WO2017183501A1 - Method for producing 1,2-dichloro-3,3,3-trifluoropropene - Google Patents

Method for producing 1,2-dichloro-3,3,3-trifluoropropene Download PDF

Info

Publication number
WO2017183501A1
WO2017183501A1 PCT/JP2017/014648 JP2017014648W WO2017183501A1 WO 2017183501 A1 WO2017183501 A1 WO 2017183501A1 JP 2017014648 W JP2017014648 W JP 2017014648W WO 2017183501 A1 WO2017183501 A1 WO 2017183501A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
carried out
lewis acid
pentachloropropene
Prior art date
Application number
PCT/JP2017/014648
Other languages
French (fr)
Japanese (ja)
Inventor
佳 松永
井村 英明
金井 正富
昌彦 谷
高田 直門
康平 住田
覚 岡本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017058985A external-priority patent/JP6751239B2/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP17785841.2A priority Critical patent/EP3434663B1/en
Priority to EP20176820.7A priority patent/EP3718995B1/en
Priority to US16/094,228 priority patent/US10611708B2/en
Priority to CN201780024876.1A priority patent/CN109071386B/en
Publication of WO2017183501A1 publication Critical patent/WO2017183501A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/04Preparation of halogenated hydrocarbons by addition of halogens to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene.
  • the present invention also relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene and 1,2,3-trichloro-3,3-difluoropropene together.
  • the present invention also relates to a method for producing 1,2,3-trichloro-3,3-difluoropropene.
  • 1,2-dichloro-3,3,3-trifluoropropene (hereinafter sometimes referred to as 1223xd) is 3,3-dichloro-1,1,1,2,2-pentafluoropropane (225ca) and Its global warming potential (GWP) is smaller than 1,3-dichloro-1,1,2,2,3-pentafluoropropane (225cb), and is used as a substitute for these in various applications such as cleaning agents. It is expected.
  • Patent Document 1 uses a chlorine-containing compound as a raw material, and is represented by a general formula: CF 3 CH ⁇ CHZ (Z is Cl or F) by gas phase fluorination reaction and dehalogenation reaction.
  • a method for producing a fluorinated propene is disclosed.
  • Example 4 includes 1,2-dichloro-3,1 as a byproduct of the gas phase fluorination reaction and dehalogenation reaction of 1,1,1,3,3-pentachloropropane (HFC-240fa). It is described that 3,3-trifluoropropene is formed.
  • Patent Document 2 1-halogeno-3,3,3-trifluoropropene represented by the general formula: CF 3 CH ⁇ CHX (X is F, Cl, or Br) is catalyzed in the gas phase.
  • a method for producing 1,2-dichloro-3,3,3-trifluoropropene by reacting with chlorine in the presence is disclosed.
  • Non-Patent Document 1 discloses a method of reacting 1,2,3,3,3-pentachloropropene (1220xd) with antimony trifluoride.
  • Non-Patent Document 2 antimony pentachloride is used as a catalyst, and 1,1,2,3,3-pentachloropropene (hereinafter sometimes referred to as 1220xa) is reacted with antimony trifluoride in a liquid phase.
  • Non-Patent Document 3 discloses a method of manufacturing by adding solid potassium hydroxide to liquid 1,2,2-trichloro-3,3,3-trifluoropropane and performing a reflux operation while heating. Has been.
  • An object of the present invention is to provide an efficient method for producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd).
  • the present invention also provides an efficient co-production method of 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd). The issue is to provide.
  • Another object of the present invention is to provide an efficient method for producing 1,2,3-trichloro-3,3-difluoropropene (1222xd).
  • Non-Patent Documents 1 and 2 use antimony trifluoride as a fluorinating agent, and in this method, a large amount of waste water containing organic substances and metals is generated and discharged by post-treatment. For this reason, it is necessary to separately treat the metal drainage of the content machine.
  • the reaction is carried out by dispersing powdered potassium hydroxide in 1,2,2-trichloro-3,3,3-trifluoropropane in a liquid state. The system becomes a heterogeneous reaction and the yield is moderate (48%). Therefore, from the viewpoint of an industrial production method, a more efficient production method is preferable.
  • 1,2-2,3,3-pentachloropropene (1220xa) is fluorinated using hydrogen fluoride as a fluorinating agent, thereby efficiently 1,2-dichloro-3,3, It has been found that 3-trifluoropropene (1223xd) can be produced, and the present invention has been completed.
  • This fluorination is preferably carried out in the liquid phase or in the gas phase.
  • the present inventors efficiently fluorinate 1,1,2,3,3-pentachloropropene (1220xa) using hydrogen fluoride as a fluorinating agent, thereby efficiently producing 1,2-dichloro It was found that ⁇ 3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be produced together, and the present invention was completed. This fluorination is preferably carried out in the liquid phase or in the gas phase.
  • the present inventors have efficiently 1,2,3 by fluorinating 1,1,2,3,3-pentachloropropene (1220xa) using hydrogen fluoride as a fluorinating agent. It has been found that trichloro-3,3-difluoropropene (1222xd) can be produced, and the present invention has been completed. This fluorination is preferably carried out in the liquid phase or in the gas phase.
  • the present invention includes the following inventions.
  • [Invention 1] A method of producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd) by fluorinating 1,1,2,3,3-pentachloropropene (1220xa) by reaction with a fluorinating agent.
  • Invention 4 Any one of Inventions 1 to 3, wherein the amount of hydrogen fluoride used is 3 to 40 moles per mole of 1,1,2,3,3-pentachloropropene (1220xa) The method described.
  • invention 8 The method according to any one of inventions 1 to 7, wherein the reaction is carried out in the absence of a catalyst.
  • invention 10 According to any one of inventions 1, 3, 4, 7 and 9, wherein the reaction is carried out using a metal oxide, a metal fluoride, or a supported catalyst supporting a metal compound as a catalyst. The method described.
  • invention 12 The method according to any one of inventions 1 to 11, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • invention 13 The method according to any one of inventions 1 to 12, wherein the reaction is carried out in the absence of a solvent.
  • invention 15 The method according to any one of inventions 1 to 14, further comprising a step of purifying 1,2-dichloro-3,3,3-trifluoropropene (1223xd).
  • Lewis acid catalysts used in the dehydrochlorination step of 1,1,1,2,3,3-hexachloropropane (230da) are aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium
  • Lewis acid catalyst used in the chlorination step of 1,1,3,3-tetrachloropropene (1230za) is aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium,
  • 1,1,1,3,3-pentachloropropane (240fa) is dehydrochlorinated in the presence of a Lewis acid catalyst in the liquid phase to obtain the 1,1,3,3-tetrachloropropene (1230za).
  • Lewis acid catalyst used in the dehydrochlorination step of 1,1,1,3,3-pentachloropropane (240fa) is aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum
  • the dehydrochlorination step of 1,1,1,3,3-pentachloropropane (240fa) is referred to as “first step”, and the chlorination step of 1,1,3,3-tetrachloropropene (1230za) is referred to as “second step”.
  • Step 1 the dehydrochlorination step of 1,1,1,2,3,3-hexachloropropane (230da) is referred to as “third step”.
  • invention 31 The process according to any one of inventions 28 to 30, wherein the reaction is carried out in the presence of a catalyst.
  • invention 32 The process according to any one of inventions 28 to 30, wherein the reaction is carried out in the absence of a catalyst.
  • invention 34 The method according to any one of inventions 28 to 33, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • invention 35 A method for producing 1,2,3-trichloro-3,3-difluoropropene (1222xd) by reacting 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride.
  • invention 37 36. The method according to invention 35, wherein the reaction is carried out in the gas phase.
  • invention 39 The method according to any one of inventions 35 to 38, wherein the reaction is carried out in the presence of a catalyst.
  • invention 40 The method according to any one of inventions 35 to 38, wherein the reaction is carried out in the absence of a catalyst.
  • invention 41 41. The method according to any one of inventions 35 to 40, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • the fluorination reaction of 1,1,2,3,3-pentachloropropene (1220xa) is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent. Is called.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably performed at 100 to 200 ° C., particularly preferably 140 to 180 ° C.
  • the reaction is preferably performed in the absence of a solvent.
  • 1,2-dichloro-3,3,3-trifluoropropene (1223xd) is produced, and this 1223xd is Z form (1223zd (Z)), E form (1223zd (E)), or both. And is preferably manufactured as a Z-form.
  • the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably performed at 160 to 600 ° C, more preferably 180 to 500 ° C, particularly preferably 200 to 400 ° C, and further preferably 210 to 350 ° C.
  • a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used.
  • a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • 1223xd is manufactured by the said reaction, and this 1223xd is manufactured as Z body, E body, or both, Preferably it manufactures as Z body.
  • the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably performed at 160 to 600 ° C, more preferably 180 to 500 ° C, particularly preferably 200 to 400 ° C, and further preferably 210 to 350 ° C.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • 1223xd is manufactured by the said reaction, and this 1223xd is manufactured as Z body, E body, or both, Preferably it manufactures as Z body.
  • the fluorination reaction of 1220xa is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as a fluorinating agent.
  • the amount of hydrogen fluoride used is 3 to 40 mol with respect to 1220 xa 1 mol.
  • the reaction is preferably performed at 100 to 200 ° C.
  • the reaction is preferably performed in the absence of a solvent.
  • This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
  • the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably carried out at 160 to 300 ° C, more preferably 180 to 280 ° C, particularly preferably 180 to 270 ° C, and further preferably 180 to 260 ° C.
  • a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used.
  • a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred.
  • 1223xd and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced.
  • This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
  • the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably carried out at 160 to 300 ° C, more preferably 180 to 280 ° C, particularly preferably 180 to 270 ° C, and further preferably 180 to 260 ° C.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred.
  • 1223xd and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced.
  • This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
  • the fluorination reaction of 1220xa is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as a fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably performed at 100 to 200 ° C, particularly preferably 100 to 140 ° C.
  • the reaction is preferably performed in the absence of a solvent.
  • the reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
  • the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably carried out at 160 to 280 ° C., particularly preferably 180 to 270 ° C., and further preferably 180 to 260 ° C.
  • a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used.
  • a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  • the reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
  • the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent.
  • the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa.
  • the reaction is preferably carried out at 160 to 280 ° C., particularly preferably 180 to 270 ° C., and further preferably 180 to 260 ° C.
  • the contact time is preferably 1 to 100 seconds, particularly preferably 10 to 50 seconds.
  • the reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred.
  • the reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
  • co-product of 1223xd and 1222xd means that at least 1223xd and 1222xd are produced by the reaction according to the present invention, and preferably 1222xd is 0.0001 mol or more per mol of 1223xd Produced, particularly preferably at least 0.001 mol.
  • 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be produced efficiently. That is, according to the present invention, 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material, and 1,2-dichloro-3,3,3-trifluoropropene (1223xd) is highly selected. It is possible to easily manufacture at a rate.
  • 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be efficiently produced together. Can do.
  • 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be produced efficiently.
  • the process of the present invention comprises fluorinating 1,1,2,3,3-pentachloropropene (1220xa) by reaction with a fluorinating agent to give 1,2-dichloro-3,3,3-trifluoropropene ( 1223xd), characterized in that hydrogen fluoride is used as the fluorinating agent.
  • the reaction may be performed (1) in the liquid phase or (2) in the gas phase.
  • the method of the present invention is characterized in that 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material and reacted with hydrogen fluoride in a liquid phase. In another embodiment of the present invention, the method of the present invention is characterized in that 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material and reacted with hydrogen fluoride in a gas phase.
  • 1,1,2,3,3-pentachloropropene (1220xa) used as a raw material is a known compound and can be produced by various methods. An example of the manufacturing method will be described later, but this does not prevent other methods from being adopted. However, 1,1,2,3,3-pentachloropropene (1220xa) can be advantageously produced by employing the production method described later.
  • the amount of hydrogen fluoride used is 1,1,2, which is a raw material.
  • 3,3-pentachloropropene (1220xa) is usually 3 to 40 mol, preferably 5 to 30 mol, more preferably 10 to 20 mol.
  • the amount of hydrogen fluoride used is 1,1,2, 3,3-pentachloropropene (1220xa) is usually 3 to 40 mol, preferably 3 to 30 mol, more preferably 3 to 20 mol, particularly preferably 3 to 10 mol, based on 1 mol. is there.
  • the amount of hydrogen fluoride used is expressed relative to the amount of 1,1,2,3,3-pentachloropropene (1220xa) used when the reaction type is batch or semi-batch.
  • unreacted hydrogen fluoride is separated from the reaction product and recycled to the reaction system. Separation of hydrogen fluoride and the reaction product can be performed by a known means, and examples thereof include a method of distilling the reaction product.
  • the reaction temperature is not particularly limited as long as the target product can be produced.
  • the temperature of the liquid phase reaction between 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride is usually 50 to 300 ° C., preferably 100 to 200 ° C. .
  • 140 to 180 ° C. is particularly preferable because 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be produced more advantageously.
  • 50-300 ° C is preferred, and 100 to 200 ° C is particularly preferred.
  • it is preferably from 100 to 200 ° C, particularly preferably from 100 to 140 ° C.
  • the temperature of the gas phase reaction between 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride is not particularly limited as long as the reaction can be performed in the gas phase. It is preferable to carry out at a temperature at which the raw material becomes gaseous.
  • the gas phase reaction is usually carried out at 160 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and particularly preferably 210 ° C. or higher because 1223xd can be produced more advantageously.
  • the upper limit of the gas phase reaction temperature is not particularly limited, but the gas phase reaction is usually carried out at 600 ° C. or lower, preferably 500 ° C.
  • the temperature of the gas phase reaction may be any temperature range in which the above lower limit temperature and upper limit temperature are arbitrarily combined.
  • 160 to 300 ° C is preferred, 180-280 ° C is more preferred, 180-270 ° C is particularly preferred, and 180-260 ° C is even more preferred.
  • 1,2,3-trichloro-3,3-difluoropropene (1222xd) is preferably 160 to 280 ° C, more preferably 180 to 270 ° C, and particularly preferably 180 to 260 ° C. .
  • the pressure is not limited, and may be any of reduced pressure, normal pressure (atmospheric pressure), and increased pressure.
  • the reaction pressure of the liquid phase reaction is usually 0.1 to 10 MPaG (referred to as gauge pressure; the same shall apply hereinafter), preferably 1.5 to 6 MPaG, more preferably 2.0 to 4.5 MPaG. preferable. If it is less than 0.1 MPaG, it cannot be raised to a suitable reaction temperature due to the reflux of unreacted hydrogen fluoride, which is not a practical production method. If it exceeds 10 MPaG, the cost for the pressure resistance design of the reactor increases, which is economically undesirable.
  • the gas phase reaction is preferably performed under reduced pressure or normal pressure, and particularly preferably performed under a pressure in the vicinity of normal pressure.
  • the pressure can be controlled by any appropriate means, for example, a distillation column and / or a water condensing cooler, a pressure control valve, or the like attached to the outlet of the reaction vessel.
  • a catalyst may or may not be used.
  • a metal halide such as titanium, tin, iron, antimony, tantalum, niobium, molybdenum, or a mixture thereof can be used in any suitable catalytic amount.
  • a catalyst may or may not be used. When a catalyst is used in the gas phase reaction, the catalyst may be a non-supported catalyst or a supported catalyst.
  • a metal compound is preferable, and a metal compound such as a metal oxide or a metal fluoride is more preferable.
  • the metal fluoride refers to a substance having at least a bond between a metal atom and a fluorine atom.
  • those in which the bond between metal atom and fluorine atom is confirmed by IR, XRD, XPS, etc. can be used as a catalyst in a gas phase reaction.
  • the kind of metal contained in these metal compounds is not particularly limited.
  • Examples include at least one metal selected from the group consisting of aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum, and antimony, At least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium is preferred.
  • the metal may be a single metal or a composite metal in which two or more metals are combined.
  • the method for preparing the metal fluoride is not particularly limited.
  • such a metal fluoride can be prepared by subjecting a metal compound such as a metal oxide to a fluorination treatment.
  • the kind of the metal oxide is not particularly limited.
  • an oxide of at least one metal selected from the group consisting of aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony Among these, an oxide of at least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium, and magnesium is preferable.
  • the metal contained in the metal oxide may be a single metal or may be used as a composite metal oxide in which two or more metals are combined.
  • metal oxides having different crystal systems can be used.
  • alumina includes ⁇ -alumina and ⁇ -alumina
  • titania includes anatase and rutile crystal forms.
  • the crystal form of the metal oxide may be any, but ⁇ -alumina is preferable because of its large surface area.
  • any metal fluoride can be prepared using any metal fluoride that can be converted into a metal fluoride by fluorination treatment.
  • the composite metal is mainly a kind of metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium, and includes aluminum, chromium, titanium, manganese, iron, nickel, copper, cobalt, magnesium, zirconium and molybdenum. It is preferable to contain at least one metal selected from the group consisting of zinc, tin, lanthanum, niobium, tantalum and antimony as an accessory component.
  • Preferred examples of such composite metal oxides include alumina and chromia, alumina and zirconia, alumina and titania, and alumina and magnesia, each of which contains 50 atomic% or more of aluminum. Are particularly preferred, and those containing 80 atomic% or more are more preferred. If it is 50 atomic% or more, the reaction can proceed at a good conversion rate.
  • the method for the fluorination treatment of the metal compound is not particularly limited. For example, by contacting a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon with the above-described metal compound (eg, metal oxide or composite metal oxide). Also good.
  • a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon
  • This fluorination treatment is usually preferably performed stepwise.
  • the metal compound is first fluorinated with dilute hydrogen fluoride gas at a relatively low temperature, gradually increasing the concentration and / or temperature. It is preferred to do so.
  • the final stage is preferably carried out at or above the reaction temperature of the reaction according to the invention.
  • the fluorination treatment temperature is 200 ° C. or higher, and the fluorination treatment with hydrogen fluoride is performed at 400 ° C. or higher, more preferably 500 ° C. or higher. preferable.
  • the upper limit of the temperature is not particularly limited, but if it exceeds 900 ° C., it is difficult from the viewpoint of heat resistance of the fluorination treatment apparatus, and practically, it is preferably performed at 600 ° C. or less.
  • a metal compound for example, a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon
  • a metal compound for example, a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon
  • the catalyst used in the gas phase reaction is preferably subjected to fluorination treatment before use.
  • This fluorination treatment can be applied to the catalyst (preferably a metal compound) according to the above-described method for preparing a metal fluorinated product.
  • a supported catalyst supporting a metal compound may be used as a catalyst.
  • carbon or the above-described metals may be used as the non-supported catalyst.
  • the metal used as the support may be an oxide of the metal described above as the unsupported catalyst, or a metal fluorinated product.
  • An oxide of at least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium may be used alone as a support, and an oxide of a composite metal is used as a support.
  • a fluorinated product in which some or all of them are fluorinated may be used as the carrier.
  • the composite metal oxide for example, mainly one kind of metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium, aluminum, chromium, titanium, manganese, iron, nickel, copper, cobalt,
  • An oxide containing at least one metal selected from the group consisting of magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony as a subcomponent is preferable.
  • Examples of the metal contained in the metal compound to be supported include aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum, and antimony. Of these, aluminum, chromium, titanium, iron, nickel, cobalt, copper, zirconium, zinc, tin, lanthanum, niobium, tantalum, and antimony are preferable. These metals are supported on the carrier as fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluoride chloride and the like. Such metal compounds may be supported alone or in combination of two or more.
  • supported metal compounds include chromium nitrate, chromium trichloride, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, ferric chloride, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride.
  • Antimony pentachloride, magnesium chloride, magnesium nitrate, zirconium chloride, zirconium oxychloride, zirconium nitrate, copper (II) chloride, zinc (II) chloride, lanthanum nitrate, tin tetrachloride, etc. can be used. Not.
  • the catalyst prepared by supporting the above-described metal compound on the support may be subjected to a fluorination treatment before use in order to cause the reaction to proceed stably, and it is preferable to do so. That is, in the gas phase reaction according to the present invention, the catalyst may be a catalyst obtained by fluorinating a supported catalyst in which a metal compound is supported on a carrier. In this case, hydrogen fluoride, fluorinated hydrocarbon, fluorinated chlorinated hydrocarbon, etc. can be obtained by the same method as the fluorination treatment of the aforementioned metal compound (for example, metal oxide or composite metal oxide). It is preferable to fluorinate in advance with a fluorinating agent and use as a catalyst for the gas phase reaction of the present invention.
  • the support when the support is a metal oxide and the metal compound layer as the support covers the support as a whole, the support is mainly fluorinated than the support in the fluorination treatment step.
  • the support mainly acts as a catalyst for the reaction according to the present invention.
  • the support when the support is a metal oxide and the layer of the metal compound that is the support does not cover the support as a whole, the support is also fluorinated together with the support in the fluorination treatment step.
  • the support may act as a catalyst.
  • the carrier acts as a catalyst together with the supported material, it may act as a non-supported catalyst not as a supported catalyst but as a fluorinated compound metal.
  • the catalyst include fluorinated alumina, fluorinated zirconia, fluorinated chromia, and chromium-supported activated carbon, and fluorinated alumina, fluorinated zirconia, and fluorinated chromia are particularly preferable. These catalysts are preferably fluorinated in advance before the reaction.
  • the ratio of the mass of the metal to the total mass of the catalyst including the support and the support is 0.1 to 80% by mass, preferably 1 to 50% by mass. If it is 0.1 mass% or more, a good catalytic effect can be obtained, and if it is 80 mass% or less, it can be stably supported.
  • the support is a solid metal salt
  • the ratio of the metal mass to the total mass of the catalyst is 0.1 to 40% by mass, preferably 1 to 30% by mass.
  • a solvent can be used in consideration of the uniformity of the reaction and the operability after the reaction.
  • the type of the solvent used is not particularly limited as long as the raw material 1,1,2,3,3-pentachloropropene (1220xa) can be dissolved.
  • an organic compound having a boiling point higher than that of the product 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and not fluorinated by hydrogen fluoride during the reaction is preferable. .
  • solvents include, but are not limited to, tetramethylene sulfone (sulfolane), perfluoroalkanes, perfluoroalkenes, hydrofluorocarbons, and the like.
  • the amount of the solvent to be used is not particularly limited as long as the raw material 1,1,2,3,3-pentachloropropene (1220xa) can be dissolved. 80 mass% or less is preferable with respect to 1,1,2,3,3-pentachloropropene (1220xa) as a raw material, and 40 mass% or less is more preferable.
  • the reaction time is not particularly limited.
  • the end point of the reaction is preferably the end point of hydrogen chloride which is not generated as a by-product due to the reaction between the raw material 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride.
  • the end point of the reaction is defined as the point at which the pressure increase stops.
  • the reaction time in the gas phase reaction is preferably synonymous with the contact time described below.
  • productivity is often discussed in terms of the value (seconds) obtained by dividing the reaction zone volume A (mL) by the raw material supply rate B (mL / second). Call time.
  • the catalyst volume (mL) is regarded as A above.
  • the value of B indicates “volume of the raw material gas introduced into the reactor per second”.
  • the raw material gas is regarded as an ideal gas, and the value of B is determined from the number of moles, pressure and temperature of the raw material gas. Is calculated.
  • by-products of other compounds than the raw material and the target product and a change in the number of moles may occur, but they are not taken into account when calculating the “contact time”.
  • the determination of the contact time depends on the reaction raw material used in the method of the present invention, the reaction temperature, the shape of the reactor, the type of catalyst, and the like. Therefore, it is desirable to optimize the contact time by appropriately adjusting the supply rate of the reaction raw material for each reaction raw material, the set temperature of the reactor, the shape of the reactor, and the type of catalyst.
  • the optimum contact time in the present invention is 0.01 to 500 seconds, preferably 0.1 to 250 seconds, and more preferably 1 to 150 seconds. In addition, this contact time may be suitably changed according to reaction pressure.
  • the reaction temperature and the contact time for contacting the reaction raw material such as 1223xd or hydrogen fluoride with the catalyst have a trade-off relationship. That is, it is preferable to operate so that the contact time is shortened when the reaction temperature is increased and the contact time is increased when the reaction temperature is decreased.
  • the reactor is not particularly limited, but a reactor suitable for a liquid phase reaction or a gas phase reaction is preferably used.
  • a reactor suitable for a liquid phase reaction or a gas phase reaction is preferably used.
  • Such liquid phase reactors and gas phase reactors are well known in the art.
  • the reactor is preferably made of stainless steel, Hastelloy (TM), Monel (TM), platinum, carbon, fluororesin, or a material lined with these, but is not limited thereto.
  • the reactor may be filled with a filler such as Raschig ring or pole ring. These materials are also preferably made of stainless steel, Hastelloy (TM), Monel (TM) or the like.
  • additives such as chlorine, oxygen and air may be introduced into the reaction system.
  • the amount of such additives introduced into the reaction system is not particularly limited. Generally, it is 0.01 to 10 mol%, more preferably 0.1 to 5 mol%, with respect to 1,2-dichloro-3,3,3-trifluoropropene (1223xd).
  • Such additives may be introduced singly or in combination, and further, inert gas (for example, nitrogen, rare gas such as helium, argon, etc., or reaction) It is also possible to introduce it by mixing with an inert chlorofluorocarbon gas).
  • any one of a gas phase reaction and a liquid phase reaction can be adopted.
  • the reaction according to the present invention can be performed by any of batch, semi-batch, and continuous methods, and these reaction modes and methods can be appropriately combined and employed.
  • the method for holding the catalyst may be any type such as a fixed bed, a fluidized bed, and a moving bed, and is preferable because it is easy to carry out in a fixed bed.
  • the reaction procedure according to the present invention is not particularly limited as long as the effects of the present invention are not impaired.
  • An example is shown below.
  • a predetermined amount of a predetermined raw material is introduced into a reactor, a predetermined amount of a solvent is introduced as desired, and a reaction is performed under predetermined conditions.
  • a catalyst it is preferable to prepare the catalyst in the reactor in advance.
  • the procedure for introducing the raw material into the reactor is not particularly limited, and 1,1,2,3,3-pentachloropropene (1220xa) is introduced into the reactor, and then hydrogen fluoride is introduced into the reactor. May be.
  • a predetermined amount of a predetermined solvent is introduced as desired, a part or all of the solvent may be introduced into the reactor before introducing hydrogen fluoride into the reactor. They may be introduced into the reactor in separate streams simultaneously with the introduction or mixed together.
  • a predetermined amount of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride are introduced into the reactor in separate flows, and a liquid phase is obtained under predetermined conditions.
  • a procedure for performing the reaction is exemplified.
  • the solvent used as desired may be 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride separately, or 1,1,2,3,3-pentachloropropene (1220xa) solution.
  • the hydrogen fluoride solution may be introduced into the reactor.
  • a procedure for introducing a predetermined amount of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride into a reactor and performing a gas phase reaction under predetermined conditions Etc. are exemplified.
  • These reaction raw materials are introduced into the reaction system (reactor) separately or in the same flow, and inert gas (for example, nitrogen, helium, rare gas such as argon, or fluorocarbons inert to the reaction). Gas, etc.).
  • inert gas for example, nitrogen, helium, rare gas such as argon, or fluorocarbons inert to the reaction. Gas, etc.
  • additives such as chlorine, oxygen and air are introduced into the reaction system separately from the reaction raw material or in the same flow.
  • This additive may be introduced together with an inert gas.
  • These reaction raw materials and additives are preferably in a gaseous state when introduced into the reaction system, and if necessary, these reaction raw materials and additives are gasified with a vaporizer and added to the reaction system. Introduce. In the reaction system, the reaction can be performed under predetermined conditions to obtain a reaction product containing 1223xd.
  • a method for purifying 1,2-dichloro-3,3,3-trifluoropropene (1223xd) from the obtained reaction product is not particularly limited.
  • Known purification methods can be employed. As needed, you may perform the removal process of the chlorine component and acid component which may be contained in a reaction product. Further, the moisture may be removed by performing a dehydration treatment or the like, and may be performed in combination with a removal treatment of a chlorine component or an acid component.
  • reaction product is passed through a cooled condenser to be condensed, washed with water or / and alkaline solution to remove chlorine component, acid component, etc., dried with desiccant such as zeolite, activated carbon, etc., then ordinary distillation By operation, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) with high purity can be obtained.
  • the reaction product contains unreacted raw material 1,1,2,3,3-pentachloropropene (1220xa), or 1,2,3-trichloro-3,3-difluoropropene (1222xd) When present in the raw state, these compounds can be separated and recovered from the reaction product by a normal distillation operation. The separated 1,1,2,3,3-pentachloropropene (1220xa) can be reused as a raw material for the reaction according to the present invention. In addition, 1,2,3-trichloro-3,3-difluoropropene (1222xd) may be used for various applications as it is, or as a cis form (1222xd (Z)) and a trans form (1222xd (E)).
  • 1222xd is obtained as a cis isomer (1222xd (Z)), and in another embodiment, it is obtained as a trans isomer (1222xd (E)). It is obtained as a mixture of body and trans form.
  • 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be converted to 1,2-dichloro-3,3,3-trifluoropropene (1223xd) by further fluorination. You can also. Therefore, the separated 1,2,3-trichloro-3,3-difluoropropene (1222xd) is used as a reaction raw material in the reaction system in the same manner as 1,1,2,3,3-pentachloropropene (1220xa). Also good. As a result, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be efficiently produced.
  • the obtained 1,2-dichloro-3,3,3-trifluoropropene (1223xd) exists as a liquid at normal temperature and normal pressure.
  • 1223xd is obtained as a cis form (1223xd (Z)), is obtained as a trans form (1223xd (E)), or is obtained as a mixture of the cis form and the trans form.
  • the cis isomer and the trans isomer can be separated from each other by subjecting the mixture to a purification operation such as distillation.
  • 1,1,2,3,3-pentachloropropene (1220xa) dechlorinates 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase in the presence of a Lewis acid catalyst. It is preferable to produce by a method including at least a step of hydrogenation (hereinafter sometimes referred to as “third step”).
  • 1,1,1,2,3,3-hexachloropropane (230da) is a step of chlorinating 1,1,3,3-tetrachloropropene (1230za) with chlorine (hereinafter referred to as “second step”). It is preferable to manufacture by a method including at least.
  • 1,1,3,3-tetrachloropropene (1230za) is a process for dehydrochlorinating 1,1,1,3,3-pentachloropropane (240fa) (hereinafter referred to as “first process”). It is preferable to produce it by a method including at least.
  • the third step is preferably performed.
  • the second step produces 1,1,1,2,3,3-hexachloropropane (230da), which is a raw material of 1,1,2,3,3-pentachloropropene (1220xa).
  • the first step is a method for producing 1,1,3,3-tetrachloropropene (1230za) which is a raw material of 1,1,1,2,3,3-hexachloropropane (230da). It is provided and it is not impeded to adopt other methods.
  • 1,1,1,2,3,3-hexachloropropane (230da) can be advantageously produced by employing the second step and / or the first step.
  • the first step and / or the second step in a liquid phase and in the presence of a Lewis acid catalyst in order to advantageously obtain the precursor compound (1230za or 230da).
  • the same one can be applied to the Lewis acid catalyst in the three steps. In this case, it is not necessary to perform the separation operation of the catalyst from the reaction mixture and the additional operation of the catalyst between the first step and the second step, and between the second step and the third step.
  • the reactions of the first step, the second step and the third step are all carried out in a one-pot multistep reaction in the presence of the same Lewis acid catalyst from 1,1,1,3,3-pentachloropropane (240fa) to 1, It is also possible to synthesize 1,2,3,3-pentachloropropene (1220xa).
  • “moisture” is described as common to all the first to third steps.
  • water does not actively participate in the reaction. Therefore, in the present invention, there is no positive reason for adding water to the reaction system.
  • “moisture” is as low as possible (generally referred to as anhydrous conditions) in order to increase the activity of the Lewis acid.
  • the activity of the Lewis acid is sufficiently maintained as long as 1% by mass of water is present with respect to the total mass of the reaction solution. Therefore, it is desirable to keep the water content at 1% by mass or less with respect to the total mass of the reaction solution.
  • the water content is more preferably 0.1% by mass or less with respect to the total mass of the reaction solution.
  • the first step is a step of dehydrochlorinating 1,1,1,3,3-pentachloropropane (240fa) to obtain 1,1,3,3-tetrachloropropene (1230za). It is. 1,1,1,3,3-pentachloropropane (240fa) which is the starting material of the first step is 1,1,1,3,3-pentafluoropropane which is currently industrially produced as a blowing agent (245fa), which can be synthesized by reacting carbon tetrachloride and vinyl chloride in the presence of a catalyst (see, for example, US Pat. No. 7,094,936).
  • the reaction in the first step is carried out by the method described in Japanese Patent No. 4855550 (reaction in the gas phase in the absence of a catalyst) or the method described in US Pat. No. 7,094,936 (in the liquid phase in the presence of a Lewis acid catalyst). Any of the above reactions can be employed. However, in the method described in Japanese Patent No. 4855550, a high temperature of about 500 ° C. is required, so that the load on the reactor is generally large. On the other hand, since the dehydrochlorination reaction proceeds smoothly even at a temperature of about 70 ° C., the method described in US Pat. No. 7,094,936 is generally more preferable to the method described in US Pat. . Therefore, in the following description, the reaction in the first step in “a liquid phase in the presence of a Lewis acid catalyst”, which is a more preferable embodiment, will be described.
  • the reactor is not particularly limited, it is preferable to use a reactor having acid resistance because hydrogen chloride is generated.
  • a reactor made of glass or stainless steel, and a reactor lined with glass or resin is preferable.
  • the reactor preferably has a stirring facility and a reflux tower.
  • a blow tube into which chlorine can be introduced it is preferable to have a blow tube into which chlorine can be introduced.
  • the reaction proceeds sufficiently at a reaction temperature of 200 ° C. or lower as described later.
  • Lewis acid catalysts include metal halides.
  • the metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. Certain metal halides are preferred.
  • a chloride is preferable, and a chloride of at least one metal selected from the group consisting of aluminum, iron, tin, and antimony is particularly preferable.
  • Aluminum chloride and iron chloride are more preferred.
  • ferric chloride is preferred.
  • An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
  • Lewis acid catalyst (sometimes referred to as “first Lewis acid catalyst”) in the first step, it is convenient to use a metal halide directly as a Lewis acid catalyst.
  • nitrates, carbonates, and the like of these metals and zero-valent metal powders are preliminarily treated with hydrogen chloride to obtain active metal halides, which can be used as Lewis acid catalysts. Is possible. It is also possible to induce zero-valent metal powder, nitrates, and the like into highly active chlorides by hydrogen chloride generated by dehydrochlorination of 1,1,1,3,3-pentachloropropane (240fa).
  • the optimum amount of the Lewis acid catalyst (first Lewis acid catalyst) varies depending on the operating conditions such as the type of catalyst and reaction temperature, but is 0.01 to 10 mol%, more preferably 0, relative to the organic material of the raw material. 1 to 5 mol%. If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
  • the reaction temperature when the reaction in the first step is carried out “in the liquid phase in the presence of a Lewis acid catalyst” is usually 40 to 200 ° C., more preferably 45 to 120 ° C.
  • the optimum temperature depends somewhat on the type of Lewis acid catalyst, and in the case of aluminum chloride, 40 to 100 ° C. (typically 50 to 80 ° C.) is particularly preferable, and in the case of ferric chloride, it is slightly higher than this.
  • a high 70-110 ° C. typically 70-80 ° C.
  • the reaction rate slows down and productivity decreases, and above this range, the production of high-boiling by-products increases and 1,1,3,3-tetrachloropropene ( The selectivity of 1230za) may decrease.
  • a catalyst made of glass or glass lining is charged with catalyst and 240fa and heated with stirring, so that hydrogen chloride is generated. Therefore, by a reflux tower in which water (tap water, industrial water, etc.) is circulated, A method of discharging only hydrogen chloride can be mentioned.
  • the liquid phase inside the reactor is replaced with the target 1,1,3,3-tetrachloropropene (1230za) over time. Go. It is preferable to terminate the reaction when 1,1,1,3,3-pentachloropropane (240fa) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
  • the reaction in the first step is not prevented from being carried out in the gas phase and without a catalyst.
  • the reaction temperature is usually 350 to 550 ° C., and the load on the apparatus is generally large due to the high temperature.
  • 1,1,3,3-tetra It may be advantageous when producing chloropropene (1230za).
  • this method is a non-catalytic method, when the method is adopted as the first step, the steps from “first step to third step” are performed in the liquid phase, “one-pot using a common Lewis acid catalyst”. This is incompatible with “a particularly preferred production mode of 1,1,2,3,3-pentachloropropene (1220xa)”, which is “performed in a multistep reaction”.
  • the 1,1,3,3-tetrachloropropene (1230za) synthesized in the first step can be used as a raw material for the subsequent second step without performing post-treatment such as catalyst separation and distillation purification.
  • post-treatment such as catalyst separation and distillation purification.
  • separation of the catalyst and distillation purification are not hindered, one of the great advantages of the present invention is that each step can be carried out continuously without performing these treatments. It is a preferable aspect that no post-treatment is performed.
  • the above-mentioned Japanese Patent No. 4855550 discloses the following two methods: (A) reaction in the gas phase, without catalyst, (B) reaction without catalyst in the liquid phase, Both of them can be employed in the second step.
  • the present inventors have used another method as the method of the second step, that is, (C) In the liquid phase, a reaction in the presence of a Lewis acid catalyst was found, and when the method (c) was adopted, it was found that the reaction rate in the second step was increased even at a lower temperature.
  • the method (c) will be described in detail.
  • the reaction in the second step is performed by the method (c)
  • the reaction is performed in the presence of a Lewis acid catalyst (sometimes referred to as “second Lewis acid catalyst”) in the liquid state 1,1,3,3.
  • a Lewis acid catalyst sometimes referred to as “second Lewis acid catalyst”
  • the process proceeds by blowing chlorine gas (Cl 2 ) into 3-tetrachloropropene (1230za).
  • the raw material 1,1,3,3-tetrachloropropene (1230za) can be used as it is without purifying the one produced in the first step.
  • 1,3,3-tetrachloropropene (1230za) and separately purified 1,1,3,3-tetrachloropropene (1230za) are not hindered.
  • the material of the reactor is not particularly limited. Glass or stainless steel is preferred because it uses highly oxidizing chlorine gas. A reactor lined with glass or resin is also preferred. Furthermore, it is preferable that the reactor has a blowing tube, stirring equipment, and a reflux tower. A reaction kettle with the same specifications as in the first step can also be used.
  • examples of the Lewis acid catalyst include metal halides.
  • the metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
  • Certain metal halides are preferred. Among these, chloride is preferable, and at least one metal chloride selected from the group consisting of aluminum, iron, tin, and antimony is preferable. Aluminum chloride and iron chloride are particularly preferred, and in the case of iron chloride, ferric chloride is more preferred.
  • An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
  • a metal halide directly as a Lewis acid catalyst.
  • a salt or the like or zero-valent metal powder is previously treated with hydrogen chloride to be converted into an active metal halide, which can be used as a Lewis acid catalyst.
  • the optimum amount of the Lewis acid catalyst varies depending on the operating conditions such as the type of catalyst and reaction temperature, but 0.01 to 10 mol%, more preferably 0.1 to 5 mol% is recommended with respect to the organic material of the raw material. The If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
  • the first step was carried out in the presence of a Lewis acid catalyst (first Lewis acid catalyst) and the second step was carried out following the first step, it was used in the first step.
  • the Lewis acid catalyst (first Lewis acid catalyst) can be reused as the Lewis acid catalyst (second Lewis acid catalyst) in the second step without being separated and recovered from the system. In that case, it is not necessary to add a new Lewis acid catalyst in the second step. However, the addition of a Lewis acid catalyst in the second step is not prevented in order to increase the reaction rate.
  • the reaction temperature when the second step is carried out in the liquid phase in the presence of a Lewis acid catalyst is preferably ⁇ 20 to + 110 ° C., more preferably 0 to 60 ° C. If it is lower than this range, the reaction rate may be slow and productivity may be reduced. If it is higher than this range, by-product of “impurities” will increase and 1,1,1,2,3,3 -Selectivity of hexachloropropane (230da) may decrease. As described above, if the second step is performed at a very high temperature or for a long time, a by-product of high-impurity “impurities” can be seen significantly (the selectivity on the gas chromatograph is also high). Decline).
  • the second step be carried out at a temperature as low as possible within the range in which the target reaction proceeds at a sufficient rate. Accordingly, such temperatures can be optimized with the knowledge of one skilled in the art.
  • the reaction temperature should proceed sufficiently at a lower temperature than when the first step is carried out in the liquid phase in the presence of a Lewis acid catalyst.
  • the second step is preferably performed at a lower temperature than the first step.
  • the reaction temperature proceeds sufficiently at a lower temperature than when the third step described later is carried out in the presence of a Lewis acid catalyst in the liquid phase.
  • the second step is preferably performed at a temperature lower than that of the third step.
  • the reaction in the third step can originally proceed in parallel with the reaction in the second step.
  • the reaction in the third step is significant. When the temperature is low enough not to proceed, the generation of the “impurities” can be suppressed, and the process management is often easier.
  • a catalyst and 1,1,3,3-tetrachloropropene (1230za) are charged into a glass or glass lining reactor and stirred.
  • a reflux tower in which water (tap water, industrial water, etc.) is circulated, and only unreacted gas is discharged.
  • it is not hindered to introduce chlorine gas into the sealed reactor, but the reaction is exothermic, and the reaction takes place at a relatively high rate. Care must be taken to control the reaction as it progresses.
  • the reaction temperature is sufficiently low. It is convenient and preferable to carry out the reaction under normal pressure conditions.
  • radical initiator it is not particularly necessary, and when added, the separation of the radical initiator and the product may be complicated finally.
  • 1,1,3,3-tetrachloropropene (1230za) in the liquid phase inside the reactor is converted to 1,1,1,2,3,3-3- Hexachloropropane (230da) will be replaced. It is preferable to terminate the reaction when the raw material 1,1,3,3-tetrachloropropene (1230za) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
  • reaction in the gas phase and without catalyst or (b) reaction in the liquid phase and without catalyst is not hindered.
  • the reaction temperature is usually 1,1,3,3-tetrachloropropene (1230za) boiling point (about 149 ° C.) to 280 ° C., and in the case of (b), the reaction temperature is usually 50 to 120 ° C. can be employed.
  • reaction time is preferably adjusted (preferably about 1 to 40 seconds) by the conversion.
  • the load on the apparatus is generally increased, but since it is a flow reaction, 1,1,1,2,3,3-hexachloropropane (230da) is produced on a large scale. In some cases, it may be advantageous.
  • “first to third steps” are performed in a one-pot multi-step reaction using the same catalyst in the liquid phase. This is incompatible with the particularly preferred production mode of 3-pentachloropropene (1220xa).
  • the second step it is particularly preferable to employ the method (c) (reaction in the liquid phase and in the presence of the Lewis acid catalyst) as described above.
  • the 1,1,1,2,3,3-hexachloropropane (230da) synthesized in the second step is used as a raw material for the subsequent third step without performing post-treatment such as catalyst separation and distillation purification.
  • post-treatment such as catalyst separation and distillation purification.
  • separation of the catalyst and distillation purification are not hindered, one of the great advantages of the present invention is that each step can be carried out continuously without performing these treatments. It is a preferable aspect that no post-treatment is performed.
  • 1,1,1,2,3,3-hexachloropropane (230da) is referred to as a Lewis acid catalyst (“third Lewis acid catalyst”) in the liquid phase.
  • third Lewis acid catalyst in the presence of 1), 1,2,3,3-pentachloropropene (1220xa).
  • the third step proceeds by heating 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase in the presence of a Lewis acid catalyst.
  • a Lewis acid catalyst there is no restriction
  • a reactor lined with glass or resin is also preferred.
  • the reactor preferably has a stirring facility and a reflux tower.
  • the same reactor as in the second step can be used continuously, and the reactor having a blow-in tube into which chlorine can be introduced, which is preferably employed in the second step, can be used in the third step.
  • the reactor having a blow-in tube into which chlorine can be introduced which is preferably employed in the second step
  • a reactor different from the second step it is also an effective method to perform the third step after replacing the chlorine gas with an inert gas.
  • the metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
  • Certain metal halides are preferred. Among these, chloride is preferable, and at least one metal chloride selected from the group consisting of aluminum, iron, tin, and antimony is preferable. Aluminum chloride and iron chloride are particularly preferred, and in the case of iron chloride, ferric chloride is more preferred.
  • An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
  • a metal halide directly as a Lewis acid catalyst.
  • nitrates, carbonates, etc. of these metals and zero-valent metal powders may be used in advance.
  • an active metal halide By treating with hydrogen chloride, an active metal halide can be derived and used as a Lewis acid catalyst.
  • the optimum amount of the Lewis acid catalyst in the third step varies depending on the operating conditions such as the type of catalyst and reaction temperature, but is 0.01 to 10 mol%, more preferably 0.1 to 5 mol% relative to the organic material of the raw material. %. If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
  • the reaction temperature is usually preferably 50 to 200 ° C, more preferably 70 to 150 ° C. If it is lower than this range, the reaction rate becomes slow and the productivity decreases, and if it is higher than this range, by-product of high boiling point increases, and 1,1,2,3,3-pentachloropropene ( The selectivity of 1220xa) may be reduced.
  • the optimum temperature varies depending on the type of Lewis acid used. In the case of aluminum chloride, it is 70 to 110 ° C., and in the case of ferric chloride, it is 100 to 150, which is slightly higher than this. ° C.
  • a Lewis acid catalyst and a liquid of 1,1,1,2,3,3-hexachloropropane (230da) are charged into a glass or glass-lined reactor and heated with stirring at normal pressure.
  • a method is mentioned. Since hydrogen chloride is generated at the start of the reaction, hydrogen chloride can be discharged by a reflux tower through which tap water or the like is circulated.
  • the method of performing a reaction using a pressure-resistant reactor and discharging (purging) the generated hydrogen chloride gas in a timely manner is not impeded, but this step is performed at a temperature sufficiently lower than the boiling points of the raw materials and products. Therefore, the reaction at normal pressure is usually simpler and preferable because the reaction proceeds sufficiently.
  • 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase inside the reactor is converted into 1,1,2,3,3-pentachloropropene over time. It will be replaced with (1220xa). It is preferable to terminate the reaction when 1,1,1,2,3,3-hexachloropropane (230da) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
  • a particularly preferred embodiment (not only the third step) is to perform the reaction in the liquid phase and in the presence of a Lewis acid catalyst in both the first step and the second step.
  • the Lewis acid catalyst (the first Lewis acid catalyst and the second Lewis acid catalyst) is the Lewis acid catalyst used in the third step (third Lewis acid catalyst).
  • the catalyst is not separated from the reaction mixture between the first step and the second step and between the second step and the third step.
  • the Lewis acid catalyst (first Lewis acid catalyst) used in the step is reused over the second step and the third step.
  • the same Lewis acid catalyst is reused in the liquid phase through steps 3 to 3.
  • Such an embodiment is referred to herein as a “one-pot multi-step reaction”.
  • a “one-pot multi-step reaction” in which a plurality of processes are performed in the same reaction vessel without isolating the product has been proposed, but all of the multi-steps are catalytic reactions.
  • a one-pot multi-step reaction using the same catalyst is rare.
  • the same catalyst can be used specifically in all three steps.
  • aluminum chloride (AlCl 3 ) and ferric chloride (FeCl 3 ) which are inexpensive and readily available and exhibit excellent selectivity and reaction rate over three steps, are recommended as particularly excellent common catalysts.
  • As iron chloride two types of ferrous chloride (FeCl 2 ) and ferric chloride (FeCl 3 ) are known.
  • ferric chloride has higher catalytic activity. ,Are better.
  • ferric chloride is a particularly preferred common catalyst because it is easy to handle and has good reactivity.
  • the catalyst valency (which refers to the oxidation state of the active central element of the catalyst (for example, iron)) is reduced and the activity is reduced. It can happen.
  • the present inventor examined a one-pot multi-step reaction from the first step to the third step, no significant decrease in the catalytic activity was observed. The cause of this is not clear, but can be considered as one interpretation (estimation) as follows.
  • 1,1,1,3,3-pentachloropropane (240fa) and iron chloride are charged into a glass reaction kettle having a stirrer, a reflux tower, a stirrer, and a blowing tube while stirring.
  • the mixture is heated to 70 to 110 ° C. (typically 70 to 90 ° C.), and the generated hydrogen chloride is discharged via a reflux tower to carry out the first step.
  • the first step is continued until the conversion rate is, for example, 95% or more. Thereafter, the reaction mixture is cooled while stirring is continued.
  • the temperature of the reaction mixture is lowered to “0-60 ° C.” suitable for performing the second step
  • chlorine is blown and the second step is performed at a predetermined temperature of 0-60 ° C. (for example, 30-50 ° C.). carry out.
  • the second step is continued until the conversion rate becomes 95% or more, for example.
  • the supply of chlorine is stopped, the reaction temperature is raised to 110 to 130 ° C., the third step is performed, and the third step is continued until the conversion rate is, for example, 95% or more.
  • the reaction in the second step and the reaction in the third step are originally of a nature that can occur in parallel.
  • the second step and the third step can be allowed to proceed separately by setting the reaction temperature of the second step relatively low and setting the reaction temperature of the third step at least higher than this. It becomes possible.
  • the two reactions are carried out separately in this way, it is easier to suppress the generation of impurities, and the desired 1,1,2,3,3-pentachloropropene (1220xa) can be produced efficiently.
  • the present invention it is not impeded to use a plurality of Lewis acid catalysts in combination (added simultaneously and used as a catalyst) as a Lewis acid catalyst in each step.
  • the optimum temperature for the reaction is usually different for different Lewis acids. That is, when different Lewis acid catalysts are used in combination, the optimum temperature for each step becomes wide. As a result, it becomes difficult to obtain the temperature selectivity of the reaction in the second step and the third step, and the second step and the third step easily proceed at the same time. Therefore, in the present invention, it is particularly preferable to use one kind of Lewis acid catalyst consistently.
  • one pot in the present invention does not limit the number of reactors, and also refers to proceeding to the next step without separating the reaction product and the catalyst. That is, it is possible to carry out three steps in one kettle (reactor) by equipment of those skilled in the art. However, when a plurality of kettles are provided, the product and the catalyst are separated after the first step is completed. Move to another kettle and carry out the second step, and after the second step is completed, adopt a method in which the third step is carried out by moving to another kettle without separating the product and the catalyst. It is also possible. At this time, the reaction product and the catalyst are efficiently cooled and heated through the heat exchanger while the reaction product and the catalyst are transferred from the first step to the second step or from the second step to the third step. Is also possible.
  • the catalyst and the organic substance can be easily separated by distillation.
  • high purity 1,1,2,3,3-pentachloropropene (1220xa) can be isolated by precision distillation.
  • the obtained 1,1,2,3,3-pentachloropropene (1220xa) can be washed with water and dried. When washing with water and drying, it is preferably carried out before distillation.
  • FID% refers to the area% when the detector analyzed by FID gas chromatograph.
  • the extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath.
  • the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath.
  • reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel.
  • the amount of the collected organic matter was 42.7 g.
  • the composition of the recovered organic substance was analyzed by gas chromatography.
  • Z-1,2-dichloro-3,3,3-trifluoropropene (Z-1223xd) was found to be 88.6FID%
  • E-1,2-dichloro- 3,3,3-trifluoropropene (E-1223xd) was 0.7FID%
  • 1,1,2,3,3-pentachloropropene (1220xa) was not detected
  • 1,2,3-trichloro-3 , 3-difluoropropene (1222xd) was 9.8 FID% and the other 0.9 FID%.
  • the yield was 83.8%.
  • Z-1,2-dichloro-3,3,3-trifluoropropene (1223xd) was found to be 33.8 FID%, E-1,2-dichloro-3,3 , 3-trifluoropropene (E-1223xd) is not detected, and 1,1,2,3,3-pentachloropropene (1220xa) is 0.1FID%, 1,2,3-trichloro-3,3- Difluoropropene (1222xd) was 62.3 FID% and the others were 3.8 FID%. The yield was 29.4%.
  • Preparation Example 2 Preparation of fluorinated chromia catalyst A fluorinated chromia catalyst was prepared in the same manner as in Preparation Example 1, except that the reaction tube was filled with granular chromia instead of granular ⁇ -alumina.
  • Example 2-1 100 mL of the catalyst prepared in Preparation Example 1 was charged into a cylindrical stainless steel (SUS316L) reaction tube having a diameter of 2.5 cm and a length of 30 cm equipped with an electric furnace, and while flowing nitrogen gas at a flow rate of about 20 mL / min.
  • the temperature in the reaction tube was raised to 250 ° C.
  • vaporized hydrogen fluoride and 1,1,2,3,3-pentachloropropene (1220xa) were introduced at a flow rate (rate) shown in Table 1, and when the flow rate was stabilized, nitrogen gas was stopped. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected.
  • the composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
  • Example 2-2 to Example 2-4 Except for changing the conditions shown in Table 1 (reaction temperature, contact time, flow rate of reaction material, molar ratio of reaction material), the reaction was carried out in the same manner as in Example 2-1, and organic substances were recovered from the reaction product. did.
  • Table 2 shows the results of analyzing the composition of the collected organic matter by gas chromatography.
  • Example 2-5 100 mL of the catalyst prepared in Preparation Example 2 was filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas was allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After introducing hydrogen vapor and chlorine vaporized in advance at the flow rate (speed) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance and then introduced. Then, the nitrogen gas was stopped when the flow rate was stable.
  • SUS316L stainless steel
  • Example 2-6 100 mL of the catalyst prepared in Preparation Example 3 was charged into a 2.5 cm diameter and 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas was allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After introducing hydrogen vapor and chlorine vaporized in advance at the flow rate (speed) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance and then introduced. Then, the nitrogen gas was stopped when the flow rate was stable.
  • SUS316L stainless steel
  • Example 2-7 100 mL of SUS316L Raschig ring (5 ⁇ ⁇ 5 mm) is filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas is allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After vaporized hydrogen fluoride was introduced at a flow rate (rate) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance, and the flow rate was When stable, nitrogen gas was stopped.
  • SUS316L stainless steel
  • Example 2-8 100 mL of SUS316L Raschig ring (5 ⁇ ⁇ 5 mm) is filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas is allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. Then, after introducing pre-vaporized hydrogen fluoride at a flow rate (rate) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was pre-vaporized and then introduced, Nitrogen gas was stopped when the flow rate was stable.
  • SUS316L stainless steel
  • Table 1 shows a simple summary of the reaction conditions (reaction temperature, contact time, flow rate of reaction material, molar ratio of reaction material) of Examples 2-1 to 2-8.
  • Table 2 shows the results of gas chromatography analysis of the composition of the 1220xa raw material used in Examples 2-1 to 2-8 and the recovered organic matter.
  • the 1220xa raw material in Examples 2-1 to 2-8 was prepared in the same manner as in Examples 6-a to 6-c described later, and 1220xa purified by distillation.
  • Example 3-1 First step (dehydrochlorination of 1,1,1,3,3-pentachloropropane (240fa))
  • 240fa 1,1,1,3,3-pentachloropropane
  • a 100 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stirrer was charged with 100.02 g (0. 23 mol) and 0.93 g (0.006 mol) of ferric chloride were charged and stirring was started.
  • an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution.
  • Example 3 First step The reaction in the first step was carried out in the same manner as in Example 3-1, except that the catalyst, the catalyst amount, the reaction temperature, and the reaction time were changed. The results are summarized in Table 3.
  • Example 4-1 Second Step (Liquid Phase, Chlorination of 1,1,3,3-Tetrachloropropene (1230za) in the Presence of Lewis Acid Catalyst)
  • a 100 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stir bar 41.72 g (0.23 mol) of 1,1,3,3-tetrachloropropene (1230za) with a purity of 98.2 FID% ), 0.9 g (0.006 mol) of ferric chloride was charged and stirring was started.
  • Example 4-2 to 4-4 Second step The reaction was performed in the same procedure as in Example 4-1, except that the reaction temperature and other conditions were changed. The results are shown in Table 4.
  • Example 5-1 Third step (dehydrochlorination of 1,1,1,2,3,3-hexachloropropane (230da))
  • a 100 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stir bar 58.62 g of 1,1,1,2,3,3-hexachloropropane (230da) having a purity of 96.2 FID% ( 0.23 mol) and ferric chloride 0.9 g (0.006 mol) were charged and stirring was started.
  • a PFA tube is used to connect an empty trap of a 500 mL-PFA container, and then to a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution.
  • By-product hydrogen chloride gas is captured here. did. While introducing nitrogen from the ball filter at a flow rate of 5 mL / min, the flask was heated to 130 ° C. in an oil bath.
  • Example 5-2 Third step Table 5 shows the results of the reaction performed in the same procedure as in Example 5-1, except that the catalyst and the reaction temperature were changed.
  • Example 6-a One-pot three-step reaction (first step) A 200 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stirrer was charged with 100.01 g (0. 45 mol) and 0.91 g (0.006 mol) of ferric chloride were charged and stirring was started. At the top of the Dimroth, a PFA tube was used to connect an empty trap, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. While introducing nitrogen at a flow rate of 5 mL / min from the ball filter, the flask was heated to 80 ° C.
  • 1,1,1,3,3-pentachloropropane (240fa) was 2.8 FID% and 1,1,3,3-tetrachloropropene (1230za) was 92. It was 7FID%.
  • the desired 1,1,3,3-tetrachloropropene (1230za) was produced at a reaction conversion rate of 96.9% and a selectivity of 95.7%.
  • Example 6-b One-pot three-step reaction (second step) After completion of Example 6-a, the internal temperature of the three-necked flask was cooled to 30 ° C., and then the reaction mixture was heated to 45 ° C. by an oil bath. (At the beginning of the second step, neither the purification of the reaction mixture of the first step nor the replenishment of the Lewis acid catalyst was performed). From the ball filter, 32.52 g (0.46 mol) of chlorine was introduced at a flow rate of about 0.2 g / min over 170 minutes.
  • 1,1,3,3-tetrachloropropene (1230za) was found to be 0.2 FID%, 1,1,1,2,3,3-hexachloropropane (230 da). ) was 93.6FID%. It was found that the desired 1,1,1,2,3,3-hexachloropropane (230da) was produced at a conversion rate of 99.7% and a selectivity of 93.8%.
  • Example 6-c One-pot three-step reaction (third step) After completion of Example 6-b, nitrogen was introduced at a flow rate of 5 mL / min from a ball filter without any purification or catalyst replenishment, and the temperature was adjusted to 120 ° C. with an oil bath. When the reaction was conducted at the same temperature for 2 hours, gas chromatography analysis showed that 1,1,1,2,3,3-hexachloropropane (230da) was 1.8 FID%, 1,1,2,3,3-pentachloro. Propen (1220xa) was 93.7FID%. It was found that the desired 1,1,2,3,3-pentachloropropene (1220xa) was produced at a reaction conversion rate of 98.1% and a selectivity of 95.6%.
  • the flask was cooled with water, 38.9 g of concentrated hydrochloric acid was added to dissolve the solid matter in the flask, and two layers were separated to recover the lower organic layer.
  • the organic matter was washed with 53 g of clean water and then with 50 g of a saturated aqueous sodium hydrogen carbonate solution to recover 91.18 g of the organic matter.
  • the purity of 1,1,2,3,3-pentachloropropene (1220xa) was 93.9FID%, and the yield in terms of purity was 88%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd) according to the present invention is characterized by comprising the step of reacting 1,1,2,3,3-pentachloropropene (1220xa) with a fluorinating agent, wherein hydrogen fluoride is used as the fluorinating agent.

