WO2017181496A1 - 冷凝器以及具有它的冰箱 - Google Patents

冷凝器以及具有它的冰箱 Download PDF

Info

Publication number
WO2017181496A1
WO2017181496A1 PCT/CN2016/084157 CN2016084157W WO2017181496A1 WO 2017181496 A1 WO2017181496 A1 WO 2017181496A1 CN 2016084157 W CN2016084157 W CN 2016084157W WO 2017181496 A1 WO2017181496 A1 WO 2017181496A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing pipe
condensing
pipe sections
pipe section
duct
Prior art date
Application number
PCT/CN2016/084157
Other languages
English (en)
French (fr)
Inventor
郭小春
陈平川
唐涛
胡海宏
黄群
李晓军
Original Assignee
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 合肥华凌股份有限公司
Priority to PL16899083T priority Critical patent/PL3339772T3/pl
Priority to EP16899083.6A priority patent/EP3339772B1/en
Publication of WO2017181496A1 publication Critical patent/WO2017181496A1/zh
Priority to US16/025,723 priority patent/US10808986B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers

Definitions

  • the present invention relates to the field of refrigeration technology, and in particular to a condenser and a refrigerator having the same.
  • refrigerator refrigeration systems currently use the following two configurations of condensers for heat dissipation:
  • the chip condenser is placed in the compressor compartment of the refrigerator. Since the heat dissipation area of the chip condenser is small, the air supply device is at a distance from the condenser, and the size of the air supply device is limited by the size of the compressor cabin space, which is easy to cause poor heat dissipation and is not suitable for refrigerators of various specifications.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, the present invention proposes a condenser that has a good heat dissipation effect and a compact and reasonable arrangement.
  • the invention also proposes a refrigerator having the condenser.
  • a condenser includes: a duct, the air duct defining an air duct; a blowing device, the air blowing device being fixedly coupled to the air duct; and a condensing member, the condensing member There is a refrigerant inlet and a refrigerant outlet, the condensing member being at least partially located within the air passage.
  • the condenser according to the embodiment of the first aspect of the present invention not only has a good heat dissipation effect, but also has a compact and reasonable arrangement and has better versatility.
  • the condensing member includes a plurality of first condensing pipe segments sequentially distributed and communicating with each other along an axial direction of the duct, each of the first condensing pipe segments being spirally formed by the first condensing duct, and The spiral of each first condensing pipe section is located on the same annular surface.
  • each of the first condensing pipe segments is located on the same inner ring and the outer side is located on the same outer ring, the inner rings of the plurality of first condensing pipe segments are coaxially disposed and the The outer rings of the plurality of first condensing pipe sections are coaxially disposed.
  • the surrounding centers of the adjacent first condensing pipe segments are coaxially disposed and the diameters of the surrounding centers of the two are different; when the number of the first condensing pipe segments is two or more, each of the first condensing The diameter of the circumference of the pipe section and the first condensing pipe section adjacent thereto is the same.
  • the inner diameter of the duct is larger than the diameter of the outer ring.
  • the second condensing pipe section is formed by a second condensing duct spirally surrounding a central axis of the duct.
  • the second condensing pipe section is sequentially connected to the plurality of the first condensing pipe sections, the refrigerant inlet is formed on the second condensing pipe section, and the refrigerant outlet is formed in a plurality of One of the first condensing pipe sections, or the refrigerant outlet is formed on the second condensing pipe section and the refrigerant inlet is formed on one of the plurality of the first condensing pipe sections.
  • the upper end of the second condensing pipe section is connected to the uppermost first condensing pipe section, and the upper first condensing pipe section is connected to the adjacent lower first condensing pipe section, the cooling A reagent inlet is formed on one of the second condensing pipe section and the lowermost one of the first condensing pipe sections and the refrigerant outlet is formed on the other.
  • the condensing member includes a plurality of third condensing pipe segments sequentially disposed from the outside to the inside, the adjacent two third condensing pipe segments are in communication with each other, and each of the third condensing pipe segments is condensed by the third condensing
  • the tube is formed spirally around the central axis of the duct.
  • the spiral of each of the third condensing pipe segments is substantially on the same cylindrical surface, and when the number of the third condensing pipe segments is two or more, the spiral of the adjacent two third condensing pipe segments The difference in diameter of the cylindrical surface where the line is located is a fixed value.
  • the spiral of each of the third condensing pipe segments is substantially on the same conical surface, and the spiral of each of the third condensing pipe segments gradually extends inward from the top to the bottom, the air duct The inner diameter gradually decreases from top to bottom, and the air duct is spaced from the outermost third condensation tube section.
  • an inlet and an outlet of each of the third condensing pipe sections are formed at an uppermost end and a lowermost end, respectively, and an inlet of the third condensing pipe section of the adjacent two third condensing pipe sections and another The outlets of the three condensing pipe sections are relatively and in communication.
  • a refrigerator according to an embodiment of the second aspect of the present invention includes the condenser.
  • the refrigerator has a compressor compartment for housing at least a compressor, and the air blowing device is fixed into the compressor compartment by a mounting bracket.
  • FIG. 1 is a perspective view of a condenser in accordance with an embodiment of the present invention.
  • FIG. 2 is a top plan view of a condenser in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic exploded view of a condenser in accordance with an embodiment of the present invention.
  • FIG. 4 is a perspective view of a condensing member of a condenser in accordance with an embodiment of the present invention.
  • Figure 5 is a top plan view of a condensing member of a condenser in accordance with an embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view of a condensing member of a condenser in accordance with an embodiment of the present invention.
