WO2017183779A1 - 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말 - Google Patents

무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말 Download PDF

Info

Publication number
WO2017183779A1
WO2017183779A1 PCT/KR2016/011192 KR2016011192W WO2017183779A1 WO 2017183779 A1 WO2017183779 A1 WO 2017183779A1 KR 2016011192 W KR2016011192 W KR 2016011192W WO 2017183779 A1 WO2017183779 A1 WO 2017183779A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmission
terminal
base station
information
Prior art date
Application number
PCT/KR2016/011192
Other languages
English (en)
French (fr)
Inventor
최국헌
변일무
김기준
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017183779A1 publication Critical patent/WO2017183779A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for transmitting an SRS in a wireless communication system and a terminal for the same.
  • the beam scanning procedure has a lot of processing overhead in itself, it is not possible to shorten the beam scanning in an extreme period.
  • the temporal change of channels above 6 GHz is likely to change faster than existing sub-6 GHz channels due to the additional channel factors mentioned above.
  • the BS beam configuration may be fixed, but the beam of the UE may be changed according to the location of the serving cell, the change of the surrounding environment, the UE behavior pattern, and the like. That is, the Tx / Rx beam mismatch is likely to occur within the beam scanning interval. Therefore, a beam tracking technique is needed to overcome this.
  • An object of the present invention is to provide a method for transmitting an SRS by a terminal in a wireless communication system.
  • Another object of the present invention is to provide a terminal for transmitting an SRS in a wireless communication system.
  • a method for transmitting an SRS by a terminal in a wireless communication system includes: determining an SRS configuration index by measuring a change value of a received signal strength for a specific time; Determining index information related to an SRS transmission period corresponding to the determined SRS configuration index and specific transmission beam candidate set index information of the terminal based on predefined SRS configuration information; Transmitting index information related to the SRS transmission period and the specific transmission beam candidate set index information to the base station; And transmitting the SRS to the base station based on at least one transmission beam identifier (ID) candidate information corresponding to the specific transmission beam candidate set index information.
  • ID transmission beam identifier
  • the predefined SRS configuration information may include a physical SRS transmission period value corresponding to the determined SRS configuration index and an SRS subframe offset value corresponding to the determined SRS configuration index.
  • the specific transmission beam candidate set index information may be determined based on index information related to the SRS transmission period corresponding to the determined SRS configuration index or a physical SRS transmission period value.
  • the at least one transmit beam identifier (ID) candidate information includes at least one transmit beam identifier candidate corresponding to the determined transmit beam candidate set index information, and is respectively assigned to the at least one transmit beam identifier (ID) candidate.
  • SRS may be transmitted through a symbol.
  • the method comprises the steps of: receiving an optimal transmission beam identifier (ID) and uplink resource allocation information of the terminal from the base station; And performing uplink transmission by using a transmission beam corresponding to the optimal transmission beam identifier (ID).
  • the method may further include performing beam scanning with the base station, wherein the base station is paired with a transmission beam of the terminal and a transmission beam of the terminal based on beam pair information between the terminal and the base station determined by the beam scanning. Uplink transmission may be performed based on a reception beam of.
  • a terminal for transmitting an SRS in a wireless communication system the transmitter; And a processor,
  • the processor determines an SRS configuration index by measuring a change value of a received signal strength for a specific time, and index information related to an SRS transmission period corresponding to the determined SRS configuration index based on predefined SRS configuration information and the terminal's index. Determine specific transmission beam candidate set index information, and wherein the transmitter transmits index information related to the SRS transmission period and the specific transmission beam candidate set index information to the base station, and corresponds to the specific transmission beam candidate set index information.
  • the SRS may be controlled to be transmitted to the base station based on at least one transmission beam identifier (ID) candidate information.
  • ID transmission beam identifier
  • the predefined SRS configuration information may include a physical SRS transmission period value corresponding to the determined SRS configuration index and an SRS subframe offset value corresponding to the determined SRS configuration index.
  • the processor may determine the determined transmission beam candidate set index information based on index information associated with the SRS transmission period or a physical SRS transmission period value corresponding to the determined SRS configuration index.
  • the at least one transmit beam identifier (ID) candidate information includes at least one transmit beam identifier candidate corresponding to the determined transmit beam candidate set index information, and wherein the processor is further configured to transmit the SRS to the at least one transmit beam identifier. (ID) can be controlled to transmit through the symbols assigned to each candidate.
  • the terminal further includes a receiver, wherein the processor controls the receiver to receive an optimal terminal transmit beam identifier (ID) and uplink resource allocation information from the base station, and the processor is configured to allow the transmitter to optimize the terminal. It may be controlled to perform uplink transmission by using a transmission beam corresponding to a transmission beam identifier (ID).
  • ID transmit beam identifier
  • ID uplink resource allocation information
  • the processor is configured to perform beam scanning with the base station, and wherein the transmitter is configured to transmit and transmit a transmission beam of the terminal and a transmission beam of the terminal based on beam pair information between the terminal and the base station determined by the beam scanning. It may be controlled to perform uplink transmission based on the received beams of the paired base stations.
  • the efficient resource allocation of the SRS for the UE transmission beam tracking in the base station reception beam and the UE transmission beam pair and the adaptive beam tracking procedure according to the behavior pattern of each UE are efficiently presented. Communication is possible.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2A is a diagram illustrating a time when meaningful blockage occurs in Series of blockage event duration in Table 2
  • FIG. 2B is a diagram illustrating blockage duration (t D ) in Table 2.
  • FIG. 4 is a diagram illustrating an example of a structure of a synchronization subframe.
  • FIG. 5 is a diagram illustrating a beam scanning period and a resource area (for example, 5 ⁇ N ms periods).
  • terminal transmission beam ID number 8
  • FIG. 7 is a diagram illustrating measured RSRP change of each downlink terminal.
  • FIG. 9 is a diagram illustrating an SRS transmission method according to a terminal transmission beam candidate index.
  • FIG. 10 is a diagram illustrating a flowchart for UE-specific periodic SRS transmission proposed in the present invention.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more terminals. .
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • the terminal For Tx beam tracking of the terminal, the terminal needs to transmit the SRS according to each candidate terminal transmission beam (Tx beam). Since SRS transmission according to many beam directions (transmission beam set of UE in all directions) generates a large amount of resource loss, according to the present invention, SRS transmission is flexibly transmitted according to UE change pattern, thereby adaptive UE transmission.
  • Tx beam candidate terminal transmission beam
  • a UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types:-trigger type 0: higher layer signaling-trigger type 1: DCI formats 0/4 / 1A for FDD and TDD and DCI formats 2B / 2C / 2D for TDD.
  • SRS Sounding Reference Symbol
  • a UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell.
  • SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1.
  • -Transmission comb as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Starting physical resource block assignment n RRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-duration: single or indefinite (until disabled), as defined in [11] for trigger type 0-srs-ConfigIndex I SRS for SRS periodicity T SRS and SRS subframe offset T offset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity T SRS, 1 , and SRS subframe offset T SRS, 1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1-SRS bandwidth B SRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1-Frequency hopping bandwidth, b hop , as
  • the 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1.
  • a single set of SRS parameters srs-ConfigApDCI-Format0
  • a single common set of SRS parameters srs-ConfigApDCI-Format1a2b2c
  • the SRS request field is 1 bit [4] for DCI formats 0 / 1A / 2B / 2C / 2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'.
  • a 1-bit SRS request field shall be included in DCI formats 0 / 1A for frame structure type 1 and 0 / 1A / 2B / 2C / 2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0 / 1A / 2B / 2C / 2D by higher-layer signalling.
  • Table 2 below shows a SRS Request Value for trigger type 1 in DCI format 4 in 3GPP LTE / LTE-A system.
  • Table 3 is a table for further explaining the additional information related to the SRS transmission in the 3GPP LTE / LTE-A system.
  • the serving cell specific SRS transmission bandwidths C SRS are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.2 of [3].
  • the serving cell specific SRS transmission sub-frames are configured by higher layers.
  • the allowable values are given in subclause 5.5.3.3 of [3].
  • SRS transmissions can occur in UpPTS and uplink subframes of the UL / DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.
  • a UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling.
  • Np may be configured by higher layer signalling.
  • a UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell.
  • the SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.
  • a UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.
  • TDD serving cell when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission.
  • both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.
  • a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2 / 2a / 2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2 / 2a / 2b transmissions happen to coincide in the same subframe;
  • the UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a / 2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe;
  • -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.
  • the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and / or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.
  • a UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and / or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.
  • the UE shall not transmit SRS whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell.
  • the parameter ackNackSRS-Simultaneous Transmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and
  • the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4. 1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured.
  • This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe.
  • the cell specific SRS subframes are defined in subclause 5.5.3.3 of [3].
  • the UE shall use the normal PUCCH format 1 / 1a / 1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS , and SRS subframe offset, T offset , is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively .
  • the periodicity T SRS of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ ms or subframes.
  • T SRS For the SRS periodicity T SRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe (s) of the given serving cell.
  • TDD serving cell For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL / DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.
  • Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, T SRS, 1 , and SRS subframe offset, T offset, 1 is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively.
  • the periodicity T SRS, 1 of the SRS transmission is serving cell specific and is selected from the set ⁇ 2, 5, 10 ⁇ ms or subframes.
  • a UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH on serving cell c
  • a UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH / EPDCCH scheduling PUSCH / PDSCH with the value of carrier indicator field corresponding to serving cell c .
  • a UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signaling, for the same subframe and the same serving cell.
  • the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL / DL-con
  • Table 4 shows a subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in FDD.
  • Table 5 below shows subframe offset configuration (T offset) and UE-specific SRS periodicity (T SRS ) for trigger type 0 in TDD.
  • SRS Configuration Index I SRS SRS Periodicity (ms) SRS Subframe Offset 0 2 0, 1 One 2 0, 2 2 2 1, 2 3 2 0, 3 4 2 1, 3 5 2 0, 4 6 2 1, 4 7 2 2, 3 8 2 2, 4 9 2 3, 4 10-14 5 I SRS -10 15-24 10 I SRS -15 25-44 20 I SRS -25 45-84 40 I SRS -45 85-164 80 I SRS -85 165-324 160 I SRS -165 325-644 320 I SRS -325 645-1023 reserved reserved reserved
  • Table 7 shows k SRS for TDD.
  • Table 8 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in FDD.
  • Table 9 shows a subframe offset configuration (T offset, 1 ) and UE-specific SRS periodicity (T SRS, 1 ) for trigger type 1 in TDD.
  • Table 10 shows additional channel change characteristics (blockage effect) compared to less than 6Ghz channel of more than 6Ghz channel.
  • FIG. 2 is a diagram for describing a blocakage duration in relation to Table 10.
  • FIG. 2A illustrates a time when a series of blockage event duration in Table 10 generates meaningful blockage (i.e., blockage causing attenuation below a specific power threshold), and
  • FIG. 2B illustrates blockage duration (Table 2) in FIG. t D ).
  • the Series of Blockage event represents the time when a meaningful blockage occurs
  • t D represents the time when the blockage occurs and the blockage ends again and returns to the normal state.
  • Table 11 is a table for showing the pattern relationship between t decay , t rising and the terminal.
  • the blockage change in Table 11 is basically about 100 ms (walking obstacle speed (4 km / h)), but this may vary from 2 to several hundred ms, depending on the pattern of the terminal and the surrounding environment.
  • the wide beam can be defined when the multi-beams are properly positioned.
  • a transmitter transmits a synchronization signal using the wide beam. That is, it is assumed that all sub-arrays transmit identical Primary Synchronization Signals (PSS) / Secondary Synchronization Signals (SSS) / Physical Broadcast CHannel (PBCH).
  • PSS Primary Synchronization Signals
  • SSS Secondary Synchronization Signals
  • PBCH Physical Broadcast CHannel
  • the beam gain becomes small.
  • additional power gain can be provided through repeated transmissions on the time axis.
  • the synchronization subframe structure based on such repeated transmission may be represented as shown in FIG. 4.
  • FIG. 4 is a diagram illustrating an example of a structure of a synchronization subframe.
  • a block having the same hatching shape refers to an orthogonal frequency division multiplexing (OFDM) symbol group to which the same RF beam group (defined using four subarray beams) is applied. That is, four OFDM symbols use the same multi-RF beam.
  • the beam scanning section may be configured as shown in FIG. 4 in a general form in New RAT with reference to the structure of FIG. 4.
  • FIG. 5 is a diagram illustrating a beam scanning period and a resource area (for example, 5 ⁇ N ms periods).
  • the beam scanning procedure itself has a lot of processing overhead, it is not possible to shorten the beam scanning in extreme periods.
  • the temporal change of the channel above 6GHz is likely to change faster than the existing channel below 6GHz due to the aforementioned additional channel elements.
  • the BS beam configuration may be fixed, but the beam of the UE may be changed according to the location of the serving cell, the change of the surrounding environment, the UE behavior pattern, and the like. That is, the Tx / Rx beam mismatch is likely to occur within the beam scanning interval. Therefore, a beam tracking technique is needed to overcome this.
  • the received signal strength (Rx beam) of the terminal is applied to each BRS by using the BRS illustrated in FIG. 4 (hereinafter, referred to as RSRP (Reference Signal Received Power)). It can be done by measuring. If the reciprocity of the Tx / Rx beam pair for downlink (ie, base station transmit beam / terminal receive beam pair and terminal transmit beam / base station receive beam) is established, The obtained transmit / receive beam pair can be applied to uplink. However, if not, the uplink case may use SRS. If the most reliable uplink beam tracking is desired, the SRS corresponding to the entire transmission beam ID of each UE should be transmitted. This means that a physical uplink shared channel (PUSCH) transmission interval becomes smaller according to SRS transmission, and impairs uplink throughput performance.
  • PUSCH physical uplink shared channel
  • terminal transmission beam ID number 8
  • the SRS transmission area may increase.
  • various embodiments according to the present invention will be described.
  • the terminal For Tx beam tracking of the terminal, the terminal needs to transmit an SRS according to each candidate terminal transmission beam. Since SRS transmission according to many beam directions (terminal transmission beam set in all directions) generates a lot of resource loss, the present invention flexibly transmits SRS transmission according to a terminal change pattern in order to perform adaptive terminal transmission beam tracking. I would like to suggest a method.
  • Embodiment 1 UE-specific SRS period setting for transmission beam tracking of UE and UE-specific SRS transmission method corresponding thereto
  • Embodiment 1 As a sub-embodiment of Embodiment 1, a method for setting a UE-specific SRS transmission period and an SRS transmission subframe for adaptive Tx beam tracking is proposed.
  • Embodiment 1-1 UE-Specific SRS Transmission Period and SRS Transmission Subframe Configuration
  • FIG. 7 is a diagram illustrating measured RSRP change of each downlink terminal.
  • UE-specific SRS transmission cycle Let's define 7 shows the RSRP change of the i-th terminal with a significant RSRP change, and the figure shown to the right of FIG. 7 shows the RSRP change of the j-th terminal with no large RSRP change.
  • the base station may collectively set the terminal to higher layer signaling or the terminal may be set for each terminal.
  • Table 12 is a table illustrating the SRS configuration and SRS period.
  • the terminal-specific SRS configuration Index (I SRS ) can be set by the following equation (2) to indicate the T SRS . That is, the terminal specific SRS configuration Index (I SRS ) is And Based on the value, it may be determined as in Equation 2 below.
  • Equation 2 Increasing
  • I SRS is 2 in Equation 2
  • the T SRS exemplifies setting the SRS transmission period to 1 ms with reference to Table 12.
  • I SRS in a subframe overlapped for SRS transmission is as follows ( ).
  • U indicates a set of UEs in which SRS transmission is configured in the subframe (when SRS transmission is performed in corresponding subframes of total U UEs).
  • a subframe configuration for SRS transmission may be expressed as Equation 3 by modifying the SRS transmission subframe configuration of 3GPP TS 36.213.
  • n f is a system frame number.
  • K SRS ⁇ 0,1, ...., 9 ⁇ .
  • T offset indicates an SRS subframe offset value, and T SRS indicates a physical transmission period of the SRS.
  • the SRS transmission subframe has been determined using the T SRS value, but in Equation 3, the SRS transmission subframe is determined by the M SRS index value.
  • Embodiment 1-2 UE-Specific SRS Transmission Method for Adaptive Transmission Beam Tracking
  • each terminal can determine the SRS configuration index I SRS by measuring the RSRP change according to the above-described embodiment 1-1, and the SRS transmission period corresponding to the determined I SRS (T SRS for the UE of index i) may be set.
  • each terminal may transmit the index M SRS corresponding to the uplink SRS transmission period and the terminal transmission beam tracking candidate set index to the base station through PUSCH or PUCCH (Physical Uplink Control CHannel).
  • PUSCH Physical Uplink Control CHannel
  • the terminal transmit beam tracking candidate set index value may be configured as an offset value of the transmit beam ID of the terminal or the receive beam ID of the terminal obtained through beam scanning.
  • the absolute offset ID position may be set in the upper layer. If the SRS transmission period is short, the position of the optimal terminal transmission beam that changes according to the channel change is likely to be near the previous optimal beam position. Therefore, the candidate set of the following Table 13 is set to a set of neighboring beams of the current terminal transmission beam.
  • Table 13 shows a terminal transmission beam candidate subset corresponding to the terminal transmission beam ID candidate offset index.
  • Table 13 may be shared by the base station and the terminal by a method such as higher layer signaling.
  • the terminal transmission beam ID offset set may set the terminal transmission beam tracking candidate set index as shown in Table 13 based on the position of the candidate offset of the terminal transmission beam of FIG. 8. Table 13 above shows only an example based on a 3-bit feedback and is extensible.
  • the terminal transmission beam ID candidate offset index or the terminal transmission beam candidate index I beam_offset may be generally expressed as a function of T SRS or M SRS , and special candidate terminal beams (for example, vertical beam tracking or horizontal beam tracking, etc.). ) May also include a configuration for the determination of V / H polarization).
  • I beam_offset is 2.
  • the terminal transmission beam candidate set is a set of vertical beams.
  • each terminal may transmit the number of SRSs corresponding to the value of I beam_offset .
  • the terminal transmission beam candidate subset corresponding to the terminal transmission beam ID candidate offset index 1 has a terminal transmission beam ID of 0, 1, Since it is configured as 2, the specific terminal can transmit three SRS corresponding to the corresponding terminal transmit beam IDs.
  • the physical beam direction of the terminal is in I beam_offset Move in order of beam direction.
  • the base station may be set so that the SRS resource position of each terminal does not overlap.
  • the SRS may transmit as shown in FIG. 9.
  • FIG. 9 is a diagram illustrating an SRS transmission method according to a terminal transmission beam candidate index.
  • the base station may set a corresponding SRS transmission resource for each terminal transmission beam ID.
  • SRS 0 for the terminal transmission beam ID 0, SRS 3 for the terminal transmission beam ID 3, and SRS 4 for the terminal transmission beam ID 4 may be configured as an SRS transmission resource.
  • SRS 0, SRS 3 and SRS 4 may be transmitted in different symbols, respectively.
  • the base station measures an SRS corresponding to each T SRS and offsets an optimal transmit beam ID of each terminal. (optimum transmission beam ID offset of the i-th terminal) can be predicted and the optimal uplink resource allocation position is identified by measuring the SRS of the entire band of the terminal. And uplink resource allocation location to the UE through a control channel (for example, Physical Downlink Control CHannel (PDCCH)) or a data channel (for example, PDSCH (Physical Downlink Shared CHannel)).
  • a control channel for example, Physical Downlink Control CHannel (PDCCH)
  • PDSCH Physical Downlink Shared CHannel
  • step 6 the transmission physical beam ID of the terminal is It is changed to the beam ID corresponding to.
  • the UE-specific SRS transmission method for adaptive transmission beam tracking described above can be briefly summarized with reference to FIG. 10.
  • FIG. 10 is a diagram illustrating a flowchart for UE-specific periodic SRS transmission proposed in the present invention.
  • the terminal and the base station may determine the base station transmit beam / terminal receive beam pair through beam scanning.
  • the terminal may measure the RSRP and determine the SRS transmission period based on the measured RSRP change value.
  • the terminal may transmit the M SRS and the selected terminal transmit beam candidate set index to the base station through the PUCCH or the PUSCH.
  • the terminal may transmit an SRS corresponding to the selected terminal transmission beam candidate set index I beam_offset to the base station.
  • the base station is the best terminal transmit beam ID And uplink resource allocation information for SRS transmission may be informed to the UE through PDCCH or PDSCH.
  • UE is optimal terminal transmit beam ID Uplink transmission may be started based on the terminal transmission beam and the base station reception beam pair corresponding to each other.
  • the present invention provides efficient uplink communication by presenting an efficient resource allocation of SRS for tracking UE transmit beam in base station receive beam and UE transmit beam pair and adaptive beam tracking according to the behavior pattern of each UE. It becomes possible.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a method for transmitting an SRS in a wireless communication system and a terminal for the same can be industrially used in various wireless communication systems such as 3GPP LTE / LTE-A system and 5G communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선통신 시스템에서 단말이 SRS를 전송하는 방법은, 특정 시간 동안 수신신호 세기의 변화 값을 측정하여 SRS 설정 인덱스를 결정하는 단계; 미리 정의된 SRS 설정 정보에 기초하여 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 전송 주기와 관련된 인덱스 정보와 상기 단말의 특정 송신 빔 후보 세트 인덱스 정보를 결정하는 단계; 상기 SRS 전송 주기와 관련된 인덱스 정보와 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 기지국으로 전송하는 단계; 및 상기 특정 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자(ID) 후보 정보에 기초하여 상기 SRS를 상기 기지국으로 전송하는 단계를 포함할 수 있다.

Description

무선통신 시스템에서 SRS를 전송하는 방법 및 이를 위한 단말
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 SRS를 전송하는 방법 및 이를 위한 단말에 관한 것이다.
빔 스캐닝 절차는 그 자체로 많은 프로세싱 오버헤드를 가지기 때문에 빔 스캐닝을 극단적 주기로 짧게 가져갈 수 없다. 6GHz 이상 채널의 시간적 변화는 앞서 언급한 추가적 채널 요소 등으로 인해 기존 6GHz 이하 채널보다 더 빨리 변화할 가능성이 크다. 또한 그 셀룰러 시스템에서는 기지국 빔 구성(BS beam configuration)은 고정될 수 있지만, 단말의 빔은 서빙 셀의 위치, 주변 환경 변화, 단말 행동 패턴 등에 따라 바뀔 수 있다. 즉, 빔 스캐닝 구간 내에서, Tx/Rx beam mismatch 가 발생할 가능성이 크다. 따라서, 이것을 극복하기 위해서 빔 트래킹 기법이 필요하다.
그러나, 이러한 빔 트래킹을 위해 SRS를 전송이 필요한데 빔 트래킹을 위해 SRS를 전송하는 기법에 대해 아직까지 자세히 연구된 바가 없다.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 단말이 SRS를 전송하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 SRS를 전송하기 위한 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 무선통신 시스템에서 단말이 SRS를 전송하는 방법은, 특정 시간 동안 수신신호 세기의 변화 값을 측정하여 SRS 설정 인덱스를 결정하는 단계; 미리 정의된 SRS 설정 정보에 기초하여 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 전송 주기와 관련된 인덱스 정보와 상기 단말의 특정 송신 빔 후보 세트 인덱스 정보를 결정하는 단계; 상기 SRS 전송 주기와 관련된 인덱스 정보와 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 기지국으로 전송하는 단계; 및 상기 특정 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자(ID) 후보 정보에 기초하여 상기 SRS를 상기 기지국으로 전송하는 단계를 포함할 수 있다.
상기 미리 정의된 SRS 설정 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 물리적 SRS 전송 주기 값 및 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 서브프레임 옵셋값을 포함할 수 있다.
상기 특정 송신 빔 후보 세트 인덱스 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 상기 SRS 전송 주기와 관련된 인덱스 정보 또는 물리적 SRS 전송 주기값에 기초하여 결정된 것일 수 있다.
상기 적어도 하나의 송신 빔 식별자(ID) 후보 정보는 상기 결정된 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자 후보를 포함하고, 상기 적어도 하나의 송신 빔 식별자(ID) 후보에 각각 할당된 심볼을 통해 SRS를 전송할 수 있다.
상기 방법은, 상기 기지국으로부터 상기 단말의 최적의 송신 빔 식별자(ID) 및 상향링크 자원 할당 정보를 수신하는 단계; 및 상기 최적의 송신 빔 식별자(ID)에 대응하는 송신 빔을 이용하여 상향링크 전송을 수행하는 단계를 더 포함할 수 있다. 상기 기지국과 빔 스캐닝을 수행하는 단계를 더 포함할 수 있고, 상기 빔 스캐닝에 의해 결정된 상기 단말 및 상기 기지국간의 빔 페어 정보에 기초하여 상기 단말의 송신 빔 및 상기 단말의 송신 빔과 페어된 상기 기지국의 수신 빔에 기초하여 상향링크 전송을 수행할 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 SRS를 전송하는 단말에 있어서, 송신기; 및 프로세서를 포함하되,
상기 프로세서는 특정 시간 동안 수신신호 세기의 변화 값을 측정하여 SRS 설정 인덱스를 결정하고, 미리 정의된 SRS 설정 정보에 기초하여 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 전송 주기와 관련된 인덱스 정보와 상기 단말의 특정 송신 빔 후보 세트 인덱스 정보를 결정하도록 구성되고, 상기 송신기가 상기 SRS 전송 주기와 관련된 인덱스 정보와 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 기지국으로 전송하고, 상기 특정 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자(ID) 후보 정보에 기초하여 상기 SRS를 상기 기지국으로 전송하도록 제어할 수 있다.
상기 미리 정의된 SRS 설정 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 물리적 SRS 전송 주기 값 및 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 서브프레임 옵셋값을 포함할 수 있다.
상기 프로세서는 상기 결정된 송신 빔 후보 세트 인덱스 정보를 상기 결정된 SRS 설정 인덱스에 대응하는 상기 SRS 전송 주기와 관련된 인덱스 정보 또는 물리적 SRS 전송 주기값에 기초하여 결정할 수 있다.
상기 적어도 하나의 송신 빔 식별자(ID) 후보 정보는 상기 결정된 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자 후보를 포함하고, 상기 프로세서는 상기 송신기가 SRS를 상기 적어도 하나의 송신 빔 식별자(ID) 후보에 각각 할당된 심볼을 통해 전송하도록 제어할 수 있다.
상기 단말은 수신기를 더 포함하며, 상기 프로세서는 상기 수신기가 상기 기지국으로부터 최적의 단말 송신 빔 식별자(ID) 및 상향링크 자원 할당 정보를 수신하도록 제어하고, 상기 프로세서는 상기 송신기가 상기 단말의 최적의 송신 빔 식별자(ID)에 대응하는 송신 빔을 이용하여 상향링크 전송을 수행하도록 제어할 수 있다.
상기 프로세서는 상기 기지국과 빔 스캐닝을 수행하도록 구성되며, 상기 프로세서는 상기 송신기가 상기 빔 스캐닝에 의해 결정된 상기 단말 및 상기 기지국간의 빔 페어 정보에 기초하여 상기 단말의 송신 빔 및 상기 단말의 송신 빔과 페어된 상기 기지국의 수신 빔에 기초하여 상향링크 전송을 수행하도록 제어할 수 있다.
본 발명의 일 실시예에 따라, 기지국 수신 빔과 단말 송신 빔 페어에서 단말 송신 빔 트래킹을 위한 SRS 의 효율적인 자원 할당과 각 단말들의 행동 패턴 파악에 따른 적응적 빔 트래킹 절차를 제시함으로써 효율적은 상향링크 통신이 가능해 진다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2a는 상기 표 2에서의 Series of blockage event duration는 의미 있는 blockage가 발생하는 시간을 도시한 도면이고, 도 2b는 상기 표 2에서의 blockage duration (tD)를 도시한 도면이다.
도 3은 4개의 협폭 빔을 이용한 광폭 빔을 도시한 도면이다.
도 4는 동기화 서브프레임(Synchronization subframe) 구조의 일 예를 도시한 도면이다.
도 5는 빔 스캐닝 주기와 자원 영역(Resource area)(예를 들어, 5XN ms 주기)을 도시한 도면이다.
도 6은 단말 빔 ID에 대응 되는 SRS 전송을 예시한 도면이다(단말 송신 빔 ID 수=8).
도 7은 하향링크 각 단말의 측정된 RSRP 변화를 예시적 나타낸 도면이다.
도 8은 단말 송신 빔의 후보 옵셋의 위치를 예시한 도면이다.
도 9는 단말 송신 빔 후보 인덱스에 따른 SRS 전송 방법을 예시적으로 나타낸 도면이다.
도 10은 본 발명에서 제안하는 단말-특정 주기적 SRS 전송을 위한 흐름도를 예시한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
단말의 전송 빔 트래킹(Tx beam tracking)을 위해 단말은 각 후보 단말 전송 빔(Tx beam)에 따라 SRS를 전송할 필요가 있다. 많은 빔 방향(전 방향에 따른 단말의 전송 빔 세트)에 따른 SRS 전송은 많은 자원 손실을 발생시키기 때문에, 본 발명에서는 SRS 전송을 단말 변화 패턴에 따라, 유연하게 SRS를 전송하여, 적응적 단말 전송 빔 트래킹을 수행하기 위한 방법을 제안한다.
먼저, 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 내용을 다음 표 1에서 설명한다.
A UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types: - trigger type 0: higher layer signalling - trigger type 1: DCI formats 0/4/1A for FDD and TDD and DCI formats 2B/2C/2D for TDD. In case both trigger type 0 and trigger type 1 SRS transmissions would occur in the same subframe in the same serving cell, the UE shall only transmit the trigger type 1 SRS transmission.A UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell. The following SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1. - Transmission comb
Figure PCTKR2016011192-appb-I000001
, as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Starting physical resource block assignment nRRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - duration: single or indefinite (until disabled), as defined in [11] for trigger type 0 - srs-ConfigIndex ISRS for SRS periodicity TSRS and SRS subframe offset Toffset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity TSRS,1,and SRS subframe offset TSRS,1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1 - SRS bandwidth BSRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Frequency hopping bandwidth, bhop , as defined in subclause 5.5.3.2 of [3] for trigger type 0 - Cyclic shift
Figure PCTKR2016011192-appb-I000002
, as defined in subclause 5.5.3.1 of [3] for trigger type 0 and each configuration of trigger type 1 - Number of antenna ports Np for trigger type 0 and each configuration of trigger type 1For trigger type 1 and DCI format 4 three sets of SRS parameters, srs-ConfigApDCI-Format4, are configured by higher layer signalling. The 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1. For trigger type 1 and DCI format 0, a single set of SRS parameters, srs-ConfigApDCI-Format0, is configured by higher layer signalling. For trigger type 1 and DCI formats 1A/2B/2C/2D, a single common set of SRS parameters, srs-ConfigApDCI-Format1a2b2c, is configured by higher layer signalling. The SRS request field is 1 bit [4] for DCI formats 0/1A/2B/2C/2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'. A 1-bit SRS request field shall be included in DCI formats 0/1A for frame structure type 1 and 0/1A/2B/2C/2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0/1A/2B/2C/2D by higher-layer signalling.
다음 표 2는 3GPP LTE/LTE-A 시스템에서 DCI 포맷 4에서의 트리거 타입 1를 위한 SRS Request Value를 나타낸 표이다.
Value of SRS request field Description
'00' No type 1 SRS trigger
'01' The 1st SRS parameter set configured by higher layers
'10' The 2nd SRS parameter set configured by higher layers
'11' The 3rd SRS parameter set configured by higher layers
다음 표 3은 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 추가 내용을 더 설명하기 위한 표이다.
The serving cell specific SRS transmission bandwidths CSRS are configured by higher layers. The allowable values are given in subclause 5.5.3.2 of [3]. The serving cell specific SRS transmission sub-frames are configured by higher layers. The allowable values are given in subclause 5.5.3.3 of [3]. For a TDD serving cell, SRS transmissions can occur in UpPTS and uplink subframes of the UL/DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.When closed-loop UE transmit antenna selection is enabled for a given serving cell for a UE that supports transmit antenna selection, the index a(nSRS), of the UE antenna that transmits the SRS at time nSRS is given bya(nSRS) = nSRS mod 2, for both partial and full sounding bandwidth, and when frequency hopping is disabled (i.e.,
Figure PCTKR2016011192-appb-I000003
),
Figure PCTKR2016011192-appb-I000004
when frequency hopping is enabled (i.e.
Figure PCTKR2016011192-appb-I000005
),where values BSRS, bhop, Nb, and nSRS are given in subclause 5.5.3.2 of [3], and
Figure PCTKR2016011192-appb-I000006
(where
Figure PCTKR2016011192-appb-I000007
regardless of the Nb value), except when a single SRS transmission is configured for the UE. If a UE is configured with more than one serving cell, the UE is not expected to transmit SRS on different antenna ports simultaneously.A UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling. For PUSCH transmission mode 1
Figure PCTKR2016011192-appb-I000008
and for PUSCH transmission mode 2
Figure PCTKR2016011192-appb-I000009
with two antenna ports configured for PUSCH and
Figure PCTKR2016011192-appb-I000010
with 4 antenna ports configured for PUSCH. A UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell. The SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.A UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.For TDD serving cell, when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission. When two SC-FDMA symbols exist in UpPTS of the given serving cell, both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2/2a/2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2/2a/2b transmissions happen to coincide in the same subframe; -The UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a/2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe; -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is FALSE; -For FDD-TDD and primary cell frame structure 1, the UE shall not transmit SRS in a symbol whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to overlap in the same symbol if the parameter ackNackSRS-SimultaneousTransmission is TRUE. -Unless otherwise prohibited, the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.A UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and/or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.In UpPTS, whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell, the UE shall not transmit SRS.The parameter ackNackSRS-SimultaneousTransmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe. If it is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe, then in the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured. This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe. The cell specific SRS subframes are defined in subclause 5.5.3.3 of [3]. Otherwise, the UE shall use the normal PUCCH format 1/1a/1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS, and SRS subframe offset, Toffset, is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively. The periodicity TSRS of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10, 20, 40, 80, 160, 320} ms or subframes. For the SRS periodicity TSRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. Type 0 triggered SRS transmission instances in a given serving cell for TDD serving cell with TSRS > 2 and for FDD serving cell are the subframes satisfying
Figure PCTKR2016011192-appb-I000011
, where for FDD kSRS ={0, 1,,,,0} is the subframe index within the frame, for TDD serving cell kSRS is defined in Table 8.2-3. The SRS transmission instances for TDD serving cell with TSRS =2 are the subframes satisfying kSRS - Toffset . For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL/DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS,1, and SRS subframe offset, Toffset,1, is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively. The periodicity TSRS,1 of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10} ms or subframes. For the SRS periodicity TSRS,1 of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. A UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH on serving cell c.A UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH with the value of carrier indicator field corresponding to serving cell c. A UE configured for type 1 triggered SRS transmission on serving cell c upon detection of a positive SRS request in subframe n of serving cell c shall commence SRS transmission in the first subframe satisfying
Figure PCTKR2016011192-appb-I000012
and
Figure PCTKR2016011192-appb-I000013
for TDD serving cell c with TSRS,1 > 2 and for FDD serving cell c,
Figure PCTKR2016011192-appb-I000014
for TDD serving cell c with TSRS,1 =2where for FDD serving cell c
Figure PCTKR2016011192-appb-I000015
is the subframe index within the frame nf , for TDD serving cell c kSRS is defined in Table 8.2-3.A UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signalling, for the same subframe and the same serving cell.For TDD serving cell c, and a UE configured with EIMTA-MainConfigServCell-r12 for a serving cell c, the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL/DL-configuration as a downlink subframe.A UE shall not transmit SRS whenever SRS and a PUSCH transmission corresponding to a Random Access Response Grant or a retransmission of the same transport block as part of the contention based random access procedure coincide in the same subframe.
다음 표 4는 FDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS - 17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS - 77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS - 317
637 - 1023 reserved reserved
다음 표 5는 TDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(Toffset) 및 UE-specific SRS periodicity (TSRS)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS -17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS -77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS -317
637 - 1023 reserved reserved
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 2 0, 1
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 44 20 ISRS - 25
45 - 84 40 ISRS - 45
85 - 164 80 ISRS - 85
165 - 324 160 ISRS - 165
325 - 644 320 ISRS - 325
645 - 1023 reserved reserved
표 7은 TDD를 위한 kSRS를 나타낸 표이다.
subframe index n
0 1 2 3 4 5 6 7 8 9
1st symbol of UpPTS 2nd symbol of UpPTS 1st symbol of UpPTS 2nd symbol of UpPTS
kSRS in case UpPTS length of 2 symbols 0 1 2 3 4 5 6 7 8 9
kSRS in case UpPTS length of 1 symbol 1 2 3 4 6 7 8 9
다음 표 8은 FDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset,1) 및 UE-specific SRS periodicity (TSRS,1)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 31 reserved reserved
다음 표 9는 TDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(Toffset, 1) 및 UE-specific SRS periodicity (TSRS, 1)를 나타낸 표이다.
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 reserved reserved
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 31 reserved reserved
다음 표 10은 6Ghz 이상 채널의 6Ghz 이하 대비 추가적 채널 변화 특징(blockage effect)를 나타낸 표이다.
Ref. Test description Tx height Rx height Test frequency Blockage rate relative parameter
[2] One blocker moving (1m/s)Horn(22.4dBi, 12˚)Patch(4.3dBi/2.2dBi, 58˚) 2.2/1.2m 1.2m 60GHz Series of Blockage event duration(threshold 5dB) 780~1839ms(Horn)640~1539ms(Patch)
4 blockers moving Series of Blockage event duration(threshold 5dB)688ms(Horn, average)278ms(Patch, average)
[5] 1~15 blockers movingThe horns(22.4 dBi, 12˚ in azimuth, about 10˚ in elevation)The patches (about 3 dBi, 60˚ both in elevation and azimuth. The vertical polarization) 1.58/2.77m 1.55m 60GHz Series of Blockage event duration
(Threshold 10dB)300ms(1~5 persons)350ms(6~10 persons)450ms(11~15 persons) (Threshold 20dB)100ms(1~5 persons)150ms(6~10 persons)300ms(11~15 persons)
[6] - - - 60GHz 93ms(Mean Drop Rate)
[7] One blocker moving(Walking speed)20dBi, 10˚ 1.1m 0.75m 67GHz tD =230ms (average, Threshold 20dB)
[8] One blocker moving(Walking speed)20dBi, 10˚ 1.1m 0.75m 67GHz tD =370ms ~820mstdecay =230ms (mean), 92ms(s.d)(Threshold 20dB)trising =220ms (mean), 100ms(s.d)(Threshold 20dB)
도 2는 상기 표 10과 관련하여 blocakage duration을 설명하기 위한 도면이다. 도 2a는 상기 표 10에서의 Series of blockage event duration는 의미 있는 blockage(즉 특정 전력 threshold 밑으로 감쇄 되게 하는 blockage)가 발생하는 시간을 도시한 도면이고, 도 2b는 상기 표 2에서의 blockage duration (tD)를 도시한 도면이다. Series of Blockage event는 의미있는 blockage가 발생하는 시간, tD는 blockage가 발생하여 다시 blockage 끝나고 정상 상태로 가는 시간을 나타낸다.
표 11은 tdecay , trising 과 단말과의 패턴 관계를 나타내기 위한 표이다.
Walking (0.6m/s)[7] Sprinting(10m/s)[9] Swift Hand swing (43m/s)
tdecay , trising (ms) 150ms (measure) 9ms (calculation) 2.093ms(calculation)
상기 표 11에서의 blockage 변화는 기본적으로 평균 100ms(걷는 장애물 속도(4km/h)) 정도 이지만, 이것은 단말의 패턴 및 주변 환경에 따라, 2~수백 ms까지 다양하게 변할 수 있다.
빔 트래킹(Beam tracking) 필요성
멀티-빔을 적절히 위치시키는 경우에 도 3과 광폭 빔을 정의할 수 있다.
도 3은 4개의 협폭 빔을 이용한 광폭 빔을 도시한 도면이다.
도 3을 참조하면, 4개의 sub-array을 활용하여, 광폭 빔을 정의하였다. 본 발명에서는 송신기가 상기 와이드 빔을 이용하여 동기 신호를 전송한다고 가정한다. 즉, 모든 sub-array는 동일한 PSS(Primary Synchronization Signals)/SSS(Secondary Synchronization Signals)/PBCH(Physical Broadcast CHannel) 전송한다고 가정한다.
한편, 다수의 빔이 넓은 영역을 커버하도록 정의 하는 경우, 빔 게인(beam gain)이 작아지게 된다. 이를 상쇄하기 위하여 시간 축으로 반복 전송을 통해 파워 게인을 추가적으로 제공할 수 있다. 이러한 반복 전송을 바탕으로 한 동기화 서브프레임(synchronization subframe) 구조는 다음 도 4와 같이 나타낼 수 있다.
도 4는 동기화 서브프레임(Synchronization subframe) 구조의 일 예를 도시한 도면이다.
도 4는 동기화 서브프레임(synchronization subframe)구조를 나타내며, PSS/SSS/PBCH을 정의하고 있다. 이때, 도 5에서 동일한 해칭 모양의 블록(block)은 동일한 RF 빔 그룹(4개의 subarray 빔을 이용하여 정의)이 적용된 OFDM(Orthogonal Frequecy Division Multiplexing) 심볼 그룹을 의미한다. 즉, 4개의 OFDM 심볼이 동일한 멀티-RF 빔을 사용한다. 빔 스캐닝 구간은 상기 도 4의 구조를 참조하여, New RAT에서 일반적인 형태로 다음과 도 4와 같이 configuration 할 수 있다.
도 5는 빔 스캐닝 주기와 자원 영역(Resource area)(예를 들어, 5XN ms 주기)을 도시한 도면이다.
기본적으로 빔 스캐닝 절차 자체가 많은 프로세싱 오버헤드를 가지기 때문에 빔 스캐닝을 극단적 주기로 짧게 가져갈 수 없다. 또한, 6GHz 이상 채널의 시간적 변화는 앞서 언급한 추가적 채널 요소 등으로 인해 기존 6GHz 이하 채널보다 더 빨리 변화할 가능성이 크다. 또한 그 셀룰러 시스템에서는 기지국 빔 구성(BS beam configuration)은 고정될 수 있지만, 단말의 빔은 서빙 셀의 위치, 주변 환경 변화, 단말 행동 패턴 등에 따라 바뀔 수 있다. 즉, 빔 스캐닝 구간 내에서, Tx/Rx beam mismatch 가 발생할 가능성이 크다. 따라서, 이것을 극복하기 위해서 빔 트래킹 기법이 필요하다.
빔 트래킹은 하향링크의 경우 상기 도 4에 도시한 BRS를 이용하여 각 BRS에 단말의 수신 빔(Rx beam)을 적용하여 그때의 수신신호 세기(이하에서는 RSRP(Reference Signal Received Power)로 설명한다) 등을 측정하여 수행 할 수 있다. 만약 하향링크를 위한 송신/수신 빔 페어(Tx/Rx beam pair)의 상호관계(reciprocity)(즉 기지국 송신 빔/단말 수신 빔 페어와 단말 송신 빔/기지국 수신 빔)가 성립 할 경우, BRS에 의해 얻어진 송신/수신 빔 페어를 상향링크에 적용할 수 있다. 그러나, 그렇지 않은 때 상향링크 경우는 SRS 등을 이용할 수 있다. 가장 확실한 상향링크 빔 트래킹을 원하는 경우 각 단말의 전체 송신 빔 ID에 대응되는 SRS를 전송해야 한다. 이것은 SRS 전송에 따라 PUSCH(Physical Uplink Shared CHannel) 전송 구간이 작아지는 것을 의미하며, 상향링크 쓰루풋(throughput) 성능을 저해한다.
도 6은 단말 빔 ID에 대응 되는 SRS 전송을 예시한 도면이다(단말 송신 빔 ID 수=8).
도 6에 도시한 바와 같이, 단말 빔 ID가 많아질 수록 SRS 전송 영역은 커짐을 알 수 있다. 이하에서 본 발명에 따른 다양한 실시예를 기술한다.
단말의 송신 빔 트래킹(Tx beam tracking)을 위해 단말은 각 후보 단말 송신 빔에 따라 SRS를 전송할 필요가 있다. 많은 빔 방향(전 방향에 따른 단말 송신 빔 세트)에 따른 SRS 전송은 많은 자원 손실을 발생 시키기 때문에, 본 발명에서는 SRS 전송을 단말 변화 패턴에 따라 유연하게 전송 하여 적응적 단말 송신 빔 트래킹 수행을 위한 방법을 제안하고자 한다.
실시예 1: 단말의 송신 빔 트래킹을 위한 단말-특정 SRS 주기 설정과 이에 대응되는 단말-특정 SRS 전송 방법
상기 실시예 1의 서브 실시예로서 적응적 송신 빔 트래킹(Adaptive Tx beam tracking)을 위한 단말-특정 SRS 전송 주기 및 SRS 전송 서브프레임을 설정하는 방법을 제안한다.
실시예 1-1: 단말-특정 SRS 전송 주기 및 SRS 전송 서브프레임 설정
도 7은 하향링크 각 단말의 측정된 RSRP 변화를 예시적 나타낸 도면이다.
단말-특정 SRS 전송 주기를
Figure PCTKR2016011192-appb-I000016
라고 정의하자. 도 7의 왼쪽에 도시한 도면은 RSRP 변화가 심한 i 번째 단말의 RSRP 변화를 도시하고 있고, 도 7의 오른쪽에 도시한 도면은 RSRP 변화가 크지 않은 j 번째 단말의 RSRP 변화를 도시하고 있다. 특정 기지국 빔 안에 i번째 단말(UE)의 특정 기간
Figure PCTKR2016011192-appb-I000017
동안 RSRP 패턴을 측정한 후에 각 파라미터들(도 7 참조)등(
Figure PCTKR2016011192-appb-I000018
,
Figure PCTKR2016011192-appb-I000019
,
Figure PCTKR2016011192-appb-I000020
) 가지고 SRS 전송의 가변적 주기를 다음 수학식 1과 같이 결정할 수 있다.
Figure PCTKR2016011192-appb-M000001
여기서,
Figure PCTKR2016011192-appb-I000021
는 추가적 파라미터로서 상위 레이어에 의해 상기 단말에 설정(configured)될 수 있다. 특정 기간
Figure PCTKR2016011192-appb-I000022
는 일괄적으로 기지국이 상위 레이어시그널링으로 단말에게 설정해 줄 수 있거나, 혹은 단말 별로 특정하게 단말이 설정할 수도 있다.
표 12는 SRS configuration과 SRS 주기를 예시한 표이다.
Figure PCTKR2016011192-appb-T000001
일 예로서, 표 12와 같이 TSRS 가 정의될 때 (TSRS 는 물리적 SRS 전송 주기를 나타냄) , 만약에
Figure PCTKR2016011192-appb-I000023
,
Figure PCTKR2016011192-appb-I000024
가 각각 5dB, 10ms 이면, 다음 수학식 2와 같은 수식으로 단말 특정 SRS configuration Index (ISRS)를 설정하여 TSRS 를 나타낼 수 있다. 즉, 단말 특정 SRS configuration Index (ISRS)는
Figure PCTKR2016011192-appb-I000025
Figure PCTKR2016011192-appb-I000026
값에 기초하여 다음 수학식 2과 같이 결정될 수 있다.
Figure PCTKR2016011192-appb-M000002
상기 수학식 2에서 RSRP 변화 폭 (
Figure PCTKR2016011192-appb-I000027
)이 커지면 ISRS 값이 작아지게 되어 SRS 전송 주기는 짧아 지게 되고, RSRP 측정 길이가 길면 ISRS 값이 커지게 되어 긴 SRS 주기를 갖게 된다. 수학식 2에서 ISRS가 2 이므로 TSRS 는 표 12를 참조 하여, SRS 전송 주기를 1ms로 설정하는 것을 예시하고 있다.
SRS 전송을 위한 서브프레임 설정
표 12에 예시한 바 같이 SRS 전송을 위한 서브프레임 설정(subframe configuration)이 될 수 있다. 만약 특정 SRS 전송을 위한 서브프레임에서 다수의 단말들이 서로 다른 ISRS 로 SRS를 전송하도록 설정된다면, 해당 서브프레임에서는 가장 큰 ISRS 갖는 단말이 SRS를 전송하도록 정의할 수 있다. 즉, SRS 전송을 위해 중복된 서브프레임에서의 ISRS 는 다음과 같다(
Figure PCTKR2016011192-appb-I000028
). 여기서 U는 그 서브프레임에 SRS 전송 설정이 된 단말의 집합을 가리킨다(총 U개의 단말의 해당 서브프레임에서 SRS 전송하도록 설정된 경우). 일 예로서, SRS 전송을 위한 서브프레임 설정(subframe configuration)은 3GPP TS 36.213의 SRS 전송 서브프레임 설정(subframe configuration)을 수정하여 다음 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2016011192-appb-M000003
여기서, Nsubframe는 시스템의 한 프레임 안에 포함된 서브프레임 수이다(예를 들어, LTE/LTE-A 시스템에서는 Nsubframe =10). nf는 시스템 프레임 넘버(system frame number)이다.
Figure PCTKR2016011192-appb-I000029
또는 KSRS={0,1, ...., 9}와 같이 나타낼 수 있다. 그리고, Toffset은 SRS 서브프레임 옵셋 값을 나타내고, TSRS는 SRS의 물리적 전송 주기를 나타낸다.
기존에 SRS 전송 서브프레임은 TSRS 값을 이용하여 결정되었지만, 수학식 3에서는 MSRS 인덱스 값에 의해 SRS 전송 서브프레임이 결정된다.
실시예 1-2: 적응적 송신 빔 트래킹을 위한 단말 특정 SRS 전송 방법
단말-특정(UE specific) SRS 전송 설정 방법에 대해 설명한다.
먼저, 순서 1로서, 각 단말은 상기 실시예 1-1에 상술한 내용에 따라 RSRP 변화를 측정하여 SRS 설정 인덱스 ISRS를 결정할 수 있고, 결정된 ISRS에 대응하는 SRS 전송 주기
Figure PCTKR2016011192-appb-I000030
(인덱스 i의 단말에 대한 TSRS)를 설정할 수 있다.
다음으로, 순서 2로서, 각 단말은 상향링크로 결정된 SRS 전송 주기에 대응하는 인덱스 MSRS와 단말 송신 빔 트래킹 후보 세트 인덱스를 PUSCH 또는 PUCCH(Physical Uplink Control CHannel)을 통해 기지국으로 전송할 수 있다.
단말 송신 빔 트래킹 후보 세트 인덱스 값은 빔 스캐닝을 통해 얻은 단말의 송신 빔 ID 또는 단말의 수신 빔 ID의 옵셋(offset) 값으로 구성할 수 있다. 절대 옵셋 ID 위치는 상위 레이어에서 설정될 수 있다. 만약에 SRS 전송 주기가 짧은 경우 채널 변화에 따라 변하는 최적 단말 송신 빔의 위치는 이전 최적 빔 위치 근처일 가능성이 크다. 따라서, 다음 표 13의 후보 세트는 현재 단말 송신 빔의 근처 빔들의 집합으로 설정하였다.
Figure PCTKR2016011192-appb-T000002
상기 표 13은 단말 송신 빔 ID 후보 옵셋 인덱스에 대응하는 단말 송신 빔 후보 서브세트를 나타내고 있다. 상기 표 13은 상위 레이어 시그널링 등과 같은 방법으로 기지국과 단말이 공유하고 있을 수 있다.
도 8은 단말 송신 빔의 후보 옵셋의 위치를 예시한 도면이다.
빔 스캐닝 후 기지국 송신 빔/단말 수신 빔 페어가 맞추어진 상태에서, 단말의 송신 빔 ID에 대응되는 ID (
Figure PCTKR2016011192-appb-I000031
) 를 0이라고 하자. 이때, 단말 송신 빔 ID 옵셋 집합은 도 8의 단말 송신 빔의 후보 옵셋의 위치에 기초하여 상기 표 13와 같이 단말 송신 빔 트래킹 후보 세트 인덱스를 설정할 수 있다. 상기 표 13은 3 비트 피드백 기준으로 일 예를 나타낸 것 일뿐, 확장 가능하다.
단말 송신 빔 ID 후보 옵셋 인덱스 혹은 단말 송신 빔 후보 인덱스(Ibeam_offset)는 일반적으로 TSRS 또는 MSRS 등의 함수로 나타낼 수 있으며, 특수 후보 단말 빔들(예를 들어, vertical beam tracking 또는 horizontal beam tracking 등)에 대한 집합도 V/H polarization의 RSRP 등을 측정하여 판단)에 대한 configuration도 포함할 수 있다.
일 예로서,
Figure PCTKR2016011192-appb-I000032
일 때, 만약 TSRS=1ms, α= 1 (상위 레이어에 의해 설정), β=1 (vertical pole RSRP 변화가 심하면 1로 셋팅) 이면, Ibeam_offset는 2이다. 표 13에 따라, 단말 송신 빔 후보 세트는 vertical beam들의 집합이 된다.
순서 3으로서, 각 단말은 Ibeam_offset 값에 대응되는 개수의 SRS를 전송할 수 있다. 예를 들어, 특정 단말이 표 13에서 단말 송신 빔 ID 후보 옵셋 인덱스를 1로 선택한 경우, 단말 송신 빔 ID 후보 옵셋 인덱스 1에 대응하는 단말 송신 빔 후보 서브세트는 단말 송신 빔 ID가 0, 1, 2로 구성되므로, 상기 특정 단말은 해당 단말 송신 빔 ID들에 대응하는 3개의 SRS를 전송할 수 있다. 이때, 단말의 물리 빔 방향은 Ibeam_offset 에 있는
Figure PCTKR2016011192-appb-I000033
빔 방향 순서로 움직인다. 각 단말의 SRS 자원 위치는 오버랩(overlap)되지 않도록 기지국이 설정해 줄 수 있다.
일 예로서, 만약에 Ibeam_offset 가 2이면, 표 13에 따라 SRS는 도 9와 같이 전송 할 수 있다.
도 9는 단말 송신 빔 후보 인덱스에 따른 SRS 전송 방법을 예시적으로 나타낸 도면이다.
도 9에 도시한 바와 같이, 기지국은 단말 송신 빔 ID 별로 해당 SRS 전송 자원을 설정해 줄 수 있다. 예를 들어, 단말 송신 빔 ID 0에 대해서는 SRS 0, 단말 송신 빔 ID 3에 대해서는 SRS 3, 단말 송신 빔 ID 4에 대해서는 SRS 4를 SRS 전송 자원으로 설정(configuaration)해 줄 수 있다. 여기서, SRS 0, SRS 3 및 SRS 4는 각각 서로 다른 심볼에서 전송될 수 있다.
순서 4로서, 기지국은 각 TSRS 에 해당 하는 SRS를 측정하여 각 단말의 최적 송신 빔 ID 옵셋
Figure PCTKR2016011192-appb-I000034
(i 번째 단말의 최적 송신 빔 ID 옵셋)을 예측할 수 있고, 그 단말의 전 대역의 SRS를 측정하여, 최적 상향링크 자원 할당 위치를 확인한다.순서 5로서, 기지국은 상기
Figure PCTKR2016011192-appb-I000035
와 상향링크 자원 할당 위치를 단말에게 제어 채널(예를 들어,PDCCH(Physical Downlink Control CHannel)) 또는 데이터 채널 (예를 들어, PDSCH(Physical Downlink Shared CHannel)를 통해 전송해 줄 수 있다.
순서 6으로서, 단말의 송신 물리 빔 ID는
Figure PCTKR2016011192-appb-I000036
에 대응되는 빔 ID로 변경된다.
이상에서 설명한 적응적 송신 빔 트래킹을 위한 단말 특정 SRS 전송 방법을 다음 도 10을 참조하여 간략하게 정리할 수 있다.
도 10은 본 발명에서 제안하는 단말 특정 주기적 SRS 전송을 위한 흐름도를 예시한 도면이다.
도 10을 참조하면, 단말과 기지국은 빔 스캐닝을 통해 기지국 송신 빔/단말 수신 빔 페어를 결정할 수 있다. 단말은 RSRP를 측정하고 측정된 RSRP 변화 값에 기초하여 SRS 전송 주기를 결정할 수 있다. 단말은 MSRS 및 선택된 단말 송신 빔 후보 세트 인덱스를 PUCCH 또는 PUSCH를 통해 기지국으로 전송할 수 있다. 그리고, 단말은 선택된 단말 송신 빔 후보 세트 인덱스 Ibeam_offset 에 대응되는 SRS를 기지국으로 전송할 수 있다.
이후, 기지국은 최적의 단말 송신 빔 ID
Figure PCTKR2016011192-appb-I000037
와 SRS 전송을 위한 상향링크 자원 할당 정보를 PDCCH 또는 PDSCH 등을 통해 단말에게 알려줄 수 있다. 단말은 최적의 단말 송신 빔 ID
Figure PCTKR2016011192-appb-I000038
에 해당하는 단말 송신 빔과 기지국 수신 빔 페어에 기초하여 상향링크 전송을 시작할 수 있다.
이상에서 살펴본 바와 같이 본 발명은 기지국 수신 빔과 단말 송신 빔 페어에서 단말 송신 빔 트래킹을 위한 SRS 의 효율적인 자원 할당과 각 단말들의 행동 패턴 파악에 따른 적응적 빔 트래킹 절차를 제시함으로써 효율적인 상향링크 통신이 가능해 진다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
무선통신 시스템에서 SRS를 전송하는 방법 및 이를 위한 단말은 3GPP LTE/LTE-A 시스템, 5G 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (12)

  1. 무선통신 시스템에서 단말이 SRS(Sounding Reference Symbol)를 전송하는 방법에 있어서,
    특정 시간 동안 수신신호 세기의 변화 값을 측정하여 SRS 설정 인덱스를 결정하는 단계;
    미리 정의된 SRS 설정 정보에 기초하여 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 전송 주기와 관련된 인덱스 정보와 상기 단말의 특정 송신 빔 후보 세트 인덱스 정보를 결정하는 단계;
    상기 SRS 전송 주기와 관련된 인덱스 정보와 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 기지국으로 전송하는 단계; 및
    상기 특정 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자(ID) 후보 정보에 기초하여 상기 SRS를 상기 기지국으로 전송하는 단계를 포함하는, SRS 전송 방법.
  2. 제 1항에 있어서,
    상기 미리 정의된 SRS 설정 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 물리적 SRS 전송 주기 값 및 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 서브프레임 옵셋값을 포함하는, SRS 전송 방법.
  3. 제 1항에 있어서,
    상기 특정 송신 빔 후보 세트 인덱스 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 상기 SRS 전송 주기와 관련된 인덱스 정보 또는 물리적 SRS 전송 주기값에 기초하여 결정된 것인, SRS 전송 방법.
  4. 제 1항에 있어서,
    상기 적어도 하나의 송신 빔 식별자(ID) 후보 정보는 상기 결정된 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자 후보를 포함하고,
    상기 적어도 하나의 송신 빔 식별자(ID) 후보에 각각 할당된 심볼을 통해 SRS를 전송하는, SRS 전송 방법.
  5. 제 1항에 있어서,
    상기 기지국으로부터 상기 단말의 최적의 송신 빔 식별자(ID) 및 상향링크 자원 할당 정보를 수신하는 단계; 및
    상기 최적의 송신 빔 식별자(ID)에 대응하는 송신 빔을 이용하여 상향링크 전송을 수행하는 단계를 더 포함하는, SRS 전송 방법.
  6. 제 5항에 있어서,
    상기 기지국과 빔 스캐닝을 수행하는 단계를 더 포함하며,
    상기 빔 스캐닝에 의해 결정된 상기 단말 및 상기 기지국간의 빔 페어 정보에 기초하여 상기 단말의 송신 빔 및 상기 단말의 송신 빔과 페어된 상기 기지국의 수신 빔에 기초하여 상향링크 전송을 수행하는, SRS 전송 방법.
  7. 무선통신 시스템에서 SRS(Sounding Reference Symbol)를 전송하는 단말에 있어서,
    송신기; 및
    프로세서를 포함하되,
    상기 프로세서는 특정 시간 동안 수신신호 세기의 변화 값을 측정하여 SRS 설정 인덱스를 결정하고, 미리 정의된 SRS 설정 정보에 기초하여 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 전송 주기와 관련된 인덱스 정보와 상기 단말의 특정 송신 빔 후보 세트 인덱스 정보를 결정하도록 구성되고,
    상기 송신기가 상기 SRS 전송 주기와 관련된 인덱스 정보와 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 기지국으로 전송하고, 상기 특정 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자(ID) 후보 정보에 기초하여 상기 SRS를 상기 기지국으로 전송하도록 제어하는, 단말.
  8. 제 7항에 있어서,
    상기 미리 정의된 SRS 설정 정보는 상기 결정된 SRS 설정 인덱스에 대응하는 물리적 SRS 전송 주기 값 및 상기 결정된 SRS 설정 인덱스에 대응하는 SRS 서브프레임 옵셋값을 포함하는, 단말.
  9. 제 7항에 있어서,
    상기 프로세서는 상기 특정 송신 빔 후보 세트 인덱스 정보를 상기 결정된 SRS 설정 인덱스에 대응하는 상기 SRS 전송 주기와 관련된 인덱스 정보 또는 물리적 SRS 전송 주기값에 기초하여 결정하는, 단말.
  10. 제 7항에 있어서,
    상기 적어도 하나의 송신 빔 식별자(ID) 후보 정보는 상기 결정된 송신 빔 후보 세트 인덱스 정보에 대응하는 적어도 하나의 송신 빔 식별자 후보를 포함하고,
    상기 프로세서는 상기 송신기가 SRS를 상기 적어도 하나의 송신 빔 식별자(ID) 후보에 각각 할당된 심볼을 통해 전송하도록 제어하는, 단말.
  11. 제 7항에 있어서,
    수신기를 더 포함하며,
    상기 프로세서는 상기 수신기가 상기 기지국으로부터 상기 단말의 최적의 송신 빔 식별자(ID) 및 상향링크 자원 할당 정보를 수신하도록 제어하고,
    상기 프로세서는 상기 송신기가 상기 최적의 송신 빔 식별자(ID)에 대응하는 송신 빔을 이용하여 상향링크 전송을 수행하도록 제어하는, 단말.
  12. 제 11항에 있어서,
    상기 프로세서는 상기 기지국과 빔 스캐닝을 수행하도록 구성되며,
    상기 프로세서는,
    상기 송신기가 상기 빔 스캐닝에 의해 결정된 상기 단말 및 상기 기지국간의 빔 페어 정보에 기초하여 상기 단말의 송신 빔 및 상기 단말의 송신 빔과 페어된 상기 기지국의 수신 빔에 기초하여 상향링크 전송을 수행하도록 제어하는, 단말.
PCT/KR2016/011192 2016-04-21 2016-10-06 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말 WO2017183779A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662325465P 2016-04-21 2016-04-21
US62/325,465 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183779A1 true WO2017183779A1 (ko) 2017-10-26

Family

ID=60116119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011192 WO2017183779A1 (ko) 2016-04-21 2016-10-06 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말

Country Status (1)

Country Link
WO (1) WO2017183779A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100042210A (ko) * 2008-10-15 2010-04-23 엘지전자 주식회사 복수개의 안테나를 이용한 사운딩 기준 신호 시퀀스 전송 방법
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
WO2014185841A1 (en) * 2013-05-16 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a method for transmitting sounding reference signals
KR20150080523A (ko) * 2012-10-24 2015-07-09 퀄컴 인코포레이티드 Lte-a에서의 mimo 동작을 위한 향상된 srs 송신
KR20150097939A (ko) * 2014-02-19 2015-08-27 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
KR20100042210A (ko) * 2008-10-15 2010-04-23 엘지전자 주식회사 복수개의 안테나를 이용한 사운딩 기준 신호 시퀀스 전송 방법
KR20150080523A (ko) * 2012-10-24 2015-07-09 퀄컴 인코포레이티드 Lte-a에서의 mimo 동작을 위한 향상된 srs 송신
WO2014185841A1 (en) * 2013-05-16 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a method for transmitting sounding reference signals
KR20150097939A (ko) * 2014-02-19 2015-08-27 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치

Similar Documents

Publication Publication Date Title
WO2018062898A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2018066727A1 (ko) 무선통신 시스템에서 srs을 전송하는 방법 및 이를 위한 단말
WO2017048101A1 (ko) 무선 통신 시스템에서 v2x 단말의 메시지 송수신 방법 및 장치
WO2018199652A1 (ko) 무선 통신 시스템에서 wake up 신호를 수신하는 방법 및 장치
WO2018151554A1 (ko) Srs 설정 정보를 수신하는 방법 및 이를 위한 단말
WO2018147699A1 (ko) 무선 통신 시스템에서 d2d 단말이 통신 장치와 통신 링크를 형성하는 방법 및 이를 위한 장치
WO2016159715A2 (ko) 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
WO2018062846A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2018203738A1 (ko) 무선 통신 시스템에서 릴레이 단말이 사이드링크 신호의 전력을 제어하는 방법 및 이를 위한 장치
WO2016171495A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치
WO2018021825A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2017138802A1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2018131927A1 (ko) 무선 통신 시스템에서 카운터 정보에 기초한 릴레이 통신을 수행하는 방법 및 장치
WO2018131934A1 (ko) 무선 통신 시스템에서 위치 에러 정보에 기초한 빔 탐색 또는 빔 전송을 수행하는 방법 및 장치
WO2019107969A1 (ko) 무선 통신 시스템에서 신호 품질을 측정하는 방법 및 장치
WO2018174684A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
WO2018143725A1 (ko) 무선 통신 시스템에서 단말이 cr을 측정하고 전송을 수행하는 방법 및 장치
WO2018155734A1 (ko) 무선통신 시스템에서 srs 전송에 의한 셀 간 간섭을 제어하기 방법 및 이를 위한 장치
WO2019031952A1 (ko) 무선통신시스템에서 v2x 단말이 pscch 스케쥴링 정보를 수신하고 pscch를 전송하는 방법 및 장치
WO2016032305A1 (en) Method and apparatus for handling zero power channel state information reference signal configurations for discovery signals in wireless communication system
WO2019004784A1 (ko) 측정 수행 방법 및 사용자기기, 그리고 측정 설정 방법 및 기지국
WO2018084331A1 (ko) Rrc 연결 요청을 전송하는 방법 및 이를 위한 단말
WO2017111565A1 (ko) 무선 통신 시스템에서 v2x 단말의 데이터 송신 방법 및 장치
WO2018038496A1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899547

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899547

Country of ref document: EP

Kind code of ref document: A1