WO2017183393A1 - Power reception device - Google Patents

Power reception device Download PDF

Info

Publication number
WO2017183393A1
WO2017183393A1 PCT/JP2017/012281 JP2017012281W WO2017183393A1 WO 2017183393 A1 WO2017183393 A1 WO 2017183393A1 JP 2017012281 W JP2017012281 W JP 2017012281W WO 2017183393 A1 WO2017183393 A1 WO 2017183393A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power receiving
inductor
receiving device
capacitor
Prior art date
Application number
PCT/JP2017/012281
Other languages
French (fr)
Japanese (ja)
Inventor
市川 敬一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018513084A priority Critical patent/JP6669250B2/en
Publication of WO2017183393A1 publication Critical patent/WO2017183393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a power receiving device that receives power from a power feeding device.
  • Patent Document 1 discloses a power supply system that supplies power using a magnetic field, an electric field, or a resonance coupling of both. This system is provided in the LC resonance circuit in both the power supply device and the power receiving device. By resonating the two LC resonance circuits, the power transmission coil and the power reception coil are resonantly coupled to supply power from the power supply apparatus to the power reception apparatus.
  • the power receiving device of Patent Document 1 includes a rectifier circuit that rectifies the power supplied from the power feeding device. This rectifier circuit may generate noise due to the rectifier element.
  • the power receiving coil may act as a noise radiating antenna, and noise generated in the rectifier circuit may be radiated to the outside through the power receiving coil.
  • an object of the present invention is to provide a power receiving device that suppresses radiation noise.
  • a power receiving device includes a power receiving coupling unit coupled to a power feeding coupling unit of a power feeding device, an input unit connected to the power receiving coupling unit, and an output unit connected to a load, and the rectifier circuit
  • a noise filter circuit connected to the input unit, wherein the noise filter circuit is connected in parallel to the input unit of the rectifier circuit as viewed from the power receiving coupling unit. It has the 1st series circuit of a capacitor and resistance, It is characterized by the above-mentioned.
  • the first series circuit of the first capacitor and the resistor provided on the input side of the rectifier circuit attenuates the high-frequency noise voltage generated in the rectifier circuit. For this reason, it can suppress that a high frequency noise component flows into a receiving coupling part, and noise is radiated
  • the noise filter circuit includes an inductor connected in series to the first parallel circuit of the first series circuit and the rectifier circuit, as viewed from the power receiving coupling unit, and the first parallel circuit and the inductor. You may have the 2nd capacitor connected in parallel with respect to the 2nd series circuit.
  • a low-pass filter is configured by the inductor and the second capacitor.
  • Cin Cin ⁇ Cout when the capacitance of the first capacitor is represented by Cout and the capacitance of the second capacitor is represented by Cin.
  • the second capacitor may include a plurality of capacitors connected in series, and a connection point of the plurality of capacitors of the second capacitor may be connected to a reference potential.
  • This configuration can reduce high-frequency noise components (common mode noise) superimposed on the power receiving coupling section.
  • the power receiving coupling portion and the input portion of the rectifier circuit are connected by a differential line composed of a first line and a second line, the noise filter circuit is provided in the differential line, and the inductor is A first inductor provided on the first line and a second inductor provided on the second line may be included, and the first inductor and the second inductor may be composed of composite inductors.
  • the coupling coefficient of the first inductor and the second inductor is set to 0.9 or less in absolute value.
  • the inductor may be configured inside a ferrite multilayer substrate.
  • the inductor can be reduced in size by using a multilayer substrate.
  • the power receiving device may include the first series circuit and a shielding conductor that shields an input unit of the rectifier circuit.
  • noise radiation from the rectifier circuit serving as a noise generation unit to the surroundings can be shielded.
  • the high frequency noise component generated in the rectifier circuit can be attenuated, and the radiation noise from the power receiving coupling portion can be suppressed.
  • FIG. 1 is a circuit diagram of a power supply system according to the present embodiment.
  • 2A shows a frequency component of the potential at the end of the coil when no filter circuit is provided
  • FIG. 2B shows the frequency of the potential at the end of the coil when the filter circuit is provided. It is a figure which shows a component.
  • FIG. 3 is a circuit diagram of the power receiving device according to the second embodiment.
  • 4A shows a frequency component of the potential at the end of the coil when the connection point of the capacitor is not connected to the reference potential
  • FIG. 4B shows that the connection point of the capacitor is connected to the reference potential.
  • FIG. 4A shows a frequency component of the electric potential of the edge part of a coil in case.
  • FIG. 5A is a circuit diagram of a power receiving device according to the third embodiment
  • FIG. 5B is a side view of the power receiving device.
  • FIG. 6 is a circuit diagram of a power receiving device according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view showing the composite inductor.
  • FIG. 8 is a modification of the power receiving device 20 shown in FIG. 9A and 9B are modifications of the series circuit 231 shown in FIG.
  • FIG. 10 is a modification of the power receiving device 20 shown in FIG. 11A and 11B are modifications of the power receiving device 20 illustrated in FIG.
  • FIG. 1 is a circuit diagram of a power supply system 1 according to the present embodiment.
  • the power supply system 1 includes a power feeding device 10 and a power receiving device 20.
  • the power feeding device 10 and the power receiving device 20 are magnetically coupled, and power is wirelessly supplied from the power feeding device 10 to the power receiving device 20 by magnetic field coupling (electromagnetic induction). Further, in the power supply system 1, transmission efficiency is increased by resonating in each of the power feeding device 10 and the power receiving device 20.
  • the power feeding device 10 includes an inverter circuit 11 and a resonance circuit 12.
  • the inverter circuit 11 converts a DC voltage input from the DC power supply Vin into an AC voltage and outputs the AC voltage.
  • the resonance circuit 12 includes capacitors C11 and C12 and a coil L1.
  • the resonance frequency of the resonance circuit 12 is set to a drive frequency (for example, 6.78 MHz).
  • the resonance circuit 12 is connected to the output side of the inverter circuit 11 and is applied with an AC voltage (differential voltage) output from the inverter circuit 11.
  • the power receiving device 20 includes a rectifying / smoothing circuit 21, a resonance circuit 22, a filter circuit 23, and a load circuit 24.
  • the resonance circuit 22 includes capacitors C21 and C22 and a coil L2.
  • the coil L2 and the coil L1 of the power feeding device 10 are magnetically coupled, whereby electric power is supplied from the power feeding device 10 to the power receiving device 20.
  • the coil L1 is an example of the “power transmission coupling portion” in the present invention.
  • the coil L2 is an example of the “power receiving coupling portion” in the present invention.
  • the resonance frequency of the resonance circuit 22 is set to be the same as the resonance frequency of the resonance circuit 12 of the power feeding device 10. Thereby, electric power can be supplied efficiently.
  • the rectifying / smoothing circuit 21 has input portions In 1 and In 2 and output portions Out 1 and Out 2 .
  • the input parts In 1 and In 2 are connected to the resonance circuit 22 via a filter circuit 23 described later.
  • the output units Out1 and Out2 are connected to the load circuit 24.
  • the rectifying / smoothing circuit 21 rectifies and smoothes the voltage and current caused by the voltage induced in the coil L ⁇ b> 2 of the resonance circuit 22 and supplies the rectified and smoothed circuit 21 to the load circuit 24.
  • the load circuit 24 is, for example, a charging circuit and a secondary battery.
  • the rectifying / smoothing circuit 21 is an example embodiment that corresponds to the “rectifying circuit” according to the present invention.
  • the rectifying / smoothing circuit 21 may be a diode bridge circuit or a synchronous rectifying circuit. Further, it may be a full-wave rectifier circuit or a half-wave rectifier circuit.
  • the rectifying / smoothing circuit 21 includes a switching element such as a diode or FET.
  • a line connecting the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 and the resonance circuit 22 is a differential line.
  • the line connected to the input unit In 1 is referred to as a differential line 24A
  • the line connected to the input unit In 2 is referred to as a differential line 24B.
  • the differential line 24A is an example of the “first line” according to the present invention.
  • the differential line 24B is an example of the “second line” according to the present invention.
  • the filter circuit 23 is connected between the resonance circuit 22 and the rectifying / smoothing circuit 21.
  • the filter circuit 23 includes a capacitor Cc, inductors Ls1 and Ls2, and a series circuit 231 including a capacitor Ca and a resistor Ra.
  • the series circuit 231 is an example of the “first series circuit” according to the present invention.
  • the filter circuit 23 is an example of the “noise filter circuit” according to the present invention.
  • the capacitor Ca is an example of the “first capacitor” according to the present invention.
  • the series circuit 231 is connected between the differential lines 24A and 24B.
  • the series circuit 231 is provided closer to the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 than the other elements included in the filter circuit 23.
  • the series circuit 231 and the rectifying / smoothing circuit 21 are connected in parallel.
  • the series circuit 231 is connected in parallel to the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 as viewed from the coil L2.
  • the series circuit 231 is preferably provided closer to the rectifying / smoothing circuit 21.
  • the parallel circuit of the series circuit 231 and the rectifying / smoothing circuit 21 is an example of the “first parallel circuit” according to the present invention.
  • the inductor Ls1 is provided on the differential line 24A. That is, the inductor Ls1 is connected in series to the differential line 24A.
  • the inductor Ls2 is provided on the differential line 24B. That is, the inductor Ls2 is connected in series to the differential line 24B.
  • the inductors Ls1 and Ls2 are provided closer to the resonance circuit 22 than the series circuit 231. Thus, the inductors Ls1 and Ls2 are connected in series to the parallel circuit of the series circuit 231 and the rectifying / smoothing circuit 21 when viewed from the coil L2 side.
  • the inductors Ls1 and Ls2 may be coils wound around a ferrite core, for example, air core coils or ferrite beads.
  • the series circuit of the parallel circuit and the inductors Ls1 and Ls2 is an example of the “second series circuit” according to the present invention.
  • the capacitor Cc is connected between the differential lines 24A and 24B at a position closer to the resonance circuit 22 than the inductors Ls1 and Ls2. Thus, the capacitor Cc is connected in parallel to the resonance circuit 22.
  • high-frequency noise components generated in the rectifying and smoothing circuit 21 flow through the differential lines 24A and 24B.
  • the inductor Ls1 and the capacitor Cc constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential line 24A.
  • the inductor Ls2 and the capacitor Cc constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential line 24B.
  • the low pass filter is set so as to reduce noise components in a frequency band of 30 MHz or more, for example.
  • a voltage transient response (high-frequency noise component) due to switching of the power supply apparatus 10 occurs.
  • the AC voltage is distorted by the recovery characteristic of the rectifier circuit that occurs when the polarity of the AC voltage applied to the input portion of the rectifying and smoothing circuit 21 is reversed.
  • the alternating voltage applied to an input part is clipped with the direct current voltage after rectification smoothing, and the waveform becomes trapezoid.
  • This AC voltage distortion waveform has a high-frequency noise component.
  • the high frequency noise component generated in the rectifying / smoothing circuit 21 flows from the input portions In 1 and In 2 through the differential lines 24A and 24B and is radiated from the resonance circuit 22.
  • the series circuit 231 connected between the differential lines 24A and 24B attenuates high frequency noise components.
  • the noise component attenuated by the series circuit 231 is further attenuated by a low-pass filter including the inductors Ls1 and Ls2 and the capacitor Cc. Thereby, it is possible to prevent a noise component flowing through the differential lines 24A and 24B from flowing into the coil L2. As a result, noise radiation from the coil L2 can be prevented, and a power feeding system with little radiation noise can be realized.
  • Cin the capacitance of the capacitor Cc
  • Cout the capacitance of the capacitor Ca
  • the inductors Ls1 and Ls2 have a high impedance with respect to a high-frequency noise component (for example, 70 MHz or more) due to switching, and a low impedance at a driving frequency.
