WO2017183348A1 - 鋼板、めっき鋼板、およびそれらの製造方法 - Google Patents

鋼板、めっき鋼板、およびそれらの製造方法 Download PDF

Info

Publication number
WO2017183348A1
WO2017183348A1 PCT/JP2017/009300 JP2017009300W WO2017183348A1 WO 2017183348 A1 WO2017183348 A1 WO 2017183348A1 JP 2017009300 W JP2017009300 W JP 2017009300W WO 2017183348 A1 WO2017183348 A1 WO 2017183348A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
amount
retained austenite
steel sheet
martensite
Prior art date
Application number
PCT/JP2017/009300
Other languages
English (en)
French (fr)
Inventor
孝子 山下
由康 川崎
崇 小林
植野 雅康
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017533038A priority Critical patent/JP6210183B1/ja
Priority to US16/090,883 priority patent/US20190276907A1/en
Priority to EP17785691.1A priority patent/EP3447159B1/en
Priority to CN201780018499.0A priority patent/CN108779536B/zh
Priority to KR1020187033203A priority patent/KR102128838B1/ko
Priority to MX2018012659A priority patent/MX2018012659A/es
Publication of WO2017183348A1 publication Critical patent/WO2017183348A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet, a hot dip galvanized steel sheet, a hot dip galvanized steel sheet, an electrogalvanized steel sheet, and a method for producing them, and particularly suitable for use as a member used in industrial fields such as automobiles and electricity.
  • the present invention relates to a steel sheet having excellent hole expandability and a high yield ratio.
  • Patent Document 1 proposes a high-strength steel sheet having an extremely high ductility utilizing a work-induced transformation of retained austenite having a tensile strength of 1000 MPa or more and a total elongation (EL) of 30% or more.
  • Patent Document 2 proposes a high-strength steel plate having a high balance between strength and ductility by performing heat treatment in a two-phase region of ferrite and austenite using high-Mn steel.
  • high Mn steel the structure after hot rolling is a structure containing bainite and martensite, and further, after forming fine retained austenite by annealing and tempering, tempered bainite or A high-strength steel sheet that has improved local ductility by using a structure containing tempered martensite has been proposed.
  • the steel sheet described in Patent Document 1 is manufactured by performing a so-called austempering process in which a steel sheet containing C, Si and Mn as basic components is austenitized, and then quenched into a bainite transformation temperature range and held isothermally. Is done. And when this austemper process is performed, a retained austenite is produced
  • Patent Document 1 is mainly intended to improve ductility, and no consideration is given to hole expandability, bendability, and yield ratio.
  • Patent Documents 2 and 3 from the viewpoint of formability, although improvement of the ductility of the steel sheet is described, consideration is not given to its bendability, yield ratio, and hole expandability.
  • the present invention has been made paying attention to the above-mentioned problems, and the object thereof is a steel sheet, hot-dip galvanized steel having a TS of 590 MPa or more, excellent YR of 68% or more, and excellent formability and hole expansibility.
  • An object of the present invention is to provide a steel plate, a hot dip galvanized steel plate, an electrogalvanized steel plate, and a production method thereof.
  • the steel component is in a range of Mn: 2.60 mass% to 4.20 mass%, and after appropriately adjusting the addition amount of other alloy elements such as Ti, hot rolling is performed to perform hot rolling. And Next, after removing the scale from the hot-rolled sheet by pickling, the hot-rolled sheet is maintained in the temperature range of Ac 1 transformation point + 20 ° C. or higher and Ac 1 transformation point + 120 ° C. or lower in the range of 600 s to 21600 s, and further annealed after hot rolling. As it is, or cold rolling is performed at a reduction rate of less than 30% to obtain a cold-rolled sheet. Further, this hot-rolled sheet or cold-rolled sheet is cooled after being held for 20 to 900 s in a temperature range of Ac 1 transformation point + 10 ° C. or higher and Ac 1 transformation point + 100 ° C. or lower.
  • the hot-rolled sheet or cold-rolled sheet has an area ratio of polygonal ferrite of 20% or more and 65% or less, non-recrystallized ferrite of 8% or more, and martensite of 5% or more and 25% or less.
  • the volume ratio of the retained austenite is 8% or more, and the average aspect ratio of the crystal grains of each phase (polygonal ferrite, martensite, retained austenite) is 2.0 or more and 15.0 or less, respectively.
  • the polygonal ferrite has an average crystal grain size of 6 ⁇ m or less
  • the martensite has an average crystal grain size of 3 ⁇ m or less
  • the retained austenite has an average crystal grain size of 3 ⁇ m or less.
  • the value obtained by dividing the amount of Mn (mass%) in the retained austenite by the amount of Mn (mass%) in the polygonal ferrite is controlled to be 2.0 or more. 8% or more of retained austenite stabilized with can be secured.
  • the gist configuration of the present invention is as follows. 1. In mass%, C: 0.030% to 0.250%, Si: 0.01% to 3.00%, Mn: 2.60% to 4.20%, P: 0.001% or more 0.100% or less, S: 0.0200% or less, N: 0.0100% or less and Ti: 0.005% or more and 0.200% or less, Furthermore, by mass%, Al: 0.01% to 2.00%, Nb: 0.005% to 0.200%, B: 0.0003% to 0.0050%, Ni: 0.005 %: 1.000% or less, Cr: 0.005% or more and 1.000% or less, V: 0.005% or more and 0.500% or less, Mo: 0.005% or more and 1.000% or less, Cu: 0 0.005% to 1.000%, Sn: 0.002% to 0.200%, Sb: 0.002% to 0.200%, Ta: 0.001% to 0.010%, Ca : 0.0005% or more and 0.0050% or less, Mg: 0.0005% or
  • the amount of C in the retained austenite is related to the amount of Mn in the retained austenite by the following formula: 0.09 ⁇ [Mn amount] ⁇ 0.026 ⁇ 0.150 ⁇ [C amount] ⁇ 0.09 ⁇ [ Amount of Mn] ⁇ 0.026 + 0.150 [C amount]: C amount (% by mass) in retained austenite [Mn amount]: Mn amount (% by mass) in retained austenite 2.
  • a plated steel sheet wherein the steel sheet according to 1 or 2 further comprises one selected from a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, a hot-dip aluminum plated layer, and an electrogalvanized layer.
  • the manufacturing method of the steel plate of said 4 which performs a process.
  • a high-yield ratio type high-strength steel sheet excellent in formability and hole-expandability with TS of 590 MPa or more and YR of 68% or more can be obtained.
  • the present invention will be specifically described.
  • the reason why the component composition of steel is limited to the scope of the present invention in the present invention will be described.
  • the% display concerning the component composition of the following steel or slab means the mass%.
  • the balance of the component composition of steel or slab is Fe and inevitable impurities.
  • C 0.030% or more and 0.250% or less C is an element necessary for generating a low-temperature transformation phase such as martensite and increasing the strength. It is also an element effective in improving the stability of retained austenite and improving the ductility of steel. If the amount of C is less than 0.030%, it is difficult to secure a desired martensite area ratio, and a desired strength cannot be obtained. Moreover, it is difficult to ensure a sufficient volume ratio of retained austenite, and good ductility cannot be obtained. On the other hand, if C is added in excess of 0.250%, the area ratio of hard martensite becomes excessive, and the microvoids at the grain boundaries of martensite increase, and the bending test and the hole expansion test.
  • the C amount is set to be 0.030% or more and 0.250% or less. Preferably, it is 0.080% or more. Preferably, it is 0.200% or less.
  • Si 0.01% or more and 3.00% or less Si is an element effective for ensuring good ductility in order to improve the work hardening ability of ferrite. If the amount of Si is less than 0.01%, the effect of addition becomes poor, so the lower limit is made 0.01%. On the other hand, excessive addition of Si exceeding 3.00% not only causes embrittlement of steel but also causes deterioration of surface properties due to the occurrence of red scale and the like. For this reason, Si amount is taken as 0.01% or more and 3.00% or less of range. Preferably, it is 0.20% or more. Preferably, it is 2.00% or less.
  • Mn 2.60% or more and 4.20% or less Mn is an extremely important element in the present invention.
  • Mn is an element that stabilizes retained austenite and is effective in securing good ductility.
  • Mn is an element that can raise TS of steel by solid solution strengthening. Such an effect is recognized when the Mn content of the steel is 2.60% or more.
  • an excessive addition of Mn exceeding 4.20% causes an increase in cost.
  • the amount of Mn is set in the range of 2.60% to 4.20%. Preferably, it is the range of 3.00% or more and 4.20% or less.
  • P 0.001% or more and 0.100% or less
  • P is an element that has a solid solution strengthening action and can be added according to a desired TS. It is also an element that promotes ferrite transformation and is effective in the formation of a composite structure of steel sheets. In order to acquire such an effect, it is necessary to make P amount in a steel plate 0.001% or more. On the other hand, if the amount of P exceeds 0.100%, weldability is deteriorated, and when galvanizing is alloyed, the alloying speed is lowered and the quality of galvanizing is impaired. Therefore, the P amount is in the range of 0.001% to 0.100%. Preferably it is 0.005% or more. Preferably it is 0.050% or less.
  • the S content is 0.0200% or less, preferably 0.0100% or less, more preferably 0.0050% or less.
  • the amount of S is preferably 0.0001% or more because of restrictions on production technology. Therefore, the S amount is preferably in the range of 0.0001% to 0.0200%. More preferably, it is 0.0001% or more and 0.0100% or less, and still more preferably 0.0001% or more and 0.0050% or less.
  • N 0.0100% or less
  • N is an element that deteriorates the aging resistance of steel.
  • the amount of N is preferably set to 0.0005% or more because of restrictions on production technology.
  • the N amount is preferably in the range of 0.0005% to 0.0100%. More preferably, it is 0.0010% or more. More preferably, it is 0.0070% or less.
  • Ti 0.005% or more and 0.200% or less Ti is an extremely important additive element in the present invention. Ti is effective for the precipitation strengthening of steel, can secure the desired area ratio of non-recrystallized ferrite, and contributes to a high yield ratio of the steel sheet. In addition, by utilizing relatively hard non-recrystallized ferrite, the hardness difference from the hard second phase (martensite or retained austenite) can be reduced, which contributes to the improvement of stretch flangeability. And these effects are acquired by addition of Ti amount 0.005% or more.
  • the amount of Ti added is in the range of 0.005% to 0.200%. Preferably it is 0.010% or more. Preferably it is 0.100% or less.
  • the basic components of the present invention have been described above.
  • the balance other than the above components is Fe and inevitable impurities, but in addition, the following elements can be appropriately contained as required.
  • Al 0.01% to 2.00%, Nb: 0.005% to 0.200%, B: 0.0003% to 0.0050%, Ni: 0.005% to 1.000%
  • Cr 0.005% to 1.000%
  • V 0.005% to 0.500%
  • Mo 0.005% to 1.000%
  • Cu 0.005% to 1. 000% or less
  • Sn 0.002% or more and 0.200% or less
  • Sb 0.002% or more and 0.200% or less
  • Ta 0.001% or more and 0.010% or less
  • Ca 0.0005% or more Contains at least one element selected from 0.0050% or less
  • Mg 0.0005% or more and 0.0050% or less
  • REM 0.0005% or more and 0.0050% or less.
  • Al is composed of ferrite and austenite Expanded biphasic area This is an element effective in reducing the annealing temperature dependency, that is, the material stability. Further, Al acts as a deoxidizer and is also an effective element for maintaining the cleanliness of steel. However, if the Al content is less than 0.01%, the effect of addition is poor, so the lower limit is made 0.01%. On the other hand, a large amount of addition exceeding 2.00% increases the risk of steel piece cracking during continuous casting, and decreases productivity. From such a viewpoint, the Al amount when added is in the range of 0.01% to 2.00%. Preferably, it is 0.20% or more. Preferably, it is 1.20% or less.
  • Nb is effective for precipitation strengthening of steel, and the effect of addition is obtained at 0.005% or more. Further, similarly to the effect of adding Ti, it is possible to ensure the desired area ratio of non-recrystallized ferrite, which contributes to a high yield ratio of the steel sheet. In addition, by utilizing relatively hard non-recrystallized ferrite, the hardness difference from the hard second phase (martensite or retained austenite) can be reduced, which contributes to the improvement of stretch flangeability. On the other hand, if the amount of Nb exceeds 0.200%, the area ratio of hard martensite becomes excessive and the number of microvoids at the grain boundaries of martensite increases, and crack propagation occurs during bending and hole expansion tests. Becomes easier to progress.
  • Nb when adding Nb, it is set as 0.005% or more and 0.200% or less. Preferably it is 0.010% or more. Preferably it is 0.100% or less.
  • B has the effect of suppressing the formation and growth of ferrite from the austenite grain boundaries, and can be flexibly controlled in the structure, so it can be added as necessary.
  • the effect of addition is obtained at 0.0003% or more.
  • the amount of B exceeds 0.0050%, the formability of the steel sheet is lowered. Therefore, when adding B, it is set as 0.0003% or more and 0.0050% or less of range. Preferably it is 0.0005% or more. Preferably it is 0.0030% or less.
  • Ni is an element that stabilizes retained austenite, and is effective in ensuring good ductility. Further, Ni is an element that raises steel TS by solid solution strengthening. The effect of addition is obtained at 0.005% or more. On the other hand, if added over 1.000%, the area ratio of hard martensite becomes excessive, the number of microvoids at the grain boundary of martensite increases, and crack propagation propagates during the bending test and the hole expansion test. Easy to progress. As a result, the bendability and stretch flangeability of the steel sheet are deteriorated. In addition, the cost increases. Therefore, when adding Ni, it is set as 0.005% or more and 1.000% or less.
  • Cr, V, and Mo are elements that can be added as necessary because they have an effect of improving the balance between TS and ductility.
  • the addition effect is obtained when Cr: 0.005% or more, V: 0.005% or more, and Mo: 0.005% or more.
  • Cr when Cr is added in excess of 1.000%, V: 0.500%, and Mo: 1.000%, the area ratio of hard martensite becomes excessive, and martensite crystal grains. The number of microvoids at the boundary increases, and crack propagation easily progresses during a bending test and a hole expansion test. As a result, the bendability and stretch flangeability of the steel sheet are deteriorated. In addition, the cost increases. Therefore, when these elements are added, Cr: 0.005% or more and 1.000% or less, V: 0.005% or more and 0.500% or less, and Mo: 0.005% or more and 1.000%, respectively. The following range.
  • Cu is an element effective for strengthening steel, and may be used for strengthening steel as long as it is within the range specified in the present invention.
  • the effect of addition is obtained at 0.005% or more.
  • the area ratio of hard martensite becomes excessive, the number of microvoids at the grain boundary of martensite increases, and crack propagation propagates during the bending test and the hole expansion test. Easy to progress. As a result, the bendability and stretch flangeability of the steel sheet are deteriorated. Therefore, when adding Cu, it is set as 0.005% or more and 1.000% or less.
  • Sn and Sb are added as necessary from the viewpoint of suppressing decarburization in a thickness region of about several tens of ⁇ m of the steel sheet surface layer caused by nitriding and oxidation of the steel sheet surface.
  • it is effective to prevent the martensite area ratio on the steel sheet surface from decreasing and to secure TS and material stability.
  • excessive addition over 0.200% causes a reduction in toughness. Therefore, when adding Sn and Sb, the range is from 0.002% to 0.200%.
