WO2017181567A1 - 液晶扩散检测设备和方法以及液晶面板制作设备 - Google Patents

液晶扩散检测设备和方法以及液晶面板制作设备 Download PDF

Info

Publication number
WO2017181567A1
WO2017181567A1 PCT/CN2016/096179 CN2016096179W WO2017181567A1 WO 2017181567 A1 WO2017181567 A1 WO 2017181567A1 CN 2016096179 W CN2016096179 W CN 2016096179W WO 2017181567 A1 WO2017181567 A1 WO 2017181567A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
image
area
crystal panel
diffusion
Prior art date
Application number
PCT/CN2016/096179
Other languages
English (en)
French (fr)
Inventor
王祥臻
胡灵
秦卫
曾鹏
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/539,127 priority Critical patent/US10495905B2/en
Publication of WO2017181567A1 publication Critical patent/WO2017181567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal diffusion detecting apparatus and method, and a liquid crystal panel manufacturing apparatus.
  • liquid crystal displays have become the leading products in the current display market.
  • the main structure of the liquid crystal display is a liquid crystal panel including an array substrate, a color filter substrate, a liquid crystal layer, and the like.
  • the sealant is coated on the periphery of the display area of the array substrate, the liquid crystal is injected into the space enclosed by the sealant, and the color filter substrate and the array substrate are aligned.
  • the sealant is then cured to form a liquid crystal panel (also referred to as a liquid crystal cell).
  • the liquid crystal will not spread to the edge of the space enclosed by the sealant, especially the four corners, so that the liquid crystal filling phenomenon is not caused, and the liquid crystal is not filled (Not Fill).
  • the liquid crystal layer is unevenly distributed in the liquid crystal panel, which affects the yield and display effect of the liquid crystal panel.
  • liquid crystal impact sealant In the process of the box, the liquid crystal is squeezed to rapidly diffuse in the space enclosed by the sealant, so that the uncured or incompletely cured sealant for sealing the liquid crystal may be subjected to liquid crystal impact.
  • the vacuum environment between the color film substrate and the array substrate causes the two to be pressed toward each other, which aggravates the impact of the liquid crystal on the sealant.
  • the phenomenon of liquid crystal impact sealant is referred to as liquid crystal puncture. This causes the frame sealant to be deformed or broken, the adhesive strength of the sealant is lowered, and the sealant is contaminated with liquid crystal.
  • Embodiments of the present invention are directed to a liquid crystal diffusion detecting apparatus and method, and a liquid crystal panel manufacturing apparatus, which detect defects related to liquid crystal diffusion in a liquid crystal panel after curing of the sealant, and the detection result is fed back for adjusting liquid crystal injection. And diffusion parameters to eliminate this defect.
  • An embodiment of the present invention provides a liquid crystal diffusion detecting apparatus, including an image capturing device configured to acquire an image of the liquid crystal panel in an image capturing area on a liquid crystal panel, and an image processing device configured to analyze the collected Image to determine the area of the image anomaly area, wherein the image anomaly area indicates that the liquid crystal panel does not diffuse in the liquid crystal panel The area to reach.
  • the image processing apparatus analyzes the image of the liquid crystal panel collected by the image capturing device, and determines the area of the image abnormal region in the image, thereby The area in the liquid crystal panel where the liquid crystal is not diffused is determined.
  • the analytical structure of the image processing device is fed back to adjust the liquid crystal injection and diffusion parameters to eliminate defects associated with liquid crystal diffusion.
  • the liquid crystal diffusion detecting apparatus further includes an injection control device configured to adjust the liquid crystal injection device to reduce an area of the image abnormal region when an area of the image abnormal region is larger than a predetermined area.
  • the injection control device adjusts the liquid crystal injection device to reduce the area of the image abnormal region, thereby alleviating or eliminating the phenomenon that the liquid crystal is not filled, and improving the yield and display effect of the liquid crystal panel.
  • the liquid crystal diffusion detecting apparatus according to this embodiment is advantageous in improving production efficiency, improving liquid crystal panel quality, and reducing labor labor when applied to actual production.
  • the image collection area is distributed around a display area of the liquid crystal panel, and the image collection area includes at least one corner of the display area.
  • the image acquisition area includes a midpoint of at least one side of the display area.
  • the image acquisition area includes four corners of the display area and a midpoint of four sides.
  • the image capturing area is distributed around the display area of the liquid crystal panel, so that the image collected by the image capturing device in the image capturing area includes the edge of the display area of the liquid crystal panel and the vicinity of the sealant. Information about liquid crystal unfilling and/or liquid crystal puncturing is thus provided.
  • the image acquisition device includes one or more sets of movable scanning lenses, wherein each movable scanning lens of each set of movable scanning lenses respectively corresponds to each of the image capturing regions .
  • the image pickup device includes only one movable scanning lens, and image capturing of the liquid crystal panel at one or more image capturing regions is performed by the movable scanning lens.
  • the image capturing device includes a plurality of movable scanning lenses, each movable scanning lens respectively corresponding to each image capturing area of the liquid crystal panel, and simultaneously completing the one liquid crystal surface by the movable scanning lenses Image acquisition of the board at multiple image acquisition areas.
  • the image capture device includes a plurality of sets of movable scan lenses, each set of movable scan lenses includes a plurality of movable scan lenses, each movable scan lens respectively corresponding to each image acquisition area of the liquid crystal panel, and Image acquisition of a plurality of liquid crystal panels at a plurality of image acquisition regions is simultaneously performed by the plurality of sets of movable scanning lenses.
  • the liquid crystal diffusion detecting apparatus facilitates simultaneous acquisition of a plurality of sets of images, thereby reducing image acquisition time, increasing the sampling base, and providing accurate detection results.
  • the liquid crystal diffusion detecting apparatus according to this embodiment is also advantageous for realizing automatic detection.
  • the position of the movable scanning lens is set and controlled by a recipe of the device.
  • the area of the image anomaly area is the area of the gray scale abnormal area in the acquired image.
  • the region to which the liquid crystal is diffused is determined in accordance with the position with respect to the center of the liquid crystal panel in the acquired image.
  • the image acquired in the image acquisition area includes not only the display area of the liquid crystal panel but also the vicinity of the sealant.
  • the area near the center of the liquid crystal panel is generally more easily filled with the liquid crystal than the area away from the center of the liquid crystal panel.
  • the gradation of the region far from the center of the liquid crystal panel is different from the gradation of the region near the center of the liquid crystal panel, it is determined that there is a gradation abnormality, and it is determined that the region far from the center of the liquid crystal panel is not filled with the liquid crystal.
  • a gray scale microscopic image of a liquid crystal panel is collected using a microscopic device such as a microscope, so that the liquid crystal diffusion detecting device is easy to implement.
  • the predetermined area is an area of five pixel units in the liquid crystal panel.
  • the liquid crystal diffusion detecting apparatus of this embodiment when the area of the gradation abnormal region in the acquired image is larger than a predetermined area of, for example, 5 pixels, it is determined that the liquid crystal is not filled.
  • the pixel unit herein refers to a pixel in a liquid crystal panel.
  • the predetermined area is manually adjusted according to actual production conditions, so that the liquid crystal diffusion detecting device is more flexible and flexible.
  • the injection control device is configured to adjust the liquid crystal injection device to reduce one or two distances between a liquid crystal injection point closest to a corner of the sealant and two sides of the corner By.
  • the liquid crystal diffusion detecting apparatus when it is determined that the phenomenon that the liquid crystal is not filled occurs, the liquid crystal diffusion detecting apparatus adjusts the liquid crystal injection apparatus by the injection control means whole.
  • the liquid crystal injection device is a one drop fill (ODF) device
  • the dripped liquid crystal pattern (LC pattern) of the liquid crystal instillation device is adjusted.
  • ODF one drop fill
  • the liquid crystal drop dripping at the drip point is close to the corner, thereby reducing the distance of the liquid crystal drop from the corner. , thereby reducing or eliminating the phenomenon that the liquid crystal is not filled.
  • the liquid crystal injection device is an inkjet device
  • the ink ejection point closest to the corner of the sealant is brought close to the corner by the inkjet device, thereby reducing the inkjet dot and the corner Distance, thereby reducing or eliminating the phenomenon that the liquid crystal is not filled.
  • the image capture device is further equipped with a rotatable polarizing member.
  • the polarizing member is rotated to observe and collect an image related to liquid crystal puncture.
  • the polarizing member is a polarizer.
  • the polarizer is detachably coupled to the image capture device.
  • the image processing apparatus is further configured to analyze the acquired image to determine a puncture distance of the liquid crystal; and the injection control device is further configured to reduce the liquid crystal when the puncture distance is greater than a predetermined distance
  • the diffusion time T is to reduce the puncture distance.
  • the image processing apparatus analyzes the acquired image to determine whether or not a liquid crystal puncture phenomenon occurs.
  • the puncture distance of the liquid crystal is determined by comparing different regions in the image acquired in the same image acquisition region, or comparing the same region among the plurality of images acquired in different image acquisition regions.
  • the injection control device reduces the liquid crystal diffusion time T to reduce the puncture distance.
  • the injection control device adjusts the liquid crystal diffusion time or the liquid crystal pattern, thereby reducing or eliminating the phenomenon of liquid crystal puncture, and improving the yield and display effect of the liquid crystal panel.
  • the liquid crystal diffusion detecting apparatus is advantageous in improving production efficiency, improving liquid crystal panel quality, and reducing labor labor when applied to actual production. It should be noted that adjusting the distance between the liquid crystal injection point of the liquid crystal pattern closest to the corner of the sealant and the corner also helps to reduce the puncture distance, although the effect is much weaker than the effect of adjusting the liquid crystal diffusion time T.
  • the predetermined distance is 1/3 of a width of the sealant.
  • the predetermined distance is manually adjusted according to actual production conditions, so that the liquid crystal diffusion detecting device More flexible and flexible.
  • the liquid crystal diffusion process is mainly divided into the following three stages: (i) from the liquid crystal dropping to the box process; (ii) the box process; and (iii) from the end of the process of the box to the start of the frame seal curing process. . After actual production verification, the above stage (iii) is the main stage affecting liquid crystal puncture.
  • the above stage (iii) is mainly considered.
  • the injection control device is configured to reduce the liquid crystal diffusion time T
  • is the viscosity coefficient of the liquid crystal
  • ⁇ d is the puncture distance of the liquid crystal
  • is the surface tension coefficient of the liquid crystal
  • b is the distance between the two substrates of the liquid crystal panel, and It is the wetting angle of the liquid crystal.
  • liquid crystal diffusion detecting apparatus of this embodiment an empirical formula of the above-described liquid crystal diffusion time is employed, wherein the empirical formula is a flow burn based model based on the viscosity law of the fluid and the fluid flow.
  • the liquid crystal diffusion time is quantitatively reduced in accordance with the puncture distance.
  • the liquid crystal diffusion detecting apparatus further includes: a first light source disposed on the same side of the liquid crystal panel as the image capturing device, and configured to be at the image capturing area An image capture device provides oblique illumination; and a second light source disposed on an opposite side of the liquid crystal panel from the image capture device and configured to provide back illumination for the image capture device at the image capture region .
  • the auxiliary first light source and the second light source are used to provide appropriate illumination for detection of liquid crystal unfilling and liquid crystal puncturing.
  • An embodiment of the present invention provides a liquid crystal panel manufacturing apparatus, including a liquid crystal injection device and a liquid crystal diffusion detecting device as described above.
  • the liquid crystal panel manufacturing apparatus of this embodiment of the present invention has the same or similar advantages as the liquid crystal diffusion detecting apparatus described above, and will not be described herein.