Description

1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法Process for producing 1,2-dichloro-3,3,3-trifluoropropene
 本発明は、1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法に関する。また、本発明は、1,2-ジクロロ-3,3,3-トリフルオロプロペンと1,2,3-トリクロロ-3,3-ジフルオロプロペンを併産する方法に関する。また、本発明は、1,2,3-トリクロロ-3,3-ジフルオロプロペンを製造する方法に関する。 The present invention relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene. The present invention also relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene and 1,2,3-trichloro-3,3-difluoropropene together. The present invention also relates to a method for producing 1,2,3-trichloro-3,3-difluoropropene.
 1,2-ジクロロ-3,3,3-トリフルオロプロペン(以下、1223xdと呼ぶことがある)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(225cb)よりも地球温暖化係数(GWP)が小さく、これらの代替化合物として、洗浄剤などの種々の用途に用いられることが期待される。 1,2-dichloro-3,3,3-trifluoropropene (hereinafter sometimes referred to as 1223xd) is 3,3-dichloro-1,1,1,2,2-pentafluoropropane (225ca) and Its global warming potential (GWP) is smaller than 1,3-dichloro-1,1,2,2,3-pentafluoropropane (225cb), and is used as a substitute for these in various applications such as cleaning agents. It is expected.
 1223xdの製造方法としては種々の方法が知られている。
 例えば、特許文献1には、含塩素化合物を原料として用い、気相フッ素化反応と脱ハロゲン化反応によって、一般式:CF3CH=CHZ(ZはCl又はFである。)で表される含フッ素プロペンの製造方法が開示されている。特に、実施例4には、1,1,1,3,3-ペンタクロロプロパン(HFC-240fa)の気相フッ素化反応と脱ハロゲン化反応の副生成物として、1,2-ジクロロ-3,3,3-トリフルオロプロペンが生成することが記載されている。また、特許文献2では、一般式:CF3CH=CHX(XはF、Cl又はBrである。)で表される1-ハロゲノ-3,3,3-トリフルオロプロペンを気相中において触媒存在下で塩素と反応させて1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法が開示されている。
 液相下での反応として、非特許文献1では、1,2,3,3,3-ペンタクロロプロペン(1220xd)を三フッ化アンチモンと反応させる方法が開示されている。また、非特許文献2では、五塩化アンチモンを触媒として用い、1,1,2,3,3-ペンタクロロプロペン(以下、1220xaと呼ぶことがある)を三フッ化アンチモンと液相中で反応させる方法が開示されている。非特許文献3では、液体の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに固体状態の水酸化カリウムを加えて、加熱しながら還流操作を行うことで製造する方法が開示されている。
Various methods for producing 1223xd are known.
For example, Patent Document 1 uses a chlorine-containing compound as a raw material, and is represented by a general formula: CF 3 CH═CHZ (Z is Cl or F) by gas phase fluorination reaction and dehalogenation reaction. A method for producing a fluorinated propene is disclosed. In particular, Example 4 includes 1,2-dichloro-3,1 as a byproduct of the gas phase fluorination reaction and dehalogenation reaction of 1,1,1,3,3-pentachloropropane (HFC-240fa). It is described that 3,3-trifluoropropene is formed. In Patent Document 2, 1-halogeno-3,3,3-trifluoropropene represented by the general formula: CF 3 CH═CHX (X is F, Cl, or Br) is catalyzed in the gas phase. A method for producing 1,2-dichloro-3,3,3-trifluoropropene by reacting with chlorine in the presence is disclosed.
As a reaction under a liquid phase, Non-Patent Document 1 discloses a method of reacting 1,2,3,3,3-pentachloropropene (1220xd) with antimony trifluoride. In Non-Patent Document 2, antimony pentachloride is used as a catalyst, and 1,1,2,3,3-pentachloropropene (hereinafter sometimes referred to as 1220xa) is reacted with antimony trifluoride in a liquid phase. Is disclosed. Non-Patent Document 3 discloses a method of manufacturing by adding solid potassium hydroxide to liquid 1,2,2-trichloro-3,3,3-trifluoropropane and performing a reflux operation while heating. Has been.
特開2012-20992号公報JP 2012-20992 A 特開2014-210765号公報JP 2014-210765 A
 本発明は、効率的な1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)の製造方法を提供することを課題とする。また、本発明は、効率的な1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)の併産方法を提供することを課題とする。また、本発明は、効率的な1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)の製造方法を提供することを課題とする。 An object of the present invention is to provide an efficient method for producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd). The present invention also provides an efficient co-production method of 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd). The issue is to provide. Another object of the present invention is to provide an efficient method for producing 1,2,3-trichloro-3,3-difluoropropene (1222xd).
 非特許文献1および2に記載の製造方法は、三フッ化アンチモンをフッ素化剤として用いており、この方法では、後処理により有機物や金属を含有する排水等が大量に発生、排出される。そのため、別途、含有機金属排水等の処理が必要となる。また、非特許文献3に記載されている、液体状態の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに粉末状の水酸化カリウムを分散させて反応を行う方法では、反応系が不均一反応となり、収率が中程度である(48%)。そのため、工業的な製造方法という観点からすると、より効率的な製法であることが好ましい。 The production methods described in Non-Patent Documents 1 and 2 use antimony trifluoride as a fluorinating agent, and in this method, a large amount of waste water containing organic substances and metals is generated and discharged by post-treatment. For this reason, it is necessary to separately treat the metal drainage of the content machine. In the method described in Non-Patent Document 3, the reaction is carried out by dispersing powdered potassium hydroxide in 1,2,2-trichloro-3,3,3-trifluoropropane in a liquid state. The system becomes a heterogeneous reaction and the yield is moderate (48%). Therefore, from the viewpoint of an industrial production method, a more efficient production method is preferable.
 そこで、本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、フッ素化剤としてフッ化水素を用いて、1,1,2,3,3-ペンタクロロプロペン(1220xa)をフッ素化させることにより、効率的に1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を製造できることを見いだし、本発明を完成させるに至った。このフッ素化は好ましくは液相中あるいは気相中で行なわれる。 Therefore, the present inventors have intensively studied to solve the above problems. As a result, 1,2-2,3,3-pentachloropropene (1220xa) is fluorinated using hydrogen fluoride as a fluorinating agent, thereby efficiently 1,2-dichloro-3,3, It has been found that 3-trifluoropropene (1223xd) can be produced, and the present invention has been completed. This fluorination is preferably carried out in the liquid phase or in the gas phase.
 また、本発明者らは、フッ素化剤としてフッ化水素を用いて、1,1,2,3,3-ペンタクロロプロペン(1220xa)をフッ素化させることにより、効率的に1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を併産できることを見いだし、本発明を完成させるに至った。このフッ素化は好ましくは液相中あるいは気相中で行なわれる。 In addition, the present inventors efficiently fluorinate 1,1,2,3,3-pentachloropropene (1220xa) using hydrogen fluoride as a fluorinating agent, thereby efficiently producing 1,2-dichloro It was found that −3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be produced together, and the present invention was completed. This fluorination is preferably carried out in the liquid phase or in the gas phase.
 また、本発明者らは、フッ素化剤としてフッ化水素を用いて、1,1,2,3,3-ペンタクロロプロペン(1220xa)をフッ素化させることにより、効率的に1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を製造できることを見いだし、本発明を完成させるに至った。このフッ素化は好ましくは液相中あるいは気相中で行なわれる。 In addition, the present inventors have efficiently 1,2,3 by fluorinating 1,1,2,3,3-pentachloropropene (1220xa) using hydrogen fluoride as a fluorinating agent. It has been found that trichloro-3,3-difluoropropene (1222xd) can be produced, and the present invention has been completed. This fluorination is preferably carried out in the liquid phase or in the gas phase.
 すなわち、本発明は以下の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 フッ素化剤との反応により1,1,2,3,3-ペンタクロロプロペン(1220xa)をフッ素化して1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を製造する方法であって、前記フッ素化剤としてフッ化水素を用いることを特徴とする、方法。
[Invention 1]
A method of producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd) by fluorinating 1,1,2,3,3-pentachloropropene (1220xa) by reaction with a fluorinating agent. A method characterized in that hydrogen fluoride is used as the fluorinating agent.
 [発明2]
 前記反応を液相で行うことを特徴とする、発明1に記載の方法。
[Invention 2]
The method according to invention 1, wherein the reaction is carried out in a liquid phase.
 [発明3]
 前記反応を気相で行うことを特徴とする、発明1に記載の方法。
[Invention 3]
The method according to claim 1, wherein the reaction is performed in a gas phase.
 [発明4]
 前記フッ化水素の使用量が、1,1,2,3,3-ペンタクロロプロペン(1220xa)1モルに対して3~40モルであることを特徴とする、発明1~3のいずれかに記載の方法。
[Invention 4]
Any one of Inventions 1 to 3, wherein the amount of hydrogen fluoride used is 3 to 40 moles per mole of 1,1,2,3,3-pentachloropropene (1220xa) The method described.
 [発明5]
 前記反応を100~200℃で行うことを特徴とする、発明1、2または4のいずれかに記載の方法。
[Invention 5]
The method according to any one of Inventions 1, 2, or 4, wherein the reaction is performed at 100 to 200 ° C.
 [発明6]
 前記反応を140~180℃で行うことを特徴とする、発明1、2、4または5のいずれかに記載の方法。
[Invention 6]
6. The method according to any one of Inventions 1, 2, 4 and 5, wherein the reaction is carried out at 140 to 180 ° C.
 [発明7]
 前記反応を160~600℃で行うことを特徴とする、発明1、3または4のいずれかに記載の方法。
[Invention 7]
The method according to any one of Inventions 1, 3, and 4, wherein the reaction is performed at 160 to 600 ° C.
 [発明8]
 前記反応を触媒の非存在下で行うことを特徴とする、発明1~7のいずれかに記載の方法。
[Invention 8]
The method according to any one of inventions 1 to 7, wherein the reaction is carried out in the absence of a catalyst.
 [発明9]
 前記反応を触媒の存在下で行うことを特徴とする、発明1~7のいずれかに記載の方法。
[Invention 9]
The method according to any one of inventions 1 to 7, wherein the reaction is carried out in the presence of a catalyst.
 [発明10]
 触媒として、金属の酸化物、金属のフッ素化物、あるいは、金属化合物を担持した担持触媒、を用いて前記反応を行うことを特徴とする、発明1、3、4、7または9のいずれかに記載の方法。
[Invention 10]
According to any one of inventions 1, 3, 4, 7 and 9, wherein the reaction is carried out using a metal oxide, a metal fluoride, or a supported catalyst supporting a metal compound as a catalyst. The method described.
 [発明11]
 前記触媒にフッ素化処理を施したものを反応に供することを特徴とする、発明10に記載の方法。
[Invention 11]
11. The method according to claim 10, wherein the catalyst is subjected to a fluorination treatment.
 [発明12]
 前記反応を、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、発明1~11のいずれかに記載の方法。
[Invention 12]
The method according to any one of inventions 1 to 11, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
 [発明13]
 前記反応を溶媒の非存在下で行うことを特徴とする、発明1~12のいずれかに記載の方法。
[Invention 13]
The method according to any one of inventions 1 to 12, wherein the reaction is carried out in the absence of a solvent.
 [発明14]
 前記反応により、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)とともに1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)が生成されることを特徴とする、発明1~13のいずれかに記載の方法。
[Invention 14]
The reaction produces 1,2,3-dichloro-3,3-difluoropropene (1222xd) together with 1,2-dichloro-3,3,3-trifluoropropene (1223xd), The method according to any one of inventions 1 to 13.
 [発明15]
 1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を精製する工程、を含むことを特徴とする、発明1~14のいずれかに記載の方法。
[Invention 15]
The method according to any one of inventions 1 to 14, further comprising a step of purifying 1,2-dichloro-3,3,3-trifluoropropene (1223xd).
 [発明16]
 1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を分離して、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を製造するための原料として前記反応に供することを特徴とする、発明1~15のいずれかに記載の方法。
[Invention 16]
1,2,3-Trichloro-3,3-difluoropropene (1222xd) was separated and used as a raw material for producing 1,2-dichloro-3,3,3-trifluoropropene (1223xd) in the above reaction. The method according to any one of inventions 1 to 15, wherein the method is provided.
 [発明17]
 1,1,1,2,3,3-ヘキサクロロプロパン(230da)を、液相において、ルイス酸触媒の存在下、脱塩化水素化して前記1,1,2,3,3-ペンタクロロプロペン(1220xa)を得る脱塩化水素化工程、をさらに含むことを特徴とする、発明1~16のいずれかに記載の方法。
[Invention 17]
1,1,1,2,3,3-hexachloropropane (230da) is dehydrochlorinated in the presence of a Lewis acid catalyst in the liquid phase to obtain the 1,1,2,3,3-pentachloropropene ( The method according to any of inventions 1 to 16, further comprising a dehydrochlorination step to obtain 1220xa).
 [発明18]
 1,1,1,2,3,3-ヘキサクロロプロパン(230da)の脱塩化水素化工程に用いられるルイス酸触媒が、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物を含むことを特徴とする、発明17に記載の方法。
[Invention 18]
Lewis acid catalysts used in the dehydrochlorination step of 1,1,1,2,3,3-hexachloropropane (230da) are aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium A process according to invention 17, characterized in that it comprises a halide of at least one metal selected from the group consisting of molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
 [発明19]
 前記脱塩化水素化を50~200℃で行うことを特徴とする、発明16または発明17に記載の方法。
[Invention 19]
The method according to Invention 16 or Invention 17, wherein the dehydrochlorination is carried out at 50 to 200 ° C.
 [発明20]
 1,1,3,3-テトラクロロプロペン(1230za)を、液相において、ルイス酸触媒の存在下、塩素によって塩素化して前記1,1,1,2,3,3-ヘキサクロロプロパン(230da)を得る塩素化工程、をさらに含むことを特徴とする、発明17~19のいずれかに記載の方法。
[Invention 20]
1,1,3,3-tetrachloropropene (1230za) is chlorinated with chlorine in the presence of a Lewis acid catalyst in the liquid phase to give the 1,1,1,2,3,3-hexachloropropane (230da). The method according to any one of inventions 17 to 19, further comprising a chlorination step to obtain
 [発明21]
 1,1,3,3-テトラクロロプロペン(1230za)の塩素化工程に用いられるルイス酸触媒が、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物を含むことを特徴とする、発明20に記載の方法。
[Invention 21]
Lewis acid catalyst used in the chlorination step of 1,1,3,3-tetrachloropropene (1230za) is aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, The method according to invention 20, characterized in that it comprises a halide of at least one metal selected from the group consisting of rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
 [発明22]
 1,1,1,3,3-ペンタクロロプロパン(240fa)を、液相において、ルイス酸触媒の存在下、脱塩化水素化して前記1,1,3,3-テトラクロロプロペン(1230za)を得る脱塩化水素化工程、をさらに含むことを特徴とする、発明20または21に記載の方法。
[Invention 22]
1,1,1,3,3-pentachloropropane (240fa) is dehydrochlorinated in the presence of a Lewis acid catalyst in the liquid phase to obtain the 1,1,3,3-tetrachloropropene (1230za). The method according to invention 20 or 21, further comprising a dehydrochlorination step.
 [発明23]
 1,1,1,3,3-ペンタクロロプロパン(240fa)の脱塩化水素化工程に用いられるルイス酸触媒が、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物を含むことを特徴とする、発明22に記載の方法。
[Invention 23]
Lewis acid catalyst used in the dehydrochlorination step of 1,1,1,3,3-pentachloropropane (240fa) is aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum A method according to invention 22, characterized in that it comprises a halide of at least one metal selected from the group consisting of: ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
 [発明24]
 1,1,1,3,3-ペンタクロロプロパン(240fa)の脱塩化水素化工程を「第1工程」、1,1,3,3-テトラクロロプロペン(1230za)の塩素化工程を「第2工程」、1,1,1,2,3,3-ヘキサクロロプロパン(230da)の脱塩化水素化工程を「第3工程」として、この順で実施するときに、前記第1工程で用いたルイス酸触媒が、前記第2工程および前記第3工程に渡って、第2工程および第3工程のルイス酸触媒として再利用されることを特徴とする、発明22または23に記載の方法。
[Invention 24]
The dehydrochlorination step of 1,1,1,3,3-pentachloropropane (240fa) is referred to as “first step”, and the chlorination step of 1,1,3,3-tetrachloropropene (1230za) is referred to as “second step”. Step 1, the dehydrochlorination step of 1,1,1,2,3,3-hexachloropropane (230da) is referred to as “third step”. 24. The method according to claim 22 or 23, wherein the acid catalyst is reused as the Lewis acid catalyst in the second step and the third step over the second step and the third step.
 [発明25]
 前記第1工程のルイス酸触媒が、塩化アルミニウムまたは塩化第二鉄を含むことを特徴とする、発明24に記載の方法。
[Invention 25]
25. The method according to invention 24, wherein the Lewis acid catalyst of the first step comprises aluminum chloride or ferric chloride.
 [発明26]
 前記第1工程の反応が40~200℃で行われ、前記第2工程の反応が-20~+110℃で行われ、前記第3工程の反応が50~200℃で行われることを特徴とする、発明24または25に記載の方法。
[Invention 26]
The reaction of the first step is performed at 40 to 200 ° C., the reaction of the second step is performed at −20 to + 110 ° C., and the reaction of the third step is performed at 50 to 200 ° C. The method according to claim 24 or 25.
 [発明27]
 前記第3工程の反応温度が、少なくとも前記第2工程の反応温度よりも高いことを特徴とする、発明26に記載の方法。
[Invention 27]
27. The method according to claim 26, wherein the reaction temperature of the third step is higher than at least the reaction temperature of the second step.
 [発明28]
 1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素とを反応させて1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)とを併産する方法。
[Invention 28]
1,1,2,3,3-pentachloropropene (1220xa) is reacted with hydrogen fluoride to give 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3- A method of co-production with trichloro-3,3-difluoropropene (1222xd).
 [発明29]
 前記反応を液相で行うことを特徴とする、発明28に記載の方法。
[Invention 29]
The process according to invention 28, characterized in that the reaction is carried out in the liquid phase.
 [発明30]
 前記反応を気相で行うことを特徴とする、発明28に記載の方法。
[Invention 30]
The method according to invention 28, wherein the reaction is carried out in the gas phase.
 [発明31]
 前記反応を触媒の存在下で行うことを特徴とする、発明28~30のいずれかに記載の方法。
[Invention 31]
The process according to any one of inventions 28 to 30, wherein the reaction is carried out in the presence of a catalyst.
 [発明32]
 前記反応を触媒の非存在下で行うことを特徴とする、発明28~30のいずれかに記載の方法。
[Invention 32]
The process according to any one of inventions 28 to 30, wherein the reaction is carried out in the absence of a catalyst.
 [発明33]
 1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)とを分離する工程、を含むことを特徴とする、発明28~32のいずれかに記載の方法。
[Invention 33]
Separating 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd), The method according to any one of Inventions 28 to 32.
 [発明34]
 前記反応を塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、発明28~33のいずれかに記載の方法。
[Invention 34]
The method according to any one of inventions 28 to 33, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
 [発明35]
 1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素とを反応させて1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を製造する方法。
[Invention 35]
A method for producing 1,2,3-trichloro-3,3-difluoropropene (1222xd) by reacting 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride.
 [発明36]
 前記反応を液相で行うことを特徴とする、発明35に記載の方法。
[Invention 36]
The method according to invention 35, wherein the reaction is carried out in a liquid phase.
 [発明37]
 前記反応を気相で行うことを特徴とする、発明35に記載の方法。
[Invention 37]
36. The method according to invention 35, wherein the reaction is carried out in the gas phase.
 [発明38]
 前記反応を100~140℃で行うことを特徴とする、発明36に記載の方法。
[Invention 38]
The method according to invention 36, wherein the reaction is carried out at 100 to 140 ° C.
 [発明39]
 前記反応を触媒の存在下で行うことを特徴とする、発明35~38のいずれかに記載の方法。
[Invention 39]
The method according to any one of inventions 35 to 38, wherein the reaction is carried out in the presence of a catalyst.
 [発明40]
 前記反応を触媒の非存在下で行うことを特徴とする、発明35~38のいずれかに記載の方法。
[Invention 40]
The method according to any one of inventions 35 to 38, wherein the reaction is carried out in the absence of a catalyst.
 [発明41]
 前記反応を塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、発明35~40のいずれかに記載の方法。
[Invention 41]
41. The method according to any one of inventions 35 to 40, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
 本発明の好ましい態様において、1,1,2,3,3-ペンタクロロプロペン(1220xa)のフッ素化反応は、フッ素化剤としてフッ化水素を用い、液相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、100~200℃で行われることが好ましく、140~180℃で行われることが特に好ましい。また、前記反応は、溶媒の非存在下で行われることが好ましい。前記反応により、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)が製造され、この1223xdはZ体(1223zd(Z))、E体(1223zd(E))、あるいはその両方として製造され、好ましくはZ体として製造される。 In a preferred embodiment of the present invention, the fluorination reaction of 1,1,2,3,3-pentachloropropene (1220xa) is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent. Is called. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably performed at 100 to 200 ° C., particularly preferably 140 to 180 ° C. The reaction is preferably performed in the absence of a solvent. By the above reaction, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) is produced, and this 1223xd is Z form (1223zd (Z)), E form (1223zd (E)), or both. And is preferably manufactured as a Z-form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~600℃で行われることが好ましく、180~500℃がより好ましく、200~400℃が特に好ましく、210~350℃がさらに好ましい。また、前記触媒として、金属を含む触媒が用いられることが好ましく、金属の酸化物、金属のフッ素化物、あるいは、金属化合物を担持した担持触媒が用いられることがより好ましく、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属を含む触媒が用いられることがより好ましく、これらの金属が部分フッ素化または全フッ素化されたものを含む触媒がさらに好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。また、前記反応により、1223xdが製造され、この1223xdはZ体、E体、あるいはその両方として製造され、好ましくはZ体として製造される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably performed at 160 to 600 ° C, more preferably 180 to 500 ° C, particularly preferably 200 to 400 ° C, and further preferably 210 to 350 ° C. In addition, a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used. Aluminum, chromium, titanium, More preferably, a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. Moreover, 1223xd is manufactured by the said reaction, and this 1223xd is manufactured as Z body, E body, or both, Preferably it manufactures as Z body.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~600℃で行われることが好ましく、180~500℃がより好ましく、200~400℃が特に好ましく、210~350℃がさらに好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。また、前記反応により、1223xdが製造され、この1223xdはZ体、E体、あるいはその両方として製造され、好ましくはZ体として製造される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably performed at 160 to 600 ° C, more preferably 180 to 500 ° C, particularly preferably 200 to 400 ° C, and further preferably 210 to 350 ° C. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. Moreover, 1223xd is manufactured by the said reaction, and this 1223xd is manufactured as Z body, E body, or both, Preferably it manufactures as Z body.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、液相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、100~200℃で行われることが好ましい。また、前記反応は、溶媒の非存在下で行われることが好ましい。前記反応により、1223xdと1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)が併産され、この1223xdはZ体、E体、あるいはその両方として、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、併産され、好ましくは1223xdがZ体として併産される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as a fluorinating agent. In the above reaction, it is preferable that the amount of hydrogen fluoride used is 3 to 40 mol with respect to 1220 xa 1 mol. The reaction is preferably performed at 100 to 200 ° C. The reaction is preferably performed in the absence of a solvent. By the above reaction, 1223xd and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced. This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~300℃で行われることが好ましく、180~280℃がより好ましく、180~270℃が特に好ましく、180~260℃がさらに好ましい。また、前記触媒として、金属を含む触媒が用いられることが好ましく、金属の酸化物、金属のフッ素化物、あるいは、金属化合物を担持した担持触媒が用いられることがより好ましく、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属を含む触媒が用いられることがより好ましく、これらの金属が部分フッ素化または全フッ素化されたものを含む触媒がさらに好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。前記反応により、1223xdと1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)が併産され、この1223xdはZ体、E体、あるいはその両方として、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、併産され、好ましくは1223xdがZ体として併産される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably carried out at 160 to 300 ° C, more preferably 180 to 280 ° C, particularly preferably 180 to 270 ° C, and further preferably 180 to 260 ° C. In addition, a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used. Aluminum, chromium, titanium, More preferably, a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. By the above reaction, 1223xd and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced. This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~300℃で行われることが好ましく、180~280℃がより好ましく、180~270℃が特に好ましく、180~260℃がさらに好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。前記反応により、1223xdと1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)が併産され、この1223xdはZ体、E体、あるいはその両方として、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、併産され、好ましくは1223xdがZ体として併産される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably carried out at 160 to 300 ° C, more preferably 180 to 280 ° C, particularly preferably 180 to 270 ° C, and further preferably 180 to 260 ° C. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. By the above reaction, 1223xd and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced. This 1223xd is Z-form, E-form, or both, and 1222xd is Z-form (1222xd ( Z)), E-form (1222xd (E)), or both, and preferably 1223xd is co-produced as Z-form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、液相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、100~200℃で行われることが好ましく、100~140℃が特に好ましい。また、前記反応は、溶媒の非存在下で行われることが好ましい。前記反応により、1222xdが製造され、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、好ましくはZ体として製造される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the liquid phase in the absence of a catalyst using hydrogen fluoride as a fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably performed at 100 to 200 ° C, particularly preferably 100 to 140 ° C. The reaction is preferably performed in the absence of a solvent. The reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~280℃で行われることが好ましく、180~270℃が特に好ましく、180~260℃がさらに好ましい。また、前記触媒として、金属を含む触媒が用いられることが好ましく、金属の酸化物、金属のフッ素化物、あるいは、金属化合物を担持した担持触媒が用いられることがより好ましく、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属を含む触媒が用いられることがより好ましく、これらの金属が部分フッ素化または全フッ素化されたものを含む触媒がさらに好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。前記反応により、1222xdが製造され、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、好ましくはZ体として製造される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the presence of a catalyst using hydrogen fluoride as a fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably carried out at 160 to 280 ° C., particularly preferably 180 to 270 ° C., and further preferably 180 to 260 ° C. In addition, a catalyst containing a metal is preferably used as the catalyst, and a supported catalyst supporting a metal oxide, a metal fluoride, or a metal compound is more preferably used. Aluminum, chromium, titanium, More preferably, a catalyst containing at least one metal selected from the group consisting of manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony is used. More preferred is a catalyst comprising a partially fluorinated or fully fluorinated metal. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. The reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
 また、本発明の他の好ましい態様において、1220xaのフッ素化反応は、フッ素化剤としてフッ化水素を用い、気相中、触媒の非存在下で行われる。前記反応において、フッ化水素の使用量が、1220xa 1モルに対して3~40モルであることが好ましい。また、前記反応は、160~280℃で行われることが好ましく、180~270℃が特に好ましく、180~260℃がさらに好ましい。また、前記反応において、接触時間は1~100秒が好ましく、10~50秒が特に好ましい。また、前記反応は、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下あるいは非存在下で行われ、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行われることが好ましい。前記反応により、1222xdが製造され、この1222xdはZ体(1222xd(Z))、E体(1222xd(E))、あるいはその両方として、好ましくはZ体として製造される。 In another preferred embodiment of the present invention, the fluorination reaction of 1220xa is performed in the gas phase in the absence of a catalyst using hydrogen fluoride as the fluorinating agent. In the above reaction, the amount of hydrogen fluoride used is preferably 3 to 40 moles per mole of 1220 xa. The reaction is preferably carried out at 160 to 280 ° C., particularly preferably 180 to 270 ° C., and further preferably 180 to 260 ° C. In the reaction, the contact time is preferably 1 to 100 seconds, particularly preferably 10 to 50 seconds. The reaction is performed in the presence or absence of at least one selected from the group consisting of chlorine, oxygen and air, and is performed in the presence of at least one selected from the group consisting of chlorine, oxygen and air. Are preferred. The reaction produces 1222xd, which is produced as a Z form (1222xd (Z)), an E form (1222xd (E)), or both, and preferably as a Z form.
 本明細書において、「1223xdと1222xdの併産」とは、本発明に係る反応により1223xdと1222xdとが少なくとも製造されることを意味し、好ましくは1223xd 1モル当たり、1222xdが0.0001モル以上製造され、特に好ましくは0.001モル以上である。 In the present specification, “co-product of 1223xd and 1222xd” means that at least 1223xd and 1222xd are produced by the reaction according to the present invention, and preferably 1222xd is 0.0001 mol or more per mol of 1223xd Produced, particularly preferably at least 0.001 mol.
 本発明により、効率的に1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を製造することができる。即ち、本発明によれば、1,1,2,3,3-ペンタクロロプロペン(1220xa)を原料として、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を、高い選択率で簡易に製造することが可能である。 According to the present invention, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be produced efficiently. That is, according to the present invention, 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material, and 1,2-dichloro-3,3,3-trifluoropropene (1223xd) is highly selected. It is possible to easily manufacture at a rate.
 また、本発明により、効率的に1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を併産することができる。 Further, according to the present invention, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be efficiently produced together. Can do.
 また、本発明により、効率的に1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)を製造することができる。 In addition, according to the present invention, 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be produced efficiently.
 以下、本発明について説明する。本発明は以下の実施態様に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施態様に対し適宜変更、改良が加えられたものも本発明に含まれるものとして扱う。 Hereinafter, the present invention will be described. The present invention is not limited to the following embodiments, and appropriate modifications and improvements are made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Are also included in the present invention.
 本発明の方法は、フッ素化剤との反応により1,1,2,3,3-ペンタクロロプロペン(1220xa)をフッ素化させて1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を製造する方法であって、該フッ素化剤としてフッ化水素を用いることを特徴とする。本発明の方法において、反応は(1)液相中で行ってもよいし、(2)気相中で行ってもよい。 The process of the present invention comprises fluorinating 1,1,2,3,3-pentachloropropene (1220xa) by reaction with a fluorinating agent to give 1,2-dichloro-3,3,3-trifluoropropene ( 1223xd), characterized in that hydrogen fluoride is used as the fluorinating agent. In the method of the present invention, the reaction may be performed (1) in the liquid phase or (2) in the gas phase.