  • Ta like Ti and Nb, generates alloy carbides and alloy carbonitrides and contributes to increasing the strength of steel.
  • Nb carbide or Nb carbonitride by partially dissolving in Nb carbide or Nb carbonitride and generating a composite precipitate such as (Nb, Ta) (C, N), the coarsening of the precipitate is effectively suppressed, It is considered that there is an effect of stabilizing the contribution to the strength improvement of the steel sheet by precipitation strengthening. For this reason, in this invention, it is preferable to contain Ta.
  • the effect of adding Ta is obtained by setting the content of Ta to 0.001% or more.
  • Ta even if Ta is added excessively, the addition effect is saturated and the alloy cost is also increased. Therefore, when Ta is added, the range is 0.001% or more and 0.010% or less.
  • Ca, Mg, and REM are effective elements for spheroidizing the shape of the sulfide and improving the adverse effect of the sulfide on the hole expandability (stretch flangeability). In order to obtain this effect, 0.0005% or more must be added. On the other hand, excessive addition exceeding 0.0050% causes an increase in inclusions and the like, and causes the surface and internal defects of the steel sheet. Therefore, when adding Ca, Mg, and REM, it is set as 0.0005% or more and 0.0050% or less, respectively.
  • microstructure In order to ensure sufficient ductility in the steel sheet, it is only necessary to promote the formation of polygonal ferrite in the structure, which causes a decrease in tensile strength and yield strength. It also changes depending on the martensite area ratio, and the ductility is greatly influenced by the amount of retained austenite. Therefore, controlling the amount (area ratio, volume ratio) of these phases (structures) is effective in building the mechanical properties of high-strength steel sheets.
  • the inventors have studied from such a viewpoint and have newly found that the area ratio of polygonal ferrite and non-recrystallized ferrite can be controlled by the rolling reduction ratio of cold rolling.
  • the area ratio of martensite and the volume ratio of retained austenite are largely determined by the amount of Mn added.
  • the area ratio of polygonal ferrite is reduced (relative to the entire structure) by not performing cold rolling or preventing the rolling reduction of cold rolling from exceeding 30% (can be controlled within an appropriate range).
  • the final product has a large change in the shape of the structure, resulting in a steel sheet having crystal grains with a large aspect ratio.
  • the value of the hole expansibility ⁇ was improved. That is, the microstructure of a steel sheet having high ductility and good hole expansibility is as follows.
  • Polygonal ferrite area ratio 20% or more and 65% or less
  • the area ratio of polygonal ferrite needs to be 20% or more.
  • the area ratio is 30% or more.
  • the area ratio is 55% or less.
  • the polygonal ferrite in the present invention is a ferrite that is relatively soft and rich in ductility.
  • Area ratio of non-recrystallized ferrite 8% or more It is extremely important in the present invention that the area ratio of non-recrystallized ferrite is 8% or more.
  • non-recrystallized ferrite is effective in increasing the strength of the steel sheet, it causes a significant decrease in the ductility of the steel sheet, and is therefore generally reduced.
  • polygonal ferrite and retained austenite it is possible to ensure good ductility and to actively utilize relatively hard non-recrystallized ferrite, such as an area ratio exceeding 25%. It is possible to secure the TS of the intended steel sheet without requiring a large amount of martensite.
  • the yield strength (YP) and YR of the steel sheet can be increased.
  • the area ratio of non-recrystallized ferrite needs to be 8% or more. Preferably, it is 10% or more.
  • the non-recrystallized ferrite in the present invention is a ferrite having a crystal orientation difference of less than 15 ° in the grains, and is harder than the above-described polygonal ferrite rich in ductility.
  • the upper limit of the area ratio of non-recrystallized ferrite is not particularly limited, but is preferably about 45% because material anisotropy in the plane of the steel sheet may be increased.
  • the martensite area ratio 5% or more and 25% or less
  • the area ratio of ferrite (polygonal ferrite and non-recrystallized ferrite) and martensite can be determined as follows. That is, after polishing a plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate, it corrodes with 3 vol% nital and corresponds to a plate thickness 1/4 position (1/4 of the plate thickness in the depth direction from the steel plate surface).
  • Position is observed using a SEM (scanning electron microscope) at a magnification of 2000 times for about 10 fields of view to obtain a tissue image.
  • SEM scanning electron microscope
  • the area ratio of each structure can be calculated for 10 visual fields using Image-Pro of Media Cybernetics, and the area ratio can be obtained by averaging. it can.
  • polygonal ferrite and non-recrystallized ferrite are identified by showing a gray structure (underground structure) and martensite by showing a white structure.
  • the area ratio of polygonal ferrite and non-recrystallized ferrite can be obtained as follows. That is, by using EBSD (Electron Backscatter Diffraction), a low-angle grain boundary having a crystal orientation difference of 2 ° to less than 15 ° and a large-angle grain boundary having a crystal orientation difference of 15 ° or more are identified. . Then, IQ Map is created by using ferrite containing low-angle grain boundaries in the grains as non-recrystallized ferrite.
  • EBSD Electro Backscatter Diffraction
  • the areas of polygonal ferrite and unrecrystallized ferrite are calculated by obtaining the areas of the low-angle and large-angle grain boundaries in the 10 fields of view respectively. Then, the area ratio of polygonal ferrite and unrecrystallized ferrite for 10 fields of view is obtained. Then, the area ratios of the polygonal ferrite and the non-recrystallized ferrite are obtained by averaging those area ratios.
  • volume ratio of retained austenite 8% or more
  • the volume ratio of retained austenite needs to be 8% or more in order to ensure sufficient ductility. Preferably it is 10% or more.
  • the upper limit of the volume fraction of retained austenite is not particularly limited. However, since the concentration of the retained austenite is small and unstable, such as C or Mn, which has a small effect on improving ductility, the amount of retained austenite increases. % Is preferable.
  • the volume ratio of retained austenite is determined by polishing the steel sheet to a 1 ⁇ 4 surface in the plate thickness direction (a surface corresponding to 1 ⁇ 4 of the plate thickness in the depth direction from the steel plate surface). It is determined by measuring the diffracted X-ray intensity. MoK ⁇ rays are used as incident X-rays, and ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of the retained austenite have peak integrated intensities of ferrite ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ . The intensity ratios of all 12 combinations with respect to the integrated intensity of the peak of the surface are obtained, and the average value thereof is taken as the volume ratio of retained austenite.
  • Polygonal ferrite average crystal grain size 6 ⁇ m or less Refinement of polygonal ferrite crystal grains contributes to improvement of YP and TS. Therefore, in order to ensure high YP and high YR and the desired TS, the average crystal grain size of polygonal ferrite needs to be 6 ⁇ m or less. Preferably, it is 5 ⁇ m or less. In the present invention, the lower limit of the average crystal grain size of polygonal ferrite is not particularly limited, but is preferably about 0.3 ⁇ m industrially.
  • Martensite average crystal grain size 3 ⁇ m or less
  • Refinement of martensite crystal grains contributes to the improvement of bendability and stretch flangeability (hole expandability). Therefore, in order to ensure high bendability and high stretch flangeability (high hole expansibility), it is necessary to suppress the average crystal grain size of martensite to 3 ⁇ m or less. Preferably, it is 2.5 ⁇ m or less.
  • the lower limit of the average grain size of martensite is not particularly limited, but industrially, it is preferably about 0.1 ⁇ m.
  • Average crystal grain size of retained austenite 3 ⁇ m or less
  • the refinement of crystal grains of retained austenite contributes to the improvement of ductility and the improvement of bendability and stretch flangeability (hole expandability). Therefore, in order to ensure good ductility, bendability, stretch flangeability (hole expandability), the average crystal grain size of retained austenite needs to be 3 ⁇ m or less. Preferably, it is 2.5 ⁇ m or less.
  • the lower limit of the average crystal grain size of retained austenite is not particularly limited, but industrially, it is preferably about 0.1 ⁇ m.
  • the average crystal grain size of polygonal ferrite, martensite and retained austenite was determined by calculating the area of each of the polygonal ferrite grains, martensite grains and retained austenite grains using the above-mentioned Image-Pro. Calculate and average the values. Polygonal ferrite, non-recrystallized ferrite, martensite, and retained austenite are separated by EBSD, and martensite and retained austenite are identified by Phase Map of EBSD. In the present invention, when the average crystal grain size is determined, those having a grain size of 0.01 ⁇ m or more are measured. This is because a thickness of less than 0.01 ⁇ m does not affect the present invention.
  • Average aspect ratio of polygonal ferrite, martensite and retained austenite crystal grains 2.0 to 15.0 or less
  • the average aspect ratio of polygonal ferrite, martensite and retained austenite crystal grains is 2.0 or more. This is extremely important in the present invention.
  • the fact that the aspect ratio of the crystal grains is small means that during the holding in the heat treatment after cold rolling (cold rolled sheet annealing), the grains grow after the ferrite and austenite have recovered and recrystallized, resulting in equiaxed grains. This means that near crystal grains were formed.
  • the ferrite produced here is soft.
  • the aspect ratio of the crystal grain here is a value obtained by dividing the major axis length of the crystal grain by the minor axis length, and the average aspect ratio of each crystal grain can be obtained as follows. It can. That is, using the above-mentioned Image-Pro, the major axis length and minor axis length of 30 crystal grains are calculated for each of the polygonal ferrite grains, martensite grains, and retained austenite grains, and the major axis lengths are calculated. Can be obtained by dividing the value by the minor axis length and averaging the values.
  • the amount of Mn (mass%) in retained austenite is the amount of Mn in polygonal ferrite ( It is extremely important in the present invention that the value divided by (mass%) is 2.0 or more. This is because in order to ensure good ductility, it is necessary to increase stable retained austenite enriched in Mn.
  • the upper limit of the value obtained by dividing the amount of Mn (mass%) in retained austenite by the amount of Mn (mass%) in polygonal ferrite is not limited, but from the viewpoint of securing stretch flangeability, 16 About 0.0 is preferable.
  • the amount of Mn (mass%) in the retained austenite and the amount of Mn (mass%) in the polygonal ferrite can be obtained as follows. That is, using an EPMA (Electron Probe Micro Analyzer; electronic probe microanalyzer), the distribution state of Mn to each phase of the cross section in the rolling direction at the 1 ⁇ 4 thickness position is quantified. Subsequently, the amount of Mn of 30 retained austenite grains and 30 ferrite grains is analyzed. And the amount of Mn calculated
  • EPMA Electrical Probe Micro Analyzer
  • the microstructure of the present invention in addition to the above-described polygonal ferrite and martensite, etc., it is usually found in steel sheets such as granular ferrite, acicular ferrite, bainitic ferrite, tempered martensite, pearlite and cementite. Carbides (except for cementite in pearlite) may be included. If these structures are within a range of 10% or less in terms of area ratio, the effects of the present invention are not impaired even if they are included.
  • the inventors diligently investigated the steel sheet structure when press forming and processing were performed on the steel sheet.
  • martensite transformation occurs immediately, and it remains as retained austenite until the amount of processing increases, and finally martensite transformation occurs to cause a TRIP phenomenon (processing induced transformation phenomenon). It was found that there is something that produces. It was found that good elongation can be obtained particularly effectively when the amount of retained austenite that undergoes martensitic transformation after the amount of processing increases.
  • the degree of work means a tensile test using a JIS No. 5 test piece obtained by taking a sample so that the tensile direction is perpendicular to the rolling direction of the steel sheet, and means the elongation at that time.
  • FIG. 1 it can be seen that a sample with good elongation has a gradual way of reducing retained austenite when the degree of processing is increased.
  • the residual austenite amount of a sample having a TS of 780 MPa class and a tensile processing of 10% in elongation value was measured, and the effect of the ratio of this value and the residual austenite amount before processing on the total elongation of the steel sheet. investigated.
  • the result is shown in FIG.
  • the value obtained by dividing the residual volume ratio of retained austenite when tensile processing of 10% is given by the elongation value by the residual austenite volume ratio before processing is 0.3 or more. It can be seen that a high elongation is obtained, and those that fall outside this range have a low elongation.
  • the volume ratio of the retained austenite remaining in the steel after the tensile processing of 10% in terms of the elongation value is set to 0.3 or more by the value divided by the residual austenite volume ratio before the tensile processing. It is preferable. This is because retained austenite that undergoes martensitic transformation after the processing amount becomes large can be secured.
  • the TRIP phenomenon requires that residual austenite be present before press molding or processing.
  • the determined Ms point (martensitic transformation start point) needs to be as low as about 15 ° C. or less.
  • the step of applying a tensile process of 10% with an elongation value according to the present invention will be specifically described.
  • a JIS No. 5 test piece in which a sample was taken so that the tensile direction was a direction perpendicular to the rolling direction of the steel sheet.
  • a tensile test is performed, and when the elongation rate is 10%, the test is interrupted to give the test piece a tensile process of 10% in terms of elongation value.
  • the volume ratio of retained austenite can be determined by the method described above.
  • the TRIP phenomenon which is the main factor for improving ductility, can be intermittently expressed until the end of the processing of the steel sheet, and so-called stable retained austenite can be achieved.
  • the amount of C (% by mass) in the retained austenite can be determined by the following procedure. That is, using the above-mentioned EPMA, the distribution state of C to each phase of the cross section in the rolling direction at the 1 ⁇ 4 thickness position is quantified. Next, the amount of C in 30 residual austenite grains is analyzed. And the C amount calculated
  • Heating temperature of steel slab 1100 ° C or higher and 1300 ° C or lower
  • the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently dissolve the carbide, and problems such as an increased risk of trouble during hot rolling due to an increase in rolling load occur. Therefore, the heating temperature of the steel slab is preferably 1100 ° C. or higher. In addition, the heating temperature of the steel slab should be 1100 ° C.
  • the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab is preferably 1300 ° C. or lower. Therefore, the heating temperature of the slab is preferably 1100 ° C. or higher and 1300 ° C. or lower. More preferably, it is 1150 degreeC or more. More preferably, it is 1250 degrees C or less.
