏れ電流が流れない。従って、第9電圧検出線L9が断線しても電圧変化が発生しないため、第9電圧検出線L9の断線が検出されない。
 これを回避するために電流源I2を追加し、第9電圧検出線L9が断線した場合に、第8検出端子と第9検出端子間の電圧V8を意図的に異常電圧に変化させることが考えられる。しかしながら追加の回路素子が必要となる。また電流源I2自身の故障検出回路も必要となる。電流源I2の故障検出回路が設けられない場合、電流源I2の故障中に第9電圧検出線L9が断線しても、第8検出端子と第9検出端子間の電圧変化が発生しないため、電流源I2の故障も第9電圧検出線L9の断線も検出することができない。
 図2では第9電圧検出線L9の断線検出用の電流源I2を描いているが、他の電圧検出線の断線検出用にも電流源が搭載される。ただし、このグラウンド電位への漏れ電流を利用して断線を検出する方式では、消費電流の増加や検出誤差の増加が発生する。また当該方式は、上位の電圧検出線ほど断線が検出しやすくなり、下位の電圧検出線ほど断線が検出しにくくなる性質がある。上述のように最下位の電圧検出線では、電流源を追加しないと断線を検出することができない。
 図3は、比較例3に係る電源システム1を説明するための図である。比較例3では、セル電圧検出回路31を冗長化している。なお図3では図面を簡略化するため均等化回路を省略して描いている。
 第1セル電圧検出回路31aが主計測回路であり、第2セル電圧検出回路31bが冗長計測回路である。主計測回路は電源システム1を高精度に制御するため高仕様に設計される。冗長計測回路は基本的に、主計測回路が正常に機能しているかを確認するために設けられ、主計測回路と比較して相対的に低仕様に設計される。例えば、冗長計測回路に実装されるAD変換器の分解能は、主計測回路に実装されるAD変換器より低く抑えられる。
また、冗長計測回路の検出周期が、主計測回路よりも長くなる構成であってもよい。検出周期が長くなると、急激な変化に対する応答性が低下するが、消費電力も抑えられるという特徴がある。
 冗長計測回路は、セルのSOC管理や均等化制御を主目的とせず、主計測回路の故障検出やセルの過充電/過放電の検出を主目的としている。従って、主計測回路より仕様を下げることを許容でき、それにより回路コスト及び消費電流を低減することができる。
 第1セル電圧検出回路31aは、検出した各セルS1-S8の電圧を制御回路32に送信し、第2セル電圧検出回路31bも、検出した各セルS1-S8の電圧を制御回路32に送信する。制御回路32は、第1セル電圧検出回路31aから受信した各セルS1-S8の電圧と、第2セル電圧検出回路31bから受信した各セルS1-S8の電圧を比較する。これにより、第1セル電圧検出回路31aまたは第2セル電圧検出回路31bの故障を検出することができる。
 ハーネス・コネクタ20はセル電圧検出回路31が冗長化されても単体で実装される。
ハーネス・コネクタ20は電子部品と異なり実装スペース・コストが大きくなるため、正電源供給線L0、複数の電圧検出線L1-L9、及び負電源供給線L10は図3に示すように、ハーネス・コネクタ20より後段のプリント配線基板上でそれぞれ2本に分岐される。ワイヤーハーネスの段階から冗長化するとワイヤーハーネスの本数を2倍にする必要があり、セルの直列数が多いほど増加する本数が多くなる。
 図3に示す回路構成においても、漏れ電流等で発生する断線時の挙動は同じであり、第9電圧検出線L9の断線は、第9検出端子の検出値に殆ど影響を与えない。主計測回路および冗長計測回路の両方が同じ挙動となるため、冗長化していても断線を検出できない。
 図4は、本発明の実施の形態に係る電源システム1を説明するための図である。実施の形態では複数のセルS1-S8の最下位のノードと第1セル電圧検出回路31a間は、第9電圧検出線L9と負電源供給線L10の2本で接続される。一方、複数のセルS1-S8の最下位のノードと第2セル電圧検出回路31b間は、電圧検出線と兼用されている負電源供給線L10の1本で接続される。第2セル電圧検出回路31bの第9検出端子は、第9抵抗R9bを介してグラウンドに接続されている。
 この構成では第9電圧検出線L9の断線時、主計測回路(第1セル電圧検出回路31a)の第9検出端子は不定(フローティング)となるが、冗長計測回路(第2セル電圧検出回路31b)の第9検出端子は、複数のセルS1-S8の最下位ノードの電圧を継続して検出することができる。従って第8セルS8に過充電/過放電が発生した場合でも、冗長計測回路により第8セルS8の過充電/過放電が検出され、制御回路32により保護される。