  • Figure 7 is a perspective view of a condensing member of a condenser in accordance with still another embodiment of the present invention.
  • Figure 8 is a top plan view of a condensing member of a condenser in accordance with still another embodiment of the present invention.
  • FIG. 9 is a top plan view of a condenser in accordance with yet another embodiment of the present invention.
  • Figure 10 is a partial cross-sectional view showing a condenser in accordance with still another embodiment of the present invention.
  • Figure 11 is a schematic cross-sectional view of a duct of a condenser in accordance with an embodiment of the present invention.
  • Figure 12 is a top plan view of a blower of a condenser in accordance with an embodiment of the present invention.
  • Figure 13 is a front elevational view of a blower of a condenser in accordance with an embodiment of the present invention.
  • Figure 14 is a schematic illustration of a mounting bracket for a condenser in accordance with an embodiment of the present invention.
  • Condenser 100 air duct 10, air duct 11, foot 12, mounting hole 121, through hole 13, air supply device 20, condensing member 30, refrigerant inlet a, refrigerant outlet b, first condensing pipe section 31, A ring 311, an outer ring 312, a center 313, a second condensing pipe section 32, a third condensing pipe section 33, and a mounting bracket 20.
  • a condenser 100 according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 through 14.
  • a condenser 100 includes a duct 10, a blower 20, and a condensing member 30.
  • An air duct 11 is defined in the air duct 10, and the air blowing device 20 is fixedly connected to the air duct 10, and the condensing member 30 has a refrigerant inlet a and a refrigerant outlet b, and the condensing member 30 is at least partially located in the air duct 11.
  • the condenser 100 of the first aspect of the present invention by integrating the air blowing device 20, the air duct 10, and the refrigerating member, the air duct 11 is forcibly ventilated by the air blowing device 20, so that the outside air is regularly entered.
  • the air passage 11 is heat exchanged with the condensing member 30 located in the air duct 11, so that the heat of the condensing member 30 is quickly and uniformly distributed, and the heat dissipation effect of the condenser 100 is remarkably enhanced; and the overall arrangement of the condenser 100 is more compact and reasonable, and is suitable for many applications.
  • the condensing member 30 includes a plurality of first condensing pipe segments 31 sequentially distributed and communicating with each other along the axial direction of the air duct 10, each of the first condensing pipe segments 31 being The first condensing duct is formed spirally, and the spiral of each of the first condensing duct sections 31 is located on the same annular surface.
  • the torus refers to a rotating surface formed by a circle or an ellipse around a circle with which it does not intersect.
  • the spiral of the first condensing pipe section 31 is the spiral trajectory of the first condensing pipe.
  • the toroids in which the plurality of first condensation pipe segments 31 are located are sequentially distributed from one end of the air duct 10 to the other end in the air duct 11 .
  • Each of the first condensing pipe sections 31 communicates with at least one of the other first condensing pipe sections 31 to enable refrigerant to flow through each of the first condensing pipe sections 31.
  • each first condensing pipe section 31 is located on the same inner ring 311 and the outer side is located on the same outer ring 312, and the inner rings 311 of the plurality of first condensing pipe sections 31 are coaxially arranged. And the outer rings 312 of the plurality of first condensing pipe segments 31 are coaxially disposed. Thereby, the flow of the airflow in the duct 11 is made more uniform, and the heat exchange with the first duct section 31 is more uniform.
  • the surrounding centers 313 of the adjacent first condensing pipe sections 31 are coaxially disposed and the diameters of the surrounding centers 313 are different.
  • each of the first condensing pipe segments 31 has the same diameter as the surrounding center 313 of the first condensing pipe segment 31 adjacent thereto.
  • the surrounding center 313 of the first condensing pipe section 31 refers to the first cold The central axis of the annulus where the helix of the condenser section 31 is located.
  • the present invention is not limited thereto, and in other embodiments, the diameters of the surrounding centers 313 of the plurality of first condensing pipe segments 31 may be the same.
  • the inner diameter of the duct 10 may be greater than the diameter of the outer ring 312.
  • a gap is formed between the inner wall of the air duct 10 and each of the first condensing pipe sections 31, and the phenomenon that the contact between the first condensing pipe section 31 and the air duct 10 is prevented from being sufficiently heat exchange is prevented.
  • the condensing member 30 further includes a second condensing pipe section 32 communicating with at least one of the plurality of first condensing pipe sections 31, and the second condensing pipe section 32 is located at a plurality of first The inside of the tube section 31 is condensed.
  • the second condensing pipe section 32 is located inside the inner ring 311 of the plurality of first condensing pipe sections 31, and the top end of the second condensing pipe section 32 may be flush with the top end of the uppermost first condensing pipe section 31, and the second condensing pipe section The bottom end of 32 may be flush with the bottom end of the lowermost first condensing pipe section 31.
  • the added second condensing pipe section 32 reasonably utilizes the space inside each of the first condensing pipe sections 31, improves the effective heat exchange area of the condenser 100, and has better heat dissipation effect.
  • the second condensing tube section 32 is formed by a second condensing tube spirally surrounding the central axis of the duct 10.
  • the second condensing pipe section 32 adopts the above structure, so that the airflow in the middle of the air duct 11 (the airflow in the middle of the air duct 11 flows substantially in the axial direction of the air duct 10) is substantially perpendicular to the pipe wall of the second condenser 100 pipe.
  • the heat dissipation effect at the second condensing pipe section 32 is better, and the accumulation of heat at the second condensing pipe section 32 is avoided.
  • the second condensing pipe section 32 is sequentially connected to the plurality of first condensing pipe sections 31, the refrigerant inlet a is formed on the second condensing pipe section 32, and the refrigerant outlet b is formed in the plurality of first condensing pipe sections 31.
