WO2017183429A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2017183429A1
WO2017183429A1 PCT/JP2017/013896 JP2017013896W WO2017183429A1 WO 2017183429 A1 WO2017183429 A1 WO 2017183429A1 JP 2017013896 W JP2017013896 W JP 2017013896W WO 2017183429 A1 WO2017183429 A1 WO 2017183429A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power
liquid
storage device
heat insulating
Prior art date
Application number
PCT/JP2017/013896
Other languages
English (en)
French (fr)
Inventor
深田 雅一
仁司 塩谷
次郎 亀田
加藤 和行
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/095,279 priority Critical patent/US11038222B2/en
Priority to CN201780024132.XA priority patent/CN109075408B/zh
Publication of WO2017183429A1 publication Critical patent/WO2017183429A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/02Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors plug-in type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a power storage device.
  • the power storage device (electric propulsion device) described in Patent Document 1 below has a configuration in which a storage battery and an inverter (power converter) are accommodated in the same casing.
  • a refrigerant flow path is formed in the wall of the housing, and the storage battery or the like can be cooled and heated by circulating the refrigerant.
  • the power storage device can be operated over a long period of time.
  • the internal space of the housing that is, the space in which the storage battery or the like is accommodated is filled with air.
  • air As a result of detailed studies by the inventor, there is a problem that depending on the arrangement of storage batteries and inverters in such a power storage device, they may not be evenly and sufficiently cooled, and temperature unevenness may occur in some areas. It was issued. Another problem has been found that when the humidity of the air is high, condensation occurs inside the housing, which may affect the operation of the inverter.
  • An object of the present disclosure is to provide a power storage device that can operate over a long period of time without being affected by outside air temperature or humidity.
  • a power storage device includes a storage battery that stores power, a battery management unit that monitors and protects the storage battery, a function that converts DC power output from the storage battery into AC power, and outputs the power
  • An inverter having a function of converting supplied AC power into DC power and supplying it to a storage battery, and a storage battery for storing the storage battery, the battery management unit, and the inverter in a state where the periphery is filled with a liquid
  • a temperature control unit that adjusts the temperature of the liquid so that the temperature of the liquid becomes a predetermined target temperature, heat transfer between the container and the liquid and the outside air, and a heat insulating material arranged so as to surround the liquid storage container, Is provided.
  • the storage battery, the battery management unit, and the inverter are accommodated in the liquid storage container, and the periphery thereof is filled with the liquid.
  • a liquid for example, an insulating liquid such as a fluorine-based liquid is used.
  • the temperature control unit and the storage battery heat is transferred by heat conduction through the liquid. For this reason, compared with the case where the circumference
  • a power storage device that can operate over a long period of time without being affected by outside air temperature or humidity is provided.
  • FIG. 1 is a perspective view illustrating an appearance of the power storage device according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the internal structure of the power storage device.
  • FIG. 3 is a perspective view showing a refrigerant pipe which is a part of the temperature control unit.
  • FIG. 4 is a flowchart showing a flow of processing executed in the temperature adjustment unit.
  • FIG. 5 is a diagram showing the relationship between the outside air temperature and the set target temperature.
  • FIG. 6 is a diagram illustrating an example of a temperature change inside the liquid storage container.
  • FIG. 7 is a diagram showing the relationship between the temperature of the storage battery and the current capacity.
  • FIG. 8 is a cross-sectional view showing the internal structure of the vacuum heat insulating material.
  • FIG. 9 is a diagram for explaining the arrangement of the vacuum heat insulating material inside the power storage device.
  • FIG. 10 is a diagram for explaining the arrangement of the vacuum heat insulating material inside the power storage device.
  • the power storage device 10 is configured as an in-vehicle storage battery mounted on an electric vehicle.
  • the use of the power storage device 10 is not limited to this.
  • the power storage device may be used as a stationary power storage device installed in a building as part of the HEMS, or may be used as a power storage device installed in a mobile phone base station.
  • FIG. 1 shows the external appearance of the power storage device 10
  • FIG. 2 shows its internal structure.
  • the power storage device 10 has a configuration in which a storage battery 30 and the like are accommodated in a case 20.
  • Three terminals 90 that are bar-shaped metal pins and two terminals 91 that are also bar-shaped metal pins are provided below the power storage device 10, that is, on the lower surface of the case 20.
  • the power storage device 10 can output three-phase AC power to the outside from these terminals 90 and can output DC power to the outside from these terminals 91.
  • the power storage device 10 can also receive three-phase AC power supplied from the outside from the terminal 90 and store the power in the storage battery 30.
  • the power storage device 10 can also receive DC power supplied from the outside from the terminal 91 and store the power in the storage battery 30.
  • the electric power input / output between the storage battery 30 and the terminal 90 is input / output via the inverter 40. Further, power input / output between the storage battery 30 and the terminal 91 is input / output via a battery management unit 32 described later.
  • the power storage device 10 includes a case 20, a storage battery 30, an inverter 40, a temperature adjustment unit 50, a liquid storage container 60, and a heat insulating material 70.
  • the case 20 is a container that accommodates the storage battery 30 and the like therein as described above.
  • the case 20 is formed by aluminum die casting.
  • the case 20 is configured to be divided into a main body portion 22 and a lid portion 21.
  • the main body 22 is a part that houses the storage battery 30 and the like, and an opening is formed on the upper surface thereof. From the opening, a part of a temperature adjusting unit 50 described later protrudes upward.
  • the lid portion 21 is a portion that closes the opening formed on the upper surface of the main body portion 22 from above.
  • the lid part 21 covers the temperature adjustment part 50 protruding upward from the main body part 22 from the side and the upper side.
  • the lid portion 21 is formed with a vent hole (not shown). For this reason, the temperature and humidity inside the case 20, particularly inside the lid portion 21, are approximately equal to the temperature and humidity outside the case 20.
  • Storage battery 30 is a part that stores electric power.
  • the storage battery 30 includes a plurality of cell units 31 made of, for example, lithium ion batteries.
  • the output voltage of the storage battery 30 is a safety voltage of less than 60 volts, and 48 volts in a specific period.
  • a battery management unit 32 is disposed in the vicinity of the storage battery 30.
  • the battery management unit 32 is referred to as a so-called BMU (Battery Management Unit), and is provided as a device for monitoring and protecting each cell unit 31.
  • BMU Battery Management Unit
  • the battery management unit 32 corresponds to the “battery management unit” in the present embodiment.
  • the inverter 40 converts DC power output from the storage battery 30 into AC power and outputs it from the terminal 90, and converts AC power supplied from the outside to the terminal 90 into DC power and supplies it to the storage battery 30. Function.
  • the inverter 40 functions as a bidirectional power converter.
  • the inverter 40 has a plurality of switching elements 41 that perform a switching operation for power conversion.
  • a gallium nitride element (GaN) is used as the switching element 41.
  • GaN gallium nitride element
  • the gallium nitride device is a wide band gap power device, and the loss associated with the switching operation is extremely small. For this reason, the conversion efficiency of the inverter 40 is an ultrahigh efficiency of 99% or more, and the heat generation during the operation is extremely small. Further, the inverter 40 is thinned as a whole, and is configured as a printed circuit board type power converter.
  • FIG. 2 a plurality of switching elements 41 are schematically drawn. Since a specific shape of the switching element 41 and a specific configuration of the switching circuit including the switching element 41 can be adopted, illustration and description thereof are omitted.
  • the liquid storage container 60 is a container that houses the storage battery 30, the battery management unit 32, and the inverter 40 therein.
  • the liquid storage container 60 is a bag-shaped container formed of an aluminum laminate film.
  • the space SP inside the liquid storage container 60, that is, the surrounding space of the storage battery 30, etc. is filled with liquid.
  • the liquid hereinafter referred to as “heat transfer liquid LQ”
  • a liquid for example, a fluorine-based liquid, silicon oil, ultrapure water, or the like can be used.
  • Fluorinert registered trademark
  • Fluorine-based liquid is used as the heat transfer liquid LQ.
  • Fluorine-based liquids are particularly suitable as the heat transfer liquid LQ because they have high thermal conductivity, can easily maintain electrical insulation, and also have flame retardancy.
  • the liquid storage container 60 is sealed at normal pressure with the inside filled with the heat transfer liquid LQ (that is, in a state where no air is present).
  • the power storage device 10 Since air is excluded from the surroundings of the storage battery 30, the battery management unit 32, and the inverter 40, condensation does not occur on these surfaces even when the humidity of the outside air is high. Moreover, since ultraviolet rays, ozone, insects, and dust are prevented from entering the liquid storage container 60, the power storage device 10 is not damaged or deteriorated due to these. Furthermore, since the disassembly and cleaning when the power storage device 10 is reused becomes unnecessary, the value of the power storage device 10 can be maintained high.
  • liquid storage container 60 As a material of the liquid storage container 60, a hard material (for example, metal such as aluminum) that does not have flexibility may be used instead of the aluminum laminate film as described above.
  • the liquid storage container 60 is desirably formed of a material having high thermal conductivity so that the temperature of the heat transfer liquid LQ filling the inside can be easily adjusted.
  • the configuration of the present embodiment can reliably prevent the battery management unit 32 from malfunctioning due to electromagnetic noise incident from the outside or leakage of electromagnetic noise generated by the inverter 40 to the outside.
  • the temperature control unit 50 is a part that adjusts the heat transfer liquid LQ to a predetermined target temperature by transferring heat between the heat transfer liquid LQ and the outside air.
  • the temperature adjustment unit 50 includes a heat exchanger 51, a fan 52, an electric compressor 53, a refrigerant pipe 54, and a control unit 55.
  • the temperature control unit 50 is configured as a refrigeration cycle that moves heat by circulating the refrigerant.
  • the heat exchanger 51 is a heat exchanger that exchanges heat between outside air (specifically, air inside the lid portion 21) and the circulating refrigerant.
  • the heat exchanger 51 corresponds to the “external heat exchange unit” in the present embodiment.
  • the fan 52 is a blower that sends ambient air into the heat exchanger 51 so that heat exchange in the heat exchanger 51 is promoted. Electric power for driving the fan 52 is supplied from the storage battery 30 to the fan 52 via the power supply of the control unit 55. The operation of the fan 52 is controlled by the control unit 55.
  • the electric compressor 53 is a device that sends out the refrigerant so that the refrigerant circulates between the heat exchanger 51 and the refrigerant pipe 54. Electric power for driving the electric compressor 53 is supplied from the storage battery 30 to the electric compressor 53 via a dedicated small inverter in the control unit 55. The operation of the electric compressor 53 is controlled by the control unit 55.
  • the refrigerant pipe 54 is a pipe having a circular cross section as an example in the present embodiment, and is formed of metal in the present embodiment.
  • the refrigerant pipe 54 functions as a heat exchanger for causing heat exchange between the refrigerant flowing inside and the liquid storage container 60 (and the internal heat transfer liquid LQ).
  • the refrigerant pipe 54 corresponds to the “internal heat exchange part” in the present embodiment.
  • the refrigerant pipe 54 is arranged so as to circulate around the liquid storage container 60 over a plurality of circumferences.
  • One end of the refrigerant pipe 54 is connected to the electric compressor 53.
  • the other end of the refrigerant pipe 54 is connected to the heat exchanger 51 via a throttle valve (not shown).
  • the refrigerant pipe 54 includes a first pipe part 54 a that extends from the electric compressor 53 and a second pipe part 54 b that extends from the throttle valve in the lower folded part TP. It is the structure that is connected.
  • the refrigerant flowing through the refrigerant pipe 54 changes its temperature by exchanging heat with the liquid storage container 60 while flowing around the liquid storage container 60.
  • the refrigerant flow path can be switched by a three-way valve (not shown). Thereby, the cooling state in which the refrigerant pipe 54 functions as an evaporator and the heating state in which the refrigerant pipe 54 functions as a condenser can be switched.
  • the refrigerant flows in the order of the electric compressor 53, the heat exchanger 51 (condenser), a throttle valve (not shown), and the refrigerant pipe 54 (evaporator).
  • the liquid storage container 60 is cooled by heat radiation to the air, and the temperature of the heat transfer liquid LQ is lowered.
  • the refrigerant flows in the order of the electric compressor 53, the refrigerant pipe 54 (condenser), a throttle valve (not shown), and the heat exchanger 51 (evaporator).
  • the liquid storage container 60 is heated by heat absorption from the air, and the temperature of the heat transfer liquid LQ rises.
  • the control unit 55 is a part that controls operations of the fan 52, the electric compressor 53, and a three-way valve (not shown).
  • the control unit 55 is configured as a system including a computer unit including a CPU, a ROM, and the like, an inverter unit for an electric compressor, and a power source unit for a fan. By the control performed by the control unit 55, the temperature of the heat transfer liquid LQ inside the liquid storage container 60 is maintained in the vicinity of the target temperature. A specific aspect of the control will be described later.
  • the heat insulating material 70 is provided in order to suppress the movement of heat between the liquid storage container 60 and the outside air.
  • the heat insulating material 70 is disposed so as to surround the entire periphery of the liquid storage container 60. As shown in FIG. 2, most of the refrigerant pipe 54 (the part that functions as an internal heat exchange part) is provided inside the heat insulating material 70. In addition, a portion (the heat exchanger 51 or the like) other than the refrigerant pipe 54 in the temperature control unit 50 is provided outside the heat insulating material 70.
  • the temperature of the liquid storage container 60 and the heat transfer liquid LQ therein is hardly affected by the outside air temperature. That is, only the heat generated by each of the storage battery 30, the battery management unit 32, and the inverter 40 housed in the liquid storage container 60 is a factor that fluctuates the temperature of the heat transfer liquid LQ. As a result, the operating load of the temperature control unit 50 is relatively small, and the energy required to operate the temperature control unit 50 is also small.
  • the fan 52 and the electric compressor 53 of the temperature control unit 50 operate by receiving the supply of electric power stored in the storage battery 30.
  • the energy required for the operation is small as described above, a decrease in the amount of stored electricity associated with the operation of the temperature adjustment unit 50 is suppressed.
  • moves using the electric power stored in the storage battery 30 may be comprised as a refrigeration cycle as mentioned above, the structure different from this may be sufficient.
  • a configuration in which heat transfer between the heat transfer liquid LQ and the outside air is performed by a Peltier element may be employed.
  • a vacuum heat insulating material is used as the heat insulating material 70.
  • a specific configuration of the heat insulating material 70 and a specific arrangement of the heat insulating material 70 inside the case 20 will be described later.
  • the power storage device 10 further includes a liquid temperature sensor 81 and an outside air temperature sensor 82.
  • the liquid temperature sensor 81 is a temperature sensor for measuring the temperature inside the liquid storage container 60, that is, the temperature of the heat transfer liquid LQ.
  • the liquid temperature sensor 81 is attached to the battery management unit 32.
  • the temperature of the heat transfer liquid LQ measured by the liquid temperature sensor 81 is transmitted to the control unit 55 of the temperature adjustment unit 50.
  • the temperature is approximately equal to the temperature of each of the storage battery 30, the battery management unit 32, and the inverter 40.
  • the outside air temperature sensor 82 is a temperature sensor for measuring the air temperature inside the lid portion 21. As already described, the lid portion 21 has a vent hole (not shown). For this reason, the temperature measured by the outside air temperature sensor 82 is equal to the air temperature outside the case 20, that is, the outside air temperature. That is, the outside air temperature sensor 82 functions as a sensor for detecting the outside air temperature. The outside air temperature measured by the outside air temperature sensor 82 is transmitted to the control unit 55 of the temperature adjustment unit 50.
  • step S01 the outside air temperature detected by the outside air temperature sensor 82 is acquired.
  • step S02 the target temperature is updated.
  • the controller 55 changes the target temperature, which is a target value for the temperature of the heat transfer liquid LQ, based on the outside air temperature acquired in step S01.
  • FIG. 5 shows the correspondence between the outside air temperature and the set target temperature.
  • the target temperature when the outside air temperature is lower than the temperature T1, the target temperature is set to the lower limit value ST1.
  • the target temperature is set to the upper limit value ST2.
  • the target temperature is set to a higher value as the outside air temperature becomes higher.
  • the temperature adjustment unit 50 changes the target temperature in the range from the lower limit value ST1 to the upper limit value ST2 based on the outside air temperature.
  • the target temperature When the outside air temperature is high, the target temperature is set high, and when the outside air temperature is low, the target temperature is set low, so that the difference between the outside air temperature and the target temperature does not become too large.
  • the operation load of the temperature control unit 50 is relatively small, and power consumption by the temperature control unit 50 is reduced. As a result, a decrease in the amount of electricity stored in the storage battery 30 is further suppressed.
  • step S03 the temperature of the heat transfer liquid LQ detected by the liquid temperature sensor 81 is acquired.
  • step S04 the rotational speed of the electric compressor 53 and the like are adjusted based on the difference between the temperature of the heat transfer liquid LQ and the target temperature.
  • the refrigerant flow path is switched so that the refrigerant pipe 54 functions as an evaporator. Further, the control is performed so that the rotational speed of the electric compressor 53 increases as the temperature difference between the temperature of the heat transfer liquid LQ and the target temperature increases.
  • the refrigerant flow path is switched so that the refrigerant pipe 54 functions as a condenser. Also in this case, control is performed so that the rotational speed of the electric compressor 53 increases as the temperature difference between the temperature of the heat transfer liquid LQ and the target temperature increases.
  • the state where the temperature of the heat transfer liquid LQ substantially matches the target temperature is maintained. Since the temperature of the storage battery 30 does not rise too much, the deterioration of the storage battery 30 can be suppressed and the charge / discharge function of the storage battery 30 can be maintained over a long period of time. In addition, since the temperature of the inverter 40 does not rise excessively, the occurrence of problems due to the temperature rise such as solder cracks in a part of the inverter 40 is prevented. As a result, the inverter 40 can be normally operated for a long time. In addition, since the battery management unit 32 is similarly prevented from malfunctioning due to a temperature rise, both the battery management unit 32 and the inverter 40 can be extended in life, and equivalent cost reduction can be achieved. Will be illustrated.
  • the process for changing the target temperature based on the outside air temperature steps S01 and S02
  • the process for matching the temperature of the heat transfer liquid LQ with the target temperature steps S03 and S04.
  • steps S01 and S02 the process for changing the target temperature based on the outside air temperature
  • steps S03 and S04 the process for matching the temperature of the heat transfer liquid LQ with the target temperature
  • FIG. 6 shows an example of a temperature change of the heat transfer liquid LQ when the power storage device 10 is operating.
  • the target temperature is indicated as “ST”.
  • the temperature adjustment unit 50 controls the operation of the electric compressor 53 and the like so that the temperature of the heat transfer liquid LQ falls within the range of the target temperature ST ⁇ 1 ° C.
  • the reason why such high-precision control can be performed is that heat transfer between the liquid storage container 60 and the outside is suppressed by the heat insulating material 70, and that the conversion efficiency of the inverter 40 is very high ( In other words, the amount of heat generated from the inverter 40 is very small).
  • FIG. 7 shows the relationship between the temperature of the storage battery 30 and the current capacity. As shown in the figure, when the temperature of the storage battery 30 falls below 0 ° C., the current capacity capable of input / output of the storage battery 30 is significantly reduced. When the temperature of the storage battery 30 is higher than 0 ° C., the current capacity of the storage battery 30 is sufficiently large and has a substantially constant value.
  • the storage battery 30 tends to easily deteriorate when its temperature continues to be higher than 20 ° C. Therefore, in order to sufficiently exhibit the performance of the storage battery 30 over a long period of time, it is preferable to maintain the temperature of the storage battery 30 within the range of 0 ° C. to 20 ° C., particularly within the range of 10 ° C. to 20 ° C.
  • the temperature control unit 50 is configured to change the target temperature of the heat transfer liquid LQ in a range from 10 ° C. to 20 ° C. based on the outside air temperature. Thereby, the state where the current capacity of the storage battery 30 is sufficiently large and the deterioration of the storage battery 30 is difficult to proceed is stably maintained.
  • the configuration of the heat insulating material 70 will be described with reference to FIG.
  • the heat insulating material 70 includes a sheet 71 and a core material 72.
  • the sheet 71 is formed of a material having low gas permeability and flexibility.
  • the two sheets 71 are overlapped with each other and the ends thereof are heat-sealed, and the whole is a bag-like container.
  • the core material 72 is glass wool formed in a flat plate shape.
  • the core material 72 is accommodated in the sheet
  • the heat insulating material 70 has a configuration in which the bag-like sheet 71 is hermetically sealed in a state where the internal space of the sheet 71, that is, the space around and inside the core material 72 is decompressed.
  • the heat insulating material 70 configured as such a vacuum heat insulating material is a relatively thin plate-shaped heat insulating material, its heat insulating performance is extremely high.
  • the entire liquid storage container 60 and the refrigerant pipe 54 are substantially rectangular parallelepiped (hexahedral).
  • the heat insulating material 70 is arrange
  • the hexahedron is formed by combining two heat insulating materials 70 (heat insulating materials 70a and 70b).
  • FIG. 9 shows the shapes of the heat insulating materials 70a and 70b.
  • FIG. 10 shows a state in which the heat insulating materials 70a and 70b are combined to form the above hexahedron.
  • each of the heat insulating materials 70a and 70b is bent vertically at two locations. Further, in each of the heat insulating materials 70a and 70b, the two lines that become the creases are parallel to each other.
  • the folded heat insulating material 70a is disposed so as to cover three of the six surfaces of the hexahedron. Similarly, the folded heat insulating material 70b is arranged so as to cover the remaining three surfaces among the six surfaces of the hexahedron.
  • the plurality of heat insulating materials 70 formed in a plate shape are arranged so as to surround the periphery of the liquid storage container 60 along six mutually perpendicular surfaces. Specifically, each of the two heat insulating materials 70a and 70b is bent at two locations, and each surrounds the periphery of the liquid storage container 60 over three surfaces.
  • a method for forming the hexahedron by combining the heat insulating material 70 various methods different from the above can be adopted. For example, it is good also as a structure arrange
  • the hexahedron may be formed by combining six heat insulating materials 70. However, in this case, twelve sides that form the boundary between the heat insulating materials 70 adjacent to each other, that is, the sides that cause the passage of heat because the core material 72 is not continuously arranged, are formed. Will end up.
  • thermal bridge side B a side where the heat insulating material 70 is broken, that is, a side where heat does not pass due to the core material 72 being continuously arranged therein is referred to as “heat insulating side A”.
  • the power storage device 10 has a configuration in which the periphery of the storage battery 30, the battery management unit 32, and the inverter 40 is filled with the heat transfer liquid, and further the temperature adjustment by the temperature adjustment unit 50 and the heat insulating material 70. This is combined with the heat insulation effect.
  • the power storage device 10 having the above-described configuration has been able to extend the life of the power storage device 10 approximately twice compared to the conventional one. As a result, replacement in a short period is unnecessary, and the substantial cost of the power storage device 10 can be reduced to 1 ⁇ 2.
  • urethane foam may be filled in a space formed between the liquid storage container 60 and the heat insulating material 70, that is, a space around the refrigerant pipe 54, to prevent displacement of the refrigerant pipe 54 and the like.
  • a metal container that accommodates the liquid storage container 60 may be further provided, and a coolant channel may be formed on the wall of the metal container itself.
  • the flow path functions as the refrigerant pipe 54.
  • a device for example, a rotating electrical machine that operates by receiving power supplied from the power storage device 10 may be provided integrally with the power storage device 10.
  • the storage battery 30 etc. which comprise the electrical storage apparatus 10, and the said apparatus may be the aspect accommodated in the inside of the common case 20.
  • FIG. 1 A device (for example, a rotating electrical machine) that operates by receiving power supplied from the power storage device 10 may be provided integrally with the power storage device 10.
  • the storage battery 30 etc. which comprise the electrical storage apparatus 10 may be the aspect accommodated in the inside of the common case 20.
  • only one set of the storage battery 30, the battery management unit 32, and the inverter 40 is disposed inside the storage container 60.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Refrigerator Housings (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

蓄電装置は、電力を蓄える蓄電池(30)と、前記蓄電池の監視及び保護を行う電池管理部(32)と、前記蓄電池から出力される直流電力を交流電力に変換して出力する機能、及び、外部から供給される交流電力を直流電力に変換して前記蓄電池に供給する機能、を有するインバータ(40)と、前記蓄電池、前記電池管理部、及び前記インバータを、その周囲が液体(LQ)で満たされた状態で内部に収容する蓄液容器(60)と、前記液体と外気との間において熱の移動を行わせ、前記液体の温度が所定の目標温度となるように調整する温調部(50)と、前記蓄液容器を囲むように配置された断熱材(70)と、を備える。

Description

蓄電装置 関連出願の相互参照
 本出願は、2016年4月21日に出願された日本国特許出願2016-085099号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は蓄電装置に関する。
 近年、電気自動車やハイブリッド自動車の普及に伴い、車両に搭載される蓄電装置の需要が高まっている。また、建物の電力使用を制御するHEMS(Home Energy Management System)の普及に伴い、定置型の蓄電装置の需要も高まっている。いずれの蓄電装置においても、内部の蓄電池の劣化を可能な限り抑制し、メンテナンスフリーで長期間に亘り動作することが求められている。
 下記特許文献1に記載の蓄電装置(電気推進装置)は、蓄電池とインバータ(電力変換器)とを同一の筐体内に収容した構成となっている。また、筐体の壁には冷媒流路が形成されており、冷媒を循環させることにより蓄電池等の冷却及び加温を行うことが可能となっている。このような構成においては、蓄電池及びインバータにおける温度上昇が抑制されるので、蓄電池の劣化やインバータの半田クラック等が防止される。これにより、蓄電装置を長期間に亘って動作させることができる。
特許第5769386号公報
 上記特許文献1に記載されている蓄電装置では、筐体の内部空間、すなわち蓄電池等が収容されている空間は空気で満たされている。発明者の詳細な検討の結果、このような蓄電装置における蓄電池やインバータの配置によっては、これらが均等且つ十分には冷却されず、一部において温度むらが生じる可能性がある、という課題が見出された。また、空気の湿度が高いときには筐体の内部で結露が生じてしまい、インバータの動作に影響を与えてしまう可能性がある、という課題も見出された。
 本開示の目的は、外気温度や湿度の影響を受けることなく、長期間に亘って動作することのできる蓄電装置を提供することにある。
 本開示の一態様による蓄電装置は、電力を蓄える蓄電池と、蓄電池の監視及び保護を行う電池管理部と、蓄電池から出力される直流電力を交流電力に変換して出力する機能、及び、外部から供給される交流電力を直流電力に変換して蓄電池に供給する機能、を有するインバータと、蓄電池、前記電池管理部、及びインバータを、その周囲が液体で満たされた状態で内部に収容する蓄液容器と、液体と外気との間において熱の移動を行わせ、液体の温度が所定の目標温度となるように調整する温調部と、蓄液容器を囲むように配置された断熱材と、を備える。
 このような構成の蓄電装置では、蓄電池、前記電池管理部、及びインバータが蓄液容器の内部に収容されており、その周囲が液体で満たされた状態となっている。このような液体としては、例えばフッ素系液体のような絶縁性を有する液体が用いられる。
 温調部と蓄電池等との間では、上記液体を介して熱伝導により熱の授受が行われることとなる。このため、蓄電池等の周囲が空気で満たされている場合に比べて、蓄電池等の温度を均等且つ適温に保つことができる。蓄電池等の周囲には空気が存在しないので、その表面において結露が生じることがない。また、蓄液容器は断熱材によって囲まれているので、外気温度の影響による蓄液容器内の温度変動が更に抑制される。その結果、温調部の動作負荷は小さくなるので、温調部を小型化することもできる。
 本開示によれば、外気温度や湿度の影響を受けることなく、長期間に亘って動作することのできる蓄電装置が提供される。
図1は、本実施形態に係る蓄電装置の外観を示す斜視図である。 図2は、蓄電装置の内部構造を示す断面図である。 図3は、調温部の一部である冷媒配管を示す斜視図である。 図4は、調温部で実行される処理の流れを示すフローチャートである。 図5は、外気温度と、設定される目標温度との関係を示す図である。 図6は、蓄液容器の内部における温度変化の一例を示す図である。 図7は、蓄電池の温度と電流容量との関係を示す図である。 図8は、真空断熱材の内部構造を示す断面図である。 図9は、蓄電装置の内部における真空断熱材の配置を説明するための図である。 図10は、蓄電装置の内部における真空断熱材の配置を説明するための図である。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 本実施形態に係る蓄電装置10は、電気自動車に搭載される車載用蓄電池として構成されている。ただし、蓄電装置10の用途はこれに限られるものではない。例えば、HEMSの一部として建物に設置される定置型の蓄電装置として用いられてもよく、携帯電話用の基地局に設置される蓄電装置として用いられてもよい。
 蓄電装置10の構成について説明する。図1に示されるのは蓄電装置10の外観であり、図2に示されるのはその内部構造である。蓄電装置10は、ケース20の内部に蓄電池30等が収容された構成となっている。蓄電装置10の下方側、すなわちケース20の下面には、棒状の金属ピンである端子90が3つ、及び同じく棒状の金属ピンである端子91が2つ設けられている。
 蓄電装置10は、これら端子90から三相の交流電力を外部に出力すること、及びこれら端子91から直流電力を外部に出力することが可能となっている。また、蓄電装置10は、外部から供給される三相の交流電力を端子90から受け入れて、当該電力を蓄電池30に蓄えることも可能となっている。更に、蓄電装置10は、外部から供給される直流電力を端子91から受け入れて、当該電力を蓄電池30に蓄えることも可能となっている。
 尚、蓄電池30と端子90との間で入出力される電力は、インバータ40を経由して入出力される。また、蓄電池30と端子91との間で入出力される電力は、後述の電池管理ユニット32を介して入出力される。
 主に図2を参照しながら、蓄電装置10の具体的な構成について説明する。蓄電装置10は、ケース20と、蓄電池30と、インバータ40と、温調部50と、蓄液容器60と、断熱材70と、を備えている。
 ケース20は、既に述べたように、蓄電池30等を内部に収容する容器である。本実施形態では、ケース20はアルミダイキャストによって形成されている。ケース20は、本体部22と蓋部21とに分かれた構成となっている。本体部22は、蓄電池30等を内部に収容する部分であって、その上面には開口が形成されている。当該開口からは、後述の温調部50の一部が上方に向けて突出している。
 蓋部21は、本体部22の上面に形成された開口を上方側から塞ぐ部分である。蓋部21は、本体部22から上方に突出している温調部50を、その側方側及び上方側から覆っている。蓋部21には不図示の通気口が形成されている。このため、ケース20の内部、特に蓋部21の内部における気温及び湿度は、ケース20の外部における気温及び湿度と概ね等しくなっている。
 蓄電池30は、電力を蓄える部分である。蓄電池30は、例えばリチウムイオン電池からなるセルユニット31を複数備えた構成となっている。蓄電池30の出力電圧は60ボルト未満の安全電圧、具体期には48ボルトである。
 蓄電池30の近傍には電池管理ユニット32が配置されている。電池管理ユニット32は、所謂BMU(Battery Management Unit)と称されるものであり、それぞれのセルユニット31の監視や保護を行うための装置として設けられている。電池管理ユニット32は、本実施形態における「電池管理部」に該当する。
 インバータ40は、蓄電池30から出力される直流電力を交流電力に変換して端子90から出力する機能、及び、外部から端子90に供給される交流電力を直流電力に変換して蓄電池30に供給する機能、を有している。このように、インバータ40は、双方向の電力変換器として機能する。
 インバータ40は、電力変換のためのスイッチング動作を行うスイッチング素子41を複数有している。本実施形態では、スイッチング素子41として窒化ガリウム素子(GaN)が用いられている。よく知られているように、窒化ガリウム素子はワイドバンドギャップのパワー素子であり、スイッチング動作に伴う損失が極めて小さくなっている。このため、インバータ40の変換効率は99%以上の超高効率となっており、その動作時における発熱が極めて小さくなっている。また、インバータ40はその全体が薄型化されており、プリント基板型の電力変換器として構成されている。
 尚、図2においては、複数のスイッチング素子41が模式的に描かれている。スイッチング素子41の具体的な形状や、スイッチング素子41を含むスイッチング回路の具体的な構成は公知のものを採用し得るので、その図示及び説明を省略する。
 蓄液容器60は、蓄電池30、電池管理ユニット32、及びインバータ40を、その内部に収容する容器である。本実施形態では、蓄液容器60はアルミラミネートフィルムによって形成された袋状の容器となっている。蓄液容器60の内側の空間SP、すなわち蓄電池30等の周囲の空間は、液体で満たされている。当該液体(以下では「伝熱液体LQ」と表記する)としては、熱伝導率が比較的高く、且つ電気絶縁性を有している液体を用いることが好ましい。このような液体としては、例えばフッ素系液体やシリコンオイル、超純水等を用いることができる。本実施形態では、伝熱液体LQとしてフッ素系液体であるフロリナート(登録商標)が用いられている。フッ素系液体は熱伝導率が高く、電気絶縁性を維持することが容易であり、更には難燃性をも有しているので、伝熱液体LQとして特に好適である。蓄液容器60は、その内部が伝熱液体LQで満たされた状態で(つまり、空気が一切存在しない状態で)常圧にて密閉されている。
 蓄電池30、電池管理ユニット32、及びインバータ40の周囲から空気が排除されているので、外気の湿度が高い場合であっても、これらの表面において結露が生じることは無い。また、紫外線、オゾン、虫、埃が蓄液容器60の内部に侵入してしまうことが防止されるので、これらに起因した蓄電装置10の故障や劣化が生じることも無い。更に、蓄電装置10がリユースされる際の分解清掃が不要となるので、蓄電装置10の価値を高く維持することができる。
 尚、蓄液容器60の材料としては、上記のようなアルミラミネートフィルムに替えて、可撓性を有さない硬質の材料(例えばアルミニウム等の金属)が用いられてもよい。蓄液容器60は、内部を満たす伝熱液体LQの温度調整を容易に行い得るように、熱伝導率の高い材料で形成されることが望ましい。
 ただし、本実施形態のようにアルミラミネートフィルムにより蓄液容器60が形成されている場合には、蓄液容器60を介した電磁波の通過が抑制されるという効果が得られる。例えば、外部から入射した電磁波ノイズによって電池管理ユニット32が誤動作してしまったり、インバータ40で発生した電磁波ノイズが外部に漏洩してしまったりすることが、本実施形態の構成においては確実に防止される。
 温調部50は、伝熱液体LQと外気との間において熱の移動を行わせ、伝熱液体LQの温度が所定の目標温度となるように調整する部分である。温調部50は、熱交換器51と、ファン52と、電動コンプレッサ53と、冷媒配管54と、制御部55と、を有している。温調部50は、冷媒の循環によって熱の移動を行わせる冷凍サイクルとして構成されている。
 熱交換器51は、外気(具体的には蓋部21の内側にある空気)と、循環する冷媒との間で熱交換を行わせる熱交換器である。熱交換器51は、本実施形態における「外部熱交換部」に該当するものである。
 ファン52は、熱交換器51における熱交換が促進されるよう、熱交換器51に周囲の空気を送り込む送風機である。ファン52を駆動するための電力は、蓄電池30から制御部55の電源を介してファン52に供給される。ファン52の動作は制御部55によって制御される。
 電動コンプレッサ53は、熱交換器51と冷媒配管54との間で冷媒が循環するように、冷媒を送り出す装置である。電動コンプレッサ53を駆動するための電力は、蓄電池30から制御部55内の専用小型インバータを介して電動コンプレッサ53に供給される。電動コンプレッサ53の動作は制御部55によって制御される。
 冷媒配管54は本実施形態では一実施例として、断面が円形の配管であって、本実施形態では金属により形成されている。冷媒配管54は、内部を流れる冷媒と蓄液容器60(及び内部の伝熱液体LQ)との間で熱交換を行わせるための熱交換器として機能する。冷媒配管54は、本実施形態における「内部熱交換部」に該当するものである。
 冷媒配管54は、蓄液容器60の周りを複数周に亘って周回するように配置されている。冷媒配管54の一端は電動コンプレッサ53に接続されている。冷媒配管54の他端は、不図示の絞り弁を介して熱交換器51に接続されている。図3に示されるように、冷媒配管54は、電動コンプレッサ53から伸びる部分である第1配管部54aと、絞り弁から伸びる部分である第2配管部54bとが、下方側の折り返し部TPにおいて繋がっているような構成となっている。冷媒配管54を流れる冷媒は、蓄液容器60の周囲を周回して流れながら、蓄液容器60との熱交換によってその温度を変化させて行く。
 温調部50では、冷媒の流れる経路を不図示の三方弁により切り換えることが可能となっている。これにより、冷媒配管54が蒸発器として機能する冷却状態と、冷媒配管54が凝縮器として機能する加熱状態と、を切り換えることができる。
 上記の冷却状態においては、冷媒は、電動コンプレッサ53、熱交換器51(凝縮器)、不図示の絞り弁、冷媒配管54(蒸発器)の順に流れる。このとき、空気への放熱によって蓄液容器60は冷却され、伝熱液体LQの温度は低下する。
 上記の加熱状態においては、冷媒は、電動コンプレッサ53、冷媒配管54(凝縮器)、不図示の絞り弁、熱交換器51(蒸発器)の順に流れる。このとき、空気からの吸熱によって蓄液容器60は加熱され、伝熱液体LQの温度は上昇する。
 尚、上記のように流路を切り換えることのできる冷凍サイクルの構成としては、公知のものを採用し得る。このため、三方弁の配置や配管の引き回し等、具体的な構成についての説明や図示は省略する。
 制御部55は、ファン52、電動コンプレッサ53、及び不図示の三方弁の動作を制御する部分である。制御部55は、CPU、ROM等を備えたコンピュータ部と、電動コンプレッサ用インバータ部とファン用電源部を含んだシステムとして構成されている。制御部55が行う制御によって、蓄液容器60の内部における伝熱液体LQの温度が目標温度の近傍に維持される。当該制御の具体的な態様については後に説明する。
 断熱材70は、蓄液容器60と外気との間における熱の移動を抑制するために設けられている。断熱材70は、蓄液容器60の周囲全体を囲むように配置されている。図2に示されるように、冷媒配管54の大部分(内部熱交換部として機能する部分)は断熱材70の内側に設けられている。また、温調部50のうち冷媒配管54以外の部分(熱交換器51等)は断熱材70の外側に設けられている。
 このため、蓄液容器60及びその内部の伝熱液体LQの温度は、外気温度の影響をほとんど受けることが無い。つまり、蓄液容器60の内部に収納された蓄電池30、電池管理ユニット32、及びインバータ40のそれぞれの発熱のみが、伝熱液体LQの温度の変動要因となっている。その結果、温調部50の動作負荷は比較的小さくなっており、温調部50を動作させるために必要なエネルギーも小さくなっている。
 既に述べたように、温調部50のファン52や電動コンプレッサ53は、蓄電池30に蓄ええられた電力の供給を受けて動作する。しかしながら、その動作に必要なエネルギーは上記のように小さいので、温調部50の動作に伴う蓄電量の低下が抑制されている。
 尚、蓄電池30に蓄えられている電力を用いて動作する温調部50は、上記のように冷凍サイクルとして構成されていてもよいのであるが、これとは異なる構成であってもよい。例えば、伝熱液体LQと外気との間における熱の移動が、ペルチェ素子によって行われるような構成であってもよい。
 本実施形態では、断熱材70として真空断熱材が用いられている。断熱材70の具体的な構成や、ケース20の内部における断熱材70の具体的な配置については後に説明する。
 その他の構成について説明する。蓄電装置10は、液温センサ81と、外気温センサ82とを更に備えている。液温センサ81は、蓄液容器60の内部の温度、すなわち伝熱液体LQの温度を測定するための温度センサである。本実施形態では、液温センサ81は電池管理ユニット32に取り付けられている。液温センサ81で測定された伝熱液体LQの温度は、温調部50の制御部55に送信される。当該温度は、蓄電池30、電池管理ユニット32、及びインバータ40、のそれぞれの温度と概ね等しい。
 外気温センサ82は、蓋部21の内側における気温を測定するための温度センサである。既に述べたように、蓋部21には不図示の通気口が形成されている。このため、外気温センサ82によって測定される温度は、ケース20の外側における気温、すなわち外気温度に等しい。つまり、外気温センサ82は外気温度を検知するためのセンサとして機能する。外気温センサ82で測定された外気温度は、温調部50の制御部55に送信される。
 制御部55によって行われる制御の内容について、図4を参照しながら説明する。図4に示される一連の処理は、所定の周期が経過する毎に繰り返し実行される。最初のステップS01では、外気温センサ82で検知された外気温度が取得される。ステップS01に続くステップS02では、目標温度の更新が行われる。制御部55は、伝熱液体LQの温度についての目標値である目標温度を、ステップS01で取得された外気温度に基づいて変化させる。
 図5には、外気温度と、設定される目標温度との対応関係が示されている。同図に示されるように、外気温度が温度T1よりも低いときには、目標温度は下限値ST1に設定される。また、外気温度が温度T2(>T1)よりも高いときには、目標温度は上限値ST2に設定される。外気温度が温度T1から温度T2までの範囲内であるときには、目標温度は、外気温度が高くなるほど高い値に設定される。このように、温調部50は、外気温度に基づいて、目標温度を下限値ST1から上限値ST2までの範囲で変化させる。
 外気温度が高いときには目標温度が高めに設定され、外気温度が低いときには目標温度が低めに設定されるので、外気温度と目標温度との差が大きくなり過ぎてしまうことが無い。温調部50の動作負荷は比較的小さく、温調部50による電力消費は少なくなっている。その結果、蓄電池30における蓄電量の低下が更に抑えられている。
 図4に戻って説明を続ける。ステップS02に続くステップS03では、液温センサ81で検知された伝熱液体LQの温度が取得される。ステップS03に続くステップS04では、伝熱液体LQの温度と、目標温度との差に基づいて、電動コンプレッサ53の回転数等が調整される。
 例えば、伝熱液体LQの温度が目標温度よりも高いときには、冷媒配管54が蒸発器として機能するように冷媒の流路が切り換えられる。また、伝熱液体LQの温度と目標温度との温度差が大きくなるほど、電動コンプレッサ53の回転数が大きくなるように制御が行われる。
 一方、伝熱液体LQの温度が目標温度よりも低いときには、冷媒配管54が凝縮器として機能するように冷媒の流路が切り換えられる。この場合も、伝熱液体LQの温度と目標温度との温度差が大きくなるほど、電動コンプレッサ53の回転数が大きくなるように制御が行われる。
 このような制御が行われることにより、伝熱液体LQの温度が、目標温度に概ね一致している状態が維持される。蓄電池30の温度が上昇し過ぎてしまうことが無いので、蓄電池30の劣化を抑制し、長期間に亘り蓄電池30の充放電機能を維持することができる。また、インバータ40の温度が上昇し過ぎてしまうことも無いので、インバータ40の一部における半田クラック等、温度上昇に起因した不具合の発生が防止される。その結果、インバータ40についても、長期間に亘り正常に動作させることが可能となっている。更に、電池管理ユニット32についても同様に、温度上昇に起因した不具合の発生が防止されるため、電池管理ユニット32及びインバータ40のいずれについても長寿命化が可能となり、等価的な低コスト化が図られることとなる。
 尚、図4の例では、外気温度に基づいて目標温度を変化させるための処理(ステップS01、S02)と、伝熱液体LQの温度を目標温度に一致させるための処理(ステップS03、S04)とが。同一の周期で実行されることとなる。このような態様に替えて、それぞれの処理が互いに異なる周期で実行されるような態様としてもよい。
 図6に示されるのは、蓄電装置10が動作している際における、伝熱液体LQの温度変化の一例である。同図では、目標温度が「ST」として示されている。同図に示されるように、温調部50は、伝熱液体LQの温度が目標温度ST±1℃の範囲に収まるように、電動コンプレッサ53等の動作を制御している。このような高精度の制御を行い得るのは、断熱材70によって蓄液容器60と外部との間における熱の授受が抑制されていること、及び、インバータ40の変換効率が非常に高いこと(つまり、インバータ40からの発熱量が非常に小さいこと)に起因している。
 図7には、蓄電池30の温度と電流容量との関係が示されている。同図に示されるように、蓄電池30の温度が0℃を下回ると、蓄電池30の入出力可能な電流容量は著しく低下する。蓄電池30の温度が0℃よりも大きいときには、蓄電池30の電流容量は十分に大きく、且つ概ね一定の値となっている。
 蓄電池30は、その温度が20℃よりも高い状態が継続すると、劣化が進行しやすくなる傾向がある。従って、蓄電池30の性能を十分に且つ長期間に亘り発揮させるためには、蓄電池30の温度を0℃から20℃の範囲内、特に10℃から20℃の範囲に維持することが好ましい。
 そこで、本実施形態では、図5に示される下限値ST1として10℃が設定されており、上限値ST2として20℃が設定されている。すなわち、本実施形態に係る温調部50は、伝熱液体LQの目標温度を、外気温度に基づいて10℃から20℃までの範囲で変化させるように構成されている。これにより、蓄電池30の電流容量が十分に大きく、且つ蓄電池30の劣化が進行しにくい状態が安定的に維持される。
 図8を参照しながら、断熱材70の構成について説明する。断熱材70は、シート71と、芯材72とを有している。
 シート71は、ガス透過性が低く且つ可撓性を有する材料で形成されている。断熱材70では、2枚のシート71が重ね合わせられた状態でその端部同士がヒートシールされており、全体が袋状の容器となっている。
 芯材72は、平板状に形成されたグラスウールである。芯材72は、袋状に形成されたシート71の内部に収納されている。断熱材70は、シート71の内部空間、すなわち芯材72の周囲及び内部の空間が減圧された状態で、袋状のシート71が密閉された構成となっている。このような真空断熱材として構成された断熱材70は、比較的薄い板状の断熱材でありながら、その断熱性能が極めて高くなっている。
 本実施形態では、蓄液容器60及び冷媒配管54の全体が概ね直方体(6面体)となっている。このため、断熱材70は、これらの周囲を互いに垂直な6面に沿って囲むように配置されている。つまり、平板状の断熱材70を組み合わせることによって6面体が形成されており、当該6面体の内部空間に蓄液容器60及び冷媒配管54が配置された構成となっている。
 図9及び図10に示されるように、本実施形態では、2枚の断熱材70(断熱材70a、70b)を組み合わせることにより、上記6面体が形成されている。図9には、断熱材70a、70bのそれぞれの形状が示されている。図10には、断熱材70a、70bが組み合わされ、これにより上記の6面体が形成された状態が示されている。
 図9及び図10に示されるように、断熱材70a、70bのそれぞれは、2箇所において垂直に折り曲げられている。また、断熱材70a、70bのそれぞれにおいて、折れ目となる2つの線は互いに平行となっている。折り曲げられた断熱材70aは、6面体が有する6面のうち3面に亘るように配置されている。同様に、折り曲げられた断熱材70bは、6面体が有する6面のうち残りの3面に亘るように配置されている。
 このように、本実施形態では、板状に形成された複数枚の断熱材70が、蓄液容器60の周囲を互いに垂直な6面に沿って囲むように配置されている。具体的には、2枚の断熱材70a、70bのそれぞれが2箇所において折り曲げられており、それぞれが蓄液容器60の周囲を3面に亘って囲んでいる。
 断熱材70を組み合わせることにより6面体を形成する方法としては、上記とは異なる種々の方法を採用することができる。例えば、1つの断熱材70を3か所で折り曲げて、当該断熱材70が6面のうち4面に亘るように配置された構成としてもよい。この場合、残りの2面には、それぞれ別の断熱材70が配置されることとなる。
 また、6枚の断熱材70を組み合わせることによって上記6面体を形成してもよい。しかしながら、この場合には、互いに隣り合う断熱材70同士の境界となる辺、つまり、芯材72が連続的に配置されていないために熱の通過が生じてしまう辺が、12個も形成されてしまうこととなる。
 以下では、上記のように熱の通過が生じてしまう辺のことを「熱橋辺B」と表記する。また、断熱材70の折れ目となっている辺、すなわち、内部に芯材72が連続的に配置されていることにより熱の通過が生じない辺のことを「断熱辺A」と表記する。
 図10に示されるように、本実施形態では、2箇所ずつ折り曲げられた2枚の断熱材70a、70bが組み合わされているので、断熱辺Aが4個形成されており、熱橋辺Bの個数が(上記の12個よりも少ない)8個に抑えられている。このため、6面体の内部と外部との間における熱の通過が十分に抑制されている。
 以上のように、蓄電装置10は、蓄電池30、電池管理ユニット32、及びインバータ40の周囲が伝熱液体で満たされた構成となっており、更に温調部50による温度調整と、断熱材70による断熱効果とが組み合わされている。本発明者らが行った実験によれば、蓄電装置10を上記構成とすることで、蓄電装置10の寿命を従来に比べて概ね2倍に延長することができた。その結果として、短期間での買い替えが不要となり、蓄電装置10の実質的なコストを1/2に抑えることができた。
 以上に説明した蓄電装置10には、種々の変更や改良を加えることができる。例えば、蓄液容器60と断熱材70との間に形成された空間、すなわち冷媒配管54の周囲の空間に発泡ウレタンを充填し、冷媒配管54等の位置ずれを防止することとしてもよい。
 また、蓄液容器60を内部に収容する金属容器を更に設け、当該金属容器の壁自体に冷媒の流路が形成されているような態様としてもよい。この場合、当該流路が冷媒配管54として機能することとなる。
 蓄電装置10から電力の供給を受けて動作する機器(例えば回転電機等)が、蓄電装置10と一体となって設けられていてもよい。例えば、蓄電装置10を構成する蓄電池30等と上記機器とが、共通のケース20の内部に収容されているような態様であってもよい。
 本実施形態では、蓄液容器60の内部に、蓄電池30、電池管理ユニット32、及びインバータ40が一組だけ配置されている。このような態様に替えて、蓄液容器60の内部に、複数組の蓄電池30、電池管理ユニット32、及びインバータ40が配置されているような態様としてもよい。そのような構成においては、電力を充放電するための系統が2系統存在することとなるので、システムに冗長性を持たせることができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (14)