  • the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but can also be manufactured by an ingot-making method or a thin slab casting method. Moreover, in this invention, after manufacturing a steel slab, after cooling to room temperature once, the conventional method of heating again can be used. Furthermore, in the present invention, energy-saving processes such as direct feed rolling and direct rolling that are not cooled to room temperature, are charged in a heating furnace as they are, but are heated immediately after performing slight heat retention, can be applied without any problem. be able to. Steel slabs are made into sheet bars by rough rolling under normal conditions. However, if the heating temperature is low, a bar heater or the like is used before finish rolling from the viewpoint of preventing problems during hot rolling. It is preferred to use and further heat the sheet bar.
  • Finishing rolling exit temperature of hot rolling 750 ° C. or higher and 1000 ° C. or lower
  • the heated steel slab is hot rolled by rough rolling and finish rolling to become a hot rolled sheet.
  • the finish rolling exit temperature exceeds 1000 ° C.
  • the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and pickling and cold rolling are performed.
  • the surface quality of the steel sheet tends to deteriorate.
  • a part of the hot-rolled scale remains after pickling, it adversely affects the ductility and stretch flangeability of the steel sheet.
  • the crystal grain size becomes excessively large, and the surface of the pressed product may be roughened during processing.
  • the finish rolling exit temperature is less than 750 ° C.
  • the rolling load increases, and the reduction ratio of the austenite in an unrecrystallized state increases.
  • an abnormal texture develops in the steel sheet, the in-plane anisotropy in the final product becomes remarkable, and not only the material uniformity (material stability) is impaired, but also the ductility of the steel sheet itself decreases.
  • the finish rolling outlet temperature of hot rolling is less than 750 ° C. or more than 1000 ° C.
  • a structure having a volume ratio of 8% or more of retained austenite cannot be obtained. Therefore, in the present invention, it is necessary to set the finish rolling exit temperature of hot rolling to 750 ° C. or more and 1000 ° C. or less.
  • it is 800 degreeC or more.
  • it is 950 degrees C or less.
  • Average coiling temperature after hot rolling 300 ° C. or more and 750 ° C. or less
  • the average coiling temperature after hot rolling exceeds 750 ° C.
  • the ferrite crystal grain size of the hot rolled sheet structure becomes large, and the final annealed sheet It is difficult to secure the desired strength.
  • the average crystal grain size of polygonal ferrite is 6 ⁇ m or less
  • the average crystal grain size of martensite is 3 ⁇ m or less
  • the average crystal grain size of retained austenite is 3 ⁇ m. The following organization cannot be obtained.
  • the average winding temperature after hot rolling needs to be 300 ° C. or higher and 750 ° C. or lower. Preferably it is 400 degreeC or more. Preferably it is 650 degrees C or less.
  • rough rolling sheets may be joined together to perform finish rolling continuously. Moreover, you may wind up a rough rolling board once. Furthermore, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable that the friction coefficient at the time of lubrication rolling shall be 0.10 or more and 0.25 or less.
  • the pickling is performed on the hot-rolled sheet manufactured through this process. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality of the high-strength steel sheet as the final product.
  • the pickling may be performed once or may be performed in a plurality of times.
  • Hot-rolled sheet annealing (first heat treatment): Ac 1 transformation point + 20 ° C. or higher, Ac 1 transformation point + 120 ° C. or lower, maintained at 600 s or more and 21600 s or lower Ac 1 transformation point + 20 ° C. or higher, Ac 1 transformation point + 120 ° C. or lower It is very important in the present invention to maintain the temperature in the temperature range of 600 s to 21600 s.
  • the annealing temperature of hot-rolled sheet annealing is less than Ac 1 transformation point + 20 ° C., more than Ac 1 transformation point + 120 ° C., and when the holding time is less than 600 s, all of Mn concentrates in austenite.
  • the hot-rolled sheet annealing (first heat treatment) of the present invention is held for a period of 600 s to 21600 s in a temperature range of Ac 1 transformation point + 20 ° C. or higher and Ac 1 transformation point + 120 ° C. or lower.
  • the annealing method may be any annealing method such as continuous annealing or batch annealing.
  • it is cooled to room temperature, but the cooling method and cooling rate are not particularly specified, and any cooling such as furnace cooling in batch annealing, gas jet cooling in air annealing and continuous annealing, mist cooling, water cooling, etc. I do not care.
  • the pickling may be performed according to a conventional method.
  • Annealing (second heat treatment): Ac 1 transformation point + 10 ° C. or higher, and Ac 1 transformation point + 100 ° C. or lower and held for 20 to 900 s Ac 1 transformation point + 10 ° C. or higher, Ac 1 transformation point + 100 ° C. or lower Holding for 20 to 900 s is extremely important in the present invention.
  • the annealing temperature is less than Ac 1 transformation point + 10 ° C., or more than Ac 1 transformation point + 100 ° C., and when the holding time is less than 20 s, none of the Mn concentration in the austenite proceeds sufficiently. It is difficult to ensure a sufficient volume ratio of retained austenite, and ductility is reduced.
  • divided the amount of Mn (mass%) in retained austenite by the amount of Mn (polygonal ferrite) in polygonal ferrite is 2.0 or more cannot be obtained.
  • the area ratio of unrecrystallized ferrite decreases, the amount of heterophase interface between ferrite and hard second phase (martensite and retained austenite) increases, and YP decreases. , YR also decreases.
  • a structure in which the average crystal grain size of martensite is 3 ⁇ m or less and the average crystal grain size of retained austenite is 3 ⁇ m or less cannot be obtained.
  • Cold rolling reduction less than 30%
  • Cold rolling may be performed after the hot-rolled sheet annealing and before annealing (second heat treatment). In that case, it is essential that the rolling reduction is less than 30%.
  • polygonal ferrite formed by recrystallization after heat treatment does not form, and a structure stretched in the rolling direction remains, and finally This is because polygonal ferrite, retained austenite and martensite having a high aspect ratio are obtained, and not only the strength-ductility balance is improved but also stretch flangeability (hole expandability) is improved.
  • the rolling reduction is 30% or more, the average aspect ratio of the crystal structure of polygonal ferrite, martensite, and retained austenite is 2. A structure of 0 or more and 15.0 or less cannot be obtained.
  • Hot dip galvanizing treatment when the hot dip galvanizing treatment is performed, the steel sheet subjected to the annealing (second heat treatment) is immersed in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower to obtain hot dip galvanizing. Apply processing. Thereafter, the plating adhesion amount on the steel sheet surface is adjusted by gas wiping or the like. In addition, it is preferable to use the zinc plating bath whose amount of Al is 0.10 mass% or more and 0.22 mass% or less for hot dip galvanization.
  • the alloying process of galvanization can be performed in the temperature range of 450 degreeC or more and 600 degrees C or less after the said hot dip galvanization process.
  • the alloying treatment is performed at a temperature exceeding 600 ° C., untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be ensured, and ductility is lowered.
  • the alloying treatment temperature is less than 450 ° C., alloying does not proceed and it is difficult to produce an alloy layer. Therefore, when the alloying treatment of galvanization is performed, the treatment is performed in a temperature range of 450 ° C. or more and 600 ° C. or less.
  • the conditions of other manufacturing methods are not particularly limited, but from the viewpoint of productivity, the series of treatments such as annealing, hot dip galvanization, galvanizing alloying treatment, etc. are performed by CGL (Continuous Galvanizing) which is a hot dip galvanizing line. Line).
  • CGL Continuous Galvanizing
  • the steel plate subjected to the annealing treatment is immersed in an aluminum plating bath at 660 to 730 ° C. to perform the hot dip aluminum plating treatment. Thereafter, the plating adhesion amount is adjusted by gas wiping or the like.
  • a steel plate having a composition suitable for an aluminum plating bath temperature range of Ac 1 transformation point + 10 ° C. or higher and Ac 1 transformation point + 100 ° C. or lower produces finer and more stable retained austenite by hot-dip aluminum plating treatment. Therefore, it is preferable because the ductility can be further improved.
  • the steel plate after the heat treatment may be subjected to an electrogalvanizing treatment.
  • the electrogalvanizing treatment at that time is not particularly limited, but it is preferable to adjust the electrogalvanizing treatment conditions so that the film thickness is in the range of 5 ⁇ m to 15 ⁇ m.
  • skin pass rolling can be performed on the above steel plate, hot dip galvanized steel plate, hot dip galvanized steel plate and electrogalvanized steel plate for the purpose of shape correction, adjustment of surface roughness, and the like.
  • the rolling reduction of the skin pass rolling is preferably in the range of 0.1% to 2.0%. If the rolling reduction of skin pass rolling is less than 0.1%, the effect of skin pass rolling is small and control is difficult, so 0.1% is the lower limit of the preferred range. On the other hand, if the rolling reduction ratio of the skin pass rolling exceeds 2.0%, the productivity of the steel sheet is remarkably lowered, so 2.0% is made the upper limit of the preferred range.
  • the skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps. Furthermore, the steel sheet according to the present invention, the hot dip galvanized steel sheet, the hot dip galvanized steel sheet, and the electrogalvanized steel sheet can be subjected to various coating treatments such as coating using resin or oil.
  • a steel having the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method.
  • the obtained slab was made into the following various steel plates under the conditions shown in Table 2. That is, after hot rolling, annealing is performed at Ac 1 transformation point + 20 ° C. or more, Ac 1 transformation point + 120 ° C. or less, and after cold rolling (in some cases, cold rolling is not performed), Ac 1 transformation point + 10 ° C. or more. And Ac 1 transformation point + 100 ° C. or lower.
  • a cold-rolled steel sheet (CR) is obtained, and further subjected to a plating treatment, and a hot-dip galvanized steel sheet (GI), an alloyed hot-dip galvanized steel sheet (GA), a hot-dip aluminum-plated steel sheet (Al), and an electrogalvanized steel sheet ( EG).
  • a hot-dip galvanized steel sheet (GI)
  • an alloyed hot-dip galvanized steel sheet (GA)
  • Al hot-dip aluminum-plated steel sheet
  • EG electrogalvanized steel sheet
  • a hot dip galvanizing bath a zinc bath containing Al: 0.19% by mass in a hot dip galvanized steel plate (GI), and a zinc containing Al: 0.14% by mass in a galvannealed steel plate (GA).
  • a bath was used. In both cases, the bath temperature was 465 ° C., and the amount of plating adhered was 45 g / m 2 per side (double-sided plating). Furthermore, with GA, the Fe concentration in the plating layer was adjusted to 9 mass% or more and 12 mass% or less.
  • the bath temperature of the hot-dip aluminum plating bath for hot-dip aluminum-plated steel sheets was 700 ° C. The steel sheet thus obtained was examined for the cross-sectional microstructure, tensile properties, hole expansibility, bendability, etc., and the results are shown in Tables 3 to 5.
  • the Ac 1 transformation point was determined using the following equation.
  • Ac 1 transformation point (° C) 751-16 ⁇ (% C) + 11 ⁇ (% Si) ⁇ 28 ⁇ (% Mn) ⁇ 5.5 ⁇ (% Cu) ⁇ 16 ⁇ (% Ni) + 13 ⁇ (% Cr) + 3.4 ⁇ (% Mo)
  • (% C), (% Si), (% Mn), (% Ni), (% Cu), (% Cr) and (% Mo) are the contents of each element in steel (mass% ).
  • the tensile test is performed in accordance with JIS Z 2241 (2011) using a JIS No. 5 test piece sampled so that the tensile direction is perpendicular to the rolling direction of the steel sheet, and YP, YR, TS and EL was measured.
  • YR is a value expressed by percentage by dividing YP by TS.
  • YR ⁇ 68% and TS ⁇ EL ⁇ 24000 MPa ⁇ % was judged as good.
  • EL ⁇ 34% for TS: 590 MPa class EL ⁇ 30% for TS: 780 MPa class
  • EL ⁇ 24% for TS: 980 MPa class respectively.
  • TS: 590 MPa class is a steel sheet having a TS of 590 MPa or more and less than 780 MPa
  • TS: 780 MPa class is a steel sheet having a TS of 780 MPa or more and less than 980 MPa
  • TS: 980 MPa class is a TS of 980 MPa.
  • the steel sheet is less than 1180 MPa.
  • the bending test was performed based on the V-block method of JIS Z2248 (1996). With respect to the outside of the bent portion, the presence or absence of a crack was determined with a stereomicroscope, and the minimum bending radius at which no crack was generated was defined as a limit bending radius R. In the present invention, when the limit bending R / t ⁇ 1.5 (t: plate thickness of the steel plate) at 90 ° V bending is satisfied, the bendability of the steel plate is determined to be good.
  • the hole expandability was performed in accordance with JIS Z 2256 (2010). Each obtained steel plate was cut into 100 mm ⁇ 100 mm, and a hole with a diameter of 10 mm was punched out with a clearance of 12% ⁇ 1%. Next, a 60 ° conical punch was pushed into the hole with a crease holding force of 9 ton (88.26 kN) using a die having an inner diameter of 75 mm, and the hole diameter at the crack initiation limit was measured. Furthermore, the critical hole expansion rate ⁇ (%) was obtained from the following formula, and the hole expansion property was evaluated from the value of the critical hole expansion rate.
  • Limit hole expansion ratio ⁇ (%) ⁇ (D f ⁇ D 0 ) / D 0 ⁇ ⁇ 100
  • D f hole diameter at crack initiation (mm) D 0 is the initial hole diameter (mm).
  • ⁇ ⁇ 34% for the TS: 590 MPa class, ⁇ ⁇ 30% for the TS: 780 MPa class, and ⁇ ⁇ 25% for the TS: 980 MPa class was determined to be good.
  • the determination of the plateability of hot rolling when the finishing temperature of hot rolling is low, the reduction rate of austenite is high in the non-recrystallized state, or rolling is performed in a two-phase region of austenite and ferrite For example, it was assumed that the risk of troubles such as defective plate shape during hot rolling due to an increase in rolling load increased, and this case was judged as defective.
  • the determination of the plateability of the cold rolling when the coiling temperature of the hot rolling is low and the steel structure of the hot rolled sheet is mainly composed of a low-temperature transformation phase such as bainite or martensite, rolling is performed. This case was judged to be defective, assuming that the risk of troubles such as defective plate shape during cold rolling due to an increase in load would increase.
  • the surface properties of the final annealed plate include a case where the amount of oxide (scale) generated increases sharply, the interface between the base iron and the oxide becomes rough, and the surface quality after pickling and cold rolling deteriorates. It was also judged as defective when there was a part of the hot rolled scale remaining after washing.
  • the amount of C (mass%) in the retained austenite and the amount of Mn (mass%) in the retained austenite were measured according to the method described above. The measurement results are also shown in Table 4.
  • a high-strength steel sheet having a TS of 590 MPa or more, excellent formability with a YR of 68% or more, and having a high yield ratio and hole expansibility is obtained.
  • at least one characteristic among YR, TS, EL, ⁇ , and R / t is inferior.
  • TS of 590 MPa or more, YR of 68% or more, excellent formability of TS ⁇ EL ⁇ 24000 MPa ⁇ %, high yield ratio and hole expandability Steel plate can be manufactured.
  • fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