  • the second condensing pipe section 32 is sequentially connected to the plurality of first condensing pipe sections 31, the refrigerant outlet b is formed on the second condensing pipe section 32, and the refrigerant inlet a is formed in the plurality of first condensing pipe sections One of the 31.
  • the second condensing pipe section 32 and the plurality of first condensing pipe sections 31 are sequentially connected, and the refrigerant sequentially flows through the respective condensing pipe sections. Thereby, the refrigerant flows in one direction in the first condenser and the second condenser.
  • the heat exchange effect of the condenser 100 is better.
  • the upper end of the second condensing pipe section 32 is connected to the uppermost first condensing pipe section 31, and the upper first condensing pipe section 31 is connected to the adjacent lower first condensing pipe section 31, the refrigerant inlet a is formed on one of the second condensing pipe section 32 and the lowermost first condensing pipe section 31, and the refrigerant outlet b is formed on the other of the second condensing pipe section 32 and the lowermost first condensing pipe section 31.
  • the general flow tendency of the refrigerant is first internal and then external (or external or internal), and the heat dissipation effect is better.
  • the condensing member 30 includes a plurality of third condensing pipe segments 33 which are sequentially disposed from the outside to the inside.
  • the adjacent two third condensing pipe segments 33 are in communication with each other, and each of the third condensing pipe segments 33 is spirally surrounded by the third condensing pipe.
  • the central axis is formed.
  • the spiral of each of the third condensing pipe segments 33 is substantially on the same cylindrical surface, and when the number of the third condensing pipe segments 33 is two or more, the adjacent two third condensing
  • the difference in diameter of the cylindrical surface on which the spiral of the pipe section 33 is located is a fixed value.
  • each third condensing pipe section 33 can also be substantially on the same conical surface, and the spiral of each third condensing pipe section 33 gradually extends inward and downward from the top to the bottom, and the inner diameter of the air duct 10 is from top to bottom. Gradually, there is a gap between the duct 10 and the outermost third condensing duct section 33. In this way, the shape of the air duct 10 can provide guidance for the in and out of the outside air, so that the outside air can enter and exit the air duct 11 more quickly and smoothly, thereby improving the heat exchange effect.
  • each third condensing pipe section 33 are respectively formed at the uppermost end and the lowermost end, and the adjacent two third condensing pipe sections 33, one of the inlets of the third condensing pipe section 33 and the other third The outlets of the condensing pipe sections 33 are opposite and in communication.
  • the refrigerant flows from top to bottom (or from bottom to top) on each of the third condensing pipe sections 33, and sequentially from the inside to the outside (or from the outside to the inside) between the adjacent two third condensing pipe sections 33.
  • the transfer improves the heat exchange effect of the condenser 100.
  • the vertical direction is consistent with the axial direction of the air duct 10, and the end of the air duct 11 (or the air duct 10) adjacent to the air blowing device 20 is defined as a lower end, away from the air blowing device 20.
  • One end is the upper end.
  • the air blowing device 20 can introduce the airflow from the upper end of the air duct 10 and the lower end, and can also introduce the airflow from the lower end of the air duct 10 and the upper end.
  • the diameters of the first to third condenser tubes, the thickness of the tube wall, the length of the tubes, and the material of the tubes all affect the cooling efficiency and service life of the condenser 100, and can be matched according to the model specifications of the refrigerator.
  • the pipelines of the first to third condensing pipes can be made of metal pipes (such as copper pipes, aluminum pipes, iron pipes, etc.), and have good thermal conductivity and pressure resistance, and the inner and outer surfaces of the respective condensing pipes can be plated. Anti-corrosion treatment.
  • the air duct 10 may be a surface-treated metal (such as a galvanized steel sheet or a stainless steel plate) or a heat-resistant flame-retardant plastic molded piece. As shown in FIG. 11, the bottom of the air duct 10 has a mounting foot 12 for connection with a fan, and the mounting foot 12 has a mounting hole 121, and the air blowing device 20 and the foot 12 are fixed by bolting.
  • a surface-treated metal such as a galvanized steel sheet or a stainless steel plate
  • a heat-resistant flame-retardant plastic molded piece As shown in FIG. 11, the bottom of the air duct 10 has a mounting foot 12 for connection with a fan, and the mounting foot 12 has a mounting hole 121, and the air blowing device 20 and the foot 12 are fixed by bolting.
  • the air blowing device 20 can adopt a miniature DC fan, and the DC fan can be used for the exhaust type or the suction type, and the power and specifications are matched according to the model specifications of the refrigerator and the size of the condenser tube.
  • the air blowing device 20 is fixed to the refrigeration device by a mounting bracket 40.
  • a refrigerator according to an embodiment of the second aspect of the present invention includes the condenser 100 of the above embodiment.
  • the refrigerator of the condenser 100 has a better cooling effect.
  • the refrigerant absorbs the internal temperature of the refrigerator cabinet in the evaporator of the refrigerator, it is compressed into high temperature and high pressure steam by the compressor, and sent to the condenser 100.
  • the condenser 100 dissipates heat to the outside air, and condenses the high temperature and high pressure steam into a liquid refrigerant.
  • the throttling device is throttled and sent to the evaporator.
  • the refrigerant is boiled and evaporated due to the pressure drop, and the heat of the cooled object in the tank is absorbed to generate a cooling effect, and the refrigerant vapor is sent to the compressor again. , so cycle back and forth.
  • the refrigerator has a compressor compartment for housing at least a compressor, and the blower 20 is secured within the compressor compartment by a mounting bracket 40. Therefore, the space inside the compressor cabin is rationally utilized, and when the whole machine is working, efficient exchange of heat between the refrigerant and the external environment is realized, and the refrigeration efficiency is improved.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