 本発明の一態様において、本発明の方法は、1,1,2,3,3-ペンタクロロプロペン(1220xa)を原料として、液相中においてフッ化水素と反応させることを特徴とする。また、本発明の別の一態様において、本発明の方法は、1,1,2,3,3-ペンタクロロプロペン(1220xa)を原料として、気相中においてフッ化水素と反応させることを特徴とする。 In one embodiment of the present invention, the method of the present invention is characterized in that 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material and reacted with hydrogen fluoride in a liquid phase. In another embodiment of the present invention, the method of the present invention is characterized in that 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material and reacted with hydrogen fluoride in a gas phase. And
 本発明に係る反応において、原料として用いられる1,1,2,3,3-ペンタクロロプロペン(1220xa)は公知の化合物であり、種々の方法により製造することができる。その製造方法の一例を後述するが、これによって他の方法を採用することが妨げられるものではない。ただし、後述の製造方法を採用することによって、1,1,2,3,3-ペンタクロロプロペン(1220xa)を有利に製造することができる。 In the reaction according to the present invention, 1,1,2,3,3-pentachloropropene (1220xa) used as a raw material is a known compound and can be produced by various methods. An example of the manufacturing method will be described later, but this does not prevent other methods from being adopted. However, 1,1,2,3,3-pentachloropropene (1220xa) can be advantageously produced by employing the production method described later.
 本発明の一態様における1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素との液相反応の場合、フッ化水素の使用量は、原料である1,1,2,3,3-ペンタクロロプロペン(1220xa)1モルに対して通常3~40モルであり、5~30モルが好ましく、10~20モルがより好ましい。
 本発明の別の一態様における1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素との気相反応の場合、フッ化水素の使用量は、1,1,2,3,3-ペンタクロロプロペン(1220xa)1モルに対して通常3~40モルであり、好ましくは3~30モルであり、より好ましくは3~20モルであり、特に好ましくは3~10モルである。
 このフッ化水素の使用量は、反応形式がバッチ式、半バッチ式の場合には、使用される1,1,2,3,3-ペンタクロロプロペン(1220xa)の仕込量に対して表され、連続式の場合は、反応器に存在する1,1,2,3,3-ペンタクロロプロペン(1220xa)の定常量に対して表される。フッ化水素の量が3モル未満では、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を生成するために必要なフッ化水素の理論量に達しておらず、反応の選択率、目的物の収率共に低下することがある。一方、フッ化水素の量が40モルを超えると、反応に関与しないフッ化水素の量が増加するため、生産性の観点から経済的に好ましくない。ただし、これらのことは、1220xa 1モルに対して3モル未満あるいは40モル超のフッ化水素を使用することを妨げるものではない。
In the case of a liquid phase reaction of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride in one embodiment of the present invention, the amount of hydrogen fluoride used is 1,1,2, which is a raw material. , 3,3-pentachloropropene (1220xa) is usually 3 to 40 mol, preferably 5 to 30 mol, more preferably 10 to 20 mol.
In the case of a gas phase reaction of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride in another embodiment of the present invention, the amount of hydrogen fluoride used is 1,1,2, 3,3-pentachloropropene (1220xa) is usually 3 to 40 mol, preferably 3 to 30 mol, more preferably 3 to 20 mol, particularly preferably 3 to 10 mol, based on 1 mol. is there.
The amount of hydrogen fluoride used is expressed relative to the amount of 1,1,2,3,3-pentachloropropene (1220xa) used when the reaction type is batch or semi-batch. In the case of a continuous type, it is expressed with respect to a steady amount of 1,1,2,3,3-pentachloropropene (1220xa) present in the reactor. If the amount of hydrogen fluoride is less than 3 mol, the theoretical amount of hydrogen fluoride necessary to produce 1,2-dichloro-3,3,3-trifluoropropene (1223xd) has not been reached, and Both the selectivity and the yield of the target product may decrease. On the other hand, when the amount of hydrogen fluoride exceeds 40 mol, the amount of hydrogen fluoride not involved in the reaction increases, which is not economically preferable from the viewpoint of productivity. However, these do not preclude the use of less than 3 moles or more than 40 moles of hydrogen fluoride per mole of 1220xa.
 本発明に係る反応において、未反応のフッ化水素は反応生成物から分離し、反応系へリサイクルすることが、工業的な生産の観点から好ましい。フッ化水素と反応生成物の分離は、公知の手段で行うことができ、例えば、反応生成物を蒸留する方法などが挙げられる。 In the reaction according to the present invention, it is preferable from the viewpoint of industrial production that unreacted hydrogen fluoride is separated from the reaction product and recycled to the reaction system. Separation of hydrogen fluoride and the reaction product can be performed by a known means, and examples thereof include a method of distilling the reaction product.
 本発明に係る反応において、反応温度は、目的物が生成できれば特に限定されない。 In the reaction according to the present invention, the reaction temperature is not particularly limited as long as the target product can be produced.
 本発明の一態様において、1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素との液相反応の温度は、通常50~300℃であり、100~200℃が好ましい。中でも、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)をより優位に製造できることから、140~180℃が特に好ましい。また、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)とを併産する場合には、50~300℃が好ましく、100~200℃が特に好ましい。また、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)をより優位に製造するためには、100~200℃が好ましく、100~140℃が特に好ましい。 In one embodiment of the present invention, the temperature of the liquid phase reaction between 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride is usually 50 to 300 ° C., preferably 100 to 200 ° C. . Of these, 140 to 180 ° C. is particularly preferable because 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be produced more advantageously. In the case where 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are co-produced, 50-300 ° C is preferred, and 100 to 200 ° C is particularly preferred. In order to produce 1,2,3-trichloro-3,3-difluoropropene (1222xd) more advantageously, it is preferably from 100 to 200 ° C, particularly preferably from 100 to 140 ° C.
 本発明の一態様において、1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素との気相反応の温度は、気相で反応を行えれば特に限定されず、反応原料がガス状となる温度以上で行うことが好ましい。本発明の他の態様において、通常160℃以上で気相反応を行い、180℃以上が好ましく、200℃以上がより好ましく、1223xdをより優位に製造できることから、210℃以上が特に好ましい。気相反応温度の上限は特に制限されないが、通常600℃以下で気相反応を行い、500℃以下が好ましく、反応原料のコーキングをより優位に抑制できることから、400℃以下がより好ましく、350℃以下がさらに好ましく、300℃以下が特に好ましい。本発明の他の態様において、気相反応の温度は、上記の下限温度と上限温度とを任意に組み合わせたいずれの温度範囲であってもよい。また、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)と1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)とを併産する場合には、160~300℃が好ましく、180~280℃がより好ましく、180~270℃が特に好ましく、180~260℃がさらに好ましい。また、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)をより優位に製造するためには160~280℃が好ましく、180~270℃がより好ましく、180~260℃が特に好ましい。 In one embodiment of the present invention, the temperature of the gas phase reaction between 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride is not particularly limited as long as the reaction can be performed in the gas phase. It is preferable to carry out at a temperature at which the raw material becomes gaseous. In another aspect of the present invention, the gas phase reaction is usually carried out at 160 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and particularly preferably 210 ° C. or higher because 1223xd can be produced more advantageously. The upper limit of the gas phase reaction temperature is not particularly limited, but the gas phase reaction is usually carried out at 600 ° C. or lower, preferably 500 ° C. or lower, and the coking of the reaction raw material can be more advantageously suppressed. The following is more preferable, and 300 ° C. or lower is particularly preferable. In another embodiment of the present invention, the temperature of the gas phase reaction may be any temperature range in which the above lower limit temperature and upper limit temperature are arbitrarily combined. In the case where 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and 1,2,3-trichloro-3,3-difluoropropene (1222xd) are produced together, 160 to 300 ° C is preferred, 180-280 ° C is more preferred, 180-270 ° C is particularly preferred, and 180-260 ° C is even more preferred. In order to produce 1,2,3-trichloro-3,3-difluoropropene (1222xd) more advantageously, it is preferably 160 to 280 ° C, more preferably 180 to 270 ° C, and particularly preferably 180 to 260 ° C. .
 本発明に係る反応において、圧力は限定されず、減圧下、常圧下(大気圧下)、加圧下のいずれであってもよい。
 本発明の一態様において、液相反応の反応圧力は通常0.1~10MPaG(ゲージ圧をいう。以下同じ。)であり、1.5~6MPaGが好ましく、2.0~4.5MPaGがより好ましい。0.1MPaG未満では未反応のフッ化水素の還流によって好適な反応温度に上げることができず、実用的な製造法とはならない。10MPaGを超えると反応器の耐圧設計にかかる費用が増大するため、経済的に好ましくない。ただし、これらのことは、0.1MPaG未満あるいは10MPaG超の圧力で反応を行うことを妨げるものではない。
 本発明の別の一態様において、気相反応は、減圧下あるいは常圧下で行うことが好ましく、常圧近傍の圧力下で行うことが特に好ましい。なお、圧力の制御方法としては、任意の適切な手段、例えば、反応容器出口に装着された蒸留塔及び/または水凝縮冷却器、圧力制御バルブ等によって、圧力を制御することができる。
In the reaction according to the present invention, the pressure is not limited, and may be any of reduced pressure, normal pressure (atmospheric pressure), and increased pressure.
In one embodiment of the present invention, the reaction pressure of the liquid phase reaction is usually 0.1 to 10 MPaG (referred to as gauge pressure; the same shall apply hereinafter), preferably 1.5 to 6 MPaG, more preferably 2.0 to 4.5 MPaG. preferable. If it is less than 0.1 MPaG, it cannot be raised to a suitable reaction temperature due to the reflux of unreacted hydrogen fluoride, which is not a practical production method. If it exceeds 10 MPaG, the cost for the pressure resistance design of the reactor increases, which is economically undesirable. However, these do not prevent the reaction from being performed at a pressure lower than 0.1 MPaG or higher than 10 MPaG.
In another aspect of the present invention, the gas phase reaction is preferably performed under reduced pressure or normal pressure, and particularly preferably performed under a pressure in the vicinity of normal pressure. As a pressure control method, the pressure can be controlled by any appropriate means, for example, a distillation column and / or a water condensing cooler, a pressure control valve, or the like attached to the outlet of the reaction vessel.
 本発明に係る反応においては、触媒を使用してもよいし、使用しなくてもよい。
 (1)液相反応においては、反応の後処理が容易で、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を効率的に製造できることから触媒を使用しないことが好ましい。液相反応において触媒を使用する場合、チタン、スズ、鉄、アンチモン、タンタル、ニオブ、モリブデン等の金属のハロゲン化物またはその混合物を、任意の適切な触媒量で使用することができる。
 (2)気相反応においても、触媒を使用してもよいし、使用しなくてもよい。気相反応において触媒を使用する場合、触媒は、非担持触媒であってもよく、担持触媒であってもよい。
In the reaction according to the present invention, a catalyst may or may not be used.
(1) In the liquid phase reaction, it is preferable not to use a catalyst because the post-treatment of the reaction is easy and 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be efficiently produced. When a catalyst is used in the liquid phase reaction, a metal halide such as titanium, tin, iron, antimony, tantalum, niobium, molybdenum, or a mixture thereof can be used in any suitable catalytic amount.
(2) In the gas phase reaction, a catalyst may or may not be used. When a catalyst is used in the gas phase reaction, the catalyst may be a non-supported catalyst or a supported catalyst.
 非担持触媒としては、金属化合物が好ましく、金属の酸化物、金属のフッ素化物などの金属化合物がより好ましい。ここで、金属のフッ素化物とは、金属原子とフッ素原子の結合を少なくとも有するものを指す。例えば、IR、XRD、XPS等によって金属原子-フッ素原子の結合が確認されるものは気相反応における触媒として使用可能である。また、これらの金属化合物に含まれる金属の種類は特に限定されない。例えば、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属が挙げられ、中でも、アルミニウム、クロム、マンガン、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれる少なくとも一種の金属が好ましい。金属は単独であってもよく、二種以上の金属が複合した複合金属であってもよい。 As the unsupported catalyst, a metal compound is preferable, and a metal compound such as a metal oxide or a metal fluoride is more preferable. Here, the metal fluoride refers to a substance having at least a bond between a metal atom and a fluorine atom. For example, those in which the bond between metal atom and fluorine atom is confirmed by IR, XRD, XPS, etc. can be used as a catalyst in a gas phase reaction. Moreover, the kind of metal contained in these metal compounds is not particularly limited. Examples include at least one metal selected from the group consisting of aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum, and antimony, At least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium is preferred. The metal may be a single metal or a composite metal in which two or more metals are combined.
 金属のフッ素化物の調製方法は特に限定されない。例えば、このような金属のフッ素化物は、金属の酸化物などの金属化合物にフッ素化処理を行うことによって調製することができる。この金属の酸化物の種類は特に限定されない。例えば、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属の酸化物が挙げられ、中でも、アルミニウム、クロム、マンガン、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれる少なくとも一種の金属の酸化物が好ましい。金属の酸化物に含まれる金属は単独であってもよく、二種以上の金属が複合した複合金属の酸化物として使用されてもよい。金属の酸化物には、結晶系の異なるものが存在するが、何れも使用できる。例えば、アルミナにはγ-アルミナとα-アルミナがあり、チタニアにはアナターゼとルチルの結晶形のものがある。金属酸化物の結晶形はいずれであってもよいが、アルミナではγ-アルミナは表面積が大きく好ましい。なお、金属の酸化物以外にも、フッ素化処理により金属のフッ素化物になり得るものであれば、これを用いて金属のフッ素化物を調製することができる。 The method for preparing the metal fluoride is not particularly limited. For example, such a metal fluoride can be prepared by subjecting a metal compound such as a metal oxide to a fluorination treatment. The kind of the metal oxide is not particularly limited. For example, an oxide of at least one metal selected from the group consisting of aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony Among these, an oxide of at least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium, and magnesium is preferable. The metal contained in the metal oxide may be a single metal or may be used as a composite metal oxide in which two or more metals are combined. There are metal oxides having different crystal systems, but any of them can be used. For example, alumina includes γ-alumina and α-alumina, and titania includes anatase and rutile crystal forms. The crystal form of the metal oxide may be any, but γ-alumina is preferable because of its large surface area. In addition to the metal oxide, any metal fluoride can be prepared using any metal fluoride that can be converted into a metal fluoride by fluorination treatment.
 複合金属としては、アルミニウム、クロム、マンガン、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれる一種の金属を主とし、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、銅、コバルト、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属を副成分として含むものが好ましい。 The composite metal is mainly a kind of metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium, and includes aluminum, chromium, titanium, manganese, iron, nickel, copper, cobalt, magnesium, zirconium and molybdenum. It is preferable to contain at least one metal selected from the group consisting of zinc, tin, lanthanum, niobium, tantalum and antimony as an accessory component.
 このような複合金属の酸化物としては、例えば、アルミナとクロミア、アルミナとジルコニア、アルミナとチタニア、アルミナとマグネシアがそれぞれ複合したものが好ましいものとして挙げられ、いずれもアルミニウムを50原子%以上含むものが特に好ましく、80原子%以上含むものがより好ましい。50原子%以上であれば、良好な転化速度で反応を進行させることができる。 Preferred examples of such composite metal oxides include alumina and chromia, alumina and zirconia, alumina and titania, and alumina and magnesia, each of which contains 50 atomic% or more of aluminum. Are particularly preferred, and those containing 80 atomic% or more are more preferred. If it is 50 atomic% or more, the reaction can proceed at a good conversion rate.
 金属化合物のフッ素化処理の方法は、特に限定されない。例えば、フッ化水素、フッ素化炭化水素、フッ素化塩素化炭化水素などのフッ素化剤と、前述した金属化合物(例えば、金属の酸化物や複合金属の酸化物)とを接触させることにより行ってもよい。このフッ素化処理は、通常、段階的に行うのが好ましい。フッ化水素を用いてフッ素化処理する場合、大きな発熱を伴うので、最初は希釈されたフッ化水素ガスにより比較的低温度で金属化合物をフッ素化し、徐々に濃度および/または温度を高くしながら行うのが好ましい。最終段階は、本発明に係る反応の反応温度以上で行うことが好ましい。また、この条件に加えて、安定的に反応を進行させるために、フッ素化処理温度は200℃以上で行い、400℃以上、さらに好ましくは500℃以上においてフッ化水素でフッ素化処理するのが好ましい。温度の上限は特にないが、900℃を超えると、フッ素化処理装置の耐熱性の点から困難であり、実用的には600℃以下で行うのが好ましい。このように、安定的に反応を進行させるために、所定の反応温度以上の温度で、フッ化水素、フッ素化炭化水素、フッ素化塩素化炭化水素などのフッ素化剤により、金属化合物(例えば、金属の酸化物や複合金属の酸化物)をフッ素化処理して金属のフッ素化物をあらかじめ調製し、本発明の気相反応の触媒として供することが好ましい。 The method for the fluorination treatment of the metal compound is not particularly limited. For example, by contacting a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon with the above-described metal compound (eg, metal oxide or composite metal oxide). Also good. This fluorination treatment is usually preferably performed stepwise. In the case of fluorination treatment using hydrogen fluoride, there is a large exotherm, so the metal compound is first fluorinated with dilute hydrogen fluoride gas at a relatively low temperature, gradually increasing the concentration and / or temperature. It is preferred to do so. The final stage is preferably carried out at or above the reaction temperature of the reaction according to the invention. In addition to this condition, in order to proceed the reaction stably, the fluorination treatment temperature is 200 ° C. or higher, and the fluorination treatment with hydrogen fluoride is performed at 400 ° C. or higher, more preferably 500 ° C. or higher. preferable. The upper limit of the temperature is not particularly limited, but if it exceeds 900 ° C., it is difficult from the viewpoint of heat resistance of the fluorination treatment apparatus, and practically, it is preferably performed at 600 ° C. or less. Thus, in order to advance the reaction stably, a metal compound (for example, a fluorinating agent such as hydrogen fluoride, fluorinated hydrocarbon, or fluorinated chlorinated hydrocarbon) is used at a temperature equal to or higher than a predetermined reaction temperature. It is preferable to prepare a metal fluoride in advance by fluorinating a metal oxide or a composite metal oxide) and use it as a catalyst for the gas phase reaction of the present invention.
 気相反応で使用する触媒は、使用に際してフッ素化処理を施して反応に供することが好ましい。このフッ素化処理は、上述の金属フッ素化物の調製方法の例に準じて、触媒(好ましくは金属化合物)に施すことができる。 The catalyst used in the gas phase reaction is preferably subjected to fluorination treatment before use. This fluorination treatment can be applied to the catalyst (preferably a metal compound) according to the above-described method for preparing a metal fluorinated product.
 気相反応において、触媒として、金属化合物を担持した担持触媒を用いてもよい。この担持触媒の担体としては、炭素または非担持触媒として上述した金属(複合金属を含む。)を使用してもよい。担体として用いられる金属は、非担持触媒として上述した金属の酸化物であってもよいし、金属のフッ素化物であってもよい。具体的には、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属の酸化物、好ましくは、アルミニウム、クロム、マンガン、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれる少なくとも一種の金属の酸化物が、単独で担体として用いられてもよく、複合金属の酸化物が担体として用いられてもよいし、これらの一部または全てがフッ素化されたフッ素化物が担体として用いられてもよい。複合金属の酸化物としては、例えば、アルミニウム、クロム、マンガン、ジルコニウム、チタンおよびマグネシウムからなる群より選ばれる一種の金属を主とし、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、銅、コバルト、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタルおよびアンチモンからなる群より選ばれる少なくとも一種の金属を副成分として含む酸化物が好ましい。 In the gas phase reaction, a supported catalyst supporting a metal compound may be used as a catalyst. As the carrier of this supported catalyst, carbon or the above-described metals (including composite metals) may be used as the non-supported catalyst. The metal used as the support may be an oxide of the metal described above as the unsupported catalyst, or a metal fluorinated product. Specifically, oxidation of at least one metal selected from the group consisting of aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony An oxide of at least one metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium may be used alone as a support, and an oxide of a composite metal is used as a support. Alternatively, a fluorinated product in which some or all of them are fluorinated may be used as the carrier. As the composite metal oxide, for example, mainly one kind of metal selected from the group consisting of aluminum, chromium, manganese, zirconium, titanium and magnesium, aluminum, chromium, titanium, manganese, iron, nickel, copper, cobalt, An oxide containing at least one metal selected from the group consisting of magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum and antimony as a subcomponent is preferable.
 担持させる金属化合物に含まれる金属としては、アルミニウム、クロム、チタン、マンガン、鉄、ニッケル、コバルト、銅、マグネシウム、ジルコニウム、モリブデン、亜鉛、スズ、ランタン、ニオブ、タンタル、アンチモンなどが挙げられる。これらのうち、アルミニウム、クロム、チタン、鉄、ニッケル、コバルト、銅、ジルコニウム、亜鉛、スズ、ランタン、ニオブ、タンタル、アンチモンが好ましい。これらの金属はフッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物等として担体に担持される。このような金属化合物は単独で担持させてもよいし、2種以上を併せて担持させてもよい。 Examples of the metal contained in the metal compound to be supported include aluminum, chromium, titanium, manganese, iron, nickel, cobalt, copper, magnesium, zirconium, molybdenum, zinc, tin, lanthanum, niobium, tantalum, and antimony. Of these, aluminum, chromium, titanium, iron, nickel, cobalt, copper, zirconium, zinc, tin, lanthanum, niobium, tantalum, and antimony are preferable. These metals are supported on the carrier as fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, oxyfluoride chloride and the like. Such metal compounds may be supported alone or in combination of two or more.
 担持させる金属化合物としては、具体的には、硝酸クロム、三塩化クロム、重クロム酸カリウム、三塩化チタン、硝酸マンガン、塩化マンガン、塩化第二鉄、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルト、五塩化アンチモン、塩化マグネシウム、硝酸マグネシウム、塩化ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム、塩化銅(II)、塩化亜鉛(II)、硝酸ランタン、四塩化スズなどを用いることができるが、これらに限定されない。 Specific examples of supported metal compounds include chromium nitrate, chromium trichloride, potassium dichromate, titanium trichloride, manganese nitrate, manganese chloride, ferric chloride, nickel nitrate, nickel chloride, cobalt nitrate, cobalt chloride. , Antimony pentachloride, magnesium chloride, magnesium nitrate, zirconium chloride, zirconium oxychloride, zirconium nitrate, copper (II) chloride, zinc (II) chloride, lanthanum nitrate, tin tetrachloride, etc. can be used. Not.
 担体に前述の金属化合物を担持して調製した触媒は、安定的に反応を進行させるために、使用の前にフッ素化処理を施してもよく、そうすることが好ましい。すなわち、本発明に係る気相反応において、触媒は、担体に、金属化合物を担持した担持触媒にフッ素化処理を施した触媒であってもよい。この場合、前述の前述した金属化合物(例えば、金属の酸化物や複合金属の酸化物)のフッ素化処理と同様の方法により、フッ化水素、フッ素化炭化水素、フッ素化塩素化炭化水素などのフッ素化剤であらかじめフッ素化処理し、本発明の気相反応の触媒として供することが好ましい。 The catalyst prepared by supporting the above-described metal compound on the support may be subjected to a fluorination treatment before use in order to cause the reaction to proceed stably, and it is preferable to do so. That is, in the gas phase reaction according to the present invention, the catalyst may be a catalyst obtained by fluorinating a supported catalyst in which a metal compound is supported on a carrier. In this case, hydrogen fluoride, fluorinated hydrocarbon, fluorinated chlorinated hydrocarbon, etc. can be obtained by the same method as the fluorination treatment of the aforementioned metal compound (for example, metal oxide or composite metal oxide). It is preferable to fluorinate in advance with a fluorinating agent and use as a catalyst for the gas phase reaction of the present invention.
 ここで、担体が金属酸化物であり、且つ担持物である金属化合物の層が担体を全体的に覆っている場合は、フッ素化処理工程において、担体よりも担持物が主としてフッ素化処理され、担持物が主として本発明に係る反応の触媒として作用する。担体が金属酸化物であり、担持物である金属化合物の層が担体を全体的に覆っていない場合は、フッ素化処理工程において、担持物とともに担体もフッ素化処理され、本発明に係る反応において、担持物とともに担体も触媒として作用することもあり得る。このように、担体が担持物とともに触媒として作用する場合は、担持触媒としてではなく、複合金属のフッ素化物として、非担時触媒と同様に作用することがある。 Here, when the support is a metal oxide and the metal compound layer as the support covers the support as a whole, the support is mainly fluorinated than the support in the fluorination treatment step. The support mainly acts as a catalyst for the reaction according to the present invention. When the support is a metal oxide and the layer of the metal compound that is the support does not cover the support as a whole, the support is also fluorinated together with the support in the fluorination treatment step. In addition to the support, the support may act as a catalyst. Thus, when the carrier acts as a catalyst together with the supported material, it may act as a non-supported catalyst not as a supported catalyst but as a fluorinated compound metal.
 気相反応において、触媒としては、フッ素化アルミナ、フッ素化ジルコニア、フッ素化クロミア、クロム担持活性炭が好ましい具体例として挙げられ、フッ素化アルミナ、フッ素化ジルコニア、フッ素化クロミアが特に好ましい。これらの触媒は反応の前に予めフッ素化処理をしておくことが好ましい。 In the gas phase reaction, preferred examples of the catalyst include fluorinated alumina, fluorinated zirconia, fluorinated chromia, and chromium-supported activated carbon, and fluorinated alumina, fluorinated zirconia, and fluorinated chromia are particularly preferable. These catalysts are preferably fluorinated in advance before the reaction.
 担体及び担持物を含めた触媒の全質量に対する金属の質量の割合は、0.1~80質量%、好ましくは1~50質量%である。0.1質量%以上であれば良好な触媒効果が得られ、80質量%以下であれば安定に担持させることができる。なお、担持物が固体金属塩である場合、触媒の全質量に対する金属の質量の割合は、0.1~40質量%、好ましくは1~30質量%である。 The ratio of the mass of the metal to the total mass of the catalyst including the support and the support is 0.1 to 80% by mass, preferably 1 to 50% by mass. If it is 0.1 mass% or more, a good catalytic effect can be obtained, and if it is 80 mass% or less, it can be stably supported. When the support is a solid metal salt, the ratio of the metal mass to the total mass of the catalyst is 0.1 to 40% by mass, preferably 1 to 30% by mass.
 本発明に係る液相反応において、反応の均一性、反応後の操作性を考慮して溶媒を使用することもできる。使用する溶媒の種類は、原料の1,1,2,3,3-ペンタクロロプロペン(1220xa)を溶解できれば特に限定されない。中でも、生成物の1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)の沸点よりも高い沸点を有する有機化合物で、本反応中にフッ化水素によってフッ素化されない有機化合物が好ましい。このような溶媒の例としては、テトラメチレンスルホン(スルホラン)、パーフルオロアルカン類、パーフルオロアルケン類、ヒドロフルオロカーボン類等が挙げられるが、これらに限定されるものではない。また、使用する溶媒の量は、原料の1,1,2,3,3-ペンタクロロプロペン(1220xa)を溶解できれば特に限定されない。原料の1,1,2,3,3-ペンタクロロプロペン(1220xa)に対して80質量%以下が好ましく、40質量%以下がより好ましい。通常は生産性、経済性の観点から溶媒を使用しないことが好ましい。 In the liquid phase reaction according to the present invention, a solvent can be used in consideration of the uniformity of the reaction and the operability after the reaction. The type of the solvent used is not particularly limited as long as the raw material 1,1,2,3,3-pentachloropropene (1220xa) can be dissolved. Among them, an organic compound having a boiling point higher than that of the product 1,2-dichloro-3,3,3-trifluoropropene (1223xd) and not fluorinated by hydrogen fluoride during the reaction is preferable. . Examples of such solvents include, but are not limited to, tetramethylene sulfone (sulfolane), perfluoroalkanes, perfluoroalkenes, hydrofluorocarbons, and the like. The amount of the solvent to be used is not particularly limited as long as the raw material 1,1,2,3,3-pentachloropropene (1220xa) can be dissolved. 80 mass% or less is preferable with respect to 1,1,2,3,3-pentachloropropene (1220xa) as a raw material, and 40 mass% or less is more preferable. Usually, it is preferable not to use a solvent from the viewpoint of productivity and economy.
 本発明に係る反応において、反応時間は特に限定されない。原料の1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素との反応によって副生する塩化水素が発生しなくなった時点を反応の終点とすることが好ましく、通常、反応圧力の上昇がなくなった時点を反応の終点とする。気相反応における反応時間は、後述の接触時間と同義であることが好ましい。 In the reaction according to the present invention, the reaction time is not particularly limited. The end point of the reaction is preferably the end point of hydrogen chloride which is not generated as a by-product due to the reaction between the raw material 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride. The end point of the reaction is defined as the point at which the pressure increase stops. The reaction time in the gas phase reaction is preferably synonymous with the contact time described below.
 通常、気相流通方式の反応の場合、反応ゾーンの容積A(mL)を原料供給速度B(mL/秒)で除した値(秒)で、生産性を議論することが多く、これを接触時間と呼ぶ。反応ゾーンに触媒を備える場合には、触媒の容積(mL)を上記Aとみなす。なお、Bの値は「毎秒あたりに反応器に導入される原料気体の容積」を示すが、この場合、原料気体を理想気体とみなして、原料気体のモル数、圧力および温度からBの値を算出する。反応器中では、原料や目的物以外の他の化合物の副生や、モル数の変化も起こり得るが、「接触時間」の計算に際しては考慮しないものとする。 Usually, in the case of a gas-phase flow reaction, productivity is often discussed in terms of the value (seconds) obtained by dividing the reaction zone volume A (mL) by the raw material supply rate B (mL / second). Call time. When a catalyst is provided in the reaction zone, the catalyst volume (mL) is regarded as A above. The value of B indicates “volume of the raw material gas introduced into the reactor per second”. In this case, the raw material gas is regarded as an ideal gas, and the value of B is determined from the number of moles, pressure and temperature of the raw material gas. Is calculated. In the reactor, by-products of other compounds than the raw material and the target product and a change in the number of moles may occur, but they are not taken into account when calculating the “contact time”.
 接触時間の決定に関しては、本発明の方法に用いる反応原料、反応温度や反応器の形状、触媒の種類などに依存する。そのため、反応原料、反応装置の設定温度、反応器の形状、触媒の種類ごとに、反応原料の供給速度を適宜調整し、接触時間を最適化することが望ましい。 The determination of the contact time depends on the reaction raw material used in the method of the present invention, the reaction temperature, the shape of the reactor, the type of catalyst, and the like. Therefore, it is desirable to optimize the contact time by appropriately adjusting the supply rate of the reaction raw material for each reaction raw material, the set temperature of the reactor, the shape of the reactor, and the type of catalyst.
 本発明における最適な接触時間は0.01~500秒であり、好ましくは0.1~250秒、より好ましくは、1~150秒である。尚、この接触時間は反応圧力に応じて適宜変更されてもよい。 The optimum contact time in the present invention is 0.01 to 500 seconds, preferably 0.1 to 250 seconds, and more preferably 1 to 150 seconds. In addition, this contact time may be suitably changed according to reaction pressure.
 気相反応において、反応効率の観点から、反応温度と、1223xdやフッ化水素などの反応原料を触媒に接触させる接触時間とは、トレードオフの関係となるように操作することが好ましい。すなわち、反応温度を高くする場合には接触時間を短くし、反応温度を低くする場合には接触時間を長くするように、操作することが好ましい。 In the gas phase reaction, from the viewpoint of reaction efficiency, it is preferable that the reaction temperature and the contact time for contacting the reaction raw material such as 1223xd or hydrogen fluoride with the catalyst have a trade-off relationship. That is, it is preferable to operate so that the contact time is shortened when the reaction temperature is increased and the contact time is increased when the reaction temperature is decreased.
 本発明に係る反応において、反応器は、特に限定されないが、液相反応や気相反応に適した反応器を用いることが好ましい。このような液相反応器や気相反応器は、当該技術において周知である。反応器は、ステンレス鋼、ハステロイ(TM)、モネル(TM)、白金、炭素、フッ素樹脂またはこれらをライニングした材質で造られたものが好ましいが、これらに限定されない。また、反応器には、ラシヒリングやポールリング等の充填材が充填されていてもよい。これらの材質もステンレス鋼、ハステロイ(TM)、モネル(TM)などの材質のものが好ましい。 In the reaction according to the present invention, the reactor is not particularly limited, but a reactor suitable for a liquid phase reaction or a gas phase reaction is preferably used. Such liquid phase reactors and gas phase reactors are well known in the art. The reactor is preferably made of stainless steel, Hastelloy (TM), Monel (TM), platinum, carbon, fluororesin, or a material lined with these, but is not limited thereto. The reactor may be filled with a filler such as Raschig ring or pole ring. These materials are also preferably made of stainless steel, Hastelloy (TM), Monel (TM) or the like.
 本発明に係る反応において、塩素、酸素、空気などの添加剤を反応系に導入してもよい。このような添加剤を反応系に導入することにより、反応資材のコーキングの防止や、触媒寿命を延ばす効果などが期待される。このような添加剤の反応系への導入量は、特に限定されない。一般的には、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)に対して0.01~10mol%、より好ましくは0.1~5mol%である。また、このような添加剤は、単独で導入してもよいし、併用して導入してもよく、さらには、不活性ガス(例えば、窒素や、ヘリウム、アルゴンなどの希ガスや、反応に不活性なフロン類のガス)と混合して導入することもできる。 In the reaction according to the present invention, additives such as chlorine, oxygen and air may be introduced into the reaction system. By introducing such an additive into the reaction system, it is expected to prevent coking of the reaction material and extend the catalyst life. The amount of such additives introduced into the reaction system is not particularly limited. Generally, it is 0.01 to 10 mol%, more preferably 0.1 to 5 mol%, with respect to 1,2-dichloro-3,3,3-trifluoropropene (1223xd). Such additives may be introduced singly or in combination, and further, inert gas (for example, nitrogen, rare gas such as helium, argon, etc., or reaction) It is also possible to introduce it by mixing with an inert chlorofluorocarbon gas).
 本発明に係る反応において、気相反応、液相反応のいずれの反応形式も採用することができる。また、本発明に係る反応は、バッチ式、半バッチ式、連続式のいずれの方式でも行うことができ、これらの反応形式と方式を適宜組み合わせて採用することができる。連続式気相反応において触媒を使用する場合には、触媒の保持方法は固定床、流動床、移動床などいずれの形式でもよく、固定床で行うのが簡便であるので、好ましい。 In the reaction according to the present invention, any one of a gas phase reaction and a liquid phase reaction can be adopted. In addition, the reaction according to the present invention can be performed by any of batch, semi-batch, and continuous methods, and these reaction modes and methods can be appropriately combined and employed. When a catalyst is used in a continuous gas phase reaction, the method for holding the catalyst may be any type such as a fixed bed, a fluidized bed, and a moving bed, and is preferable because it is easy to carry out in a fixed bed.
 本発明に係る反応の手順は、本発明の効果を損なわない限り、特に限定されない。以下にその一例を示す。 The reaction procedure according to the present invention is not particularly limited as long as the effects of the present invention are not impaired. An example is shown below.
 バッチ式操作、半バッチ式操作において、例えば、反応器に所定の原料を所定量導入し、所望により溶媒を所定量導入し、所定の条件で反応を行う手順などが例示される。触媒を用いる場合には、あらかじめ触媒を反応器内に備えておくことが好ましい。また、反応器への原料の導入手順は特に限定されず、反応器に1,1,2,3,3-ペンタクロロプロペン(1220xa)を導入し、その後、フッ化水素が反応器に導入されてもよい。このとき、所望により所定の溶媒を所定量導入する場合には、フッ化水素を反応器に導入する前に当該溶媒の一部または全部を反応器に導入してもよいし、フッ化水素の導入と同時に別々の流れで、あるいは一緒に混合して反応器に導入してもよい。 In batch-type operation and semi-batch-type operation, for example, a predetermined amount of a predetermined raw material is introduced into a reactor, a predetermined amount of a solvent is introduced as desired, and a reaction is performed under predetermined conditions. When using a catalyst, it is preferable to prepare the catalyst in the reactor in advance. The procedure for introducing the raw material into the reactor is not particularly limited, and 1,1,2,3,3-pentachloropropene (1220xa) is introduced into the reactor, and then hydrogen fluoride is introduced into the reactor. May be. At this time, if a predetermined amount of a predetermined solvent is introduced as desired, a part or all of the solvent may be introduced into the reactor before introducing hydrogen fluoride into the reactor. They may be introduced into the reactor in separate streams simultaneously with the introduction or mixed together.
 連続式操作において、例えば、反応器に、1,1,2,3,3-ペンタクロロプロペン(1220xa)と、フッ化水素とを、別々の流れで所定量導入し、所定の条件で液相反応を行う手順などが例示される。所望により用いられる溶媒は、1,1,2,3,3-ペンタクロロプロペン(1220xa)とフッ化水素とは別々に、あるいは1,1,2,3,3-ペンタクロロプロペン(1220xa)溶液、フッ化水素溶液として、反応器に導入してもよい。 In the continuous operation, for example, a predetermined amount of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride are introduced into the reactor in separate flows, and a liquid phase is obtained under predetermined conditions. A procedure for performing the reaction is exemplified. The solvent used as desired may be 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride separately, or 1,1,2,3,3-pentachloropropene (1220xa) solution. The hydrogen fluoride solution may be introduced into the reactor.
 連続式操作において、例えば、反応器に、1,1,2,3,3-ペンタクロロプロペン(1220xa)と、フッ化水素とを、所定量導入し、所定の条件で気相反応を行う手順などが例示される。これらの反応原料は、別々の流れ、あるいは同じ流れで反応系(反応器)に導入され、不活性ガス(例えば、窒素や、ヘリウム、アルゴンなどの希ガスや、反応に不活性なフロン類のガスなど)と共に導入されてもよい。触媒を用いる場合には、あらかじめ触媒を反応系に備えておくことが好ましい。また、所望により、塩素、酸素、空気などの添加剤を、反応原料と別々の流れ、あるいは同じ流れで反応系に導入する。この添加剤は不活性ガスと共に導入されてもよい。これらの反応原料や添加剤は、反応系に導入される際には、ガス状であることが好ましく、必要に応じて、これらの反応原料や添加剤を気化器でガス状にし、反応系に導入する。反応系において、所定の条件で反応を行い、1223xdを含む反応生成物を得ることができる。 In a continuous operation, for example, a procedure for introducing a predetermined amount of 1,1,2,3,3-pentachloropropene (1220xa) and hydrogen fluoride into a reactor and performing a gas phase reaction under predetermined conditions Etc. are exemplified. These reaction raw materials are introduced into the reaction system (reactor) separately or in the same flow, and inert gas (for example, nitrogen, helium, rare gas such as argon, or fluorocarbons inert to the reaction). Gas, etc.). When using a catalyst, it is preferable to prepare the catalyst in the reaction system in advance. If desired, additives such as chlorine, oxygen and air are introduced into the reaction system separately from the reaction raw material or in the same flow. This additive may be introduced together with an inert gas. These reaction raw materials and additives are preferably in a gaseous state when introduced into the reaction system, and if necessary, these reaction raw materials and additives are gasified with a vaporizer and added to the reaction system. Introduce. In the reaction system, the reaction can be performed under predetermined conditions to obtain a reaction product containing 1223xd.
 本発明に係る反応において、得られた反応生成物から1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を精製する方法は特に限定されない。公知の精製方法を採用することができる。必要に応じて、反応生成物中に含まれ得る塩素成分や酸成分の除去処理を行ってもよい。また、脱水処理などを施して水分を除去してもよく、塩素成分や酸成分の除去処理と組み合わせて行ってもよい。例えば、反応生成物を冷却したコンデンサーに流通させて凝縮させ、水または/およびアルカリ性溶液で洗浄して塩素成分、酸成分などを除去し、ゼオライト、活性炭等の乾燥剤で乾燥後、通常の蒸留操作によって、高純度の1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を得ることができる。 In the reaction according to the present invention, a method for purifying 1,2-dichloro-3,3,3-trifluoropropene (1223xd) from the obtained reaction product is not particularly limited. Known purification methods can be employed. As needed, you may perform the removal process of the chlorine component and acid component which may be contained in a reaction product. Further, the moisture may be removed by performing a dehydration treatment or the like, and may be performed in combination with a removal treatment of a chlorine component or an acid component. For example, the reaction product is passed through a cooled condenser to be condensed, washed with water or / and alkaline solution to remove chlorine component, acid component, etc., dried with desiccant such as zeolite, activated carbon, etc., then ordinary distillation By operation, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) with high purity can be obtained.
 反応生成物中に未反応原料の1,1,2,3,3-ペンタクロロプロペン(1220xa)が存在する場合や、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)が副生して存在する場合、通常の蒸留操作によってこれらの化合物を反応生成物中から分離してそれぞれ回収することができる。分離された1,1,2,3,3-ペンタクロロプロペン(1220xa)は、本発明に係る反応の原料として再利用することができる。また、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)は、そのまま種々の用途に供してもよいし、シス体(1222xd(Z))およびトランス体(1222xd(E))の立体異性体の混合物として得られることがあるので、蒸留などの精製操作によりこれらの立体異性体をそれぞれ分離してから、それぞれを種々の用途に供してもよい。本発明の一態様においては、1222xdはシス体(1222xd(Z))として得られ、他の一態様においては、トランス体(1222xd(E))として得られ、さらに他の一態様においては、シス体とトランス体の混合物として得られる。 The reaction product contains unreacted raw material 1,1,2,3,3-pentachloropropene (1220xa), or 1,2,3-trichloro-3,3-difluoropropene (1222xd) When present in the raw state, these compounds can be separated and recovered from the reaction product by a normal distillation operation. The separated 1,1,2,3,3-pentachloropropene (1220xa) can be reused as a raw material for the reaction according to the present invention. In addition, 1,2,3-trichloro-3,3-difluoropropene (1222xd) may be used for various applications as it is, or as a cis form (1222xd (Z)) and a trans form (1222xd (E)). Since it may be obtained as a mixture of stereoisomers, these stereoisomers may be separated by a purification operation such as distillation and then used for various purposes. In one embodiment of the present invention, 1222xd is obtained as a cis isomer (1222xd (Z)), and in another embodiment, it is obtained as a trans isomer (1222xd (E)). It is obtained as a mixture of body and trans form.
 また、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)は、さらなるフッ素化を行うことで1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)に変換することもできる。したがって、分離された1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)は1,1,2,3,3-ペンタクロロプロペン(1220xa)と同様に反応原料として反応系に供してもよい。これにより、1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を効率的に製造することができる。 In addition, 1,2,3-trichloro-3,3-difluoropropene (1222xd) can be converted to 1,2-dichloro-3,3,3-trifluoropropene (1223xd) by further fluorination. You can also. Therefore, the separated 1,2,3-trichloro-3,3-difluoropropene (1222xd) is used as a reaction raw material in the reaction system in the same manner as 1,1,2,3,3-pentachloropropene (1220xa). Also good. As a result, 1,2-dichloro-3,3,3-trifluoropropene (1223xd) can be efficiently produced.
 本発明に係る反応において、得られた1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)は、常温、常圧で液体として存在する。本発明の一態様においては、1223xdはシス体(1223xd(Z))として得られ、あるいは、トランス体(1223xd(E))として得られ、あるいは、そのシス体とトランス体の混合物として得られる。なお、この混合物に蒸留などの精製操作を施すことにより、シス体とトランス体とをそれぞれ分離することができる。これにより、高純度の、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd(Z))、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd(E))が得られる。 In the reaction according to the present invention, the obtained 1,2-dichloro-3,3,3-trifluoropropene (1223xd) exists as a liquid at normal temperature and normal pressure. In one embodiment of the present invention, 1223xd is obtained as a cis form (1223xd (Z)), is obtained as a trans form (1223xd (E)), or is obtained as a mixture of the cis form and the trans form. The cis isomer and the trans isomer can be separated from each other by subjecting the mixture to a purification operation such as distillation. As a result, high-purity cis-1,2-dichloro-3,3,3-trifluoropropene (1223xd (Z)), trans-1,2-dichloro-3,3,3-trifluoropropene (1223xd (E)) is obtained.
 <1,1,2,3,3-ペンタクロロプロペン(1220xa)の製造方法>
 本発明に係る反応において、原料として用いられる1,1,2,3,3-ペンタクロロプロペン(1220xa)の製造方法の一例を示す。
<Method for producing 1,1,2,3,3-pentachloropropene (1220xa)>
An example of a method for producing 1,1,2,3,3-pentachloropropene (1220xa) used as a raw material in the reaction according to the present invention will be shown.
 1,1,2,3,3-ペンタクロロプロペン(1220xa)は、1,1,1,2,3,3-ヘキサクロロプロパン(230da)を、液相において、ルイス酸触媒の存在下、脱塩化水素化する工程(以下、「第3工程」と呼ぶことがある。)を少なくとも含む方法により、製造することが好ましい。 1,1,2,3,3-pentachloropropene (1220xa) dechlorinates 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase in the presence of a Lewis acid catalyst. It is preferable to produce by a method including at least a step of hydrogenation (hereinafter sometimes referred to as “third step”).
 さらに、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は、1,1,3,3-テトラクロロプロペン(1230za)を塩素によって塩素化する工程(以下、「第2工程」と呼ぶことがある。)を少なくとも含む方法により、製造することが好ましい。 Further, 1,1,1,2,3,3-hexachloropropane (230da) is a step of chlorinating 1,1,3,3-tetrachloropropene (1230za) with chlorine (hereinafter referred to as “second step”). It is preferable to manufacture by a method including at least.
 さらに、1,1,3,3-テトラクロロプロペン(1230za)は、1,1,1,3,3-ペンタクロロプロパン(240fa)を脱塩化水素化する工程(以下、「第1工程」と呼ぶことがある。)を少なくとも含む方法により、製造することが好ましい。 Further, 1,1,3,3-tetrachloropropene (1230za) is a process for dehydrochlorinating 1,1,1,3,3-pentachloropropane (240fa) (hereinafter referred to as “first process”). It is preferable to produce it by a method including at least.
 本発明に係る反応において、原料として用いるのは1,1,2,3,3-ペンタクロロプロペン(1220xa)であるため、第3工程の実施が好ましい。これに対して、第2工程は、1,1,2,3,3-ペンタクロロプロペン(1220xa)の原料である1,1,1,2,3,3-ヘキサクロロプロパン(230da)を製造する方法を提供し、第1工程は、1,1,1,2,3,3-ヘキサクロロプロパン(230da)の原料である1,1,3,3-テトラクロロプロペン(1230za)を製造する方法を提供するものであり、他の方法を採用することは妨げられない。ただし、第2工程および/または第1工程を採用することによって、1,1,1,2,3,3-ヘキサクロロプロパン(230da)を有利に製造することができる。 In the reaction according to the present invention, since 1,1,2,3,3-pentachloropropene (1220xa) is used as a raw material, the third step is preferably performed. On the other hand, the second step produces 1,1,1,2,3,3-hexachloropropane (230da), which is a raw material of 1,1,2,3,3-pentachloropropene (1220xa). The first step is a method for producing 1,1,3,3-tetrachloropropene (1230za) which is a raw material of 1,1,1,2,3,3-hexachloropropane (230da). It is provided and it is not impeded to adopt other methods. However, 1,1,1,2,3,3-hexachloropropane (230da) can be advantageously produced by employing the second step and / or the first step.
 また、第1工程および/または第2工程を、液相中で、かつルイス酸触媒存在下で行うことは、前駆体化合物(1230zaあるいは230da)を有利に得る上で、特に好ましい。 In addition, it is particularly preferable to perform the first step and / or the second step in a liquid phase and in the presence of a Lewis acid catalyst in order to advantageously obtain the precursor compound (1230za or 230da).
 また、第1工程、第2工程および第3工程をこの順で行う場合、3つの工程におけるルイス酸触媒には、全て同一のものを適用することができる。この場合、第1工程と第2工程の間、および第2工程と第3工程の間に、反応混合物からの触媒の分離操作も、触媒の追加操作も行う必要はなく、その結果として、第1工程、第2工程および前記第3工程の反応が、全て同一のルイス酸触媒の存在下で、ワンポットマルチステップ反応で、1,1,1,3,3-ペンタクロロプロパン(240fa)から1,1,2,3,3-ペンタクロロプロペン(1220xa)を合成することも可能である。 Further, when the first step, the second step, and the third step are performed in this order, the same one can be applied to the Lewis acid catalyst in the three steps. In this case, it is not necessary to perform the separation operation of the catalyst from the reaction mixture and the additional operation of the catalyst between the first step and the second step, and between the second step and the third step. The reactions of the first step, the second step and the third step are all carried out in a one-pot multistep reaction in the presence of the same Lewis acid catalyst from 1,1,1,3,3-pentachloropropane (240fa) to 1, It is also possible to synthesize 1,2,3,3-pentachloropropene (1220xa).
 なお、第1~第3工程の全工程に共通することとして、「水分」について述べる。第1~第3工程の反応ともに、水が積極的に反応に関与するわけではないから、本発明において、反応系中に水を添加する積極的な理由はない。特にルイス酸触媒存在下でこれらの反応を行う場合には、ルイス酸の活性を高めるために、「水分」は可能な限り低い(一般に無水条件と言われる)条件で、反応を行うことが好ましい。しかし、反応液の全質量に対して1質量%の水が存在する程度であれば、ルイス酸の活性は十分維持される。よって、水の含量は、反応液の全質量に対して1質量%以下に保つことが望ましい。水の含量は反応液の全質量に対して0.1質量%以下であれば、さらに好ましい。 In addition, “moisture” is described as common to all the first to third steps. In the reactions in the first to third steps, water does not actively participate in the reaction. Therefore, in the present invention, there is no positive reason for adding water to the reaction system. In particular, when these reactions are carried out in the presence of a Lewis acid catalyst, it is preferable to carry out the reaction under conditions where “moisture” is as low as possible (generally referred to as anhydrous conditions) in order to increase the activity of the Lewis acid. . However, the activity of the Lewis acid is sufficiently maintained as long as 1% by mass of water is present with respect to the total mass of the reaction solution. Therefore, it is desirable to keep the water content at 1% by mass or less with respect to the total mass of the reaction solution. The water content is more preferably 0.1% by mass or less with respect to the total mass of the reaction solution.
 また、前記第1~第3工程の何れの反応についても、溶媒は必要でない。これらの反応を液相反応で行う場合、原料/生成物である1,1,1,3,3-ペンタクロロプロパン(240fa)、1,1,3,3-テトラクロロプロペン(1230za)、1,1,1,2,3,3-ヘキサクロロプロパン(230da)、1,1,2,3,3-ペンタクロロプロペン(1220xa)は何れも、それ自体が安定な液相を形成し、これらを主成分とする液相中で、目的とする反応は進行する。 Further, no solvent is required for any of the reactions in the first to third steps. When these reactions are carried out in a liquid phase reaction, the raw materials / products 1,1,1,3,3-pentachloropropane (240fa), 1,1,3,3-tetrachloropropene (1230za), 1, Both 1,1,2,3,3-hexachloropropane (230da) and 1,1,2,3,3-pentachloropropene (1220xa) themselves form a stable liquid phase, The target reaction proceeds in the liquid phase as a component.
 さらに、第1~第3工程の全反応に共通することとして、本発明の実施に際して、不活性ガス(窒素ガス、アルゴンガス等)存在下での実施は、必須ではない。しかし、窒素ガスを流通しながら反応を行うと、特に大きな規模で反応を実施するときには、より円滑な反応が行えることがある。このような最適な反応の実施態様は、当業者の知識によって適宜設定することができる。 Furthermore, as common to all reactions in the first to third steps, it is not essential to carry out the present invention in the presence of an inert gas (nitrogen gas, argon gas, etc.). However, when the reaction is performed while flowing nitrogen gas, a smoother reaction may be performed particularly when the reaction is performed on a large scale. Such an optimal reaction embodiment can be appropriately set according to the knowledge of those skilled in the art.
 以下、第1~第3工程について、工程ごとに説明を行う。 Hereinafter, the first to third steps will be described for each step.
 [1]第1工程について
 第1工程は、1,1,1,3,3-ペンタクロロプロパン(240fa)を脱塩化水素化して1,1,3,3-テトラクロロプロペン(1230za)を得る工程である。第1工程の出発原料である1,1,1,3,3-ペンタクロロプロパン(240fa)は、現在、発泡剤として工業的に製造されている1,1,1,3,3-ペンタフルオロプロパン(245fa)の出発原料であり、四塩化炭素と塩化ビニルを触媒存在下で反応させることによって合成可能である(例えば米国特許公報7094936号を参照)。
[1] Regarding the first step The first step is a step of dehydrochlorinating 1,1,1,3,3-pentachloropropane (240fa) to obtain 1,1,3,3-tetrachloropropene (1230za). It is. 1,1,1,3,3-pentachloropropane (240fa) which is the starting material of the first step is 1,1,1,3,3-pentafluoropropane which is currently industrially produced as a blowing agent (245fa), which can be synthesized by reacting carbon tetrachloride and vinyl chloride in the presence of a catalyst (see, for example, US Pat. No. 7,094,936).
 第1工程の反応は、日本国特許第4855550号公報に記載の方法(気相中、無触媒下での反応)、米国特許公報7094936号に記載の方法(液相中、ルイス酸触媒存在下での反応)の何れをも採用することができる。しかし、日本国特許第4855550号公報に記載の方法では、500℃程度の高い温度が要求されるため、反応器に対する負荷が概して大きい。これに対し、米国特許公報7094936号に記載の方法は、70℃程度の温度でも円滑に脱塩化水素化反応が進行するため、一般には米国特許公報7094936号に記載の方法の方が、より好ましい。そこで、以下の説明では、より好ましい態様である「液相中、ルイス酸触媒存在下」における第1工程の反応について、説明する。 The reaction in the first step is carried out by the method described in Japanese Patent No. 4855550 (reaction in the gas phase in the absence of a catalyst) or the method described in US Pat. No. 7,094,936 (in the liquid phase in the presence of a Lewis acid catalyst). Any of the above reactions can be employed. However, in the method described in Japanese Patent No. 4855550, a high temperature of about 500 ° C. is required, so that the load on the reactor is generally large. On the other hand, since the dehydrochlorination reaction proceeds smoothly even at a temperature of about 70 ° C., the method described in US Pat. No. 7,094,936 is generally more preferable to the method described in US Pat. . Therefore, in the following description, the reaction in the first step in “a liquid phase in the presence of a Lewis acid catalyst”, which is a more preferable embodiment, will be described.
 反応器は特に制限がないが、塩化水素が発生する反応であるので、耐酸性を持つ反応器を使用することが好ましい。具体的には、ガラス製またはステンレススチール製のもの、さらには、ガラスや樹脂でライニングされた反応器が好ましい。反応器は攪拌設備、還流塔を有するものが良い。第1工程と第2工程を同一釜で行う場合は、塩素が導入可能な吹き込み管を有するものが好ましい。また、この「液相中、ルイス酸触媒存在下」の反応の場合、後述の通り、反応温度は200℃ないしそれ以下で十分進行する。これは、1,1,1,3,3-ペンタクロロプロパン(240fa)や1,1,3,3-テトラクロロプロペン(1230za)の沸点(それぞれ179℃、149℃)に比べて必ずしも高くないので、還流塔を備えていれば、常圧において反応混合物を液体状態に保てるので、常圧(開放系)の状態で、反応を実施することができる。しかし、加圧反応器を用いて反応を行い、発生する塩化水素を適時パージする、という方法も妨げられない。 Although the reactor is not particularly limited, it is preferable to use a reactor having acid resistance because hydrogen chloride is generated. Specifically, a reactor made of glass or stainless steel, and a reactor lined with glass or resin is preferable. The reactor preferably has a stirring facility and a reflux tower. When the first step and the second step are performed in the same kettle, it is preferable to have a blow tube into which chlorine can be introduced. In the case of the reaction “in the liquid phase and in the presence of a Lewis acid catalyst”, the reaction proceeds sufficiently at a reaction temperature of 200 ° C. or lower as described later. This is not necessarily higher than the boiling points of 1,1,1,3,3-pentachloropropane (240fa) and 1,1,3,3-tetrachloropropene (1230za) (179 ° C and 149 ° C, respectively). If a reflux tower is provided, the reaction mixture can be kept in a liquid state at normal pressure, so that the reaction can be carried out at normal pressure (open system). However, the method of performing the reaction using a pressurized reactor and purging the generated hydrogen chloride in a timely manner is not impeded.
 ルイス酸触媒としては、金属のハロゲン化物が例示される。金属のハロゲン化物とは、金属原子とハロゲン原子の結合を有するものを指す。IR、XRD、XPS等によって金属原子-ハロゲン原子の結合が確認されれば本発明の触媒として使用可能である。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物が好ましい。これらの中でも塩化物が好ましく、アルミニウム、鉄、スズおよびアンチモンからなる群より選ばれる少なくとも1種の金属の塩化物が特に好ましい。塩化アルミニウムと塩化鉄が一層好ましく、塩化鉄の場合は塩化第二鉄が好ましい。触媒は無水のものが、触媒活性が高いから好ましい。市販の無水物をそのまま使用しても良いが、水和物を塩化チオニルで処理して無水物を得ることもできる。 Examples of Lewis acid catalysts include metal halides. The metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. Certain metal halides are preferred. Among these, a chloride is preferable, and a chloride of at least one metal selected from the group consisting of aluminum, iron, tin, and antimony is particularly preferable. Aluminum chloride and iron chloride are more preferred. In the case of iron chloride, ferric chloride is preferred. An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
 第1工程の液相、ルイス酸触媒(「第1のルイス酸触媒」と呼ぶことがある。)存在下での実施に際しては、金属ハロゲン化物を直接ルイス酸触媒として使用することが簡便であるが、当業者の所望により、これらの金属の硝酸塩、炭酸塩等や0価金属粉末を、予め塩化水素処理することによって、活性な金属ハロゲン化物に誘導し、これをルイス酸触媒として用いることも可能である。1,1,1,3,3-ペンタクロロプロパン(240fa)の脱塩化水素反応によって発生する塩化水素により、0価の金属粉末や硝酸塩等を活性の高い塩化物に誘導することも可能である。 When performing in the presence of a liquid phase, Lewis acid catalyst (sometimes referred to as “first Lewis acid catalyst”) in the first step, it is convenient to use a metal halide directly as a Lewis acid catalyst. However, as desired by those skilled in the art, nitrates, carbonates, and the like of these metals and zero-valent metal powders are preliminarily treated with hydrogen chloride to obtain active metal halides, which can be used as Lewis acid catalysts. Is possible. It is also possible to induce zero-valent metal powder, nitrates, and the like into highly active chlorides by hydrogen chloride generated by dehydrochlorination of 1,1,1,3,3-pentachloropropane (240fa).
 ルイス酸触媒(第1のルイス酸触媒)の量は、触媒の種類や反応温度等の操業条件によって最適値が変化するが、原料の有機物に対して0.01~10mol%、より好ましくは0.1~5mol%である。これよりも少ないと反応速度が遅くなって生産性が低下し、これよりも多いと資源が無駄となるだけなく、予期せぬ副反応が起こりうるので好ましくない。 The optimum amount of the Lewis acid catalyst (first Lewis acid catalyst) varies depending on the operating conditions such as the type of catalyst and reaction temperature, but is 0.01 to 10 mol%, more preferably 0, relative to the organic material of the raw material. 1 to 5 mol%. If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
 「液相中、ルイス酸触媒存在下」に第1工程の反応を行う場合の反応温度は通常40~200℃であり、より好ましくは45~120℃である。最適な温度はルイス酸触媒の種類にも若干依存し、塩化アルミニウムの場合は、40~100℃(典型的には50~80℃)が特に好ましく、塩化第二鉄の場合は、これより若干高い70~110℃(典型的には70~80℃)が特に好ましい。これらの範囲よりも低い場合は、反応速度が遅くなり生産性が低下し、これよりも高い場合は、高沸点の副生物の生成が増えて、1,1,3,3-テトラクロロプロペン(1230za)の選択率が低下することがある。 The reaction temperature when the reaction in the first step is carried out “in the liquid phase in the presence of a Lewis acid catalyst” is usually 40 to 200 ° C., more preferably 45 to 120 ° C. The optimum temperature depends somewhat on the type of Lewis acid catalyst, and in the case of aluminum chloride, 40 to 100 ° C. (typically 50 to 80 ° C.) is particularly preferable, and in the case of ferric chloride, it is slightly higher than this. A high 70-110 ° C. (typically 70-80 ° C.) is particularly preferred. Below these ranges, the reaction rate slows down and productivity decreases, and above this range, the production of high-boiling by-products increases and 1,1,3,3-tetrachloropropene ( The selectivity of 1230za) may decrease.
 好ましい反応例として、ガラス製もしくはガラスライニング製の反応器に触媒と240faを仕込み、攪拌しながら加熱すると塩化水素が発生するので、水(水道水、工水等)を流通させた還流塔によって、塩化水素だけを排出させる方法が挙げられる。 As a preferred reaction example, a catalyst made of glass or glass lining is charged with catalyst and 240fa and heated with stirring, so that hydrogen chloride is generated. Therefore, by a reflux tower in which water (tap water, industrial water, etc.) is circulated, A method of discharging only hydrogen chloride can be mentioned.
 このような液相反応で第1工程を実施する場合には、反応器内部の液相が、時間の経過とともに目的物である1,1,3,3-テトラクロロプロペン(1230za)に置き換わっていく。ガスクロマトグラフ分析等によって、反応の進捗を測定しつつ、1,1,1,3,3-ペンタクロロプロパン(240fa)がほぼ消費されたところで反応を終了することが好ましい。 When the first step is performed by such a liquid phase reaction, the liquid phase inside the reactor is replaced with the target 1,1,3,3-tetrachloropropene (1230za) over time. Go. It is preferable to terminate the reaction when 1,1,1,3,3-pentachloropropane (240fa) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
 前述したように、第1工程の反応は、気相中かつ無触媒において実施することも妨げられない。この無触媒反応の場合、反応温度は通常350~550℃となり、高温のため装置への負荷が概して大きくなるが、流通式の反応であるため、大量規模で1,1,3,3-テトラクロロプロペン(1230za)を製造する場合に、有利なことがある。ただし、この方法は無触媒の方法であるから、第1工程として当該方法を採用すると、「第1工程~第3工程」までを液相中で、「共通のルイス酸触媒を用いて、ワンポットマルチステップ反応で実施する」という「1,1,2,3,3-ペンタクロロプロペン(1220xa)の特に好ましい生産態様」とは相容れないものとなる。 As described above, the reaction in the first step is not prevented from being carried out in the gas phase and without a catalyst. In the case of this non-catalytic reaction, the reaction temperature is usually 350 to 550 ° C., and the load on the apparatus is generally large due to the high temperature. However, since it is a flow-type reaction, 1,1,3,3-tetra It may be advantageous when producing chloropropene (1230za). However, since this method is a non-catalytic method, when the method is adopted as the first step, the steps from “first step to third step” are performed in the liquid phase, “one-pot using a common Lewis acid catalyst”. This is incompatible with “a particularly preferred production mode of 1,1,2,3,3-pentachloropropene (1220xa)”, which is “performed in a multistep reaction”.
 なお、第1工程によって合成された1,1,3,3-テトラクロロプロペン(1230za)は、触媒の分離、蒸留精製といった後処理を行うことなく、続く第2工程の原料として供することができる。触媒の分離や、蒸留精製を行うことは妨げられるものではないが、これらの処理を行うことなく、連続して各工程を実施できる点も本発明の大きなメリットの1つであるので、そのような後処理を行わないことは、好ましい一態様である。 The 1,1,3,3-tetrachloropropene (1230za) synthesized in the first step can be used as a raw material for the subsequent second step without performing post-treatment such as catalyst separation and distillation purification. . Although separation of the catalyst and distillation purification are not hindered, one of the great advantages of the present invention is that each step can be carried out continuously without performing these treatments. It is a preferable aspect that no post-treatment is performed.
 [2]第2工程について
 第2工程は、1,1,3,3-テトラクロロプロペン(1230za)を塩素(Cl2)によって塩素化し、1,1,1,2,3,3-ヘキサクロロプロパン(230da)に変換する工程である。
[2] Second Step In the second step, 1,1,3,3-tetrachloropropene (1230za) is chlorinated with chlorine (Cl 2 ) to obtain 1,1,1,2,3,3-hexachloropropane. This is a step of converting to (230 da).
 第2工程の反応としては、前掲の日本国特許第4855550号公報には次の2つの方法:
(a)気相中、無触媒下の反応、
(b)液相中、無触媒下の反応、
が開示されており、第2工程に際しては、そのどちらをも採用することができる。
 しかし、本発明者らは、第2工程の方法として、別の方法、すなわち、
(c)液相中、ルイス酸触媒存在下の反応
を見出し、この(c)の方法を採用すると、より低い温度でも第2工程の反応の速度が高まるという事実を見出した。この結果、第2工程における不純物の副生が起こりにくく、1,1,1,2,3,3-ヘキサクロロプロパン(230da)を効率的に製造できることとなった。そこで、ここでは、当該(c)の方法について詳述を行う。
As the reaction in the second step, the above-mentioned Japanese Patent No. 4855550 discloses the following two methods:
(A) reaction in the gas phase, without catalyst,
(B) reaction without catalyst in the liquid phase,
Both of them can be employed in the second step.
However, the present inventors have used another method as the method of the second step, that is,
(C) In the liquid phase, a reaction in the presence of a Lewis acid catalyst was found, and when the method (c) was adopted, it was found that the reaction rate in the second step was increased even at a lower temperature. As a result, the by-product of impurities in the second step hardly occurs, and 1,1,1,2,3,3-hexachloropropane (230da) can be efficiently produced. Therefore, here, the method (c) will be described in detail.
 第2工程の反応を(c)の方法で行う場合、反応は、ルイス酸触媒(「第2のルイス酸触媒」と呼ぶことがある。)存在下で、液体状態の1,1,3,3-テトラクロロプロペン(1230za)に対して塩素ガス(Cl2)を吹き込むことによって進行する。原料である1,1,3,3-テトラクロロプロペン(1230za)は第1工程で製造されたものを精製することなく、そのまま使用することが可能であるが、別の方法により製造された1,1,3,3-テトラクロロプロペン(1230za)や、別途高純度に精製された1,1,3,3-テトラクロロプロペン(1230za)を用いることも妨げられない。 When the reaction in the second step is performed by the method (c), the reaction is performed in the presence of a Lewis acid catalyst (sometimes referred to as “second Lewis acid catalyst”) in the liquid state 1,1,3,3. The process proceeds by blowing chlorine gas (Cl 2 ) into 3-tetrachloropropene (1230za). The raw material 1,1,3,3-tetrachloropropene (1230za) can be used as it is without purifying the one produced in the first step. , 1,3,3-tetrachloropropene (1230za) and separately purified 1,1,3,3-tetrachloropropene (1230za) are not hindered.
 反応器(反応装置)の材質は特に制限はない。酸化性の強い塩素ガスを使用するためガラス製またはステンレススチール製のものが好ましい。また、ガラスや樹脂でライニングされた反応器も好ましい。さらに、反応器は吹き込み管、攪拌設備、還流塔を有するものが好ましい。第1工程と同一仕様の反応釜も使用可能である。 The material of the reactor (reactor) is not particularly limited. Glass or stainless steel is preferred because it uses highly oxidizing chlorine gas. A reactor lined with glass or resin is also preferred. Furthermore, it is preferable that the reactor has a blowing tube, stirring equipment, and a reflux tower. A reaction kettle with the same specifications as in the first step can also be used.
 第2工程の反応を(c)の方法で行う場合、ルイス酸触媒(第2のルイス酸触媒)としては、金属のハロゲン化物が例示される。金属のハロゲン化物とは、金属原子とハロゲン原子の結合を有するものを指す。IR、XRD、XPS等によって金属原子-ハロゲン原子の結合が確認されれば本発明の触媒として使用可能である。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物が好ましい。これらの中でも塩化物が好ましく、中でもアルミニウム、鉄、スズおよびアンチモンからなる群より選ばれる少なくとも1種の金属の塩化物が好ましい。塩化アルミニウムと塩化鉄が特に好ましく、塩化鉄の場合は塩化第二鉄がより好ましい。触媒は無水のものが、触媒活性が高いから好ましい。市販の無水物をそのまま使用しても良いが、水和物を塩化チオニルで処理して無水物を得ることもできる。 When the reaction in the second step is performed by the method (c), examples of the Lewis acid catalyst (second Lewis acid catalyst) include metal halides. The metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. Certain metal halides are preferred. Among these, chloride is preferable, and at least one metal chloride selected from the group consisting of aluminum, iron, tin, and antimony is preferable. Aluminum chloride and iron chloride are particularly preferred, and in the case of iron chloride, ferric chloride is more preferred. An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
 第2工程を液相中、ルイス酸触媒存在下で実施するにあたっては、金属ハロゲン化物を直接ルイス酸触媒として使用することが簡便であるが、当業者の所望により、これらの金属の硝酸塩、炭酸塩等や0価金属粉末を、予め塩化水素処理することによって、活性な金属ハロゲン化物に誘導し、これをルイス酸触媒として用いることも可能である。第1工程と同様に、塩化水素により、0価の金属粉末や硝酸塩等を活性の高い塩化物に誘導することも可能である。 In carrying out the second step in the presence of a Lewis acid catalyst in the liquid phase, it is convenient to use a metal halide directly as a Lewis acid catalyst. A salt or the like or zero-valent metal powder is previously treated with hydrogen chloride to be converted into an active metal halide, which can be used as a Lewis acid catalyst. Similarly to the first step, it is also possible to induce zero-valent metal powder, nitrate or the like into highly active chloride by hydrogen chloride.
 ルイス酸触媒の量は、触媒の種類や反応温度等の操業条件によって最適値が変化するが、原料の有機物に対して0.01~10mol%、より好ましくは0.1~5mol%が推奨される。これよりも少ないと反応速度が遅くなって生産性が低下し、これよりも多いと資源が無駄となるだけなく、予期せぬ副反応が起こりうるので好ましくない。 The optimum amount of the Lewis acid catalyst varies depending on the operating conditions such as the type of catalyst and reaction temperature, but 0.01 to 10 mol%, more preferably 0.1 to 5 mol% is recommended with respect to the organic material of the raw material. The If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
 既に説明したように、第1工程をルイス酸触媒(第1のルイス酸触媒)存在下で実施し、かつ、第2工程を第1工程に引き続いて行う場合には、第1工程で用いたルイス酸触媒(第1のルイス酸触媒)を系内から分離回収することなく、第2工程のルイス酸触媒(第2のルイス酸触媒)として再度利用することも可能である。その場合、第2工程において新たなルイス酸触媒の追加は必要でない。もっとも、反応速度をより高める目的で、第2工程において、ルイス酸触媒を追加することも妨げられない。 As already explained, when the first step was carried out in the presence of a Lewis acid catalyst (first Lewis acid catalyst) and the second step was carried out following the first step, it was used in the first step. The Lewis acid catalyst (first Lewis acid catalyst) can be reused as the Lewis acid catalyst (second Lewis acid catalyst) in the second step without being separated and recovered from the system. In that case, it is not necessary to add a new Lewis acid catalyst in the second step. However, the addition of a Lewis acid catalyst in the second step is not prevented in order to increase the reaction rate.
 第2工程を液相中、ルイス酸触媒存在下で実施する場合の反応温度は、-20~+110℃が好ましく、より好ましくは0~60℃である。この範囲よりも低い場合は、反応速度が遅くなり生産性が低下することがあり、これよりも高い場合は、「不純物」の副生が増えて、1,1,1,2,3,3-ヘキサクロロプロパン(230da)の選択率が低下することがある。前述のように、第2工程をあまり高い温度で実施したり、あまり長時間実施したりすると、高沸点の「不純物」の副生が有意に見られるようになる(ガスクロマトグラフ上の選択率も低下)。このような「不純物」の生成を極力避けるために、第2工程は、目的とする反応が十分な速度で進行する範囲で、なるべく低い温度で反応を実施することが望ましく、触媒量その他の条件に応じて、そのような温度を当業者の知識で最適化することができる。 The reaction temperature when the second step is carried out in the liquid phase in the presence of a Lewis acid catalyst is preferably −20 to + 110 ° C., more preferably 0 to 60 ° C. If it is lower than this range, the reaction rate may be slow and productivity may be reduced. If it is higher than this range, by-product of “impurities” will increase and 1,1,1,2,3,3 -Selectivity of hexachloropropane (230da) may decrease. As described above, if the second step is performed at a very high temperature or for a long time, a by-product of high-impurity “impurities” can be seen significantly (the selectivity on the gas chromatograph is also high). Decline). In order to avoid the generation of such “impurities” as much as possible, it is desirable that the second step be carried out at a temperature as low as possible within the range in which the target reaction proceeds at a sufficient rate. Accordingly, such temperatures can be optimized with the knowledge of one skilled in the art.
 第2工程を液相中、ルイス酸触媒存在下で実施する場合、反応温度は、前記第1工程を液相中、ルイス酸触媒存在下で実施する場合よりも低い温度で十分に進行することが多く、第1工程よりも低い温度で第2工程を実施することが好ましい。 When the second step is carried out in the liquid phase in the presence of a Lewis acid catalyst, the reaction temperature should proceed sufficiently at a lower temperature than when the first step is carried out in the liquid phase in the presence of a Lewis acid catalyst. The second step is preferably performed at a lower temperature than the first step.
 さらに第2工程を液相中、ルイス酸触媒存在下で実施する場合、反応温度は、後述の第3工程を液相中、ルイス酸触媒存在下で実施する場合よりも低い温度で十分に進行することが多く、第3工程よりも低い温度で第2工程を実施することが好ましい。特に第3工程の反応は、元来、第2工程の反応と同時並行的に進行し得るものであるが、第2工程の反応を実施する際には、敢えて第3工程の反応が有意に進行しない程度の低い温度で実施する方が、前記「不純物」の生成を抑制でき、工程管理をより行いやすいことが多い。 Furthermore, when the second step is carried out in the presence of a Lewis acid catalyst in the liquid phase, the reaction temperature proceeds sufficiently at a lower temperature than when the third step described later is carried out in the presence of a Lewis acid catalyst in the liquid phase. In many cases, the second step is preferably performed at a temperature lower than that of the third step. In particular, the reaction in the third step can originally proceed in parallel with the reaction in the second step. However, when the reaction in the second step is performed, the reaction in the third step is significant. When the temperature is low enough not to proceed, the generation of the “impurities” can be suppressed, and the process management is often easier.
 第2工程を(c)の方法で実施する場合の好ましい反応例として、ガラス製もしくはガラスライニング製の反応器に触媒と1,1,3,3-テトラクロロプロペン(1230za)を仕込み、攪拌しながら、吹き込み管を通して塩素ガスを吹き込み、水(水道水、工水等)を流通させた還流塔によって、有機物だけを還流させて、未反応のガスのみを排出させる方法が挙げられる。なお、第2工程を(c)の方法で実施するにあたって、密閉式の反応器に塩素ガスを導入して反応を行うことも妨げられないが、発熱反応であり、比較的大きな速度で反応が進行することから、反応の制御には注意が必要である。 As a preferred reaction example when the second step is carried out by the method (c), a catalyst and 1,1,3,3-tetrachloropropene (1230za) are charged into a glass or glass lining reactor and stirred. On the other hand, there is a method in which chlorine gas is blown through a blow pipe and only organic substances are refluxed by a reflux tower in which water (tap water, industrial water, etc.) is circulated, and only unreacted gas is discharged. In carrying out the second step by the method (c), it is not hindered to introduce chlorine gas into the sealed reactor, but the reaction is exothermic, and the reaction takes place at a relatively high rate. Care must be taken to control the reaction as it progresses.
 なお、耐圧容器を用いて加圧下で(c)の方法の反応を行うことも妨げられないが、前述の通り、この方法で第2工程を行う場合、反応温度は十分に低いため、通常は常圧条件で反応を行うことが簡便で好ましい。 Although it is not hindered to perform the reaction of the method (c) under pressure using a pressure vessel, as described above, when the second step is performed by this method, the reaction temperature is sufficiently low. It is convenient and preferable to carry out the reaction under normal pressure conditions.
 同業者の所望により、塩素化反応を加速するために、光(紫外線)を照射することも可能である。また、ラジカル開始剤を添加することも可能であるが、特段必要でなく、添加した場合、最終的にラジカル開始剤と生成物の分離が煩雑になることがある。 It is also possible to irradiate with light (ultraviolet rays) to accelerate the chlorination reaction as desired by the same person. Although a radical initiator can be added, it is not particularly necessary, and when added, the separation of the radical initiator and the product may be complicated finally.
 第2工程においては、反応器内部の液相部の1,1,3,3-テトラクロロプロペン(1230za)が、時間の経過とともに目的物である1,1,1,2,3,3-ヘキサクロロプロパン(230da)に置き換わっていく。ガスクロマトグラフ分析等によって、反応の進捗を測定しつつ、原料の1,1,3,3-テトラクロロプロペン(1230za)がほぼ消費されたところで反応を終了することが好ましい。 In the second step, 1,1,3,3-tetrachloropropene (1230za) in the liquid phase inside the reactor is converted to 1,1,1,2,3,3-3- Hexachloropropane (230da) will be replaced. It is preferable to terminate the reaction when the raw material 1,1,3,3-tetrachloropropene (1230za) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
 前述したように、第2工程としては、(a)気相中かつ無触媒での反応、或いは(b)液相中かつ無触媒下の反応、も妨げられない。 As described above, as the second step, (a) reaction in the gas phase and without catalyst, or (b) reaction in the liquid phase and without catalyst is not hindered.
 (a)の場合、反応温度は通常1,1,3,3-テトラクロロプロペン(1230za)の沸点(約149℃)~280℃が採用でき、(b)の場合、反応温度は通常50~120℃が採用できる。 In the case of (a), the reaction temperature is usually 1,1,3,3-tetrachloropropene (1230za) boiling point (about 149 ° C.) to 280 ° C., and in the case of (b), the reaction temperature is usually 50 to 120 ° C. can be employed.
 (a)の方法を採用する場合、長時間、1,1,3,3-テトラクロロプロペン(1230za)を高い温度下に晒すと、不純物の生成が増加する傾向にあるので、当業者による最適化により、反応時間(加熱時間)を調節する(好ましくは1~40秒間程度)ことが好ましい。(a)の方法を採る場合、装置への負荷が概して大きくなるが、流通式の反応であるため、大量規模で1,1,1,2,3,3-ヘキサクロロプロパン(230da)を製造する場合に、有利なことがある。ただし、この方法を採用すると、「第1工程~第3工程」までを「液相中で、同一の触媒を用いて、ワンポットマルチステップ反応で実施する」という、1,1,2,3,3-ペンタクロロプロペン(1220xa)の特に好ましい生産態様とは相容れないものとなる。 When the method (a) is adopted, exposure to 1,1,3,3-tetrachloropropene (1230za) at a high temperature for a long time tends to increase the generation of impurities. The reaction time (heating time) is preferably adjusted (preferably about 1 to 40 seconds) by the conversion. When the method (a) is adopted, the load on the apparatus is generally increased, but since it is a flow reaction, 1,1,1,2,3,3-hexachloropropane (230da) is produced on a large scale. In some cases, it may be advantageous. However, when this method is adopted, “first to third steps” are performed in a one-pot multi-step reaction using the same catalyst in the liquid phase. This is incompatible with the particularly preferred production mode of 3-pentachloropropene (1220xa).
 一方、(b)の方法を採用する場合、上述の(c)の方法に比べて、一見して、好適な温度範囲に違いは無い様に見えるが、(c)の方法に比べると、同一温度では長い反応時間を要する傾向があり、(b)の方法の方が高沸点の「不純物」が生成しやすい。また無触媒反応であるから、やはり「第1工程~第3工程」までを液相中で、ワンポットマルチステップ反応で実施するという、1220xaの特に好ましい生産態様とは相容れないものとなる。 On the other hand, when the method (b) is adopted, it seems that there is no difference in the preferable temperature range at first glance compared to the method (c) described above, but it is the same as the method (c). Temperature tends to require a long reaction time, and the method (b) tends to generate “impurities” having a high boiling point. Further, since it is a non-catalytic reaction, it is also incompatible with the particularly preferable production mode of 1220xa, in which “first step to third step” is carried out in a liquid phase by a one-pot multi-step reaction.
 よって、第2工程としては、上述の通り(c)の方法(液相中かつルイス酸触媒存在下の反応)を採用することが特に好ましい。 Therefore, as the second step, it is particularly preferable to employ the method (c) (reaction in the liquid phase and in the presence of the Lewis acid catalyst) as described above.
 なお、第2工程によって合成された1,1,1,2,3,3-ヘキサクロロプロパン(230da)は、触媒の分離、蒸留精製といった後処理を行うことなく、続く第3工程の原料として供することができる。触媒の分離や、蒸留精製を行うことは妨げられるものではないが、これらの処理を行うことなく、連続して各工程を実施できる点も本発明の大きなメリットの1つであるので、そのような後処理を行わないことは、好ましい一態様である。 The 1,1,1,2,3,3-hexachloropropane (230da) synthesized in the second step is used as a raw material for the subsequent third step without performing post-treatment such as catalyst separation and distillation purification. be able to. Although separation of the catalyst and distillation purification are not hindered, one of the great advantages of the present invention is that each step can be carried out continuously without performing these treatments. It is a preferable aspect that no post-treatment is performed.
 [3]第3工程について
 第3工程は、1,1,1,2,3,3-ヘキサクロロプロパン(230da)を、液相において、ルイス酸触媒(「第3のルイス酸触媒」と呼ぶことがある。)の存在下、脱塩化水素化して1,1,2,3,3-ペンタクロロプロペン(1220xa)を得る工程である。
[3] Regarding the third step In the third step, 1,1,1,2,3,3-hexachloropropane (230da) is referred to as a Lewis acid catalyst (“third Lewis acid catalyst”) in the liquid phase. In the presence of 1), 1,2,3,3-pentachloropropene (1220xa).
 第3工程は、1,1,1,2,3,3-ヘキサクロロプロパン(230da)を液相で、ルイス酸触媒の存在下で、加熱することによって進行する。反応器には特に制限がないが塩化水素が発生するのでガラス製またはステンレススチール製のものが好ましい。もちろん、ガラスや樹脂でライニングされた反応器も好ましい。反応器は攪拌設備、還流塔を有するものが良い。 The third step proceeds by heating 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase in the presence of a Lewis acid catalyst. Although there is no restriction | limiting in particular in a reactor, Since hydrogen chloride generate | occur | produces, the thing made from glass or stainless steel is preferable. Of course, a reactor lined with glass or resin is also preferred. The reactor preferably has a stirring facility and a reflux tower.
 前記第2工程と同一の反応器を引き続き用いることもでき、第2工程で好適に採用された、塩素が導入可能な吹き込み管を有する反応器を、第3工程においても引き続き使用することができる。この場合、第2工程において系内に導入された塩素ガスを不活性ガスで置換する必要はなく、塩素ガスが残存する状態でも、第3工程の反応自体は問題なく進行する。これに対して、第2工程とは異なる反応器を用いる場合には、塩素ガスを不活性ガスで置換してから、第3工程を行うことも、有効な方法である。 The same reactor as in the second step can be used continuously, and the reactor having a blow-in tube into which chlorine can be introduced, which is preferably employed in the second step, can be used in the third step. . In this case, it is not necessary to replace the chlorine gas introduced into the system in the second step with an inert gas, and the reaction in the third step proceeds without any problem even when the chlorine gas remains. On the other hand, when a reactor different from the second step is used, it is also an effective method to perform the third step after replacing the chlorine gas with an inert gas.
 第3工程に用いるルイス酸触媒(第3のルイス酸触媒)としては、金属のハロゲン化物が例示される。金属のハロゲン化物とは、金属原子とハロゲン原子の結合を有するものを指す。IR、XRD、XPS等によって金属原子-ハロゲン原子の結合が確認されれば本発明の触媒として使用可能である。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物が好ましい。これらの中でも塩化物が好ましく、中でもアルミニウム、鉄、スズおよびアンチモンからなる群より選ばれる少なくとも1種の金属の塩化物が好ましい。塩化アルミニウムと塩化鉄が特に好ましく、塩化鉄の場合は塩化第二鉄がより好ましい。触媒は無水のものが、触媒活性が高いから好ましい。市販の無水物をそのまま使用しても良いが、水和物を塩化チオニルで処理して無水物を得ることもできる。 As the Lewis acid catalyst (third Lewis acid catalyst) used in the third step, a metal halide is exemplified. The metal halide refers to one having a bond between a metal atom and a halogen atom. If the bond between metal atom and halogen atom is confirmed by IR, XRD, XPS, etc., it can be used as the catalyst of the present invention. Specifically, at least one selected from the group consisting of aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten. Certain metal halides are preferred. Among these, chloride is preferable, and at least one metal chloride selected from the group consisting of aluminum, iron, tin, and antimony is preferable. Aluminum chloride and iron chloride are particularly preferred, and in the case of iron chloride, ferric chloride is more preferred. An anhydrous catalyst is preferable because of its high catalytic activity. A commercially available anhydride may be used as it is, but the hydrate can be treated with thionyl chloride to obtain the anhydride.
 第3工程を実施するにあたっては、金属ハロゲン化物を直接ルイス酸触媒として使用することが簡便であるが、当業者の所望により、これらの金属の硝酸塩、炭酸塩等や0価金属粉末を、予め塩化水素処理することによって、活性な金属ハロゲン化物に誘導し、これをルイス酸触媒として用いることも可能である。第1工程、第2工程と同様に、塩化水素により、0価の金属粉末や硝酸塩等を活性の高い塩化物に誘導することも可能である。 In carrying out the third step, it is convenient to use a metal halide directly as a Lewis acid catalyst. However, according to the desire of those skilled in the art, nitrates, carbonates, etc. of these metals and zero-valent metal powders may be used in advance. By treating with hydrogen chloride, an active metal halide can be derived and used as a Lewis acid catalyst. Similarly to the first step and the second step, it is possible to induce zero-valent metal powder, nitrate, or the like into a highly active chloride by hydrogen chloride.
 第3工程におけるルイス酸触媒の量は、触媒の種類や反応温度等の操業条件によって最適値が変化するが、原料の有機物に対して0.01~10mol%、より好ましくは0.1~5mol%である。これよりも少ないと反応速度が遅くなって生産性が低下し、これよりも多いと資源が無駄となるだけなく、予期せぬ副反応が起こり得るので好ましくない。 The optimum amount of the Lewis acid catalyst in the third step varies depending on the operating conditions such as the type of catalyst and reaction temperature, but is 0.01 to 10 mol%, more preferably 0.1 to 5 mol% relative to the organic material of the raw material. %. If it is less than this, the reaction rate becomes slow and the productivity is lowered. If it is more than this, not only is the resource wasted, but an unexpected side reaction can occur, which is not preferable.
 反応温度は通常50~200℃が好ましく、より好ましくは70~150℃である。この範囲よりも低い場合は、反応速度が遅くなり生産性が低下し、これよりも高い場合は、高沸物の副生が増えて、1,1,2,3,3-ペンタクロロプロペン(1220xa)の選択率が低下することがある。なお、第3工程の反応は、用いるルイス酸の種類によって最適温度に差があり、塩化アルミニウムの場合には70~110℃、塩化第二鉄の場合には、これよりも多少高い100~150℃である。 The reaction temperature is usually preferably 50 to 200 ° C, more preferably 70 to 150 ° C. If it is lower than this range, the reaction rate becomes slow and the productivity decreases, and if it is higher than this range, by-product of high boiling point increases, and 1,1,2,3,3-pentachloropropene ( The selectivity of 1220xa) may be reduced. In the reaction in the third step, the optimum temperature varies depending on the type of Lewis acid used. In the case of aluminum chloride, it is 70 to 110 ° C., and in the case of ferric chloride, it is 100 to 150, which is slightly higher than this. ° C.
 好ましい反応例として、ガラスもしくはガラスライニング製の反応器に、ルイス酸触媒と1,1,1,2,3,3-ヘキサクロロプロパン(230da)の液体を仕込み、常圧で攪拌しながら加熱するという方法が挙げられる。反応開始と共に、塩化水素が発生するので、水道水等を流通させた還流塔によって、塩化水素を排出することができる。尤も、耐圧の反応器を用いて反応を行って、発生する塩化水素ガスを適時に排出(パージ)する方法も妨げられないが、本工程は、原料および生成物の沸点よりも十分に低い温度で、十分に反応が進行するので、通常は、常圧の反応の方が簡便で好ましい。 As a preferable reaction example, a Lewis acid catalyst and a liquid of 1,1,1,2,3,3-hexachloropropane (230da) are charged into a glass or glass-lined reactor and heated with stirring at normal pressure. A method is mentioned. Since hydrogen chloride is generated at the start of the reaction, hydrogen chloride can be discharged by a reflux tower through which tap water or the like is circulated. However, the method of performing a reaction using a pressure-resistant reactor and discharging (purging) the generated hydrogen chloride gas in a timely manner is not impeded, but this step is performed at a temperature sufficiently lower than the boiling points of the raw materials and products. Therefore, the reaction at normal pressure is usually simpler and preferable because the reaction proceeds sufficiently.
 第3工程においては、反応器内部の液相部の1,1,1,2,3,3-ヘキサクロロプロパン(230da)が、時間の経過とともに1,1,2,3,3-ペンタクロロプロペン(1220xa)に置き換わっていく。ガスクロマトグラフ分析等によって、反応の進捗を測定しつつ、1,1,1,2,3,3-ヘキサクロロプロパン(230da)がほぼ消費されたところで反応を終了することが好ましい。 In the third step, 1,1,1,2,3,3-hexachloropropane (230da) in the liquid phase inside the reactor is converted into 1,1,2,3,3-pentachloropropene over time. It will be replaced with (1220xa). It is preferable to terminate the reaction when 1,1,1,2,3,3-hexachloropropane (230da) is almost consumed while measuring the progress of the reaction by gas chromatographic analysis or the like.
 [4]ワンポットマルチステップ反応について
 本発明を実施するに当たって特に好ましい態様は、(第3工程のみならず)、第1工程および第2工程ともに、液相中かつルイス酸触媒存在下に反応を行うものであり、第1工程および第2工程ともに、前記ルイス酸触媒(第1のルイス酸触媒と、第2のルイス酸触媒)が、第3工程で用いるルイス酸触媒(第3のルイス酸触媒)と同一種類のものであり、かつ、第1工程と第2工程の間、および第2工程と第3工程の間に、反応混合物からの触媒の分離を行わず、その結果として、第1工程で用いたルイス酸触媒(第1のルイス酸触媒)が、第2工程および第3工程に渡って、再利用されることになる、という実施態様である。これによって、第1工程に用いたルイス酸触媒を、そのまま第2工程、および第3工程に再利用することができ、触媒の節約が行えるだけでなく、反応工程が著しく簡略化できる。
[4] One-pot multi-step reaction In carrying out the present invention, a particularly preferred embodiment (not only the third step) is to perform the reaction in the liquid phase and in the presence of a Lewis acid catalyst in both the first step and the second step. In both the first step and the second step, the Lewis acid catalyst (the first Lewis acid catalyst and the second Lewis acid catalyst) is the Lewis acid catalyst used in the third step (third Lewis acid catalyst). And the catalyst is not separated from the reaction mixture between the first step and the second step and between the second step and the third step. In this embodiment, the Lewis acid catalyst (first Lewis acid catalyst) used in the step is reused over the second step and the third step. Thereby, the Lewis acid catalyst used in the first step can be reused as it is in the second step and the third step, and not only can the catalyst be saved, but also the reaction step can be greatly simplified.
 当業者の所望によって、「第1工程と第2工程」のみ、或いは「第2工程と第3工程」のみ、同一のルイス酸触媒を用いることも妨げられないが、最も好ましいのは、第1工程~第3工程まで、通して、液相中かつ同一のルイス酸触媒を再利用していく実施態様である。 Although it is not prohibited to use the same Lewis acid catalyst only for “first step and second step” or only for “second step and third step” depending on the desire of those skilled in the art, In this embodiment, the same Lewis acid catalyst is reused in the liquid phase through steps 3 to 3.
 このような実施態様を本明細書において、「ワンポットマルチステップ反応」と呼ぶ。一般に操業性を改善するために、同一反応釜で、生成物を単離することなく、複数の工程を行う「ワンポットマルチステップ反応」が提案されているが、マルチステップの全てが触媒反応であり、その触媒を共通化したワンポットマルチステップ反応は稀である。本発明においては、特異的に3工程とも同一触媒が使用可能である。とくに、安価で入手性が良く、3工程に渡って優れた選択率と反応率を示す塩化アルミニウム(AlCl3)や塩化第二鉄(FeCl3)が特に優れた共通触媒として推奨される。なお、塩化鉄としては、塩化第一鉄(FeCl2)と塩化第二鉄(FeCl3)の2種類が知られているが、本発明においては、塩化第二鉄の方が触媒活性が高く、優れている。 Such an embodiment is referred to herein as a “one-pot multi-step reaction”. In general, in order to improve operability, a “one-pot multi-step reaction” in which a plurality of processes are performed in the same reaction vessel without isolating the product has been proposed, but all of the multi-steps are catalytic reactions. A one-pot multi-step reaction using the same catalyst is rare. In the present invention, the same catalyst can be used specifically in all three steps. In particular, aluminum chloride (AlCl 3 ) and ferric chloride (FeCl 3 ), which are inexpensive and readily available and exhibit excellent selectivity and reaction rate over three steps, are recommended as particularly excellent common catalysts. As iron chloride, two types of ferrous chloride (FeCl 2 ) and ferric chloride (FeCl 3 ) are known. In the present invention, ferric chloride has higher catalytic activity. ,Are better.
 中でも塩化第二鉄は、取扱いやすく、反応性も良好であるため、特に好ましい共通触媒である。 Among these, ferric chloride is a particularly preferred common catalyst because it is easy to handle and has good reactivity.
 第1工程や第3工程の生成物は還元性を有する不飽和化合物なので、触媒のバレンシー(触媒の活性中心元素(例えば鉄)の酸化状態をいう)が低下して、活性が低下することは起こり得ることである。しかし、本発明者が第1工程~第3工程にかけてのワンポットマルチステップ反応を検討したところ、触媒活性の有意な低下は認められなかった。この原因は明らかではないが、1つの解釈(推測)として、次のように考えることができる。すなわち、第1工程の反応混合物と触媒とを分離することなく、第2工程に供した場合、たとえ第1工程で一部の触媒のバレンシーが低下していても、酸化力の高い塩素(Cl2)によって、ルイス酸触媒のバレンシーが回復し、触媒活性の高い状態になるので、第2工程が高い触媒活性のもとで進行するようになる。引き続き第3工程を行えば、第3工程も、高い触媒活性のもとで進行するようになる。以上の解釈が可能であると考えている。 Since the products of the first step and the third step are unsaturated compounds having reducibility, the catalyst valency (which refers to the oxidation state of the active central element of the catalyst (for example, iron)) is reduced and the activity is reduced. It can happen. However, when the present inventor examined a one-pot multi-step reaction from the first step to the third step, no significant decrease in the catalytic activity was observed. The cause of this is not clear, but can be considered as one interpretation (estimation) as follows. That is, when it is used in the second step without separating the reaction mixture from the first step and the catalyst, even if the valence of some of the catalysts is reduced in the first step, chlorine (Cl 2 ) The valency of the Lewis acid catalyst is recovered and the catalyst activity becomes high, so that the second step proceeds under a high catalyst activity. If the third step is continuously performed, the third step also proceeds under high catalytic activity. We believe that the above interpretation is possible.
 特に好ましい実施態様の例として、攪拌器、還流塔、攪拌器、吹き込み管を有するガラス製反応釜に1,1,1,3,3-ペンタクロロプロパン(240fa)と塩化鉄を仕込み、攪拌しながら70~110℃(典型的には70~90℃)に加熱し、発生する塩化水素を還流塔経由で排出し、第1工程を実施する。ガスクロマトグラフィーによって反応混合物の組成を測定しつつ、変換率が例えば95%以上になるまで第1工程を継続する。その後、攪拌を継続しながら、反応混合物を冷却する。そして反応混合物の温度が、第2工程を行うのに適した「0~60℃」に低下したところで、塩素を吹き込み、0~60℃の所定温度(例えば30~50℃)で第2工程を実施する。変換率が例えば95%以上になるまで第2工程を継続する。その後、塩素の供給を止めて反応温度を110~130℃に上げて第3工程を実施し、変換率が例えば95%以上になるまで第3工程を継続する。このうち、第2工程の反応と、第3工程の反応は、元来、同時並行的に起こり得る性格のものである。しかし、塩化アルミニウムや塩化第二鉄をルイス酸触媒に用いる場合には、第2工程の反応が進みやすい温度と、第3工程の反応が進みやすい温度には、明確な差が存在することが多い。このため、上記のように第2工程の反応温度を相対的に低くし、第3工程の反応温度を少なくともこれより高く設定することで、第2工程と第3工程を別々に進行させることが可能となる。このように2つの反応を別々に実施する方が、不純物の生成を抑制しやすく、効率的に目的とする1,1,2,3,3-ペンタクロロプロペン(1220xa)を製造できる。 As an example of a particularly preferred embodiment, 1,1,1,3,3-pentachloropropane (240fa) and iron chloride are charged into a glass reaction kettle having a stirrer, a reflux tower, a stirrer, and a blowing tube while stirring. The mixture is heated to 70 to 110 ° C. (typically 70 to 90 ° C.), and the generated hydrogen chloride is discharged via a reflux tower to carry out the first step. While measuring the composition of the reaction mixture by gas chromatography, the first step is continued until the conversion rate is, for example, 95% or more. Thereafter, the reaction mixture is cooled while stirring is continued. Then, when the temperature of the reaction mixture is lowered to “0-60 ° C.” suitable for performing the second step, chlorine is blown and the second step is performed at a predetermined temperature of 0-60 ° C. (for example, 30-50 ° C.). carry out. The second step is continued until the conversion rate becomes 95% or more, for example. Thereafter, the supply of chlorine is stopped, the reaction temperature is raised to 110 to 130 ° C., the third step is performed, and the third step is continued until the conversion rate is, for example, 95% or more. Among these, the reaction in the second step and the reaction in the third step are originally of a nature that can occur in parallel. However, when aluminum chloride or ferric chloride is used for the Lewis acid catalyst, there is a clear difference between the temperature at which the reaction in the second step easily proceeds and the temperature at which the reaction in the third step easily proceeds. Many. Therefore, as described above, the second step and the third step can be allowed to proceed separately by setting the reaction temperature of the second step relatively low and setting the reaction temperature of the third step at least higher than this. It becomes possible. When the two reactions are carried out separately in this way, it is easier to suppress the generation of impurities, and the desired 1,1,2,3,3-pentachloropropene (1220xa) can be produced efficiently.
 本発明においては、各工程とも、ルイス酸触媒として、複数のルイス酸触媒を併用(同時に添加し触媒として用いる)することは妨げられない。しかし、一般に、ルイス酸が異なれば、反応の最適温度も異なるのが通常である。つまり、異なるルイス酸触媒を併用すると、各工程の最適温度が広範なものになる。その結果として、第2工程と第3工程の反応の温度選択性を得にくくなり、第2工程と第3工程が同時に進みやすくなる。よって、本発明においては、1種類のルイス酸触媒を一貫して用いることが、特に好ましい。 In the present invention, it is not impeded to use a plurality of Lewis acid catalysts in combination (added simultaneously and used as a catalyst) as a Lewis acid catalyst in each step. In general, however, the optimum temperature for the reaction is usually different for different Lewis acids. That is, when different Lewis acid catalysts are used in combination, the optimum temperature for each step becomes wide. As a result, it becomes difficult to obtain the temperature selectivity of the reaction in the second step and the third step, and the second step and the third step easily proceed at the same time. Therefore, in the present invention, it is particularly preferable to use one kind of Lewis acid catalyst consistently.
 本発明における「ワンポット」とは、反応器の数を限定するものではなく反応生成物と触媒を分離することなく次工程へ進むことも指す。すなわち、当業者の設備によって、一つの釜(反応器)で3工程行うことも可能であるが、複数の釜を有するときは、第1工程が完了した後、生成物と触媒を分離することなく別の釜に移して第2工程を実施し、第2工程が完了した後、生成物と触媒を分離することなく、別の釜に移して第3工程を実施するような方式を採用することも可能である。この時、第1工程から第2工程、或いは第2工程から第3工程の釜へ反応生成物および触媒を移す間に、熱交換器を通じて反応生成物および触媒を効率的に冷却、加熱することも可能である。 The term “one pot” in the present invention does not limit the number of reactors, and also refers to proceeding to the next step without separating the reaction product and the catalyst. That is, it is possible to carry out three steps in one kettle (reactor) by equipment of those skilled in the art. However, when a plurality of kettles are provided, the product and the catalyst are separated after the first step is completed. Move to another kettle and carry out the second step, and after the second step is completed, adopt a method in which the third step is carried out by moving to another kettle without separating the product and the catalyst. It is also possible. At this time, the reaction product and the catalyst are efficiently cooled and heated through the heat exchanger while the reaction product and the catalyst are transferred from the first step to the second step or from the second step to the third step. Is also possible.
 第3工程が完了した後、蒸留することによって容易に触媒と有機物を分離することが可能である。もちろん、精密蒸留することによって高純度の1,1,2,3,3-ペンタクロロプロペン(1220xa)を単離することが可能である。得られた1,1,2,3,3-ペンタクロロプロペン(1220xa)は水洗、乾燥することも可能である。水洗、乾燥を行う場合には、蒸留よりも前に実施することが好ましい。 After completion of the third step, the catalyst and the organic substance can be easily separated by distillation. Of course, high purity 1,1,2,3,3-pentachloropropene (1220xa) can be isolated by precision distillation. The obtained 1,1,2,3,3-pentachloropropene (1220xa) can be washed with water and dried. When washing with water and drying, it is preferably carried out before distillation.
 本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)の製造方法を以下の実施例により説明するが、本発明は以下の実施例により、限定されるものではない。 The production method of 1,2-dichloro-3,3,3-trifluoropropene (1223xd) of the present invention will be described with reference to the following examples, but the present invention is not limited to the following examples.
 文中、FID%とは、検出器がFIDのガスクロマトグラフで分析した時の面積%を指す。 In the text, FID% refers to the area% when the detector analyzed by FID gas chromatograph.
 [実施例1-1]
 20℃の冷却液を循環させた凝縮器と圧力計とを備えた300mLのステンレス鋼製オートクレーブに、1,1,2,3,3-ペンタクロロプロペン(1220xa)60g(0.28モル)と、フッ化水素111.9g(5.59モル、1220xa/フッ化水素モル比=約1/20)とを導入した後、オートクレーブを150℃に加熱した。圧力が約4MPaGを超えたところで4.0~4.5MPaGを維持するように凝縮器出口のニードルバルブから反応生成ガスを抜き出した。抜き出したガスは、氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶に通して酸を吸収し、ドライアイスアセトン浴のガラストラップで反応生成有機物を回収した。昇温開始から3時間後、圧力の上昇が観察されなくなったことを確認した後、反応器をパージし、抜き出したガスは氷水浴中で冷却した氷水入りのフッ素樹脂製ガス洗浄瓶及びドライアイスアセトン浴のガラストラップに回収した。反応器を冷却後、オートクレーブ内の反応液とドライアイスアセトン浴のガラストラップ回収物を氷水入りのフッ素樹脂製ガス洗浄瓶にすべて混合し、併せた混合溶液をフッ素樹脂製分液ロートにて有機物を水相から分離し回収した。この回収した有機物の量は、42.7gであった。
 回収した有機物の組成をガスクロマトグラフィーで分析したところ、Z-1,2-ジクロロ-3,3,3-トリフルオロプロペン(Z-1223xd)は88.6FID%、E-1,2-ジクロロ-3,3,3-トリフルオロプロペン(E-1223xd)は0.7FID%、1,1,2,3,3-ペンタクロロプロペン(1220xa)は検出されず、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)は9.8FID%、その他0.9FID%であった。収率は83.8%であった。
[Example 1-1]
In a 300 mL stainless steel autoclave equipped with a condenser and a pressure gauge in which a coolant at 20 ° C. was circulated, 60 g (0.28 mol) of 1,1,2,3,3-pentachloropropene (1220xa) After introducing 111.9 g of hydrogen fluoride (5.59 mol, 1220 xa / hydrogen fluoride molar ratio = about 1/20), the autoclave was heated to 150 ° C. When the pressure exceeded about 4 MPaG, the reaction product gas was extracted from the needle valve at the outlet of the condenser so as to maintain 4.0 to 4.5 MPaG. The extracted gas was passed through a fluororesin gas washing bottle containing ice water cooled in an ice water bath to absorb the acid, and the reaction product organic matter was recovered with a glass trap of a dry ice acetone bath. Three hours after the start of temperature increase, after confirming that the pressure increase was no longer observed, the reactor was purged, and the extracted gas was a fluororesin gas cleaning bottle containing ice water cooled in an ice water bath and dry ice. It collected in the glass trap of the acetone bath. After cooling the reactor, the reaction liquid in the autoclave and the glass trap collection from the dry ice acetone bath are all mixed in a fluororesin gas washing bottle containing ice water, and the combined solution is mixed with organic substances in a fluororesin separatory funnel. Was separated from the aqueous phase and recovered. The amount of the collected organic matter was 42.7 g.
The composition of the recovered organic substance was analyzed by gas chromatography. As a result, Z-1,2-dichloro-3,3,3-trifluoropropene (Z-1223xd) was found to be 88.6FID%, E-1,2-dichloro- 3,3,3-trifluoropropene (E-1223xd) was 0.7FID%, 1,1,2,3,3-pentachloropropene (1220xa) was not detected, and 1,2,3-trichloro-3 , 3-difluoropropene (1222xd) was 9.8 FID% and the other 0.9 FID%. The yield was 83.8%.
 [実施例1-2]
 原料のフッ化水素を56g(2.80モル、1220xa/フッ化水素モル比=約1/10)用い、反応温度を120℃とした以外は実施例1と同様に反応を実施した。
 反応液の組成をガスクロマトグラフィーで分析したところ、Z-1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)は33.8FID%、E-1,2-ジクロロ-3,3,3-トリフルオロプロペン(E-1223xd)は検出されず、1,1,2,3,3-ペンタクロロプロペン(1220xa)は0.1FID%、1,2,3-トリクロロ-3,3-ジフルオロプロペン(1222xd)は62.3FID%、その他3.8FID%であった。収率は29.4%であった。
[Example 1-2]
The reaction was carried out in the same manner as in Example 1 except that 56 g (2.80 mol, 12.20 xa / hydrogen fluoride molar ratio = about 1/10) of the raw material hydrogen fluoride was used and the reaction temperature was 120 ° C.
The composition of the reaction solution was analyzed by gas chromatography. As a result, Z-1,2-dichloro-3,3,3-trifluoropropene (1223xd) was found to be 33.8 FID%, E-1,2-dichloro-3,3 , 3-trifluoropropene (E-1223xd) is not detected, and 1,1,2,3,3-pentachloropropene (1220xa) is 0.1FID%, 1,2,3-trichloro-3,3- Difluoropropene (1222xd) was 62.3 FID% and the others were 3.8 FID%. The yield was 29.4%.
 [調製例1] フッ素化したγ-アルミナ触媒の調製
 電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に、110mLの粒状γ-アルミナを充填し、窒素ガスを流しながら200℃まで反応管内を昇温した。反応管内から水の留出が見られなくなった時点で、窒素ガスにフッ化水素(HF)を同伴させ、その濃度を徐々に高めた。粒状γ-アルミナのフッ素化によるホットスポットが反応管出口端に達したところで、反応管内温度を100℃刻みで段階的に昇温し、各段階温度で1時間ずつ保持し、最終的に400℃に上げ、その状態を1時間保持した。このようにして、フッ素化処理を施したγ-アルミナ触媒を調製した。
[Preparation Example 1] Preparation of fluorinated γ-alumina catalyst A reaction tube made of cylindrical stainless steel (SUS316L) having a diameter of 2.5 cm and a length of 30 cm equipped with an electric furnace was charged with 110 mL of granular γ-alumina. The temperature in the reaction tube was raised to 200 ° C. while flowing nitrogen gas. When no more water was seen from the reaction tube, nitrogen gas was accompanied by hydrogen fluoride (HF), and the concentration was gradually increased. When the hot spot due to the fluorination of granular γ-alumina reaches the outlet end of the reaction tube, the temperature in the reaction tube is increased stepwise in increments of 100 ° C., held at each step temperature for 1 hour, and finally 400 ° C. The state was maintained for 1 hour. Thus, a fluorinated γ-alumina catalyst was prepared.
 [調製例2] フッ素化したクロミア触媒の調製
 反応管に粒状γ-アルミナの代わりに粒状クロミアを充填した以外は調製例1と同様にして、フッ素化処理を施したクロミア触媒を調製した。
[Preparation Example 2] Preparation of fluorinated chromia catalyst A fluorinated chromia catalyst was prepared in the same manner as in Preparation Example 1, except that the reaction tube was filled with granular chromia instead of granular γ-alumina.
 [調製例3] フッ素化したクロム担持活性炭触媒の調製
 三角フラスコに20質量%塩化クロム水溶液を調製し、活性炭110mLを浸漬させ、3時間保持した。この活性炭を濾過し、ロータリーエバポレーターを用いて、減圧下、70℃で乾燥させて塩化クロム担持活性炭を調製した。次いで、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に、塩化クロム担持活性炭100mLを充填し、窒素ガスを流しながら200℃まで反応管内を昇温した。反応管内から水の留出が見られなくなった時点で、窒素ガスにフッ化水素(HF)を同伴させ、その濃度を徐々に高めた。塩化クロム担持活性炭のフッ素化によるホットスポットが反応管出口端に達したところで、反応管内温度を100℃刻みで段階的に昇温し、各段階温度で1時間ずつ保持し、最終的に400℃に上げ、その状態を1時間保持した。このようにして、フッ素化処理を施したクロム担持活性炭触媒を調製した
[Preparation Example 3] Preparation of fluorinated chromium-supported activated carbon catalyst A 20% by mass chromium chloride aqueous solution was prepared in an Erlenmeyer flask, and 110 mL of activated carbon was immersed therein and held for 3 hours. The activated carbon was filtered and dried at 70 ° C. under reduced pressure using a rotary evaporator to prepare chromium chloride-supported activated carbon. Next, a cylindrical stainless steel (SUS316L) reaction tube having a diameter of 2.5 cm and a length of 30 cm equipped with an electric furnace is filled with 100 mL of chromium chloride-supported activated carbon, and the temperature in the reaction tube is increased to 200 ° C. while flowing nitrogen gas. did. When no more water was seen from the reaction tube, nitrogen gas was accompanied by hydrogen fluoride (HF), and the concentration was gradually increased. When the hot spot due to the fluorination of the chromium chloride-supported activated carbon reached the outlet end of the reaction tube, the temperature in the reaction tube was increased stepwise in increments of 100 ° C., held at each step temperature for 1 hour, and finally 400 ° C. The state was maintained for 1 hour. In this way, a chromium-supported activated carbon catalyst subjected to fluorination treatment was prepared.
 [実施例2-1]
 調製例1で調製した触媒100mLを、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に充填し、約20mL/分の流量で窒素ガスを流しながら、反応管内の温度を250℃に昇温した。そこに、気化させたフッ化水素および1,1,2,3,3-ペンタクロロプロペン(1220xa)を表1に示す流量(速度)で導入し、流量が安定したところで窒素ガスを停止した。その後、反応器から流出する生成ガスを氷水入りのフッ素樹脂製ガス洗浄瓶に通し、酸性ガスを除去し、反応生成物を捕集した。フッ素樹脂製分液ロートにて水相と分離し回収した有機物の組成をガスクロマトグラフィーにより分析した。その結果を表2に示す。
[Example 2-1]
100 mL of the catalyst prepared in Preparation Example 1 was charged into a cylindrical stainless steel (SUS316L) reaction tube having a diameter of 2.5 cm and a length of 30 cm equipped with an electric furnace, and while flowing nitrogen gas at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. Thereto, vaporized hydrogen fluoride and 1,1,2,3,3-pentachloropropene (1220xa) were introduced at a flow rate (rate) shown in Table 1, and when the flow rate was stabilized, nitrogen gas was stopped. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected. The composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
 [実施例2-2~実施例2-4]
 表1に示す条件(反応温度、接触時間、反応資材の流量、反応資材のモル比)を変更した以外は、実施例2-1と同様にして反応を実施し、反応生成物から有機物を回収した。回収した有機物の組成をガスクロマトグラフィーにより分析した結果をそれぞれ表2に示す。
[Example 2-2 to Example 2-4]
Except for changing the conditions shown in Table 1 (reaction temperature, contact time, flow rate of reaction material, molar ratio of reaction material), the reaction was carried out in the same manner as in Example 2-1, and organic substances were recovered from the reaction product. did. Table 2 shows the results of analyzing the composition of the collected organic matter by gas chromatography.
 [実施例2-5]
 調製例2で調製した触媒100mLを、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に充填し、約20mL/分の流量で窒素ガスを流しながら、反応管内の温度を250℃に昇温した。そこに、表1に示す流量(速度)で、あらかじめ気化させたフッ化水素と塩素を導入した後、1,1,2,3,3-ペンタクロロプロペン(1220xa)をあらかじめ気化させてから導入し、流量が安定したところで窒素ガスを停止した。その後、反応器から流出する生成ガスを氷水入りのフッ素樹脂製ガス洗浄瓶に通し、酸性ガスを除去し、反応生成物を捕集した。フッ素樹脂製分液ロートにて水相と分離し回収した有機物の組成をガスクロマトグラフィーにより分析した。その結果を表2に示す。
[Example 2-5]
100 mL of the catalyst prepared in Preparation Example 2 was filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas was allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After introducing hydrogen vapor and chlorine vaporized in advance at the flow rate (speed) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance and then introduced. Then, the nitrogen gas was stopped when the flow rate was stable. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected. The composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
 [実施例2-6]
 調製例3で調製した触媒100mLを、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に充填し、約20mL/分の流量で窒素ガスを流しながら、反応管内の温度を250℃に昇温した。そこに、表1に示す流量(速度)で、あらかじめ気化させたフッ化水素と塩素を導入した後、1,1,2,3,3-ペンタクロロプロペン(1220xa)をあらかじめ気化させてから導入し、流量が安定したところで窒素ガスを停止した。その後、反応器から流出する生成ガスを氷水入りのフッ素樹脂製ガス洗浄瓶に通し、酸性ガスを除去し、反応生成物を捕集した。フッ素樹脂製分液ロートにて水相と分離し回収した有機物の組成をガスクロマトグラフィーにより分析した。その結果を表2に示す。
[Example 2-6]
100 mL of the catalyst prepared in Preparation Example 3 was charged into a 2.5 cm diameter and 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas was allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After introducing hydrogen vapor and chlorine vaporized in advance at the flow rate (speed) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance and then introduced. Then, the nitrogen gas was stopped when the flow rate was stable. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected. The composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
 [実施例2-7]
 SUS316L製ラシヒリング(5φ×5mm)100mLを、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に充填し、約20mL/分の流量で窒素ガスを流しながら、反応管内の温度を250℃に昇温した。そこに、気化させたフッ化水素を表1に示す流量(速度)で導入した後、1,1,2,3,3-ペンタクロロプロペン(1220xa)をあらかじめ気化させてから導入し、流量が安定したところで窒素ガスを停止した。その後、反応器から流出する生成ガスを氷水入りのフッ素樹脂製ガス洗浄瓶に通し、酸性ガスを除去し、反応生成物を捕集した。フッ素樹脂製分液ロートにて水相と分離し回収した有機物の組成をガスクロマトグラフィーにより分析した。その結果を表2に示す。
[Example 2-7]
100 mL of SUS316L Raschig ring (5φ × 5 mm) is filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas is allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. After vaporized hydrogen fluoride was introduced at a flow rate (rate) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was vaporized in advance, and the flow rate was When stable, nitrogen gas was stopped. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected. The composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
 [実施例2-8]
 SUS316L製ラシヒリング(5φ×5mm)100mLを、電気炉を備えた直径2.5cm、長さ30cmの円筒形ステンレス鋼(SUS316L)製反応管に充填し、約20mL/分の流量で窒素ガスを流しながら、反応管内の温度を250℃に昇温した。そこに、表1に示す流量(速度)で、あらかじめ気化させたフッ化水素を導入した後、1,1,2,3,3-ペンタクロロプロペン(1220xa)をあらかじめ気化させてから導入し、流量が安定したところで窒素ガスを停止した。その後、反応器から流出する生成ガスを氷水入りのフッ素樹脂製ガス洗浄瓶に通し、酸性ガスを除去し、反応生成物を捕集した。フッ素樹脂製分液ロートにて水相と分離し回収した有機物の組成をガスクロマトグラフィーにより分析した。その結果を表2に示す。
[Example 2-8]
100 mL of SUS316L Raschig ring (5φ × 5 mm) is filled into a 2.5 cm diameter, 30 cm long cylindrical stainless steel (SUS316L) reaction tube equipped with an electric furnace, and nitrogen gas is allowed to flow at a flow rate of about 20 mL / min. The temperature in the reaction tube was raised to 250 ° C. Then, after introducing pre-vaporized hydrogen fluoride at a flow rate (rate) shown in Table 1, 1,1,2,3,3-pentachloropropene (1220xa) was pre-vaporized and then introduced, Nitrogen gas was stopped when the flow rate was stable. Thereafter, the product gas flowing out from the reactor was passed through a fluororesin gas washing bottle containing ice water to remove acidic gas, and the reaction product was collected. The composition of the organic substance separated and recovered from the aqueous phase with a fluororesin separatory funnel was analyzed by gas chromatography. The results are shown in Table 2.
 実施例2-1~2-8の反応条件(反応温度、接触時間、反応資材の流量、反応資材のモル比)の簡単なまとめを表1に示す。また、実施例2-1~2-8で用いた1220xa原料と、回収した有機物の組成のガスクロマトグラフィーによる分析結果を表2に示す。なお、実施例2-1~2-8における1220xa原料は、後述の実施例6-a~6-cと同様にして調製し、蒸留精製した1220xaを用いた。 Table 1 shows a simple summary of the reaction conditions (reaction temperature, contact time, flow rate of reaction material, molar ratio of reaction material) of Examples 2-1 to 2-8. Table 2 shows the results of gas chromatography analysis of the composition of the 1220xa raw material used in Examples 2-1 to 2-8 and the recovered organic matter. The 1220xa raw material in Examples 2-1 to 2-8 was prepared in the same manner as in Examples 6-a to 6-c described later, and 1220xa purified by distillation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例3-1] 第1工程(1,1,1,3,3-ペンタクロロプロパン(240fa)の脱塩化水素化)
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた100mL三つ口フラスコに純度98.3FID%の1,1,1,3,3-ペンタクロロプロパン(240fa)50.02g(0.23mol)、塩化第二鉄0.93g(0.006mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて500mL-PFA容器の空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続した。ボールフィルターより流量5mL/分で窒素を導入しながら、フラスコをオイルバスで80℃に加熱した。4時間反応したところでガスクロマトグラフィー分析したところ、1,1,1,3,3-ペンタクロロプロパン(240fa)2.8FID%、1,1,3,3-テトラクロロプロペン(1230za)92.8FID%、その他不純物は4.3FID%であった(表1参照)。
[Example 3-1] First step (dehydrochlorination of 1,1,1,3,3-pentachloropropane (240fa))
A 100 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stirrer was charged with 100.02 g (0. 23 mol) and 0.93 g (0.006 mol) of ferric chloride were charged and stirring was started. At the top of the Dimroth, an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. While introducing nitrogen at a flow rate of 5 mL / min from the ball filter, the flask was heated to 80 ° C. in an oil bath. When the reaction was conducted for 4 hours, gas chromatographic analysis revealed 1,1,1,3,3-pentachloropropane (240fa) 2.8 FID%, 1,1,3,3-tetrachloropropene (1230za) 92.8 FID%. The other impurities were 4.3 FID% (see Table 1).
 [実施例3-2~3-6] 第1工程
 第1工程の反応を、実施例3-1と同様に、その触媒や触媒量、反応温度、反応時間を変更して行った。それらの結果をまとめて表3に示す。
[Examples 3-2 to 3-6] First step The reaction in the first step was carried out in the same manner as in Example 3-1, except that the catalyst, the catalyst amount, the reaction temperature, and the reaction time were changed. The results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、ルイス酸触媒として塩化第二鉄を用いる場合、80℃付近で反応を行う場合(実施例3-1および実施例3-2)、反応速度、選択率の両面を通じて、バランスの良い結果が得られていることが分かる。反面、50℃で反応を行うと(実施例3-5)、選択率は高いものの、反応速度が低下し、24時間経過しても、84%程度の変換率に留まっていた。一方、100℃で反応を行うと、反応速度は高く、目的物は高収率で生成しているものの、タール状の不純物の副生が若干認められ、ガスクロマトグラフ上の選択率もやや低下している。 From Table 3, when ferric chloride is used as the Lewis acid catalyst, when the reaction is carried out at around 80 ° C. (Example 3-1 and Example 3-2), there is a good balance in terms of both reaction rate and selectivity. It turns out that the result is obtained. On the other hand, when the reaction was carried out at 50 ° C. (Example 3-5), although the selectivity was high, the reaction rate decreased and the conversion rate remained at about 84% even after 24 hours. On the other hand, when the reaction is carried out at 100 ° C., the reaction rate is high and the target product is produced in a high yield, but some by-products of tar-like impurities are observed, and the selectivity on the gas chromatograph is slightly lowered. ing.
 一方、ルイス酸触媒として塩化アルミニウムを用いる場合、塩化第二鉄よりもやや低い50℃で、反応速度、選択率の両面を通じて、バランスの良い結果が得られている。 On the other hand, when aluminum chloride is used as the Lewis acid catalyst, a well-balanced result is obtained at 50 ° C., which is slightly lower than ferric chloride, through both the reaction rate and selectivity.
 [参考例1] 液相、無触媒下における1,1,3,3-テトラクロロプロペン(1230za)の塩素化
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた100mL三つ口フラスコに純度98.2FID%の1,1,3,3-テトラクロロプロペン(1230za)39.38g(0.22mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて500mL-PFA容器の空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続した。フラスコをオイルバスで50℃に加熱し、ボールフィルターより塩素15.87g(0.22mol)を127分間かけて導入した。
 塩素導入直後に反応液のガスクロマトグラフィー分析を行ったところ、1,1,3,3-テトラクロロプロペン(1230za)は21.9FID%、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は75.1FID%であった(表4)。この参考例1は、第2工程の反応を液相、無触媒条件で行ったものである。反応は円滑に進み、目的物が得られているものの、同一温度において、ルイス酸触媒を用いて行った実験(後述の実施例4-1)に比べると、反応変換率は低く、反応を完結させるまでには、より長い時間が必要であることが分かる。
[Reference Example 1] Chlorination of 1,1,3,3-tetrachloropropene (1230za) in the liquid phase and in the absence of catalyst 100 mL three-neck equipped with a ball filter, thermometer, Dimroth capable of running tap water and stir bar A flask was charged with 39.38 g (0.22 mol) of 1,1,3,3-tetrachloropropene (1230za) having a purity of 98.2 FID% and stirring was started. At the top of the Dimroth, an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. The flask was heated to 50 ° C. in an oil bath, and 15.87 g (0.22 mol) of chlorine was introduced from a ball filter over 127 minutes.
A gas chromatographic analysis of the reaction solution was conducted immediately after the introduction of chlorine. As a result, 1,1,3,3-tetrachloropropene (1230za) was found to be 21.9FID%, 1,1,1,2,3,3-hexachloropropane. (230da) was 75.1FID% (Table 4). In this Reference Example 1, the reaction in the second step was performed in a liquid phase and non-catalytic conditions. Although the reaction proceeded smoothly and the desired product was obtained, the reaction conversion rate was low compared with the experiment (Example 4-1 described later) conducted using a Lewis acid catalyst at the same temperature, and the reaction was completed. It can be seen that a longer time is required until it is made.
 [実施例4-1] 第2工程(液相、ルイス酸触媒存在下における1,1,3,3-テトラクロロプロペン(1230za)の塩素化)
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた100mL三つ口フラスコに純度98.2FID%の1,1,3,3-テトラクロロプロペン(1230za)41.72g(0.23mol)、塩化第二鉄0.9g(0.006mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて500mL-PFA容器の空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続した。未反応で反応器を通過した塩素ガスをここで捕捉した。
 フラスコをオイルバスで50℃に加熱し、ボールフィルターより塩素16.78g(0.24mol)を107分間かけて導入した。塩素導入直後に反応液をガスクロマトグラフィー分析したところ、1,1,3,3-テトラクロロプロペン(1230za)は1.2FID%、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は95.0FID%であった。無触媒の参考例1の変換率は77.7%であったが、ルイス酸触媒を添加することにより、変換率が98.8%まで向上し、選択率も97.9%と高い水準を維持した(表4参照)。
Example 4-1 Second Step (Liquid Phase, Chlorination of 1,1,3,3-Tetrachloropropene (1230za) in the Presence of Lewis Acid Catalyst)
In a 100 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stir bar, 41.72 g (0.23 mol) of 1,1,3,3-tetrachloropropene (1230za) with a purity of 98.2 FID% ), 0.9 g (0.006 mol) of ferric chloride was charged and stirring was started. At the top of the Dimroth, an empty trap of a 500 mL-PFA container was connected using a PFA tube, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. Unreacted chlorine gas that passed through the reactor was captured here.
The flask was heated to 50 ° C. in an oil bath, and 16.78 g (0.24 mol) of chlorine was introduced from a ball filter over 107 minutes. When the reaction liquid was analyzed by gas chromatography immediately after the introduction of chlorine, 1,1,3,3-tetrachloropropene (1230za) was found to be 1.2 FID%, 1,1,1,2,3,3-hexachloropropane (230 da). ) Was 95.0FID%. The conversion rate of the catalyst-free Reference Example 1 was 77.7%, but by adding a Lewis acid catalyst, the conversion rate was improved to 98.8% and the selectivity was as high as 97.9%. Maintained (see Table 4).
 [実施例4-2~4-4] 第2工程
 実施例4-1と同じ手順で、反応温度等の条件を変えて反応を行った。結果を表4に示した。
[Examples 4-2 to 4-4] Second step The reaction was performed in the same procedure as in Example 4-1, except that the reaction temperature and other conditions were changed. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、第2工程の反応を「液相中かつルイス酸触媒として塩化第二鉄の存在下」に実施すると、50℃付近或いはそれ以下の温度で、目的とする反応が十分な速度で、終点近くまで進行することが分かる。同様の反応が、50℃、無触媒下では78%の変換率であった[参考例1]とは対照的である。すなわち、本発明により、第2工程の反応が、これまで以上に効率的に実施できるようになった。 As is apparent from Table 4, when the reaction in the second step is carried out “in the liquid phase and in the presence of ferric chloride as a Lewis acid catalyst”, the target reaction is carried out at a temperature around 50 ° C. or lower. It turns out that it progresses to the end point with sufficient speed. In contrast to [Reference Example 1], the same reaction had a conversion rate of 78% at 50 ° C. and no catalyst. That is, according to the present invention, the reaction in the second step can be carried out more efficiently than before.
 [実施例5-1] 第3工程(1,1,1,2,3,3-ヘキサクロロプロパン(230da)の脱塩化水素化)
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた100mL三つ口フラスコに純度96.2FID%の1,1,1,2,3,3-ヘキサクロロプロパン(230da)58.62g(0.23mol)、塩化第二鉄0.9g(0.006mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて500mL-PFA容器の空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続し、副生塩化水素ガスをここで捕捉した。
 ボールフィルターより流量5mL/分で窒素を導入しながら、フラスコをオイルバスで130℃に加熱した。2時間反応したところでガスクロマトグラフィー分析したところ、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は1.3FID%、1,1,2,3,3-ペンタクロロプロペン(1220xa)は93.1FID%、その他不純物は5.6FID%であった(表5参照)。
[Example 5-1] Third step (dehydrochlorination of 1,1,1,2,3,3-hexachloropropane (230da))
In a 100 mL three-necked flask equipped with a ball filter, thermometer, Dimroth capable of flowing tap water and a stir bar, 58.62 g of 1,1,1,2,3,3-hexachloropropane (230da) having a purity of 96.2 FID% ( 0.23 mol) and ferric chloride 0.9 g (0.006 mol) were charged and stirring was started. At the top of the Dimroth, a PFA tube is used to connect an empty trap of a 500 mL-PFA container, and then to a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. By-product hydrogen chloride gas is captured here. did.
While introducing nitrogen from the ball filter at a flow rate of 5 mL / min, the flask was heated to 130 ° C. in an oil bath. When the reaction was conducted for 2 hours, gas chromatography analysis revealed that 1,1,1,2,3,3-hexachloropropane (230da) was 1.3 FID%, 1,1,2,3,3-pentachloropropene (1220xa ) Was 93.1 FID%, and other impurities were 5.6 FID% (see Table 5).
 [実施例5-2] 第3工程
 実施例5-1と同じ手順で、触媒、反応温度を変えて、反応を行った結果を、同じく表5に示す。
[Example 5-2] Third step Table 5 shows the results of the reaction performed in the same procedure as in Example 5-1, except that the catalyst and the reaction temperature were changed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [実施例6-a] ワンポット3ステップ反応(第1工程)
 ボールフィルター、温度計、水道水が流せるジムロート及び攪拌子を備えた200mL三つ口フラスコに純度98.1FID%の1,1,1,3,3-ペンタクロロプロパン(240fa)100.01g(0.45mol)、塩化第二鉄0.91g(0.006mol)を仕込み攪拌を開始した。ジムロートの上部に、PFAチューブを用いて空のトラップ、次いで濃度25重量%の水酸化ナトリウム水溶液250gを入れた500mL-PFA容器に接続した。ボールフィルターより流量5mL/分で窒素を導入しながら、フラスコをオイルバスで80℃に加熱した。4.5時間反応し、ガスクロマトグラフィー分析したところ1,1,1,3,3-ペンタクロロプロパン(240fa)は2.8FID%、1,1,3,3-テトラクロロプロペン(1230za)は92.7FID%だった。反応変換率96.9%、選択率95.7%で目的とする1,1,3,3-テトラクロロプロペン(1230za)が生成していた。
[Example 6-a] One-pot three-step reaction (first step)
A 200 mL three-necked flask equipped with a ball filter, a thermometer, a Dimroth capable of flowing tap water, and a stirrer was charged with 100.01 g (0. 45 mol) and 0.91 g (0.006 mol) of ferric chloride were charged and stirring was started. At the top of the Dimroth, a PFA tube was used to connect an empty trap, and then a 500 mL-PFA container containing 250 g of a 25 wt% sodium hydroxide aqueous solution. While introducing nitrogen at a flow rate of 5 mL / min from the ball filter, the flask was heated to 80 ° C. in an oil bath. After reacting for 4.5 hours and analyzed by gas chromatography, 1,1,1,3,3-pentachloropropane (240fa) was 2.8 FID% and 1,1,3,3-tetrachloropropene (1230za) was 92. It was 7FID%. The desired 1,1,3,3-tetrachloropropene (1230za) was produced at a reaction conversion rate of 96.9% and a selectivity of 95.7%.
 [実施例6-b] ワンポット3ステップ反応(第2工程)
 実施例6-aの終了後、三つ口フラスコの内温を30℃まで冷却した後、反応混合物を、オイルバスによって45℃に加温した。(第2工程を始めるにあたって、第1工程の反応混合物に対する精製も、ルイス酸触媒の補充添加も行わなかった)。ボールフィルターより塩素32.52g(0.46mol)を流量約0.2g/分で170分間かけて導入した。導入終了直後に反応液をガスクロマトグラフィー分析したところ、1,1,3,3-テトラクロロプロペン(1230za)は0.2FID%、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は93.6FID%だった。変換率99.7%、選択率93.8%で、目的とする1,1,1,2,3,3-ヘキサクロロプロパン(230da)が生成していることが分かった。
[Example 6-b] One-pot three-step reaction (second step)
After completion of Example 6-a, the internal temperature of the three-necked flask was cooled to 30 ° C., and then the reaction mixture was heated to 45 ° C. by an oil bath. (At the beginning of the second step, neither the purification of the reaction mixture of the first step nor the replenishment of the Lewis acid catalyst was performed). From the ball filter, 32.52 g (0.46 mol) of chlorine was introduced at a flow rate of about 0.2 g / min over 170 minutes. When the reaction solution was analyzed by gas chromatography immediately after the introduction, 1,1,3,3-tetrachloropropene (1230za) was found to be 0.2 FID%, 1,1,1,2,3,3-hexachloropropane (230 da). ) Was 93.6FID%. It was found that the desired 1,1,1,2,3,3-hexachloropropane (230da) was produced at a conversion rate of 99.7% and a selectivity of 93.8%.
 [実施例6-c] ワンポット3ステップ反応(第3工程)
 実施例6-bの終了後、特に精製も触媒補充も行うことなく、ボールフィルターより流量5mL/分で窒素を導入し、オイルバスで120℃とした。同温度で2時間反応したところでガスクロマトグラフィー分析したところ、1,1,1,2,3,3-ヘキサクロロプロパン(230da)は1.8FID%、1,1,2,3,3-ペンタクロロプロペン(1220xa)は93.7FID%だった。反応変換率98.1%、選択率95.6%で目的とする1,1,2,3,3-ペンタクロロプロペン(1220xa)が生成していることが分かった。フラスコを水冷し、濃塩酸38.9gを添加しフラスコ内の固形物を溶解し2層分離して下層有機層を回収した。有機物を53gの上水で洗浄した後、飽和炭酸水素ナトリウム水溶液50gで洗浄し91.18gの有機物を回収した。ガスクロマトグラフィー分析したところ、1,1,2,3,3-ペンタクロロプロペン(1220xa)の純度は93.9FID%であり、純度換算収率は88%であった。
[Example 6-c] One-pot three-step reaction (third step)
After completion of Example 6-b, nitrogen was introduced at a flow rate of 5 mL / min from a ball filter without any purification or catalyst replenishment, and the temperature was adjusted to 120 ° C. with an oil bath. When the reaction was conducted at the same temperature for 2 hours, gas chromatography analysis showed that 1,1,1,2,3,3-hexachloropropane (230da) was 1.8 FID%, 1,1,2,3,3-pentachloro. Propen (1220xa) was 93.7FID%. It was found that the desired 1,1,2,3,3-pentachloropropene (1220xa) was produced at a reaction conversion rate of 98.1% and a selectivity of 95.6%. The flask was cooled with water, 38.9 g of concentrated hydrochloric acid was added to dissolve the solid matter in the flask, and two layers were separated to recover the lower organic layer. The organic matter was washed with 53 g of clean water and then with 50 g of a saturated aqueous sodium hydrogen carbonate solution to recover 91.18 g of the organic matter. As a result of gas chromatography analysis, the purity of 1,1,2,3,3-pentachloropropene (1220xa) was 93.9FID%, and the yield in terms of purity was 88%.
 このように実施例6-a~6-cを通して、同一触媒を用いてワンポットマルチステップ反応を行うことで、良好な収率で1,1,2,3,3-ペンタクロロプロペン(1220xa)を得られることが判明した。 Thus, by carrying out a one-pot multi-step reaction using the same catalyst through Examples 6-a to 6-c, 1,1,2,3,3-pentachloropropene (1220xa) was obtained in good yield. It turned out to be obtained.

Claims (35)

  1. フッ素化剤との反応により1,1,2,3,3-ペンタクロロプロペンをフッ素化して1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法であって、前記フッ素化剤としてフッ化水素を用いることを特徴とする、方法。 A method for producing 1,2-dichloro-3,3,3-trifluoropropene by fluorinating 1,1,2,3,3-pentachloropropene by reaction with a fluorinating agent, comprising the fluorination A method characterized by using hydrogen fluoride as an agent.
  2. 前記反応を液相で行うことを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the reaction is performed in a liquid phase.
  3. 前記反応を気相で行うことを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the reaction is performed in a gas phase.
  4. 前記フッ化水素の使用量が、1,1,2,3,3-ペンタクロロプロペン1モルに対して3~40モルであることを特徴とする、請求項1~3のいずれかに記載の方法。 The amount of the hydrogen fluoride used is 3 to 40 moles per mole of 1,1,2,3,3-pentachloropropene, according to any one of claims 1 to 3. Method.
  5. 前記反応を100~200℃で行うことを特徴とする、請求項1、2または4のいずれかに記載の方法。 The method according to claim 1, wherein the reaction is carried out at 100 to 200 ° C.
  6. 前記反応を140~180℃で行うことを特徴とする、請求項1、2、4または5のいずれかに記載の方法。 The method according to any one of claims 1, 2, 4 and 5, wherein the reaction is carried out at 140 to 180 ° C.
  7. 前記反応を160~600℃で行うことを特徴とする、請求項1、3または4のいずれかに記載の方法。 The method according to any one of claims 1, 3 and 4, wherein the reaction is carried out at 160 to 600 ° C.
  8. 前記反応を触媒の非存在下で行うことを特徴とする、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the reaction is carried out in the absence of a catalyst.
  9. 前記反応を触媒の存在下で行うことを特徴とする、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the reaction is carried out in the presence of a catalyst.
  10. 触媒として、金属の酸化物、金属のフッ素化物、あるいは、金属化合物を担持した担持触媒、を用いて前記反応を行うことを特徴とする、請求項1、3、4、7または9のいずれかに記載の方法。 10. The reaction according to claim 1, wherein the reaction is carried out using a metal oxide, a metal fluoride, or a supported catalyst supporting a metal compound as a catalyst. The method described in 1.
  11. 前記触媒にフッ素化処理を施したものを反応に供することを特徴とする、請求項10に記載の方法。 The method according to claim 10, wherein the catalyst is subjected to a fluorination treatment.
  12. 前記反応を、塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、請求項1~11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  13. 前記反応を溶媒の非存在下で行うことを特徴とする、請求項1~12のいずれかに記載の方法。 The method according to any one of claims 1 to 12, wherein the reaction is carried out in the absence of a solvent.
  14. 前記反応により、1,2-ジクロロ-3,3,3-トリフルオロプロペンとともに1,2,3-トリクロロ-3,3-ジフルオロプロペンが生成されることを特徴とする、請求項1~13のいずれかに記載の方法。 The process according to claim 1, wherein the reaction produces 1,2,3-trichloro-3,3-difluoropropene together with 1,2-dichloro-3,3,3-trifluoropropene. The method according to any one.
  15. 1,2-ジクロロ-3,3,3-トリフルオロプロペン(1223xd)を精製する工程、を含むことを特徴とする、請求項1~14のいずれかに記載の方法。 The method according to claim 1, further comprising the step of purifying 1,2-dichloro-3,3,3-trifluoropropene (1223xd).
  16. 1,2,3-トリクロロ-3,3-ジフルオロプロペンを分離して、1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造するための原料として前記反応に供することを特徴とする、請求項1~15のいずれかに記載の方法。 1,2,3-trichloro-3,3-difluoropropene is separated and subjected to the above reaction as a raw material for producing 1,2-dichloro-3,3,3-trifluoropropene The method according to any one of claims 1 to 15.
  17. 1,1,1,2,3,3-ヘキサクロロプロパンを、液相において、ルイス酸触媒の存在下、脱塩化水素化して前記1,1,2,3,3-ペンタクロロプロペンを得る脱塩化水素化工程、をさらに含むことを特徴とする、請求項1~16のいずれかに記載の方法。 Dechlorination of 1,1,1,2,3,3-hexachloropropane in the liquid phase in the presence of a Lewis acid catalyst to obtain the 1,1,2,3,3-pentachloropropene The method according to any one of claims 1 to 16, further comprising a hydrogenation step.
  18. 1,1,1,2,3,3-ヘキサクロロプロパンの脱塩化水素化工程に用いられるルイス酸触媒が、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、スズ、アンチモン、タンタルおよびタングステンからなる群より選ばれる少なくとも1種の金属のハロゲン化物を含むことを特徴とする、請求項17に記載の方法。 Lewis acid catalyst used in the dehydrochlorination process of 1,1,1,2,3,3-hexachloropropane is aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, The method according to claim 17, comprising a halide of at least one metal selected from the group consisting of ruthenium, rhodium, palladium, silver, tin, antimony, tantalum and tungsten.
  19. 1,1,3,3-テトラクロロプロペンを、液相において、ルイス酸触媒の存在下、塩素によって塩素化して前記1,1,1,2,3,3-ヘキサクロロプロパンを得る塩素化工程、をさらに含むことを特徴とする、請求項17または18に記載の方法。 Chlorination step of chlorinating 1,1,3,3-tetrachloropropene in the liquid phase with chlorine in the presence of a Lewis acid catalyst to obtain the 1,1,1,2,3,3-hexachloropropane; The method according to claim 17 or 18, further comprising:
  20. 1,1,1,3,3-ペンタクロロプロパンを、液相において、ルイス酸触媒の存在下、脱塩化水素化して前記1,1,3,3-テトラクロロプロペンを得る脱塩化水素化工程、をさらに含むことを特徴とする、請求項19に記載の方法。 Dehydrochlorination step of dehydrochlorinating 1,1,1,3,3-pentachloropropane in the liquid phase in the presence of a Lewis acid catalyst to obtain the 1,1,3,3-tetrachloropropene; 20. The method of claim 19, further comprising:
  21. 1,1,1,3,3-ペンタクロロプロパンの脱塩化水素化工程を「第1工程」、1,1,3,3-テトラクロロプロペンの塩素化工程を「第2工程」、1,1,1,2,3,3-ヘキサクロロプロパンの脱塩化水素化工程を「第3工程」として、この順で実施するときに、前記第1工程で用いたルイス酸触媒が、前記第2工程および前記第3工程に渡って、第2工程および第3工程のルイス酸触媒として再利用されることを特徴とする、請求項20に記載の方法。 The dehydrochlorination step of 1,1,1,3,3-pentachloropropane is “first step”, the chlorination step of 1,1,3,3-tetrachloropropene is “second step”, 1,1 The Lewis acid catalyst used in the first step when the dehydrochlorination step of 1,2,2,3,3-hexachloropropane is carried out in this order as the “third step” is the second step and 21. The method according to claim 20, wherein the method is reused as a Lewis acid catalyst in the second step and the third step over the third step.
  22. 1,1,2,3,3-ペンタクロロプロペンとフッ化水素とを反応させて1,2-ジクロロ-3,3,3-トリフルオロプロペンと1,2,3-トリクロロ-3,3-ジフルオロプロペンとを併産する方法。 1,1,2,3,3-pentachloropropene is reacted with hydrogen fluoride to produce 1,2-dichloro-3,3,3-trifluoropropene and 1,2,3-trichloro-3,3- A method of co-production with difluoropropene.
  23. 前記反応を液相で行うことを特徴とする、請求項22に記載の方法。 The method according to claim 22, wherein the reaction is performed in a liquid phase.
  24. 前記反応を気相で行うことを特徴とする、請求項22に記載の方法。 The method according to claim 22, wherein the reaction is performed in a gas phase.
  25. 前記反応を触媒の存在下で行うことを特徴とする、請求項22~24のいずれかに記載の方法。 The method according to any one of claims 22 to 24, wherein the reaction is carried out in the presence of a catalyst.
  26. 前記反応を触媒の非存在下で行うことを特徴とする、請求項22~24のいずれかに記載の方法。 The method according to any one of claims 22 to 24, wherein the reaction is carried out in the absence of a catalyst.
  27. 1,2-ジクロロ-3,3,3-トリフルオロプロペンと1,2,3-トリクロロ-3,3-ジフルオロプロペンとを分離する工程、を含むことを特徴とする、請求項22~26のいずれかに記載の方法。 Separating the 1,2-dichloro-3,3,3-trifluoropropene and 1,2,3-trichloro-3,3-difluoropropene. The method according to any one.
  28. 前記反応を塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、請求項22~27のいずれかに記載の方法。 The method according to any one of claims 22 to 27, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
  29. 1,1,2,3,3-ペンタクロロプロペンとフッ化水素とを反応させて1,2,3-トリクロロ-3,3-ジフルオロプロペンを製造する方法。 A method for producing 1,2,3-trichloro-3,3-difluoropropene by reacting 1,1,2,3,3-pentachloropropene and hydrogen fluoride.
  30. 前記反応を液相で行うことを特徴とする、請求項29に記載の方法。 30. The method of claim 29, wherein the reaction is performed in a liquid phase.
  31. 前記反応を気相で行うことを特徴とする、請求項29に記載の方法。 30. The method of claim 29, wherein the reaction is performed in the gas phase.
  32. 前記反応を100~140℃で行うことを特徴とする、請求項30に記載の方法。 The process according to claim 30, wherein the reaction is carried out at 100 to 140 ° C.
  33. 前記反応を触媒の存在下で行うことを特徴とする、請求項29~32のいずれかに記載の方法。 The process according to any of claims 29 to 32, characterized in that the reaction is carried out in the presence of a catalyst.
  34. 前記反応を触媒の非存在下で行うことを特徴とする、請求項29~32のいずれかに記載の方法。 The process according to any of claims 29 to 32, wherein the reaction is carried out in the absence of a catalyst.
  35. 前記反応を塩素、酸素および空気からなる群より選ばれる少なくとも1種の存在下で行うことを特徴とする、請求項29~34のいずれかに記載の方法。 The method according to any one of claims 29 to 34, wherein the reaction is carried out in the presence of at least one selected from the group consisting of chlorine, oxygen and air.
PCT/JP2017/014648 2016-04-19 2017-04-10 Method for producing 1,2-dichloro-3,3,3-trifluoropropene WO2017183501A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17785841.2A EP3434663B1 (en) 2016-04-19 2017-04-10 Method for producing 1,2-dichloro-3,3,3-trifluoropropene
EP20176820.7A EP3718995B1 (en) 2016-04-19 2017-04-10 Process for producing 1,2-dichloro-3,3,3-trifluoropropene
US16/094,228 US10611708B2 (en) 2016-04-19 2017-04-10 Method for producing 1,2-dichloro-3,3,3-Trifluoropropene
CN201780024876.1A CN109071386B (en) 2016-04-19 2017-04-10 Method for producing 1, 2-dichloro-3, 3, 3-trifluoropropene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-083439 2016-04-19
JP2016083439 2016-04-19
JP2017-058985 2017-03-24
JP2017058985A JP6751239B2 (en) 2016-04-19 2017-03-24 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Publications (1)

Publication Number Publication Date
WO2017183501A1 true WO2017183501A1 (en) 2017-10-26

Family

ID=60115898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014648 WO2017183501A1 (en) 2016-04-19 2017-04-10 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Country Status (1)

Country Link
WO (1) WO2017183501A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075727A1 (en) * 2018-10-12 2020-04-16 セントラル硝子株式会社 Liquid composition storage method and product
CN113694945A (en) * 2021-09-09 2021-11-26 万华化学集团股份有限公司 Ethylene oxychlorination catalyst, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525374A (en) * 2003-05-06 2006-11-09 ハネウェル・インターナショナル・インコーポレーテッド Azeotropic compositions of 1-chloro-1,3,3,3-tetrafluoropropane and 1,2-dichloro-3,3,3-trifluoropropene
CN103508842A (en) * 2013-09-28 2014-01-15 西安近代化学研究所 Preparation method of 1, 2-dichloro-3, 3, 3-trifluoropropene
CN103508844A (en) * 2013-09-28 2014-01-15 西安近代化学研究所 Liquid-phase fluorination preparation method for 1, 2-dichloro-3, 3, 3-trifluoropropene
CN105753637A (en) * 2014-12-13 2016-07-13 西安近代化学研究所 Preparation method of trans-1, 2-dichloro-3, 3, 3-trifluoropropene
JP2016204291A (en) * 2015-04-20 2016-12-08 セントラル硝子株式会社 Method for producing chlorine-containing olefin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525374A (en) * 2003-05-06 2006-11-09 ハネウェル・インターナショナル・インコーポレーテッド Azeotropic compositions of 1-chloro-1,3,3,3-tetrafluoropropane and 1,2-dichloro-3,3,3-trifluoropropene
CN103508842A (en) * 2013-09-28 2014-01-15 西安近代化学研究所 Preparation method of 1, 2-dichloro-3, 3, 3-trifluoropropene
CN103508844A (en) * 2013-09-28 2014-01-15 西安近代化学研究所 Liquid-phase fluorination preparation method for 1, 2-dichloro-3, 3, 3-trifluoropropene
CN105753637A (en) * 2014-12-13 2016-07-13 西安近代化学研究所 Preparation method of trans-1, 2-dichloro-3, 3, 3-trifluoropropene
JP2016204291A (en) * 2015-04-20 2016-12-08 セントラル硝子株式会社 Method for producing chlorine-containing olefin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075727A1 (en) * 2018-10-12 2020-04-16 セントラル硝子株式会社 Liquid composition storage method and product
CN112888641A (en) * 2018-10-12 2021-06-01 中央硝子株式会社 Method for preserving liquid composition and product
JPWO2020075727A1 (en) * 2018-10-12 2021-09-02 セントラル硝子株式会社 Liquid composition storage methods and products
CN112888641B (en) * 2018-10-12 2023-02-17 中央硝子株式会社 Method for preserving liquid composition and product
JP7356041B2 (en) 2018-10-12 2023-10-04 セントラル硝子株式会社 Storage methods and products for liquid compositions
CN113694945A (en) * 2021-09-09 2021-11-26 万华化学集团股份有限公司 Ethylene oxychlorination catalyst, preparation method and application
CN113694945B (en) * 2021-09-09 2022-09-20 万华化学集团股份有限公司 Ethylene oxychlorination catalyst, preparation method and application

Similar Documents

Publication Publication Date Title
JP6088618B2 (en) Method for producing hexafluoro-2-butene
EP3363776B1 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
JP5705962B2 (en) Method for producing hexafluoro-2-butene
JP6826280B2 (en) Method for producing trans-1-chloro-3,3,3-trifluoropropene
JP6245013B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
CN105188909B (en) Fluorination process and reactor
JP5790438B2 (en) Process for producing trans-1-chloro-3,3,3-trifluoropropene
EP2167449A1 (en) Processes for preparing 1,1,2,3-tetrachloropropene
JP6251992B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP6751239B2 (en) Method for producing 1,2-dichloro-3,3,3-trifluoropropene
JP2018090512A (en) Method for producing fluorocarbon using hydrohalofluoropropene
JP2017014160A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
WO2017183501A1 (en) Method for producing 1,2-dichloro-3,3,3-trifluoropropene
WO2018193884A1 (en) Method for producing 1,1-dichloro-3,3,3-trifluoropropene
JP2016204291A (en) Method for producing chlorine-containing olefin
JP6032085B2 (en) Method for producing 3,3,3-trifluoropropyne
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JP7029093B2 (en) Method for producing trans-1-chloro-3,3,3-trifluoropropene
JP6627849B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017785841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785841

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785841

Country of ref document: EP

Kind code of ref document: A1