所定の成分組成を有し、面積率で、ポリゴナルフェライト:20%以上65%以下、未再結晶フェライト:8%以上およびマルテンサイト:5%以上25%以下とし、体積率で、残留オーステナイト:8%以上であるとともに各相(ポリゴナルフェライト、マルテンサイト、残留オーステナイト)の結晶粒の平均アスペクト比がそれぞれ2.0以上15.0以下であり、さらに、前記ポリゴナルフェライトの平均結晶粒径を6μm以下、前記マルテンサイトの平均結晶粒径を3μm以下、前記残留オーステナイトの平均結晶粒径を3μm以下とし、前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値を2.0以上とすることによって、590MPa以上のTSを有すると共に、YRが68%以上の成形性に優れ、かつ高い降伏比および穴広げ性を有する高強度鋼板を得る。

Description

鋼板、めっき鋼板、およびそれらの製造方法
 本発明は、鋼板、溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板および電気亜鉛めっき鋼板、ならびに、それらの製造方法に関し、特に、自動車、電気等の産業分野で使用される部材として好適な、成形性および穴広げ性に優れ、かつ高い降伏比を有する鋼板に関する。
 近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料である鋼板の高強度化によりその薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。
 しかしながら、一般に、鋼板の高強度化は成形性の低下を招くことから、高強度化を図ると鋼板の成形性が低下して、成形時の割れなどの問題を生じる。そのため、単純には鋼板の薄肉化が図れない。そこで、高強度と高成形性を併せ持つ材料の開発が望まれている。さらに、引張強さ(TS)が590MPa以上の鋼板には、特に、高成形性に加え、衝突吸収エネルギーが大きいという特性が求められている。衝突吸収エネルギー特性を向上させるためには、降伏比(YR)を高めることが有効である。降伏比が高いと、低い変形量で、鋼板に効率よく衝突エネルギーを吸収させることができるからである。
 さらに、鋼板を自動車車体に用いる場合は、車体形状に応じた伸びフランジ成形がおこなわれることから、優れた穴広げ性も併せて要求される。
 例えば、特許文献1には、引張強さが1000MPa以上で全伸び(EL)が30%以上の、残留オーステナイトの加工誘起変態を利用した極めて高い延性を有する高強度鋼板が提案されている。
 また、特許文献2には、高Mn鋼を用いて、フェライトとオーステナイトの2相域での熱処理を施すことにより、強度と延性のバランスに優れた高強度鋼板が提案されている。
 さらに、特許文献3には、高Mn鋼で、熱延後の組織をベイナイトやマルテンサイトを含む組織とし、さらに、焼鈍と焼戻しを施すことによって微細な残留オーステナイトを形成させたのち、焼戻しベイナイトもしくは焼戻しマルテンサイトを含む組織とすることで局部延性を改善している高強度鋼板が提案されている。
特開昭61-157625号公報 特開平1-259120号公報 特開2003-138345号公報
 ここで、特許文献1に記載された鋼板は、C、SiおよびMnを基本成分とする鋼板をオーステナイト化した後に、ベイナイト変態温度域に焼入れて等温保持する、いわゆるオーステンパー処理を行うことにより製造される。そして、このオーステンパー処理を施す際に、オーステナイトへのCの濃化によって残留オーステナイトが生成される。
 しかしながら、多量の残留オーステナイトを得るためには、0.3%を超える多量のCが必要となるが、0.3%を超えるようなC濃度では、スポット溶接性の低下が顕著であり、自動車用鋼板としては実用化が困難である。
 加えて、特許文献1に記載された鋼板は、延性を向上させることを主目的としていて、穴広げ性や曲げ性、降伏比については考慮が払われていない。
 同様に、特許文献2や3では、成形性の観点から、鋼板の延性の向上については述べられているものの、その曲げ性や降伏比、さらには穴広げ性については考慮が払われていない。
 本発明は、上記の問題点に着目してなされたものであって、その目的は、590MPa以上のTSを有すると共に、YRが68%以上の成形性および穴広げ性に優れる鋼板、溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板および電気亜鉛めっき鋼板、ならびに、それらの製造方法を提供することにある。
 発明者らは、上記した課題を解決し、成形性および穴広げ性に優れ、かつ高い降伏比と引張強さを有する高強度鋼板を製造するため、鋼板の成分組成および製造方法の観点から鋭意研究を重ねた。その結果、鋼の成分組成および組織を適正に調整することで、延性などの成形性および穴広げ性に優れた高降伏比型の高強度鋼板の製造が可能となることが分かった。
 すなわち、鋼成分を、Mn:2.60質量%以上4.20質量%以下の範囲とし、Tiなどのその他の合金元素の添加量を適正に調整したのち、熱間圧延を施して熱延板とする。ついで、この熱延板を、酸洗によりスケールを除去したのち、Ac1変態点+20℃以上、Ac1変態点+120℃以下の温度域で600s以上21600s以下保持し、さらに熱間圧延後の焼鈍ままあるいは圧下率30%未満で冷間圧延を行い冷延板とする。さらに、この熱延板または冷延板を、Ac変態点+10℃以上、Ac変態点+100℃以下の温度域で20~900s保持後、冷却する。
 かかる工程を経ることにより、上記熱延板または冷延板は、面積率で、ポリゴナルフェライトを20%以上65%以下、未再結晶フェライトを8%以上、マルテンサイトを5%以上25%以下を有し、体積率で、残留オーステナイトを8%以上を有し、それら各相(ポリゴナルフェライト、マルテンサイト、残留オーステナイト)の結晶粒の平均アスペクト比がそれぞれ2.0以上15.0以下であるとともに、上記ポリゴナルフェライトの平均結晶粒径が6μm以下、上記マルテンサイトの平均結晶粒径が3μm以下、上記残留オーステナイトの平均結晶粒径が3μm以下の組織となる。さらに、上記熱延板または冷延板は、上記残留オーステナイト中のMn量(質量%)を上記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上に制御され、Mnで安定化させた残留オーステナイトを8%以上確保することができる。
 本発明は、上記知見に基づいてなされたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:2.60%以上4.20%以下、P:0.001%以上0.100%以下、S:0.0200%以下、N:0.0100%以下およびTi:0.005%以上0.200%以下を含有し、
 さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を任意に含有し、残部がFeおよび不可避的不純物の成分組成を有し、
 面積率で、ポリゴナルフェライトが20%以上65%以下、未再結晶フェライトが8%以上およびマルテンサイトが5%以上25%以下であり、体積率で、残留オーステナイトが8%以上であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以上15.0以下の鋼組織を有し、
 前記ポリゴナルフェライトの平均結晶粒径が6μm以下、
 前記マルテンサイトの平均結晶粒径が3μm以下、
 前記残留オーステナイトの平均結晶粒径が3μm以下であって、
 前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である鋼板。
2.前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式
0.09×[Mn量]-0.026-0.150≦[C量]≦0.09×[Mn量]-0.026+0.150
  [C量]:残留オーステナイト中のC量(質量%)
  [Mn量]:残留オーステナイト中のMn量(質量%)
を満足する前記1に記載の鋼板。
3.前記1または2に記載の鋼板が、さらに溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、および電気亜鉛めっき層のうちから選ばれる1種をそなえるめっき鋼板。
4.前記1または2に記載の鋼板の製造方法であって、
 前記1に記載の成分組成を有する鋼スラブを、加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac変態点+20℃以上、Ac変態点+120℃以下の温度域で600s以上21600s以下保持し、任意に圧下率30%未満で冷間圧延し、その後、Ac変態点+10℃以上、Ac変態点+100℃以下の温度域で20s以上900s以下保持して冷却する鋼板の製造方法。
5.伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイト体積率で除した値を0.3以上とする前記4に記載の鋼板の製造方法。
6.前記3に記載のめっき鋼板の製造方法であって、
 前記冷却後に、溶融亜鉛めっき処理、溶融アルミニウムめっき処理、および電気亜鉛めっき処理のうちから選ばれる1種を施す、あるいは前記溶融亜鉛めっき処理を施したのちさらに、450℃以上600℃以下で合金化処理を施す前記4に記載の鋼板の製造方法。
 本発明によれば、TSが590MPa以上かつ、YRが68%以上の成形性および穴広げ性に優れた高降伏比型の高強度鋼板が得られる。本発明の鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。
引張加工の加工度と残留オーステナイト体積率との関係を示す図である。 伸び値で10%の引張加工を付与したときの残留オーステナイトの残存する体積率を加工前の残留オーステナイト体積率で除した値と、鋼板の伸びとの関係を示す図である。
 以下、本発明を具体的に説明する。
 まず、本発明において、鋼の成分組成を本発明の範囲に限定した理由について説明する。なお、以下の鋼やスラブの成分組成にかかる%表示は質量%を意味する。また、鋼やスラブの成分組成の残部は、Feおよび不可避的不純物である。
C:0.030%以上0.250%以下
 Cは、マルテンサイトなどの低温変態相を生成させて、強度を上昇させるために必要な元素である。また、残留オーステナイトの安定性を向上させ、鋼の延性を向上させるのに有効な元素でもある。C量が0.030%未満では所望のマルテンサイトの面積率を確保することが難しく、所望の強度が得られない。また、十分な残留オーステナイトの体積率を確保することが難しく、良好な延性が得られない。一方、Cは、0.250%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなって、曲げ性や伸びフランジ性が低下する。また、Cの過剰な添加は、溶接部および熱影響部の硬化を著しくし、溶接部の機械的特性を低下させるため、スポット溶接性、アーク溶接性などが劣化する。これらの観点からC量は、0.030%以上0.250%以下の範囲とする。好ましくは、0.080%以上である。好ましくは、0.200%以下である。
Si:0.01%以上3.00%以下
 Siは、フェライトの加工硬化能を向上させるため、良好な延性の確保に有効な元素である。Si量が0.01%に満たないとその添加効果が乏しくなるため、下限を0.01%とする。一方、3.00%を超えるSiの過剰な添加は、鋼の脆化を引き起こすばかりか、赤スケールなどの発生による表面性状の劣化を引き起こす。このため、Si量は0.01%以上3.00%以下の範囲とする。好ましくは、0.20%以上である。好ましくは、2.00%以下である。
Mn:2.60%以上4.20%以下
 Mnは、本発明において極めて重要な元素である。Mnは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効である。さらに、Mnは、固溶強化によって鋼のTSを上昇させることができる元素でもある。このような効果は、鋼のMn量が2.60%以上で認められる。一方、Mn量が4.20%を超える過剰な添加は、コストアップの要因になる。こうした観点から、Mn量は2.60%以上4.20%以下の範囲とする。好ましくは、3.00%以上4.20%以下の範囲である。
P:0.001%以上0.100%以下
 Pは、固溶強化の作用を有し、所望のTSに応じて添加できる元素である。また、フェライト変態を促進し、鋼板の複合組織化にも有効な元素でもある。こうした効果を得るためには、鋼板中のP量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には合金化速度を低下させ、亜鉛めっきの品質を損なう。したがって、P量は0.001%以上0.100%以下の範囲とする。好ましくは0.005%以上とする。好ましくは0.050%以下とする。
S:0.0200%以下
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して、鋼板の局部変形能を低下させる。そのため、S量は0.0200%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下とする。しかし、生産技術上の制約から、S量は0.0001%以上にすることが好ましい。したがって、S量は、好ましくは0.0001%以上0.0200%以下の範囲とする。より好ましくは0.0001%以上0.0100%以下、さらにより好ましくは0.0001%以上0.0050%以下の範囲である。
N:0.0100%以下
 Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となる。従って、N量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にすることが好ましい。このため、N量は、好ましくは0.0005%以上0.0100%以下の範囲とする。より好ましくは0.0010%以上とする。より好ましくは0.0070%以下とする。
Ti:0.005%以上0.200%以下
 Tiは、本発明において極めて重要な添加元素である。Tiは、鋼の析出強化に有効であり、また所望の未再結晶フェライトの面積率を確保することができ、鋼板の高降伏比化に寄与する。加えて、比較的硬質な未再結晶フェライトを活用することにより、硬質第2相(マルテンサイトもしくは残留オーステナイト)との硬度差を低減することができ、伸びフランジ性の向上にも寄与する。そして、これらの効果は、Ti量が0.005%以上の添加で得られる。一方、鋼板中のTi量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなって、鋼板の曲げ性や伸びフランジ性が低下する。
 従って、Tiの添加は、その量を0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上である。好ましくは0.100%以下である。
 以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物であるが、その他にも必要に応じて、以下の元素を適宜含有させることができる。
Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有
 Alは、フェライトとオーステナイトの二相域を拡大させ、焼鈍温度依存性の低減、すなわち、材質安定性に有効な元素である。また、Alは、脱酸剤として作用し、鋼の清浄度維持に有効な元素でもある。しかしながら、Al量が0.01%に満たないとその添加効果に乏しいので、下限を0.01%とする。一方、2.00%を超える多量の添加は、連続鋳造時の鋼片割れ発生の危険性が高まり、製造性を低下させる。こうした観点から、添加する場合のAl量は、0.01%以上2.00%以下の範囲とする。好ましくは、0.20%以上である。好ましくは、1.20%以下である。
 Nbは、鋼の析出強化に有効で、その添加効果は0.005%以上で得られる。また、Ti添加の効果と同様に、所望の未再結晶フェライトの面積率を確保することができ、鋼板の高降伏比化に寄与する。加えて、比較的硬質な未再結晶フェライトを活用することによって、硬質第2相(マルテンサイトもしくは残留オーステナイト)との硬度差を低減することができ、伸びフランジ性の向上にも寄与する。一方、Nb量が0.200%を超えると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、Nbを添加する場合には、0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上である。好ましくは0.100%以下である。
 Bは、オーステナイト粒界からのフェライトの生成および成長を抑制する作用を有し、臨機応変な組織制御が可能なため、必要に応じて添加することができる。その添加効果は、0.0003%以上で得られる。一方で、B量が0.0050%を超えると、鋼板の成形性が低下する。従って、Bを添加する場合は0.0003%以上0.0050%以下の範囲とする。好ましくは0.0005%以上である。好ましくは0.0030%以下である。
 Niは、残留オーステナイトを安定化させる元素で、良好な延性の確保に有効であり、さらに、固溶強化により鋼のTSを上昇させる元素である。その添加効果は、0.005%以上で得られる。一方、1.000%を超えて添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、Niを添加する場合には、0.005%以上1.000%以下の範囲とする。
 Cr、VおよびMoは、TSと延性のバランスを向上させる作用を有するので必要に応じて添加することができる元素である。その添加効果は、Cr:0.005%以上、V:0.005%以上およびMo:0.005%%以上で得られる。一方、それぞれ、Cr:1.000%、V:0.500%およびMo:1.000%を超えて過剰に添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。また、コストアップの要因にもなる。従って、これらの元素を添加する場合には、それぞれCr:0.005%以上1.000%以下、V:0.005%以上0.500%以下およびMo:0.005%以上1.000%以下の範囲とする。
 Cuは、鋼の強化に有効な元素であり、本発明で規定した範囲内であれば鋼の強化に使用して差し支えない。その添加効果は、0.005%以上で得られる。一方、1.000%を超えて添加すると、硬質なマルテンサイトの面積率が過大となって、マルテンサイトの結晶粒界でのマイクロボイドが増加し、曲げ試験および穴広げ試験時に亀裂の伝播が進行しやすくなる。その結果、鋼板の曲げ性や伸びフランジ性が低下する。従って、Cuを添加する場合には、0.005%以上1.000%以下の範囲とする。
 Sn、Sbは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の厚み領域の脱炭を抑制する観点から、必要に応じて添加する。このように、窒化や酸化を抑制することで、鋼板表面におけるマルテンサイトの面積率が減少するのを防止し、TSや材質安定性を確保するのに有効である。一方で、0.200%を超えて過剰に添加すると靭性の低下を招く。従って、Sn、Sbを添加する場合には、それぞれ、0.002%以上0.200%以下の範囲とする。
 Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して鋼の高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成することで析出物の粗大化を効果的に抑制し、析出強化による鋼板の強度向上への寄与を安定化させる効果があると考えられる。このため、本発明では、Taを含有することが好ましい。ここで、Taの添加効果は、Taの含有量を0.001%以上とすることで得られる。一方で、Taを過剰に添加しても、その添加効果は飽和する上、合金コストも増加する。従って、Taを添加する場合には、0.001%以上0.010%以下の範囲とする。
 Ca、MgおよびREMは、硫化物の形状を球状化し、穴広げ性(伸びフランジ性)への硫化物の悪影響を改善するために有効な元素である。この効果を得るためには、それぞれ0.0005%以上の添加が必要である。一方、それぞれ0.0050%を超える過剰な添加は、介在物等の増加を引き起こし、鋼板の表面および内部欠陥などを引き起こす。従って、Ca、MgおよびREMを添加する場合は、それぞれ0.0005%以上0.0050%以下の範囲とする。
 次に、ミクロ組織について説明する。
 鋼板に十分な延性を確保するためには、組織におけるポリゴナルフェライトの生成を促進すればよいが、これは引張強さおよび降伏強度を低下させる要因となる。また、マルテンサイト面積率によっても変化し、延性は残留オーステナイト量の影響が大きい。従って、これらの相(組織)の量(面積率、体積率)をコントロールすることが、高強度鋼板の機械的特性を造りこむのに有効である。発明者らがこのような観点で検討を行ったところ、冷間圧延の圧下率によりポリゴナルフェライトや未再結晶フェライトの面積率をコントロールできることを新たに知見した。さらに、マルテンサイトの面積率や残留オーステナイトの体積率はMn添加量で概ね決定されることが明らかになった。しかも、冷間圧延を施さないかあるいは冷間圧延の圧下率が30%を超えないようにすることによって、ポリゴナルフェライトの面積率が(全組織に対して)少なくなる(適正範囲に制御できる)ばかりか、最終製品の組織形状が大きく変化しアスペクト比の大きい結晶粒を持つ鋼板となることが判明した。その結果、穴広げ性λの値が改善することが明らかになった。すなわち、高延性でかつ穴広げ性の良い鋼板のミクロ組織は以下のとおりである。
ポリゴナルフェライトの面積率:20%以上65%以下
 本発明では、十分な延性を確保するために、ポリゴナルフェライトの面積率を20%以上にする必要がある。一方、590MPa以上のTSを確保するためには、軟質なポリゴナルフェライトの面積率を65%以下に抑制する必要がある。好ましくは、面積率で30%以上である。好ましくは、面積率で55%以下である。なお、本発明におけるポリゴナルフェライトとは、比較的軟質で延性に富むフェライトのことである。
未再結晶フェライトの面積率:8%以上
 未再結晶フェライトの面積率が8%以上であることは、本発明において極めて重要である。ここで、未再結晶フェライトは、鋼板の強度上昇に有効であるものの、鋼板の著しい延性の低下を招くため、一般的に低減させることが多い。
 しかし、本発明では、ポリゴナルフェライトと残留オーステナイトによって、良好な延性を確保し、さらに比較的硬質な未再結晶フェライトを積極的に活用することで、例えば、面積率で25%を超えるような多量のマルテンサイトを要することなく、所期した鋼板のTSの確保が可能となるのである。
 さらに、本発明では、ポリゴナルフェライトとマルテンサイトの異相界面量を低減しているので、鋼板の降伏強度(YP)やYRを高めることが可能となる。
 以上の効果を得るためには、未再結晶フェライトの面積率を8%以上にする必要がある。好ましくは、10%以上である。
 なお、本発明における未再結晶フェライトとは、粒内に結晶方位差15°未満のひずみを含むフェライトであって、上記した延性に富むポリゴナルフェライトより硬質なフェライトのことである。
 なお、本発明において、未再結晶フェライトの面積率の上限は、特に制限されないが、鋼板の面内の材質異方性が大きくなる可能性があるため、45%程度とするのが好ましい。
マルテンサイトの面積率:5%以上25%以下
 590MPa以上のTSを達成するためには、マルテンサイトの面積率を5%以上にする必要がある。一方、良好な延性の確保のためには、マルテンサイトの面積率を25%以下に制限する必要がある。
 ここで、本発明において、フェライト(ポリゴナルフェライトと未再結晶フェライト)とマルテンサイトの面積率は、以下のようにして求めることができる。
 すなわち、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、3vol%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野程度観察し、組織画像を得る。この得られた組織画像を用いて、Media Cybernetics社のImage-Proを用いて各組織(フェライト、マルテンサイト)の面積率を、10視野分算出し、それらの面積率を平均して求めることができる。なお、上記の組織画像において、ポリゴナルフェライトと未再結晶フェライトは、灰色の組織(下地組織)、マルテンサイトは白色の組織を呈していることで識別される。
 また、本発明において、ポリゴナルフェライトと未再結晶フェライトの面積率は、以下のようにして求めることができる。
 すなわち、EBSD(Electron BackScatter Diffraction;電子線後方散乱回折法)を用いて、結晶方位差が2°から15°未満の低角粒界と、結晶方位差が15°以上の大角粒界を識別する。そして、低角粒界を粒内に含むフェライトを未再結晶フェライトとして、IQ Mapを作成する。次に、作成したIQ Mapから10視野分を抽出した後、該10視野分における低角粒界と大角粒界の面積をそれぞれ求めることで、ポリゴナルフェライトと未再結晶フェライトの面積をそれぞれ算出し、10視野分のポリゴナルフェライトと未再結晶フェライトの面積率を求める。そして、それらの面積率を平均して、上記ポリゴナルフェライトと未再結晶フェライトの面積率を求める。
残留オーステナイトの体積率:8%以上
 本発明では、十分な延性を確保するために、残留オーステナイトの体積率を8%以上にする必要がある。好ましくは10%以上である。
 なお、本発明において、残留オーステナイトの体積率の上限は、特に制限されないが、延性向上への効果が小さいCやMnなどの、成分濃化が希薄で不安定な残留オーステナイトが増加するため、40%程度とするのが好ましい。
 また、残留オーステナイトの体積率は、鋼板を板厚方向の1/4面(鋼板表面から深さ方向で板厚の1/4に相当する面)まで研磨し、この板厚1/4面の回折X線強度を測定することにより求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
ポリゴナルフェライトの平均結晶粒径:6μm以下
 ポリゴナルフェライトの結晶粒の微細化は、YPやTSの向上に寄与する。そのため、高いYPおよび高いYRと、所望のTSを確保するためには、ポリゴナルフェライトの平均結晶粒径を6μm以下にする必要がある。好ましくは、5μm以下とする。
 なお、本発明において、ポリゴナルフェライトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.3μm程度とするのが好ましい。
マルテンサイトの平均結晶粒径:3μm以下
 マルテンサイトの結晶粒の微細化は、曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。そのため、高曲げ性、高伸びフランジ性(高穴広げ性)を確保するために、マルテンサイトの平均結晶粒径を、3μm以下に抑制する必要がある。好ましくは、2.5μm以下である。
 なお、本発明において、マルテンサイトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.1μm程度とするのが好ましい。
残留オーステナイトの平均結晶粒径:3μm以下
 残留オーステナイトの結晶粒の微細化は、延性の向上や曲げ性と伸びフランジ性(穴広げ性)の向上に寄与する。そのため、良好な延性、曲げ性、伸びフランジ性(穴広げ性)を確保するためには、残留オーステナイトの平均結晶粒径を3μm以下にする必要がある。好ましくは、2.5μm以下である。
 なお、本発明において、残留オーステナイトの平均結晶粒径の下限は、特に制限されないが、工業的には、0.1μm程度とするのが好ましい。
 また、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの平均結晶粒径は、上述のImage-Proを用いて、ポリゴナルフェライト粒、マルテンサイト粒および残留オーステナイト粒の各々の面積を求め、円相当直径を算出して、それらの値を平均して求める。なお、ポリゴナルフェライト、未再結晶フェライト、マルテンサイトおよび残留オーステナイトはEBSDで分離し、マルテンサイトと残留オーステナイトは、EBSDのPhase Mapで識別する。なお、本発明において、上記平均結晶粒径を求める場合には、いずれも0.01μm以上の粒径のものを測定する。なぜなら、0.01μm未満のものは、本発明に影響を与えないためである。
ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比:2.0以上15.0以下
 ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比を2.0以上とすることは、本発明において極めて重要である。
 まず、結晶粒のアスペクト比が小さいということは、冷間圧延後の熱処理(冷延板焼鈍)における保持中に、フェライトおよびオーステナイトが回復および再結晶を起こした後に粒成長し、等軸粒に近い結晶粒が生成したことを意味している。ここで生成するフェライトは軟質である。一方、冷間圧延を施さないまたは冷間圧延の圧下率を30%未満とする場合は、付加される歪量が減少するためにポリゴナルフェライト生成が抑制され、アスペクト比の大きい結晶粒が主体の組織になる。このようなアスペクト比の大きい結晶粒により構成される組織は、前述のものに比べて歪を多く含む、あるいは粒界と粒界の距離が小さい箇所があるために硬くなる。従って、TSを向上させるほか、残留オーステナイトやマルテンサイトなど硬質相との硬度差が小さくなり、延性を損なうことなく穴広げ性が改善される。一方、アスペクト比が15.0を超えるものはTSの上昇が著しく良好な延性が得られない。
 したがって、ポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比はそれぞれ2.0以上15.0以下とする。延性のため、より好ましくは、2.2以上、より好ましくは2.4以上である。
 また、ここでいう結晶粒のアスペクト比とは、結晶粒の長軸長さを短軸長さで除した値のことであり、各結晶粒の平均アスペクト比は以下のようにして求めることができる。
 すなわち、上述のImage-Proを用いて、ポリゴナルフェライト粒、マルテンサイト粒、残留オーステナイト粒の各々において、30個の結晶粒の長軸長さと短軸長さを算出し、その長軸長さを短軸長さで除し、その値を平均して求めることができる。
残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値:2.0以上
 残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値を2.0以上とすることは、本発明において極めて重要である。というのは、良好な延性を確保するためには、Mnが濃化した安定な残留オーステナイトを多くする必要があるからである。
 なお、本発明において、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値の上限は、制限されないが、伸びフランジ性を確保する観点から、16.0程度とするのが好ましい。
 また、残留オーステナイト中のMn量(質量%)とポリゴナルフェライト中のMn量(質量%)は、以下のようにして、求めることができる。
 すなわち、EPMA(Electron Probe Micro Analyzer;電子プローブマイクロアナライザ)を用いて、板厚1/4位置における圧延方向断面の各相へのMnの分布状態を定量化する。ついで、30個の残留オーステナイト粒と30個のフェライト粒のMn量を分析する。そしてその分析の結果から求められるMn量を平均して求めることができる。
 ここで、本発明のミクロ組織には、上述した、ポリゴナルフェライトやマルテンサイト等以外に、グラニュラーフェライト、アシキュラーフェライト、ベイニティックフェライト、焼戻しマルテンサイト、パーライトおよびセメンタイト等の鋼板に通常認められる炭化物(パーライト中のセメンタイトを除く)を含み得る。これらの組織が、面積率で10%以下の範囲であれば、含まれていても本発明の効果が損なわれることはない。
 また、発明者らは、鋼板にプレス成形や加工を加えた際の鋼板組織を鋭意調査した。
 その結果、プレス成形や加工を加えたとき、すぐにマルテンサイト変態してしまうものと、加工量が大きくなるまで残留オーステナイトとして存在し、最後にマルテンサイト変態してTRIP現象(加工誘起変態現象)を生じるものとがあることを見出した。そして、加工量が大きくなってからマルテンサイト変態する残留オーステナイトが多いと、特に効果的に、良好な伸びが得られることが究明された。
 すなわち、伸びが良好なものと低位なものを種々選択し、引張加工の加工度を0~20%まで変えて残留オーステナイト量を測定したところ、加工度と残留オーステナイト量との間には、図1に示すような傾向が認められた。ここで、加工度とは、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて引張試験を行い、そのときの伸び率を意味する。
 図1に示したように、伸びが良好な試料は、加工度を上げたときの残留オーステナイトの減少の仕方が緩やかであることが分かる。
 そこで、TSが780MPa級で、伸び値で10%の引張加工を付与した試料の残留オーステナイト量を測定し、この値と加工前の残留オーステナイト量との比が、鋼板の全伸びに及ぼす影響について調査した。その結果を図2に示す。
 図2に示したとおり、伸び値で10%の引張加工を付与したときの残留オーステナイトの残存する体積率を、加工前の残留オーステナイト体積率で除した値が0.3以上の範囲であると高い伸びが得られ、この範囲から外れるものは伸びが低位であることが分かる。
 よって、本発明では、伸び値で10%の引張加工を付与した後の鋼中に残存する残留オーステナイトの体積率を、引張加工前の残留オーステナイト体積率で除した値で0.3以上にすることが好ましい。加工量が大きくなってからマルテンサイト変態する残留オーステナイトが確保できるからである。
 なお、上記TRIP現象は、残留オーステナイトがプレス成形や加工前に存在していることが必須であるが、プレス成形や加工前に残留オーステナイトを存在させるには、鋼の組織に含まれる成分元素によって決まるMs点(マルテンサイト変態開始点)が15℃以下程度と低くする必要がある。
 また、本発明における伸び値で10%の引張加工を付与する工程を具体的に説明すると、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて引張試験を行い、その伸び率が10%のときに試験を中断することで、試験片に伸び値で10%の引張加工を付与するものである。
 なお、残留オーステナイトの体積率は、既述した方法で求めることができる。
 さらに、上記条件を満足した試料を詳細に調べたところ、残留オーステナイト中のC量とMn量の関係が、
0.09×[Mn量]-0.026-0.150≦[C量]≦0.09×[Mn量]-0.026+0.150
   [C量]:残留オーステナイト中のC量(質量%)
   [Mn量]:残留オーステナイト中のMn量(質量%)
を満足する場合に、加工を加えたときに高い加工硬化能を示すTRIP現象を生じて一層良好な伸びを示すことが分かった。
 上記した要件を満足することによって、延性向上の主要因であるTRIP現象を、鋼板の加工終盤まで断続的に発現させることができ、いわゆる安定な残留オーステナイトの生成を達成することができる。
 上記の残留オーステナイト中のC量(質量%)は、以下の手順で求めることができる。
 すなわち、前記のEPMAを用いて、板厚1/4位置における圧延方向断面の各相へのCの分布状態を定量化する。ついで、30個の残留オーステナイト粒のC量を分析する。そしてその分析の結果から求められるC量を平均して求める。
 なお、残留オーステナイト中のMn量(質量%)は、上記残留オーステナイト中のC量と同じ手順で求めることができる。
 次に製造条件について説明する。
鋼スラブの加熱温度:1100℃以上1300℃以下
 鋼スラブ(または単にスラブ)の加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しない。このため、鋳造時に析出したTi、Nb系析出物は、再溶解させる必要がある。
 ここで、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な固溶が困難であり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。そのため、鋼スラブの加熱温度は1100℃以上にすることが好ましい。
 また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂や凹凸を減少して平滑な鋼板表面を達成する観点からも、鋼スラブの加熱温度は1100℃以上にすることが好ましい。
 一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴ってスケールロスが増大する。そのため、鋼スラブの加熱温度は1300℃以下にすることが好ましい。従って、スラブの加熱温度は1100℃以上1300℃以下にすることが好ましい。さらに好ましくは、1150℃以上である。さらに好ましくは、1250℃以下である。
 鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、本発明では、鋼スラブを製造した後、一旦室温まで冷却し、その後、再度加熱する従来法を用いることができる。さらに、本発明では、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用することができる。なお、鋼スラブは、通常の条件で粗圧延によりシートバーとされるが、加熱温度を低目にした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーをさらに加熱することが好ましい。
熱間圧延の仕上げ圧延出側温度:750℃以上1000℃以下
 加熱後の鋼スラブは、粗圧延および仕上げ圧延によって熱間圧延され熱延板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れて、酸洗、冷間圧延を施した後の、鋼板の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、鋼板の延性や伸びフランジ性に悪影響を及ぼす。さらには、結晶粒径が過度に粗大となって、加工時にプレス品の表面荒れを生じる場合がある。一方、仕上げ圧延出側温度が750℃未満では、圧延荷重が増大し、オーステナイトが未再結晶状態での圧下率が高くなる。その結果、鋼板に異常な集合組織が発達し、最終製品における面内異方性が顕著となって、材質の均一性(材質安定性)が損なわれるだけでなく、鋼板の延性そのものも低下する。また、熱間圧延の仕上げ圧延出側温度が750℃未満または1000℃超では、体積率で、残留オーステナイトが8%以上である組織が得られない。
 従って、本発明は、熱間圧延の仕上げ圧延出側温度を、750℃以上1000℃以下にする必要がある。好ましくは800℃以上である。好ましくは950℃以下である。
熱間圧延後の平均巻き取り温度:300℃以上750℃以下
 熱間圧延後の平均巻き取り温度が750℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなって、最終焼鈍板の所望の強度確保が困難となる。また、熱間圧延後の平均巻き取り温度が750℃を超えると、ポリゴナルフェライトの平均結晶粒径が6μm以下、マルテンサイトの平均結晶粒径が3μm以下、残留オーステナイトの平均結晶粒径が3μm以下である組織が得られない。一方、熱間圧延後の平均巻き取り温度が300℃未満では、熱延板強度が上昇して、冷間圧延における圧延負荷が増大したり、板形状の不良が発生したりするため、生産性が低下する。従って、熱間圧延後の平均巻き取り温度は300℃以上750℃以下にする必要がある。好ましくは400℃以上である。好ましくは650℃以下である。
 なお、本発明では、熱延時に、粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。さらに、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下とすることが好ましい。
 かかる工程を経て製造した熱延板に、酸洗を行う。酸洗は、鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板の良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回で行っても良いし、複数回に分けて行っても良い。