提供一种冷凝器(100)以及具有其的冰箱。冷凝器(100)包括:风管(10),风管(10)内限定出风道(11);送风装置(20),送风装置(20)与风管(10)固定连接;以及冷凝件(30),冷凝件(30)具有制冷剂进口(a)和制冷剂出口(b),冷凝件(30)至少部分地位于风道(11)内。

Description

冷凝器以及具有它的冰箱 技术领域
本发明涉及制冷技术领域,具体而言,涉及一种冷凝器以及具有它的冰箱。
背景技术
目前,目前冰箱制冷***通常采用以下两种结构的冷凝器进行散热:
1、将冷凝管道粘贴在冰箱外壳内壁,通过冰箱金属外壳传热、散热。采用该结构,由于冷凝管贴覆在冰箱外壳内表面,会造成冰箱表面温度高,导致冰箱外壳与内胆的温差增加,增加了冰箱外壳向冰箱内热量传递的速度,严重影响箱体保温性能;同时为了增加散热效果,需要增长冷凝管长度,增加成本。
2、将片状冷凝器紧固在冰箱背面,通过环境空气自然冷却散发热量,达到制冷目的。采用该结构,片状冷凝器固定在冷箱背部,不仅影响冰箱的美观性,而且冷凝器的散热面积小且仅采用自然散热方式散热,冷却效率不高,影响产品性能。
3、将片状冷凝器设置在冰箱的压缩机舱内。由于片状冷凝器的散热面积小,送风装置距离冷凝器有一段距离,送风装置的尺寸受压缩机舱空间大小的限制,容易导致散热效果差且不适用于多种规格的冰箱。
因此,急需一种散热效果好、布置紧凑合理的冷凝器。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种散热效果好、布置紧凑合理的冷凝器。
本发明还提出了一种具有该冷凝器的冰箱。
根据本发明第一方面实施例的冷凝器包括:风管,所述风管内限定出风道;送风装置,所述送风装置与所述风管固定连接;以及冷凝件,所述冷凝件具有制冷剂进口和制冷剂出口,所述冷凝件至少部分地位于所述风道内。
根据本发明第一方面实施例的冷凝器,不仅散热效果好,而且布置紧凑合理,具有更好的通用性。
根据本发明的一些实施例,所述冷凝件包括多个沿所述风管的轴向依次分布且互相连通的第一冷凝管段,每个第一冷凝管段由第一冷凝管螺旋地形成,且每个第一冷凝管段的螺旋线位于同一环面上。
根据本发明的一个示例,每个所述第一冷凝管段的内侧位于同一内圆环上且外侧位于同一外圆环上,所述多个第一冷凝管段的内圆环同轴设置且所述多个第一冷凝管段的外圆环同轴设置。
根据本发明的一个示例,相邻的第一冷凝管段的环绕中心同轴设置且两者的环绕中心的直径不同;所述第一冷凝管段的个数为两个以上时,每个第一冷凝管段和与之次邻接的第一冷凝管段的环绕中心的直径相同。
根据本发明的一个示例,所述风管的内径大于所述外圆环的直径。
根据本发明的一个示例,所述冷凝件还包括与所述多个第一冷凝管段中的至少一个相连通的第二冷凝管段,所述第二冷凝管段位于所述多个第一冷凝管段的内侧。
根据本发明的一个示例,所述第二冷凝管段由第二冷凝管螺旋地环绕所述风管的中心轴线形成。
根据本发明的一个示例,所述第二冷凝管段与多个所述第一冷凝管段依次连接,所述制冷剂进口形成在所述第二冷凝管段上且所述制冷剂出口形成在多个所述第一冷凝管段中的一个上,或者所述制冷剂出口形成在所述第二冷凝管段上且所述制冷剂进口形成在多个所述第一冷凝管段中的一个上。
根据本发明的一个示例,所述第二冷凝管段的上端与最上方的所述第一冷凝管段相连接,上方的第一冷凝管段与相邻的下方的第一冷凝管段相连接,所述制冷剂进口形成在所述第二冷凝管段和最下方的所述第一冷凝管段中的一个上且所述制冷剂出口形成在另一个上。
根据本发明的一个示例,所述冷凝件包括多个自外向内依次套设的第三冷凝管段,相邻的两个第三冷凝管段彼此连通,每个所述第三冷凝管段由第三冷凝管螺旋地环绕所述风管的中心轴线形成。
根据本发明的一个示例,每个所述第三冷凝管段的螺旋线大***于同一圆柱面上,所述第三冷凝管段的个数为两个以上时,相邻两个第三冷凝管段的螺旋线所在的圆柱面的直径的差值为固定值。
根据本发明的一个示例,每个所述第三冷凝管段的螺旋线大***于同一圆锥面上,每个所述第三冷凝管段的螺旋线自上向下逐渐向内延伸,所述风管的内径自上向下逐渐减小,所述风管与处于最外面的第三冷凝管段之间具有间隔。
根据本发明的一个示例,每个所述第三冷凝管段的进口和出口分别形成在最上端和最下端,相邻的两个第三冷凝管段中其中一个第三冷凝管段的进口与另一个第三冷凝管段的出口相对且连通。
根据本发明的一个示例,所述制冷剂进口和所述制冷剂出口通过位于风管底部的通过 孔伸出所述风管外。
根据本发明第二方面实施例的冰箱,包括所述的冷凝器。
根据本发明的一个示例,所述冰箱具有用于至少容纳压缩机的压缩机舱,所述送风装置通过安装支架固定到所述压缩机舱内。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明一实施例的冷凝器的立体示意图。
图2是根据本发明一实施例的冷凝器的俯视示意图。
图3是根据本发明一实施例的冷凝器的拆分示意图。
图4是根据本发明一实施例的冷凝器的冷凝件的立体示意图。