  1.  電力を蓄える蓄電池(30)と、
     前記蓄電池の監視及び保護を行う電池管理部(32)と、
     前記蓄電池から出力される直流電力を交流電力に変換して出力する機能、及び、外部から供給される交流電力を直流電力に変換して前記蓄電池に供給する機能、を有するインバータ(40)と、
     前記蓄電池、前記電池管理部、及び前記インバータを、その周囲が液体(LQ)で満たされた状態で内部に収容する蓄液容器(60)と、
     前記液体と外気との間において熱の移動を行わせ、前記液体の温度が所定の目標温度となるように調整する温調部(50)と、
     前記蓄液容器を囲むように配置された断熱材(70)と、を備える蓄電装置。
  2.  前記温調部は、前記蓄電池に蓄えられた電力の供給を受けて動作するものである、請求項1に記載の蓄電装置。
  3.  前記温調部は、
     前記蓄液容器と冷媒との間で熱交換を行わせる内部熱交換部(54)と、
     外気と冷媒との間で熱交換を行わせる外部熱交換部(51)と、
     前記内部熱交換部と前記外部熱交換部との間において冷媒を循環させるコンプレッサ(53)と、を有する冷凍サイクルとして構成されており、
     前記内部熱交換部は前記断熱材の内側となる位置に設けられ、
     前記外部熱交換部は前記断熱材の外側となる位置に設けられている、請求項1又は2に記載の蓄電装置。
  4.  前記液体は絶縁性及び難燃性を有する、請求項1乃至3のいずれか1項に記載の蓄電装置。
  5.  前記インバータの変換効率が99%以上である、請求項1乃至4のいずれか1項に記載の蓄電装置。
  6.  前記インバータは窒化ガリウム素子(41)を有する、請求項5に記載の蓄電装置。
  7.  外気温度を検知する外気温センサ(82)を更に備え、
     前記温調部は、前記目標温度を前記外気温度に応じて変化させる、請求項1乃至6のいずれか1項に記載の蓄電装置。
  8.  前記温調部は、前記目標温度を10℃から20℃までの範囲で変化させる、請求項7に記載の蓄電装置。
  9.  前記温調部は、前記目標温度±1℃の範囲に収まるように前記液体の温度を調整する、請求項1乃至8のいずれか1項に記載の蓄電装置。
  10.  前記断熱材は、可撓性を有する容器(71)の内部に芯材(72)を収容し、前記芯材の周囲が減圧された状態で前記容器を密閉した構造の真空断熱材である、請求項1乃至9のいずれか1項に記載の蓄電装置。
  11.  板状に形成された複数枚の前記断熱材が、前記蓄液容器の周囲を互いに垂直な6面に沿って囲むように配置されている、請求項10に記載の蓄電装置。
  12.  少なくとも一部の前記断熱材が折り曲げられており、当該断熱材が前記蓄液容器の周囲を2面以上に亘って囲んでいる、請求項11に記載の蓄電装置。
  13.  前記断熱材の枚数は2枚であり、それぞれの前記断熱材は、2箇所において折り曲げられており前記蓄液容器の周囲を3面に亘って囲んでいる、請求項12に記載の蓄電装置。
  14.  前記蓄電池の出力電圧は60ボルト未満の安全電圧である、請求項1乃至13のいずれか1項に記載の蓄電装置。
PCT/JP2017/013896 2016-04-21 2017-04-03 蓄電装置 WO2017183429A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/095,279 US11038222B2 (en) 2016-04-21 2017-04-03 Power storage device
CN201780024132.XA CN109075408B (zh) 2016-04-21 2017-04-03 蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085099A JP6607137B2 (ja) 2016-04-21 2016-04-21 蓄電装置
JP2016-085099 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183429A1 true WO2017183429A1 (ja) 2017-10-26

Family

ID=60116696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013896 WO2017183429A1 (ja) 2016-04-21 2017-04-03 蓄電装置

Country Status (4)

Country Link
US (1) US11038222B2 (ja)
JP (1) JP6607137B2 (ja)
CN (1) CN109075408B (ja)
WO (1) WO2017183429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166733A1 (fr) * 2018-02-27 2019-09-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module d'alimentation pour moteur de véhicule électrique
WO2019166732A3 (fr) * 2018-02-27 2020-01-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module d'alimentation pour moteur de véhicule électrique, avec transfert thermique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200263336A1 (en) * 2017-11-10 2020-08-20 3M Innovative Properties Company Thermal Insulators and Methods Thereof
JP7085396B2 (ja) * 2018-04-18 2022-06-16 ヤンマーパワーテクノロジー株式会社 電池パック及び推進装置
JP7263713B2 (ja) * 2018-08-23 2023-04-25 株式会社デンソー 保温装置
CN109435734A (zh) * 2018-10-30 2019-03-08 蔚来汽车有限公司 充换电站热管理***和包括其的充换电站
US11108075B2 (en) * 2018-12-11 2021-08-31 TeraWatt Technology Inc. Hydraulic isotropically-pressurized battery modules
JPWO2021241041A1 (ja) * 2020-05-29 2021-12-02
JP2021197300A (ja) 2020-06-16 2021-12-27 株式会社豊田自動織機 電源システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023703A (ja) * 1999-07-07 2001-01-26 Nippon Soken Inc バッテリ温調装置
JP2012016078A (ja) * 2010-06-29 2012-01-19 Hitachi Ltd 充電制御システム
JP2013500574A (ja) * 2009-07-29 2013-01-07 エルジー・ケム・リミテッド バッテリ・モジュールおよび該バッテリ・モジュールを冷却する方法
JP2013230024A (ja) * 2012-04-26 2013-11-07 Toyota Motor Corp 並列電池の制御装置
US20140349153A1 (en) * 2013-05-22 2014-11-27 Csb Battery Co., Ltd. Wet battery package

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707721A (en) * 1953-11-06 1955-05-03 Wyman M Anderson Heat insulating jacket for storage batteries
JP2003346924A (ja) 2002-05-29 2003-12-05 Fuji Heavy Ind Ltd 組電池の冷却システムおよび組電池の冷却方法
KR100937903B1 (ko) 2005-11-03 2010-01-21 주식회사 엘지화학 전지팩의 밀폐형 열교환 시스템
JP5354846B2 (ja) 2006-08-11 2013-11-27 株式会社東芝 組電池および組電池の充放電方法
JP4513816B2 (ja) 2007-02-20 2010-07-28 トヨタ自動車株式会社 温度調節機構および車両
JP2009009730A (ja) 2007-06-26 2009-01-15 Toyota Motor Corp 電源装置
JP2009037934A (ja) 2007-08-02 2009-02-19 Sanyo Electric Co Ltd 車両用の電源装置
DE102007045183A1 (de) 2007-09-21 2009-04-02 Robert Bosch Gmbh Temperierte Batterieeinrichtung und Verfahren hierzu
EP2073293A1 (en) * 2007-12-18 2009-06-24 Nmc S.A. Protective jacket
US20110020676A1 (en) 2008-03-24 2011-01-27 Sanyo Electric Co., Ltd. Battery device and battery unit
JP2009259785A (ja) 2008-03-24 2009-11-05 Sanyo Electric Co Ltd バッテリ装置
JP2010050000A (ja) 2008-08-22 2010-03-04 Sanyo Electric Co Ltd 車両用の電源装置
JP2010062093A (ja) * 2008-09-05 2010-03-18 Panasonic Corp 電池パック
WO2010032484A1 (ja) * 2008-09-22 2010-03-25 パナソニック株式会社 携帯電子機器
DE102009006426A1 (de) * 2009-01-28 2010-07-29 Li-Tec Battery Gmbh Batterie mit Gehäuse
JP5730757B2 (ja) * 2009-04-28 2015-06-10 株式会社日立製作所 蓄電モジュール
JP2011178321A (ja) 2010-03-02 2011-09-15 Toyota Industries Corp 車両用空調システム
JP5494095B2 (ja) * 2010-03-25 2014-05-14 パナソニック株式会社 インバータ装置およびそれをファンモータの駆動装置に用いた電気掃除機
JP5769386B2 (ja) 2010-06-17 2015-08-26 株式会社デンソー 電気推進装置およびこれを備えた電動車両
JPWO2013141242A1 (ja) * 2012-03-21 2015-08-03 新神戸電機株式会社 イオン液体を用いたリチウムイオン二次電池及びリチウムイオン二次電池モジュール並びにこれらの保温装置
CA2898234C (en) * 2013-03-14 2021-07-27 Allison Transmission, Inc. Fluid bath cooled energy storage system
US9786963B2 (en) * 2013-05-09 2017-10-10 Deere & Company Vehicle heating/cooling system with consolidated heating/cooling core
CN204407448U (zh) * 2014-12-17 2015-06-17 北京长城华冠汽车科技有限公司 浸液式电池箱温度控制***
EP3166175B1 (fr) * 2015-11-04 2018-04-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Batterie électrique comportant un système d'homogénéisation de sa température interne

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023703A (ja) * 1999-07-07 2001-01-26 Nippon Soken Inc バッテリ温調装置
JP2013500574A (ja) * 2009-07-29 2013-01-07 エルジー・ケム・リミテッド バッテリ・モジュールおよび該バッテリ・モジュールを冷却する方法
JP2012016078A (ja) * 2010-06-29 2012-01-19 Hitachi Ltd 充電制御システム
JP2013230024A (ja) * 2012-04-26 2013-11-07 Toyota Motor Corp 並列電池の制御装置
US20140349153A1 (en) * 2013-05-22 2014-11-27 Csb Battery Co., Ltd. Wet battery package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166733A1 (fr) * 2018-02-27 2019-09-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module d'alimentation pour moteur de véhicule électrique
WO2019166732A3 (fr) * 2018-02-27 2020-01-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module d'alimentation pour moteur de véhicule électrique, avec transfert thermique

Also Published As

Publication number Publication date
JP2017195104A (ja) 2017-10-26
US11038222B2 (en) 2021-06-15
US20190140327A1 (en) 2019-05-09
CN109075408B (zh) 2021-08-10
CN109075408A (zh) 2018-12-21
JP6607137B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
WO2017183429A1 (ja) 蓄電装置
US11670814B2 (en) Electricity storage block and electricity storage module
US7968223B2 (en) Secondary battery module
KR101642325B1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
US20140011059A1 (en) Power supply device and vehicle equipped therewith
JP6129979B2 (ja) 電池放熱システム、電池放熱ユニット
US20120129020A1 (en) Temperature-controlled battery system ii
US20110020676A1 (en) Battery device and battery unit
JP6697332B2 (ja) バッテリシステム及びバッテリシステムを備える電動車両
KR20130004141A (ko) 전원 장치 및 전원 장치를 구비하는 차량
KR102058688B1 (ko) 간접 냉각 방식의 배터리 모듈
JP2009170258A (ja) バッテリシステム
JP2014157756A (ja) バッテリユニット
WO2014068946A1 (ja) 電池モジュール
KR20170098545A (ko) 전력변환장치용 냉각 장치
KR102330410B1 (ko) 접속형 배터리 모듈
KR20210124828A (ko) 상변화물질과 열전모듈을 이용한 배터리팩 냉각 시스템과 냉각 방법
JP2015011826A (ja) 電池パック
CN210443640U (zh) 一种用于电池包的气冷***
JP6304601B2 (ja) 燃料電池コージェネレーションシステム
JP2015022994A (ja) 電池モジュール
WO2013011958A1 (ja) 電池モジュール
WO2019039260A1 (ja) 電池パック
JP2016021817A (ja) 電力変換装置
JP2016075408A (ja) 可搬式保冷庫

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785771

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785771

Country of ref document: EP

Kind code of ref document: A1