熱延板焼鈍(第1の熱処理):Ac変態点+20℃以上、Ac変態点+120℃以下の温度域で600s以上21600s以下保持
 Ac1変態点+20℃以上、Ac変態点+120℃以下の温度域で600s以上21600s以下保持することは、本発明において、極めて重要である。
 熱延板焼鈍の焼鈍温度が、Ac変態点+20℃未満や、Ac変態点+120℃超えの場合、また保持時間が600s未満の場合には、いずれもオーステナイト中へのMnの濃化が進行せずに、最終焼鈍後に十分な残留オーステナイトの体積率の確保が困難となって、延性が低下する。また、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である組織が得られない。一方、21600sを超えて保持すると、オーステナイト中へのMnの濃化が飽和して、最終焼鈍後の延性への効き代が小さくなるだけでなく、コストアップの要因にもなる。
 したがって、本発明の熱延板焼鈍(第1の熱処理)は、Ac変態点+20℃以上、Ac変態点+120℃以下の温度域で、600s以上21600s以下の時間保持するものとする。
 なお、上記熱処理方法は、連続焼鈍やバッチ焼鈍のいずれの焼鈍方法でも構わない。また、上記の熱処理後、室温まで冷却するが、その冷却方法および冷却速度は特に規定せず、バッチ焼鈍における炉冷、空冷および連続焼鈍におけるガスジェット冷却、ミスト冷却および水冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。
焼鈍(第2の熱処理):Ac変態点+10℃以上、Ac変態点+100℃以下の温度域で20~900s保持
 Ac変態点+10℃以上、Ac変態点+100℃以下の温度域で20~900s保持することは、本発明において極めて重要である。焼鈍温度が、Ac変態点+10℃未満や、Ac変態点+100℃超えの場合、また保持時間が20s未満の場合には、いずれもオーステナイト中へのMnの濃化が進行せず、十分な残留オーステナイトの体積率の確保が困難となって、延性が低下する。また、残留オーステナイト中のMn量(質量%)をポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である組織が得られない。一方、900sを超えて保持する場合には、未再結晶フェライトの面積率が低下して、フェライトと硬質第2相(マルテンサイトおよび残留オーステナイト)の異相界面量が増加し、YPが低下すると共に、YRも低下する。また、マルテンサイトの平均結晶粒径が3μm以下、残留オーステナイトの平均結晶粒径が3μm以下である組織が得られない。
冷間圧延の圧下率:30%未満
 熱延板焼鈍後であって焼鈍(第2の熱処理)前に、冷間圧延を行うこととしてもよい。その場合には、圧下率を30%未満とすることが必須となる。冷間圧延を施さないあるいは30%未満の圧下率で冷間圧延を施すことにより、熱処理後に再結晶で生成するポリゴナルフェライトが生成せずに、圧延方向に伸びた組織が残存し、最終的にアスペクト比の高いポリゴナルフェライト、残留オーステナイトおよびマルテンサイトが得られ、強度-延性バランスが向上するだけでなく、伸びフランジ性(穴広げ性)も向上するからである。一方、圧下率を30%以上とすると、面積率で、ポリゴナルフェライトが20%以上65%以下である組織、並びにポリゴナルフェライト、マルテンサイトおよび残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以上15.0以下である組織が得られない。
溶融亜鉛めっき処理
 本発明において溶融亜鉛めっき処理を施すときは、前記した焼鈍(第2の熱処理)を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して、溶融亜鉛めっき処理を施す。その後、ガスワイピング等によって、鋼板表面のめっき付着量を調整する。なお、溶融亜鉛めっきは、Al量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。
 さらに、溶融亜鉛めっきの合金化処理を施すときは、上記溶融亜鉛めっき処理後に、450℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことができる。ここで、600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できずに、延性が低下する。一方、合金化処理温度が450℃に満たないと、合金化が進行せずに、合金層の生成が困難となる。
 したがって、亜鉛めっきの合金化処理を行うときは、450℃以上600℃以下の温度域で処理を施す。
 その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。
 また、溶融アルミニウムめっき処理を施すときは、前記焼鈍処理を施した鋼板を660~730℃のアルミニウムめっき浴中に浸漬し、溶融アルミニウムめっき処理を施す。その後、ガスワイピング等によって、めっき付着量を調整する。また、アルミニウムめっき浴温度が、Ac変態点+10℃以上、Ac変態点+100℃以下の温度域に適合する組成を有する鋼板は、溶融アルミニウムめっき処理により、さらに微細で安定な残留オーステナイトが生成されるため、更なる延性の向上が可能となるため好ましい。
 電気亜鉛めっき処理
 さらに、本発明では、前記熱処理後の鋼板に電気亜鉛めっき処理を施してもよい。その際の電気亜鉛めっき処理は、条件はとくに限定しないが、皮膜厚が5μmから15μmの範囲になるように電気亜鉛めっき処理の条件を調整することが好ましい。
 ここで、本発明では、上記の鋼板、溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板および電気亜鉛めっき鋼板に、形状矯正や表面粗度の調整等を行うことを目的にスキンパス圧延を行うことができる。スキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。
 スキンパス圧延の圧下率が0.1%未満では、スキンパス圧延の効果が小さく、制御も困難であることから、0.1%が好適範囲の下限となる。一方、スキンパス圧延の圧下率が2.0%を超えると、鋼板の生産性が著しく低下するので、2.0%を好適範囲の上限とする。
 なお、スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
 さらに、本発明に従う鋼板、溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板および電気亜鉛めっき鋼板は、樹脂や油脂を用いたコーティングなどの各種塗装処理を施すこともできる。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を、転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを、表2に示す条件で以下の種々の鋼板とした。
 すなわち、熱間圧延後、Ac変態点+20℃以上、Ac変態点+120℃以下で焼鈍を行い、冷間圧延後(冷間圧延を施さない場合もある)、Ac変態点+10℃以上、Ac変態点+100℃以下で焼鈍を行った。その後、冷延鋼板(CR)を得て、さらに、めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、溶融アルミニウムめっき鋼板(Al)および電気亜鉛めっき鋼板(EG)などを得た。
 なお、溶融亜鉛めっき浴として、溶融亜鉛めっき鋼板(GI)では、Al:0.19質量%含有亜鉛浴を、また合金化溶融亜鉛めっき鋼板(GA)では、Al:0.14質量%含有亜鉛浴を使用した。またいずれも、浴温は465℃、めっき付着量は片面あたり45g/m2(両面めっき)とした。さらにGAでは、めっき層中のFe濃度を9質量%以上12質量%以下になるように調整した。溶融アルミニウムめっき鋼板用の溶融アルミニウムめっき浴の浴温は700℃とした。
 かくして得られた鋼板の、断面ミクロ組織、引張特性、穴広げ性および曲げ性等についてそれぞれ調査を行い、その結果を表3~表5に示した。
 Ac変態点は以下の式を用いて求めた。
Ac変態点(℃)
=751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)-16×(%Ni)+13×(%Cr)+3.4×(%Mo)
 ここで、(%C)、(%Si)、(%Mn)、(%Ni)、(%Cu)、(%Cr)および(%Mo)は、それぞれの元素の鋼中含有量(質量%)である。
 引張試験は、引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、YP、YR、TSおよびELを測定した。なお、YRは、YPをTSで除して、百分率で表した値である。なお、本発明では、YR≧68%の場合であって、かつTS×EL≧24000MPa・%の場合を良好と判断した。また、TS:590MPa級ではEL≧34%、TS:780MPa級ではEL≧30%、TS:980MPa級ではEL≧24%の場合をそれぞれ良好と判断した。なお、本実施例で、TS:590MPa級は、TSが590MPa以上780MPa未満の鋼板であり、TS:780MPa級は、TSが780MPa以上980MPa未満の鋼板であり、TS:980MPa級は、TSが980MPa以上1180MPa未満の鋼板である。
 曲げ試験は、JIS Z 2248(1996年)のVブロック法に基づき測定を実施した。曲げ部外側について実体顕微鏡で亀裂の有無を判定し、亀裂が発生していない最小の曲げ半径を限界曲げ半径Rとした。なお、本発明では、90°V曲げでの限界曲げR/t≦1.5(t:鋼板の板厚)を満足する場合を、鋼板の曲げ性が良好と判定した。
 穴広げ性は、JIS Z 2256(2010年)に準拠して行った。得られた各鋼板を100mm×100mmに切断後、クリアランス12%±1%で直径10mmの穴を打ち抜いた。ついで、内径75mmのダイスを用いてしわ押さえ力9ton(88.26kN)で抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定した。さらに、下記の式から、限界穴広げ率λ(%)を求めて、この限界穴広げ率の値から穴広げ性を評価した。
  限界穴広げ率λ(%)={(D-D)/D}×100
 ただし、Dは亀裂発生時の穴径(mm)、Dは初期穴径(mm)である。なお、本発明では、TS:590MPa級ではλ≧34%、TS:780MPa級ではλ≧30%、TS:980MPa級ではλ≧25%の場合をそれぞれ良好と判断した。
 熱間圧延の通板性の判定については、熱間圧延の仕上げ温度が低く、オーステナイトが未再結晶状態での圧下率が高くなる、もしくは、オーステナイトとフェライトの二相域での圧延になる場合などには、圧延荷重の増大による熱間圧延時の板形状の不良などのトラブル発生の危険が増大する場合と擬制して、この場合を不良と判断した。
 また、冷間圧延の通板性の判定については、熱間圧延の巻取り温度が低く、熱延板の鋼組織がベイナイトやマルテンサイトなどの低温変態相が主体となる場合などには、圧延荷重の増大による冷間圧延時の板形状の不良などのトラブル発生の危険が増大する場合と擬制して、この場合を不良と判断した。
 最終焼鈍板の表面性状の判定については、スラブ表層の気泡、偏析などの欠陥をスケールオフできずに、鋼板表面の亀裂、凹凸が増大し、平滑な鋼板表面が得られない場合を不良と判断した。また、最終焼鈍板の表面性状は、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する場合や酸洗後に熱延スケールの取れ残りなどが一部に存在する場合も不良と判断した。
 生産性の判定については、(1)熱延板の形状不良が発生し、(2)次工程に進むために熱延板の形状矯正が必要であるときや、(3)焼鈍処理の保持時間が長いときなどのリードタイムコストを評価した。そして、(1)~(3)のいずれにも該当しない場合を「良好」、(1)~(3)のいずれかに該当する場合を「不良」と判断した。
 引張方向が鋼板の圧延方向と直角方向となるようにサンプルを採取したJIS 5号試験片を用いて、JIS Z 2241(2011年)に準拠して引張加工を行い、伸び値で10%の引張加工を付与したときの残留オーステナイトの残存する体積率を、加工(10%付与)前の残留オーステナイト体積率で除した値を求めた。なお、残留オーステナイト体積率は、既述の方法に従い測定した。
 測定結果を、表4に併記する。
 残留オーステナイト中のC量(質量%)と残留オーステナイト中のMn量(質量%)を既述の方法に従い測定した。
 測定結果を、表4に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、本発明に従うことでいずれも590MPa以上のTSを有すると共に、YRが68%以上の成形性に優れ、かつ高い降伏比および穴広げ性を有する高強度な鋼板が得られていることが分かる。一方、比較例では、YR、TS、EL、λおよびR/tのうち少なくとも一の特性が劣っている。
 本発明によれば、いずれも590MPa以上のTSを有すると共に、YRが68%以上あって、かつTS×EL≧24000MPa・%の成形性に優れ、かつ高い降伏比および穴広げ性を有する高強度な鋼板の製造が可能になる。本発明の鋼板を、例えば、自動車構造部材に適用することで、車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。