 主計測回路は、主計測回路および冗長計測回路の動作電流が流れない第9電圧検出線L9を使用して第8セルS8の電圧を検出する。従って第9電圧検出線L9が断線していない間は、第8セルS8の電圧は主計測回路により高精度に検出され、それをもとに電源システム1は高精度に制御される。冗長計測回路は負電源供給線L10を使用して第8セルS8の電圧を検出する。冗長計測回路は基本的に過充電/過放電を検出できればよいため、負電源供給線L10を使用することによる小さな検出誤差は許容される。
 負電源供給線L10の断線時、ESD保護ダイオードD1及び第9電圧検出線L9を通じて電源供給が確保される。負電源供給線L10が断線した際、主計測回路の第8検出端子と第9検出端子間の電圧が大きく変化(降下)する。これにより制御回路32は、負電源供給線L10の断線または第8セルS8の過放電を検出することができる。
 複数のセルS1-S8の最上位のノードと第1セル電圧検出回路31a間は、第1電圧検出線L1と正電源供給線L0の2本で接続される。同様に、複数のセルS1-S8の最上位のノードと第1セル電圧検出回路31a間も、第1電圧検出線L1と正電源供給線L0の2本で接続される。
 第1電圧検出線L1が断線した場合、漏れ電流の影響が大きく現れるため、第9電圧検出線L9の断線と異なり第1電圧検出線L1の断線は容易に検出される。従って第1セル電圧検出回路31a及び第2セル電圧検出回路31bのいずれか一方と、複数のセルS1-S8の最上位のノード間を、電圧検出線と正電源供給線を兼用した1本の配線で接続する必要性は低い。ただし、正電源供給線L0が断線した場合でも、第1セル電圧検出回路31a及び第2セル電圧検出回路31bのいずれか一方の電源を確保することを目的に、第1セル電圧検出回路31a及び第2セル電圧検出回路31bのいずれか一方(例えば、第2セル電圧検出回路31b)と最上位のノード間を、電圧検出線と正電源供給線を兼用した1本の配線で接続する構成を用いてもよい。
 以上説明したように本実施の形態によれば、セル電圧検出回路31を冗長化することにより、主計測回路と冗長計測回路の両方で複数のセルS1-S8を監視することにより、より安全な電源システム1を構築することができる。主計測回路と冗長計測回路との間で、複数のセルS1-S8の最下位のノードとの接続形態を変えることにより、第9電圧検出線L9の断線を、特別な断線検出回路を追加することなく、簡単に検出することができる。また負電源供給線L10が断線しても、ESD保護ダイオードD1を備えることにより、主計測回路の電源が確保されるため、fail-safe動作することができる。以上により、電源システム1の安全性を確保しつつ高い信頼性を得ることができる。
 以上の説明では、複数のセルS1-S8の最下位のノードと第2セル電圧検出回路31b間は、電圧検出線と兼用されている負電源供給線L10の1本で接続される構成を例に説明されているが、正電源供給線L0と電圧検出線を兼用するように構成してもよい。この構成の場合には、正電源供給線L0が接続される正電源端子と、第1電圧検出線L1が接続される第1検出端子間に接続されるESD保護ダイオードを備えることが好ましい。
この構成により、正電源供給線L0が断線した際に、このESD保護ダイオードを通じて、第1電圧検出線L1に動作電流が流れ、回路の電源を確保することができ、断線検出を行うことが可能となる。
 以上、本発明を実施の形態をもとに説明した。これら実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では、冗長計測回路の仕様を主計測回路の仕様より下げて、検出精度とコストのバランスを図る例を示したが、主計測回路と冗長計測回路の仕様を共通にしてもよい。いずれも高仕様で設計すれば、冗長計測回路の検出値をもとにしても、セルのSOC管理や均等化制御を高精度に行うことができる。
 また上述の実施の形態では電源システム1を車両用電源装置に利用する例を想定したが、車載用途に限らず、航空用電源装置、船舶用電源装置、定置型蓄電システム等、他の用途にも利用可能である。例えばESD保護ダイオードD1は、同等の効果が得られる場所に通常のダイオードを実装しても達成しうる。また実施例では第1電圧検出線L1の断線時は容易に検出されるとしたが、回路構成により容易に検出されない場合、第9抵抗R9bの接続方式と同様に第1抵抗R1bの接続のみ、正電源供給線に接続しても良い。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 直列接続された複数のセル(S1-S8)の各ノードに電圧検出線(L1-L9)で接続され、当該複数のセル(S1-S8)のそれぞれの電圧を検出する第1電圧検出回路(31a)と、