  • An embodiment of the present invention provides a liquid crystal diffusion detecting method, comprising the steps of: collecting an image of the liquid crystal panel in an image capturing area on a liquid crystal panel; and analyzing the collected image to determine an area of the image abnormal region, wherein The image abnormal region indicates an area in which the liquid crystal is not diffused in the liquid crystal panel; and when the area of the image abnormal region is larger than a predetermined area, the liquid crystal injection device is adjusted to reduce an area of the image abnormal region.
  • the step of adjusting the liquid crystal injection device to reduce the area of the abnormal region of the image includes: adjusting the liquid crystal injection device to reduce a liquid crystal injection point closest to a corner of the sealant and the corner One or both of the distance between the two sides.
  • the method further includes the steps of: acquiring an image of the liquid crystal panel in an image capturing area on the liquid crystal panel by using a polarizing member; analyzing the collected image to determine a puncture distance of the liquid crystal; When the puncture distance is greater than the predetermined distance, the liquid crystal diffusion time T is decreased to reduce the puncture distance.
  • the step of reducing the liquid crystal diffusion time T to reduce the puncture distance comprises: reducing the liquid crystal diffusion time T
  • is the viscosity coefficient of the liquid crystal
  • ⁇ d is the puncture distance of the liquid crystal
  • is the surface tension coefficient of the liquid crystal
  • b is the distance between the two substrates of the liquid crystal panel, and It is the wetting angle of the liquid crystal.
  • the liquid crystal diffusion detecting method of this embodiment of the present invention has the same or similar advantages as the respective embodiments of the liquid crystal diffusion detecting apparatus described above, and will not be described herein.
  • Embodiments of the present invention disclose a liquid crystal diffusion detecting apparatus including an image pickup device and an image processing device.
  • the image capture device collects an image of the liquid crystal panel in an image acquisition area on the liquid crystal panel.
  • the image processing device analyzes the acquired image to determine an area of the image abnormal region, and the image abnormal region represents a region in the liquid crystal panel to which the liquid crystal is not diffused.
  • Embodiments of the present invention also disclose a liquid crystal panel manufacturing apparatus including the above liquid crystal diffusion detecting apparatus and a liquid crystal diffusion detecting method.
  • the liquid crystal diffusion detecting device detects defects related to liquid crystal diffusion in the liquid crystal panel after the sealant is cured, and the detection result is fed back for adjusting liquid crystal injection and diffusion parameters to eliminate the defect.
  • Figure 1 is a schematic view of a liquid crystal panel after the cartridge and before cutting
  • FIGS. 2A and 2B are schematic cross-sectional views of a liquid crystal panel
  • FIG. 3 is a schematic cross-sectional view of a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a liquid crystal diffusion detecting device according to an embodiment of the present invention.
  • FIG. 5A, FIG. 5B and FIG. 5C are schematic diagrams of an image collection area according to an embodiment of the present invention.
  • FIG. 6 is an image of a liquid crystal panel collected by an image capture device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a liquid crystal pattern according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a liquid crystal diffusion detecting apparatus according to an embodiment of the present invention.
  • FIG. 9 is an image of a liquid crystal panel collected by an image capture device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a liquid crystal panel manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a liquid crystal diffusion detecting method according to an embodiment of the present invention.
  • liquid crystal panel 100 first substrate; 102 display area; 104 peripheral area; 110, 115 frame sealant; 120, 125 liquid crystal drop; 130, 135 liquid crystal layer; Two substrates; 300 liquid crystal injection device; 400 injection control device; 500 support members; 600, 650 image acquisition device; 655 polarizing member; 700 image processing device; TP, 11, 12, 13, 14, 21, 22, 23, 24 Image acquisition area; D1, D2 liquid crystal injection point and the side of the liquid crystal panel; 810 first light source; 820 second light source; 1000 liquid crystal panel manufacturing equipment; ⁇ d liquid crystal puncture distance; w frame sealant width.
  • FIG. 1 is a schematic diagram of a liquid crystal panel after the box and before cutting
  • FIGS. 2A and 2B are schematic cross-sectional views of the liquid crystal panel, wherein FIGS. 2A and 2B are along line AB of FIG. 1 . Intercepted section view.
  • a first substrate 100 is first provided, wherein the first substrate 100 includes a display area 102 and a peripheral area 104 surrounding the display area 102. Then, the sealant 110 is applied in the peripheral region 104 of the first substrate 100. Then, as shown in FIG. 2A, a liquid crystal dropping (ODF) process is performed, and liquid crystal is dropped from the liquid crystal injection device 300 into the display region 102 of the first substrate 100 to form a plurality of liquid crystal droplets 120 arranged in a matrix shape. Next, as shown in FIG. 2B, the second substrate 200 is provided, and the second substrate 200 is aligned with the first substrate 100 by the sealant 110. Subsequently, the sealant 110 is cured by means such as ultraviolet curing, thereby completing the process of the box. The obtained liquid crystal panel 10 is shown in Fig. 2B and Fig. 1.
  • ODF liquid crystal dropping
  • the first substrate 100 and the second substrate 200 are formed of a transparent material such as glass.
  • the first substrate 100 is an array substrate, and the second substrate 200 is a color filter substrate.
  • the first substrate 100 is a color filter substrate, and the second substrate 200 is an array substrate.
  • the second substrate 200 is not shown in FIG. 1 for the sake of clarity.
  • the first substrate 100 includes a plurality of liquid crystal panels 10 arranged in a matrix. After the dicing process, a single liquid crystal panel 10 as shown in Fig. 2B is obtained.
  • the respective liquid crystal droplets 120 are diffused and bonded to each other, thereby forming the liquid crystal layer 135 interposed between the first substrate 100 and the second substrate 200.
  • the liquid crystal layer 135 does not completely fill the display region 102 on the left side, and a liquid crystal unfilling phenomenon occurs.
  • the liquid crystal panel 10 is in operation, display defects occur in this area.
  • the liquid crystal layer 135 impacts the uncured sealant 115 on the right side, so that the sealant 115 is deformed or broken, and liquid crystal puncture occurs.
  • the adhesive strength of the sealant 115 in the region is lowered, the liquid crystal is contaminated by the sealant 115, and the yield and picture quality of the liquid crystal panel 10 are lowered.
  • the inventors of the present application have recognized that diffusion of liquid crystals plays an important role in quality control of liquid crystal panels.
  • liquid crystal puncture occurs when the liquid crystal is excessively diffused, and the more serious liquid crystal puncture will cause the peripheral Mura and the polishing process to produce Line Zara.
  • insufficient liquid crystal diffusion causes unfilled defects.
  • the inventors of the present application have also recognized that by providing a detection apparatus and method for liquid crystal unfilling and/or puncturing, data regarding liquid crystal unfilling and/or liquid crystal puncturing is provided, and the data is used to adjust the upstream process to mitigate or eliminate The liquid crystal is not filled and/or liquid crystal is punctured. This helps to avoid bad batches and high yields, improve the yield of LCD panels, and reduce manufacturing costs.
  • An embodiment of the present invention provides a liquid crystal diffusion detecting apparatus, including an image capturing device configured to acquire an image of the liquid crystal panel in an image capturing area on a liquid crystal panel, and an image processing device configured to analyze the collected The image determines an area of an abnormal region of the image, wherein the image abnormal region represents a region in the liquid crystal panel to which the liquid crystal is not diffused.
  • the liquid crystal diffusion detecting device detects defects related to liquid crystal diffusion in the liquid crystal panel after the sealant is cured, and the detection result is fed back for adjusting liquid crystal injection and diffusion parameters to eliminate the defect.
  • liquid crystal diffusion detecting device the liquid crystal panel manufacturing device, and the liquid crystal diffusion detecting method provided by the embodiments of the present invention are specifically described below with reference to the accompanying drawings.
  • FIG. 3 is a cross-sectional view showing a liquid crystal panel according to an embodiment of the present invention. Similar to Fig. 2B, Fig. 3 is also a cross-sectional view taken along line A-B of Fig. 1.
  • FIG. 3 shows an ideal distribution state of the liquid crystal layer 130 after the liquid crystal panel 10 is subjected to a sealant curing process. As shown, after the frame sealant curing process, the liquid crystal layer 130 is continuously distributed between the first substrate 100 and the second substrate 200 and just completely fills the space surrounded by the sealant 110, which means that no liquid crystal appears. Unfilled phenomenon. In addition, the sealant 110 is completely regular and does not undergo any deformation or breakage, which means that no liquid crystal puncture occurs.
  • FIG. 3 is merely an ideal distribution of the liquid crystal layer 130.
  • the distribution of the liquid crystal layer 130 may be close to the ideal distribution state.
  • the liquid crystal layer 130 is continuously distributed between the first substrate 100 and the second substrate 200, and the edge of the liquid crystal layer 130 may reach at least the edge of the display region 102.
  • the liquid crystal layer 130 does not necessarily contact the sealant 110, and the edges of the liquid crystal layer 130 are equal or unequal to the sealant 110.
  • FIG. 4 is a schematic structural diagram of a liquid crystal diffusion detecting apparatus according to an embodiment of the present invention.
  • the liquid crystal diffusion detecting apparatus includes an image capturing device 600.
  • the liquid crystal panel 10 is supported by the support member 500.
  • the image pickup device 600 collects an image of the liquid crystal panel 10 in the image pickup area TP on the liquid crystal panel 10.
  • the liquid crystal diffusion detecting apparatus further includes an image processing apparatus 700.
  • the image processing device 700 analyzes the acquired image to determine the area of the abnormal region in the image. This image abnormal region indicates a region in the liquid crystal panel 10 where the liquid crystal is not diffused.
  • the liquid crystal diffusion detecting apparatus further includes an injection control device 400.
  • the injection control device 400 adjusts the liquid crystal injection device 300 (refer to FIG. 2A) to reduce the area of the image abnormal region.
  • the injection control device 400 adjusts the liquid crystal injection device 300 to reduce the area of the image abnormal region, thereby alleviating or eliminating the phenomenon that the liquid crystal is not filled, and improving the yield and display effect of the liquid crystal panel 10.
  • 5A, 5B, and 5C schematically illustrate the distribution of the image collection area TP on the liquid crystal panel 10 according to an embodiment of the present invention.
  • the image capturing area TP is distributed around the display area 102 of the liquid crystal panel 10 such that the image captured by the image capturing device 600 in the image capturing area TP includes the edge of the display area 101 of the liquid crystal panel 10 and the vicinity of the sealant 110, thereby Information relating to liquid crystal diffusion in the liquid crystal panel 10 is provided, for example, information on liquid crystal unfilling and/or liquid crystal puncturing.
  • the image acquisition area TP includes at least one corner of the display area 102 of the liquid crystal panel 10. As shown in FIG. 5A, the image acquisition area TP includes at least one of the image collection areas 11, 12, 13, 14. In general, the four corners of the liquid crystal panel 10 are prone to the phenomenon that the liquid crystal is not filled. The image acquisition regions 11, 12, 13, 14 shown in Figure 5A facilitate providing information about unfilled liquid crystals.
  • the image acquisition area TP includes a point on at least one side of the display area 102 of the liquid crystal panel 10, such as a midpoint of the side. As shown in Figure 5B, the image is taken
  • the set area TP includes at least one of the image acquisition areas 21, 22, 23, 24. In general, the four sides of the liquid crystal panel 10 are liable to cause liquid crystal puncture.
  • the image acquisition areas 21, 22, 23, 24 shown in Figure 5B facilitate providing information about liquid crystal puncturing.
  • the image acquisition area TP includes at least one corner of the display area 102 of the liquid crystal panel 10 and a midpoint of at least one side, for example, at least one image acquisition area 11, 12, 13, 14 and at least one image
  • the regions 21, 22, 23, 24 are collected to simultaneously provide information about liquid crystal unfilling and liquid crystal puncturing.
  • the image acquisition area TP includes four corners of the display area 102 of the liquid crystal panel 10 and a midpoint of four sides, for example, eight image acquisition areas 11, 12, 13, 14, 21 shown in FIG. 5C. 22, 23, 24.
  • the image capture device 600 illustrated in FIG. 4 includes only one movable scan lens 600, and an image of the liquid crystal panel 10 at one or more image acquisition regions TP is completed by the movable scan lens. collection.
  • the image capture device 600 illustrated in FIG. 4 includes a plurality of movable scan lenses 600, each of which corresponds in position to each image acquisition region TP of the liquid crystal panel 10, respectively. And image acquisition of a liquid crystal panel 10 at a plurality of image acquisition regions TP is simultaneously performed by these movable scanning lenses 600.
  • the image capture device 600 includes a plurality of sets of movable scan lenses 600 to simultaneously perform image acquisition of the plurality of liquid crystal panels 10 at the plurality of image acquisition regions TP.
  • each set of movable scanning lenses includes 8 movable scanning lenses, respectively corresponding to the image capturing regions 11, 12, 13, 14, 21, 22, 23, 24 shown in FIG. 5C
  • such an image capturing device 600 facilitates image acquisition of eight image acquisition regions of one or more liquid crystal panels simultaneously. This reduces image acquisition time, increases the sampling base to provide accurate detection results, and facilitates automated inspection.
  • the movable scanning lens 600 described above is implemented using a microscopic device such as a microscope.
  • the movable scanning lens 600 captures a microscopic image of the liquid crystal panel 10.
  • Fig. 6 is a view schematically showing a photomicrograph of a liquid crystal panel collected by an image pickup device.
  • the photomicrograph is an image of the liquid crystal panel 10 acquired by the image capture device 600 in the image acquisition area 11 shown in Figs. 5A, 5B, and 5C.
  • the area of the overall rectangular shape in the photomicrograph corresponds to the pixel unit in the liquid crystal panel 10.
  • the lower right portion of the photomicrograph is brighter, i.e., has a higher gray value.
  • the upper left portion of the photomicrograph is darker, that is, has a lower gray value.
  • the upper left portion is considered to be an image abnormal region, that is, a region where the grayscale value is different from the region that has been filled with the liquid crystal.
  • the injection control device 400 adjusts the liquid crystal injection device 300 to reduce the area of the image abnormal region.
  • the predetermined area is the area of 5, 10 or 20 pixel units, depending on the application scenario.
  • FIG. 7 is a view schematically showing a liquid crystal pattern provided by an embodiment of the present invention, which corresponds to the cross-sectional view shown in FIG. 2A.
  • the liquid crystal injection device 300 performs liquid crystal injection in the display region 102 of the first substrate 100, thereby forming a liquid crystal pattern including a plurality of liquid crystal droplets 120 arranged in a matrix.
  • the liquid crystal droplets 125 closest to the upper left corner of the sealant 110 in the liquid crystal pattern are separated from the two sides of the corner by D 1 and D 2 , respectively.
  • the parameters such as the liquid crystal diffusion time remain unchanged, the diffusion distance of the liquid crystal remains unchanged.
  • the distance between the liquid crystal drop 125 and the upper left corner In the case of being larger than the above diffusion distance, the upper left corner will not be filled with the liquid crystal.
  • By reducing the distance between the liquid crystal drop 125 and the upper left corner make the diffused liquid crystal as close as possible to the upper left corner. when When it is equal to the diffusion distance of the liquid crystal, the liquid crystal finally diffuses to the upper left corner of the sealant 110.
  • the distance between the liquid crystal droplets 125 and the corners of the display region 102 is adjusted such that the diffused liquid crystals reach at least the corners of the display region 102. This liquid crystal diffusion result does not cause the phenomenon that the liquid crystal is not filled, and is acceptable.
  • FIG. 8 is a schematic diagram showing a liquid crystal diffusion detecting apparatus according to an embodiment of the present invention.
  • the image capture device 650 includes a rotatable polarizing member 655.
  • the polarizing member 655 is a polarizer.
  • the polarizing member 655 is detachably coupled to the image capture device 650. That is, when the polarizing member 655 is not connected to the image pickup device 650, the liquid crystal diffusion detecting device shown in FIG. 8 is functionally identical to the liquid crystal diffusion detecting device shown in FIG.
  • the image processing device 700 analyzes the image acquired by the image capture device 650 to determine the puncture distance of the liquid crystal.
  • FIG. 9 schematically shows a photomicrograph of the liquid crystal panel 10 acquired by the image capture device 650.
  • the photomicrograph is shown by image acquisition device 650 in Figures 5B and 5C
  • the image of the liquid crystal panel 10 acquired by the image acquisition area 22.
  • the regular grids perpendicular to each other in the photomicrograph correspond to the wirings in the liquid crystal panel 10.
  • the sealant 110 has a width w.
  • the liquid crystal invades the sealant 110 from left to right.
  • the puncture distance of the liquid crystal is herein defined as the distance that the liquid crystal diffuses beyond the inside of the applied sealant 110, that is, ⁇ d as shown.
  • the injection control device 400 reduces the liquid crystal diffusion time T to reduce the puncture distance.
  • the puncture distance of the liquid crystal is determined by comparing different regions in the image acquired in the same image acquisition region, or comparing the same region among the plurality of images acquired in different image acquisition regions.
  • the predetermined distance is 1/3 or 1/2 of the width w of the sealant 110, depending on the application scenario.
  • the diffusion process of the liquid crystal mainly includes three stages.
  • the first stage is the process from the time when the liquid crystal has just dropped on the first substrate to the process of the counter-cable process.
  • the liquid crystal is diffused in an open environment, and mainly diffuses on the first substrate 100 by the gravity of the liquid crystal itself.
  • the height of the liquid crystal droplets 120 on the first substrate 100 is gradually lowered, and the surface area is increased.
  • the liquid crystal diffusion follows the fluid diffusion model.
  • the second stage is during the box process.
  • the liquid crystal is subjected to the pressing action of the first substrate 100 and the second substrate 200 in a vacuum state, and rapidly diffuses to most of the region of the liquid crystal panel 10.
  • the liquid crystal may not diffuse to the sides and corners of the liquid crystal panel 10.
  • the liquid crystal diffusion follows the vacuum diffusion model.
  • the third stage is the diffusion of the liquid crystal after the box process.
  • the diffusion of the liquid crystal between the first substrate 100 and the second substrate 200 mainly depends on the surface tension of the liquid crystal itself, and gradually spreads to various corners in the space surrounded by the sealant.
  • the liquid crystal diffusion follows the parallel plate diffusion model.
  • is the viscosity coefficient of the liquid crystal
  • is the surface tension coefficient of the liquid crystal
  • b is the distance between the two substrates of the liquid crystal panel, and It is the wetting angle of the liquid crystal.
  • the liquid crystal diffusion detecting apparatus further includes a first light source 810.
  • the first light source 810 is disposed on the same side of the liquid crystal panel 10 as the image capture device 650, and provides oblique illumination to the image capture device 650 at the image capture region TP.
  • the liquid crystal diffusion detecting device further includes a second light source 820.
  • the second light source 820 is disposed on the opposite side of the liquid crystal panel 10 from the image capture device 650, providing back illumination to the image capture device 650 at the image capture region TP.
  • the first source 810 and the second source 820 provide appropriate illumination for detection of liquid crystal unfilled and/or liquid crystal puncturing.
  • FIG. 10 is a schematic diagram showing a liquid crystal panel manufacturing apparatus provided by an embodiment of the present invention.
  • the liquid crystal panel manufacturing apparatus 1000 includes a liquid crystal injection device 300 and a liquid crystal diffusion detecting device as described above.
  • the liquid crystal diffusion detecting apparatus includes an image capturing device 600, an image processing device 700, and an injection control device 400, as shown in FIG.
  • the liquid crystal diffusion detecting apparatus includes an image pickup device 650 provided with a polarizing member 655, an image processing device 700, and an injection control device 400, as shown in FIG.
  • the liquid crystal diffusion detecting apparatus further includes a first light source 810 and a second light source 820 for providing auxiliary illumination.
  • FIG. 11 is a schematic diagram showing a liquid crystal diffusion detecting method provided by an embodiment of the present invention.
  • the method includes the steps of: S100: acquiring an image of the liquid crystal panel in an image acquisition area on a liquid crystal panel; and S200, analyzing the acquired image to determine an area of the image abnormal region, wherein the image abnormal region represents An area in the liquid crystal panel where the liquid crystal does not diffuse
  • the method further includes the following steps: S300, the area of the abnormal region of the image is larger than When the area is predetermined, the liquid crystal injection device is adjusted to reduce the area of the abnormal region of the image, for example, the liquid crystal injection device is adjusted to reduce the liquid crystal injection point closest to the corner of the sealant and the two sides of the corner One or both of them.
  • the method further includes the following steps: S400: acquiring an image of the liquid crystal panel in an image capturing area on the liquid crystal panel by using a polarizing member; and S500, analyzing the collected image to determine a puncture distance of the liquid crystal And S600, when the puncture distance is greater than a predetermined distance, reducing the liquid crystal diffusion time T to reduce the puncture distance.
  • step S600 includes: reducing the liquid crystal diffusion time T
  • is the viscosity coefficient of the liquid crystal
  • ⁇ d is the puncture distance of the liquid crystal
  • is the surface tension coefficient of the liquid crystal
  • b is the distance between the two substrates of the liquid crystal panel, and It is the wetting angle of the liquid crystal.
  • the image acquisition area is determined on the liquid crystal panel that completes the box process.
  • An image of the liquid crystal panel is acquired in the image acquisition area. It is judged whether the gray value at the image capturing area satisfies the condition, and if not, the first light source and the second light source are adjusted such that the gray value at the image capturing area satisfies the condition.
  • the acquired image is analyzed to determine the area of the image anomaly area.
  • the area of the image abnormal region is less than, for example, 5 pixels, it is determined that liquid crystal is not filled in the liquid crystal panel.
  • the liquid crystal injection device is adjusted to reduce the area of the image abnormal region.
  • the image acquisition area is determined on the liquid crystal panel that completes the box process.
  • An image of the liquid crystal panel is acquired in the image acquisition area using a polarizing member. It is judged whether the gray value at the image capturing area satisfies the condition, and if not, the first light source and the second light source are adjusted such that the gray value at the image capturing area satisfies the condition.
  • the acquired image is analyzed to determine the puncturing distance of the liquid crystal. When the puncture distance is less than 1/3 of the width w of the sealant, for example, it is determined that liquid crystal puncture does not occur in the liquid crystal panel.
  • the liquid crystal diffusion time T is decreased to reduce the puncture distance.
  • the liquid crystal panel 10 shown in FIG. 3 may further include other components such as a spacer between the first substrate 100 and the second substrate 200.
  • the liquid crystal diffusion detecting apparatus shown in FIGS. 4 and 8 may further include other means such as a driving means for driving the image pickup devices 600, 650.
  • ODF liquid crystal dropping
  • a liquid crystal diffusion detecting apparatus including an image pickup device and an image processing device.
  • the image capture device collects an image of the liquid crystal panel in an image acquisition area on the liquid crystal panel.
  • the image processing device analyzes the acquired image to determine an area of the image abnormal region, and the image abnormal region represents a region in the liquid crystal panel to which the liquid crystal is not diffused.
  • the liquid crystal diffusion detecting device detects defects related to liquid crystal diffusion in the liquid crystal panel after the sealant is cured, and the detection result is fed back for adjusting liquid crystal injection and diffusion parameters to eliminate the defect.
  • the above-mentioned defects associated with liquid crystal diffusion include liquid crystal unfilling and/or liquid crystal puncturing, which may cause defects such as peripheral mura and Line Zara.
  • a liquid crystal panel manufacturing apparatus including the above liquid crystal diffusion detecting apparatus and a liquid crystal diffusion detecting method.
  • the computer readable storage medium is, for example, a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种液晶扩散检测设备包括图像采集装置(600、650)和图像处理装置(700)。图像采集装置(600、650)在液晶面板(10)上的图像采集区域(TP、11、12、13、14、21、22、23、24)采集所述液晶面板(10)的图像。图像处理装置(700)分析所采集的图像以确定图像异常区域的面积,并且所述图像异常区域表示所述液晶面板(10)中液晶未扩散到的区域。该液晶扩散检测设备在封框胶(110、115)固化之后检测液晶面板中与液晶扩散有关的缺陷,并且该检测结果被反馈用于调整液晶注入和扩散参数以消除该缺陷。还公开了一种包括该液晶扩散检测设备的液晶面板制作设备和一种液晶扩散检测方法。

Description

液晶扩散检测设备和方法以及液晶面板制作设备 技术领域
本发明涉及显示技术领域,并且具体涉及一种液晶扩散检测设备和方法以及一种液晶面板制作设备。
背景技术
目前液晶显示器成为当前显示器市场的主导产品。液晶显示器的主要结构为液晶面板,其包括阵列基板、彩膜基板、液晶层等。在液晶面板的对盒工艺中,在阵列基板显示区域的周边涂覆封框胶,在封框胶围起的空间内注入(inject)液晶,以及将彩膜基板与阵列基板对盒。接着固化封框胶以形成液晶面板(也称为液晶盒)。
在对盒工艺中,液晶会扩散不到封框胶围起的空间的边缘,特别是四个角落,从而发生未被液晶填充现象,简称液晶未填充(Not Fill)。当液晶面板的周边出现液晶未填充时,液晶层在液晶面板中分布不均匀,影响液晶面板的良品率和显示效果。
在对盒工艺中,液晶受到挤压而在封框胶围起的空间内快速扩散,使得未固化或未完全固化的用于对液晶进行密封的封框胶可能受到液晶冲击。彩膜基板和阵列基板之间的真空环境使得二者被相向挤压,加剧液晶对封框胶的冲击。液晶冲击封框胶的现象简称液晶穿刺。这会导致封框胶发生形变或断裂,封框胶粘接力下降,封框胶污染液晶等问题。这些问题也会影响液晶面板的良品率和画面品质。
发明内容
本发明实施例旨在提供一种液晶扩散检测设备和方法以及一种液晶面板制作设备,其在封框胶固化之后检测液晶面板中与液晶扩散有关的缺陷,检测结果被反馈用于调整液晶注入和扩散参数以消除该缺陷。
本发明的一实施例提供了一种液晶扩散检测设备,包括图像采集装置,其配置成在液晶面板上的图像采集区域采集所述液晶面板的图像;以及图像处理装置,其配置成分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散 到的区域。
在此实施例的液晶扩散检测设备中,在对盒工艺和封框胶固化之后,图像处理装置分析由图像采集装置采集的液晶面板的图像,确定该图像中的图像异常区域的面积,由此确定液晶面板中液晶未扩散到的区域。图像处理装置的分析结构被反馈用于调整液晶注入和扩散参数以消除与液晶扩散有关的缺陷。
在本发明一实施例中,液晶扩散检测设备还包括注入控制装置,其配置成在所述图像异常区域的面积大于预定面积时,调整液晶注入装置以减小所述图像异常区域的面积。
在此实施例的液晶扩散检测设备中,当该图像异常区域的面积大于预定面积时,判定出现液晶未填充的现象。这种情况下,注入控制装置调整液晶注入装置以减小图像异常区域的面积,从而减轻或消除液晶未填充的现象,并且改善液晶面板的良品率和显示效果。根据此实施例的液晶扩散检测设备有利于在应用于实际生产时提高生产效率,改善液晶面板质量,并且减少人工劳动。
在本发明一实施例中,所述图像采集区域围绕所述液晶面板的显示区域分布,以及所述图像采集区域包括所述显示区域的至少一个角落。在一实施例中,所述图像采集区域包括所述显示区域的至少一条边的中点。在一实施例中,所述图像采集区域包括所述显示区域的四个角落和四条边的中点。
在此实施例的液晶扩散检测设备中,图像采集区域围绕液晶面板的显示区域分布,使得图像采集装置在该图像采集区域采集的图像包括液晶面板的显示区域的边缘以及封框胶的附近区域,由此提供关于液晶未填充和/或液晶穿刺的信息。
在本发明一实施例中,所述图像采集装置包括一组或多组可移动扫描镜头,其中每一组可移动扫描镜头中的每个可移动扫描镜头分别对应于每个所述图像采集区域。
在此实施例的液晶扩散检测设备中,图像采集装置仅仅包括一个可移动扫描镜头,并且由该可移动扫描镜头完成在一个或多个图像采集区域处对液晶面板的图像采集。在一实施例中,图像采集装置包括多个可移动扫描镜头,每个可移动扫描镜头分别对应于液晶面板的每个图像采集区域,并且由这些可移动扫描镜头同时完成对一个液晶面 板在多个图像采集区域处的图像采集。在一实施例中,图像采集装置包括多组可移动扫描镜头,每组可移动扫描镜头包括多个可移动扫描镜头,每个可移动扫描镜头分别对应于液晶面板的每个图像采集区域,并且由该多组可移动扫描镜头同时完成对多个液晶面板在多个图像采集区域处的图像采集。根据此实施例的液晶扩散检测设备有利于同时采集多组图像,从而减少图像采集时间,提高采样基数并且提供准确检测结果。根据此实施例的液晶扩散检测设备还有利于实现自动化的检测。在示例性实施例中,可移动扫描镜头的位置通过设备的处方(Recipe)来设置和控制。
在本发明一实施例中,所述图像异常区域的面积为所采集的图像中灰度异常区域的面积。
在此实施例的液晶扩散检测设备中,在所采集的图像中根据相对于液晶面板中心的位置确定液晶扩散到的区域。在图像采集区域采集的图像不仅包括液晶面板的显示区域,而且包括封框胶的附近区域。例如,在所采集的图像中,靠近液晶面板中心的区域相对于远离液晶面板中心的区域通常更容易被液晶填充。当远离液晶面板中心的区域的灰度不同于靠近液晶面板中心的区域的灰度时,判定存在灰度异常,并且判定所述远离液晶面板中心的区域未被液晶填充。通常,利用诸如显微镜的显微装置采集液晶面板的灰度显微图像,使得该液晶扩散检测设备易于实施。
在本发明一实施例中,所述预定面积为所述液晶面板中5个像素单元的面积。
在此实施例的液晶扩散检测设备中,当所采集的图像中灰度异常区域的面积大于例如5个像素的预定面积时,判定出现液晶未填充的现象。此处的像素单元是指液晶面板中的像素。在一实施例中,该预定面积根据实际生产情况而手动调整,使得该液晶扩散检测设备更为机动灵活。
在本发明一实施例中,所述注入控制装置配置成调整所述液晶注入装置以减小最靠近封框胶的角落的液晶注入点与所述角落的两条边的距离其中之一或二者。
在此实施例的液晶扩散检测设备中,当判定出现液晶未填充的现象时,该液晶扩散检测设备通过注入控制装置对液晶注入装置进行调 整。例如,当该液晶注入装置为液晶滴注(One drop fill,ODF)装置时,调整该液晶滴注装置的所滴注的液晶图案(LC pattern)。例如,通过使液晶滴注装置的最靠近封框胶的角落的滴注点靠近该角落,使得在该滴注点滴注的液晶滴靠近该角落,由此减小该液晶滴与该角落的距离,从而减小或消除液晶未填充的现象。类似地,当该液晶注入装置为喷墨(inkjet)装置时,通过使喷墨装置的最靠近封框胶的角落的喷墨点靠近该角落,由此减小该喷墨点与该角落的距离,从而减小或消除液晶未填充的现象。
在本发明一实施例中,所述图像采集装置还配备有可旋转的偏光部件。
在此实施例的液晶扩散检测设备中,通过增加可旋转的偏光部件,通过旋转该偏光部件,以便观察和采集与液晶穿刺有关的图像。在一实施例中,该偏光部件为偏光片。例如,该偏光片可拆卸地连接到该图像采集装置。
在本发明一实施例中,所述图像处理装置还配置成分析所采集的图像以确定液晶的穿刺距离;以及所述注入控制装置还配置成在所述穿刺距离大于预定距离时,减小液晶扩散时间T以减小所述穿刺距离。
在此实施例的液晶扩散检测设备中,图像处理装置分析所采集的图像以判定是否出现液晶穿刺的现象。例如,通过比较在同一图像采集区域中采集的图像中的不同区域,或者比较在不同图像采集区域中采集的多幅图像中的同一区域,确定液晶的穿刺距离。当该穿刺距离大于预定距离时,注入控制装置减小液晶扩散时间T以减小该穿刺距离。这种情况下,注入控制装置调整液晶扩散时间或液晶图案,从而减轻或消除液晶穿刺的现象,并且改善液晶面板的良品率和显示效果。根据此实施例的液晶扩散检测设备有利于在应用于实际生产时提高生产效率,改善液晶面板质量,并且减少人工劳动。应指出,调整液晶图案中最靠近封框胶的角落的液晶注入点与该角落的距离也有助于减小穿刺距离,尽管效果比调整液晶扩散时间T的效果弱很多。
在本发明一实施例中,所述预定距离为所述封框胶的宽度的1/3。
在此实施例的液晶扩散检测设备中,当所确定的穿刺距离大于例如封框胶的宽度的1/3时,判定出现液晶穿刺的现象。在一实施例中,该预定距离根据实际生产情况而手动调整,使得该液晶扩散检测设备 更为机动灵活。
在本发明一实施例中,所述注入控制装置还配置成在所述穿刺距离大于预定距离时,减小液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。
在此实施例的液晶扩散检测设备中,当穿刺距离大于预定距离时,注入控制装置减小液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。通常,液晶扩散过程主要分为下述3个阶段:(i)从液晶滴下到对盒工艺;(ii)对盒工艺;以及(iii)从对盒工艺的结束到封框胶固化工艺的开始。经过实际生产验证,上述第(iii)阶段是影响液晶穿刺的主要阶段。因此,在此实施例中,主要考虑上述第(iii)阶段。对盒工艺通常是在真空条件下进行的,因此上述扩散时间T=T1+T2也表示封框胶固化工艺相对于对盒工艺的时间延迟。从这一点上说,扩散时间T=T1+T2也称为调整工艺延迟时间(process delay time)。
在本发明一实施例中,所述注入控制装置配置成将所述液晶扩散时间T减小
Figure PCTCN2016096179-appb-000001
其中μ为液晶的黏度系数,Δd为液晶的穿刺距离,σ为液晶的表面张力系数,b为液晶面板的两个基板之间的距离,以及
Figure PCTCN2016096179-appb-000002
为液晶的润湿角。
在此实施例的液晶扩散检测设备中,采用上述液晶扩散时间的经验公式,其中该经验公式是基于流体的黏性定律以及流体流动的Washburn模型。在此实施例的液晶扩散检测设备中,当判定出现液晶穿刺的现象时,根据穿刺距离而量化地减小液晶扩散时间。
在本发明一实施例中,液晶扩散检测设备还包括:第一光源,其布置在所述液晶面板的与所述图像采集装置的同侧,并配置成在所述图像采集区域处为所述图像采集装置提供斜向照明;以及第二光源,其布置在所述液晶面板的与所述图像采集装置的相对侧,并配置成在所述图像采集区域处为所述图像采集装置提供背部照明。
在此实施例的液晶扩散检测设备中,利用辅助的第一光源和第二光源,为液晶未填充和液晶穿刺的检测提供适当的照明。
本发明一实施例提供了一种液晶面板制作设备,包括液晶注入装置以及如上所述的液晶扩散检测设备。
本发明此实施例的液晶面板制作设备具有与上文所述的液晶扩散检测设备相同或相似的益处,此处不再赘述。
本发明一实施例提供了一种液晶扩散检测方法,包括下述步骤:在液晶面板上的图像采集区域采集所述液晶面板的图像;分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散到的区域;以及在所述图像异常区域的面积大于预定面积时,调整液晶注入装置以减小所述图像异常区域的面积。
在本发明一实施例中,调整液晶注入装置以减小所述图像异常区域的面积的步骤包括:调整所述液晶注入装置以减小最靠近封框胶的角落的液晶注入点与所述角落的两条边的距离其中之一或二者。
在本发明一实施例中,该方法还包括下述步骤:利用偏光部件在液晶面板上的图像采集区域采集所述液晶面板的图像;分析所采集的图像以确定液晶的穿刺距离;以及在所述穿刺距离大于预定距离时,减小液晶扩散时间T以减小所述穿刺距离。
在本发明一实施例中,减小液晶扩散时间T以减小所述穿刺距离的步骤包括:减小液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。
在本发明一实施例中,减小液晶扩散时间T以减小所述穿刺距离的步骤包括:将所述液晶扩散时间T减小
Figure PCTCN2016096179-appb-000003
其中μ为液晶的黏度系数,Δd为液晶的穿刺距离,σ为液晶的表面张力系数,b为液晶面板的两个基板之间的距离,以及
Figure PCTCN2016096179-appb-000004
为液晶的润湿角。
本发明此实施例的液晶扩散检测方法具有与上文所述的液晶扩散检测设备的各实施例相同或相似的益处,此处不再赘述。
本发明的实施例公开了一种液晶扩散检测设备,其包括图像采集装置和图像处理装置。图像采集装置在液晶面板上的图像采集区域采集所述液晶面板的图像。图像处理装置分析所采集的图像以确定图像异常区域的面积,并且所述图像异常区域表示所述液晶面板中液晶未扩散到的区域。本发明的实施例还公开包括上述液晶扩散检测设备的液晶面板制作设备以及一种液晶扩散检测方法。该液晶扩散检测设备在封框胶固化之后检测液晶面板中与液晶扩散有关的缺陷,并且该检测结果被反馈用于调整液晶注入和扩散参数以消除该缺陷。
应理解,以上的一般描述和下文的细节描述仅是示例性和解释性的,并非旨在以任何方式限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1为对盒之后且切割之前的液晶面板的示意图;
图2A和2B为液晶面板的示意剖面图;
图3为本发明实施例提供的液晶面板的示意性剖面图;
图4为本发明实施例提供的液晶扩散检测设备的示意图;
图5A、图5B和图5C为本发明实施例提供的图像采集区域的示意图;
图6为本发明实施例提供的图像采集装置采集的液晶面板的图像;
图7为本发明实施例提供的液晶图案的示意图;
图8为本发明实施例提供的液晶扩散检测设备的示意图;
图9为本发明实施例提供的图像采集装置采集的液晶面板的图像;
图10为本发明实施例提供的液晶面板制作设备的示意图;以及
图11为本发明实施例提供的液晶扩散检测方法的流程图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域普通技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例的技术方案作进一步地详细描述。
附图中示出的部件或元素标注如下:10液晶面板;100第一基板;102显示区域;104***区域;110、115封框胶;120、125液晶滴;130、135液晶层;200第二基板;300液晶注入装置;400注入控制装置;500支撑部件;600、650图像采集装置;655偏光部件;700图像处理装置;TP、11、12、13、14、21、22、23、24图像采集区域; D1、D2液晶注入点与液晶面板的侧边之间的距离;810第一光源;820第二光源;1000液晶面板制作设备;Δd液晶穿刺距离;w封框胶的宽度。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
请参考图1、图2A和图2B,图1为对盒之后且切割之前的液晶面板的示意图,图2A和2B为液晶面板的示意剖面图,其中图2A和2B为沿图1中A-B线截取的剖面图。
如所示,首先提供第一基板100,其中该第一基板100包括显示区域102以及围绕显示区域102的***区域104。接着在该第一基板100的***区域104中涂布封框胶110。然后如图2A所示,进行液晶滴注(ODF)工艺,将液晶从液晶注入装置300滴入第一基板100的显示区域102中以形成多个呈矩阵形状排列的液晶滴120。接着,如图2B所示,提供第二基板200,并且利用封框胶110将第二基板200与第一基板100对盒。随后,通过诸如紫外线固化的方式将封框胶110固化,由此完成对盒工艺。得到的液晶面板10示于图2B和图1。
通常,第一基板100和第二基板200诸如玻璃的透明材料形成。第一基板100为阵列基板,并且第二基板200为彩膜基板。可替换地,第一基板100为彩膜基板,并且第二基板200为阵列基板。
为了清楚起见,图1中未示出第二基板200。如所示,第一基板100上包括多个呈矩阵方式布置的液晶面板10。经过切割工艺之后,即可得到图2B所示的单个液晶面板10。
在上述工艺过程之后,各个液晶滴120扩散并且相互结合,由此形成介于第一基板100和第二基板200之间的液晶层135。如图2B所示,液晶层135在左侧未完全填充显示区域102,出现液晶未填充现象。在液晶面板10工作时,该区域出现显示不良。此外,如图2B所示,液晶层135在右侧冲击未固化的封框胶115,使得封框胶115发生形变或断裂,出现液晶穿刺的现象。在液晶面板10使用过程中,该区域封框胶115的粘接力下降,液晶受到封框胶115的污染,并且液晶面板10的良品率和画面品质降低。
本申请的发明人认识到,液晶的扩散在液晶面板的质量控制中起着重要作用。一方面,液晶过度扩散会出现液晶穿刺,较严重的液晶穿刺会造成周边Mura、抛光过程产生Line Zara等不良。另一方面,液晶扩散不足会产生未填充不良。
本申请的发明人还认识到,通过提供一种液晶未填充和/或穿刺的检测设备和方法,提供关于液晶未填充和/或液晶穿刺的数据,并且利用该数据调整上游工艺以减轻或消除液晶未填充和/或液晶穿刺。这有助于避免批次不良高发,提高液晶面板的良品率,降低制作成本。
本发明的一实施例提供了一种液晶扩散检测设备,包括图像采集装置,其配置成在液晶面板上的图像采集区域采集所述液晶面板的图像;以及图像处理装置,其配置成分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散到的区域。该液晶扩散检测设备在封框胶固化之后检测液晶面板中与液晶扩散有关的缺陷,并且该检测结果被反馈用于调整液晶注入和扩散参数以消除该缺陷。
下面结合附图具体说明本发明实施例提供的液晶扩散检测设备、液晶面板制作设备和液晶扩散检测方法的具体实施方式。
图3示意性示出本发明实施例提供的液晶面板的剖面图。与图2B类似,图3也是沿图1中A-B线截取的剖面图。图3示出了液晶面板10经过封框胶固化工艺之后液晶层130的理想分布状态。如所示,经过封框胶固化工艺之后,液晶层130连续地分布在第一基板100和第二基板200之间并且恰好完全填充由封框胶110围成的空间,这意味着没有出现液晶未填充的现象。此外,封框胶110规则完整并且没有发生任何形变或断裂,这意味着没有出现液晶穿刺的现象。
本领域普通技术人员将理解,图3所示仅仅是液晶层130的一种理想分布状态。在具体应用中,液晶层130的分布接近该理想分布状态即可。例如,在一示例性实施例中,液晶层130连续地分布在第一基板100和第二基板200之间,液晶层130的边缘至少到达显示区域102的边缘即可。在该实施例中,液晶层130不一定接触封框胶110,并且液晶层130的边缘与封框胶110的距离相等或者不相等。
图4示意性示出本发明实施例提供的液晶扩散检测设备的结构图。如所示,该液晶扩散检测设备包括图像采集装置600。液晶面板10由支撑部件500支撑。图像采集装置600在液晶面板10上的图像采集区域TP采集液晶面板10的图像。该液晶扩散检测设备还包括图像处理装置700。图像处理装置700分析所采集的图像,从而确定该图像中异常区域的面积。该图像异常区域表示液晶面板10中液晶未扩散到的区域。该液晶扩散检测设备还包括注入控制装置400。当图像异常区域的面积大于预定面积时,注入控制装置400调整液晶注入装置300(参考图2A)以减小图像异常区域的面积。当该图像异常区域的面积大于预定面积时,判定出现液晶未填充的现象。这种情况下,注入控制装置400调整液晶注入装置300以减小图像异常区域的面积,从而减轻或消除液晶未填充的现象,并且改善液晶面板10的良品率和显示效果。
图5A、图5B和图5C示意性示出本发明实施例提供的图像采集区域TP在液晶面板10上的分布。
通常,图像采集区域TP围绕液晶面板10的显示区域102分布,使得图像采集装置600在图像采集区域TP采集的图像包括液晶面板10的显示区域101的边缘以及封框胶110的附近区域,由此提供与液晶面板10中液晶扩散有关的信息,例如,有关液晶未填充和/或液晶穿刺的信息。
在一示例性实施例中,图像采集区域TP包括液晶面板10的显示区域102的至少一个角落。如图5A所示,图像采集区域TP包括图像采集区域11、12、13、14中的至少一个。通常,液晶面板10的四个角落容易发生液晶未填充的现象。图5A所示的图像采集区域11、12、13、14有利于提供关于液晶未填充的信息。
在一示例性实施例中,图像采集区域TP包括液晶面板10的显示区域102的至少一条边上的点,例如边的中点。如图5B所示,图像采 集区域TP包括图像采集区域21、22、23、24中的至少一个。通常,液晶面板10的四条边容易发生液晶穿刺的现象。图5B所示的图像采集区域21、22、23、24有利于提供关于液晶穿刺的信息。
在一示例性实施例中,图像采集区域TP包括液晶面板10的显示区域102的至少一个角落以及至少一条边的中点,例如,至少一个图像采集区域11、12、13、14以及至少一个图像采集区域21、22、23、24,从而同时提供关于液晶未填充和液晶穿刺的信息。在一示例中,图像采集区域TP包括液晶面板10的显示区域102的四个角落和四条边的中点,例如,图5C所示的八个图像采集区域11、12、13、14、21、22、23、24。
在一示例性实施例中,图4所示的图像采集装置600仅仅包括一个可移动扫描镜头600,并且由该可移动扫描镜头完成在一个或多个图像采集区域TP处对液晶面板10的图像采集。
在一示例性实施例中,图4所示的图像采集装置600包括一组多个可移动扫描镜头600,每个可移动扫描镜头分别在位置上对应于液晶面板10的每个图像采集区域TP,并且由这些可移动扫描镜头600同时完成对一个液晶面板10在多个图像采集区域TP处的图像采集。在一示例中,图像采集装置600包括多组可移动扫描镜头600,从而同时完成对多个液晶面板10在多个图像采集区域TP处的图像采集。例如,当每组可移动扫描镜头包括8个可移动扫描镜头时,分别对应于图5C所示的图像采集区域11、12、13、14、21、22、23、24,这样的图像采集装置600有利于同时对一个或多个液晶面板的八个图像采集区域进行图像采集。这减少了图像采集时间,提高采样基数以提供准确检测结果,并且有利于实现自动化的检测。
在一示例性实施例中,上述可移动扫描镜头600利用诸如显微镜的显微装置实现。可移动扫描镜头600采集液晶面板10的显微图像。
图6示意性示出图像采集装置采集的液晶面板的显微照片。该显微照片是由图像采集装置600在图5A、5B和5C所示的图像采集区域11采集的液晶面板10的图像。该显微照片中整体呈矩形形状的区域对应于液晶面板10中的像素单元。如所示,显微照片的右下部分较亮,即,具有较高的灰度值。相比之下,由于液晶未扩散到该图像采集区域的左上部分,显微照片的左上部分较暗,即,具有较低的灰度值。 在此示例中,左上部分被认为是图像异常区域,即,灰度值与已被液晶填充的区域不同的区域。当该图像异常区域的面积大于预定面积时,判定出现液晶未填充的现象。这种情况下,注入控制装置400调整液晶注入装置300以减小图像异常区域的面积。将理解,该预定面积为5、10或20个像素单元的面积,具体视应用场景而定。
以下结合图7描述本发明实施例的液晶未填充的补正原理。图7示意性示出本发明实施例提供的液晶图案,其对应于图2A所示的剖面图。如所示,在液晶注入工艺中,液晶注入装置300在第一基板100的显示区域102中进行液晶注入,从而形成包括以矩阵方式排列的多个液晶滴120的液晶图案。
例如,液晶图案中最靠近封框胶110的左上角落的液晶滴125与该角落的两条边的距离分别为D1、D2。诸如液晶扩散时间的参数保持不变时,液晶的扩散距离保持不变。在液晶滴125与左上角落的距离
Figure PCTCN2016096179-appb-000005
大于上述扩散距离的情况下,左上角落将不被液晶填充。通过减少液晶滴125与左上角落的距离
Figure PCTCN2016096179-appb-000006
使得扩散后的液晶尽量靠近左上角落。当
Figure PCTCN2016096179-appb-000007
等于液晶的扩散距离时,液晶最后扩散到封框胶110的左上角落。
本领域普通技术人员将理解,通过减小距离D1、D2其中之一或二者,即可减小液晶滴125与封框胶110的角落的距离
Figure PCTCN2016096179-appb-000008
在可替换实施例中,通过调整液晶滴125与显示区域102(如图2A所示)的角落的距离,使得扩散后的液晶至少到达显示区域102的角落。这种液晶扩散结果不会导致液晶未填充的现象,是可接受的。
图8示意性示出本发明实施例提供的液晶扩散检测设备。图8所示实施例与图4所示实施例的区别包括,图像采集装置650包括可旋转的偏光部件655。通过旋转该偏光部件655,利用图像采集装置650提供与液晶穿刺有关的图像。例如,该偏光部件655为偏光片。在一示例中,该偏光部件655可拆卸地连接到图像采集装置650。也就是说,当偏光部件655不连接到图像采集装置650时,图8所示的液晶扩散检测设备在功能上与图4所示液晶扩散检测设备相同。
图像处理装置700分析由图像采集装置650采集的图像以确定液晶的穿刺距离。图9示意性示出图像采集装置650采集的液晶面板10的显微照片。该显微照片是由图像采集装置650在图5B和5C所示的 图像采集区域22采集的液晶面板10的图像。该显微照片中相互垂直的规则网格对应于液晶面板10中的布线。封框胶110具有宽度w。液晶从左到右侵入封框胶110。液晶的穿刺距离在此定义为液晶扩散超出所涂布的封框胶110的内侧的距离,即,图示的Δd。
当该穿刺距离Δd大于预定距离时,注入控制装置400减小液晶扩散时间T以减小该穿刺距离。例如,通过比较在同一图像采集区域中采集的图像中的不同区域,或者比较在不同图像采集区域中采集的多幅图像中的同一区域,确定液晶的穿刺距离。例如,该预定距离为封框胶110的宽度w的1/3或1/2,具体视应用场景而定。当所确定的穿刺距离大于该预定距离时,判定出现液晶穿刺的现象。
以下结合描述本发明实施例的液晶穿刺的补正原理。
在液晶面板制作期间,液晶的扩散过程主要包括3个阶段。
第一个阶段是从液晶刚刚滴在第一基板上到对盒工艺之前的过程。在此阶段,液晶是在开放的环境中进行扩散,主要依靠液晶自身的重力作用在第一基板100上扩散。液晶滴120在第一基板100上的高度慢慢降低,并且表面积增大。在此阶段,液晶扩散遵从流体扩散模型。
第二个阶段是对盒工艺期间。在此阶段,液晶在真空状态下受到第一基板100和第二基板200的挤压作用,迅速地扩散到液晶面板10的大部分区域。液晶可能未扩散到液晶面板10的侧边以及角落。在此阶段,液晶扩散遵从真空扩散模型。
第三个阶段是对盒工艺之后液晶的扩散。液晶在第一基板100和第二基板200之间的扩散主要依靠液晶自身的表面张力,逐渐在封框胶围起的空间内扩散至各个角落。在此阶段,液晶扩散遵从平行板扩散模型。
经过实际生产验证,上述第三个阶段是影响液晶穿刺的主要阶段。即,液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。
根据流体的黏性定律以及流体流动的Washburn模型,在平行板扩散模型中,液晶在时间T的位置d写成:
Figure PCTCN2016096179-appb-000009
其中μ为液晶的黏度系数,σ为液晶的表面张力系数,b为液晶面 板的两个基板之间的距离,以及
Figure PCTCN2016096179-appb-000010
为液晶的润湿角。
基于上述等式,当图像处理装置700确定液晶的穿刺距离为Δd时,通过将液晶扩散时间T减少
Figure PCTCN2016096179-appb-000011
即可消除该液晶穿刺。
以PI 6514和LC F013的ADS(Advanced Super Dimension Switch,高级超维场转换技术)产品为例,下面的表1给出了影响液晶扩散时间T=T1+T2的各参数的值。
Figure PCTCN2016096179-appb-000012
本领域普通技术人员将理解,通过减小T1、T2其中之一或二者,即可减小液晶扩散时间T=T1+T2,由此减小或消除液晶穿刺。
在图8所示,液晶扩散检测设备还包括第一光源810。第一光源810布置在液晶面板10的与图像采集装置650的同侧,在图像采集区域TP处为图像采集装置650提供斜向照明。液晶扩散检测设备还包括第二光源820。第二光源820布置在液晶面板10的与图像采集装置650的相对侧,在图像采集区域TP处为图像采集装置650提供背部照明。第一光源810和第二光源820为液晶未填充和/或液晶穿刺的检测提供适当的照明。
图10示意性示出本发明实施例提供的液晶面板制作设备。如所示,液晶面板制作设备1000包括液晶注入装置300以及如上所述的液晶扩散检测设备。例如,该液晶扩散检测设备包括图像采集装置600、图像处理装置700以及注入控制装置400,如图4所示。例如,该液晶扩散检测设备包括设有偏光部件655的图像采集装置650、图像处理装置700以及注入控制装置400,如图8所示。如上文所指出,在示例性实施例中,该液晶扩散检测设备还包括用于提供辅助照明的第一光源810和第二光源820。
图11示意性示出本发明实施例提供的液晶扩散检测方法。
如所示,该方法包括步骤:S100、在液晶面板上的图像采集区域采集所述液晶面板的图像;以及S200、分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散到的区域
该方法还包括下述步骤:S300、在所述图像异常区域的面积大于 预定面积时,调整液晶注入装置以减小所述图像异常区域的面积,例如,调整所述液晶注入装置以减小最靠近封框胶的角落的液晶注入点与所述角落的两条边的距离其中之一或二者。
在一示例性实施例中,该方法还包括下述步骤:S400、利用偏光部件在液晶面板上的图像采集区域采集所述液晶面板的图像;S500、分析所采集的图像以确定液晶的穿刺距离;以及S600、在所述穿刺距离大于预定距离时,减小液晶扩散时间T以减小所述穿刺距离。例如,步骤S600包括:减小液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。例如,步骤S600包括:将所述液晶扩散时间T减小
Figure PCTCN2016096179-appb-000013
其中μ为液晶的黏度系数,Δd为液晶的穿刺距离,σ为液晶的表面张力系数,b为液晶面板的两个基板之间的距离,以及
Figure PCTCN2016096179-appb-000014
为液晶的润湿角。
以下详细描述液晶未填充的示例性检测方法。在完成对盒工艺的液晶面板上确定图像采集区域。在该图像采集区域采集液晶面板的图像。判断图像采集区域处的灰度值是否满足条件,如果不满足,则调整第一光源和第二光源以使图像采集区域处的灰度值满足条件。在图像采集区域处的灰度值满足条件的情况下,分析所采集的图像以确定图像异常区域的面积。在图像异常区域的面积小于例如5个像素时,判定液晶面板中未出现液晶未填充。在图像异常区域的面积大于例如5个像素时,调整液晶注入装置以减小图像异常区域的面积。
以下详细描述液晶穿刺的示例性检测方法。在完成对盒工艺的液晶面板上确定图像采集区域。利用偏光部件在该图像采集区域采集液晶面板的图像。判断图像采集区域处的灰度值是否满足条件,如果不满足,则调整第一光源和第二光源以使图像采集区域处的灰度值满足条件。在图像采集区域处的灰度值满足条件的情况下,分析所采集的图像以确定液晶的穿刺距离。在穿刺距离小于例如封框胶的宽度w的1/3时,判定液晶面板中未出现液晶穿刺。在穿刺距离大于例如封框胶的宽度w的1/3时,减小液晶扩散时间T以减小所述穿刺距离。应指出,上文结合液晶扩散检测设备的各实施例描述的特征同样适用于液晶扩散检测方法。附图以及上述具体实施方式仅仅图示或描述与本发明实施例的技术方案有关的部件或要素,而忽略了与这些技术方案不 相关的部件或要素。图3所示的液晶面板10还可包括其它部件,例如位于第一基板100和第二基板200之间的隔垫物。图4和图8所示的液晶扩散检测设备还可包括其它装置,例如用于驱动图像采集装置600、650的驱动装置。还应指出,除了液晶滴注(ODF)工艺,本发明实施例公开的技术方案同样适用于例如喷墨(inkjet)的液晶填充方式。
上文公开了一种液晶扩散检测设备,其包括图像采集装置和图像处理装置。图像采集装置在液晶面板上的图像采集区域采集所述液晶面板的图像。图像处理装置分析所采集的图像以确定图像异常区域的面积,并且所述图像异常区域表示所述液晶面板中液晶未扩散到的区域。该液晶扩散检测设备在封框胶固化之后检测液晶面板中与液晶扩散有关的缺陷,并且该检测结果被反馈用于调整液晶注入和扩散参数以消除该缺陷。上述与液晶扩散有关的缺陷包括液晶未填充和/或液晶穿刺,这些缺陷可能导致比如周边mura和Line Zara等不良。上文还公开了一种包括上述液晶扩散检测设备的液晶面板制作设备以及一种液晶扩散检测方法。
需要注意的是,在不冲突的前提下,上述实施例中的特征可以任意组合使用。本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分流程可以通过计算机程序指令相关硬件来完成,所述的计算机程序存储于计算机可读存储介质中,该计算机程序在执行时可包括如上述各方法的实施例的流程。该计算机可读存储介质例如为磁盘、光盘、只读存储器(ROM)或随机存取存储器(RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何本领域普通技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (20)

  1. 一种液晶扩散检测设备,包括:
    图像采集装置,其配置成在液晶面板上的图像采集区域采集所述液晶面板的图像;以及
    图像处理装置,其配置成分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散到的区域。
  2. 根据权利要求1所述的液晶扩散检测设备,其特征在于还包括:
    注入控制装置,其配置成在所述图像异常区域的面积大于预定面积时,调整液晶注入装置以减小所述图像异常区域的面积。
  3. 根据权利要求1所述的液晶扩散检测设备,其中
    所述图像采集区域围绕所述液晶面板的显示区域分布,以及
    所述图像采集区域包括所述显示区域的至少一个角落。
  4. 根据权利要求3所述的液晶扩散检测设备,其中
    所述图像采集区域包括所述显示区域的至少一条边的中点。
  5. 根据权利要求4所述的液晶扩散检测设备,其中
    所述图像采集装置包括一组或多组可移动扫描镜头,其中每一组可移动扫描镜头中的每个可移动扫描镜头分别对应于每个所述图像采集区域。
  6. 根据权利要求1所述的液晶扩散检测设备,其中
    所述图像异常区域的面积为灰度异常区域的面积。
  7. 根据权利要求6所述的液晶扩散检测设备,其中
    所述预定面积为所述液晶面板中5个像素单元的面积。
  8. 根据权利要求1所述的液晶扩散检测设备,其中
    所述注入控制装置配置成调整所述液晶注入装置以减小最靠近封框胶的角落的液晶注入点与所述角落的两条边的距离其中之一或二者。
  9. 根据权利要求1所述的液晶扩散检测设备,其中
    所述图像采集装置还配备有可旋转的偏光部件;以及
    所述图像处理装置配置成分析所采集的图像以确定液晶的穿刺距离。
  10. 根据权利要求9所述的液晶扩散检测设备,其中
    所述注入控制装置配置成在所述穿刺距离大于预定距离时,减小液晶扩散时间T以减小所述穿刺距离。
  11. 根据权利要求10所述的液晶扩散检测设备,其中
    所述预定距离为所述封框胶的宽度的1/3。
  12. 根据权利要求10所述的液晶扩散检测设备,其中
    所述注入控制装置还配置成在所述穿刺距离大于预定距离时,减小液晶扩散时间T=T1+T2
    其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。
  13. 根据权利要求12所述的液晶扩散检测设备,其中
    所述注入控制装置配置成将所述液晶扩散时间T减小
    Figure PCTCN2016096179-appb-100001
    其中μ为液晶的黏度系数,Δd为液晶的穿刺距离,σ为液晶的表面张力系数,b为液晶面板的两个基板之间的距离,以及
    Figure PCTCN2016096179-appb-100002
    为液晶的润湿角。
  14. 根据权利要求1所述的液晶扩散检测设备,还包括:
    第一光源,其布置在所述液晶面板的与所述图像采集装置的同侧,并配置成在所述图像采集区域处为所述图像采集装置提供斜向照明;以及
    第二光源,其布置在所述液晶面板的与所述图像采集装置的相对侧,并配置成在所述图像采集区域处为所述图像采集装置提供背部照明。
  15. 一种液晶面板制作设备,包括液晶注入装置以及如权利要求1-14中任意一项所述的液晶扩散检测设备。
  16. 一种液晶扩散检测方法,包括下述步骤:
    在液晶面板上的图像采集区域采集所述液晶面板的图像;以及
    分析所采集的图像以确定图像异常区域的面积,其中所述图像异常区域表示所述液晶面板中液晶未扩散到的区域。
  17. 根据权利要求16所述的液晶扩散检测方法,还包括步骤:
    在所述图像异常区域的面积大于预定面积时,调整所述液晶注入装置以减小最靠近封框胶的角落的液晶注入点与所述角落的两条边的 距离其中之一或二者。
  18. 根据权利要求16所述的液晶扩散检测方法,还包括下述步骤:
    利用偏光部件在液晶面板上的图像采集区域采集所述液晶面板的图像;
    分析所采集的图像以确定液晶的穿刺距离;以及
    在所述穿刺距离大于预定距离时,减小液晶扩散时间T以减小所述穿刺距离。
  19. 根据权利要求18所述的液晶扩散检测方法,其中
    减小液晶扩散时间T以减小所述穿刺距离的步骤包括:减小液晶扩散时间T=T1+T2,其中T1为对盒工艺后停留在真空状态的时长,以及其中T2为从真空状态结束到封框胶固化开始之间的时长。
  20. 根据权利要求19所述的液晶扩散检测方法,其中
    减小液晶扩散时间T以减小所述穿刺距离的步骤包括:将所述液晶扩散时间T减小
    Figure PCTCN2016096179-appb-100003
    其中μ为液晶的黏度系数,Δd为液晶的穿刺距离,σ为液晶的表面张力系数,b为液晶面板的两个基板之间的距离,以及
    Figure PCTCN2016096179-appb-100004
    为液晶的润湿角。
PCT/CN2016/096179 2016-04-22 2016-08-22 液晶扩散检测设备和方法以及液晶面板制作设备 WO2017181567A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/539,127 US10495905B2 (en) 2016-04-22 2016-08-22 Apparatus and method for detecting liquid crystal diffusion and apparatus for fabricating liquid crystal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610253255.8A CN105739137A (zh) 2016-04-22 2016-04-22 液晶扩散检测设备和方法以及液晶面板制作设备
CN201610253255.8 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017181567A1 true WO2017181567A1 (zh) 2017-10-26

