WO2017183711A1 - Method for capturing lectin target molecule - Google Patents

Method for capturing lectin target molecule Download PDF

Info

Publication number
WO2017183711A1
WO2017183711A1 PCT/JP2017/015991 JP2017015991W WO2017183711A1 WO 2017183711 A1 WO2017183711 A1 WO 2017183711A1 JP 2017015991 W JP2017015991 W JP 2017015991W WO 2017183711 A1 WO2017183711 A1 WO 2017183711A1
Authority
WO
WIPO (PCT)
Prior art keywords
lectin
target molecule
sugar chain
afp
reactive
Prior art date
Application number
PCT/JP2017/015991
Other languages
French (fr)
Japanese (ja)
Inventor
郁恵 内藤
将也 豊永
佐藤 英雄
伸之 伊勢
Original Assignee
富士レビオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士レビオ株式会社 filed Critical 富士レビオ株式会社
Priority to JP2018513225A priority Critical patent/JP6910699B2/en
Publication of WO2017183711A1 publication Critical patent/WO2017183711A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • C07K14/42Lectins, e.g. concanavalin, phytohaemagglutinin

Definitions

  • the present invention relates to a method for capturing a lectin target molecule, a complex containing the lectin target molecule, a reagent for capturing the lectin target molecule, a kit, and the like.
  • ⁇ -fetoprotein is divided into three fractions, a non-binding fraction (L1), a weak binding fraction (L2), and a binding fraction (L3), depending on the binding properties with lentil bean glutinin (Lens). Classified into minutes. Of these, AFP-L3 is used as a liver cancer marker. Development of an excellent measurement method for AFP-L3 is required for the diagnosis of liver cancer.
  • Prostate-specific antigen is also used as a prostate cancer marker.
  • PSA Prostate-specific antigen
  • the PSA measurement value rises even in prostatic hypertrophy and prostatitis, low specificity is a problem.
  • changes in the sugar chain modification of PSA have been reported in prostate cancer, and it is expected to improve the accuracy of cancer diagnosis by capturing this change in sugar chain modification.
  • Patent Document 1 discloses a method for measuring fucosylated AFP using a lectin.
  • Patent Document 2 discloses a method for measuring PSA having a sugar chain containing a ⁇ -N-acetylgalactosamine residue using a lectin.
  • Non-Patent Document 1 discloses a method for measuring AFP-L3 using a lectin.
  • Non-Patent Document 2 discloses that the malignancy of prostate cancer can be determined by measuring the amount of fucosylated PSA.
  • An object of the present invention is to improve the measurement of lectin target molecules (eg, AFP-L3 and PSA) using lectins.
  • lectin target molecules eg, AFP-L3 and PSA
  • the present invention is as follows.
  • [1] A method for capturing a lectin target molecule, comprising binding a lectin to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
  • [2] The method according to [1], wherein the lectin is a legume lectin or a mushroom collectin.
  • [3] The method of [1] or [2], wherein the lectin is a fucose-specific lectin.
  • [4] The method according to any one of [1] to [3], wherein the lectin is lentil agglutinin (LCA), concanavalin A (ConA), or yellow chawantake lectin (AAL).
  • LCA lentil agglutinin
  • ConA concanavalin A
  • AAL yellow chawantake lectin
  • a complex comprising a lectin target molecule, a lectin, and a lectin-reactive sugar chain-containing entity.
  • the method of the present invention can enhance the binding of a lectin to a lectin target molecule by using the lectin in the presence of a lectin-reactive sugar chain-containing entity. Therefore, the method of the present invention is useful, for example, for measurement, extraction, concentration, purification, detection and quantification of lectin target molecules. More specifically, when the method of the present invention using a lectin in the presence of a lectin-reactive sugar chain-containing entity is used for measuring a lectin target molecule, it is more sensitive and stable than using a lectin alone. Lectin target molecules can be measured.
  • the complex of the present invention is useful, for example, for carrying out the capture method of the present invention.
  • the reagent and kit of the present invention are useful, for example, for simple implementation of the capture method of the present invention.
  • FIG. 1 shows the confirmation of molecular weight by SDS-PAGE and LCA reactivity by lectin blot for purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D.
  • FIG. 2 is a diagram showing confirmation of LCA reactivity by ELISA for purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D.
  • FIG. 3 shows specific detection of AFP-L3 by LCA in the presence of LCA-reactive F (ab ′) 2 fragment antibody A.
  • FIG. 4 shows specific detection of AFP-L3 by LCA in the presence of LCA-reactive F (ab ′) 2 fragment antibody B.
  • FIG. 1 shows the confirmation of molecular weight by SDS-PAGE and LCA reactivity by lectin blot for purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D.
  • FIG. 2 is a diagram showing confirmation of LCA reactivity by EL
  • FIG. 5 shows the results of detection of AFP-L3 and AFP-L1 by LCA in the presence of LCA non-reactive F (ab ′) 2 fragment antibody C.
  • FIG. 6 shows the results of detection of AFP-L3 and AFP-L1 by LCA in the presence of LCA non-reactive F (ab ′) 2 fragment antibody D.
  • FIG. 7 is a view showing the molecular weight by SDS-PAGE and confirmation of LCA reactivity by lectin blot for a sugar chain-depleted mouse IgG F (ab ′) 2 fragment.
  • Figure 8 is a sugar chain-containing mouse IgG F (ab ') 2 fragments and deglycosylation mouse IgG F (ab') for 2 fragments, a diagram illustrating a confirmation of LCA reactive by ELISA.
  • FIG. 10 is a diagram showing detection results of -L3 and AFP-L1.
  • Anti-TNF ⁇ antibody (P): anti-TNF ⁇ antibody having an N-type sugar chain binding consensus sequence in the variable region; anti-TNF ⁇ antibody (N): anti-TNF ⁇ antibody having no N-type sugar chain-binding consensus sequence in the variable region; anti-IL- 10 antibody (P ′): anti-IL-10 antibody having N-type sugar chain binding consensus sequence in variable region; anti-IL-10 antibody (N ′): anti-IL having no N-type sugar chain binding consensus sequence in variable region -10 antibody.
  • P anti-TNF ⁇ antibody having an N-type sugar chain binding consensus sequence in the variable region
  • anti-TNF ⁇ antibody anti-TNF ⁇ antibody having no N-type sugar chain-binding consensus sequence in the variable region
  • anti-IL- 10 antibody P ′
  • anti-IL-10 antibody anti-IL having no N-type sugar chain binding consensus sequence in variable region
  • FIG. 11 shows specific detection of AFP-L3 by LCA in the presence of a lectin-reactive antigen (HBs antigen).
  • FIG. 12 is a diagram showing the confirmation of the molecular weight by SDS-PAGE and LCA reactivity by lectin blot for the sugar chain-removed HBs antigen.
  • FIG. 13 is a diagram showing confirmation of LCA reactivity by ELISA for sugar chain-containing HBs antigen and sugar chain-removed HBs antigen.
  • FIG. 14 is a diagram showing the detection results of AFP-L3 and AFP-L1 by LCA in the presence of sugar chain-containing HBs antigen-HRP showing LCA reactivity or sugar chain-removed HBs antigen-HRP not showing LCA reactivity. It is.
  • FIG. 15 shows the detection of AFP-binding glycans by Aurolia aurantia lectin (AAL) in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type glycan-binding consensus sequence.
  • AAL Aurolia aurantia lectin
  • FIG. 16 is a diagram showing detection of an AFP-linked sugar chain by concanavalin A (ConA) in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence.
  • FIG. 17 is a diagram showing detection of PSA-binding sugar chains by AAL in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence.
  • FIG. 18 is a diagram showing specific detection of AFP-L3 by LCA in the presence of mouse IgG F (ab ′) 2 -HRP having an N-type sugar chain binding consensus sequence.
  • Co-addition conditions A solution containing LCA and mouse IgG F (ab ′) 2 antibody A-HRP was incubated in AFP capture wells; Wash conditions: Washed and unreacted LCA after incubating a solution containing LCA in AFP capture wells Was removed. Subsequently, mouse IgG F (ab ′) 2 antibody A-HRP was added to the AFP capture well from which unreacted LCA was removed, and then incubated.
  • FIG. 19 shows specific detection of AFP-L3 by LCA in the presence of HBs antigen-HRP.
  • Co-addition conditions Incubate solution containing LCA and HBs antigen-HRP in AFP capture wells; Wash conditions: Incubate solution containing LCA in AFP capture wells and wash to remove unreacted LCA from AFP capture wells . Then, in the AFP capture well from which unreacted LCA was removed, incubation was carried out after adding a solution containing HBs antigen-HRP.
  • FIG. 20 shows specific detection of AFP-L3 by AAL in the presence of HBs antigen-HRP.
  • FIG. 21 is a diagram showing specific detection of AFP-L3 by LCA under conditions using LCA-reactive antibody fragment A or B as a solid phase. (+): LCA reactivity; (-): LCA non-reactive FIG.
  • FIG. 22 shows the detection of hemopexin (HPX) -bound AAL-reactive fucosylated glycans in liver cancer patient serum by mouse IgG F (ab ′) 2 -HRP having an N-type glycan-binding consensus sequence in the presence of AAL.
  • FIG. 1% BSA-PBS control; HCC-1, HCC-2: liver cancer patient sera 2 cases; NHS-1, NHS-2: healthy subject sera 2 cases.
  • FIG. 23 shows detection of transferrin (TF) -bound AAL-reactive fucosylated sugar chain in liver cancer patient serum by mouse IgG F (ab ′) 2 -HRP having N-type sugar chain binding consensus sequence in the presence of AAL.
  • FIG. 1% BSA-PBS control; HCC-1, HCC-2: liver cancer patient sera 2 cases; NHS-1, NHS-2: healthy subject sera 2 cases.
  • the present invention provides a method for capturing a lectin target molecule, which comprises binding a lectin to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
  • a lectin is a protein that recognizes a specific sugar chain structure and exhibits binding activity.
  • lectins for example, those derived from animals (eg, vertebrates, invertebrates), plants (eg, legumes, gramineae), fungi (eg, mushrooms, moths) are known.
  • legume lectins include pea lectin (Concanavalin A: ConA), lentil agglutinin (Lens culinaris agglutinin: LCA), pea lectin (Pisum sativum), and the like.
  • examples of the mushroom collectin include herochawantake lectin (Aurelia aurantia lectin: AAL).
  • the lectin used in the present invention can also be appropriately selected according to the sugar chain structure of the lectin target molecule.
  • the lectin used in the present invention include a fucose-specific lectin having an affinity for fucose, a galectin having an affinity for galactose, a sialic acid-reactive lectin, and the like, but a fucose-specific lectin is preferable.
  • a fucose-specific lectin for example, a lectin that recognizes a sugar chain structure (core fucose structure) in which fucose is ⁇ 1,6 added to GlcNAc that is the root of an N-type sugar chain (eg, LCA, pea sactivum (PSA)).
  • lectin that recognizes a sugar chain structure in which fucose is added at any of ⁇ 1, 2, ⁇ 1, 3, ⁇ 1, 4, ⁇ 1, 6 to GlcNAc of N-type sugar chain, O-type sugar chain and glycolipid sugar chain [Example, AAL, Aspergillus oryzae Lectin: AOL].
  • a lectin target molecule refers to a target molecule that has the ability to bind to a lectin and is to be captured in the present invention.
  • the target molecule is a molecule composed of or containing a specific sugar chain to which a lectin binds.
  • the lectin target molecule is a glycoprotein.
  • the glycoprotein as a lectin target molecule include glycoproteins derived from mammals, birds, reptiles, amphibians, fish, plants, insects, microorganisms, or viruses.
  • the glycoprotein as a lectin target molecule may be a glycoprotein for which measurement, extraction, concentration or purification is desired.
  • a glycoprotein is a protein having an N-type sugar chain binding consensus sequence.
  • the N-type sugar chain-binding consensus sequence is an amino acid sequence composed of amino acid residues of Asn-X-Ser or Asn-X-Thr (X is an amino acid residue other than proline).
  • N-type sugar chains are known to bind to asparagine (Asn) residues in N-type sugar chain binding consensus sequences. More specifically, examples of the lectin target molecule include, but are not limited to, AFP-L3, PSA, hemopexin (HPX), and transferrin (TF).
  • PSA is known as a modified protein of a sugar chain such as an N-type sugar chain.
  • the lectin-reactive sugar chain-containing entity means a molecule containing a lectin-reactive sugar chain or a solid phase to which a lectin-reactive sugar chain is added.
  • the lectin-reactive sugar chain-containing entity is different from the lectin target molecule to be captured by the method of the present invention.
  • the lectin-reactive sugar chain-containing entity is not an antibody whose glycin reacts with lectin but has lectin or a lectin target molecule as an antigen.
  • Examples of the molecule containing a lectin-reactive sugar chain include biomolecules and artificial synthetic products (eg, artificial synthetic molecules such as artificial synthetic polymers).
  • Examples of the solid phase include particles (eg, magnetic particles); membranes (eg, nitrocellulose membrane, filter paper), supports such as columns; and containers such as plates (eg, multiwell plates) and tubes.
  • Examples of the solid phase material include glass, plastic, polysaccharide matrix, and metal.
  • the lectin-reactive sugar chain-containing entity can be appropriately selected according to the type of lectin used. For example, such a selection can be performed by evaluating the binding ability of a sugar chain or a sugar chain-containing entity to a lectin (see Example 2, for example).
  • the lectin-reactive sugar chain-containing entity is a biomolecule containing a lectin-reactive sugar chain.
  • biomolecules include polypeptides and nucleic acids.
  • the lectin-reactive sugar chain-containing entity is a glycoprotein.
  • glycoproteins as lectin-reactive sugar chain-containing entities include glycoproteins derived from mammals, birds, reptiles, amphibians, fish, plants, insects, microorganisms, or viruses.
  • glycoproteins as lectin-reactive sugar chain-containing entities include, for example, immunoglobulins (eg, antibodies), secretory proteins, membrane-bound proteins, hormones, cytokines, chemokines, virus-derived antigens, enzymes, extracellular matrices, Examples include extracellular vesicle membrane proteins, tumor-specific antigens, and partial peptides thereof.
  • immunoglobulins eg, antibodies
  • secretory proteins eg, secretory proteins, membrane-bound proteins, hormones, cytokines, chemokines, virus-derived antigens, enzymes, extracellular matrices
  • extracellular matrices examples include extracellular vesicle membrane proteins, tumor-specific antigens, and partial peptides thereof.
  • the glycoprotein as the lectin-reactive sugar chain-containing entity is a protein having an N-type sugar chain binding consensus sequence.
  • the N-type sugar chain-binding consensus sequence is an amino acid sequence composed of amino acid residues of Asn-X-Ser or Asn-X-Thr (X is an amino acid residue other than proline).
  • N-type sugar chains are known to bind to asparagine (Asn) residues in N-type sugar chain binding consensus sequences.
  • examples of the protein having an N-type sugar chain binding consensus sequence include hepatitis B virus surface antigen, human chorionic gonadotropin ⁇ chain, luteinizing hormone, PSA antigen, HE4 antigen, MUC1 antigen, thyroglobulin, And antibodies having an N-type sugar chain-binding consensus sequence in the variable region.
  • the glycoprotein as the lectin-reactive sugar chain-containing entity is an antibody having an N-type sugar chain binding consensus sequence in the variable region.
  • antibodies having an N-type sugar chain binding consensus sequence in the variable region include natural full-length antibodies and modified antibodies.
  • the modified antibody include an antibody fragment having a variable region (eg, Fab, F (ab ′) 2 ), and a single chain antibody.
  • antibodies having an N-type sugar chain binding consensus sequence in the variable region include IgG, IgM, IgA, IgD, IgE, and IgY.
  • the antibody having an N-type sugar chain binding consensus sequence in the variable region may be a polyclonal antibody or a monoclonal antibody, but is preferably a monoclonal antibody.
  • a lectin is bound to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
  • the method of the present invention is carried out in a system comprising at least three components of a lectin target molecule and a lectin and lectin-reactive sugar chain-containing entity, and contains a lectin and a lectin-reactive sugar chain as means for capturing the lectin target molecule.
  • the entity is used together.
  • the method of the present invention is performed in a system in which a lectin and a lectin-reactive sugar chain-containing entity are added to a liquid sample containing a lectin target molecule.
  • the origin of the liquid sample is not particularly limited, and may be a biological sample derived from a living organism or an environmental sample. Examples of organisms from which biological samples are derived include animals such as mammals (eg, humans, monkeys, mice, rats, rabbits, cows, pigs, horses, goats, sheep), birds (eg, chickens), insects, and the like.
  • a biological sample can also be a blood-related sample (eg, whole blood, serum, plasma), saliva, urine, milk, tissue or cell extract, or a mixture thereof, which is the blood itself or a sample derived from blood. Also good.
  • blood-related sample eg, whole blood, serum, plasma
  • saliva, urine, milk, tissue or cell extract, or a mixture thereof which is the blood itself or a sample derived from blood.
  • environmental samples include samples derived from soil, seawater, and fresh water.
  • a liquid sample subjected to pretreatment may be used. Examples of such pretreatment include centrifugation, fractionation, extraction, filtration, precipitation, heating, freezing, refrigeration, and stirring.
  • the amount of the lectin used in the method of the present invention is not particularly limited as long as it is an amount capable of capturing the target lectin in the presence of the lectin-reactive sugar chain-containing entity, and is, for example, 0.1 ⁇ g / mL to 100 mg / mL. .
  • the amount of lectin is preferably 1 ⁇ g / mL or more, more preferably 5 ⁇ g / mL or more, and even more preferably 10 ⁇ g / mL or more.
  • the amount of lectin is also preferably 20 mg / mL or less, more preferably 10 mg / mL or less, and even more preferably 2 mg / mL or less. Such an amount of lectin may be added to the liquid sample.
  • the amount of the lectin-reactive sugar chain-containing entity used in the method of the present invention is not particularly limited as long as it is an amount capable of supporting capture of the lectin target molecule by the lectin, and is, for example, 0.001 ⁇ g / mL to 100 mg / mL. .
  • the amount of the lectin-reactive sugar chain-containing entity is preferably 0.005 ⁇ g / mL or more, more preferably 0.02 ⁇ g / mL or more, and even more preferably 0.1 ⁇ g / mL or more.
  • the amount of the lectin-reactive sugar chain-containing entity is also preferably 20 mg / mL or less, more preferably 5 mg / mL or less, and even more preferably 1 mg / mL or less. Such an amount of lectin-reactive sugar chain-containing entity may be added to the liquid sample.
  • the method of the present invention is a method for measuring a lectin target molecule.
  • the lectin target molecule can be measured after binding of the lectin to the lectin target molecule.
  • the measurement method of the present invention can be carried out according to an immunological technique, and can be carried out by a technique similar to the immunological technique by using a lectin-reactive sugar chain-containing entity and a lectin instead of an antibody. it can.
  • Examples of the immunological technique to which the measurement method of the present invention is applied include enzyme immunoassay (EIA) (eg, chemiluminescence EIA (CLEIA), enzyme-adsorbed EIA (ELISA)), fluorescence immunoassay, chemiluminescence immunoassay Method, electrochemiluminescence immunoassay, agglutination, immunostaining, flowmetry, biolayer interferometry, In Situ PLA method, chemically amplified luminescence proximity homogenous assay, line blotting, Western blotting It is done.
  • EIA enzyme immunoassay
  • CLIA chemiluminescence EIA
  • ELISA enzyme-adsorbed EIA
  • fluorescence immunoassay eg, chemiluminescence immunoassay Method
  • electrochemiluminescence immunoassay eg.g, electrochemiluminescence immunoassay, agglutination, immunostaining, flowmetry,
  • an affinity substance specific for the lectin target molecule may be further used.
  • the affinity substance specific for the lectin target molecule used in the method of the present invention binds to the lectin target molecule at a site (eg, peptide region) different from the lectin binding site (sugar chain) in the lectin target molecule.
  • Examples of the affinity substance specific for the lectin target molecule include antibodies and aptamers, and antibodies are preferred.
  • the amount of the affinity substance specific for the lectin target molecule used in the method of the present invention is not particularly limited as long as it is a sufficient amount to bind the lectin target molecule, and is, for example, 0.0001 ⁇ g / mL to 10 mg / mL. is there.
  • the amount of the affinity substance is preferably 0.001 ⁇ g / mL or more, more preferably 0.005 ⁇ g / mL or more, and even more preferably 0.01 ⁇ g / mL or more.
  • the amount of affinity substance is also preferably 2 mg / mL or less, more preferably 0.5 mg / mL or less, and even more preferably 0.1 mg / mL or less. Such an amount of affinity substance may be added to the liquid sample.
  • the measurement method of the present invention may be performed in a sandwich manner.
  • an affinity substance specific for the lectin target molecule may be used as the solid phase immobilization means, and the lectin and the lectin reactive sugar chain-containing entity may be used in combination as the detection means.
  • a lectin and a lectin-reactive sugar chain-containing entity may be used together as a solid phase immobilization means, and an affinity substance specific for the lectin target molecule may be used as a detection means.
  • a lectin-reactive sugar chain-containing entity or lectin, or an affinity substance specific for a lectin target molecule may be labeled with a labeling substance.
  • labeling substances include enzymes (eg, peroxidase, alkaline phosphatase, luciferase, ⁇ -galactosidase) and affinity substances (eg, streptavidin and biotin, which are complementary to each other in the sense strand and the antisense strand nucleic acid.
  • fluorescent substance or protein eg, fluorescein, fluorescein isothiocyanate, rhodamine, green fluorescent protein, red fluorescent protein
  • luminescent substance eg, luciferin, aequorin, acridinium ester, tris (2,2'- Bipyridyl) ruthenium, luminol
  • radioactive materials eg, 3 H, 14 C, 32 P, 35 S, 125 I.
  • the lectin-reactive sugar chain-containing entity or an affinity substance specific to the lectin-reactive sugar chain-containing entity is labeled.
  • the measurement method of the present invention when performed in a sandwich manner, can be performed by the following steps: (1) binding a lectin target molecule to an affinity substance specific for the lectin target molecule to obtain a first complex including the lectin target molecule and an affinity substance specific for the lectin target molecule; (2) A lectin is bound to the first complex in the presence of a lectin-reactive sugar chain-containing entity, and a lectin target molecule, an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity Obtaining a second complex comprising; and (3) measuring the amount of lectin target molecules contained in the second complex.
  • the lectin target molecules can be those contained in the liquid sample as described above. Therefore, as a specific embodiment of the step (1), the step (1) may be performed by adding an affinity substance specific for the lectin target molecule to the liquid sample containing the lectin target molecule.
  • an affinity substance specific for the lectin target molecule in an amount as described above can be used, but preferably specific for an excess equivalent of the lectin target molecule relative to the expected lectin target molecule.
  • a typical affinity substance may be used.
  • an affinity substance specific for the lectin target molecule it is preferable to use a substance immobilized on a solid phase as described above.
  • Binding of a lectin target molecule and an affinity substance specific for the lectin target molecule can be achieved by incubating both in solution (eg, buffer), thereby allowing the lectin target molecule and lectin target molecule to bind to each other. A first complex containing a specific affinity substance is obtained.
  • step (2) a second complex is obtained.
  • the step (1) by adding the lectin and the lectin-reactive sugar chain-containing entity to the solution containing the first complex obtained in the step (1), the step (2) May be performed.
  • the amount of lectin as described above and the amount of lectin-reactive sugar chain-containing entity as described above can be used, but preferably in excess equivalent to the expected lectin target molecule. Lectins and excess equivalents of lectin-reactive sugar chain-containing entities may be used.
  • Either the lectin or the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance.
  • Binding of the lectin to the first complex in the presence of the lectin-reactive sugar chain-containing entity can be achieved by incubating the three in solution (eg, buffer), whereby the lectin target molecule, A second complex comprising an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity is obtained.
  • the substance specific to the lectin target molecule that is immobilized on the solid phase is used, the second complex is immobilized on the solid phase.
  • a washing step including removal and addition of the liquid phase may be provided.
  • step (3) the amount of the lectin target molecule can be measured using the signal from the labeling substance in the second complex as an index.
  • the present invention also provides a complex comprising a lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity.
  • the complex of the present invention may further contain an affinity substance specific for the lectin target molecule.
  • the complex of the present invention can be prepared by incubating these components in a solution and binding them.
  • the definition, examples and preferred examples of the lectin target molecule, the lectin, the lectin-reactive sugar chain-containing entity, and the affinity substance specific for the lectin target molecule are as described above.
  • the complex of the present invention is useful for the implementation of the capture method of the present invention, for example.
  • the present invention further provides a reagent for capturing a lectin target molecule, which contains a lectin and a lectin-reactive sugar chain-containing entity in a mixed form.
  • the capture reagent of the present invention includes a composition of a lectin and a lectin-reactive sugar chain-containing entity. Since the lectin and the lectin-reactive sugar chain-containing entity contained in the reagent of the present invention are in a mixed form, in the capture reagent of the present invention, a complex is formed between the lectin and the lectin-reactive sugar chain-containing entity. May be.
  • either the lectin or the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably the lectin-reactive sugar chain-containing entity is labeled. It may be labeled with a substance.
  • the reagent of the present invention may contain the labeling substance in an unmixed form with the lectin and the lectin-reactive sugar chain-containing entity. Good.
  • the reagent of the present invention may further contain an affinity substance specific for the lectin target molecule.
  • the affinity substance specific for the lectin target molecule may be labeled with a labeling substance.
  • the affinity substance specific for the lectin target molecule may be immobilized on the solid phase as described above.
  • the reagent of the present invention can be suitably used for measuring lectin target molecules in a sandwich manner.
  • the reagent of the present invention contains an affinity substance specific for a lectin target molecule in either a mixed form or a non-mixed form with a lectin and a lectin-reactive sugar chain-containing entity, but preferably in a non-mixed form.
  • affinity substances specific for lectin target molecules, lectins, lectin-reactive sugar chain-containing entities, and lectin target molecules are as described above.
  • the reagent of the present invention is useful for, for example, simple implementation of the capture method of the present invention, and can be suitably used for the measurement method of the present invention, for example.
  • the present invention also provides a kit for capturing a lectin target molecule comprising a lectin and a lectin-reactive sugar chain-containing entity.
  • the lectin and lectin-reactive sugar chain-containing entity included in the kit of the present invention is in a mixed form (ie, in the form of a composition) or in an unmixed form (ie, a form isolated from each other). Therefore, the component contained in the kit of this invention is provided with the form accommodated in the different container (for example, tube, plate), respectively, or the form accommodated in the different divisions of the same container.
  • kits of the present invention When the kit of the present invention is used for measurement of a lectin target molecule, either a lectin or a lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably a lectin-reactive sugar chain-containing entity is labeled It may be labeled with a substance. Alternatively, when neither the lectin nor the lectin-reactive sugar chain-containing entity is labeled with a labeling substance, the kit of the present invention can be used as an affinity substance (labeled with a labeling substance and / or a lectin target molecule). May be included).
  • the kit of the present invention may further contain an affinity substance specific for the lectin target molecule.
  • the kit of the present invention can be suitably used for measuring a lectin target molecule in a sandwich manner.
  • the affinity substance specific for the lectin target molecule may be immobilized on the solid phase as described above.
  • the definition, examples and preferred examples of lectin target molecules, lectins, lectin-reactive sugar chain-containing entities, and affinity substances specific for the lectin target molecules are as described above.
  • the kit of the present invention is useful for, for example, simple implementation of the capture method of the present invention, and can be suitably used for, for example, the measurement method of the present invention.
  • Example 1 Preparation of Antibody Fragment and Preparation of Antibody Fragment-HRP Mouse IgG1, which is not an anti-LCA antibody, was digested with pepsin and LCA-reactive mouse IgG F (ab ′) 2 fragment and non-LCA-reactive mouse IgG F ( ab ') 2 fragments were prepared.
  • preparation was performed as follows.
  • Mouse IgG1 antibodies A, B, C and D that are not anti-LCA antibodies were digested with pepsin. Digestion was performed by adding pepsin (SIGMA) to mouse IgG1 antibodies A, B, C and D buffer-exchanged to citrate buffer, reacting at 37 ° C. for 1 hour, and stopping the reaction by adding Tris buffer. .
  • SIGMA pepsin
  • Gel filtration was performed with Superdex 200 increase 10 / 300GL equilibrated with PBS to obtain four types of purified mouse IgG F (ab ′) 2 fragments.
  • Purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were labeled with horseradish peroxidase (HRP).
  • HRP horseradish peroxidase
  • HRP was labeled using Peroxidase Labeling Kit-NH2 (Dojindo Laboratories) according to the attached protocol to obtain 4 types of purified antibody fragments—HRP (mouse IgG F (ab ′) 2 -HRP).
  • Example 2 Confirmation of purity, molecular weight, and lectin reactivity of antibody fragments The purity, molecular weight, and lectin reactivity of the four antibody fragments prepared in Example 1 were confirmed.
  • confirmation was performed as follows. (1) The molecular weights of purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were confirmed by SDS-PAGE (FIG. 1 left). (2) LCA reactivity of purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D was confirmed by lectin blot (right side of FIG. 1). (3) purified mouse IgG F (ab ') 2 fragment antibodies A, B, and LCA reactive C and D were confirmed by ELISA. Purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were diluted with PBS so as to be 5 ⁇ g / mL each.
  • Antibody A had an N-type sugar chain binding consensus sequence in the heavy chain of the antibody variable region. This indicates that the F (ab ′) 2 fragment is modified with an N-type sugar chain. Therefore, F (ab ′) 2 fragment antibody A is considered to exhibit lectin reactivity via an N-type sugar chain.
  • Antibody B is the same as antibody A.
  • Antibody C did not have an N-type sugar chain binding consensus sequence in the heavy or light chain of the antibody variable region. This indicates that the F (ab ′) 2 fragment is not modified with an N-type sugar chain. Therefore, F (ab ′) 2 fragment antibody C is considered not to show lectin reactivity.
  • Antibody D is the same as antibody C.
  • Example 3 Construction of AFP-L3 measurement system using lectin in the presence of lectin-reactive antibody fragments Using mouse IgG F (ab ') 2 -HRP prepared in Example 1, immunological measurement of AFP-L3 A system was constructed.
  • the construction was performed as follows.
  • Anti-AFP F (ab ′) 2 was diluted with PBS so as to be 10 ⁇ g / mL.
  • 50 ⁇ L of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody.
  • the antibody-immobilized well was washed with 250 ⁇ L of PBST three times, and then blocked with 150 ⁇ L of 10% blocking reagent at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST.
  • mouse IgG F (ab ′) 2 -HRP prepared in Example 1 was diluted with 10% blocking reagent to 5 ⁇ g / mL, and LCA (Vector) was further added to 100 ⁇ g / mL.
  • a mixed solution was prepared, and the mixed solution was added to an antibody-immobilized well and incubated at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST.
  • 50 ⁇ L of TMB substrate solution (Dako) was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • LCA was able to specifically detect AFP-L3 in the presence of LCA-reactive antibody fragment A or B (Table 2, FIGS. 3 to 6).
  • lectin can specifically detect AFP-L3 in the presence of a labeled lectin-reactive antibody fragment.
  • Example 4 Confirmation of Involvement of Lectin-Reactive Sugar Chain in Lectin-Reactive Antibody Fragment in AFP-L3 Detection
  • the sugar chain of mouse IgG F (ab ′) 2 antibody B prepared in Example 1 is N-glycosidase F It was confirmed whether or not the sugar chain-removed mouse IgG F (ab ′) 2 antibody B maintained AFP-L3 reactivity in the presence of LCA.
  • N-glycosidase F is an enzyme that specifically cleaves a GlcNAc-Asn bond between an N-linked sugar chain and a protein.
  • Example 5 Detection of AFP-L3 by a lectin in the presence of mouse IgG having an N-type sugar chain binding consensus sequence in the variable region The presence or absence of an N-type sugar chain binding consensus sequence in the variable region of the antibody is useful for AFP-L3 detection It was examined whether or not it affected.
  • Example 1 An anti-TNF ⁇ antibody (P) with and without an N-type sugar chain binding consensus sequence (Asn-Ser-Ser) in the variable region (N), and an N-type sugar chain binding consensus sequence (N) in the variable region
  • the anti-IL-10 antibody (P ′) having Asn-Asp-Thr) and the anti-IL-10 antibody not having N (N ′) were labeled with HRP in the same manner as in Example 1.
  • Example 3 As in Example 3, the AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined at 5 ⁇ g / mL.
  • LCA was able to specifically detect AFP-L3 in the presence of an antibody having an N-type sugar chain binding consensus sequence (Table 4, FIG. 10).
  • the lectin can specifically detect AFP-L3 in the presence of an antibody having an N-type sugar chain binding consensus sequence in the variable region (regardless of the type of antigen to which the present antibody binds).
  • Example 6 Construction of AFP-L3 measurement system with lectin in the presence of lectin-reactive antigen Using HBs antigen (hepatitis B virus surface antigen), a glycoprotein having an N-type sugar chain-binding consensus sequence other than mouse IgG Thus, an immunological measurement system for AFP-L3 was constructed.
  • HBs antigen hepatitis B virus surface antigen
  • Example 3 the construction was performed as follows. (1) HRP labeling was performed on HBs antigens having an N-type sugar chain binding consensus sequence in the same manner as in Example 1. (2) As in Example 3, the AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined by diluting from 1000 ng / mL to 2 n. HBs antigen-HRP was reacted at 2 ⁇ g / mL.
  • Example 7 Confirmation of involvement of lectin-reactive sugar chain in antigen in detection of AFP-L3 By removing the sugar chain of HBs antigen with N-glycosidase F, AFP in the presence of LCA in the presence of sugar chain-removed HBs antigen -Confirmed to maintain L3 reactivity.
  • N-glycosidase F treatment of HBs antigen was performed.
  • the N-glycosidase F treatment was performed using a reaction solution attached to N-glycosidase F and PNGase F (New England Biolabs) according to the protocol attached to PNGase F to remove sugar chains.
  • the sugar chain-removed HBs antigen was labeled with HRP in the same manner as in Example 1.
  • HRP As in Example 2, the degree of purification, molecular weight, and LCA reactivity were confirmed.
  • AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined at 1 ⁇ g / mL.
  • HBs antigen-HRP was added at 1 ⁇ g / mL.
  • Example 8 Detection of AFP-L3 by lectin in the presence of lectin-reactive glycoprotein LCA was able to detect AFP-L3 not only in the presence of antibodies but also in the presence of antigen (Example 7). Therefore, another glycoprotein having an N-type sugar chain binding consensus sequence in its amino acid sequence was labeled with HRP, and it was confirmed whether LCA could detect AFP-L3 in the presence of the other glycoprotein.
  • Example 3 confirmation was performed as follows. (1) HCG labeling was performed on hCG ⁇ (human chorionic gonadotropin ⁇ chain) and LH (luteinizing hormone) each having an N-type sugar chain binding consensus sequence in the amino acid sequence in the same manner as in Example 1. (2) As in Example 3, the AFP-L3 reactivity of LCA was confirmed. The AFP concentration was examined at 1 ⁇ g / mL.
  • a numerical value shows the measured value of OD450.
  • Example 9 Construction of detection system for AFP-binding sugar chain by various lectins in the presence of lectin-reactive labeled antibody or lectin-reactive labeled antigen Mouse IgG F (ab ') 2 -HRP having N-type sugar chain-binding consensus sequence
  • a detection system for an AFP-binding sugar chain having the following structural formula was constructed by using Aleuria aurantia lectin (AAL) and concanavalin A (ConA) as lectins.
  • AAL Aleuria aurantia lectin
  • ConA concanavalin A
  • AFP-L3 and AFP-L1 were each diluted with a 10% blocking reagent to 1 ⁇ g / mL, and the reaction was performed using the diluted solution.
  • the antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST.
  • the 1 [mu] g / mL respectively mouse IgG F (ab ') 2 -HRP and 10% blocking reagent the HBs antigen -HRP prepared in Example 6 with an N-type sugar chain binding consensus sequence prepared in Example 1 Then, dilute the blocking reagent in the same way, and then prepare a mixed solution to which either AAL (J-Oil Mills) is added at 10 ⁇ g / mL or ConA (Vector) is added at 10 ⁇ g / mL. Incubated at 37 ° C for 1 hour in addition to phased wells. (3) The antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST. 50 ⁇ L of TMB substrate solution was added to the well after washing, and the reaction was performed at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • AAL J-Oil Mills
  • ConA Vector
  • AAL and ConA can detect AFP-linked glycans in the same manner as LCA in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type glycan-binding consensus sequence. (Table 9, FIGS. 15 and 16).
  • AFP-linked sugar chains can be detected not only for LCA but also for other lectins in the presence of glycoprotein.
  • Example 10 Construction of a detection system for PSA-binding sugar chains by lectins in the presence of lectin-reactive labeled antibodies or lectin-reactive labeled antigens AAL-reactive sugar chains are bound to PSA (prostate specific antigen) It has been reported.
  • a PSA-binding AAL-reactive fucosylated glycan having the following structural formula using AAL as a lectin in the presence of mouse IgG F (ab ′) 2 -HRP and HBs antigen-HRP having an N-type glycan-binding consensus sequence
  • a detection system was constructed.
  • the construction was performed as follows. (1) Anti-PSA F (ab ′) 2 was diluted with PBS so as to be 10 ⁇ g / mL. In the U96 MaxiSorp Nunc-Immuno Plate, 50 ⁇ L of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody. (2) The antibody-immobilized well was washed with 250 ⁇ L of PBST three times, and then blocked with 150 ⁇ L of 10% blocking reagent at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with PBST 250 ⁇ L of PBST, and Lumipulse PSA-N standard PSA solution (Fujirebio) 100 ng / mL, 40 ng / mL, 5 ng / mL, 0.5 ng / mL, 0 ng / ML was added to antibody-immobilized wells and incubated at 37 ° C for 1 hour.
  • the antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST.
  • Mouse IgG F (ab ′) 2 -HRP having the N-type sugar chain binding consensus sequence prepared in Example 1 and HBs antigen-HRP prepared in Example 6 were each 1 ⁇ g / mL with 10% blocking reagent. AAL was further added to a concentration of 10 ⁇ g / mL. The solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour. (5) The antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST. 50 ⁇ L of TMB substrate solution was added to the well after washing, and the reaction was performed at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • AAL can detect PSA-bound AAL-reactive sugar chains in a concentration-dependent manner in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence. (Table 10, FIG. 17).
  • lectins can detect not only AFP-L3 but also other lectin reactive glycoproteins such as PSA in the presence of lectin reactive labeled antibodies or lectin reactive labeled antigens.
  • Example 11 Enhancement of binding force between lectin and target molecule by glycoprotein (1) This example was performed to prove the enhancement of the binding force between the lectin and the target molecule by the glycoprotein.
  • Anti-AFP F (ab ′) 2 was diluted with PBS so as to be 10 ⁇ g / mL.
  • F16 MaxiSorp Nunc-Immuno Plate Thermo
  • 100 ⁇ L of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody.
  • the antibody-immobilized well was washed with 300 ⁇ L of PBST three times, and then blocked with 200 ⁇ L of 10% blocking reagent at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with 300 ⁇ L of PBST.
  • the AFP-L3 solution and the AFP-L1 solution were each diluted with a 10% blocking reagent to 500 ng / mL.
  • 100 ⁇ L of the diluted solution was added and incubated at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with 300 ⁇ L of PBST. Under washing conditions, LCA was diluted with a 10% blocking reagent so as to be 100 ⁇ g / mL, and 100 ⁇ L of the diluted solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
  • mouse IgG F (ab ′) 2 antibody A-HRP prepared in Example 1 was diluted with 10% blocking reagent to 5 ⁇ g / mL or HBs antigen-HRP at 2 ⁇ g / mL, and LCA was further diluted. Each was added so as to be 100 ⁇ g / mL. 100 ⁇ L of the diluted solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour. (6) The antibody-immobilized well was washed 3 times with 300 ⁇ L of PBST. To the well after washing, 100 ⁇ L of TMB substrate solution was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • AFP-L3 was significantly attenuated by adding a washing step after the reaction between AFP-L3 and lectin (LCA) (FIGS. 18 and 19).
  • AFP-L3 was reacted with lectin (LCA) in the presence of labeled glycoprotein (mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain binding consensus sequence) in the presence of simultaneous addition conditions. Only AFP-L3 could be detected specifically (FIGS. 18 and 19).
  • Example 12 Enhancement of binding force between lectin and target molecule by glycoprotein (2) This example was performed to prove the enhancement of the binding force between the lectin and the target molecule by the glycoprotein. Washing after the reaction of the target molecule (AFP-linked fucosylated sugar chain) and lectin (AAL), and the conditions (washing conditions) detected by glycoprotein (HBs antigen-HRP) and the target molecule (AFP-linked fucosylated sugar chain) It was examined whether there was a difference in target molecule detection ability under the conditions (simultaneous addition conditions) in which lectin (AAL) was reacted in the presence of glycoprotein (HBs antigen-HRP). The number of washings was adjusted between conditions.
  • the examination was conducted as follows. (1) In the same manner as in Example 11, 100 ⁇ L of AFP-L3 and AFP-L1 diluted to 500 ng / mL were added to wells on which anti-AFP F (ab ′) 2 had been immobilized, respectively. Incubated for hours. (2) The antibody-immobilized well was washed 3 times with 300 ⁇ L of PBST. Under washing conditions, AAL was diluted with a 10% blocking reagent so as to be 10 ⁇ g / mL, 100 ⁇ L of the diluted AAL solution was added to the antibody-immobilized well, and the resulting solution was incubated at 37 ° C. for 1 hour.
  • HBs antigen-HRP prepared in Example 6 was diluted with 10% blocking reagent so as to be 2 ⁇ g / mL, and 100 ⁇ L of the diluted solution was incubated at 37 ° C. for 1 hour.
  • the HBs antigen-HRP prepared in Example 6 was diluted with a 10% blocking reagent to 2 ⁇ g / mL, and AAL was further added to 10 ⁇ g / mL in the diluted HBs antigen-HRP solution. 100 ⁇ L of the diluted solution was added to each antibody-immobilized well and incubated at 37 ° C. for 1 hour. (4) The solution obtained in (3) was washed 3 times with 300 ⁇ L of PBST. 100 ⁇ L of TMB substrate solution was added to the wells after washing and allowed to react at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • Example 13 Construction of detection system for AFP-L3 using mouse IgG F (ab ′) 2 having an N-type sugar chain binding consensus sequence as a solid phase This experiment was conducted using mouse IgG F ( This was done to prove whether ab ′) 2 can capture AFP-L3 on the solid phase.
  • Mouse IgG F (ab ′) 2 fragment antibodies A and B having an N-type sugar chain binding consensus sequence and mouse IgG F (ab ′) 2 fragment antibodies C and D having no N-type sugar chain binding consensus sequence Then, AFP-L3 and AFP-L1 were reacted with these immobilized antibodies in the presence of LCA to examine whether mouse IgG F (ab ′) 2 can specifically capture AFP-L3.
  • the examination was conducted as follows.
  • (1) The purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D prepared in Example 1 were diluted with PBS so as to be 10 ⁇ g / mL.
  • 50 ⁇ L of the diluted solution was incubated at 37 ° C. for 1 hour to be immobilized.
  • (2) The antibody-immobilized well was washed with 250 ⁇ L of PBST three times, and blocked with 150 ⁇ L of 10% blocking reagent at 37 ° C. for 24 hours.
  • the antibody-immobilized well was washed with 250 ⁇ L of PBST three times, and the AFP-L3 solution and the AFP-L1 solution, whose concentrations were converted from the measured values of Mutus Wako AFP-L3, were each 5 ⁇ g / mL with a 10% blocking reagent.
  • the solution was further diluted by adding LCA to 100 ⁇ g / mL and anti-AFP F (ab ′) 2 -HRP to 1 ⁇ g / mL.
  • 50 ⁇ L of the prepared solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
  • the antibody-immobilized well was washed 3 times with 250 ⁇ L of PBST. Next, 50 ⁇ L of TMB substrate solution was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
  • LCA was able to specifically detect AFP-L3 under conditions in which LCA-reactive antibody fragment A or B was used as a solid phase (FIG. 21).
  • a lectin target molecule can be captured by using a solid-phased lectin-reactive sugar chain-containing entity together with a lectin.
  • Example 14 Construction of hemopexin (HPX) -linked sugar chain and transferrin (TF) -linked sugar chain detection system using mouse IgG-HRP having an N-type sugar chain-binding consensus sequence in the variable region. Whether mouse IgG having a chain-binding consensus sequence can be reacted with AAL in the presence of AAL to detect HPX-bound AAL-reactive fucosylated glycans and TF-bound AAL-reactive fucosylated glycans in liver cancer patient serum investigated.
  • HPX hemopexin
  • TF transferrin
  • Example 2 Mouse IgG having an N-type sugar chain binding consensus sequence in the amino acid sequence of the variable region was labeled with HRP in the same manner as in Example 1.
  • N-glycosidase F (ROCHE) was added to the anti-HPX antibody whose buffer was exchanged with a tris acid buffer, and reacted at 37 ° C. for 24 hours. Thereafter, ultrafiltration at 100 KDa was performed to remove N glycosidase.
  • a lectin target molecule can be captured by using a solid-phased lectin-reactive sugar chain-containing entity together with a lectin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides an improved method for measuring lectin target molecules (such as AFP-L3, PSA, hemopexin and transferrin) using lectin. More specifically, the present invention provides: a method for capturing a lectin target molecule, including causing lectin to bind to the lectin target molecule in the presence of a lectin-reactive sugar-chain containing entity; a complex including a lectin target molecule, lectin and a lectin-reactive sugar-chain containing entity; a reagent for capturing a lectin target molecule, including lectin and a lectin-reactive sugar-chain containing entity in a mixed form; and a kit for capturing a lectin target molecule, including lectin and a lectin-reactive sugar-chain containing entity.