 前記複数のセル(S1-S8)の各ノードに電圧検出線(L1-L9)で接続され、当該複数のセル(S1-S8)のそれぞれの電圧を検出する第2電圧検出回路(31b)と、を備え、
 前記第1電圧検出回路(31a)および前記第2電圧検出回路(31b)の動作電源は、前記複数のセル(S1-S8)の両端からそれぞれ供給され、
 前記複数のセル(S1-S8)の最下位のノードと前記第1電圧検出回路(31a)の間は、前記電圧検出線(L9)と負電源供給線(L10)の2本で接続され、
 前記複数のセル(S1-S8)の最下位のノードと前記第2電圧検出回路(31b)の間は、前記電圧検出線と負電源供給線を兼用する1本の配線(L10)で接続される、
 ことを特徴とする管理装置(30)。
 これによれば、複数のセル(S1-S8)の最下位のノードに接続された電圧検出線(L9)の断線を簡単に検出することができる。
[項目2]
 前記複数のセル(S1-S8)の最上位のノードと前記第1電圧検出回路(31a)の間は、前記電圧検出線(L1)と正電源供給線(L0)の2本で接続され、
 前記複数のセル(S1-S8)の最上位のノードと前記第2電圧検出回路(31b)の間は、前記電圧検出線(L1)と正電源供給線(L0)を兼用する1本の配線で接続される、
 ことを特徴とする項目1に記載の管理装置(30)。
 これによれば、複数のセル(S1-S8)の最上位のノードに接続された電圧検出線(L9)の断線を簡単に検出することができる。
[項目3]
 前記複数のセル(S1-S8)の最上位のノードと前記第1電圧検出回路(31a)の間は、前記電圧検出線(L1)と正電源供給線(L0)の2本で接続され、
 前記複数のセル(S1-S8)の最上位のノードと前記第2電圧検出回路(31b)の間は、前記電圧検出線(L1)と正電源供給線(L0)の2本で接続される、
 ことを特徴とする項目1に記載の管理装置(30)。
 これによれば、第1電圧検出回路(31a)及び第2電圧検出回路(31b)における、最上位のセル(S1)の電圧検出精度の低下を抑えることができる。
[項目4]
 前記複数のセル(S1-S8)の各ノードにワイヤーハーネスが接続され、各ワイヤーハーネスの先端のコネクタが、前記管理装置(30)の各コネクタに接続され、
 前記管理装置(30)内において、前記複数のセル(S1-S8)の各ノードに接続された配線が分岐される、
 ことを特徴とする項目1から3のいずれかに記載の管理装置(30)。
 これによれば、冗長化によるワイヤーハーネス・コネクタの増加を抑えることができる。
[項目5]
 前記第1電圧検出回路(31a)において、前記複数のセル(S1-S8)の最下位のノードに接続される電圧検出線(L9)が接続される端子と、前記負電源供給線(L10)が接続される端子間に、ダイオード(D1)が接続される、
 ことを特徴とする項目1から4のいずれかに記載の管理装置(30)。
 これによれば、負電源供給線(L10)が断線しても、第1電圧検出回路(31a)の電源を確保することができる。
[項目6]
 前記第1電圧検出回路(31a)は、主計測回路であり、
 前記第2電圧検出回路(31b)は、前記第1電圧検出回路(31a)より仕様が低い冗長計測回路である、
 ことを特徴とする項目1から5のいずれかに記載の管理装置(30)。
 これによれば、検出精度とコストのバランスを図ることができる。
[項目7]
 複数のセル(S1-S8)が直列接続された蓄電モジュール(10)と、
 前記蓄電モジュール(10)を管理する項目1から6のいずれかに記載の管理装置(30)と、
 を備えることを特徴とする電源システム(1)。
 これによれば、複数のセル(S1-S8)の最下位のノードに接続された電圧検出線(L9)の断線を簡単に検出することができる。
 1 電源システム、 10 蓄電モジュール、 S1-S8 セル、 L0 正電源供給線、 L1-L9 電圧検出線、 L10 負電源供給線、 20 ハーネス・コネクタ、 30 管理装置、 R1-R9 抵抗、 C1-C8 コンデンサ、 R11-R18 放電抵抗、 Q1-Q8 放電スイッチ、 D1 ESD保護ダイオード、 31 セル電圧検出回路、 31a 第1セル電圧検出回路、 31b 第2セル電圧検出回路、 32 制御回路。