Family

ID=56254821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096179 WO2017181567A1 (zh) 2016-04-22 2016-08-22 液晶扩散检测设备和方法以及液晶面板制作设备

Country Status (3)

Country Link
US (1) US10495905B2 (zh)
CN (1) CN105739137A (zh)
WO (1) WO2017181567A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739137A (zh) 2016-04-22 2016-07-06 京东方科技集团股份有限公司 液晶扩散检测设备和方法以及液晶面板制作设备
JP2018180169A (ja) * 2017-04-07 2018-11-15 大日本印刷株式会社 調光フィルム及び調光フィルムの製造方法
CN107526195A (zh) * 2017-09-25 2017-12-29 京东方科技集团股份有限公司 一种液晶穿刺检测设备及其检测方法
CN116880101B (zh) * 2023-07-21 2024-01-30 湖南日光显示技术有限公司 一种va型lcd显示屏及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10333162A (ja) * 1997-05-29 1998-12-18 Seiko Instr Inc 液晶注入装置および液晶注入方法
JP2000275596A (ja) * 1999-03-26 2000-10-06 Ricoh Co Ltd セル検査装置及びセル検査方法
KR20020088219A (ko) * 2001-05-18 2002-11-27 삼성전자 주식회사 액정 주입 장치 및 이를 사용한 액정 표시 장치의 제조 방법
US20050099586A1 (en) * 2003-11-08 2005-05-12 Lg.Philips Lcd Co., Ltd. Pattern mask, liquid crystal injection process, and method of fabricating LCD device using the same
CN202939383U (zh) * 2012-11-19 2013-05-15 京东方科技集团股份有限公司 一种检测装置及液晶滴注设备
CN103454790A (zh) * 2013-08-22 2013-12-18 合肥京东方光电科技有限公司 一种检测装置、液晶滴注***及液晶滴注控制方法
KR20140000445A (ko) * 2012-06-22 2014-01-03 하이디스 테크놀로지 주식회사 액정퍼짐조절 패턴부를 이용한 액정적하장치 및 방법
CN105137670A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 液晶滴注***及控制方法
CN105739137A (zh) * 2016-04-22 2016-07-06 京东方科技集团股份有限公司 液晶扩散检测设备和方法以及液晶面板制作设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448044B1 (ko) * 2000-12-01 2004-09-10 비오이 하이디스 테크놀로지 주식회사 액정 패널 구조
CN2583626Y (zh) * 2002-01-21 2003-10-29 中华映管股份有限公司 平面显示基板的框胶幅宽的检查装置
JP2005128519A (ja) * 2003-09-30 2005-05-19 Seiko Epson Corp シール剤検査装置およびその方法、電気光学装置の製造方法
JP2007156103A (ja) * 2005-12-05 2007-06-21 Victor Co Of Japan Ltd 液晶表示素子の液晶封止装置及びその液晶封止方法
KR101023949B1 (ko) * 2008-08-08 2011-03-28 주식회사 탑 엔지니어링 기판검사정보를 이용한 디스펜서의 페이스트 도포 방법
KR20130124027A (ko) * 2012-05-04 2013-11-13 주식회사 탑 엔지니어링 액정 적하 상태 검사 장치, 및 이를 구비한 액정 디스펜서
KR20130125631A (ko) * 2012-05-09 2013-11-19 주식회사 탑 엔지니어링 액정 적하 상태 검사 장치, 및 이를 구비한 액정 디스펜서

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10333162A (ja) * 1997-05-29 1998-12-18 Seiko Instr Inc 液晶注入装置および液晶注入方法
JP2000275596A (ja) * 1999-03-26 2000-10-06 Ricoh Co Ltd セル検査装置及びセル検査方法
KR20020088219A (ko) * 2001-05-18 2002-11-27 삼성전자 주식회사 액정 주입 장치 및 이를 사용한 액정 표시 장치의 제조 방법
US20050099586A1 (en) * 2003-11-08 2005-05-12 Lg.Philips Lcd Co., Ltd. Pattern mask, liquid crystal injection process, and method of fabricating LCD device using the same
KR20140000445A (ko) * 2012-06-22 2014-01-03 하이디스 테크놀로지 주식회사 액정퍼짐조절 패턴부를 이용한 액정적하장치 및 방법
CN202939383U (zh) * 2012-11-19 2013-05-15 京东方科技集团股份有限公司 一种检测装置及液晶滴注设备
CN103454790A (zh) * 2013-08-22 2013-12-18 合肥京东方光电科技有限公司 一种检测装置、液晶滴注***及液晶滴注控制方法
CN105137670A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 液晶滴注***及控制方法
CN105739137A (zh) * 2016-04-22 2016-07-06 京东方科技集团股份有限公司 液晶扩散检测设备和方法以及液晶面板制作设备

Also Published As

Publication number Publication date
US10495905B2 (en) 2019-12-03
US20180217417A1 (en) 2018-08-02
CN105739137A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2017181567A1 (zh) 液晶扩散检测设备和方法以及液晶面板制作设备
JP3971318B2 (ja) 液晶表示パネルの検査装置及び検査方法
KR101232136B1 (ko) 액정셀의 휘점불량을 리페어하는 방법, 그 방법을 이용한액정표시소자의 제조방법, 및 그 방법에 의해 리페어된액정표시소자
US7714978B2 (en) Method for cutting liquid crystal display panel and method for fabricating liquid crystal display panel using the same
KR101803967B1 (ko) 액정표시패널의 절단 휠, 액정표시패널의 절단방법 및 액정표시장치의 제조방법
KR20050066346A (ko) 액정 표시 장치의 제조 라인 및 제조 방법
KR20150000580A (ko) 엘이디 백라이트 시스템을 이용한 액정 디스플레이 패널의 광학영상검사시스템
KR20070006480A (ko) 실 라인 검사 장치 및 이를 이용한 실 라인 검사 방법
US7688418B2 (en) Liquid crystal display panel
KR100722163B1 (ko) 기판 검사 장치
KR101034923B1 (ko) 오토 프로브 검사장비 및 이를 이용한 검사방법
KR102514380B1 (ko) 편광판 부착 장치 및 부착 방법
KR20140058710A (ko) 표시장치용 비전검사 시스템 및 이의 검사방법
KR102063680B1 (ko) 표시 패널의 검사 장치 및 검사 방법
JP2008145755A (ja) 液晶表示素子の製造方法
WO2006075462A1 (ja) 液晶表示パネルの製造装置および液晶表示パネルの製造方法
KR101849570B1 (ko) 표시 패널의 제조방법
JP2008304832A (ja) 点欠陥修正装置、液晶装置の製造方法
CN109739035B (zh) 剥离检测***及液晶面板的剥离检测方法
KR20120003330A (ko) 액정표시소자 및 액정표시소자 검사방법
KR20090006456A (ko) 액정패널 검사장치 및 검사방법
TW201827787A (zh) 檢測方法及其檢測裝置
KR20080001502A (ko) 액정표시패널의 제조방법
KR20100093938A (ko) 액정표시패널의 제조방법
KR20070071277A (ko) 액정표시소자의 중력불량 검사시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15539127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899154

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899154

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16899154

Country of ref document: EP

Kind code of ref document: A1