Claims (6)

  1.  質量%で、C:0.030%以上0.250%以下、Si:0.01%以上3.00%以下、Mn:2.60%以上4.20%以下、P:0.001%以上0.100%以下、S:0.0200%以下、N:0.0100%以下およびTi:0.005%以上0.200%以下を含有し、
     さらに、質量%で、Al:0.01%以上2.00%以下、Nb:0.005%以上0.200%以下、B:0.0003%以上0.0050%以下、Ni:0.005%以上1.000%以下、Cr:0.005%以上1.000%以下、V:0.005%以上0.500%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Sn:0.002%以上0.200%以下、Sb:0.002%以上0.200%以下、Ta:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を任意に含有し、残部がFeおよび不可避的不純物の成分組成を有し、
     面積率で、ポリゴナルフェライトが20%以上65%以下、未再結晶フェライトが8%以上およびマルテンサイトが5%以上25%以下であり、体積率で、残留オーステナイトが8%以上であるとともに、前記ポリゴナルフェライト、前記マルテンサイトおよび前記残留オーステナイトの結晶粒の平均アスペクト比がそれぞれ2.0以上15.0以下の鋼組織を有し、
     前記ポリゴナルフェライトの平均結晶粒径が6μm以下、
     前記マルテンサイトの平均結晶粒径が3μm以下、
     前記残留オーステナイトの平均結晶粒径が3μm以下であって、
     前記残留オーステナイト中のMn量(質量%)を前記ポリゴナルフェライト中のMn量(質量%)で除した値が2.0以上である鋼板。
  2.  前記残留オーステナイト中のC量が、前記残留オーステナイト中のMn量との関係で、次式
    0.09×[Mn量]-0.026-0.150≦[C量]≦0.09×[Mn量]-0.026+0.150
      [C量]:残留オーステナイト中のC量(質量%)
      [Mn量]:残留オーステナイト中のMn量(質量%)
    を満足する請求項1に記載の鋼板。
  3.  請求項1または2に記載の鋼板が、さらに溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、および電気亜鉛めっき層のうちから選ばれる1種をそなえるめっき鋼板。
  4.  請求項1または2に記載の鋼板の製造方法であって、
     請求項1に記載の成分組成を有する鋼スラブを、加熱し、仕上げ圧延出側温度を750℃以上1000℃以下で熱間圧延し、300℃以上750℃以下で巻き取り、次いで、酸洗によりスケールを除去し、Ac変態点+20℃以上、Ac変態点+120℃以下の温度域で600s以上21600s以下保持し、任意に圧下率30%未満で冷間圧延し、その後、Ac変態点+10℃以上、Ac変態点+100℃以下の温度域で20s以上900s以下保持して冷却する鋼板の製造方法。
  5.  伸び値で10%の引張加工を付与した後の残留オーステナイトの体積率を、該引張加工前の残留オーステナイト体積率で除した値を0.3以上とする請求項4に記載の鋼板の製造方法。
  6.  請求項3に記載のめっき鋼板の製造方法であって、
     前記冷却後に、溶融亜鉛めっき処理、溶融アルミニウムめっき処理、および電気亜鉛めっき処理のうちから選ばれる1種を施す、あるいは前記溶融亜鉛めっき処理を施したのちさらに、450℃以上600℃以下で合金化処理を施す請求項4に記載の鋼板の製造方法。
PCT/JP2017/009300 2016-04-19 2017-03-08 鋼板、めっき鋼板、およびそれらの製造方法 WO2017183348A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017533038A JP6210183B1 (ja) 2016-04-19 2017-03-08 鋼板、めっき鋼板、およびそれらの製造方法
US16/090,883 US20190276907A1 (en) 2016-04-19 2017-03-08 Steel sheet, coated steel sheet, and methods for manufacturing same
EP17785691.1A EP3447159B1 (en) 2016-04-19 2017-03-08 Steel plate, plated steel plate, and production method therefor
CN201780018499.0A CN108779536B (zh) 2016-04-19 2017-03-08 钢板、镀覆钢板和它们的制造方法
KR1020187033203A KR102128838B1 (ko) 2016-04-19 2017-03-08 강판, 도금 강판 및, 그들의 제조 방법
MX2018012659A MX2018012659A (es) 2016-04-19 2017-03-08 Lamina de acero, lamina de acero recubierta, y metodos para la fabricacion de las mismas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-084049 2016-04-19
JP2016084049 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017183348A1 true WO2017183348A1 (ja) 2017-10-26

Family

ID=60115960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009300 WO2017183348A1 (ja) 2016-04-19 2017-03-08 鋼板、めっき鋼板、およびそれらの製造方法

Country Status (6)

Country Link
US (1) US20190276907A1 (ja)
EP (1) EP3447159B1 (ja)
KR (1) KR102128838B1 (ja)
CN (1) CN108779536B (ja)
MX (1) MX2018012659A (ja)
WO (1) WO2017183348A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200164A1 (ja) 2020-04-03 2021-10-07 日本製鉄株式会社 鋼板およびその製造方法
JP2023506382A (ja) * 2019-12-19 2023-02-16 アルセロールミタル 高靭性熱間圧延焼鈍鋼板及びその製造方法
JP7483889B2 (ja) 2019-12-17 2024-05-15 アルセロールミタル 熱間圧延鋼板及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075644B (zh) 2014-10-30 2019-03-29 杰富意钢铁株式会社 高强度钢板及其制造方法
EP3346019B1 (en) * 2015-09-04 2019-12-25 JFE Steel Corporation High strength thin steel sheet and method for manufacturing same
CN115715332B (zh) * 2020-06-30 2024-04-12 杰富意钢铁株式会社 镀锌钢板、构件和它们的制造方法
KR20230014121A (ko) * 2021-07-20 2023-01-30 주식회사 포스코 구멍확장성 및 연성이 우수한 고강도 강판 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229466A (ja) * 2011-04-26 2012-11-22 Jfe Steel Corp 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP2013014824A (ja) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp 冷延鋼板の製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
WO2016067623A1 (ja) * 2014-10-30 2016-05-06 Jfeスチール株式会社 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (ja) 1984-12-29 1986-07-17 Nippon Steel Corp 高強度鋼板の製造方法
JP2588420B2 (ja) 1988-04-11 1997-03-05 日新製鋼株式会社 延性の良好な超高強度鋼材の製造方法
JP3857939B2 (ja) 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5440672B2 (ja) 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
CN103890202B (zh) * 2011-10-24 2015-09-30 杰富意钢铁株式会社 加工性优良的高强度钢板的制造方法
JP5949253B2 (ja) 2012-07-18 2016-07-06 新日鐵住金株式会社 溶融亜鉛めっき鋼板とその製造方法
WO2016021195A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
MX2017001720A (es) * 2014-08-07 2017-04-27 Jfe Steel Corp Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia.
EP3214193B1 (en) 2014-10-30 2019-03-06 JFE Steel Corporation High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229466A (ja) * 2011-04-26 2012-11-22 Jfe Steel Corp 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP2013014824A (ja) * 2011-07-06 2013-01-24 Nippon Steel & Sumitomo Metal Corp 冷延鋼板の製造方法
JP2013185196A (ja) * 2012-03-07 2013-09-19 Jfe Steel Corp 成形性に優れる高強度冷延鋼板およびその製造方法
JP2016050343A (ja) * 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
WO2016067623A1 (ja) * 2014-10-30 2016-05-06 Jfeスチール株式会社 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483889B2 (ja) 2019-12-17 2024-05-15 アルセロールミタル 熱間圧延鋼板及びその製造方法
JP2023506382A (ja) * 2019-12-19 2023-02-16 アルセロールミタル 高靭性熱間圧延焼鈍鋼板及びその製造方法
JP7442638B2 (ja) 2019-12-19 2024-03-04 アルセロールミタル 高靭性熱間圧延焼鈍鋼板及びその製造方法
WO2021200164A1 (ja) 2020-04-03 2021-10-07 日本製鉄株式会社 鋼板およびその製造方法
KR20220156958A (ko) 2020-04-03 2022-11-28 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법

Also Published As

Publication number Publication date
CN108779536A (zh) 2018-11-09
KR20180132889A (ko) 2018-12-12
CN108779536B (zh) 2020-06-30
KR102128838B1 (ko) 2020-07-02
EP3447159A4 (en) 2019-03-13
MX2018012659A (es) 2019-02-28
US20190276907A1 (en) 2019-09-12
EP3447159B1 (en) 2020-11-11
EP3447159A1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6179675B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP6179674B2 (ja) 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法
WO2017183349A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2017183348A1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP2016141859A (ja) 高強度鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN114585766A (zh) 高强度钢板及其制造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
JP6930682B1 (ja) 高強度鋼板およびその製造方法
JP7168072B2 (ja) 高強度鋼板およびその製造方法
JP6210183B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017533038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187033203

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017785691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785691

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785691

Country of ref document: EP

Kind code of ref document: A1