Claims (7)

  1.  直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する第1電圧検出回路と、
     前記複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出する第2電圧検出回路と、を備え、
     前記第1電圧検出回路および前記第2電圧検出回路の動作電源は、前記複数のセルの両端からそれぞれ供給され、
     前記複数のセルの最下位のノードと前記第1電圧検出回路の間は、前記電圧検出線と負電源供給線の2本で接続され、
     前記複数のセルの最下位のノードと前記第2電圧検出回路の間は、前記電圧検出線と負電源供給線を兼用する1本の配線で接続される、
     ことを特徴とする管理装置。
  2.  前記複数のセルの最上位のノードと前記第1電圧検出回路の間は、前記電圧検出線と正電源供給線の2本で接続され、
     前記複数のセルの最上位のノードと前記第2電圧検出回路の間は、前記電圧検出線と正電源供給線を兼用する1本の配線で接続される、
     ことを特徴とする請求項1に記載の管理装置。
  3.  前記複数のセルの最上位のノードと前記第1電圧検出回路の間は、前記電圧検出線と正電源供給線の2本で接続され、
     前記複数のセルの最上位のノードと前記第2電圧検出回路の間は、前記電圧検出線と正電源供給線の2本で接続される、
     ことを特徴とする請求項1に記載の管理装置。
  4.  前記複数のセルの各ノードにワイヤーハーネスが接続され、各ワイヤーハーネスの先端のコネクタが、前記管理装置の各コネクタに接続され、
     前記管理装置内において、前記複数のセルの各ノードに接続された配線が分岐される、
     ことを特徴とする請求項1から3のいずれかに記載の管理装置。
  5.  前記第1電圧検出回路において、前記複数のセルの最下位のノードに接続される電圧検出線が接続される端子と、前記負電源供給線が接続される端子間に、ダイオードが接続される、
     ことを特徴とする請求項1から4のいずれかに記載の管理装置。
  6.  前記第1電圧検出回路は、主計測回路であり、
     前記第2電圧検出回路は、前記第1電圧検出回路より仕様が低い冗長計測回路である、
     ことを特徴とする請求項1から5のいずれかに記載の管理装置。
  7.  複数のセルが直列接続された蓄電モジュールと、
     前記蓄電モジュールを管理する請求項1から6のいずれかに記載の管理装置と、
     を備えることを特徴とする電源システム。
PCT/JP2017/015644 2016-04-27 2017-04-19 管理装置および電源システム WO2017188073A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018514523A JP6869966B2 (ja) 2016-04-27 2017-04-19 管理装置および電源システム
CN201780026155.4A CN109247036B (zh) 2016-04-27 2017-04-19 管理装置和电源***
US16/095,888 US11196102B2 (en) 2016-04-27 2017-04-19 Management device and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089827 2016-04-27
JP2016089827 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017188073A1 true WO2017188073A1 (ja) 2017-11-02

Family

ID=60160409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015644 WO2017188073A1 (ja) 2016-04-27 2017-04-19 管理装置および電源システム

Country Status (4)

Country Link
US (1) US11196102B2 (ja)
JP (1) JP6869966B2 (ja)
CN (1) CN109247036B (ja)
WO (1) WO2017188073A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186795A1 (ja) * 2020-03-18 2021-09-23 三洋電機株式会社 管理装置、及び電源システム
JP2022519073A (ja) * 2019-09-23 2022-03-18 エルジー エナジー ソリューション リミテッド バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230087283A1 (en) * 2021-09-20 2023-03-23 Atieva, Inc. Dynamic sensor data collection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096140A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 蓄電池の状態検知装置
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置
JP2015219094A (ja) * 2014-05-16 2015-12-07 日立オートモティブシステムズ株式会社 電池監視装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413152A4 (en) * 2009-03-25 2016-12-28 Toshiba Kk SECONDARY BATTERY AND VEHICLE
WO2012164761A1 (ja) * 2011-05-31 2012-12-06 日立ビークルエナジー株式会社 電池システム監視装置
JP5652355B2 (ja) 2011-08-30 2015-01-14 株式会社Gsユアサ 組電池監視装置、及び、電池パック
JP5602167B2 (ja) 2012-02-21 2014-10-08 オムロンオートモーティブエレクトロニクス株式会社 組電池監視装置
CN105075044B (zh) * 2013-03-13 2018-10-16 匡坦斯公司 利用无损稳态操作的瞬变抑制
JP5989620B2 (ja) * 2013-09-17 2016-09-07 株式会社東芝 組電池モジュール及び断線検出方法
CN107949793B (zh) * 2015-09-17 2022-06-28 新唐科技日本株式会社 电压检测电路、异常检测装置、以及电池***
JP6930741B2 (ja) * 2016-03-15 2021-09-01 三洋電機株式会社 管理装置および電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096140A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 蓄電池の状態検知装置
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置
JP2015219094A (ja) * 2014-05-16 2015-12-07 日立オートモティブシステムズ株式会社 電池監視装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022519073A (ja) * 2019-09-23 2022-03-18 エルジー エナジー ソリューション リミテッド バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両
JP7127248B2 (ja) 2019-09-23 2022-08-30 エルジー エナジー ソリューション リミテッド バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両
WO2021186795A1 (ja) * 2020-03-18 2021-09-23 三洋電機株式会社 管理装置、及び電源システム
EP4123787A4 (en) * 2020-03-18 2023-12-27 SANYO Electric Co., Ltd. MANAGEMENT DEVICE AND POWER SUPPLY SYSTEM

Also Published As

Publication number Publication date
US20210223322A1 (en) 2021-07-22
CN109247036A (zh) 2019-01-18
US11196102B2 (en) 2021-12-07
JPWO2017188073A1 (ja) 2019-02-28
CN109247036B (zh) 2022-04-22
JP6869966B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
US10861663B2 (en) Relay device and a method to detect open-circuit failures
US10326288B2 (en) Method and device for the voltage-controlled self-deactivation of electronic components or battery cells
WO2017208740A1 (ja) 管理装置および電源システム
US11411259B2 (en) Battery control unit
JP6869966B2 (ja) 管理装置および電源システム
US20230147606A1 (en) Management device and power supply system
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
JP2017216829A (ja) 管理装置および電源システム
US10859635B2 (en) Management device and power supply device
US20190222036A1 (en) Management device and power supply system
JP6056553B2 (ja) 電池監視装置
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
JP2016134962A (ja) 蓄電システム
JP2014048281A (ja) 電源装置および故障検出回路
JP5884683B2 (ja) 電池監視装置
JP5378290B2 (ja) 蓄電システム
JP6014764B2 (ja) 電池システム監視装置
US9529054B2 (en) Detecting disconnection fault in device monitoring circuit connected in multiple stages for battery cells connected in series
US20190067962A1 (en) Management device and power supply device
US11863012B2 (en) Power supply system
US20200152947A1 (en) Battery System Monitoring Device and Battery Pack

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789358

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789358

Country of ref document: EP

Kind code of ref document: A1