  • the impedances of the inductors Ls1 and Ls2 are low, and the capacitors Cc and Ca are connected in parallel when the impedances of the inductors Ls1 and Ls2 are ignored for simplicity.
  • the power supply from the power supply device 10 for example, the driving frequency of 6.78 MHz
  • the smaller the combined capacitance of the capacitors Cc and Ca connected in parallel the smaller the influence on the power supply efficiency to the load circuit 24.
  • the combined capacitance of the capacitors Cc and Ca connected in parallel is large. Accordingly, there is a limit on the combined capacitance (Cc + Ca) of the capacitors Cc and Ca.
  • the capacitance Cout of the capacitor Ca is increased, the power supplied from the resonance circuit 22 to the rectifying / smoothing circuit 21 is consumed by the resistor Ra. For this reason, it is preferable that the capacitance Cout of the capacitor Ca is small. Furthermore, since it is necessary to further attenuate high-frequency components with a low-pass filter, it is preferable that the capacitance Cin of the capacitor Cc is large. For the above reasons, it is preferable that Cin ⁇ Cout.
  • FIG. 2A shows a frequency component of the potential at the end of the coil L2 when the filter circuit 23 is not provided
  • FIG. 2B shows an end of the coil L2 when the filter circuit 23 is provided. It is a figure which shows the frequency component of the electric potential. Comparing FIG. 2 (A) and FIG. 2 (B), it can be seen that the noise level is lowered particularly in the vicinity of about 400 MHz (in the circle in the figure).
  • FIG. 3 is a circuit diagram of the power receiving device 20A according to the second embodiment.
  • the filter circuit 23A includes a series circuit 231, inductors Ls1 and Ls2, and capacitors Cc1 and Cc2.
  • the series circuit 231 and the inductors Ls1 and Ls2 are the same as those in the first embodiment.
  • Capacitors Cc1 and Cc2 are connected in series.
  • the capacitors Cc1 and Cc2 are connected between the differential lines 24A and 24B at a position closer to the resonance circuit 22 than the inductors Ls1 and Ls2.
  • the connection point of the capacitors Cc1 and Cc2 is connected to the reference potential of the power receiving device 20A.
  • the reference potential is a ground potential of the circuit of the power receiving device.
  • a conductive portion, a shield case, a conductor pattern extending in a planar shape on the circuit board, etc. included in the housing of the power receiving device 20A are also connected to the reference potential.
  • the Capacitors Cc1 and Cc2 have the same capacitance.
  • the capacitor Cc2 is an example of the “third capacitor” according to the present invention.
  • the inductors Ls1, Ls2 and the capacitor Cc1 constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential lines 24A, 24B.
  • the middle point of the capacitors Cc1 and Cc2 is connected to the reference potential.
  • the high frequency noise component can be returned to the reference potential of the power receiving apparatus 20A via the capacitors Cc1 and Cc2 before the high frequency noise component is input to the coil L2.
  • the common mode signal (noise) can be reduced from being radiated to the outside from the coil L2.
  • FIG. 4A shows a frequency component of the potential at the end of the coil L2 when the connection point of the capacitors Cc1 and Cc2 is not connected to the reference potential
  • FIG. 4B shows the connection of the capacitors Cc1 and Cc2. It is a figure which shows the frequency component of the electric potential of the edge part of the coil L2, when connecting a point to a reference electric potential. Comparing FIG. 4A and FIG. 4B, the noise level is attenuated by about 5 dB or more particularly in a band of about 100 MHz or more (in the circle in the figure).
  • the power receiving device is different from the second embodiment in that it includes a shield conductor.
  • FIG. 5A is a circuit diagram of the power receiving device 20B according to the third embodiment, and FIG. 5B is a side view of the power receiving device 20B.
  • the circuit configuration of the power receiving device 20B is the same as that of the power receiving device 20A according to the second embodiment, and the power receiving device 20B has a configuration in which the shield conductor 30 is provided in the power receiving device 20A shown in FIG.
  • the power receiving device 20B includes a substrate 100. Each element such as a coil L2 and capacitors C21 and C22 is mounted on one main surface of the substrate 100. A ground conductor 101 serving as a reference potential is formed on the other main surface of the substrate 100. The connection point of the capacitors Cc1 and Cc2 is connected to the ground conductor 101.
  • the shield conductor 30 is provided on one main surface of the substrate 100 so as to surround at least a portion where the high-frequency noise voltage is superimposed, for example, the rectifying and smoothing circuit 21, the series circuit 231, and the inductors Ls1 and Ls2.
  • the shield conductor 30 is connected to the ground conductor 101 (the output part Out2 of the rectifying and smoothing circuit 21).
  • the shield conductor 30 may be configured so that noise current caused by voltage fluctuations around the inductors Ls1 and Ls2 on which the high-frequency voltage is superimposed does not leak to the surroundings. As shown in FIG. It does not need to be covered or all of it may be covered. When the magnetic paths of the inductors Ls1 and Ls2 are open magnetic types, a magnetic field leaks around the inductors Ls1 and Ls2, so that the electrical characteristics (inductance and resistance) of the inductors Ls1 and Ls2 may be affected by the shield conductor 30. is there. In that case, the shield conductor 30 may be kept away from the inductors Ls1 and Ls2.
  • the shield conductor 30 may be provided on one main surface of the substrate 100 so as to cover all the elements constituting the power receiving device 20B.
  • the power receiving device according to the fourth embodiment has the same circuit configuration as the power receiving device according to the first embodiment or the power receiving device according to the second and third embodiments.
  • inductors Ls1 and Ls2 are used.
  • FIG. 6 is a circuit diagram of the power receiving device 20C according to the fourth embodiment.
  • the circuit configuration of the power receiving device 20C is the same as that of the power receiving device 20A according to the second embodiment.
  • the inductors Ls1 and Ls2 are configured by one composite inductor 40.
  • FIG. 7 is a cross-sectional view showing the composite inductor 40.
  • the composite inductor 40 includes a multilayer body 41.
  • the laminate 41 is an insulator in which a plurality of ferrite sheets are laminated and sintered.
  • the laminate 41 is an example of the “ferrite multilayer substrate” according to the present invention.
  • the laminated body 41 is laminated in the order of the magnetic layer 42, the nonmagnetic layer 43, the magnetic layer 44, the nonmagnetic layer 45, and the magnetic layer 46.
  • the nonmagnetic layers 43 and 45 have a lower magnetic permeability than the magnetic layers 42, 44 and 46.
  • inductors Ls1 and Ls2 are formed so that the winding axes coincide with each other.
  • the inductor Ls1 is formed by connecting an open loop conductor pattern formed in each layer of the nonmagnetic layer 43 with via conductors (not shown).
  • the inductor Ls2 is formed by connecting an open loop conductor pattern formed in each layer of the nonmagnetic material layer 45 with a via conductor (not shown).
  • inductors Ls1 and Ls2 By forming the inductors Ls1 and Ls2 in the low magnetic permeability non-magnetic layer 43, magnetic saturation of the inductors Ls1 and Ls2 can be prevented. For this reason, it is possible to prevent a decrease in inductance of the inductors Ls1 and Ls2.
  • the magnetic layers 42, 44, 46 are laminated so as to sandwich the nonmagnetic layers 43, 45 where the inductors Ls1, Ls2 are formed.
  • the coupling coefficient of the inductors Ls1 and Ls2 is preferably set to 0 or more and 0.9 or less in absolute value.
  • the inductors Ls1 and Ls2 provide inductance for both the common mode signal (noise) and the differential mode signal (noise). To have. For this reason, compared with the case where a winding coil etc. are used for each of inductor Ls1, Ls2, a number of parts can be reduced and it can reduce in size.
  • a plurality of dummy electrodes 47B and 47C are provided on the main surface of the multilayer body 41 (main surface of the magnetic layer 46). By mounting the dummy electrodes 47B and 47C on the substrate, the heat generated by the composite inductor 40 can be radiated to the mounting substrate.
  • the power supply system is not limited to the magnetic field type non-contact power transmission system, but can be applied to an electric field coupling type non-contact power transmission system using electric field coupling.
  • the power transmission coupling portion and the power reception coupling portion are planar conductors. Even in this case, by incorporating the filter circuit of the above-described embodiment into the power receiving apparatus, it is possible to suppress noise from being radiated from the planar conductor that is the power receiving coupling portion.
  • the present invention can also be applied to an electromagnetic coupling type non-contact power transmission system using both an electric field and a magnetic field.
  • the filter circuit for suppressing noise radiated mainly from the rectifying and smoothing circuit in the power receiving apparatus from the coil has been described.
  • the above-described filter circuit is also applied to the noise caused by other noise generation sources connected to the power receiving coupling unit, such as a DC-DC converter that converts the power supplied to the load in the power receiving device. Generation of noise from the coupling portion can be suppressed.
  • (Other embodiments) 1 constitutes a series resonance circuit in which capacitors C11 and C12 are connected in series at both ends of the coil L1, but the resonance circuit 12 is not limited to this configuration.
  • the resonance circuit 12 may be a parallel resonance circuit or a series resonance circuit in which a capacitor is connected to one end of the coil L1.
  • the resonant circuit 22 shown in FIGS. 1, 3, 5A, and 6 constitutes a series resonant circuit in which capacitors C21 and C22 are connected in series to both ends of the coil L2. Is not limited to this configuration.
  • FIG. 8 shows a modification of the power receiving device 20 shown in FIG.
  • the resonance circuit 22A may be configured by a series resonance circuit in which a capacitor C21 is connected to one end of the coil L2. Further, it may be a parallel resonant circuit.
  • the series circuit 231 including the single capacitor Ca and the single resistor Ra is shown as an example of the “first series circuit”.
  • the series circuit 231 has this configuration. Not exclusively.
  • a series circuit 231A may be configured by a combination of a plurality of resistors Ra and a capacitor Ca, or as shown in FIG. 9B, a plurality of capacitors Ca and a resistor Ra.
  • the series circuit 231B may be configured in combination with
  • the filter circuits 23 and 23A shown in FIGS. 1, 3, 5A, and 6 include inductors Ls1 and Ls2 inserted in the differential lines. It is not limited to the configuration.
  • FIG. 10 is a modified example of the power receiving device 20 shown in FIG.
  • a filter circuit 23B having a parallel resonant circuit in which capacitors Cb1 and Cb2 are connected in parallel to inductors Ls1 and Ls2, respectively.
  • These parallel resonance circuits adjust the resonance frequency to the frequency band of the specific high frequency noise to be removed.
  • the parallel resonant circuit has high impedance at the resonance frequency, and specific high frequency noise is effectively removed.
  • the filter circuits 23 and 23A shown in FIGS. 1, 3, 5A, and 6 include inductors Ls1 and Ls2 inserted in the differential lines. It is not limited to the configuration.
  • FIGS. 11A and 11B are modifications of the power receiving device 20 shown in FIG. 11A and 11B, the filter circuit 23C constitutes an unbalanced circuit in which elements are connected to only one line.
  • the resonance circuit 22A also forms a series resonance circuit in which a capacitor C21 is connected to one end of the coil L2. In this manner, the power receiving device may be configured with an unbalanced circuit.
  • the filter circuit may leave the inductor Ls1 and leave the inductor Ls1 in the filter circuit 23 shown in FIG.
  • the resonance circuit may leave the capacitor C21 and eliminate the capacitor C21 in the resonance circuit 22 shown in FIG.
  • the number of elements can be reduced, and the size and cost can be reduced.
  • Capacitor (first capacitor) Cc Capacitor (second capacitor) Cc1 .. capacitor (second capacitor) Cc2: Capacitor (third capacitor) Cin ... capacitance Cout ... capacitance In 1, In 2 ... input unit L1 ... coil (feed coupling portion) L2 ... Coil (power receiving coupling part) Ls1 ... Inductor (first inductor) Ls2: Inductor (second inductor) Out1, Out2 ... Output unit Ra ... Resistance Vin ... DC power supply 1 ... Power supply system 10 ... Power feeding device 11 ... Inverter circuit 12 ...
  • Resonant circuits 20, 20A, 20B, 20C Power receiving device 21 ... Rectification smoothing circuit (rectification circuit) 22, 22A ... Resonant circuits 23, 23A, 23B, 23C ... Filter circuit (noise filter circuit) 24 ... Load circuit 24A ... Differential line (first line) 24B ... Differential line (second line) 30 ... Shield conductor (shield conductor) 40 ... Composite inductor 41 ... Laminated bodies 42, 44, 46 ... Magnetic layer 43 ... Nonmagnetic layer 43,45 ... Nonmagnetic layers 47A, 47D ... Mounting electrodes 47B, 47C ... Dummy electrode 100 ... Substrate 101 ... Ground conductor 231, 231A, 231B ... Series circuit (first series circuit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