图5是根据本发明一实施例的冷凝器的冷凝件的俯视示意图。
图6是根据本发明一实施例的冷凝器的冷凝件的剖视示意图。
图7是根据本发明又一实施例的冷凝器的冷凝件的立体示意图。
图8是根据本发明又一实施例的冷凝器的冷凝件的俯视示意图。
图9是根据本发明又一实施例的冷凝器的俯视示意图。
图10是根据本发明又一实施例的冷凝器的局部剖视示意图。
图11是根据本发明实施例的冷凝器的风管的剖视示意图。
图12是根据本发明实施例的冷凝器的送风装置的俯视示意图。
图13是根据本发明实施例的冷凝器的送风装置的主视示意图。
图14是根据本发明实施例的冷凝器的安装支架的示意图。
附图标记:
冷凝器100,风管10,风道11,底脚12,安装孔121,通过孔13,送风装置20,冷凝件30,制冷剂进口a,制冷剂出口b,第一冷凝管段31,内圆环311,外圆环312,环绕中心313,第二冷凝管段32,第三冷凝管段33,安装支架20。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照图1至图14详细描述根据本发明实施例的冷凝器100。
如图1所示,根据本发明第一方面实施例的冷凝器100包括:风管10、送风装置20以及冷凝件30。风管10内限定出风道11,送风装置20与风管10固定连接,冷凝件30具有制冷剂进口a和制冷剂出口b,冷凝件30至少部分地位于风道11内。
根据本发明第一方面实施例的冷凝器100,通过将送风装置20、风管10以及制冷件集成在一起,利用送风装置20对风道11进行强制通风,以使外界空气规律地进入风道11内与位于风道11内的冷凝件30热交换,便于冷凝件30热量的快速、均匀散发,显著增强冷凝器100的散热效果;而且冷凝器100整体布置更紧凑合理、适用于多种规格的冰箱。
可以理解,制冷剂进口a用于通入高温高压的气态制冷剂,气态制冷剂流经冷凝件30并向外界空气散热,以转化成液态制冷剂从制冷剂出口b流出。具体地,送风装置20可以是风扇,风管10的两端均敞开以使外界空气在送风装置20的作用下进出风道11。
根据本发明的一些实施例,如图2和图3所示,冷凝件30包括多个沿风管10的轴向依次分布且互相连通的第一冷凝管段31,每个第一冷凝管段31由第一冷凝管螺旋地形成,且每个第一冷凝管段31的螺旋线位于同一环面上。其中,环面是指圆或椭圆绕与其不相交的直线环绕一圈所形成的旋转面。第一冷凝管段31的螺旋线为第一冷凝管的螺旋轨迹线。
具体而言,多个第一冷凝管段31所在的环面在风道11内自风管10的一端向另一端依次分布。每个第一冷凝管段31与其它的第一冷凝管段31中的至少一个连通以使制冷剂能够流经每个第一冷凝管段31。
由此,每个第一冷凝管段31的螺旋线位于同一环面,从而使每个第一冷凝管段31的第一冷凝管与风道11内气流的流动方向大体一致(风道11内气流的流动方向呈由风管10中心向四周辐射),这样在风道11内的气流由风管10一端向另一端流动时能够充分地与各个第一冷凝管段31接触,增大了换热面积,具有更好的散热效果。此外,多个第一冷凝管段31在轴向上逐层分布,以实现逐层换热,换热效率更高。
如图4和图5所示,每个第一冷凝管段31的内侧位于同一内圆环311上且外侧位于同一外圆环312上,多个第一冷凝管段31的内圆环311同轴设置且多个第一冷凝管段31的外圆环312同轴设置。由此,使气流在风道11内的流动更均匀,进而使其与第一冷凝管段31的换热更均匀。
如图6所示,相邻的第一冷凝管段31的环绕中心313同轴设置且两者的环绕中心313的直径不同。第一冷凝管段31的个数为两个以上时,每个第一冷凝管段31和与之次邻接的第一冷凝管段31的环绕中心313的直径相同。其中,第一冷凝管段31的环绕中心313是指第一冷 凝管段31的螺旋线所在的环面的中心轴线。由此,使气流与各个第一冷凝管段31的接触更充分,提高了换热效果。
本领域技术人员可以理解,本发明并不限于此,在另一些实施例中,多个第一冷凝管段31的环绕中心313的直径可以相同。
为增强每个第一冷凝管段31与风道11内气流的充分换热,风管10的内径可以大于外圆环312的直径。这样,风管10的内壁与每个第一冷凝管段31之间形成间隙,避免了第一冷凝管段31与风管10直接接触造成的接触处不能充分换热的现象发生。
作为优选实施方式,参照图4和图6所示,冷凝件30还包括与多个第一冷凝管段31中的至少一个相连通的第二冷凝管段32,第二冷凝管段32位于多个第一冷凝管段31的内侧。具体地,第二冷凝管段32位于多个第一冷凝管段31的内圆环311内侧,第二冷凝管段32的顶端可以与最上方的第一冷凝管段31的顶端相平齐,第二冷凝管段32的底端可以与最下方的第一冷凝管段31的底端相平齐。
由此,增设的第二冷凝管段32合理利用了每个第一冷凝管段31内部的空间,提高了冷凝器100的有效换热面积,具有更好的散热效果。
在一些实施例中,第二冷凝管段32由第二冷凝管螺旋地环绕风管10的中心轴线形成。由此,第二冷凝管段32采用上述结构,使风道11中部的气流(风道11中部的气流大体沿风管10的轴向流动)大体垂直的与第二冷凝器100管的管壁接触,这样使第二冷凝管段32处的散热效果更好,避免了热量在第二冷凝管段32处的聚集。