Description

レクチン標的分子の捕捉方法Method for capturing lectin target molecules
 本発明は、レクチン標的分子の捕捉方法、レクチン標的分子を含む複合体、レクチン標的分子の捕捉用試薬およびキットなどに関する。 The present invention relates to a method for capturing a lectin target molecule, a complex containing the lectin target molecule, a reagent for capturing the lectin target molecule, a kit, and the like.
 α-フェトプロテイン(AFP)は、レンズマメアグルチニン(Lens culinaris agglutinin:LCA)との結合性によって非結合画分(L1)、弱結合性画分(L2)、結合性画分(L3)の3画分に分類される。このうちAFP-L3は、肝癌マーカーとして利用されている。肝癌の診断のためAFP-L3の優れた測定法の開発が求められている。 α-fetoprotein (AFP) is divided into three fractions, a non-binding fraction (L1), a weak binding fraction (L2), and a binding fraction (L3), depending on the binding properties with lentil bean glutinin (Lens). Classified into minutes. Of these, AFP-L3 is used as a liver cancer marker. Development of an excellent measurement method for AFP-L3 is required for the diagnosis of liver cancer.
 また、前立腺特異抗原(Prostate-specific antigen:PSA)は、前立腺癌マーカーとして利用されている。しかし、前立腺肥大や前立腺炎においてもPSA測定値が上昇するため、特異性が低いことが課題となっている。近年、前立腺癌においてPSAの糖鎖修飾変化が報告されており、この糖鎖修飾の変化を捉えることで癌診断の精度を向上させることが期待されている。 Prostate-specific antigen (PSA) is also used as a prostate cancer marker. However, since the PSA measurement value rises even in prostatic hypertrophy and prostatitis, low specificity is a problem. In recent years, changes in the sugar chain modification of PSA have been reported in prostate cancer, and it is expected to improve the accuracy of cancer diagnosis by capturing this change in sugar chain modification.
 特許文献1は、レクチンを用いたフコシル化AFPの測定法を開示している。
 特許文献2は、レクチンを用いたβ-N-アセチルガラクトサミン残基を含有する糖鎖をもつPSAの測定方法を開示している。
 非特許文献1は、レクチンを用いたAFP-L3の測定法を開示している。
 非特許文献2は、フコシル化PSA量を測定することで前立腺癌の悪性度を判定できることを開示している。
Patent Document 1 discloses a method for measuring fucosylated AFP using a lectin.
Patent Document 2 discloses a method for measuring PSA having a sugar chain containing a β-N-acetylgalactosamine residue using a lectin.
Non-Patent Document 1 discloses a method for measuring AFP-L3 using a lectin.
Non-Patent Document 2 discloses that the malignancy of prostate cancer can be determined by measuring the amount of fucosylated PSA.
国際公開第99/39209号International Publication No. 99/39209 国際公開第2010/90264号International Publication No. 2010/90264
 本発明の目的は、レクチンを用いたレクチン標的分子(例、AFP-L3およびPSA)の測定を改善することである。 An object of the present invention is to improve the measurement of lectin target molecules (eg, AFP-L3 and PSA) using lectins.
 本発明者らは、鋭意検討した結果、レクチン反応性糖鎖含有実体の存在下においてレクチンを用いると、レクチンのレクチン標的分子への結合が増強することなどを見出した。本知見は、レクチンによるレクチン標的分子の測定をはじめとする、レクチン標的分子の捕捉方法全般に応用することができる。本発明者らは、かかる知見に基づき、本発明を完成するに至った。上記特許文献および非特許文献は、レクチンとレクチン標的分子(AFP-L3およびPSA)との結合を増強する方法を記載も示唆もしていない。 As a result of intensive studies, the present inventors have found that, when a lectin is used in the presence of a lectin-reactive sugar chain-containing entity, the binding of the lectin to the lectin target molecule is enhanced. This knowledge can be applied to all methods of capturing lectin target molecules, including measurement of lectin target molecules using lectins. Based on this finding, the present inventors have completed the present invention. The above-mentioned patent documents and non-patent documents do not describe or suggest a method for enhancing the binding between a lectin and a lectin target molecule (AFP-L3 and PSA).
 すなわち、本発明は以下のとおりである。
〔1〕レクチン反応性糖鎖含有実体の存在下において、レクチンをレクチン標的分子に結合させることを含む、レクチン標的分子の捕捉方法。
〔2〕レクチンがマメ科レクチンまたはキノコレクチンである、〔1〕の方法。
〔3〕レクチンがフコース特異的レクチンである、〔1〕又は〔2〕の方法。
〔4〕レクチンが、レンズマメアグルチニン(LCA)、コンカナバリンA(ConA)またはヒイロチャワンタケレクチン(AAL)である、〔1〕~〔3〕のいずれかの方法。
〔5〕レクチン標的分子が糖タンパク質である、〔1〕~〔4〕のいずれかの方法。
〔6〕糖タンパク質がAFP-L3またはPSAである、〔5〕の方法。
〔7〕糖タンパク質がヘモペキシン(HPX)またはトランスフェリン(TF)である、〔5〕の方法。
〔8〕前記実体がN型糖鎖結合コンセンサス配列を有する糖タンパク質である、〔1〕~〔7〕のいずれかの方法。
〔9〕N型糖鎖結合コンセンサス配列を有する糖タンパク質がN型糖鎖結合コンセンサス配列を可変領域に有する免疫グロブリンである、〔8〕の方法。
〔10〕前記実体が、B型肝炎ウイルス表面抗原(HBs抗原)、ヒト絨毛性ゴナドトロピンα鎖(hCGα)または黄体形成ホルモン(LH)である、〔1〕~〔8〕のいずれかの方法。
〔11〕レクチンのレクチン標的分子への結合後にレクチン標的分子を測定することを含むレクチン標的分子の測定方法である、〔1〕~〔10〕のいずれかの方法。
〔12〕レクチン標的分子に特異的な親和性物質をさらに用いる、〔11〕の方法。
〔13〕以下を含む方法である、〔1〕~〔12〕のいずれかの方法:
(1)レクチン標的分子を、レクチン標的分子に特異的な親和性物質に結合させて、レクチン標的分子およびレクチン標的分子に特異的な親和性物質を含む第1複合体を得ること;
(2)レクチン反応性糖鎖含有実体の存在下においてレクチンを第1複合体と結合させて、レクチン標的分子、レクチン標的分子に特異的な親和性物質、レクチンおよびレクチン反応性糖鎖含有実体を含む第2複合体を得ること;ならびに
(3)第2複合体に含まれるレクチン標的分子の量を測定すること。
〔14〕レクチン標的分子、レクチンおよびレクチン反応性糖鎖含有実体を含む複合体。
〔15〕レクチンおよびレクチン反応性糖鎖含有実体を混合形態で含む、レクチン標的分子の捕捉用試薬。
〔16〕レクチンおよびレクチン反応性糖鎖含有実体を含む、レクチン標的分子の捕捉用キット。
That is, the present invention is as follows.
[1] A method for capturing a lectin target molecule, comprising binding a lectin to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
[2] The method according to [1], wherein the lectin is a legume lectin or a mushroom collectin.
[3] The method of [1] or [2], wherein the lectin is a fucose-specific lectin.
[4] The method according to any one of [1] to [3], wherein the lectin is lentil agglutinin (LCA), concanavalin A (ConA), or yellow chawantake lectin (AAL).
[5] The method according to any one of [1] to [4], wherein the lectin target molecule is a glycoprotein.
[6] The method of [5], wherein the glycoprotein is AFP-L3 or PSA.
[7] The method of [5], wherein the glycoprotein is hemopexin (HPX) or transferrin (TF).
[8] The method according to any one of [1] to [7], wherein the entity is a glycoprotein having an N-type sugar chain binding consensus sequence.
[9] The method according to [8], wherein the glycoprotein having an N-type sugar chain binding consensus sequence is an immunoglobulin having an N-type sugar chain binding consensus sequence in a variable region.
[10] The method according to any one of [1] to [8], wherein the entity is hepatitis B virus surface antigen (HBs antigen), human chorionic gonadotropin α chain (hCGα) or luteinizing hormone (LH).
[11] The method according to any one of [1] to [10], which is a method for measuring a lectin target molecule, comprising measuring the lectin target molecule after binding of the lectin to the lectin target molecule.
[12] The method of [11], further using an affinity substance specific for the lectin target molecule.
[13] The method according to any one of [1] to [12], which is a method comprising:
(1) binding a lectin target molecule to an affinity substance specific for the lectin target molecule to obtain a first complex including the lectin target molecule and an affinity substance specific for the lectin target molecule;
(2) A lectin is bound to the first complex in the presence of a lectin-reactive sugar chain-containing entity, and a lectin target molecule, an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity Obtaining a second complex comprising; and (3) measuring the amount of lectin target molecules contained in the second complex.
[14] A complex comprising a lectin target molecule, a lectin, and a lectin-reactive sugar chain-containing entity.
[15] A reagent for capturing a lectin target molecule, comprising a lectin and a lectin-reactive sugar chain-containing entity in a mixed form.
[16] A kit for capturing a lectin target molecule, comprising a lectin and a lectin-reactive sugar chain-containing entity.
 本発明の方法は、レクチン反応性糖鎖含有実体の存在下においてレクチンを使用することにより、レクチンのレクチン標的分子への結合を増強できる。したがって、本発明の方法は、例えば、レクチン標的分子の測定、抽出、濃縮、精製、検出、定量に有用である。より具体的には、レクチン反応性糖鎖含有実体の存在下でレクチンを使用する本発明の方法をレクチン標的分子の測定に利用した場合、レクチン単独の使用に比し、高感度かつ安定的にレクチン標的分子を測定することができる。
 本発明の複合体は、例えば、本発明の捕捉方法の実施に有用である。
 本発明の試薬およびキットは、例えば、本発明の捕捉方法の簡便な実施に有用である。
The method of the present invention can enhance the binding of a lectin to a lectin target molecule by using the lectin in the presence of a lectin-reactive sugar chain-containing entity. Therefore, the method of the present invention is useful, for example, for measurement, extraction, concentration, purification, detection and quantification of lectin target molecules. More specifically, when the method of the present invention using a lectin in the presence of a lectin-reactive sugar chain-containing entity is used for measuring a lectin target molecule, it is more sensitive and stable than using a lectin alone. Lectin target molecules can be measured.
The complex of the present invention is useful, for example, for carrying out the capture method of the present invention.
The reagent and kit of the present invention are useful, for example, for simple implementation of the capture method of the present invention.
図1は、精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDについて、SDS-PAGEによる分子量、およびレクチンブロットによるLCA反応性の確認を示す図である。FIG. 1 shows the confirmation of molecular weight by SDS-PAGE and LCA reactivity by lectin blot for purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D. 図2は、精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDについて、ELISAによるLCA反応性の確認を示す図である。FIG. 2 is a diagram showing confirmation of LCA reactivity by ELISA for purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D. 図3は、LCA反応性F(ab’)フラグメント抗体Aの存在下におけるLCAによるAFP-L3の特異的な検出を示す図である。FIG. 3 shows specific detection of AFP-L3 by LCA in the presence of LCA-reactive F (ab ′) 2 fragment antibody A. 図4は、LCA反応性F(ab’)フラグメント抗体Bの存在下におけるLCAによるAFP-L3の特異的な検出を示す図である。FIG. 4 shows specific detection of AFP-L3 by LCA in the presence of LCA-reactive F (ab ′) 2 fragment antibody B. 図5は、LCA非反応性F(ab’)フラグメント抗体Cの存在下におけるLCAによるAFP-L3およびAFP-L1の検出の結果を示す図である。FIG. 5 shows the results of detection of AFP-L3 and AFP-L1 by LCA in the presence of LCA non-reactive F (ab ′) 2 fragment antibody C. 図6は、LCA非反応性F(ab’)フラグメント抗体Dの存在下におけるLCAによるAFP-L3およびAFP-L1の検出の結果を示す図である。FIG. 6 shows the results of detection of AFP-L3 and AFP-L1 by LCA in the presence of LCA non-reactive F (ab ′) 2 fragment antibody D. 図7は、糖鎖除去マウスIgG F(ab’)フラグメントについて、SDS-PAGEによる分子量、およびレクチンブロットによるLCA反応性の確認を示す図である。FIG. 7 is a view showing the molecular weight by SDS-PAGE and confirmation of LCA reactivity by lectin blot for a sugar chain-depleted mouse IgG F (ab ′) 2 fragment. 図8は、糖鎖含有マウスIgG F(ab’)フラグメントおよび糖鎖除去マウスIgG F(ab’)フラグメントについて、ELISAによるLCA反応性の確認を示す図である。Figure 8 is a sugar chain-containing mouse IgG F (ab ') 2 fragments and deglycosylation mouse IgG F (ab') for 2 fragments, a diagram illustrating a confirmation of LCA reactive by ELISA. 図9は、LCA反応性を示す糖鎖含有マウスIgG F(ab’)-HRP、またはLCA反応性を示さない糖鎖除去マウスIgG F(ab’)-HRPの存在下におけるLCAによるAFP-L3およびAFP-L1の検出結果を示す図である。9, AFP by LCA in the presence of a sugar chain-containing mouse IgG F (ab ') 2 -HRP or deglycosylation mouse IgG F showing no LCA reactivity (ab,') 2 -HRP indicating the LCA reactivity FIG. 10 is a diagram showing detection results of -L3 and AFP-L1. 図10は、N型糖鎖結合コンセンサス配列を有する抗体の存在下におけるLCAによるAFP-L3およびAFP-L1の検出結果を示す図である。抗TNFα抗体(P):N型糖鎖結合コンセンサス配列を可変領域に有する抗TNFα抗体;抗TNFα抗体(N):N型糖鎖結合コンセンサス配列を可変領域に有しない抗TNFα抗体;抗IL-10抗体(P’):N型糖鎖結合コンセンサス配列を可変領域に有する抗IL-10抗体;抗IL-10抗体(N’):N型糖鎖結合コンセンサス配列を可変領域に有しない抗IL-10抗体。FIG. 10 is a view showing the detection results of AFP-L3 and AFP-L1 by LCA in the presence of an antibody having an N-type sugar chain binding consensus sequence. Anti-TNFα antibody (P): anti-TNFα antibody having an N-type sugar chain binding consensus sequence in the variable region; anti-TNFα antibody (N): anti-TNFα antibody having no N-type sugar chain-binding consensus sequence in the variable region; anti-IL- 10 antibody (P ′): anti-IL-10 antibody having N-type sugar chain binding consensus sequence in variable region; anti-IL-10 antibody (N ′): anti-IL having no N-type sugar chain binding consensus sequence in variable region -10 antibody. 図11は、レクチン反応性抗原(HBs抗原)の存在下におけるLCAによるAFP-L3の特異的な検出を示す図である。FIG. 11 shows specific detection of AFP-L3 by LCA in the presence of a lectin-reactive antigen (HBs antigen). 図12は、糖鎖除去HBs抗原について、SDS-PAGEによる分子量、およびレクチンブロットによるLCA反応性の確認を示す図である。FIG. 12 is a diagram showing the confirmation of the molecular weight by SDS-PAGE and LCA reactivity by lectin blot for the sugar chain-removed HBs antigen. 図13は、糖鎖含有HBs抗原および糖鎖除去HBs抗原について、ELISAによるLCA反応性の確認を示す図である。FIG. 13 is a diagram showing confirmation of LCA reactivity by ELISA for sugar chain-containing HBs antigen and sugar chain-removed HBs antigen. 図14は、LCA反応性を示す糖鎖含有HBs抗原-HRP、またはLCA反応性を示さない糖鎖除去HBs抗原-HRPの存在下におけるLCAによるAFP-L3およびAFP-L1の検出結果を示す図である。FIG. 14 is a diagram showing the detection results of AFP-L3 and AFP-L1 by LCA in the presence of sugar chain-containing HBs antigen-HRP showing LCA reactivity or sugar chain-removed HBs antigen-HRP not showing LCA reactivity. It is. 図15は、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下におけるヒイロチャワンタケレクチン(Aleuria aurantia Lectin:AAL)によるAFP結合糖鎖の検出を示す図である。FIG. 15 shows the detection of AFP-binding glycans by Aurolia aurantia lectin (AAL) in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type glycan-binding consensus sequence. FIG. 図16は、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下におけるコンカナバリンA(ConA)によるAFP結合糖鎖の検出を示す図である。FIG. 16 is a diagram showing detection of an AFP-linked sugar chain by concanavalin A (ConA) in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence. 図17は、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下におけるAALによるPSA結合糖鎖の検出を示す図である。FIG. 17 is a diagram showing detection of PSA-binding sugar chains by AAL in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence. 図18は、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPの存在下におけるLCAによるAFP-L3の特異的な検出を示す図である。同時添加条件:AFP捕捉ウェルにおいてLCAおよびマウスIgG F(ab’)抗体A-HRPを含む溶液をインキュベートした;洗浄条件:AFP捕捉ウェルにおいてLCAを含む溶液をインキュベートした後に洗浄して未反応LCAを除去した。次いで、未反応LCAが除去されたAFP捕捉ウェルに、マウスIgG F(ab’)抗体A-HRPを添加した後にインキュベートした。FIG. 18 is a diagram showing specific detection of AFP-L3 by LCA in the presence of mouse IgG F (ab ′) 2 -HRP having an N-type sugar chain binding consensus sequence. Co-addition conditions: A solution containing LCA and mouse IgG F (ab ′) 2 antibody A-HRP was incubated in AFP capture wells; Wash conditions: Washed and unreacted LCA after incubating a solution containing LCA in AFP capture wells Was removed. Subsequently, mouse IgG F (ab ′) 2 antibody A-HRP was added to the AFP capture well from which unreacted LCA was removed, and then incubated. 図19は、HBs抗原-HRPの存在下におけるLCAによるAFP-L3の特異的な検出を示す図である。同時添加条件:AFP捕捉ウェルにおいてLCAおよびHBs抗原-HRPを含む溶液をインキュベートした;洗浄条件:AFP捕捉ウェルにおいてLCAを含む溶液をインキュベートした後に洗浄して、AFP捕捉ウェルから未反応LCAを除去した。次いで、未反応LCAが除去されたAFP捕捉ウェルにおいて、HBs抗原-HRPを含む溶液を添加した後にインキュベートした。FIG. 19 shows specific detection of AFP-L3 by LCA in the presence of HBs antigen-HRP. Co-addition conditions: Incubate solution containing LCA and HBs antigen-HRP in AFP capture wells; Wash conditions: Incubate solution containing LCA in AFP capture wells and wash to remove unreacted LCA from AFP capture wells . Then, in the AFP capture well from which unreacted LCA was removed, incubation was carried out after adding a solution containing HBs antigen-HRP. 図20は、HBs抗原-HRPの存在下におけるAALによるAFP-L3の特異的な検出を示す図である。同時添加条件:AFP捕捉ウェルにおいてAALおよびHBs抗原-HRPを含む溶液をインキュベートした;洗浄条件:AFP捕捉ウェルにおいてAALを含む溶液をインキュベートした後に洗浄して、AFP捕捉ウェルから未反応AALを除去した。次いで、未反応AALが除去されたAFP捕捉ウェルに、HBs抗原-HRPを添加した後にインキュベートした。FIG. 20 shows specific detection of AFP-L3 by AAL in the presence of HBs antigen-HRP. Co-addition conditions: AAL and HBs antigen-HRP containing solutions were incubated in AFP capture wells; Wash conditions: AAL containing solutions were incubated in AFP capture wells and then washed to remove unreacted AAL from AFP capture wells . The AFP capture well from which unreacted AAL was removed was then incubated after adding HBs antigen-HRP. 図21は、LCA反応性抗体フラグメントAまたはBを固相とした条件下におけるLCAによるAFP-L3の特異的な検出を示す図である。(+):LCA反応性;(-):LCA非反応性FIG. 21 is a diagram showing specific detection of AFP-L3 by LCA under conditions using LCA-reactive antibody fragment A or B as a solid phase. (+): LCA reactivity; (-): LCA non-reactive 図22は、AALの存在下におけるN型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPによる肝臓癌患者血清中のヘモペキシン(HPX)結合AAL反応性フコシル化糖鎖の検出を示す図である。1%BSA-PBS:対照;HCC-1、HCC-2:肝臓癌患者血清2例;NHS-1、NHS-2:健常人血清2例。FIG. 22 shows the detection of hemopexin (HPX) -bound AAL-reactive fucosylated glycans in liver cancer patient serum by mouse IgG F (ab ′) 2 -HRP having an N-type glycan-binding consensus sequence in the presence of AAL. FIG. 1% BSA-PBS: control; HCC-1, HCC-2: liver cancer patient sera 2 cases; NHS-1, NHS-2: healthy subject sera 2 cases. 図23は、AALの存在下におけるN型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPによる肝臓癌患者血清中のトランスフェリン(TF)結合AAL反応性フコシル化糖鎖の検出を示す図である。1%BSA-PBS:対照;HCC-1、HCC-2:肝臓癌患者血清2例;NHS-1、NHS-2:健常人血清2例。FIG. 23 shows detection of transferrin (TF) -bound AAL-reactive fucosylated sugar chain in liver cancer patient serum by mouse IgG F (ab ′) 2 -HRP having N-type sugar chain binding consensus sequence in the presence of AAL. FIG. 1% BSA-PBS: control; HCC-1, HCC-2: liver cancer patient sera 2 cases; NHS-1, NHS-2: healthy subject sera 2 cases.
 本発明は、レクチン反応性糖鎖含有実体の存在下において、レクチンをレクチン標的分子に結合させることを含む、レクチン標的分子の捕捉方法を提供する。 The present invention provides a method for capturing a lectin target molecule, which comprises binding a lectin to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
 レクチンは、特定の糖鎖構造を認識して結合活性を示すタンパク質である。レクチンとしては、例えば、動物(例、脊椎動物、無脊椎動物)、植物(例、マメ科、イネ科)、菌類(例、キノコ、麹)由来のものが知られている。マメ科レクチンとしては、例えば、ナタマメレクチン(Concanavalin A:ConA)、レンズマメアグルチニン(Lens culinaris agglutinin:LCA)、エンドウマメレクチン(Pisum sativum)などが挙げられる。キノコレクチンとしては、例えば、ヒイロチャワンタケレクチン(Aleuria aurantia Lectin:AAL)などが挙げられる。 A lectin is a protein that recognizes a specific sugar chain structure and exhibits binding activity. As lectins, for example, those derived from animals (eg, vertebrates, invertebrates), plants (eg, legumes, gramineae), fungi (eg, mushrooms, moths) are known. Examples of legume lectins include pea lectin (Concanavalin A: ConA), lentil agglutinin (Lens culinaris agglutinin: LCA), pea lectin (Pisum sativum), and the like. Examples of the mushroom collectin include herochawantake lectin (Aurelia aurantia lectin: AAL).