This invention is provided with: a coil (L2) coupled with a coil (L1) of a power supply device (10); a rectification smoothing circuit (21) having input parts (In1, In2) connected to the coil (L2) and output parts (Out1, Out2) connected to a load circuit (24); and a filter circuit (23) connected to the input parts (In1, In2) of the rectification smoothing circuit (21). The filter circuit (23) has a serial circuit (231) of a capacitor (Ca) and a resistor (Ra), connected in parallel to the rectification smoothing circuit (21) as viewed from the coil (L2).

Description

受電装置Power receiving device
 本発明は、給電装置から電力を受電する受電装置に関する。 The present invention relates to a power receiving device that receives power from a power feeding device.
 特許文献1には、磁界、電界、又は双方の共鳴結合を利用して電力供給を行う電力供給システムが開示されている。このシステムは、給電装置と受電装置との双方にLC共振回路に設けている。そして、2つのLC共振回路を共鳴させることで、送電コイルと受電コイルとを共鳴結合させて、給電装置から受電装置への電力供給を行っている。 Patent Document 1 discloses a power supply system that supplies power using a magnetic field, an electric field, or a resonance coupling of both. This system is provided in the LC resonance circuit in both the power supply device and the power receiving device. By resonating the two LC resonance circuits, the power transmission coil and the power reception coil are resonantly coupled to supply power from the power supply apparatus to the power reception apparatus.
国際公開第2014/57959号International Publication No. 2014/57959
 特許文献1の受電装置は、給電装置から供給される電力を整流する整流回路を備えている。この整流回路からは、整流素子によるノイズが発生する場合がある。そして、特許文献1の受電装置では、受電コイルがノイズの放射アンテナとして作用し、整流回路で生じたノイズが受電コイルを介して外部に放射される場合がある。 The power receiving device of Patent Document 1 includes a rectifier circuit that rectifies the power supplied from the power feeding device. This rectifier circuit may generate noise due to the rectifier element. In the power receiving device of Patent Document 1, the power receiving coil may act as a noise radiating antenna, and noise generated in the rectifier circuit may be radiated to the outside through the power receiving coil.
 そこで、本発明の目的は、放射ノイズを抑制する受電装置を提供することにある。 Therefore, an object of the present invention is to provide a power receiving device that suppresses radiation noise.
 本発明に係る受電装置は、給電装置の給電結合部と結合する受電結合部と、前記受電結合部に接続される入力部、及び負荷に接続される出力部を有する整流回路と、前記整流回路の前記入力部に接続されているノイズフィルタ回路と、を備え、前記ノイズフィルタ回路は、前記受電結合部から視て、前記整流回路の前記入力部に対して並列に接続されている、第1キャパシタと抵抗との第1直列回路を有することを特徴とする。 A power receiving device according to the present invention includes a power receiving coupling unit coupled to a power feeding coupling unit of a power feeding device, an input unit connected to the power receiving coupling unit, and an output unit connected to a load, and the rectifier circuit A noise filter circuit connected to the input unit, wherein the noise filter circuit is connected in parallel to the input unit of the rectifier circuit as viewed from the power receiving coupling unit. It has the 1st series circuit of a capacitor and resistance, It is characterized by the above-mentioned.
 この構成では、整流回路の入力側に設けられる第1キャパシタと抵抗との第1直列回路により、整流回路で発生する高周波ノイズ電圧が減衰する。このため、高周波ノイズ成分が受電結合部に流れ込み、受電結合部からノイズが放射されることを抑制できる。 In this configuration, the first series circuit of the first capacitor and the resistor provided on the input side of the rectifier circuit attenuates the high-frequency noise voltage generated in the rectifier circuit. For this reason, it can suppress that a high frequency noise component flows into a receiving coupling part, and noise is radiated | emitted from a receiving coupling part.
 前記ノイズフィルタ回路は、前記第1直列回路及び前記整流回路の第1並列回路に対して、前記受電結合部から視て、直列接続されているインダクタと、前記第1並列回路と前記インダクタとの第2直列回路に対して、並列に接続されている第2キャパシタと、を有してもよい。 The noise filter circuit includes an inductor connected in series to the first parallel circuit of the first series circuit and the rectifier circuit, as viewed from the power receiving coupling unit, and the first parallel circuit and the inductor. You may have the 2nd capacitor connected in parallel with respect to the 2nd series circuit.
 この構成では、インダクタと第2キャパシタとでローパスフィルタが構成される。このローパスフィルタにより、第1直列回路から漏れ出たノイズ成分をさらに減衰できる。このため、受電結合部からの放射ノイズをさらに抑制できる。 In this configuration, a low-pass filter is configured by the inductor and the second capacitor. With this low-pass filter, the noise component leaking from the first series circuit can be further attenuated. For this reason, radiation noise from the power receiving coupling portion can be further suppressed.
 前記第1キャパシタのキャパシタンスをCout、前記第2キャパシタのキャパシタンスをCinで表すと、Cin≧Coutであることが好ましい。 It is preferable that Cin ≧ Cout when the capacitance of the first capacitor is represented by Cout and the capacitance of the second capacitor is represented by Cin.
 この構成では、ノイズフィルタ回路を設けても、給電装置から供給され、整流回路へ搬送される電力(搬送波の周波数帯)への影響を軽減できる。 In this configuration, even if a noise filter circuit is provided, it is possible to reduce the influence on the power (carrier frequency band) supplied from the power feeding device and conveyed to the rectifier circuit.
 前記第2キャパシタは、直列接続された複数のキャパシタを有し、前記第2キャパシタの前記複数のキャパシタの接続点は、基準電位に接続されていてもよい。 The second capacitor may include a plurality of capacitors connected in series, and a connection point of the plurality of capacitors of the second capacitor may be connected to a reference potential.
 この構成では、受電結合部に重畳する高周波ノイズ成分(コモンモードノイズ)を低減できる。 This configuration can reduce high-frequency noise components (common mode noise) superimposed on the power receiving coupling section.
 前記受電結合部と前記整流回路の入力部とは、第1線路と第2線路とで構成される差動線路で接続され、前記ノイズフィルタ回路は前記差動線路に設けられ、前記インダクタは、前記第1線路に設けられる第1インダクタ、及び前記第2線路に設けられる第2インダクタを有し、前記第1インダクタ及び前記第2インダクタは、複合インダクタで構成されてもよい。 The power receiving coupling portion and the input portion of the rectifier circuit are connected by a differential line composed of a first line and a second line, the noise filter circuit is provided in the differential line, and the inductor is A first inductor provided on the first line and a second inductor provided on the second line may be included, and the first inductor and the second inductor may be composed of composite inductors.
 この構成では、2つのインダクタを複合インダクタで構成することで、部品点数を削減でき、小型化を実現できる。 In this configuration, by configuring the two inductors with composite inductors, the number of parts can be reduced and downsizing can be realized.
 前記第1インダクタ及び前記第2インダクタの結合係数は、絶対値で0.9以下に設定されていることが好ましい。 It is preferable that the coupling coefficient of the first inductor and the second inductor is set to 0.9 or less in absolute value.
 この構成では、2つのインダクタを複合インダクタで構成することで、部品点数を削減でき、小型化を実現できる。 In this configuration, by configuring the two inductors with composite inductors, the number of parts can be reduced and downsizing can be realized.
 前記インダクタは、フェライト多層基板内部に構成されていてもよい。 The inductor may be configured inside a ferrite multilayer substrate.
 この構成では、多層基板とすることで、インダクタの小型化を実現できる。 In this configuration, the inductor can be reduced in size by using a multilayer substrate.
 前記受電装置は、前記第1直列回路、及び前記整流回路の入力部を遮蔽する遮蔽導体、を備えてもよい。 The power receiving device may include the first series circuit and a shielding conductor that shields an input unit of the rectifier circuit.
 この構成では、ノイズ生成部となる整流回路から周囲へのノイズ輻射を遮蔽することができる。 In this configuration, noise radiation from the rectifier circuit serving as a noise generation unit to the surroundings can be shielded.
 本発明によれば、整流回路で発生する高周波ノイズ成分を減衰させ、受電結合部からの放射ノイズを抑制できる。 According to the present invention, the high frequency noise component generated in the rectifier circuit can be attenuated, and the radiation noise from the power receiving coupling portion can be suppressed.
図1は、本実施形態に係る電力供給システムの回路図である。FIG. 1 is a circuit diagram of a power supply system according to the present embodiment. 図2(A)は、フィルタ回路を設けない場合の、コイルの端部の電位の周波数成分を示す図、図2(B)は、フィルタ回路を設ける場合の、コイルの端部の電位の周波数成分を示す図である。2A shows a frequency component of the potential at the end of the coil when no filter circuit is provided, and FIG. 2B shows the frequency of the potential at the end of the coil when the filter circuit is provided. It is a figure which shows a component. 図3は、実施形態2に係る受電装置の回路図である。FIG. 3 is a circuit diagram of the power receiving device according to the second embodiment. 図4(A)は、キャパシタの接続点を基準電位に接続しない場合の、コイルの端部の電位の周波数成分を示す図、図4(B)は、キャパシタの接続点を基準電位に接続する場合の、コイルの端部の電位の周波数成分を示す図である。4A shows a frequency component of the potential at the end of the coil when the connection point of the capacitor is not connected to the reference potential, and FIG. 4B shows that the connection point of the capacitor is connected to the reference potential. It is a figure which shows the frequency component of the electric potential of the edge part of a coil in case. 図5(A)は、実施形態3に係る受電装置の回路図、図5(B)は、受電装置の側面図である。FIG. 5A is a circuit diagram of a power receiving device according to the third embodiment, and FIG. 5B is a side view of the power receiving device. 図6は、実施形態4に係る受電装置の回路図である。FIG. 6 is a circuit diagram of a power receiving device according to the fourth embodiment. 図7は、複合インダクタを示す断面図である。FIG. 7 is a cross-sectional view showing the composite inductor. 図8は図1に示した受電装置20の変形例である。FIG. 8 is a modification of the power receiving device 20 shown in FIG. 図9(A)、図9(B)は、図1等に示した直列回路231の変形例である。9A and 9B are modifications of the series circuit 231 shown in FIG. 図10は図1に示した受電装置20の変形例である。FIG. 10 is a modification of the power receiving device 20 shown in FIG. 図11(A)、図11(B)は図1に示した受電装置20の変形例である。11A and 11B are modifications of the power receiving device 20 illustrated in FIG.
(実施形態1)
 図1は、本実施形態に係る電力供給システム1の回路図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a power supply system 1 according to the present embodiment.
 電力供給システム1は、給電装置10と受電装置20とを備えている。電力供給システム1では、給電装置10と受電装置20とが磁界結合し、給電装置10から受電装置20とへ電力が磁界結合(電磁誘導)によりワイヤレスで供給される。また、電力供給システム1では、給電装置10と受電装置20それぞれにおいて、共振することで伝送効率を高めている。 The power supply system 1 includes a power feeding device 10 and a power receiving device 20. In the power supply system 1, the power feeding device 10 and the power receiving device 20 are magnetically coupled, and power is wirelessly supplied from the power feeding device 10 to the power receiving device 20 by magnetic field coupling (electromagnetic induction). Further, in the power supply system 1, transmission efficiency is increased by resonating in each of the power feeding device 10 and the power receiving device 20.
 給電装置10は、インバータ回路11及び共振回路12を備えている。インバータ回路11は、直流電源Vinから入力される直流電圧を交流電圧に変換して出力する。共振回路12は、キャパシタC11,C12及びコイルL1から構成されている。共振回路12の共振周波数は、駆動周波数(例えば、6.78MHz)に設定されている。共振回路12は、インバータ回路11の出力側に接続され、インバータ回路11から出力される交流電圧(差動電圧)が印加される。 The power feeding device 10 includes an inverter circuit 11 and a resonance circuit 12. The inverter circuit 11 converts a DC voltage input from the DC power supply Vin into an AC voltage and outputs the AC voltage. The resonance circuit 12 includes capacitors C11 and C12 and a coil L1. The resonance frequency of the resonance circuit 12 is set to a drive frequency (for example, 6.78 MHz). The resonance circuit 12 is connected to the output side of the inverter circuit 11 and is applied with an AC voltage (differential voltage) output from the inverter circuit 11.
 受電装置20は、整流平滑回路21、共振回路22、フィルタ回路23及び負荷回路24を備えている。 The power receiving device 20 includes a rectifying / smoothing circuit 21, a resonance circuit 22, a filter circuit 23, and a load circuit 24.
 共振回路22は、キャパシタC21,C22及びコイルL2から構成されている。このコイルL2と、給電装置10のコイルL1とが磁界結合することで、給電装置10から受電装置20へ電力が供給される。コイルL1は本発明の「送電結合部」の一例である。コイルL2は本発明の「受電結合部」の一例である。共振回路22の共振周波数は、給電装置10の共振回路12の共振周波数と同じに設定されている。これにより、効率良く電力供給を行うことができる。 The resonance circuit 22 includes capacitors C21 and C22 and a coil L2. The coil L2 and the coil L1 of the power feeding device 10 are magnetically coupled, whereby electric power is supplied from the power feeding device 10 to the power receiving device 20. The coil L1 is an example of the “power transmission coupling portion” in the present invention. The coil L2 is an example of the “power receiving coupling portion” in the present invention. The resonance frequency of the resonance circuit 22 is set to be the same as the resonance frequency of the resonance circuit 12 of the power feeding device 10. Thereby, electric power can be supplied efficiently.
 整流平滑回路21は、入力部In,Inと出力部Out1,Out2とを有している。入力部In,Inは、後述のフィルタ回路23を介して共振回路22に接続されている。出力部Out1,Out2は負荷回路24に接続されている。整流平滑回路21は、共振回路22のコイルL2に誘起された電圧に起因した電圧及び電流を整流及び平滑し、負荷回路24へ供給する。負荷回路24は、例えば、充電回路及び二次電池等である。整流平滑回路21は、本発明に係る「整流回路」の一例である。整流平滑回路21は、ダイオードブリッジ回路であってもよいし、同期整流回路であってもよい。また、全波整流回路であってもよいし、半波整流回路であってもよい。整流平滑回路21は、ダイオード、又はFET等のスイッチ素子で構成される。 The rectifying / smoothing circuit 21 has input portions In 1 and In 2 and output portions Out 1 and Out 2 . The input parts In 1 and In 2 are connected to the resonance circuit 22 via a filter circuit 23 described later. The output units Out1 and Out2 are connected to the load circuit 24. The rectifying / smoothing circuit 21 rectifies and smoothes the voltage and current caused by the voltage induced in the coil L <b> 2 of the resonance circuit 22 and supplies the rectified and smoothed circuit 21 to the load circuit 24. The load circuit 24 is, for example, a charging circuit and a secondary battery. The rectifying / smoothing circuit 21 is an example embodiment that corresponds to the “rectifying circuit” according to the present invention. The rectifying / smoothing circuit 21 may be a diode bridge circuit or a synchronous rectifying circuit. Further, it may be a full-wave rectifier circuit or a half-wave rectifier circuit. The rectifying / smoothing circuit 21 includes a switching element such as a diode or FET.
 整流平滑回路21の入力部In,Inと共振回路22とを接続する線路は差動線路である。以下では、入力部Inに接続される線路を差動線路24A、入力部Inに接続される線路を差動線路24Bとする。差動線路24Aは、本発明に係る「第1線路」の一例である。差動線路24Bは、本発明に係る「第2線路」の一例である。 A line connecting the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 and the resonance circuit 22 is a differential line. Hereinafter, the line connected to the input unit In 1 is referred to as a differential line 24A, and the line connected to the input unit In 2 is referred to as a differential line 24B. The differential line 24A is an example of the “first line” according to the present invention. The differential line 24B is an example of the “second line” according to the present invention.
 フィルタ回路23は、共振回路22と整流平滑回路21との間に接続されている。フィルタ回路23は、キャパシタCc、インダクタLs1,Ls2、及び、キャパシタCaと抵抗Raとの直列回路231を有している。直列回路231は、本発明に係る「第1直列回路」の一例である。フィルタ回路23は、本発明に係る「ノイズフィルタ回路」の一例である。キャパシタCaは、本発明に係る「第1キャパシタ」の一例である。 The filter circuit 23 is connected between the resonance circuit 22 and the rectifying / smoothing circuit 21. The filter circuit 23 includes a capacitor Cc, inductors Ls1 and Ls2, and a series circuit 231 including a capacitor Ca and a resistor Ra. The series circuit 231 is an example of the “first series circuit” according to the present invention. The filter circuit 23 is an example of the “noise filter circuit” according to the present invention. The capacitor Ca is an example of the “first capacitor” according to the present invention.
 直列回路231は、差動線路24A,24B間に接続されている。直列回路231は、フィルタ回路23が有する他の素子よりも、整流平滑回路21の入力部In,Inの直近に設けられる。これにより、直列回路231と整流平滑回路21とは並列接続される構成となる。換言すれば、直列回路231は、コイルL2から視て、整流平滑回路21の入力部In,Inに対して並列に接続されている。なお、直列回路231は、整流平滑回路21により近づけて設けることが好ましい。直列回路231と整流平滑回路21との並列回路は、本発明に係る「第1並列回路」の一例である。 The series circuit 231 is connected between the differential lines 24A and 24B. The series circuit 231 is provided closer to the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 than the other elements included in the filter circuit 23. Thus, the series circuit 231 and the rectifying / smoothing circuit 21 are connected in parallel. In other words, the series circuit 231 is connected in parallel to the input portions In 1 and In 2 of the rectifying and smoothing circuit 21 as viewed from the coil L2. The series circuit 231 is preferably provided closer to the rectifying / smoothing circuit 21. The parallel circuit of the series circuit 231 and the rectifying / smoothing circuit 21 is an example of the “first parallel circuit” according to the present invention.
 インダクタLs1は差動線路24A上に設けられる。つまり、インダクタLs1は差動線路24Aに直列接続されている。インダクタLs2は差動線路24B上に設けられる。つまり、インダクタLs2は差動線路24Bに直列接続されている。インダクタLs1,Ls2は、直列回路231よりも、共振回路22側に設けられる。これにより、インダクタLs1,Ls2は、直列回路231と整流平滑回路21との並列回路に対し、コイルL2側から視て、直列接続される構成となる。インダクタLs1,Ls2は、例えばフェライトコアに巻線したコイルであってもよいし、空芯コイルやフェライトビーズであってもよい。この並列回路と、インダクタLs1,Ls2との直列回路は、本発明に係る「第2直列回路」の一例である。 The inductor Ls1 is provided on the differential line 24A. That is, the inductor Ls1 is connected in series to the differential line 24A. The inductor Ls2 is provided on the differential line 24B. That is, the inductor Ls2 is connected in series to the differential line 24B. The inductors Ls1 and Ls2 are provided closer to the resonance circuit 22 than the series circuit 231. Thus, the inductors Ls1 and Ls2 are connected in series to the parallel circuit of the series circuit 231 and the rectifying / smoothing circuit 21 when viewed from the coil L2 side. The inductors Ls1 and Ls2 may be coils wound around a ferrite core, for example, air core coils or ferrite beads. The series circuit of the parallel circuit and the inductors Ls1 and Ls2 is an example of the “second series circuit” according to the present invention.
 キャパシタCcは、インダクタLs1,Ls2よりも共振回路22側の位置で、差動線路24A,24B間に接続されている。これにより、キャパシタCcは、共振回路22に対して、並列に接続される構成となる。 The capacitor Cc is connected between the differential lines 24A and 24B at a position closer to the resonance circuit 22 than the inductors Ls1 and Ls2. Thus, the capacitor Cc is connected in parallel to the resonance circuit 22.
 後述するが、差動線路24A,24Bには、整流平滑回路21で発生する高周波ノイズ成分が流れる。インダクタLs1とキャパシタCcとは、差動線路24A上を流れる高周波ノイズ成分を減衰するローパスフィルタを構成している。同様に、インダクタLs2とキャパシタCcとは、差動線路24B上を流れる高周波ノイズ成分を減衰するローパスフィルタを構成している。ローパスフィルタは例えば30MHz以上の周波数帯域のノイズ成分を低減するように設定する。 As will be described later, high-frequency noise components generated in the rectifying and smoothing circuit 21 flow through the differential lines 24A and 24B. The inductor Ls1 and the capacitor Cc constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential line 24A. Similarly, the inductor Ls2 and the capacitor Cc constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential line 24B. The low pass filter is set so as to reduce noise components in a frequency band of 30 MHz or more, for example.
 次に、フィルタ回路23の機能について説明する。 Next, the function of the filter circuit 23 will be described.
 整流平滑回路21では、給電装置10のスイッチングに起因する電圧の過渡応答(高周波ノイズ成分)が発生する。具体的には、整流平滑回路21の入力部に印加される交流電圧の極性が反転した際に起こる整流回路のリカバリー特性により交流電圧が歪む。また、整流平滑後の直流電圧で入力部に印加される交流電圧がクリップされ、その波形は台形状になる。この交流電圧のひずみ波形が高周波ノイズ成分を有している。整流平滑回路21で発生する高周波ノイズ成分は、入力部In,Inから差動線路24A,24Bを流れ、共振回路22から放射される。差動線路24A,24B間に接続される直列回路231は、高周波ノイズ成分を減衰させる。 In the rectifying / smoothing circuit 21, a voltage transient response (high-frequency noise component) due to switching of the power supply apparatus 10 occurs. Specifically, the AC voltage is distorted by the recovery characteristic of the rectifier circuit that occurs when the polarity of the AC voltage applied to the input portion of the rectifying and smoothing circuit 21 is reversed. Moreover, the alternating voltage applied to an input part is clipped with the direct current voltage after rectification smoothing, and the waveform becomes trapezoid. This AC voltage distortion waveform has a high-frequency noise component. The high frequency noise component generated in the rectifying / smoothing circuit 21 flows from the input portions In 1 and In 2 through the differential lines 24A and 24B and is radiated from the resonance circuit 22. The series circuit 231 connected between the differential lines 24A and 24B attenuates high frequency noise components.
 直列回路231により減衰されたノイズ成分は、インダクタLs1,Ls2とキャパシタCcとのローパスフィルタで、さらに減衰される。これにより、差動線路24A,24Bを流れるノイズ成分がコイルL2へ流入することを防止できる。その結果、コイルL2からのノイズ放射を防止でき、放射ノイズの少ない電力給電システムを実現できる。 The noise component attenuated by the series circuit 231 is further attenuated by a low-pass filter including the inductors Ls1 and Ls2 and the capacitor Cc. Thereby, it is possible to prevent a noise component flowing through the differential lines 24A and 24B from flowing into the coil L2. As a result, noise radiation from the coil L2 can be prevented, and a power feeding system with little radiation noise can be realized.
 このフィルタ回路23において、キャパシタCcのキャパシタンスをCin、キャパシタCaのキャパシタンスをCoutで表すと、以下の理由により、Cin≧Coutの関係となることが好ましい。 In this filter circuit 23, when the capacitance of the capacitor Cc is represented by Cin and the capacitance of the capacitor Ca is represented by Cout, it is preferable that Cin ≧ Cout for the following reasons.
 インダクタLs1,Ls2は、スイッチングに起因する高周波ノイズ成分(例えば70MHz以上)に対してインピーダンスが高く、駆動周波数でのインピーダンスが低い。駆動周波数において、インダクタLs1、Ls2のインピーダンスは低く、簡単のためインダクタLs1、Ls2のインピーダンスを無視すると、キャパシタCc,Caは並列接続されている。そして、給電装置10からの給電(例えば、駆動周波数6.78MHz)を考慮すると、並列接続されるキャパシタCc,Caの合成キャパシタンスは小さい方が、負荷回路24への給電効率への影響が小さい。一方、整流平滑回路21から出力されるノイズ成分を減衰させるフィルタとしては、並列接続されるキャパシタCc,Caの合成キャパシタンスは大きい方がよい。したがって、キャパシタCc,Caの合成キャパシタンス(Cc+Ca)には制限が設けられる。 The inductors Ls1 and Ls2 have a high impedance with respect to a high-frequency noise component (for example, 70 MHz or more) due to switching, and a low impedance at a driving frequency. At the driving frequency, the impedances of the inductors Ls1 and Ls2 are low, and the capacitors Cc and Ca are connected in parallel when the impedances of the inductors Ls1 and Ls2 are ignored for simplicity. In consideration of the power supply from the power supply device 10 (for example, the driving frequency of 6.78 MHz), the smaller the combined capacitance of the capacitors Cc and Ca connected in parallel, the smaller the influence on the power supply efficiency to the load circuit 24. On the other hand, as a filter for attenuating the noise component output from the rectifying and smoothing circuit 21, it is preferable that the combined capacitance of the capacitors Cc and Ca connected in parallel is large. Accordingly, there is a limit on the combined capacitance (Cc + Ca) of the capacitors Cc and Ca.
 また、キャパシタCaのキャパシタンスCoutを大きくすると共振回路22から整流平滑回路21への給電電力が、抵抗Raにより消費される。このため、キャパシタCaのキャパシタンスCoutは小さい方が好ましい。さらに、ローパスフィルタで高周波成分をさらに減衰する必要があるため、キャパシタCcのキャパシタンスCinは大きい方が好ましい。以上の理由により、Cin≧Coutの関係となることが好ましい。 Further, when the capacitance Cout of the capacitor Ca is increased, the power supplied from the resonance circuit 22 to the rectifying / smoothing circuit 21 is consumed by the resistor Ra. For this reason, it is preferable that the capacitance Cout of the capacitor Ca is small. Furthermore, since it is necessary to further attenuate high-frequency components with a low-pass filter, it is preferable that the capacitance Cin of the capacitor Cc is large. For the above reasons, it is preferable that Cin ≧ Cout.
 図2(A)は、フィルタ回路23を設けない場合の、コイルL2の端部の電位の周波数成分を示す図、図2(B)は、フィルタ回路23を設ける場合の、コイルL2の端部の電位の周波数成分を示す図である。図2(A)と図2(B)とを比較すると、特に約400MHz付近(図中の円内)でのノイズレベルが下がっていることが読み取れる。 2A shows a frequency component of the potential at the end of the coil L2 when the filter circuit 23 is not provided, and FIG. 2B shows an end of the coil L2 when the filter circuit 23 is provided. It is a figure which shows the frequency component of the electric potential. Comparing FIG. 2 (A) and FIG. 2 (B), it can be seen that the noise level is lowered particularly in the vicinity of about 400 MHz (in the circle in the figure).
(実施形態2)
 実施形態2では、受電装置が備えるフィルタ回路の構成が、実施形態1と相違する。
(Embodiment 2)
In the second embodiment, the configuration of the filter circuit included in the power receiving device is different from that of the first embodiment.
 図3は、実施形態2に係る受電装置20Aの回路図である。 FIG. 3 is a circuit diagram of the power receiving device 20A according to the second embodiment.
 フィルタ回路23Aは、直列回路231、インダクタLs1,Ls2、及びキャパシタCc1,Cc2を有している。直列回路231、及びインダクタLs1,Ls2は、実施形態1と同じである。キャパシタCc1,Cc2は直列に接続されている。 The filter circuit 23A includes a series circuit 231, inductors Ls1 and Ls2, and capacitors Cc1 and Cc2. The series circuit 231 and the inductors Ls1 and Ls2 are the same as those in the first embodiment. Capacitors Cc1 and Cc2 are connected in series.
 キャパシタCc1,Cc2は、インダクタLs1,Ls2よりも共振回路22側の位置で、差動線路24A,24B間に接続されている。キャパシタCc1,Cc2の接続点は、受電装置20Aの基準電位に接続されている。ここで、基準電位は、受電装置の回路のグランド電位であり、例えば、受電装置20Aの筐体に含まれる導電部分、シールドケース、回路基板に面状に広がる導体パターン等も基準電位に接続される。キャパシタCc1,Cc2は同じキャパシタンスを有している。キャパシタCc2は、本発明に係る「第3キャパシタ」の一例である。 The capacitors Cc1 and Cc2 are connected between the differential lines 24A and 24B at a position closer to the resonance circuit 22 than the inductors Ls1 and Ls2. The connection point of the capacitors Cc1 and Cc2 is connected to the reference potential of the power receiving device 20A. Here, the reference potential is a ground potential of the circuit of the power receiving device. For example, a conductive portion, a shield case, a conductor pattern extending in a planar shape on the circuit board, etc. included in the housing of the power receiving device 20A are also connected to the reference potential. The Capacitors Cc1 and Cc2 have the same capacitance. The capacitor Cc2 is an example of the “third capacitor” according to the present invention.
 インダクタLs1,Ls2とキャパシタCc1とは、差動線路24A,24B上を流れる高周波ノイズ成分を減衰するローパスフィルタを構成している。 The inductors Ls1, Ls2 and the capacitor Cc1 constitute a low-pass filter that attenuates high-frequency noise components flowing on the differential lines 24A, 24B.
 前記のように、キャパシタCc1,Cc2の中点は基準電位に接続されている。これにより、高周波ノイズ成分をコイルL2に入力する手前でキャパシタCc1,Cc2を経由して受電装置20Aの基準電位に戻すことができる。その結果、コモンモード信号(ノイズ)がコイルL2から外部へ放射されることを低減できる。 As described above, the middle point of the capacitors Cc1 and Cc2 is connected to the reference potential. As a result, the high frequency noise component can be returned to the reference potential of the power receiving apparatus 20A via the capacitors Cc1 and Cc2 before the high frequency noise component is input to the coil L2. As a result, the common mode signal (noise) can be reduced from being radiated to the outside from the coil L2.
 図4(A)は、キャパシタCc1,Cc2の接続点を基準電位に接続しない場合の、コイルL2の端部の電位の周波数成分を示す図、図4(B)は、キャパシタCc1,Cc2の接続点を基準電位に接続する場合の、コイルL2の端部の電位の周波数成分を示す図である。図4(A)と図4(B)とを比較すると、特に約100MHz以上の帯域(図中の円内)でのノイズレベルが約5dB以上減衰している。 4A shows a frequency component of the potential at the end of the coil L2 when the connection point of the capacitors Cc1 and Cc2 is not connected to the reference potential, and FIG. 4B shows the connection of the capacitors Cc1 and Cc2. It is a figure which shows the frequency component of the electric potential of the edge part of the coil L2, when connecting a point to a reference electric potential. Comparing FIG. 4A and FIG. 4B, the noise level is attenuated by about 5 dB or more particularly in a band of about 100 MHz or more (in the circle in the figure).
(実施形態3)
 実施形態3に係る受電装置は、シールド導体を備える点で、実施形態2と相違する。
(Embodiment 3)
The power receiving device according to the third embodiment is different from the second embodiment in that it includes a shield conductor.
 図5(A)は、実施形態3に係る受電装置20Bの回路図、図5(B)は、受電装置20Bの側面図である。 FIG. 5A is a circuit diagram of the power receiving device 20B according to the third embodiment, and FIG. 5B is a side view of the power receiving device 20B.
 受電装置20Bの回路構成は、実施形態2に係る受電装置20Aと同じであり、受電装置20Bは、図3に示す受電装置20Aにシールド導体30を設けた構成である。受電装置20Bは基板100を備えている。基板100の一方主面には、コイルL2、キャパシタC21,C22等の各素子が実装されている。基板100の他方主面には、基準電位となるグランド導体101が形成されている。キャパシタCc1,Cc2の接続点は、このグランド導体101に接続されている。 The circuit configuration of the power receiving device 20B is the same as that of the power receiving device 20A according to the second embodiment, and the power receiving device 20B has a configuration in which the shield conductor 30 is provided in the power receiving device 20A shown in FIG. The power receiving device 20B includes a substrate 100. Each element such as a coil L2 and capacitors C21 and C22 is mounted on one main surface of the substrate 100. A ground conductor 101 serving as a reference potential is formed on the other main surface of the substrate 100. The connection point of the capacitors Cc1 and Cc2 is connected to the ground conductor 101.
 シールド導体30は、少なくとも高周波ノイズ電圧が重畳する部分、例えば、整流平滑回路21、直列回路231、及びインダクタLs1,Ls2を囲うように、基板100の一方主面に設けられている。シールド導体30は、グランド導体101(整流平滑回路21の出力部Out2)に接続されている。 The shield conductor 30 is provided on one main surface of the substrate 100 so as to surround at least a portion where the high-frequency noise voltage is superimposed, for example, the rectifying and smoothing circuit 21, the series circuit 231, and the inductors Ls1 and Ls2. The shield conductor 30 is connected to the ground conductor 101 (the output part Out2 of the rectifying and smoothing circuit 21).
 シールド導体30は、高周波電圧が重畳するインダクタLs1,Ls2の周辺の電圧変動に起因するノイズ電流が周囲に漏れないようにすればよく、図5(B)に示すようにインダクタLs1,Ls2を全て覆わなくてもよいし、全て覆っていてもよい。なお、インダクタLs1,Ls2の磁路が開磁型の場合、インダクタLs1,Ls2の周囲に磁界が漏れるので、インダクタLs1,Ls2の電気特性(インダクタンス,レジスタンス)はシールド導体30の影響を受ける場合がある。その場合には、シールド導体30をインダクタLs1,Ls2から遠ざけるとよい。シールド導体30とインダクタLs1,Ls2を物理的に離すことによって、シールド導体30における漏れ磁界の強度を低減し、インダクタLs1,Ls2の電気特性への影響を軽減できるからである。 The shield conductor 30 may be configured so that noise current caused by voltage fluctuations around the inductors Ls1 and Ls2 on which the high-frequency voltage is superimposed does not leak to the surroundings. As shown in FIG. It does not need to be covered or all of it may be covered. When the magnetic paths of the inductors Ls1 and Ls2 are open magnetic types, a magnetic field leaks around the inductors Ls1 and Ls2, so that the electrical characteristics (inductance and resistance) of the inductors Ls1 and Ls2 may be affected by the shield conductor 30. is there. In that case, the shield conductor 30 may be kept away from the inductors Ls1 and Ls2. This is because by physically separating the shield conductor 30 and the inductors Ls1 and Ls2, the strength of the leakage magnetic field in the shield conductor 30 can be reduced, and the influence on the electrical characteristics of the inductors Ls1 and Ls2 can be reduced.
 この構成では、高周波ノイズ電圧が重畳する部分からノイズ成分が輻射されても、シールド導体30(グランド導体101)により遮蔽し、ノイズ電流を基準電位に短い経路で戻すことができる。これにより、周囲の導体(例えば、筐体内の金属部、他の回路基板のグランド、バッテリーの外装などの導体)への不要な電磁界結合を軽減することができ、コモンモードノイズを低減することができ、EMI(Electro Magnetic Interference)を抑制できる。 In this configuration, even if a noise component is radiated from the portion where the high frequency noise voltage is superimposed, it can be shielded by the shield conductor 30 (ground conductor 101), and the noise current can be returned to the reference potential through a short path. As a result, unnecessary electromagnetic coupling to surrounding conductors (for example, metal parts in the casing, grounds of other circuit boards, conductors such as battery exteriors) can be reduced, and common mode noise can be reduced. EMI (Electro Magnetic Interference) can be suppressed.
 なお、シールド導体30は、受電装置20Bを構成する全ての素子を覆うように基板100の一方主面に設けられてもよい。 Note that the shield conductor 30 may be provided on one main surface of the substrate 100 so as to cover all the elements constituting the power receiving device 20B.
(実施形態4)
 実施形態4に係る受電装置は、実施形態1に係る受電装置、又は、実施形態2,3に係る受電装置と同じ回路構成である。この回路構成において、インダクタLs1,Ls2(例えば、図1参照)を、複合インダクタで構成したものを用いている。
(Embodiment 4)
The power receiving device according to the fourth embodiment has the same circuit configuration as the power receiving device according to the first embodiment or the power receiving device according to the second and third embodiments. In this circuit configuration, inductors Ls1 and Ls2 (see, for example, FIG. 1) configured with composite inductors are used.
 図6は、実施形態4に係る受電装置20Cの回路図である。 FIG. 6 is a circuit diagram of the power receiving device 20C according to the fourth embodiment.
 受電装置20Cの回路構成は、実施形態2に係る受電装置20Aと同じである。本実施形態では、インダクタLs1,Ls2は、一つの複合インダクタ40で構成されている。 The circuit configuration of the power receiving device 20C is the same as that of the power receiving device 20A according to the second embodiment. In the present embodiment, the inductors Ls1 and Ls2 are configured by one composite inductor 40.
 図7は、複合インダクタ40を示す断面図である。 FIG. 7 is a cross-sectional view showing the composite inductor 40.
 複合インダクタ40は積層体41を備えている。積層体41は、複数のフェライトシートが積層され、焼結されてなる絶縁体である。積層体41は、本発明に係る「フェライト多層基板」の一例である。 The composite inductor 40 includes a multilayer body 41. The laminate 41 is an insulator in which a plurality of ferrite sheets are laminated and sintered. The laminate 41 is an example of the “ferrite multilayer substrate” according to the present invention.
 積層体41は、磁性体層42、非磁性体層43、磁性体層44、非磁性体層45、磁性体層46の順に積層されている。非磁性体層43,45は、磁性体層42,44,46に比べて低透磁率を有している。 The laminated body 41 is laminated in the order of the magnetic layer 42, the nonmagnetic layer 43, the magnetic layer 44, the nonmagnetic layer 45, and the magnetic layer 46. The nonmagnetic layers 43 and 45 have a lower magnetic permeability than the magnetic layers 42, 44 and 46.
 非磁性体層43,45には、巻回軸が一致するように、インダクタLs1,Ls2が形成されている。詳しくは、インダクタLs1は、非磁性体層43の各層に形成される、開ループ状の導体パターンが不図示のビア導体で接続されて形成される。同様に、インダクタLs2は、非磁性体層45の各層に形成される、開ループ状の導体パターンが不図示のビア導体で接続されて形成される。 In the nonmagnetic layers 43 and 45, inductors Ls1 and Ls2 are formed so that the winding axes coincide with each other. Specifically, the inductor Ls1 is formed by connecting an open loop conductor pattern formed in each layer of the nonmagnetic layer 43 with via conductors (not shown). Similarly, the inductor Ls2 is formed by connecting an open loop conductor pattern formed in each layer of the nonmagnetic material layer 45 with a via conductor (not shown).
 インダクタLs1,Ls2を低透磁率の非磁性体層43内に形成することで、インダクタLs1,Ls2の磁気飽和を防止できる。このため、インダクタLs1,Ls2のインダクタンスの低下を防止できる。 By forming the inductors Ls1 and Ls2 in the low magnetic permeability non-magnetic layer 43, magnetic saturation of the inductors Ls1 and Ls2 can be prevented. For this reason, it is possible to prevent a decrease in inductance of the inductors Ls1 and Ls2.
 また、インダクタLs1,Ls2が形成される非磁性体層43,45を挟むようにして、磁性体層42,44,46が積層されている。インダクタLs1,Ls2の間に磁性体層44が設けられることにより、インダクタLs1,Ls2の結合度を弱くできる。このインダクタLs1,Ls2の結合係数は、絶対値で0以上0.9以下に設定されていることが好ましい。 Further, the magnetic layers 42, 44, 46 are laminated so as to sandwich the nonmagnetic layers 43, 45 where the inductors Ls1, Ls2 are formed. By providing the magnetic layer 44 between the inductors Ls1 and Ls2, the degree of coupling between the inductors Ls1 and Ls2 can be weakened. The coupling coefficient of the inductors Ls1 and Ls2 is preferably set to 0 or more and 0.9 or less in absolute value.
 インダクタLs1,Ls2の結合度を弱くすることで、複合インダクタ40を用いても、インダクタLs1,Ls2は、コモンモード信号(ノイズ)及び差動モード信号(ノイズ)の何れに対しても、インダクタンスを持つようになる。このため、インダクタLs1,Ls2それぞれに巻線コイル等を用いる場合と比べて、部品点数を削減することができ、また、小型化できる。 By reducing the degree of coupling between the inductors Ls1 and Ls2, even if the composite inductor 40 is used, the inductors Ls1 and Ls2 provide inductance for both the common mode signal (noise) and the differential mode signal (noise). To have. For this reason, compared with the case where a winding coil etc. are used for each of inductor Ls1, Ls2, a number of parts can be reduced and it can reduce in size.
 積層体41の主面(磁性体層46の主面)には、インダクタL21,Ls2が接続される実装電極47A,47D以外に、複数のダミー電極47B,47Cが設けられる。このダミー電極47B,47Cを基板に実装することで、複合インダクタ40の発熱を実装基板に放熱することができる。 In addition to the mounting electrodes 47A and 47D to which the inductors L21 and Ls2 are connected, a plurality of dummy electrodes 47B and 47C are provided on the main surface of the multilayer body 41 (main surface of the magnetic layer 46). By mounting the dummy electrodes 47B and 47C on the substrate, the heat generated by the composite inductor 40 can be radiated to the mounting substrate.
 上述の実施形態では、磁界結合を利用した磁界型の非接触電力伝送システムについて説明し、送電結合部及び受電結合部が磁束を放射しやすい、又は集めやすいコイルである場合について説明した。しかし、電力供給システムは磁界型の非接触電力伝送システムに限らず、電界結合を利用した電界結合型の非接触電力伝送システムにも適応することができる。この場合、送電結合部及び受電結合部は面状導体となる。この場合であっても、上述の実施形態のフィルタ回路を受電装置内に組み込むことにより、受電結合部である面状導体からノイズが放射されることを抑制できる。なお、電界及び磁界の両方を利用した電磁界結合型の非接触電力伝送システムにも適応できる。 In the above-described embodiment, a magnetic field type non-contact power transmission system using magnetic field coupling has been described, and the case where the power transmission coupling unit and the power reception coupling unit are coils that easily radiate or collect magnetic flux has been described. However, the power supply system is not limited to the magnetic field type non-contact power transmission system, but can be applied to an electric field coupling type non-contact power transmission system using electric field coupling. In this case, the power transmission coupling portion and the power reception coupling portion are planar conductors. Even in this case, by incorporating the filter circuit of the above-described embodiment into the power receiving apparatus, it is possible to suppress noise from being radiated from the planar conductor that is the power receiving coupling portion. Note that the present invention can also be applied to an electromagnetic coupling type non-contact power transmission system using both an electric field and a magnetic field.
 また、上述の実施形態では、主に受電装置内の整流平滑回路に起因するノイズがコイル(受電結合部)から放射されるのを抑制するためのフィルタ回路について説明した。しかし、受電装置内で負荷に供給する電力を変換するDC-DCコンバータ等、受電結合部に接続される他のノイズ発生源起因のノイズに対しても、前記のフィルタ回路を適用して、受電結合部からのノイズの発生を抑制できる。 In the above-described embodiment, the filter circuit for suppressing noise radiated mainly from the rectifying and smoothing circuit in the power receiving apparatus from the coil (power receiving coupling unit) has been described. However, the above-described filter circuit is also applied to the noise caused by other noise generation sources connected to the power receiving coupling unit, such as a DC-DC converter that converts the power supplied to the load in the power receiving device. Generation of noise from the coupling portion can be suppressed.
(他の実施形態)
 図1に示した共振回路12は、コイルL1の両端にキャパシタC11,C12を直列接続した直列共振回路を構成しているが、共振回路12はこの構成に限らない。例えば並列共振回路であってもよいし、コイルL1の一方端にキャパシタを接続した直列共振回路であってもよい。
(Other embodiments)
1 constitutes a series resonance circuit in which capacitors C11 and C12 are connected in series at both ends of the coil L1, but the resonance circuit 12 is not limited to this configuration. For example, it may be a parallel resonance circuit or a series resonance circuit in which a capacitor is connected to one end of the coil L1.
 また、図1、図3、図5(A)、図6に示した共振回路22は、コイルL2の両端にキャパシタC21,C22を直列接続した直列共振回路を構成しているが、共振回路22はこの構成に限らない。例えば、図8は図1に示した受電装置20の変形例である。この図8に示すように、コイルL2の一方の端にキャパシタC21を接続した直列共振回路で共振回路22Aを構成してもよい。また、並列共振回路であってもよい。 The resonant circuit 22 shown in FIGS. 1, 3, 5A, and 6 constitutes a series resonant circuit in which capacitors C21 and C22 are connected in series to both ends of the coil L2. Is not limited to this configuration. For example, FIG. 8 shows a modification of the power receiving device 20 shown in FIG. As shown in FIG. 8, the resonance circuit 22A may be configured by a series resonance circuit in which a capacitor C21 is connected to one end of the coil L2. Further, it may be a parallel resonant circuit.
 また、以上に示した各実施形態では、「第1直列回路」の例として、単一のキャパシタCaと単一の抵抗Raとの直列回路231を示したが、この直列回路231はこの構成に限らない。例えば図9(A)に示すように、複数の抵抗RaとキャパシタCaとの組み合わせで直列回路231Aを構成してもよいし、図9(B)に示すように、複数のキャパシタCaと抵抗Raとの組み合わせで直列回路231Bを構成してもよい。 In each of the embodiments described above, the series circuit 231 including the single capacitor Ca and the single resistor Ra is shown as an example of the “first series circuit”. However, the series circuit 231 has this configuration. Not exclusively. For example, as shown in FIG. 9A, a series circuit 231A may be configured by a combination of a plurality of resistors Ra and a capacitor Ca, or as shown in FIG. 9B, a plurality of capacitors Ca and a resistor Ra. The series circuit 231B may be configured in combination with
 また、図1、図3、図5(A)、図6に示したフィルタ回路23,23Aは、差動線路に挿入されたインダクタLs1,Ls2を備えているが、フィルタ回路23,23Aはこの構成に限らない。例えば、図10は図1に示した受電装置20の変形例である。図10に示す例では、インダクタLs1,Ls2にキャパシタCb1,Cb2をそれぞれ並列接続した並列共振回路を有するフィルタ回路23Bを構成している。これら並列共振回路は、その共振周波数を、除去すべき特定高周波ノイズの周波数帯に合わせる。この構成により、並列共振回路は、その共振周波数でインピーダンスが高くなって、特定高周波ノイズが効果的に除去される。 The filter circuits 23 and 23A shown in FIGS. 1, 3, 5A, and 6 include inductors Ls1 and Ls2 inserted in the differential lines. It is not limited to the configuration. For example, FIG. 10 is a modified example of the power receiving device 20 shown in FIG. In the example shown in FIG. 10, a filter circuit 23B having a parallel resonant circuit in which capacitors Cb1 and Cb2 are connected in parallel to inductors Ls1 and Ls2, respectively. These parallel resonance circuits adjust the resonance frequency to the frequency band of the specific high frequency noise to be removed. With this configuration, the parallel resonant circuit has high impedance at the resonance frequency, and specific high frequency noise is effectively removed.
 また、図1、図3、図5(A)、図6に示したフィルタ回路23,23Aは、差動線路に挿入されたインダクタLs1,Ls2を備えているが、フィルタ回路23,23Aはこの構成に限らない。例えば、図11(A)(B)はいずれも図1に示した受電装置20の変形例である。図11(A)(B)において、フィルタ回路23Cは、一方の線路にのみ素子を接続した不平衡回路を構成している。特に、図11(B)に示す例では、共振回路22Aについても、コイルL2の一方の端にキャパシタC21を接続した直列共振回路を構成している。このように、受電装置を不平衡回路で構成してもよい。 The filter circuits 23 and 23A shown in FIGS. 1, 3, 5A, and 6 include inductors Ls1 and Ls2 inserted in the differential lines. It is not limited to the configuration. For example, FIGS. 11A and 11B are modifications of the power receiving device 20 shown in FIG. 11A and 11B, the filter circuit 23C constitutes an unbalanced circuit in which elements are connected to only one line. In particular, in the example shown in FIG. 11B, the resonance circuit 22A also forms a series resonance circuit in which a capacitor C21 is connected to one end of the coil L2. In this manner, the power receiving device may be configured with an unbalanced circuit.
 なお、フィルタ回路は、図1に示したフィルタ回路23において、インダクタLs2を残し、インダクタLs1を無くしてもよい。また、共振回路は、図1に示した共振回路22において、キャパシタC22を残し、キャパシタC21を無くしてもよい。 In addition, the filter circuit may leave the inductor Ls1 and leave the inductor Ls1 in the filter circuit 23 shown in FIG. Further, the resonance circuit may leave the capacitor C21 and eliminate the capacitor C21 in the resonance circuit 22 shown in FIG.
 これらの構成によれば、素子数が削減され、小型化、低コスト化が図れる。 According to these configurations, the number of elements can be reduced, and the size and cost can be reduced.
C11,C12…キャパシタ
C21,C22…キャパシタ
Ca…キャパシタ(第1キャパシタ)
Cc…キャパシタ(第2キャパシタ)
Cc1…キャパシタ(第2キャパシタ)
Cc2…キャパシタ(第3キャパシタ)
Cin…キャパシタンス
Cout…キャパシタンス
In,In…入力部
L1…コイル(給電結合部)
L2…コイル(受電結合部)
Ls1…インダクタ(第1インダクタ)
Ls2…インダクタ(第2インダクタ)
Out1,Out2…出力部
Ra…抵抗
Vin…直流電源
1…電力供給システム
10…給電装置
11…インバータ回路
12…共振回路
20,20A,20B,20C…受電装置
21…整流平滑回路(整流回路)
22,22A…共振回路
23,23A,23B,23C…フィルタ回路(ノイズフィルタ回路)
24…負荷回路
24A…差動線路(第1線路)
24B…差動線路(第2線路)
30…シールド導体(遮蔽導体)
40…複合インダクタ
41…積層体
42,44,46…磁性体層
43…非磁性体層
43,45…非磁性体層
47A,47D…実装電極
47B,47C…ダミー電極
100…基板
101…グランド導体
231,231A,231B…直列回路(第1直列回路)
C11, C12 ... Capacitors C21, C22 ... Capacitor Ca ... Capacitor (first capacitor)
Cc: Capacitor (second capacitor)
Cc1 .. capacitor (second capacitor)
Cc2: Capacitor (third capacitor)
Cin ... capacitance Cout ... capacitance In 1, In 2 ... input unit L1 ... coil (feed coupling portion)
L2 ... Coil (power receiving coupling part)
Ls1 ... Inductor (first inductor)
Ls2: Inductor (second inductor)
Out1, Out2 ... Output unit Ra ... Resistance Vin ... DC power supply 1 ... Power supply system 10 ... Power feeding device 11 ... Inverter circuit 12 ... Resonant circuits 20, 20A, 20B, 20C ... Power receiving device 21 ... Rectification smoothing circuit (rectification circuit)
22, 22A ... Resonant circuits 23, 23A, 23B, 23C ... Filter circuit (noise filter circuit)
24 ... Load circuit 24A ... Differential line (first line)
24B ... Differential line (second line)
30 ... Shield conductor (shield conductor)
40 ... Composite inductor 41 ... Laminated bodies 42, 44, 46 ... Magnetic layer 43 ... Nonmagnetic layer 43,45 ... Nonmagnetic layers 47A, 47D ... Mounting electrodes 47B, 47C ... Dummy electrode 100 ... Substrate 101 ... Ground conductor 231, 231A, 231B ... Series circuit (first series circuit)

Claims (8)

  1.  給電装置の給電結合部と結合する受電結合部と、
     前記受電結合部に接続される入力部、及び負荷に接続される出力部を有する整流回路と、
     前記整流回路の前記入力部に接続されているノイズフィルタ回路と、
     を備え、
     前記ノイズフィルタ回路は、前記受電結合部から視て、前記整流回路の前記入力部に対して並列に接続されている、第1キャパシタと抵抗との第1直列回路を有する、
     受電装置。
    A power receiving coupling portion coupled to a power feeding coupling portion of the power feeding device;
    A rectifier circuit having an input section connected to the power receiving coupling section and an output section connected to a load;
    A noise filter circuit connected to the input of the rectifier circuit;
    With
    The noise filter circuit includes a first series circuit of a first capacitor and a resistor, which is connected in parallel to the input unit of the rectifier circuit as viewed from the power receiving coupling unit.
    Power receiving device.
  2.  前記ノイズフィルタ回路は、
     前記第1直列回路及び前記整流回路の第1並列回路に対して、前記受電結合部から視て、直列接続されているインダクタと、
     前記第1並列回路と前記インダクタとの第2直列回路に対して、並列に接続されている第2キャパシタと、
     を有する、請求項1に記載の受電装置。
    The noise filter circuit is
    An inductor connected in series with respect to the first series circuit and the first parallel circuit of the rectifier circuit, as viewed from the power receiving coupling portion,
    A second capacitor connected in parallel to a second series circuit of the first parallel circuit and the inductor;
    The power receiving device according to claim 1, comprising:
  3.  前記第1キャパシタのキャパシタンスをCout、前記第2キャパシタのキャパシタンスをCinで表すと、Cin≧Coutである、
     請求項2に記載の受電装置。
    When the capacitance of the first capacitor is Cout and the capacitance of the second capacitor is Cin, Cin ≧ Cout.
    The power receiving device according to claim 2.
  4.  前記第2キャパシタは、直列接続された複数のキャパシタを有し、
     前記第2キャパシタの前記複数のキャパシタの接続点は、基準電位に接続されている、
     請求項2又は請求項3に記載の受電装置。
    The second capacitor has a plurality of capacitors connected in series,
    Connection points of the plurality of capacitors of the second capacitor are connected to a reference potential,
    The power receiving device according to claim 2 or claim 3.
  5.  前記受電結合部と前記整流回路の入力部とは、第1線路と第2線路とで構成される差動線路で接続され、
     前記ノイズフィルタ回路は前記差動線路に設けられ、
     前記インダクタは、前記第1線路に設けられる第1インダクタ、及び前記第2線路に設けられる第2インダクタを有し、
     前記第1インダクタ及び前記第2インダクタは、複合インダクタで構成される、
     請求項2から請求項4の何れかに記載の受電装置。
    The power receiving coupling portion and the input portion of the rectifier circuit are connected by a differential line composed of a first line and a second line,
    The noise filter circuit is provided in the differential line,
    The inductor has a first inductor provided on the first line, and a second inductor provided on the second line,
    The first inductor and the second inductor are composed of composite inductors,
    The power receiving device according to any one of claims 2 to 4.
  6.  前記第1インダクタ及び前記第2インダクタの結合係数は、絶対値で0.9以下に設定されている請求項5に記載の受電装置。 The power receiving device according to claim 5, wherein a coupling coefficient between the first inductor and the second inductor is set to an absolute value of 0.9 or less.
  7.  前記インダクタは、フェライト多層基板内部に構成されている、
     請求項2から請求項6の何れかに記載の受電装置。
    The inductor is configured inside a ferrite multilayer substrate,
    The power receiving device according to any one of claims 2 to 6.
  8.  前記第1直列回路、及び前記整流回路の入力部を遮蔽する遮蔽導体、
     を備える、請求項1から請求項7の何れかに記載の受電装置。
    A shielding conductor that shields the input part of the first series circuit and the rectifier circuit;
    The power receiving device according to any one of claims 1 to 7, further comprising:
PCT/JP2017/012281 2016-04-20 2017-03-27 Power reception device WO2017183393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513084A JP6669250B2 (en) 2016-04-20 2017-03-27 Power receiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084317 2016-04-20
JP2016-084317 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183393A1 true WO2017183393A1 (en) 2017-10-26

Family

ID=60116887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012281 WO2017183393A1 (en) 2016-04-20 2017-03-27 Power reception device

Country Status (2)

Country Link
JP (1) JP6669250B2 (en)
WO (1) WO2017183393A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010492A (en) * 2018-07-06 2020-01-16 株式会社Soken Non-contact power transmission apparatus
JP2020018060A (en) * 2018-07-24 2020-01-30 株式会社ダイヘン Power receiving device and wireless power supply system
JP2020167824A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Coil device, wireless power transmission device, wireless power reception device, and wireless power transmission system
WO2020208825A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Power conversion device and air conditioner
JPWO2021149283A1 (en) * 2020-07-27 2021-07-29

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322614A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Power converter
JPH1169774A (en) * 1997-08-19 1999-03-09 Hitachi Ltd Power conversion device
JP2005143250A (en) * 2003-11-10 2005-06-02 Densei Lambda Kk Inverter device, uninterruptible power system, and pulse generating method
JP2009159654A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Dc apparatus and dc power distribution system
JP2013520768A (en) * 2010-02-23 2013-06-06 ゼネラル・エレクトリック・カンパニイ Lighting system with thermal management system
JP2013143869A (en) * 2012-01-11 2013-07-22 Ricoh Co Ltd Integrated circuit, high voltage ac power supply device for charging, and image forming apparatus
JP2014017970A (en) * 2012-07-09 2014-01-30 Denso Corp Power conversion device
WO2015033788A1 (en) * 2013-09-04 2015-03-12 株式会社 村田製作所 Method for manufacturing laminated electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184363A (en) * 2016-03-29 2017-10-05 株式会社Soken Non-contact power reception device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322614A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Power converter
JPH1169774A (en) * 1997-08-19 1999-03-09 Hitachi Ltd Power conversion device
JP2005143250A (en) * 2003-11-10 2005-06-02 Densei Lambda Kk Inverter device, uninterruptible power system, and pulse generating method
JP2009159654A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Dc apparatus and dc power distribution system
JP2013520768A (en) * 2010-02-23 2013-06-06 ゼネラル・エレクトリック・カンパニイ Lighting system with thermal management system
JP2013143869A (en) * 2012-01-11 2013-07-22 Ricoh Co Ltd Integrated circuit, high voltage ac power supply device for charging, and image forming apparatus
JP2014017970A (en) * 2012-07-09 2014-01-30 Denso Corp Power conversion device
WO2015033788A1 (en) * 2013-09-04 2015-03-12 株式会社 村田製作所 Method for manufacturing laminated electronic component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010492A (en) * 2018-07-06 2020-01-16 株式会社Soken Non-contact power transmission apparatus
JP7068080B2 (en) 2018-07-06 2022-05-16 株式会社Soken Contactless power transmission device
JP2020018060A (en) * 2018-07-24 2020-01-30 株式会社ダイヘン Power receiving device and wireless power supply system
JP2020167824A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Coil device, wireless power transmission device, wireless power reception device, and wireless power transmission system
WO2020208825A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Power conversion device and air conditioner
JPWO2020208825A1 (en) * 2019-04-12 2021-10-21 三菱電機株式会社 Power converter and air conditioner
JP7204894B2 (en) 2019-04-12 2023-01-16 三菱電機株式会社 Power converter and air conditioner
JPWO2021149283A1 (en) * 2020-07-27 2021-07-29
WO2021149283A1 (en) * 2020-07-27 2021-07-29 三菱電機エンジニアリング株式会社 Wireless power transfer system and wireless power reception device
US20220302769A1 (en) * 2020-07-27 2022-09-22 Mitsubishi Electric Engineering Company, Limited Wireless power transmission system and wireless power reception device

Also Published As

Publication number Publication date
JPWO2017183393A1 (en) 2018-12-13
JP6669250B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6669250B2 (en) Power receiving device
US20160284465A1 (en) Electromagnetic Interference Shield for Wireless Power Transfer
US20130014385A1 (en) Grounding method adapted for power supply
US9887592B2 (en) Power transmission device and power reception device
JP2012049434A (en) Electronic component, feeder device, power receiver, and wireless feeder system
JP2003338722A (en) Noise suppression circuit
JP5994963B1 (en) Current detection element and power transmission system
WO2021174367A1 (en) Wireless power transfer transmitter, system and method of wirelessly transferring power
KR20120049819A (en) Balanced converter and magnetic energy transfer element which cancels electrical noise
JP6583599B1 (en) ANTENNA DEVICE, COMMUNICATION SYSTEM, AND ELECTRONIC DEVICE
JP2012195332A (en) Common mode noise filter
JP5659504B2 (en) Electromagnetic wave characteristic improvement sheet
JP3823322B2 (en) Distributed constant structure
US10459010B2 (en) Current detection element including a coil-shaped current detection conductor, transmission device, and electric power transmission system
JP6344540B2 (en) Power conversion module
CN114373613A (en) Planar transformer, power conversion circuit and adapter
CN114496523A (en) Planar transformer, power conversion circuit and adapter
US20180069434A1 (en) Filter circuit and wireless power transmission system
JP6699758B2 (en) Module parts
JP2013125926A (en) Power supply cable
US20170256355A1 (en) Inductive energy transmission system
JP6497483B2 (en) Current detection element and power supply device
JP2012079918A (en) Choke coil
KR101692584B1 (en) A lighting device
KR20130138455A (en) Magnetic energy transfer element and power supply which cancels electrical noise

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513084

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785735

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785735

Country of ref document: EP

Kind code of ref document: A1