根据本发明的一些实施例,第二冷凝管段32与多个第一冷凝管段31依次连接,制冷剂进口a形成在第二冷凝管段32上且制冷剂出口b形成在多个第一冷凝管段31中的一个上。根据本发明的另一些实施例,第二冷凝管段32与多个第一冷凝管段31依次连接,制冷剂出口b形成在第二冷凝管段32上且制冷剂进口a形成在多个第一冷凝管段31中的一个上。
也就是说,第二冷凝管段32以及多个第一冷凝管段31依次连接,制冷剂依次流经各个冷凝管段。由此,制冷剂在第一冷凝管以及第二冷凝管内单向流动。冷凝器100的换热效果更好。
在一个具体实施例中,第二冷凝管段32的上端与最上方的第一冷凝管段31相连接,上方的第一冷凝管段31与相邻的下方的第一冷凝管段31相连接,制冷剂进口a形成在第二冷凝管段32和最下方的第一冷凝管段31中的一个上,且制冷剂出口b形成在第二冷凝管段32和最下方的第一冷凝管段31中的另一个上。这样,制冷剂的大致流动趋势为先内部后外部(或者先外部或内部),散热效果更好。
本领域技术人员可以理解,冷凝件30的管路弯曲形状不限于上述实施例中第一冷凝管段31以及第二冷凝管段32的环绕形状。例如,根据本发明的另一些实施例,如图7所示,冷 凝件30包括多个自外向内依次套设的第三冷凝管段33,相邻的两个第三冷凝管段33彼此连通,每个第三冷凝管段33由第三冷凝管螺旋地环绕风管10的中心轴线形成。
进一步地,如图8至图10所示,每个第三冷凝管段33的螺旋线大***于同一圆柱面上,第三冷凝管段33的个数为两个以上时,相邻两个第三冷凝管段33的螺旋线所在的圆柱面的直径的差值为固定值。由此,风道11内的气流可以在相邻两个第三冷凝管段33之间流动以与相邻两个第三冷凝管段33进行充分换热。
可以理解,每个第三冷凝管段33的螺旋线还可以大***于同一圆锥面上,每个第三冷凝管段33的螺旋线自上向下逐渐向内延伸,风管10的内径自上向下逐渐减小,风管10与处于最外面的第三冷凝管段33之间具有间隔。这样,风管10的形状能够为外界空气的进出提供导向,使外界空气能够更快速、顺畅地进出风道11,提高了换热效果。
可选地,每个第三冷凝管段33的进口和出口分别形成在最上端和最下端,相邻的两个第三冷凝管段33中,其中一个第三冷凝管段33的进口与另一个第三冷凝管段33的出口相对且连通。由此,制冷剂在每个第三冷凝管段33上自上向下流动(或自下向上流动),且依次由内向外(或由外向内)在相邻两个第三冷凝管段33之间传递,提高了冷凝器100的换热效果。
在一些实施例中,制冷剂进口a和制冷剂出口b通过位于风管10底部的通过孔13伸出风管10外。制冷剂进口a与冰箱的压缩机出口相连通,制冷剂出口b与节流装置的进口相连通,由此实现了制冷***内高温高压气态制冷剂的冷凝。
需要说明的是,在上述实施例中,上下方向与风管10的轴向相一致,定义风道11(或风管10上)邻近送风装置20的一端为下端,远离送风装置20的一端为上端。送风装置20可以将气流从风管10的上端引入、下端引出,也可以将气流从风管10的下端引入、上端引出。
第一至第三冷凝管的管径、管壁厚度、管长以及管路的材质均影响冷凝器100的冷却效率和使用寿命,可以根据冰箱型号规格进行匹配设计。其中,第一至第三冷凝管的管路材质可采用金属管路(如铜管、铝管、铁管等),具有良好的导热性和耐压性能,各个冷凝管的内外表面可以经电镀防蚀处理。
风管10可以采用经过表面防锈处理的金属(如镀锌钢板或不锈钢钢板)或者为耐热阻燃塑料成型件。如图11所示,风管10的底部具有用于与风扇连接的安装底脚12,安装底脚12上具有安装孔121,送风装置20与底脚12通过螺栓连接固定在一起。
如图12至图14所示,送风装置20可以采用微型的直流风扇,直流风扇可以使抽风式或吸风式,其功率及规格大小根据冰箱型号规格和冷凝管尺寸进行匹配。送风装置20通过安装支架40固定到制冷设备上。
根据本发明第二方面实施例的冰箱,包括上述实施例的冷凝器100。由此,采用上述冷 凝器100的冰箱具有更好的制冷效果。
制冷剂在冰箱的蒸发器中吸收冰箱箱体内部温度后,经压缩机压缩成为高温高压的蒸汽,被送往冷凝器100,冷凝器100向外界空气散热,将高温高压蒸气冷凝成液态制冷剂,然后经过节流装置节流,送入蒸发器,在蒸发器内制冷剂由于压力降低而剧烈沸腾蒸发,同时吸收箱体内被冷却物体的热量,产生制冷效果,制冷剂蒸汽再次送入压缩机,如此循环往复。
在一些实施例中,冰箱具有用于至少容纳压缩机的压缩机舱,送风装置20通过安装支架40固定到压缩机舱内。由此,合理利用了压缩机舱内的空间,当整机工作时,实现制冷剂与外界环境高效热交换,提高制冷效率。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点 包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种冷凝器,其特征在于,包括:
    风管,所述风管内限定出风道;
    送风装置,所述送风装置与所述风管固定连接;以及
    冷凝件,所述冷凝件具有制冷剂进口和制冷剂出口,所述冷凝件至少部分地位于所述风道内。
  2. 根据权利要求1所述的冷凝器,其特征在于,所述冷凝件包括多个沿所述风管的轴向依次分布且互相连通的第一冷凝管段,每个第一冷凝管段由第一冷凝管螺旋地形成,且每个第一冷凝管段的螺旋线位于同一环面上。
  3. 根据权利要求2所述的冷凝器,其特征在于,每个所述第一冷凝管段的内侧位于同一内圆环上且外侧位于同一外圆环上,所述多个第一冷凝管段的内圆环同轴设置且所述多个第一冷凝管段的外圆环同轴设置。
  4. 根据权利要求3所述的冷凝器,其特征在于,相邻的第一冷凝管段的环绕中心同轴设置且两者的环绕中心的直径不同;所述第一冷凝管段的个数为两个以上时,每个第一冷凝管段和与之次邻接的第一冷凝管段的环绕中心的直径相同。
  5. 根据权利要求3所述的冷凝器,其特征在于,所述风管的内径大于所述外圆环的直径。
  6. 根据权利要求2所述的冷凝器,其特征在于,所述冷凝件还包括与所述多个第一冷凝管段中的至少一个相连通的第二冷凝管段,所述第二冷凝管段位于所述多个第一冷凝管段的内侧。
  7. 根据权利要求6所述的冷凝器,其特征在于,所述第二冷凝管段由第二冷凝管螺旋地环绕所述风管的中心轴线形成。
  8. 根据权利要求7所述的冷凝器,其特征在于,所述第二冷凝管段与多个所述第一冷凝管段依次连接,所述制冷剂进口形成在所述第二冷凝管段上且所述制冷剂出口形成在多个所述第一冷凝管段中的一个上,或者所述制冷剂出口形成在所述第二冷凝管段上且所述制冷剂进口形成在多个所述第一冷凝管段中的一个上。
  9. 根据权利要求8所述的冷凝器,其特征在于,所述第二冷凝管段的上端与最上方的所述第一冷凝管段相连接,上方的第一冷凝管段与相邻的下方的第一冷凝管段相连接,所述制冷剂进口形成在所述第二冷凝管段和最下方的所述第一冷凝管段中的一个上且所述制冷剂出口形成在另一个上。
  10. 根据权利要求1所述的冷凝器,其特征在于,所述冷凝件包括多个自外向内依次套设的第三冷凝管段,相邻的两个第三冷凝管段彼此连通,每个所述第三冷凝管段由第三冷 凝管螺旋地环绕所述风管的中心轴线形成。
  11. 根据权利要求10所述的冷凝器,其特征在于,每个所述第三冷凝管段的螺旋线大***于同一圆柱面上,所述第三冷凝管段的个数为两个以上时,相邻两个第三冷凝管段的螺旋线所在的圆柱面的直径的差值为固定值。
  12. 根据权利要求10所述的冷凝器,其特征在于,每个所述第三冷凝管段的螺旋线大***于同一圆锥面上,每个所述第三冷凝管段的螺旋线自上向下逐渐向内延伸,所述风管的内径自上向下逐渐减小,所述风管与处于最外面的第三冷凝管段之间具有间隔。
  13. 根据权利要求10所述的冷凝器,其特征在于,每个所述第三冷凝管段的进口和出口分别形成在最上端和最下端,相邻的两个第三冷凝管段中其中一个第三冷凝管段的进口与另一个第三冷凝管段的出口相对且连通。
  14. 根据权利要求1-13中任一项所述的冷凝器,其特征在于,所述制冷剂进口和所述制冷剂出口通过位于风管底部的通过孔伸出所述风管外。
  15. 一种冰箱,其特征在于,包括如权利要求1-14中任一项所述的冷凝器。
  16. 根据权利要求15所述的冰箱,其特征在于,所述冰箱具有用于至少容纳压缩机的压缩机舱,所述送风装置通过安装支架固定到所述压缩机舱内。
PCT/CN2016/084157 2016-04-21 2016-05-31 冷凝器以及具有它的冰箱 WO2017181496A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL16899083T PL3339772T3 (pl) 2016-04-21 2016-05-31 Skraplacz i mająca go lodówka
EP16899083.6A EP3339772B1 (en) 2016-04-21 2016-05-31 Condenser and refrigerator having same
US16/025,723 US10808986B2 (en) 2016-04-21 2018-07-02 Condenser and refrigerator having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610260026.9A CN105953481A (zh) 2016-04-21 2016-04-21 冷凝器以及具有它的冰箱
CN201610260026.9 2016-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/025,723 Continuation US10808986B2 (en) 2016-04-21 2018-07-02 Condenser and refrigerator having same