 本発明で用いられるレクチンはまた、レクチン標的分子の糖鎖構造に応じて適宜選択することができる。本発明で用いられるレクチンとしては、例えば、フコースに対する親和性を有するフコース特異的レクチン、ガラクトースに対する親和性を有するガレクチン、シアル酸反応性レクチンなどが挙げられるが、フコース特異的レクチンが好ましい。フコース特異的レクチンとしては、例えば、N型糖鎖の根本のGlcNAcにフコースがα1,6付加した糖鎖構造(コアフコース構造)を認識するレクチン〔例、LCA、エンドウマメレクチン(Pisum sativum:PSA)〕、並びにN型糖鎖、O型糖鎖及び糖脂質糖鎖のGlcNAcにフコースをα1,2、α1,3、α1,4、α1,6のいずれかで付加した糖鎖構造を認識するレクチン〔例、AAL、麹菌レクチン(Aspergillus oryzae Lectin:AOL)〕が挙げられる。 The lectin used in the present invention can also be appropriately selected according to the sugar chain structure of the lectin target molecule. Examples of the lectin used in the present invention include a fucose-specific lectin having an affinity for fucose, a galectin having an affinity for galactose, a sialic acid-reactive lectin, and the like, but a fucose-specific lectin is preferable. As the fucose-specific lectin, for example, a lectin that recognizes a sugar chain structure (core fucose structure) in which fucose is α1,6 added to GlcNAc that is the root of an N-type sugar chain (eg, LCA, pea sactivum (PSA)). And a lectin that recognizes a sugar chain structure in which fucose is added at any of α1, 2, α1, 3, α1, 4, α1, 6 to GlcNAc of N-type sugar chain, O-type sugar chain and glycolipid sugar chain [Example, AAL, Aspergillus oryzae Lectin: AOL].
 レクチン標的分子とは、レクチンと結合する能力を有する、本発明において捕捉されるべき標的分子をいう。標的分子は、レクチンが結合する特定の糖鎖からなる、又は当該特定の糖鎖を含有する分子である。 A lectin target molecule refers to a target molecule that has the ability to bind to a lectin and is to be captured in the present invention. The target molecule is a molecule composed of or containing a specific sugar chain to which a lectin binds.
 好ましくは、レクチン標的分子は、糖タンパク質である。レクチン標的分子としての糖タンパク質としては、例えば、哺乳動物、鳥類、爬虫類、両生類、魚類、植物、昆虫、微生物、またはウイルス由来の糖タンパク質が挙げられる。レクチン標的分子としての糖タンパク質は、測定、抽出、濃縮または精製が所望される糖タンパク質であってもよい。具体的には、糖タンパク質は、N型糖鎖結合コンセンサス配列を有するタンパク質である。N型糖鎖結合コンセンサス配列は、Asn-X-SerまたはAsn-X-Thrのアミノ酸残基(Xはプロリン以外のアミノ酸残基)から構成されるアミノ酸配列である。N型糖鎖は、N型糖鎖結合コンセンサス配列中のアスパラギン(Asn)残基に結合することが知られている。より具体的には、レクチン標的分子としては、例えば、AFP-L3、PSA、ヘモペキシン(HPX)、およびトランスフェリン(TF)が挙げられるが、これらに限定されるものではない。PSAは、N型糖鎖等の糖鎖の修飾タンパク質として知られている。 Preferably, the lectin target molecule is a glycoprotein. Examples of the glycoprotein as a lectin target molecule include glycoproteins derived from mammals, birds, reptiles, amphibians, fish, plants, insects, microorganisms, or viruses. The glycoprotein as a lectin target molecule may be a glycoprotein for which measurement, extraction, concentration or purification is desired. Specifically, a glycoprotein is a protein having an N-type sugar chain binding consensus sequence. The N-type sugar chain-binding consensus sequence is an amino acid sequence composed of amino acid residues of Asn-X-Ser or Asn-X-Thr (X is an amino acid residue other than proline). N-type sugar chains are known to bind to asparagine (Asn) residues in N-type sugar chain binding consensus sequences. More specifically, examples of the lectin target molecule include, but are not limited to, AFP-L3, PSA, hemopexin (HPX), and transferrin (TF). PSA is known as a modified protein of a sugar chain such as an N-type sugar chain.
 レクチン反応性糖鎖含有実体とは、レクチン反応性糖鎖を含有する分子、またはレクチン反応性糖鎖が付加されている固相をいう。レクチン反応性糖鎖含有実体は、本発明の方法で捕捉されるべきレクチン標的分子とは異なる。レクチン反応性糖鎖含有実体は、その糖鎖がレクチンと反応するのであって、レクチンまたはレクチン標的分子を抗原とする抗体ではない。レクチン反応性糖鎖を含有する分子としては、例えば、生体分子、および人工合成物(例、人工合成高分子等の人工合成分子)が挙げられる。固相としては、例えば、粒子(例、磁性粒子);メンブレン(例、ニトロセルロース膜、ろ紙)、カラム等の支持体;並びにプレート(例、マルチウェルプレート)、チューブ等の容器が挙げられる。固相の材料としては、例えば、ガラス、プラスチック、多糖体のマトリックス、および金属が挙げられる。レクチン反応性糖鎖含有実体は、用いられるレクチンの種類に応じて適宜選択することができる。例えば、このような選択は、レクチンとの糖鎖または糖鎖含有実体の結合能力を評価することにより行うことができる(例、実施例2を参照)。 The lectin-reactive sugar chain-containing entity means a molecule containing a lectin-reactive sugar chain or a solid phase to which a lectin-reactive sugar chain is added. The lectin-reactive sugar chain-containing entity is different from the lectin target molecule to be captured by the method of the present invention. The lectin-reactive sugar chain-containing entity is not an antibody whose glycin reacts with lectin but has lectin or a lectin target molecule as an antigen. Examples of the molecule containing a lectin-reactive sugar chain include biomolecules and artificial synthetic products (eg, artificial synthetic molecules such as artificial synthetic polymers). Examples of the solid phase include particles (eg, magnetic particles); membranes (eg, nitrocellulose membrane, filter paper), supports such as columns; and containers such as plates (eg, multiwell plates) and tubes. Examples of the solid phase material include glass, plastic, polysaccharide matrix, and metal. The lectin-reactive sugar chain-containing entity can be appropriately selected according to the type of lectin used. For example, such a selection can be performed by evaluating the binding ability of a sugar chain or a sugar chain-containing entity to a lectin (see Example 2, for example).
 好ましくは、レクチン反応性糖鎖含有実体は、レクチン反応性糖鎖を含有する生体分子である。生体分子としては、例えば、ポリペプチドおよび核酸が挙げられる。より好ましくは、レクチン反応性糖鎖含有実体は、糖タンパク質である。レクチン反応性糖鎖含有実体としての糖タンパク質としては、例えば、哺乳動物、鳥類、爬虫類、両生類、魚類、植物、昆虫、微生物、またはウイルス由来の糖タンパク質が挙げられる。レクチン反応性糖鎖含有実体としての糖タンパク質としてはまた、例えば、免疫グロブリン(例、抗体)、分泌型タンパク質、膜結合型タンパク質、ホルモン、サイトカイン、ケモカイン、ウイルス由来抗原、酵素、細胞外マトリックス、細胞外小胞膜タンパク質、腫瘍特異抗原、及びそれらの部分ペプチドが挙げられる。 Preferably, the lectin-reactive sugar chain-containing entity is a biomolecule containing a lectin-reactive sugar chain. Examples of biomolecules include polypeptides and nucleic acids. More preferably, the lectin-reactive sugar chain-containing entity is a glycoprotein. Examples of glycoproteins as lectin-reactive sugar chain-containing entities include glycoproteins derived from mammals, birds, reptiles, amphibians, fish, plants, insects, microorganisms, or viruses. Examples of glycoproteins as lectin-reactive sugar chain-containing entities include, for example, immunoglobulins (eg, antibodies), secretory proteins, membrane-bound proteins, hormones, cytokines, chemokines, virus-derived antigens, enzymes, extracellular matrices, Examples include extracellular vesicle membrane proteins, tumor-specific antigens, and partial peptides thereof.
 好ましくは、レクチン反応性糖鎖含有実体としての糖タンパク質は、N型糖鎖結合コンセンサス配列を有するタンパク質である。N型糖鎖結合コンセンサス配列は、Asn-X-SerまたはAsn-X-Thrのアミノ酸残基(Xはプロリン以外のアミノ酸残基)から構成されるアミノ酸配列である。N型糖鎖は、N型糖鎖結合コンセンサス配列中のアスパラギン(Asn)残基に結合することが知られている。より具体的には、N型糖鎖結合コンセンサス配列を有するタンパク質としては、例えば、B型肝炎ウイルス表面抗原、ヒト絨毛性ゴナドトロピンα鎖、黄体形成ホルモン、PSA抗原、HE4抗原、MUC1抗原、サイログロブリン、ならびにN型糖鎖結合コンセンサス配列を可変領域に有する抗体が挙げられる。 Preferably, the glycoprotein as the lectin-reactive sugar chain-containing entity is a protein having an N-type sugar chain binding consensus sequence. The N-type sugar chain-binding consensus sequence is an amino acid sequence composed of amino acid residues of Asn-X-Ser or Asn-X-Thr (X is an amino acid residue other than proline). N-type sugar chains are known to bind to asparagine (Asn) residues in N-type sugar chain binding consensus sequences. More specifically, examples of the protein having an N-type sugar chain binding consensus sequence include hepatitis B virus surface antigen, human chorionic gonadotropin α chain, luteinizing hormone, PSA antigen, HE4 antigen, MUC1 antigen, thyroglobulin, And antibodies having an N-type sugar chain-binding consensus sequence in the variable region.
 より好ましくは、レクチン反応性糖鎖含有実体としての糖タンパク質は、N型糖鎖結合コンセンサス配列を可変領域に有する抗体である。N型糖鎖結合コンセンサス配列を可変領域に有する抗体としては、例えば、天然の全長抗体および改変抗体が挙げられる。改変抗体としては、例えば、可変領域を有する抗体フラグメント(例、Fab、F(ab’))、および単鎖抗体が挙げられる。また、N型糖鎖結合コンセンサス配列を可変領域に有する抗体としては、例えば、IgG、IgM、IgA、IgD、IgE、およびIgYが挙げられる。N型糖鎖結合コンセンサス配列を可変領域に有する抗体は、ポリクローナル抗体またはモノクローナル抗体であってもよいが、好ましくはモノクローナル抗体である。 More preferably, the glycoprotein as the lectin-reactive sugar chain-containing entity is an antibody having an N-type sugar chain binding consensus sequence in the variable region. Examples of antibodies having an N-type sugar chain binding consensus sequence in the variable region include natural full-length antibodies and modified antibodies. Examples of the modified antibody include an antibody fragment having a variable region (eg, Fab, F (ab ′) 2 ), and a single chain antibody. Examples of antibodies having an N-type sugar chain binding consensus sequence in the variable region include IgG, IgM, IgA, IgD, IgE, and IgY. The antibody having an N-type sugar chain binding consensus sequence in the variable region may be a polyclonal antibody or a monoclonal antibody, but is preferably a monoclonal antibody.
 本発明の方法は、レクチン反応性糖鎖含有実体の存在下において、レクチンがレクチン標的分子に結合される。換言すれば、本発明の方法は、レクチン標的分子、ならびにレクチンおよびレクチン反応性糖鎖含有実体という少なくとも三成分を含む系において行われ、レクチン標的分子の捕捉手段としてレクチンおよびレクチン反応性糖鎖含有実体が併用される。レクチン反応性糖鎖含有実体の存在下においてレクチンを使用することにより、レクチンのレクチン標的分子への結合を増強できる。したがって、本発明の方法は、例えば、レクチン標的分子の測定、抽出、濃縮、精製、定量、検出に有用である。 In the method of the present invention, a lectin is bound to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity. In other words, the method of the present invention is carried out in a system comprising at least three components of a lectin target molecule and a lectin and lectin-reactive sugar chain-containing entity, and contains a lectin and a lectin-reactive sugar chain as means for capturing the lectin target molecule. The entity is used together. By using a lectin in the presence of a lectin-reactive sugar chain-containing entity, the binding of the lectin to the lectin target molecule can be enhanced. Therefore, the method of the present invention is useful, for example, for measurement, extraction, concentration, purification, quantification, and detection of lectin target molecules.
 レクチン標的分子は、液体サンプルに含まれるものが使用される。換言すれば、本発明の方法は、レクチン標的分子を含む液体サンプルに、レクチンおよびレクチン反応性糖鎖含有実体を加えた系において行われる。液体サンプルの由来は特に限定されず、生物由来の生物学的サンプルであってもよく、または環境サンプルなどであってもよい。生物学的サンプルが由来する生物としては、例えば、哺乳動物(例、ヒト、サル、マウス、ラット、ウサギ、ウシ、ブタ、ウマ、ヤギ、ヒツジ)、鳥類(例、ニワトリ)等の動物、昆虫、微生物、植物、菌類、魚類が挙げられるが、好ましくは哺乳動物、菌類、魚類であり、より好ましくは哺乳動物であり、さらにより好ましくはヒトである。生物学的サンプルはまた、血液自体または血液に由来するサンプルである血液関連サンプル(例、全血、血清、血漿)、唾液、尿、乳汁、組織または細胞抽出液、あるいはこれらの混合物であってもよい。環境サンプルとしては、土壌、海水、淡水由来のサンプルが挙げられる。液体サンプルは、予備処理に付されたものを用いてもよい。このような予備処理としては、例えば、遠心分離、分画、抽出、ろ過、沈殿、加熱、凍結、冷蔵、及び攪拌が挙げられる。 As the lectin target molecule, one contained in a liquid sample is used. In other words, the method of the present invention is performed in a system in which a lectin and a lectin-reactive sugar chain-containing entity are added to a liquid sample containing a lectin target molecule. The origin of the liquid sample is not particularly limited, and may be a biological sample derived from a living organism or an environmental sample. Examples of organisms from which biological samples are derived include animals such as mammals (eg, humans, monkeys, mice, rats, rabbits, cows, pigs, horses, goats, sheep), birds (eg, chickens), insects, and the like. , Microorganisms, plants, fungi, and fish, preferably mammals, fungi, and fish, more preferably mammals, and even more preferably humans. A biological sample can also be a blood-related sample (eg, whole blood, serum, plasma), saliva, urine, milk, tissue or cell extract, or a mixture thereof, which is the blood itself or a sample derived from blood. Also good. Examples of environmental samples include samples derived from soil, seawater, and fresh water. A liquid sample subjected to pretreatment may be used. Examples of such pretreatment include centrifugation, fractionation, extraction, filtration, precipitation, heating, freezing, refrigeration, and stirring.
 本発明の方法において用いられるレクチンの量は、レクチン反応性糖鎖含有実体の存在下で標的レクチンを捕捉できる量である限り特に限定されないが、例えば、0.1μg/mL~100mg/mLである。レクチンの量は、好ましくは1μg/mL以上、より好ましくは5μg/mL以上、さらにより好ましくは10μg/mL以上である。レクチンの量はまた、好ましくは20mg/mL以下、より好ましくは10mg/mL以下、さらにより好ましくは2mg/mL以下である。このような量のレクチンが、液体サンプルに添加されてもよい。 The amount of the lectin used in the method of the present invention is not particularly limited as long as it is an amount capable of capturing the target lectin in the presence of the lectin-reactive sugar chain-containing entity, and is, for example, 0.1 μg / mL to 100 mg / mL. . The amount of lectin is preferably 1 μg / mL or more, more preferably 5 μg / mL or more, and even more preferably 10 μg / mL or more. The amount of lectin is also preferably 20 mg / mL or less, more preferably 10 mg / mL or less, and even more preferably 2 mg / mL or less. Such an amount of lectin may be added to the liquid sample.
 本発明の方法において用いられるレクチン反応性糖鎖含有実体の量は、レクチンによるレクチン標的分子の捕捉を支援できる量である限り特に限定されないが、例えば、0.001μg/mL~100mg/mLである。レクチン反応性糖鎖含有実体の量は、好ましくは0.005μg/mL以上、より好ましくは0.02μg/mL以上、さらにより好ましくは0.1μg/mL以上である。レクチン反応性糖鎖含有実体の量はまた、好ましくは20mg/mL以下、より好ましくは5mg/mL以下、さらにより好ましくは1mg/mL以下である。このような量のレクチン反応性糖鎖含有実体が、液体サンプルに添加されてもよい。 The amount of the lectin-reactive sugar chain-containing entity used in the method of the present invention is not particularly limited as long as it is an amount capable of supporting capture of the lectin target molecule by the lectin, and is, for example, 0.001 μg / mL to 100 mg / mL. . The amount of the lectin-reactive sugar chain-containing entity is preferably 0.005 μg / mL or more, more preferably 0.02 μg / mL or more, and even more preferably 0.1 μg / mL or more. The amount of the lectin-reactive sugar chain-containing entity is also preferably 20 mg / mL or less, more preferably 5 mg / mL or less, and even more preferably 1 mg / mL or less. Such an amount of lectin-reactive sugar chain-containing entity may be added to the liquid sample.
 好ましい実施形態では、本発明の方法は、レクチン標的分子の測定方法である。本発明の測定方法では、レクチンのレクチン標的分子への結合後にレクチン標的分子を測定することができる。本発明の測定方法は、免疫学的手法に準じて行うことができ、抗体の代わりにレクチン反応性糖鎖含有実体およびレクチンを併用することにより、免疫学的手法と同様の手法により行うことができる。本発明の測定方法が準じる免疫学的手法としては、例えば、酵素免疫測定法(EIA)(例、化学発光EIA(CLEIA)、酵素吸着EIA(ELISA))、蛍光免疫測定法、化学発光免疫測定法、電気化学発光免疫測定法、凝集法、免疫染色、フローメトリー法、バイオレイヤー干渉法、In Situ PLA法、化学増幅型ルミネッセンス・プロキシミティ・ホモジニアス・アッセイ、ラインブロット法、ウエスタンブロット法が挙げられる。本発明の測定方法は、定性的または定量的に行われ、レクチン標的分子の有無または量を評価することができる。 In a preferred embodiment, the method of the present invention is a method for measuring a lectin target molecule. In the measurement method of the present invention, the lectin target molecule can be measured after binding of the lectin to the lectin target molecule. The measurement method of the present invention can be carried out according to an immunological technique, and can be carried out by a technique similar to the immunological technique by using a lectin-reactive sugar chain-containing entity and a lectin instead of an antibody. it can. Examples of the immunological technique to which the measurement method of the present invention is applied include enzyme immunoassay (EIA) (eg, chemiluminescence EIA (CLEIA), enzyme-adsorbed EIA (ELISA)), fluorescence immunoassay, chemiluminescence immunoassay Method, electrochemiluminescence immunoassay, agglutination, immunostaining, flowmetry, biolayer interferometry, In Situ PLA method, chemically amplified luminescence proximity homogenous assay, line blotting, Western blotting It is done. The measurement method of the present invention is performed qualitatively or quantitatively, and the presence or amount of a lectin target molecule can be evaluated.
 本発明の方法では、レクチン標的分子に特異的な親和性物質がさらに用いられてもよい。本発明の方法で用いられるレクチン標的分子に特異的な親和性物質は、レクチン標的分子中のレクチン結合部位(糖鎖)とは異なる部位(例、ペプチド領域)でレクチン標的分子に結合する。レクチン標的分子に特異的な親和性物質としては、例えば、抗体およびアプタマーが挙げられるが、抗体が好ましい。 In the method of the present invention, an affinity substance specific for the lectin target molecule may be further used. The affinity substance specific for the lectin target molecule used in the method of the present invention binds to the lectin target molecule at a site (eg, peptide region) different from the lectin binding site (sugar chain) in the lectin target molecule. Examples of the affinity substance specific for the lectin target molecule include antibodies and aptamers, and antibodies are preferred.
 本発明の方法において用いられるレクチン標的分子に特異的な親和性物質の量は、レクチン標的分子を十分に結合できる量である限り特に限定されないが、例えば、0.0001μg/mL~10mg/mLである。親和性物質の量は、好ましくは0.001μg/mL以上、より好ましくは0.005μg/mL以上、さらにより好ましくは0.01μg/mL以上である。親和性物質の量はまた、好ましくは2mg/mL以下、より好ましくは0.5mg/mL以下、さらにより好ましくは0.1mg/mL以下である。このような量の親和性物質が、液体サンプルに添加されてもよい。 The amount of the affinity substance specific for the lectin target molecule used in the method of the present invention is not particularly limited as long as it is a sufficient amount to bind the lectin target molecule, and is, for example, 0.0001 μg / mL to 10 mg / mL. is there. The amount of the affinity substance is preferably 0.001 μg / mL or more, more preferably 0.005 μg / mL or more, and even more preferably 0.01 μg / mL or more. The amount of affinity substance is also preferably 2 mg / mL or less, more preferably 0.5 mg / mL or less, and even more preferably 0.1 mg / mL or less. Such an amount of affinity substance may be added to the liquid sample.
 レクチン標的分子に特異的な親和性物質がさらに用いられる場合、本発明の測定方法は、サンドイッチ様式で行われてもよい。例えば、固相化手段として、レクチン標的分子に特異的な親和性物質が用いられ、検出手段として、レクチンおよびレクチン反応性糖鎖含有実体が併用されてもよい。あるいは、固相化手段として、レクチンおよびレクチン反応性糖鎖含有実体が併用され、検出手段として、レクチン標的分子に特異的な親和性物質が用いられてもよい。 When an affinity substance specific for the lectin target molecule is further used, the measurement method of the present invention may be performed in a sandwich manner. For example, an affinity substance specific for the lectin target molecule may be used as the solid phase immobilization means, and the lectin and the lectin reactive sugar chain-containing entity may be used in combination as the detection means. Alternatively, a lectin and a lectin-reactive sugar chain-containing entity may be used together as a solid phase immobilization means, and an affinity substance specific for the lectin target molecule may be used as a detection means.
 本発明の測定方法では、レクチン反応性糖鎖含有実体もしくはレクチン、またはレクチン標的分子に特異的な親和性物質が標識物質で標識されていてもよい。標識物質としては、例えば、酵素(例、ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ、βガラクトシダーゼ)、親和性物質(例、ストレプトアビジンおよびビオチンのうちの一方、互いに相補的なセンス鎖およびアンチセンス鎖の核酸のうちの一方)、蛍光物質またはタンパク質(例、フルオレセイン、フルオレセインイソチオシアネート、ローダミン、緑色蛍光タンパク質、赤色蛍光タンパク質)、発光物質(例、ルシフェリン、エクオリン、アクリジニウムエステル、トリス(2,2’-ビピリジル)ルテニウム、ルミノール)、放射性物質(例、H、14C、32P、35S、125I)が挙げられる。好ましくは、レクチン反応性糖鎖含有実体、またはレクチン反応性糖鎖含有実体に特異的な親和性物質が標識される。 In the measurement method of the present invention, a lectin-reactive sugar chain-containing entity or lectin, or an affinity substance specific for a lectin target molecule may be labeled with a labeling substance. Examples of labeling substances include enzymes (eg, peroxidase, alkaline phosphatase, luciferase, β-galactosidase) and affinity substances (eg, streptavidin and biotin, which are complementary to each other in the sense strand and the antisense strand nucleic acid. One of them), fluorescent substance or protein (eg, fluorescein, fluorescein isothiocyanate, rhodamine, green fluorescent protein, red fluorescent protein), luminescent substance (eg, luciferin, aequorin, acridinium ester, tris (2,2'- Bipyridyl) ruthenium, luminol), radioactive materials (eg, 3 H, 14 C, 32 P, 35 S, 125 I). Preferably, the lectin-reactive sugar chain-containing entity or an affinity substance specific to the lectin-reactive sugar chain-containing entity is labeled.
 より具体的には、本発明の測定方法は、サンドイッチ様式で行われる場合、以下の工程により行うことができる:
(1)レクチン標的分子を、レクチン標的分子に特異的な親和性物質に結合させて、レクチン標的分子およびレクチン標的分子に特異的な親和性物質を含む第1複合体を得ること;
(2)レクチン反応性糖鎖含有実体の存在下においてレクチンを第1複合体と結合させて、レクチン標的分子、レクチン標的分子に特異的な親和性物質、レクチンおよびレクチン反応性糖鎖含有実体を含む第2複合体を得ること;ならびに
(3)第2複合体に含まれるレクチン標的分子の量を測定すること。
More specifically, the measurement method of the present invention, when performed in a sandwich manner, can be performed by the following steps:
(1) binding a lectin target molecule to an affinity substance specific for the lectin target molecule to obtain a first complex including the lectin target molecule and an affinity substance specific for the lectin target molecule;
(2) A lectin is bound to the first complex in the presence of a lectin-reactive sugar chain-containing entity, and a lectin target molecule, an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity Obtaining a second complex comprising; and (3) measuring the amount of lectin target molecules contained in the second complex.
 工程(1)では、レクチン標的分子は、上述したような液体サンプルに含まれるものを使用することができる。したがって、工程(1)の具体的な実施形態として、レクチン標的分子を含む液体サンプルに、レクチン標的分子に特異的な親和性物質を添加することにより、工程(1)が行われてもよい。工程(1)では、上述したような量のレクチン標的分子に特異的な親和性物質を用いることができるが、好ましくは、予想されるレクチン標的分子に対して、過剰当量のレクチン標的分子に特異的な親和性物質を用いてもよい。レクチン標的分子に特異的な親和性物質としては、上述したような固相に固定されたものを用いるのが好ましい。レクチン標的分子とレクチン標的分子に特異的な親和性物質との結合は、両者を溶液(例、緩衝液)中でインキュベートすることにより達成することができ、これによりレクチン標的分子およびレクチン標的分子に特異的な親和性物質を含む第1複合体が得られる。 In step (1), the lectin target molecules can be those contained in the liquid sample as described above. Therefore, as a specific embodiment of the step (1), the step (1) may be performed by adding an affinity substance specific for the lectin target molecule to the liquid sample containing the lectin target molecule. In the step (1), an affinity substance specific for the lectin target molecule in an amount as described above can be used, but preferably specific for an excess equivalent of the lectin target molecule relative to the expected lectin target molecule. A typical affinity substance may be used. As an affinity substance specific for the lectin target molecule, it is preferable to use a substance immobilized on a solid phase as described above. Binding of a lectin target molecule and an affinity substance specific for the lectin target molecule can be achieved by incubating both in solution (eg, buffer), thereby allowing the lectin target molecule and lectin target molecule to bind to each other. A first complex containing a specific affinity substance is obtained.
 工程(2)では、第2複合体が得られる。工程(1)の具体的な実施形態として、工程(1)で得られた上記第1複合体を含む溶液に、レクチン、およびレクチン反応性糖鎖含有実体を添加することにより、工程(2)が行われてもよい。工程(2)では、上述したような量のレクチン、および上述したような量のレクチン反応性糖鎖含有実体を用いることができるが、好ましくは、予想されるレクチン標的分子に対して、過剰当量のレクチンおよび過剰当量のレクチン反応性糖鎖含有実体を用いてもよい。レクチンまたはレクチン反応性糖鎖含有実体のいずれかが標識物質で標識されていてもよいが、好ましくはレクチン反応性糖鎖含有実体が標識物質で標識されていてもよい。レクチン反応性糖鎖含有実体の存在下におけるレクチンの第1複合体への結合は、三者を溶液(例、緩衝液)中でインキュベートすることにより達成することができ、これによりレクチン標的分子、レクチン標的分子に特異的な親和性物質、レクチンおよびレクチン反応性糖鎖含有実体を含む第2複合体が得られる。レクチン標的分子に特異的な親和性物質として固相に固定されたものを用いた場合、第2複合体は固相に固定されている。この場合、工程(2)の後に、液相の除去および添加から構成される洗浄工程が設けられてもよい。 In step (2), a second complex is obtained. As a specific embodiment of the step (1), by adding the lectin and the lectin-reactive sugar chain-containing entity to the solution containing the first complex obtained in the step (1), the step (2) May be performed. In step (2), the amount of lectin as described above and the amount of lectin-reactive sugar chain-containing entity as described above can be used, but preferably in excess equivalent to the expected lectin target molecule. Lectins and excess equivalents of lectin-reactive sugar chain-containing entities may be used. Either the lectin or the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance. Binding of the lectin to the first complex in the presence of the lectin-reactive sugar chain-containing entity can be achieved by incubating the three in solution (eg, buffer), whereby the lectin target molecule, A second complex comprising an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity is obtained. When the substance specific to the lectin target molecule that is immobilized on the solid phase is used, the second complex is immobilized on the solid phase. In this case, after the step (2), a washing step including removal and addition of the liquid phase may be provided.
 工程(3)では、第2複合体における標識物質からのシグナルを指標に、レクチン標的分子の量を測定することができる。 In step (3), the amount of the lectin target molecule can be measured using the signal from the labeling substance in the second complex as an index.
 本発明はまた、レクチン標的分子、レクチンおよびレクチン反応性糖鎖含有実体を含む複合体を提供する。本発明の複合体は、レクチン標的分子に特異的な親和性物質をさらに含んでいてもよい。本発明の複合体は、これらの構成因子を溶液中でインキュベートして結合させることにより、作製することができる。 The present invention also provides a complex comprising a lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity. The complex of the present invention may further contain an affinity substance specific for the lectin target molecule. The complex of the present invention can be prepared by incubating these components in a solution and binding them.
 本発明の複合体において、レクチン標的分子、レクチン、レクチン反応性糖鎖含有実体、およびレクチン標的分子に特異的な親和性物質の定義、例および好ましい例は、上述したとおりである。 In the complex of the present invention, the definition, examples and preferred examples of the lectin target molecule, the lectin, the lectin-reactive sugar chain-containing entity, and the affinity substance specific for the lectin target molecule are as described above.
 本発明の複合体は、例えば、本発明の捕捉方法の実施に有用である。 The complex of the present invention is useful for the implementation of the capture method of the present invention, for example.
 本発明はさらに、レクチンおよびレクチン反応性糖鎖含有実体を混合形態で含む、レクチン標的分子の捕捉用試薬を提供する。換言すれば、本発明の捕捉用試薬は、レクチンおよびレクチン反応性糖鎖含有実体の組成物を含む。本発明の試薬に含まれるレクチンおよびレクチン反応性糖鎖含有実体は混合形態にあることから、本発明の捕捉用試薬ではレクチンとレクチン反応性糖鎖含有実体との間で複合体が形成されていてもよい。 The present invention further provides a reagent for capturing a lectin target molecule, which contains a lectin and a lectin-reactive sugar chain-containing entity in a mixed form. In other words, the capture reagent of the present invention includes a composition of a lectin and a lectin-reactive sugar chain-containing entity. Since the lectin and the lectin-reactive sugar chain-containing entity contained in the reagent of the present invention are in a mixed form, in the capture reagent of the present invention, a complex is formed between the lectin and the lectin-reactive sugar chain-containing entity. May be.
 本発明の試薬がレクチン標的分子の測定に用いられる場合、レクチンまたはレクチン反応性糖鎖含有実体のいずれかが標識物質で標識されていてもよいが、好ましくはレクチン反応性糖鎖含有実体が標識物質で標識されていてもよい。あるいは、レクチンまたはレクチン反応性糖鎖含有実体のいずれも標識物質で標識されていない場合、本発明の試薬は、レクチンおよびレクチン反応性糖鎖含有実体と非混合形態で標識物質を含んでいてもよい。 When the reagent of the present invention is used for measurement of a lectin target molecule, either the lectin or the lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably the lectin-reactive sugar chain-containing entity is labeled. It may be labeled with a substance. Alternatively, when neither the lectin nor the lectin-reactive sugar chain-containing entity is labeled with a labeling substance, the reagent of the present invention may contain the labeling substance in an unmixed form with the lectin and the lectin-reactive sugar chain-containing entity. Good.
 本発明の試薬は、レクチン標的分子に特異的な親和性物質をさらに含んでいてもよい。レクチン標的分子に特異的な親和性物質は、標識物質で標識されていてもよい。また、レクチン標的分子に特異的な親和性物質は、上述したような固相に固定されていてもよい。この場合、本発明の試薬は、サンドイッチ様式においてレクチン標的分子を測定するために好適に用いることができる。本発明の試薬は、レクチン標的分子に特異的な親和性物質を、レクチンおよびレクチン反応性糖鎖含有実体と混合形態または非混合形態のいずれかで含むが、非混合形態で含むことが好ましい。 The reagent of the present invention may further contain an affinity substance specific for the lectin target molecule. The affinity substance specific for the lectin target molecule may be labeled with a labeling substance. Moreover, the affinity substance specific for the lectin target molecule may be immobilized on the solid phase as described above. In this case, the reagent of the present invention can be suitably used for measuring lectin target molecules in a sandwich manner. The reagent of the present invention contains an affinity substance specific for a lectin target molecule in either a mixed form or a non-mixed form with a lectin and a lectin-reactive sugar chain-containing entity, but preferably in a non-mixed form.
 本発明の試薬において、レクチン標的分子、レクチン、レクチン反応性糖鎖含有実体、およびレクチン標的分子に特異的な親和性物質の定義、例および好ましい例は、上述したとおりである。 In the reagent of the present invention, definitions, examples and preferred examples of affinity substances specific for lectin target molecules, lectins, lectin-reactive sugar chain-containing entities, and lectin target molecules are as described above.
 本発明の試薬は、例えば、本発明の捕捉方法の簡便な実施に有用であり、例えば、本発明の測定方法に好適に用いることができる。 The reagent of the present invention is useful for, for example, simple implementation of the capture method of the present invention, and can be suitably used for the measurement method of the present invention, for example.
 本発明はまた、レクチンおよびレクチン反応性糖鎖含有実体を含む、レクチン標的分子の捕捉用キットを提供する。本発明のキットに含まれるレクチンおよびレクチン反応性糖鎖含有実体は、混合形態(すなわち、組成物の形態)にあるか、または非混合形態(すなわち、互いに隔離された形態)にある。よって、本発明のキットに含まれる構成成分は、それぞれ異なる容器(例、チューブ、プレート)に収容された形態、または同一容器の異なる区画に収容された形態で提供される。 The present invention also provides a kit for capturing a lectin target molecule comprising a lectin and a lectin-reactive sugar chain-containing entity. The lectin and lectin-reactive sugar chain-containing entity included in the kit of the present invention is in a mixed form (ie, in the form of a composition) or in an unmixed form (ie, a form isolated from each other). Therefore, the component contained in the kit of this invention is provided with the form accommodated in the different container (for example, tube, plate), respectively, or the form accommodated in the different divisions of the same container.
 本発明のキットがレクチン標的分子の測定に用いられる場合、レクチンまたはレクチン反応性糖鎖含有実体のいずれかが標識物質で標識されていてもよいが、好ましくはレクチン反応性糖鎖含有実体が標識物質で標識されていてもよい。あるいは、レクチンまたはレクチン反応性糖鎖含有実体のいずれも標識物質で標識されていない場合、本発明のキットは、標識物質および/またはレクチン標的分子に特異的な親和性物質(標識物質で標識されていてもよい)を含んでいてもよい。 When the kit of the present invention is used for measurement of a lectin target molecule, either a lectin or a lectin-reactive sugar chain-containing entity may be labeled with a labeling substance, but preferably a lectin-reactive sugar chain-containing entity is labeled It may be labeled with a substance. Alternatively, when neither the lectin nor the lectin-reactive sugar chain-containing entity is labeled with a labeling substance, the kit of the present invention can be used as an affinity substance (labeled with a labeling substance and / or a lectin target molecule). May be included).
 本発明のキットは、レクチン標的分子に特異的な親和性物質をさらに含んでいてもよい。この場合、本発明のキットは、サンドイッチ様式においてレクチン標的分子を測定するために好適に用いることができる。レクチン標的分子に特異的な親和性物質は、上述したような固相に固定されていてもよい。 The kit of the present invention may further contain an affinity substance specific for the lectin target molecule. In this case, the kit of the present invention can be suitably used for measuring a lectin target molecule in a sandwich manner. The affinity substance specific for the lectin target molecule may be immobilized on the solid phase as described above.
 本発明のキットにおいて、レクチン標的分子、レクチン、レクチン反応性糖鎖含有実体、およびレクチン標的分子に特異的な親和性物質の定義、例および好ましい例は、上述したとおりである。 In the kit of the present invention, the definition, examples and preferred examples of lectin target molecules, lectins, lectin-reactive sugar chain-containing entities, and affinity substances specific for the lectin target molecules are as described above.
 本発明のキットは、例えば、本発明の捕捉方法の簡便な実施に有用であり、例えば、本発明の測定方法に好適に用いることができる。 The kit of the present invention is useful for, for example, simple implementation of the capture method of the present invention, and can be suitably used for, for example, the measurement method of the present invention.
 以下、本発明を実施例により詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these examples.
実施例1:抗体フラグメントの調製、及び抗体フラグメント-HRPの調製
 抗LCA抗体ではないマウスIgG1をペプシンで消化し、LCA反応性マウスIgG F(ab’)フラグメントとLCA非反応性マウスIgG F(ab’)フラグメントを調製した。
Example 1: Preparation of Antibody Fragment and Preparation of Antibody Fragment-HRP Mouse IgG1, which is not an anti-LCA antibody, was digested with pepsin and LCA-reactive mouse IgG F (ab ′) 2 fragment and non-LCA-reactive mouse IgG F ( ab ') 2 fragments were prepared.
 具体的には、調製は、以下のとおり行った。
(1)抗LCA抗体ではないマウスIgG1抗体A、B、CおよびDをペプシンで消化した。消化は、クエン酸緩衝液にバッファー交換したマウスIgG1抗体A、B、CおよびDにペプシン(SIGMA)を添加し、37℃1時間反応させ、トリス緩衝液の添加により反応停止させることにより行った。
(2)PBSで平衡化したSuperdex200 increase 10/300GLでゲルろ過を行い、4種の精製マウスIgG F(ab’)フラグメントを得た。
(3)精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDを、西洋わさびペルオキシダーゼ(HRP)で標識した。HRPの標識は、Peroxidase Labeling Kit-NH2(同仁化学研究所)を用いて、添付のプロトコールに従って行い、4種の精製抗体フラグメント-HRP(マウスIgG F(ab’)-HRP)を得た。
Specifically, preparation was performed as follows.
(1) Mouse IgG1 antibodies A, B, C and D that are not anti-LCA antibodies were digested with pepsin. Digestion was performed by adding pepsin (SIGMA) to mouse IgG1 antibodies A, B, C and D buffer-exchanged to citrate buffer, reacting at 37 ° C. for 1 hour, and stopping the reaction by adding Tris buffer. .
(2) Gel filtration was performed with Superdex 200 increase 10 / 300GL equilibrated with PBS to obtain four types of purified mouse IgG F (ab ′) 2 fragments.
(3) Purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were labeled with horseradish peroxidase (HRP). HRP was labeled using Peroxidase Labeling Kit-NH2 (Dojindo Laboratories) according to the attached protocol to obtain 4 types of purified antibody fragments—HRP (mouse IgG F (ab ′) 2 -HRP).
実施例2:抗体フラグメントの精製度、分子量およびレクチン反応性の確認
 実施例1で調製した4種の抗体フラグメントについて、精製度、分子量およびレクチン反応性を確認した。
Example 2: Confirmation of purity, molecular weight, and lectin reactivity of antibody fragments The purity, molecular weight, and lectin reactivity of the four antibody fragments prepared in Example 1 were confirmed.
 具体的には、確認は、以下のとおり行った。
(1)精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDの分子量をSDS-PAGEにて確認した(図1左)。
(2)精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDのLCA反応性をレクチンブロットにて確認した(図1右)。
(3)精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDのLCA反応性をELISAにて確認した。精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDを各5μg/mLとなるようにPBSで希釈した。U96 MaxiSorp Nunc-Immuno Plate(Thermo)において、希釈された溶液50μLを4℃24時間インキュベートして、上記抗体を固相化した。抗体固相化ウェルを、PBST 250μLで3回洗浄した後、10%ブロッキング試薬(Carbofree blocking solution;Vector)150μLで37℃1時間ブロッキングした。抗体固相化ウェルをPBST 250μLで3回洗浄した。次いで、10%ブロッキング試薬でLCA-HRP(J-オイルミルズ)を5μg/mLとなるように希釈した溶液 50μLを加え、抗体固相化ウェルにおいて溶液を37℃1時間インキュベートした。PBST 250μLでウェルを3回洗浄した。洗浄後のウェルに50μLのTMB基質溶液(Dako)を加え室温で5分反応を行った。1N硫酸で反応停止後、450nmで吸光度を測定した(図2)。
Specifically, confirmation was performed as follows.
(1) The molecular weights of purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were confirmed by SDS-PAGE (FIG. 1 left).
(2) LCA reactivity of purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D was confirmed by lectin blot (right side of FIG. 1).
(3) purified mouse IgG F (ab ') 2 fragment antibodies A, B, and LCA reactive C and D were confirmed by ELISA. Purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D were diluted with PBS so as to be 5 μg / mL each. In U96 MaxiSorp Nunc-Immuno Plate (Thermo), 50 μL of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody. The antibody-immobilized well was washed with 250 μL of PBST three times, and then blocked with 150 μL of 10% blocking reagent (Carboxer) at 37 ° C. for 1 hour. The antibody-immobilized well was washed 3 times with 250 μL of PBST. Subsequently, 50 μL of a solution obtained by diluting LCA-HRP (J-Oil Mills) to 5 μg / mL with 10% blocking reagent was added, and the solution was incubated at 37 ° C. for 1 hour in the antibody-immobilized well. The wells were washed 3 times with 250 μL PBST. To the well after washing, 50 μL of TMB substrate solution (Dako) was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm (FIG. 2).
 その結果、抗体フラグメントAおよびBはLCA反応性であるが、抗体フラグメントCおよびDはLCA非反応性であることが確認された(表1、図1、2)。 As a result, it was confirmed that antibody fragments A and B were LCA-reactive, but antibody fragments C and D were non-LCA-reactive (Table 1, FIGS. 1 and 2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 用いた抗体を解析した。
 抗体Aは、N型糖鎖結合コンセンサス配列を抗体可変領域の重鎖に有していた。このことは、F(ab’)フラグメントがN型糖鎖で修飾されていることを示す。よって、F(ab’)フラグメント抗体Aは、N型糖鎖を介してレクチン反応性を示すと考えられる。
 抗体Bは、抗体Aと同様である。
 抗体Cは、N型糖鎖結合コンセンサス配列を抗体可変領域の重鎖にも軽鎖にも有していなかった。このことは、F(ab’)フラグメントはN型糖鎖で修飾されていないことを示す。よって、F(ab’)フラグメント抗体Cは、レクチン反応性を示さないと考えられる。
 抗体Dは、抗体Cと同様である。
The antibody used was analyzed.
Antibody A had an N-type sugar chain binding consensus sequence in the heavy chain of the antibody variable region. This indicates that the F (ab ′) 2 fragment is modified with an N-type sugar chain. Therefore, F (ab ′) 2 fragment antibody A is considered to exhibit lectin reactivity via an N-type sugar chain.
Antibody B is the same as antibody A.
Antibody C did not have an N-type sugar chain binding consensus sequence in the heavy or light chain of the antibody variable region. This indicates that the F (ab ′) 2 fragment is not modified with an N-type sugar chain. Therefore, F (ab ′) 2 fragment antibody C is considered not to show lectin reactivity.
Antibody D is the same as antibody C.
実施例3:レクチン反応性抗体フラグメントの存在下におけるレクチンによるAFP-L3測定系の構築
 実施例1で調製したマウスIgG F(ab’)-HRPを用いて、AFP-L3の免疫学的測定系を構築した。
Example 3: Construction of AFP-L3 measurement system using lectin in the presence of lectin-reactive antibody fragments Using mouse IgG F (ab ') 2 -HRP prepared in Example 1, immunological measurement of AFP-L3 A system was constructed.
 具体的には、構築は、以下のとおり行った。
(1)anti-AFP F(ab’)を10μg/mLとなるようにPBSで希釈した。U96 MaxiSorp Nunc-Immuno Plateにおいて、希釈された溶液 50μLを4℃24時間インキュベートして、上記抗体を固相化した。
(2)抗体固相化ウェルを、PBST 250μLで3回洗浄した後、10%ブロッキング試薬 150μLで37℃1時間ブロッキングした。
(3)抗体固相化ウェルを、PBST 250μLで3回洗浄した。次いで、ミュータスワコーAFP-L3(和光純薬工業)の測定値から濃度を換算したAFP-L3溶液とAFP-L1溶液を、それぞれ10%ブロッキング試薬で、1000ng/mLから2n希釈した溶液 50μLを抗体固相化ウェルに加え37℃1時間インキュベートした。
(4)抗体固相化ウェルを、PBST 250μLで3回洗浄した。次いで、実施例1で調製したマウスIgG F(ab’)-HRPをそれぞれ10%ブロッキング試薬で5μg/mLとなるように希釈し、さらにLCA(Vector)を100μg/mLとなるように加えた混合液を調製し、その混合液を抗体固相化ウェルに加え37℃1時間インキュベートした。
(5)抗体固相化ウェルを、PBST 250μLで3回洗浄した。次いで、50μLのTMB基質溶液(Dako)を加え室温で5分反応させた。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the construction was performed as follows.
(1) Anti-AFP F (ab ′) 2 was diluted with PBS so as to be 10 μg / mL. In the U96 MaxiSorp Nunc-Immuno Plate, 50 μL of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody.
(2) The antibody-immobilized well was washed with 250 μL of PBST three times, and then blocked with 150 μL of 10% blocking reagent at 37 ° C. for 1 hour.
(3) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Next, 50 μL of a solution obtained by diluting the AFP-L3 solution and the AFP-L1 solution, whose concentrations were converted from the measured values of Mutus Wako AFP-L3 (Wako Pure Chemical Industries, Ltd.) with a 10% blocking reagent from 1000 ng / mL to 2 n, respectively. It was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(4) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Next, mouse IgG F (ab ′) 2 -HRP prepared in Example 1 was diluted with 10% blocking reagent to 5 μg / mL, and LCA (Vector) was further added to 100 μg / mL. A mixed solution was prepared, and the mixed solution was added to an antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(5) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Next, 50 μL of TMB substrate solution (Dako) was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、LCAは、LCA反応性抗体フラグメントAまたはBの存在下でAFP-L3を特異的に検出することができた(表2、図3~6)。 As a result, LCA was able to specifically detect AFP-L3 in the presence of LCA-reactive antibody fragment A or B (Table 2, FIGS. 3 to 6).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より、レクチンは、標識されたレクチン反応性抗体フラグメントの存在下でAFP-L3を特異的に検出できることが示された。 From the above, it was shown that lectin can specifically detect AFP-L3 in the presence of a labeled lectin-reactive antibody fragment.
実施例4:AFP-L3検出における、レクチン反応性抗体フラグメント中のレクチン反応性糖鎖の関与の確認
 実施例1で調製したマウスIgG F(ab’)抗体Bの糖鎖をN-グリコシダーゼFで除去することにより、糖鎖除去マウスIgG F(ab’)抗体BがLCA共存下でのAFP-L3反応性を維持しているか否かを確認した。
Example 4 Confirmation of Involvement of Lectin-Reactive Sugar Chain in Lectin-Reactive Antibody Fragment in AFP-L3 Detection The sugar chain of mouse IgG F (ab ′) 2 antibody B prepared in Example 1 is N-glycosidase F It was confirmed whether or not the sugar chain-removed mouse IgG F (ab ′) 2 antibody B maintained AFP-L3 reactivity in the presence of LCA.
 具体的には、確認は、以下のとおり行った。
(1)実施例1で調製したマウスIgG F(ab’)抗体BのN-グリコシダーゼF処理を実施した。N-グリコシダーゼF処理は、トリス塩酸緩衝液にバッファー交換したマウスIgG F(ab’)抗体BにN-グリコシダーゼF(ROCHE)を添加し、37℃24時間反応させた。N-グリコシダーゼFは、N結合型糖鎖とタンパク質とのGlcNAc-Asn結合を特異的に切断する酵素である。
(2)PBSで平衡化したSuperdex200 increase 10/300GLでゲルろ過を行い、糖鎖除去マウスIgG F(ab’)フラグメントを得た。
(3)糖鎖除去マウスIgG F(ab’)-HRPを、実施例1と同様に調製した。
(4)実施例2と同様に、精製度、分子量およびLCA反応性を確認した(図7、8)。
(5)実施例3と同様に、標識抗体の存在下におけるLCAのAFP-L3反応性を確認した(図9、表3)。AFP濃度は1μg/mLで検討した。
Specifically, confirmation was performed as follows.
(1) The mouse IgG F (ab ′) 2 antibody B prepared in Example 1 was treated with N-glycosidase F. In N-glycosidase F treatment, N-glycosidase F (ROCHE) was added to mouse IgG F (ab ′) 2 antibody B buffer-exchanged with Tris-HCl buffer, and reacted at 37 ° C. for 24 hours. N-glycosidase F is an enzyme that specifically cleaves a GlcNAc-Asn bond between an N-linked sugar chain and a protein.
(2) Gel filtration was performed with Superdex 200 increase 10 / 300GL equilibrated with PBS to obtain a sugar chain-removed mouse IgG F (ab ′) 2 fragment.
(3) Sugar chain-removed mouse IgG F (ab ′) 2 -HRP was prepared in the same manner as in Example 1.
(4) As in Example 2, the degree of purification, molecular weight, and LCA reactivity were confirmed (FIGS. 7 and 8).
(5) As in Example 3, the AFP-L3 reactivity of LCA in the presence of labeled antibody was confirmed (FIG. 9, Table 3). The AFP concentration was examined at 1 μg / mL.
 その結果、LCA反応性を消失した糖鎖除去標識抗体フラグメント(図7、8)の存在下では、LCAはAFP-L3を検出できなかった(表3、図9)。 As a result, LCA could not detect AFP-L3 in the presence of the sugar chain-removed labeled antibody fragment (FIGS. 7 and 8) that lost LCA reactivity (Table 3 and FIG. 9).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上より、抗体の可変領域中の糖鎖が、レクチンによるAFP-L3の検出に重要であることが示された。 From the above, it was shown that the sugar chain in the variable region of the antibody is important for detection of AFP-L3 by lectin.
実施例5:可変領域中にN型糖鎖結合コンセンサス配列を有するマウスIgGの存在下におけるレクチンによるAFP-L3検出
 抗体の可変領域中のN型糖鎖結合コンセンサス配列の有無がAFP-L3検出に影響するか否かを検討した。
Example 5: Detection of AFP-L3 by a lectin in the presence of mouse IgG having an N-type sugar chain binding consensus sequence in the variable region The presence or absence of an N-type sugar chain binding consensus sequence in the variable region of the antibody is useful for AFP-L3 detection It was examined whether or not it affected.
 具体的には、検討は、以下のとおり行った。
(1)可変領域にN型糖鎖結合コンセンサス配列(Asn-Ser-Ser)を有する抗TNFα抗体(P)と有さない抗TNFα抗体(N)、可変領域にN型糖鎖結合コンセンサス配列(Asn-Asp-Thr)を有する抗IL-10抗体(P’)と有さない抗IL-10抗体(N’)を、それぞれ実施例1と同様にHRP標識を行った。
(2)実施例3と同様に、LCA共存下でのAFP-L3反応性を確認した。AFP濃度は5μg/mLで検討した。
Specifically, the examination was conducted as follows.
(1) An anti-TNFα antibody (P) with and without an N-type sugar chain binding consensus sequence (Asn-Ser-Ser) in the variable region (N), and an N-type sugar chain binding consensus sequence (N) in the variable region The anti-IL-10 antibody (P ′) having Asn-Asp-Thr) and the anti-IL-10 antibody not having N (N ′) were labeled with HRP in the same manner as in Example 1.
(2) As in Example 3, the AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined at 5 μg / mL.
 その結果、LCAは、N型糖鎖結合コンセンサス配列を有する抗体の存在下で、AFP-L3を特異的に検出することができた(表4、図10)。 As a result, LCA was able to specifically detect AFP-L3 in the presence of an antibody having an N-type sugar chain binding consensus sequence (Table 4, FIG. 10).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上より、レクチンは、N型糖鎖結合コンセンサス配列を可変領域に有する抗体(本抗体が結合する抗原の種類を問わない)の存在下でAFP-L3を特異的に検出できることが示された。 From the above, it was shown that the lectin can specifically detect AFP-L3 in the presence of an antibody having an N-type sugar chain binding consensus sequence in the variable region (regardless of the type of antigen to which the present antibody binds).
実施例6:レクチン反応性抗原の存在下におけるレクチンによるAFP-L3測定系の構築
 マウスIgG以外のN型糖鎖結合コンセンサス配列を有する糖タンパク質であるHBs抗原(B型肝炎ウイルス表面抗原)を用いて、AFP-L3の免疫学的測定系を構築した。
Example 6: Construction of AFP-L3 measurement system with lectin in the presence of lectin-reactive antigen Using HBs antigen (hepatitis B virus surface antigen), a glycoprotein having an N-type sugar chain-binding consensus sequence other than mouse IgG Thus, an immunological measurement system for AFP-L3 was constructed.
 具体的には、構築は、以下のとおり行った。
(1)N型糖鎖結合コンセンサス配列を有するHBs抗原を、それぞれ実施例1と同様にHRP標識を行った。
(2)実施例3と同様に、LCA共存下でのAFP-L3反応性を確認した。AFP濃度は1000ng/mLから2n希釈して検討した。HBs抗原-HRPは2μg/mLで反応させた。
Specifically, the construction was performed as follows.
(1) HRP labeling was performed on HBs antigens having an N-type sugar chain binding consensus sequence in the same manner as in Example 1.
(2) As in Example 3, the AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined by diluting from 1000 ng / mL to 2 n. HBs antigen-HRP was reacted at 2 μg / mL.
 その結果、LCAは、N型糖鎖結合コンセンサス配列を有するHBs抗原の共存下で、AFP-L3を特異的に検出することができた(表5、図11)。 As a result, LCA was able to specifically detect AFP-L3 in the presence of HBs antigen having an N-type sugar chain binding consensus sequence (Table 5, FIG. 11).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上より、レクチンは、抗体のみならず、レクチン反応性抗原の存在下でも、AFP-L3を特異的に検出できることが示された。 From the above, it was shown that lectin can specifically detect AFP-L3 not only in the antibody but also in the presence of lectin-reactive antigen.
実施例7:AFP-L3検出における、抗原中のレクチン反応性糖鎖の関与の確認
 HBs抗原の糖鎖をN-グリコシダーゼFで除去することにより、糖鎖除去HBs抗原がLCA共存下でのAFP-L3反応性を維持するか確認した。
Example 7: Confirmation of involvement of lectin-reactive sugar chain in antigen in detection of AFP-L3 By removing the sugar chain of HBs antigen with N-glycosidase F, AFP in the presence of LCA in the presence of sugar chain-removed HBs antigen -Confirmed to maintain L3 reactivity.
 具体的には、確認は、以下のとおり行った。
(1)HBs抗原のN-グリコシダーゼF処理を実施した。N-グリコシダーゼF処理は、N-グリコシダーゼFとPNGaseF(New England Biolabs)付属の反応溶液を用いて、PNGaseF添付のプロトコールに従って行い、糖鎖除去を行った。
(2)糖鎖除去HBs抗原を、実施例1と同様にHRPで標識した。
(3)実施例2と同様に、精製度、分子量およびLCA反応性を確認した。
(4)実施例6と同様に、LCA共存下でのAFP-L3反応性を確認した。AFP濃度は1μg/mLで検討した。HBs抗原-HRPは、1μg/mLで添加した。
Specifically, confirmation was performed as follows.
(1) N-glycosidase F treatment of HBs antigen was performed. The N-glycosidase F treatment was performed using a reaction solution attached to N-glycosidase F and PNGase F (New England Biolabs) according to the protocol attached to PNGase F to remove sugar chains.
(2) The sugar chain-removed HBs antigen was labeled with HRP in the same manner as in Example 1.
(3) As in Example 2, the degree of purification, molecular weight, and LCA reactivity were confirmed.
(4) As in Example 6, AFP-L3 reactivity in the presence of LCA was confirmed. The AFP concentration was examined at 1 μg / mL. HBs antigen-HRP was added at 1 μg / mL.
 その結果、LCAは、LCA反応性を消失した糖鎖除去標識抗原(図12、13)の存在下では、AFP-L3を検出できなかった(表6、図14)。 As a result, LCA could not detect AFP-L3 in the presence of the glycan-removed labeled antigen (FIGS. 12, 13) that lost LCA reactivity (Table 6, FIG. 14).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上より、糖タンパク質抗原中の糖鎖が、レクチンによるAFP-L3の検出に重要であることが示された。 From the above, it was shown that the sugar chain in the glycoprotein antigen is important for detection of AFP-L3 by lectin.
実施例8:レクチン反応性糖タンパク質の存在下におけるレクチンによるAFP-L3検出
 抗体のみならず抗原の存在下においても、LCAはAFP-L3を検出することが可能であった(実施例7)。そこで、アミノ酸配列にN型糖鎖結合コンセンサス配列を有する他の糖タンパク質をHRP標識し、他の糖タンパク質の存在下においてLCAがAFP-L3を検出できるか確認した。
Example 8: Detection of AFP-L3 by lectin in the presence of lectin-reactive glycoprotein LCA was able to detect AFP-L3 not only in the presence of antibodies but also in the presence of antigen (Example 7). Therefore, another glycoprotein having an N-type sugar chain binding consensus sequence in its amino acid sequence was labeled with HRP, and it was confirmed whether LCA could detect AFP-L3 in the presence of the other glycoprotein.
 具体的には、確認は、以下のとおり行った。
(1)アミノ酸配列中にN型糖鎖結合コンセンサス配列を有するhCGα(ヒト絨毛性ゴナドトロピンα鎖)とLH(黄体形成ホルモン)を、それぞれ実施例1と同様にHRP標識を行った。
(2)実施例3と同様に、LCAのAFP-L3反応性を確認した。AFP濃度は1μg/mLで検討した。
Specifically, confirmation was performed as follows.
(1) HCG labeling was performed on hCGα (human chorionic gonadotropin α chain) and LH (luteinizing hormone) each having an N-type sugar chain binding consensus sequence in the amino acid sequence in the same manner as in Example 1.
(2) As in Example 3, the AFP-L3 reactivity of LCA was confirmed. The AFP concentration was examined at 1 μg / mL.
 その結果、LCAは、hCGαまたはLHの存在下で、AFP-L3を特異的に検出することができた(表7、8)。 As a result, LCA was able to specifically detect AFP-L3 in the presence of hCGα or LH (Tables 7 and 8).
Figure JPOXMLDOC01-appb-T000007
数値は、OD450の測定値を示す。
Figure JPOXMLDOC01-appb-T000007
A numerical value shows the measured value of OD450.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上より、レクチンは、レクチン反応性糖タンパク質の存在下で、AFP-L3を特異的に検出できることが示された。 From the above, it was shown that lectin can specifically detect AFP-L3 in the presence of lectin-reactive glycoprotein.
実施例9:レクチン反応性標識抗体またはレクチン反応性標識抗原の存在下における各種レクチンによるAFP結合糖鎖の検出系の構築
 N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下で、ヒイロチャワンタケレクチン(Aleuria aurantia Lectin:AAL)とコンカナバリンA(ConA)をレクチンとして用いることにより、下記構造式を有するAFP結合糖鎖の検出系を構築した。
Example 9: Construction of detection system for AFP-binding sugar chain by various lectins in the presence of lectin-reactive labeled antibody or lectin-reactive labeled antigen Mouse IgG F (ab ') 2 -HRP having N-type sugar chain-binding consensus sequence Alternatively, in the presence of HBs antigen-HRP, a detection system for an AFP-binding sugar chain having the following structural formula was constructed by using Aleuria aurantia lectin (AAL) and concanavalin A (ConA) as lectins.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記構造式については、既報(Nakagawa et al.,J Proteome Res. 2008 Jun;7(6):2222-33)により、培養細胞(Huh7)と肝細胞癌検体中に60%以上含まれると報告されている構造式を代表例として示した。 The above structural formula is reported to be contained in cultured cells (Huh7) and hepatocellular carcinoma by more than 60% according to a previous report (Nakagawa et al., J Proteome Res. 2008 Jun; 7 (6): 2222-33). The structural formula is shown as a representative example.
 具体的には、構築は、以下のとおり行った。
(1)実施例3と同様に、AFP-L3とAFP-L1を10%ブロッキング試薬でそれぞれ1μg/mLとなるように希釈し、その希釈溶液を用いて反応を行った。
(2)抗体固相化ウェルを、PBST 250μLで3回洗浄した。次いで、実施例1で調製したN型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPと実施例6で調製したHBs抗原-HRPを10%ブロッキング試薬でそれぞれ1μg/mLとなるようにブロッキング試薬希釈し、さらにAAL(J-オイルミルズ)を10μg/mL、またはConA(Vector)を10μg/mLとなるようにいずれかを加えた混合液を調製し、その混合液を抗体固相化ウェルに加え37℃1時間インキュベートした。
(3)抗体固相化ウェルを、PBST 250μLで3回洗浄した。洗浄後のウェルに50μLのTMB基質溶液を加え室温で5分反応を行った。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the construction was performed as follows.
(1) In the same manner as in Example 3, AFP-L3 and AFP-L1 were each diluted with a 10% blocking reagent to 1 μg / mL, and the reaction was performed using the diluted solution.
(2) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Then, the 1 [mu] g / mL respectively mouse IgG F (ab ') 2 -HRP and 10% blocking reagent the HBs antigen -HRP prepared in Example 6 with an N-type sugar chain binding consensus sequence prepared in Example 1 Then, dilute the blocking reagent in the same way, and then prepare a mixed solution to which either AAL (J-Oil Mills) is added at 10 μg / mL or ConA (Vector) is added at 10 μg / mL. Incubated at 37 ° C for 1 hour in addition to phased wells.
(3) The antibody-immobilized well was washed 3 times with 250 μL of PBST. 50 μL of TMB substrate solution was added to the well after washing, and the reaction was performed at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、AALおよびConAは、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下で、LCAと同様にAFP結合糖鎖を検出することができた(表9、図15、16)。 As a result, AAL and ConA can detect AFP-linked glycans in the same manner as LCA in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type glycan-binding consensus sequence. (Table 9, FIGS. 15 and 16).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上より、LCAに限らず他のレクチンについても、糖タンパク質の存在下で、AFP結合糖鎖を検出できることが示された。 From the above, it was shown that AFP-linked sugar chains can be detected not only for LCA but also for other lectins in the presence of glycoprotein.
実施例10:レクチン反応性標識抗体またはレクチン反応性標識抗原の存在下におけるレクチンによるPSA結合糖鎖の検出系の構築
 AAL反応性糖鎖がPSA(前立腺特異的抗原)に結合していることが報告されている。N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPとHBs抗原-HRPの存在下で、AALをレクチンとして用いた、下記構造式を有するPSA結合AAL反応性フコシル化糖鎖の検出系を構築した。
Example 10: Construction of a detection system for PSA-binding sugar chains by lectins in the presence of lectin-reactive labeled antibodies or lectin-reactive labeled antigens AAL-reactive sugar chains are bound to PSA (prostate specific antigen) It has been reported. A PSA-binding AAL-reactive fucosylated glycan having the following structural formula using AAL as a lectin in the presence of mouse IgG F (ab ′) 2 -HRP and HBs antigen-HRP having an N-type glycan-binding consensus sequence A detection system was constructed.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記構造式については、既報(Tajiri et al.,J Glycobiology. 2008 Jan;18(1):2-8)により、前立腺癌検3例を解析し、Relative abundanceが共通して最も高いと報告されている構造式を代表例として示した。 As for the above structural formula, three cases of prostate cancer were analyzed and reported as having the highest relative abundance according to the previous report (Tajiri et al., J Glycobiology. 2008 Jan; 18 (1): 2-8). The structural formula is shown as a representative example.
 具体的には、構築は、以下のとおり行った。
(1)anti-PSA F(ab’)を10μg/mLとなるようにPBSで希釈した。U96 MaxiSorp Nunc-Immuno Plateにおいて、希釈された溶液 50μLを4℃24時間インキュベートして、上記抗体を固相化した。
(2)抗体固相化ウェルを、PBST 250μLで3回洗浄した後、10%ブロッキング試薬 150μLで37℃1時間ブロッキングした。
(3)抗体固相化ウェルを、PBST 250μLのPBSTで3回洗浄し、ルミパルスPSA-N標準PSA溶液(富士レビオ)100ng/mL、40ng/mL、5ng/mL、0.5ng/mL、0ng/mLを抗体固相化ウェルに50μL加え、37℃1時間インキュベートした。
(4)抗体固相化ウェルを、PBST 250μLで3回洗浄した。実施例1で調製したN型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPと実施例6で調製したHBs抗原-HRPを、10%ブロッキング試薬でそれぞれ1μg/mLとなるように希釈し、さらにAALを10μg/mLとなるようにそれぞれ加えた。その溶液を抗体固相化ウェルに加え37℃1時間インキュベートした。
(5)抗体固相化ウェルを、PBST 250μLで3回洗浄した。洗浄後のウェルに50μLのTMB基質溶液を加え室温で5分反応を行った。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the construction was performed as follows.
(1) Anti-PSA F (ab ′) 2 was diluted with PBS so as to be 10 μg / mL. In the U96 MaxiSorp Nunc-Immuno Plate, 50 μL of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody.
(2) The antibody-immobilized well was washed with 250 μL of PBST three times, and then blocked with 150 μL of 10% blocking reagent at 37 ° C. for 1 hour.
(3) The antibody-immobilized well was washed 3 times with PBST 250 μL of PBST, and Lumipulse PSA-N standard PSA solution (Fujirebio) 100 ng / mL, 40 ng / mL, 5 ng / mL, 0.5 ng / mL, 0 ng / ML was added to antibody-immobilized wells and incubated at 37 ° C for 1 hour.
(4) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Mouse IgG F (ab ′) 2 -HRP having the N-type sugar chain binding consensus sequence prepared in Example 1 and HBs antigen-HRP prepared in Example 6 were each 1 μg / mL with 10% blocking reagent. AAL was further added to a concentration of 10 μg / mL. The solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(5) The antibody-immobilized well was washed 3 times with 250 μL of PBST. 50 μL of TMB substrate solution was added to the well after washing, and the reaction was performed at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、AALは、N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRPの存在下で、PSA結合AAL反応性糖鎖を濃度依存的に検出することができた(表10、図17)。 As a result, AAL can detect PSA-bound AAL-reactive sugar chains in a concentration-dependent manner in the presence of mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain-binding consensus sequence. (Table 10, FIG. 17).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以上より、レクチンは、レクチン反応性標識抗体またはレクチン反応性標識抗原の存在下で、AFP-L3のみならず、PSA等の他のレクチン反応性糖タンパク質を検出できることが示された。 From the above, it was shown that lectins can detect not only AFP-L3 but also other lectin reactive glycoproteins such as PSA in the presence of lectin reactive labeled antibodies or lectin reactive labeled antigens.
実施例11:糖タンパク質によるレクチンと標的分子との結合力の増強(1)
 本実施例は、糖タンパク質によるレクチンと標的分子との結合力の増強について証明するため行った。標的分子(AFP-L3)とレクチン(LCA)の反応後に洗浄し、糖タンパク質(N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRP)で検出した条件(洗浄条件)と、標的分子(AFP-L3)を糖タンパク質(N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRP)の存在下でレクチン(LCA)と反応させた条件(同時添加条件)で、標的分子の検出能に差があるか検討した。洗浄回数は、条件間でそろえた。
Example 11: Enhancement of binding force between lectin and target molecule by glycoprotein (1)
This example was performed to prove the enhancement of the binding force between the lectin and the target molecule by the glycoprotein. Conditions after washing with the target molecule (AFP-L3) and lectin (LCA) and detecting with a glycoprotein (mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain binding consensus sequence) (Washing conditions) and target molecule (AFP-L3) in the presence of glycoprotein (mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having N-type sugar chain binding consensus sequence) lectin (LCA) It was examined whether there was a difference in the ability to detect the target molecule under the reaction conditions (simultaneous addition conditions). The number of washings was adjusted between conditions.
 具体的には、検討は、以下のとおり行った。
(1)anti-AFP F(ab’)を10μg/mLとなるようにPBSで希釈した。F16 MaxiSorp Nunc-Immuno Plate(Thermo)において、希釈された溶液 100μLを4℃24時間インキュベートして、上記抗体を固相化した。
(2)抗体固相化ウェルを、PBST 300μLで3回洗浄した後、10%ブロッキング試薬 200μLで37℃1時間ブロッキングした。
(3)抗体固相化ウェルを、PBST 300μLで3回洗浄した。その後、ミュータスワコーAFP-L3の測定値から濃度を換算したAFP-L3溶液とAFP-L1溶液をそれぞれ10%ブロッキング試薬で500ng/mLとなるように希釈した。その希釈された溶液 100μLを加え37℃1時間インキュベートした。
(4)抗体固相化ウェルを、PBST 300μLで3回洗浄した。洗浄条件では、LCAを100μg/mLとなるように10%ブロッキング試薬で希釈し、その希釈溶液 100μLを抗体固相化ウェルに加え37℃1時間インキュベートした。同時添加条件では、10%ブロッキング試薬のみを抗体固相化ウェルに100μL加え、37℃1時間インキュベートした。
(5)抗体固相化ウェルを、PBST 300μLで3回洗浄した。洗浄条件では、実施例1で調製したマウスIgG F(ab’)抗体A-HRP 5μg/mLまたは実施例6で調製したHBs抗原-HRPを2μg/mLとなるように10%ブロッキング試薬で希釈し、その希釈溶液 100μLを抗体固相化ウェルに加え37℃1時間インキュベートした。同時添加条件では、実施例1で調製したマウスIgG F(ab’)抗体A-HRP 5μg/mLまたはHBs抗原-HRPを2μg/mLとなるように10%ブロッキング試薬で希釈し、さらにLCAを100μg/mLとなるようにそれぞれ添加した。その希釈された溶液 100μLを抗体固相化ウェルに加え、37℃1時間インキュベートした。
(6)抗体固相化ウェルを、PBST 300μLで3回洗浄した。洗浄後のウェルにTMB基質溶液 100μLを加え室温で5分反応を行った。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the examination was conducted as follows.
(1) Anti-AFP F (ab ′) 2 was diluted with PBS so as to be 10 μg / mL. In F16 MaxiSorp Nunc-Immuno Plate (Thermo), 100 μL of the diluted solution was incubated at 4 ° C. for 24 hours to immobilize the antibody.
(2) The antibody-immobilized well was washed with 300 μL of PBST three times, and then blocked with 200 μL of 10% blocking reagent at 37 ° C. for 1 hour.
(3) The antibody-immobilized well was washed 3 times with 300 μL of PBST. Thereafter, the AFP-L3 solution and the AFP-L1 solution, the concentrations of which were converted from the measured values of Mutus Wako AFP-L3, were each diluted with a 10% blocking reagent to 500 ng / mL. 100 μL of the diluted solution was added and incubated at 37 ° C. for 1 hour.
(4) The antibody-immobilized well was washed 3 times with 300 μL of PBST. Under washing conditions, LCA was diluted with a 10% blocking reagent so as to be 100 μg / mL, and 100 μL of the diluted solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour. Under the simultaneous addition conditions, 100 μL of 10% blocking reagent alone was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(5) The antibody-immobilized well was washed 3 times with 300 μL of PBST. Under washing conditions, mouse IgG F (ab ′) 2 antibody A-HRP prepared in Example 1 5 μg / mL or HBs antigen-HRP prepared in Example 6 was diluted with 10% blocking reagent so as to be 2 μg / mL. Then, 100 μL of the diluted solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour. Under the simultaneous addition conditions, mouse IgG F (ab ′) 2 antibody A-HRP prepared in Example 1 was diluted with 10% blocking reagent to 5 μg / mL or HBs antigen-HRP at 2 μg / mL, and LCA was further diluted. Each was added so as to be 100 μg / mL. 100 μL of the diluted solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(6) The antibody-immobilized well was washed 3 times with 300 μL of PBST. To the well after washing, 100 μL of TMB substrate solution was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、AFP-L3とレクチン(LCA)との反応後に洗浄ステップを入れることで、AFP-L3に対する反応性は著しく減弱した(図18、19)。AFP-L3を、標識糖タンパク質(N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)-HRPまたはHBs抗原-HRP)の存在下でレクチン(LCA)と反応させた同時添加条件でのみ、AFP-L3を特異的に検出することができた(図18、19)。 As a result, the reactivity to AFP-L3 was significantly attenuated by adding a washing step after the reaction between AFP-L3 and lectin (LCA) (FIGS. 18 and 19). AFP-L3 was reacted with lectin (LCA) in the presence of labeled glycoprotein (mouse IgG F (ab ′) 2 -HRP or HBs antigen-HRP having an N-type sugar chain binding consensus sequence) in the presence of simultaneous addition conditions. Only AFP-L3 could be detected specifically (FIGS. 18 and 19).
 以上より、レクチン(LCA)を糖タンパク質の存在下で標的分子(AFP-L3)と反応させることにより、レクチンと標的分子との結合力が増強することが示された。 From the above, it was shown that the binding force between the lectin and the target molecule is enhanced by reacting the lectin (LCA) with the target molecule (AFP-L3) in the presence of glycoprotein.
実施例12:糖タンパク質によるレクチンと標的分子との結合力の増強(2)
 本実施例は、糖タンパク質によるレクチンと標的分子との結合力の増強について証明するため行った。標的分子(AFP結合フコシル化糖鎖)とレクチン(AAL)の反応後に洗浄し、糖タンパク質(HBs抗原-HRP)で検出した条件(洗浄条件)と、標的分子(AFP結合フコシル化糖鎖)を糖タンパク質(HBs抗原-HRP)の存在下でレクチン(AAL)と反応させた条件(同時添加条件)で、標的分子の検出能に差があるか検討した。洗浄回数は、条件間でそろえた。
Example 12: Enhancement of binding force between lectin and target molecule by glycoprotein (2)
This example was performed to prove the enhancement of the binding force between the lectin and the target molecule by the glycoprotein. Washing after the reaction of the target molecule (AFP-linked fucosylated sugar chain) and lectin (AAL), and the conditions (washing conditions) detected by glycoprotein (HBs antigen-HRP) and the target molecule (AFP-linked fucosylated sugar chain) It was examined whether there was a difference in target molecule detection ability under the conditions (simultaneous addition conditions) in which lectin (AAL) was reacted in the presence of glycoprotein (HBs antigen-HRP). The number of washings was adjusted between conditions.
 具体的には、検討は、以下のとおり行った。
(1)実施例11と同様に、anti-AFP F(ab’)を固相化したウェルにそれぞれ500ng/mLとなるように希釈したAFP-L3とAFP-L1を100μL加え、37℃1時間インキュベートした。
(2)抗体固相化ウェルを300μLのPBSTで3回洗浄した。洗浄条件では、AALを10μg/mLとなるように10%ブロッキング試薬で希釈し、希釈されたAAL溶液 100μLを抗体固相化ウェルに加え、得られた溶液を37℃1時間インキュベートした。同時添加条件では、抗体固相化ウェルに10%ブロッキング試薬のみを100μL加え、得られた溶液を37℃1時間インキュベートした。
(3)抗体固相化ウェルをPBST 300μLで3回洗浄した。洗浄条件では、実施例6で調製したHBs抗原-HRPを2μg/mLとなるように10%ブロッキング試薬で希釈し、希釈された溶液 100μLを37℃1時間インキュベートした。同時添加条件では、実施例6で調製したHBs抗原-HRPを2μg/mLとなるように10%ブロッキング試薬で希釈し、希釈されたHBs抗原-HRP溶液に、さらにAALを10μg/mLとなるようにそれぞれ添加し、抗体固相化ウェルに希釈された溶液 100μLを加え37℃1時間インキュベートした。
(4)(3)で得られた溶液を300μLのPBSTで3回洗浄した。洗浄後のウェルに100μLのTMB基質溶液を加え室温で5分反応させた。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the examination was conducted as follows.
(1) In the same manner as in Example 11, 100 μL of AFP-L3 and AFP-L1 diluted to 500 ng / mL were added to wells on which anti-AFP F (ab ′) 2 had been immobilized, respectively. Incubated for hours.
(2) The antibody-immobilized well was washed 3 times with 300 μL of PBST. Under washing conditions, AAL was diluted with a 10% blocking reagent so as to be 10 μg / mL, 100 μL of the diluted AAL solution was added to the antibody-immobilized well, and the resulting solution was incubated at 37 ° C. for 1 hour. Under the simultaneous addition conditions, 100 μL of 10% blocking reagent alone was added to the antibody-immobilized well, and the resulting solution was incubated at 37 ° C. for 1 hour.
(3) The antibody-immobilized well was washed 3 times with 300 μL of PBST. Under washing conditions, HBs antigen-HRP prepared in Example 6 was diluted with 10% blocking reagent so as to be 2 μg / mL, and 100 μL of the diluted solution was incubated at 37 ° C. for 1 hour. Under the simultaneous addition conditions, the HBs antigen-HRP prepared in Example 6 was diluted with a 10% blocking reagent to 2 μg / mL, and AAL was further added to 10 μg / mL in the diluted HBs antigen-HRP solution. 100 μL of the diluted solution was added to each antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(4) The solution obtained in (3) was washed 3 times with 300 μL of PBST. 100 μL of TMB substrate solution was added to the wells after washing and allowed to react at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、AFP結合フコシル化糖鎖とレクチン(AAL)との反応後に洗浄ステップを入れることで、AFP結合フコシル化糖鎖に対する反応性は著しく減弱した(図20)。AFP結合フコシル化糖鎖を、標識糖タンパク質(HBs抗原-HRP)の存在下でレクチン(AAL)と反応させた同時添加条件でのみ、AFP結合フコシル化糖鎖を検出することができた(図20)。 As a result, by adding a washing step after the reaction between the AFP-bound fucosylated sugar chain and lectin (AAL), the reactivity with respect to the AFP-bound fucosylated sugar chain was remarkably attenuated (FIG. 20). The AFP-bound fucosylated sugar chain could be detected only under the simultaneous addition conditions in which the AFP-bound fucosylated sugar chain was reacted with lectin (AAL) in the presence of the labeled glycoprotein (HBs antigen-HRP) (FIG. 20).
 以上より、レクチン(AAL)を糖タンパク質の存在下で標的分子(AFP結合フコシル化糖鎖)と反応させることにより、レクチンとその標的分子との結合力が増強することが示された。 From the above, it was shown that the binding force between a lectin and its target molecule is enhanced by reacting the lectin (AAL) with a target molecule (AFP-linked fucosylated sugar chain) in the presence of glycoprotein.
実施例13:N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)を固相に用いた、AFP-L3の検出系の構築
 本実験は、実施例1で調製したマウスIgG F(ab’)が固相上でAFP-L3を捕捉できるかどうかを証明するため行った。N型糖鎖結合コンセンサス配列を有するマウスIgG F(ab’)フラグメント抗体AおよびB、ならびにN型糖鎖結合コンセンサス配列を有しないマウスIgG F(ab’)フラグメント抗体CおよびDを固相化し、次いでAFP-L3およびAFP-L1をLCA共存下でこれらの固相化抗体と反応させることにより、マウスIgG F(ab’)がAFP-L3を特異的に捕捉できるかどうか検討した。
Example 13: Construction of detection system for AFP-L3 using mouse IgG F (ab ′) 2 having an N-type sugar chain binding consensus sequence as a solid phase This experiment was conducted using mouse IgG F ( This was done to prove whether ab ′) 2 can capture AFP-L3 on the solid phase. Mouse IgG F (ab ′) 2 fragment antibodies A and B having an N-type sugar chain binding consensus sequence and mouse IgG F (ab ′) 2 fragment antibodies C and D having no N-type sugar chain binding consensus sequence Then, AFP-L3 and AFP-L1 were reacted with these immobilized antibodies in the presence of LCA to examine whether mouse IgG F (ab ′) 2 can specifically capture AFP-L3.
 具体的には、検討は以下のとおり行った。
(1)実施例1で調製した精製マウスIgG F(ab’)フラグメント抗体A、B、CおよびDを10μg/mLとなるようにPBSで希釈した。U96 MaxiSorp Nunc-Immuno Plateにおいて、希釈された溶液 50μLを37℃1時間インキュベートして固相化した。
(2)抗体固相化ウェルをPBST 250μLで3回洗浄し、10%ブロッキング試薬 150μLで37℃24時間ブロッキングした。
(3)抗体固相化ウェルをPBST 250μLで3回洗浄し、ミュータスワコーAFP-L3の測定値から濃度を換算したAFP-L3溶液とAFP-L1溶液をそれぞれ10%ブロッキング試薬で5μg/mLとなるように希釈し、さらにLCAを100μg/mLとanti-AFP F(ab’)-HRPを1μg/mLとなるように添加して溶液を調製した。調製された溶液 50μLを抗体固相化ウェルに加え37℃1時間インキュベートした。
(4)抗体固相化ウェルをPBST 250μLで3回洗浄した。次いで、TMB基質溶液 50μLを加え室温で5分反応させた。1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the examination was conducted as follows.
(1) The purified mouse IgG F (ab ′) 2 fragment antibodies A, B, C and D prepared in Example 1 were diluted with PBS so as to be 10 μg / mL. In a U96 MaxiSorp Nunc-Immuno Plate, 50 μL of the diluted solution was incubated at 37 ° C. for 1 hour to be immobilized.
(2) The antibody-immobilized well was washed with 250 μL of PBST three times, and blocked with 150 μL of 10% blocking reagent at 37 ° C. for 24 hours.
(3) The antibody-immobilized well was washed with 250 μL of PBST three times, and the AFP-L3 solution and the AFP-L1 solution, whose concentrations were converted from the measured values of Mutus Wako AFP-L3, were each 5 μg / mL with a 10% blocking reagent. The solution was further diluted by adding LCA to 100 μg / mL and anti-AFP F (ab ′) 2 -HRP to 1 μg / mL. 50 μL of the prepared solution was added to the antibody-immobilized well and incubated at 37 ° C. for 1 hour.
(4) The antibody-immobilized well was washed 3 times with 250 μL of PBST. Next, 50 μL of TMB substrate solution was added and reacted at room temperature for 5 minutes. After stopping the reaction with 1N sulfuric acid, the absorbance was measured at 450 nm.
 その結果、LCAは、LCA反応性抗体フラグメントAまたはBを固相とした条件下でAFP-L3を特異的に検出することができた(図21)。 As a result, LCA was able to specifically detect AFP-L3 under conditions in which LCA-reactive antibody fragment A or B was used as a solid phase (FIG. 21).
 以上より、固相化されたレクチン反応性糖鎖含有実体をレクチンと併用することによりレクチン標的分子を捕捉できることが示された。 From the above, it was shown that a lectin target molecule can be captured by using a solid-phased lectin-reactive sugar chain-containing entity together with a lectin.
実施例14:可変領域にN型糖鎖結合コンセンサス配列を有するマウスIgG-HRPを用いた、ヘモペキシン(HPX)結合糖鎖とトランスフェリン(TF)結合糖鎖の検出系の構築
 可変領域にN型糖鎖結合コンセンサス配列を有するマウスIgGを用いて、AALと共存下で反応させ、肝臓癌患者血清中のHPX結合AAL反応性フコシル化糖鎖とTF結合AAL反応性フコシル化糖鎖を検出できるかどうか検討した。
Example 14: Construction of hemopexin (HPX) -linked sugar chain and transferrin (TF) -linked sugar chain detection system using mouse IgG-HRP having an N-type sugar chain-binding consensus sequence in the variable region. Whether mouse IgG having a chain-binding consensus sequence can be reacted with AAL in the presence of AAL to detect HPX-bound AAL-reactive fucosylated glycans and TF-bound AAL-reactive fucosylated glycans in liver cancer patient serum investigated.
 具体的には、検討は以下のとおり行った。
(1)可変領域のアミノ酸配列中にN型糖鎖結合コンセンサス配列を有するマウスIgGを、実施例1と同様にHRP標識を行った。
(2)抗HPX抗体(R&D SYSTEMS Clone#698813)と抗TF抗体(abcam Clone#2A2)のNグリコシダーゼ処理を実施した。Nグリコシダーゼ処理は、トリス酸緩衝液にバッファー交換した抗HPX抗体に、NグリコシダーゼF(ROCHE社)を添加し、37℃24時間反応させた。その後、100KDaの限界ろ過を実施し、Nグリコシダーゼを除去した。
(3)Nグリコシダーゼ処理を実施した抗HPX抗体と抗TF抗体を2μg/mLとなるようにPBSで希釈し、C96 MaxiSoup Nunc-Immuno Plate(Thermo社)に50μL/wellで分注し、4℃24時間固相化した。
(4)250μLの1%BSA-PBSを200μL添加し、4℃24時間ブロッキングした。
(5)300μLのPBSTで3回洗浄し、1%BSA-PBSで500倍希釈した肝臓癌患者血清2例(HCC-1,HCC-2)と健常人血清2例(NHS-1,NHS-2)を、50μL加え37℃1時間インキュベートした。
(6)300μLのPBSTで3回洗浄し、可変領域にN型糖鎖結合コンセンサス配列を有するマウスIgG-HRPを2μg/mLとなるように、希釈液(自社製)で希釈し、さらにAAL(Vector社)を20μg/mLとなるようにそれぞれ加え、37℃1時間インキュベートした。
(7)300μLのPBSTで3回洗浄し、50μLのTMB基質溶液(Thermo社)を加え室温で2分反応させ、1N硫酸で反応停止後、450nmで吸光度を測定した。
Specifically, the examination was conducted as follows.
(1) Mouse IgG having an N-type sugar chain binding consensus sequence in the amino acid sequence of the variable region was labeled with HRP in the same manner as in Example 1.
(2) N-glycosidase treatment of anti-HPX antibody (R & D SYSTEMS Clone # 6988813) and anti-TF antibody (abcam Clone # 2A2) was performed. In the N-glycosidase treatment, N-glycosidase F (ROCHE) was added to the anti-HPX antibody whose buffer was exchanged with a tris acid buffer, and reacted at 37 ° C. for 24 hours. Thereafter, ultrafiltration at 100 KDa was performed to remove N glycosidase.
(3) The N-glycosidase-treated anti-HPX antibody and anti-TF antibody were diluted with PBS to 2 μg / mL, and dispensed at 50 μL / well into C96 MaxiSoup Nunc-Immuno Plate (Thermo) at 4 ° C. Solidified for 24 hours.
(4) 200 μL of 250 μL of 1% BSA-PBS was added and blocked at 4 ° C. for 24 hours.
(5) Two liver cancer patient sera (HCC-1, HCC-2) and two healthy human sera (NHS-1, NHS-) washed three times with 300 μL PBST and diluted 500-fold with 1% BSA-PBS 2) was added and incubated at 37 ° C. for 1 hour.
(6) Wash 3 times with 300 μL of PBST, dilute mouse IgG-HRP having an N-type sugar chain binding consensus sequence in the variable region to 2 μg / mL with a diluent (manufactured in-house), and further add AAL ( Vector) was added to 20 μg / mL and incubated at 37 ° C. for 1 hour.
(7) Washed 3 times with 300 μL of PBST, added 50 μL of TMB substrate solution (Thermo), reacted at room temperature for 2 minutes, stopped with 1N sulfuric acid, and measured absorbance at 450 nm.
 その結果、可変領域にN型糖鎖結合コンセンサス配列を有するマウスIgGを用いて、AALと共存下、肝臓癌患者血清中のHPX結合AAL反応性フコシル化糖鎖(図22)とTF結合AAL反応性フコシル化糖鎖(図23)を検出できた。 As a result, using mouse IgG having an N-type sugar chain binding consensus sequence in the variable region, HPX-bound AAL-reactive fucosylated sugar chain (FIG. 22) and TF-bound AAL reaction in liver cancer patient serum in the presence of AAL. Sex fucosylated sugar chain (FIG. 23) could be detected.
 以上より、固相化されたレクチン反応性糖鎖含有実体をレクチンと併用することによりレクチン標的分子を捕捉できることが示された。 From the above, it was shown that a lectin target molecule can be captured by using a solid-phased lectin-reactive sugar chain-containing entity together with a lectin.

Claims (16)

  1.  レクチン反応性糖鎖含有実体の存在下において、レクチンをレクチン標的分子に結合させることを含む、レクチン標的分子の捕捉方法。 A method for capturing a lectin target molecule, comprising binding a lectin to a lectin target molecule in the presence of a lectin-reactive sugar chain-containing entity.
  2.  レクチンがマメ科レクチンまたはキノコレクチンである、請求項1記載の方法。 The method according to claim 1, wherein the lectin is a legume lectin or a mushroom lectin.
  3.  レクチンがフコース特異的レクチンである、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the lectin is a fucose-specific lectin.
  4.  レクチンが、レンズマメアグルチニン(LCA)、コンカナバリンA(ConA)またはヒイロチャワンタケレクチン(AAL)である、請求項1~3のいずれか一項記載の方法。 4. The method according to any one of claims 1 to 3, wherein the lectin is lentil agglutinin (LCA), concanavalin A (ConA), or yellow chawantake lectin (AAL).
  5.  レクチン標的分子が糖タンパク質である、請求項1~4のいずれか一項記載の方法。 The method according to any one of claims 1 to 4, wherein the lectin target molecule is a glycoprotein.
  6.  糖タンパク質がAFP-L3またはPSAである、請求項5記載の方法。 The method according to claim 5, wherein the glycoprotein is AFP-L3 or PSA.
  7.  糖タンパク質がヘモペキシン(HPX)またはトランスフェリン(TF)である、請求項5記載の方法。 The method according to claim 5, wherein the glycoprotein is hemopexin (HPX) or transferrin (TF).
  8.  前記実体がN型糖鎖結合コンセンサス配列を有する糖タンパク質である、請求項1~7のいずれか一項記載の方法。 The method according to any one of claims 1 to 7, wherein the entity is a glycoprotein having an N-type sugar chain binding consensus sequence.
  9.  N型糖鎖結合コンセンサス配列を有する糖タンパク質がN型糖鎖結合コンセンサス配列を可変領域に有する免疫グロブリンである、請求項8記載の方法。 The method according to claim 8, wherein the glycoprotein having an N-type sugar chain binding consensus sequence is an immunoglobulin having an N-type sugar chain binding consensus sequence in a variable region.
  10.  前記実体が、B型肝炎ウイルス表面抗原(HBs抗原)、ヒト絨毛性ゴナドトロピンα鎖(hCGα)または黄体形成ホルモン(LH)である、請求項1~8のいずれか一項記載の方法。 The method according to any one of claims 1 to 8, wherein the entity is hepatitis B virus surface antigen (HBs antigen), human chorionic gonadotropin α chain (hCGα) or luteinizing hormone (LH).
  11.  レクチンのレクチン標的分子への結合後にレクチン標的分子を測定することを含むレクチン標的分子の測定方法である、請求項1~10のいずれか一項記載の方法。 The method according to any one of claims 1 to 10, which is a method for measuring a lectin target molecule, comprising measuring the lectin target molecule after binding of the lectin to the lectin target molecule.
  12.  レクチン標的分子に特異的な親和性物質をさらに用いる、請求項11記載の方法。 The method according to claim 11, wherein an affinity substance specific for the lectin target molecule is further used.
  13.  以下を含む方法である、請求項1~12のいずれか一項記載の方法:
    (1)レクチン標的分子を、レクチン標的分子に特異的な親和性物質に結合させて、レクチン標的分子およびレクチン標的分子に特異的な親和性物質を含む第1複合体を得ること;
    (2)レクチン反応性糖鎖含有実体の存在下においてレクチンを第1複合体と結合させて、レクチン標的分子、レクチン標的分子に特異的な親和性物質、レクチンおよびレクチン反応性糖鎖含有実体を含む第2複合体を得ること;ならびに
    (3)第2複合体に含まれるレクチン標的分子の量を測定すること。
    The method according to any one of claims 1 to 12, which is a method comprising:
    (1) binding a lectin target molecule to an affinity substance specific for the lectin target molecule to obtain a first complex including the lectin target molecule and an affinity substance specific for the lectin target molecule;
    (2) A lectin is bound to the first complex in the presence of a lectin-reactive sugar chain-containing entity, and a lectin target molecule, an affinity substance specific for the lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity Obtaining a second complex comprising; and (3) measuring the amount of lectin target molecules contained in the second complex.
  14.  レクチン標的分子、レクチンおよびレクチン反応性糖鎖含有実体を含む複合体。 A complex comprising a lectin target molecule, a lectin and a lectin-reactive sugar chain-containing entity.
  15.  レクチンおよびレクチン反応性糖鎖含有実体を混合形態で含む、レクチン標的分子の捕捉用試薬。 A reagent for capturing a lectin target molecule, which contains a lectin and a lectin-reactive sugar chain-containing entity in a mixed form.
  16.  レクチンおよびレクチン反応性糖鎖含有実体を含む、レクチン標的分子の捕捉用キット。 A kit for capturing a lectin target molecule, comprising a lectin and a lectin-reactive sugar chain-containing entity.
PCT/JP2017/015991 2016-04-22 2017-04-21 Method for capturing lectin target molecule WO2017183711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513225A JP6910699B2 (en) 2016-04-22 2017-04-21 Lectin target molecule capture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086214 2016-04-22
JP2016-086214 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183711A1 true WO2017183711A1 (en) 2017-10-26

Family

ID=60116914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015991 WO2017183711A1 (en) 2016-04-22 2017-04-21 Method for capturing lectin target molecule

Country Status (2)

Country Link
JP (1) JP6910699B2 (en)
WO (1) WO2017183711A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045065A1 (en) 2019-09-02 2021-03-11 富士レビオ株式会社 Method for measuring lectin-binding substance, kit for measuring lectin-binding substance, and capture support to be used therein
WO2021045061A1 (en) 2019-09-02 2021-03-11 富士レビオ株式会社 Method for measuring lectin-associated substance, kit for measuring lectin-associated substance, and blocked labeled lectin used in same
JP2021038980A (en) * 2019-09-02 2021-03-11 富士レビオ株式会社 Afp-l3 measurement method and afp-l3 measurement kit, and blocked labeled lectin used for these
WO2023119413A1 (en) * 2021-12-21 2023-06-29 株式会社Rcмg Method for measuring glycosylated surface antigen protein of hbv

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245155A (en) * 1988-01-07 1989-09-29 Internatl Inst Of Cellular & Molecul Pathology Catholic Univ Of Louvain Analysis method
JPH03167475A (en) * 1989-11-27 1991-07-19 Hitachi Ltd Method and apparatus for immunoassay
JP2568424B2 (en) * 1988-06-08 1997-01-08 日東電工株式会社 Immunoassay
US20070099820A1 (en) * 2005-10-19 2007-05-03 Smartcells, Inc. Polymer-drug conjugates
WO2008029886A1 (en) * 2006-09-06 2008-03-13 National University Corporation Tottori University Kit for diagnosis of alzheimer's disease, diagnostic marker, and method for detection of indicator for disease condition
US20080199399A1 (en) * 2007-02-21 2008-08-21 Xing Chen Interfacing Nanostructures to Biological Cells
JP2008256457A (en) * 2007-04-03 2008-10-23 Olympus Corp Aggregation inspection method
JP2012516338A (en) * 2009-01-28 2012-07-19 スマートセルズ・インコーポレイテツド Lectins with modified binding sites and uses thereof
JP2012255736A (en) * 2011-06-10 2012-12-27 J-Oil Mills Inc Glycoprotein detection method
WO2013038914A1 (en) * 2011-09-15 2013-03-21 コニカミノルタホールディングス株式会社 Quantitative measurement method for specific analyte using surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245155A (en) * 1988-01-07 1989-09-29 Internatl Inst Of Cellular & Molecul Pathology Catholic Univ Of Louvain Analysis method
JP2568424B2 (en) * 1988-06-08 1997-01-08 日東電工株式会社 Immunoassay
JPH03167475A (en) * 1989-11-27 1991-07-19 Hitachi Ltd Method and apparatus for immunoassay
US20070099820A1 (en) * 2005-10-19 2007-05-03 Smartcells, Inc. Polymer-drug conjugates
WO2008029886A1 (en) * 2006-09-06 2008-03-13 National University Corporation Tottori University Kit for diagnosis of alzheimer's disease, diagnostic marker, and method for detection of indicator for disease condition
US20080199399A1 (en) * 2007-02-21 2008-08-21 Xing Chen Interfacing Nanostructures to Biological Cells
JP2008256457A (en) * 2007-04-03 2008-10-23 Olympus Corp Aggregation inspection method
JP2012516338A (en) * 2009-01-28 2012-07-19 スマートセルズ・インコーポレイテツド Lectins with modified binding sites and uses thereof
JP2012255736A (en) * 2011-06-10 2012-12-27 J-Oil Mills Inc Glycoprotein detection method
WO2013038914A1 (en) * 2011-09-15 2013-03-21 コニカミノルタホールディングス株式会社 Quantitative measurement method for specific analyte using surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIGEOUR CAROLINE: "Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins", ORG BIOMOL CHEM, vol. 13, no. 46, 14 December 2015 (2015-12-14), pages 11244 - 11254, XP055391903 *
M ITCHELL D A: "A Novel Mechanism of Carbohydrate Recognition by the C-type Lectins DC-SIGN and DC-SIGNR. Subunit Organization and Binding to Multivalent Ligands", J BIOL CHEM, vol. 276, no. 31, 2001, pages 28939 - 28945, XP008142275 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045065A1 (en) 2019-09-02 2021-03-11 富士レビオ株式会社 Method for measuring lectin-binding substance, kit for measuring lectin-binding substance, and capture support to be used therein
WO2021045061A1 (en) 2019-09-02 2021-03-11 富士レビオ株式会社 Method for measuring lectin-associated substance, kit for measuring lectin-associated substance, and blocked labeled lectin used in same
JP2021038980A (en) * 2019-09-02 2021-03-11 富士レビオ株式会社 Afp-l3 measurement method and afp-l3 measurement kit, and blocked labeled lectin used for these
JP7361543B2 (en) 2019-09-02 2023-10-16 富士レビオ株式会社 AFP-L3 measurement method, AFP-L3 measurement kit, and blocked labeled lectin used therefor
US11988666B2 (en) 2019-09-02 2024-05-21 Fujirebio Inc. Lectin-binding substance measurement method, lectin-binding substance measurement kit, and blocked labeled lectin for use in these
US12038440B2 (en) 2019-09-02 2024-07-16 Fujirebio Inc. Lectin-binding substance measurement method, lectin-binding substance measurement kit, and capture carrier for use in these
WO2023119413A1 (en) * 2021-12-21 2023-06-29 株式会社Rcмg Method for measuring glycosylated surface antigen protein of hbv

Also Published As

Publication number Publication date
JP6910699B2 (en) 2021-07-28
JPWO2017183711A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017183711A1 (en) Method for capturing lectin target molecule
Rosenfeld et al. A lectin array-based methodology for the analysis of protein glycosylation
Yang et al. Selective isolation and analysis of glycoprotein fractions and their glycomes from hepatocellular carcinoma sera
JP6999561B2 (en) Measurement method and measurement reagent for myocardial troponin
TW201812299A (en) Method and reagent for measuring tumor markers
JP7138627B2 (en) Insulin measuring method and measuring reagent
WO2006118195A1 (en) Method of immunologically analyzing plasmin degradation product of stabilized fibrin
JP2022043219A (en) Monoclonal antibody to react with glycopeptide and use therefor
JP5618831B2 (en) Modified anti-heparin / PF4 complex antibody and HIT antibody standard
JP6236864B2 (en) Method for detecting cancer and antibody recognizing pancreatic ribonuclease 1
Liang et al. Comparison of chicken IgY and mammalian IgG in three immunoassays for detection of sulfamethazine in milk
CN117054645A (en) Thyroglobulin measurement method and measurement reagent
JP7127422B2 (en) Method and detection reagent for detecting cancer
CN110988325A (en) Blocking agent and kit containing same
EP3252073A1 (en) Monoclonal antibody reacting with glycopeptide, and use thereof
JP7424718B2 (en) How to process antigens.
WO2015129651A1 (en) Modified monomeric igm
JP6935184B2 (en) Monoclonal antibodies that react with glycopeptides and their uses
JP5586232B2 (en) Method and kit for immunological measurement of specimen using agglutination reaction of microparticles
EP3919509A1 (en) Method for immunological analysis of free aim in biological sample
KR20190126052A (en) Method for forming a complex of a sugar chain with a lectin
JP6244779B2 (en) Method and kit for detecting stage of pancreatic cancer
JP6829357B2 (en) Antibody sugar chain detection method
WO2022154119A1 (en) Method for processing soluble gpc3-containing specimens in soluble gpc3 immunoassays
US11467162B2 (en) Diagnostic test for hepatocellular carcinoma

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513225

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786048

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17786048

Country of ref document: EP

Kind code of ref document: A1