Publications (1)

Publication Number Publication Date
WO2017181496A1 true WO2017181496A1 (zh) 2017-10-26

Family

ID=56915177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084157 WO2017181496A1 (zh) 2016-04-21 2016-05-31 冷凝器以及具有它的冰箱

Country Status (5)

Country Link
US (1) US10808986B2 (zh)
EP (1) EP3339772B1 (zh)
CN (1) CN105953481A (zh)
PL (1) PL3339772T3 (zh)
WO (1) WO2017181496A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425595A (zh) * 2019-07-31 2019-11-08 安徽冠东科技有限公司 一种环形螺旋式余热利用装置
CN111442574A (zh) * 2020-05-06 2020-07-24 长虹美菱股份有限公司 一种冰箱内置复合冷凝器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270035A (ja) * 1994-03-29 1995-10-20 Toshiba Corp 冷蔵庫
KR20080101356A (ko) * 2007-05-17 2008-11-21 엘지전자 주식회사 냉장고
CN202133219U (zh) * 2011-06-22 2012-02-01 宁波罗特电器有限公司 冷藏柜的冷凝器结构
CN202158706U (zh) * 2010-04-26 2012-03-07 株式会社东芝 冰箱
CN102494469A (zh) * 2011-12-06 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰柜的制冷***和具有该制冷***的冰柜
JP2012255638A (ja) * 2011-06-10 2012-12-27 Toshiba Corp 冷蔵庫
CN102927745A (zh) * 2012-10-24 2013-02-13 合肥美菱股份有限公司 一种冰箱强制散热结构
CN103822410A (zh) * 2014-02-21 2014-05-28 合肥美的电冰箱有限公司 用于冰箱的冷凝器组件和具有该冷凝器组件的冰箱
CN204027382U (zh) * 2014-06-26 2014-12-17 骆继洪 一种废热水热能回收装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302248C (zh) * 2002-10-10 2007-02-28 维尼亚万都株式会社 螺旋式热交换装置
ITTO20040022A1 (it) * 2004-01-22 2004-04-22 Cosmogas Srl Scambiatore di calore, in particolare del tipo a condensazione
KR100713819B1 (ko) * 2005-12-12 2007-05-07 위니아만도 주식회사 김치저장고용 나선형 응축기
CN101995117B (zh) * 2010-10-12 2012-07-04 宣伯民 房间空气调节器管流式冷凝器
CN201858909U (zh) * 2010-10-30 2011-06-08 大庆石油管理局 塔式高效升华物质冷凝收集器
US20120060545A1 (en) * 2010-12-02 2012-03-15 General Electric Company Condenser assembly for multiple refrigeration systems
CN102937388B (zh) * 2011-08-15 2014-11-19 杨永利 用于钻井平台的余热回收换热器
CN202885359U (zh) * 2012-10-24 2013-04-17 合肥美菱股份有限公司 一种冷凝器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270035A (ja) * 1994-03-29 1995-10-20 Toshiba Corp 冷蔵庫
KR20080101356A (ko) * 2007-05-17 2008-11-21 엘지전자 주식회사 냉장고
CN202158706U (zh) * 2010-04-26 2012-03-07 株式会社东芝 冰箱
JP2012255638A (ja) * 2011-06-10 2012-12-27 Toshiba Corp 冷蔵庫
CN202133219U (zh) * 2011-06-22 2012-02-01 宁波罗特电器有限公司 冷藏柜的冷凝器结构
CN102494469A (zh) * 2011-12-06 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰柜的制冷***和具有该制冷***的冰柜
CN102927745A (zh) * 2012-10-24 2013-02-13 合肥美菱股份有限公司 一种冰箱强制散热结构
CN103822410A (zh) * 2014-02-21 2014-05-28 合肥美的电冰箱有限公司 用于冰箱的冷凝器组件和具有该冷凝器组件的冰箱
CN204027382U (zh) * 2014-06-26 2014-12-17 骆继洪 一种废热水热能回收装置

Also Published As

Publication number Publication date
PL3339772T3 (pl) 2022-05-23
US20180320951A1 (en) 2018-11-08
CN105953481A (zh) 2016-09-21
EP3339772A1 (en) 2018-06-27
US10808986B2 (en) 2020-10-20
EP3339772B1 (en) 2022-01-19
EP3339772A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
EP2762821B1 (en) Air conditioner and heat exchanger therefor
US9212852B2 (en) Support mechanism for a heat exchanger in an air-conditioning system
WO2017181496A1 (zh) 冷凝器以及具有它的冰箱
US20130340985A1 (en) Heat exchanger
US9389026B2 (en) Heat exchanger
US11946701B2 (en) Heat transfer systems
KR102402382B1 (ko) 냉동컴프레셔용 공냉식 가스냉각기
CN207501498U (zh) 螺旋蒸发式冷凝器
CN107461798B (zh) 空调余热集热供水装置
CN207095097U (zh) 一种盘卷式微通道换热器
KR101679575B1 (ko) 열교환기
CN211146973U (zh) 蒸发器的冷凝器
CN215892816U (zh) 一种风冷式工业冷水机
CN218480749U (zh) 一种空气换热装置
KR200314025Y1 (ko) 핀튜브형 열교환기 및 이를 이용한 에어컨 및 냉동기
CN215597746U (zh) 一种空调冷却装置及空调
KR101661954B1 (ko) 열교환기
CN219390625U (zh) 一种新型热泵用同轴套管热交换器
CN212079369U (zh) 一种用于隧道工程的专用降温设备
CN103017316A (zh) 一种节能空调器
CN206459544U (zh) 水冷壳管式换热器
CN201177408Y (zh) 应用口琴管的蒸发式冷凝器制冷机组
CN110887274A (zh) 热交换器及具有其的空调器
TWM605866U (zh) 熱交換裝置
CN115325731A (zh) 一种阶梯式自对流冷凝器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016899083

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE