WO2017181378A1 - 电力通信***中传输信息的方法、装置和设备 - Google Patents

电力通信***中传输信息的方法、装置和设备 Download PDF

Info

Publication number
WO2017181378A1
WO2017181378A1 PCT/CN2016/079817 CN2016079817W WO2017181378A1 WO 2017181378 A1 WO2017181378 A1 WO 2017181378A1 CN 2016079817 W CN2016079817 W CN 2016079817W WO 2017181378 A1 WO2017181378 A1 WO 2017181378A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
time interval
transmission
data
power data
Prior art date
Application number
PCT/CN2016/079817
Other languages
English (en)
French (fr)
Inventor
胡亨捷
张军
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/079817 priority Critical patent/WO2017181378A1/zh
Publication of WO2017181378A1 publication Critical patent/WO2017181378A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and device for transmitting information in a power communication system.
  • Wireless communication is one of the main communication means of power communication, and has been applied to power networks, especially smart grids.
  • LTE Long Term Evolution
  • the wide-area relay protection service in the power grid has a packet transmission frequency of up to 600 times/second and requires a one-way communication delay of less than 10 milliseconds (ms).
  • ms milliseconds
  • the LTE system solves this problem by adopting a periodic offset method, that is, The period is corrected by a small offset in two scheduling transmission periods.
  • the electrical protection service sends new data every 2ms. The interval between two adjacent data packets is 1ms.
  • the embodiments of the present invention provide a method, a device, and a device for transmitting information in a power communication system, which can reduce the uplink scheduling delay of the power communication system, and can solve the collision between the retransmitted data and the new data during the high frequency transmission. problem.
  • a power communication method comprising: determining, by a terminal device, a time interval, the time interval being greater than or equal to 0 milliseconds and less than 10 milliseconds; and transmitting, by the terminal device, power on at least two transmission resources according to the time interval Data, wherein the at least two transmission resources are in The same frequency domain location and the time interval between two transmission resources adjacent in the time domain.
  • the terminal device transmits power data through a transmission resource with a time interval of less than 10 ms, thereby satisfying a low delay requirement of data transmission in the power communication system.
  • the time interval is a preset value. Therefore, the terminal device does not need to perform scheduling when transmitting data, and can meet the low delay requirement of data transmission in the power communication system.
  • the terminal device determines the time interval, and the terminal device receives the indication information sent by the base station, where the indication information is used to indicate the time interval; and the terminal device determines the time interval according to the indication information.
  • the frequency domain resources can be allocated to the terminal device through one scheduling, so that the transmission resources can be flexibly allocated.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system communicates using frequency domain resources located in at least two frequency domain locations, the at least two frequency domain locations being in one-to-one correspondence with at least two transmission times of the power data, each frequency domain location being used for Transmitting the power data of the corresponding number of transmissions; the terminal device transmitting the power data on the at least two transmission resources according to the time interval, the method includes: determining, by the terminal device, the first frequency domain location according to the number of transmissions of the first power data, The first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs; the terminal device is on the first frequency domain resource according to the time interval and the first frequency domain location Transmitting the first power data.
  • the terminal device transmits the initial transmission data and the retransmission data of the power data on the frequency domain resources located in different frequency domain locations, so that the collision problem between the retransmitted data and the initial transmission data when transmitting on the same frequency domain resource can be solved.
  • a second aspect provides a method for transmitting information in a power communication system, the method comprising: determining, by a base station, a time interval, the time interval being greater than or equal to 0 milliseconds and less than 10 milliseconds; and the base station according to the time interval, at least two transmission resources The power data is transmitted, wherein the at least two transmission resources are in the same frequency domain location, and the time interval is between two adjacent transmission resources in the time domain.
  • the base station transmits power data through a transmission resource with a time interval of less than 10 ms, thereby satisfying data in the power communication system. Low latency requirements for transmission.
  • the time interval is a preset value. Therefore, the base station does not need to perform scheduling when transmitting data, and can meet the low delay requirement of data transmission in the power communication system.
  • the method further includes: the base station sending the indication information to the terminal device, where the indication information is used to indicate the time interval.
  • the frequency domain resources can be allocated to the terminal device through one scheduling, so that the transmission resources can be flexibly allocated.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system performs communication by using frequency domain resources located in at least two frequency domain locations, where the at least two frequency domain locations are in one-to-one correspondence with at least two transmission times of the power data, and each frequency domain location
  • the power data for transmitting the corresponding number of transmissions the base station transmitting the power data on the at least two transmission resources according to the time interval, the base station determining, according to the number of transmissions of the first power data, the first frequency domain location, the a frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs; the base station transmits the first power data on the first frequency domain resource according to the time interval and the number of transmissions .
  • the base station transmits the initial data and the retransmission data of the power data on the frequency domain resources located in different frequency domain locations, and can solve the collision problem between the retransmitted data and the initial transmission data when transmitting on the same frequency domain resource.
  • a third aspect provides an apparatus for transmitting information in a power communication system, the apparatus comprising: a processing module, configured to determine a time interval, the time interval being greater than or equal to 0 milliseconds and less than 10 milliseconds; and a transmission module for processing according to the The time interval determined by the module, transmitting power data on at least two transmission resources, wherein the at least two transmission resources are in the same frequency domain location, and the time interval is between two adjacent transmission resources in the time domain .
  • the device for transmitting information in the power communication system provided by the embodiment of the present invention transmits power data through a transmission resource with a time interval of less than 10 ms, so that the low delay requirement of data transmission in the power communication system can be satisfied.
  • the time interval is a preset value. Therefore, the device does not need to perform scheduling when transmitting data, and can meet the low delay requirement of data transmission in the power communication system.
  • the transmitting module is further configured to receive the indication information sent by the base station, where the indication information is used to indicate the time interval.
  • the processing module determines the time interval, and the processing module determines the time interval according to the indication information. Thereby, the transmission resources can be allocated flexibly.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system performs communication by using transmission resources located in at least two frequency domain locations, where the at least two frequency domain locations are in one-to-one correspondence with at least two transmission times of the power data, and each frequency domain location is used. And transmitting, by the transmission module, the power data on the at least two transmission resources according to the time interval, the processing module determining, according to the number of transmissions of the first power data, the first frequency domain location, the first a frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs; the transmission module transmits the frequency domain resource according to the time interval and the first frequency domain location First power data.
  • the device provided by the embodiment of the present invention can transmit the initial data and the retransmission data of the power data by using the frequency domain resources located in different frequency domain locations, and can solve the collision between the retransmitted data and the initial data when transmitting on the same frequency domain resource. problem.
  • a fourth aspect provides an apparatus for transmitting information in a power communication system, the apparatus comprising: a processing module, configured to determine a time interval, the time interval being greater than or equal to 0 milliseconds and less than 10 milliseconds; and a transmission module, configured to perform, according to the processing The time interval determined by the module, transmitting power data on at least two transmission resources, wherein the at least two transmission resources are in the same frequency domain location, and the time interval is between two adjacent transmission resources in the time domain .
  • the device for transmitting information in the power communication system provided by the embodiment of the present invention transmits power data through a transmission resource with a time interval of less than 10 ms, so that the low delay requirement of data transmission in the power communication system can be satisfied.
  • the time interval is a preset value. Therefore, the device does not need to perform scheduling when transmitting data, and can meet the low delay requirement of data transmission in the power communication system.
  • the transmitting module is further configured to: send the indication information to the terminal device, where the indication information is used to indicate the time interval.
  • the transmission resources can be allocated flexibly.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system performs communication by using frequency domain resources located in at least two frequency domain locations, where the at least two frequency domain locations are in one-to-one correspondence with at least two transmission times of the power data, each frequency domain
  • the location is used to transmit the power data of the corresponding number of transmissions; the transmission module transmits the power data on the at least two transmission resources according to the time interval, and the processing module determines the location of the first frequency domain according to the number of transmissions of the first power data,
  • the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs; the transmission module transmits the first frequency domain resource according to the time interval and the number of transmissions A power data.
  • the device provided by the embodiment of the present invention can transmit the initial data and the retransmission data of the power data by using the frequency domain resources located in different frequency domain locations, and can solve the collision between the retransmitted data and the initial data when transmitting on the same frequency domain resource. problem.
  • an apparatus for transmitting information in a power communication system comprising: a processor, a memory, a bus system, and a transceiver.
  • the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute instructions stored by the memory to control the transceiver to receive signals or send signals, and when When the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • an apparatus for transmitting information in a power communication system comprising: a processor, a memory, a bus system, and a transceiver.
  • the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute instructions stored by the memory to control the transceiver to receive signals or send signals, and when When the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a method for transmitting information in a power communication system wherein the power communication system communicates using frequency domain resources located in at least two frequency domain locations, the at least two frequency domain locations and at least power data
  • the two transmission times are in one-to-one correspondence, and each frequency domain location is used for transmitting power data of the corresponding transmission times.
  • the method includes: determining, according to the number of transmissions of the first power data, the first frequency of transmitting the first power data. a domain location; transmitting the first power data on the frequency domain resource according to the first frequency domain location.
  • the method provided by the embodiment of the present invention transmits power through frequency domain resources located in different frequency domain locations.
  • the initial data and retransmission data of the force data can solve the collision problem between the retransmitted data and the initial data when transmitting on the same frequency domain resource.
  • the method further includes: transmitting, according to the first power data transmission failure, the first power data on a frequency domain resource required for a next transmission; or successfully transmitting according to the first power data.
  • the frequency domain resources required for the next transmission are no longer used for transmission. Thereby, the utilization of transmission resources can be improved.
  • an apparatus for transmitting information in a power communication system wherein the power communication system communicates using frequency domain resources located in at least two frequency domain locations, the at least two frequency domain locations and at least power data
  • the two transmission times are in one-to-one correspondence, and each of the frequency domain positions is used for transmitting the power data of the corresponding number of transmissions.
  • the device includes: a processing module, configured to determine, according to the number of transmissions of the first power data, to transmit the first power a first frequency domain location of the data; a transmission module, configured to transmit the first power data on the frequency domain resource according to the first frequency domain location determined by the processing module.
  • the device provided by the embodiment of the present invention can transmit the initial data and the retransmission data of the power data by using the frequency domain resources located in different frequency domain locations, and can retransmit the data and the initial data when transmitting on the same frequency domain resource. Collision problem.
  • the transmitting module is further configured to: transmit, according to the failure of the first power data transmission, transmit the first power data on a frequency domain resource required for a next transmission; or transmit according to the first power data.
  • the frequency domain resources required for the next transmission are no longer used for transmission. Thereby, the utilization of transmission resources can be improved.
  • an apparatus for transmitting information in a power communication system comprising: a processor, a memory, a bus system, and a transceiver.
  • the processor, the memory and the transceiver are connected by the bus system, the memory is for storing instructions, the processor is configured to execute instructions stored by the memory to control the transceiver to receive signals or send signals, and when When the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the seventh aspect or the seventh aspect.
  • the method, the device and the device for transmitting information in the power communication system may pre-configure the transmission resource in the base station and the terminal device, or may be allocated to the terminal device by using the base station once authorized scheduling, and the terminal device uploads the data. There is no need to perform scheduling, so that the low delay requirement of the uplink data transmission of the power communication system can be satisfied; by transmitting the initial data and retransmitting data on different frequency domain resources, the initial data can be solved on the same frequency domain resource. Collision with retransmitted data.
  • FIG. 1 is a schematic diagram of a power communication scenario
  • FIG. 2 is a schematic flowchart of a method for transmitting information in a power communication system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an uplink scheduling delay of a method for transmitting information in a power communication system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of transmitting retransmission data in a method for transmitting information in a power communication system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a solution for retransmitting data collision problems in a method for transmitting information in a power communication system according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a frequency domain resource scheduling process for transmitting information in a power communication system according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for transmitting information in a power communication system according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to another embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for transmitting information in a power communication system according to still another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to still another embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of an apparatus for transmitting information in a power communication system according to still another embodiment of the present invention.
  • a terminal device may be referred to as a user equipment (User Equipment, UE), a subscriber unit, a remote terminal, a user terminal, a terminal, and a wireless communication device.
  • the user equipment may be a power device having a wireless communication function or a terminal device in a future smart power grid.
  • the base station may be used to communicate with the user equipment, and the base station may be an evolved base station (Evolutional Node B, referred to as “eNB” or “eNode B”) in the LTE system. It can also be a relay station, an access point, or a base station device in a future 5G network.
  • eNB evolved base station
  • eNode B evolved Node B
  • FIG. 1 is a schematic diagram of a power communication scenario in which a power communication method according to an embodiment of the present invention is applied.
  • the example of FIG. 1 is only intended to assist those skilled in the art to better understand the embodiments of the present invention, and not to limit the scope of the embodiments of the present invention.
  • the relay 130, the sensor 140, and the electric gate 150 all belong to the user equipment of the power system, and the base station 120 receives the service data transmitted by the user equipment and forwards it to the power control center 110, and the power supply control center 110 makes relevant decisions. .
  • FIG. 1 illustrates a relay, a sensor, an electric switch, a base station, and a power control center, respectively, but the number of user equipments and the number of base stations may be other numbers, which is not limited by the embodiment of the present invention, that is, the implementation of the present invention.
  • the example may include only one user equipment and one base station, or may include multiple user equipments and one base station, and may also include multiple user equipments and multiple base stations.
  • the embodiment of the present invention may include a user equipment and a base station, and may also include a user equipment and multiple base stations, and may also include multiple user equipments and a base station, and may also include multiple user equipments and A variety of base stations.
  • the following describes an embodiment of the present invention by taking the transmission of the relay service data in a frequency division duplex (LTE) system as an example.
  • LTE frequency division duplex
  • the embodiment of the present invention is not limited thereto, and the transmitted data may be other.
  • the data generated by the power device, the communication system can also be other communication systems.
  • FIG. 2 illustrates a method 200 of power communication, a method 200 package, in accordance with an embodiment of the present invention. include:
  • the terminal device determines a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds.
  • the terminal device transmits power data on at least two transmission resources according to the time interval, where the at least two transmission resources are in the same frequency domain location, and two transmission resources adjacent in the time domain are There is a time interval between them.
  • the relay data transmitted in the power communication system the above line data is dominant, the packet sending frequency is high, the data packet size is fixed, and the delay requirement is very small.
  • the interval information determines the transmission resource required for the upload, and the transmission information required for the current transmission is determined by the indication information of the time interval information sent by the base station, so that the relay data generated every 2 ms can pass the allocated frequency immediately.
  • the domain resource upload does not need to be re-applied and scheduled, so that the low latency requirement of the uplink data transmission of the power communication system can be met.
  • the frequency domain resource used by the relay may be the frequency domain resource exclusive to the relay, or may be periodically allocated to the relay. For example, according to the characteristics of the relay upload data, the time interval is 1 millisecond, and the time domain length is 1 millisecond. Multiple frequency domain resources are allocated to the relay; frequency domain resources with a time interval of 1 millisecond and a time domain length of 5 milliseconds can also be allocated to the relay; the time interval can be 0.5 milliseconds, and the time domain length is 1.5 milliseconds. The frequency domain resources are allocated to the relays; frequency domain resources in the time domain (ie, the time interval is 0 milliseconds) can also be allocated to the relays.
  • the bandwidth of the frequency domain resources included in at least two transmission resources may be the same or different, and the transmitted power data may also have other transmission interval requirements. Power data.
  • the terminal device transmits power data through a transmission resource with a time interval of less than 10 ms, thereby satisfying a low delay requirement of data transmission in the power communication system.
  • the time interval is a preset value.
  • the terminal device determines the time interval, including:
  • the terminal device receives the indication information sent by the base station, where the indication information is used to indicate the time interval;
  • the terminal device determines the time interval according to the indication information.
  • the relay may determine the value of the time interval according to the time interval information preset in the device, and then transmit on the corresponding transmission resource, so that the transmission can be performed without scheduling, and the scheduling transmission resource is introduced in the uplink transmission.
  • the delay is reduced to 0, and the relay can also determine the time interval according to the indication information sent by the base station before transmitting the data, so that the low delay requirement of the data transmission in the power communication system can be satisfied, and the transmission resource can be flexibly allocated. .
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • FIG. 3 is a schematic diagram of a delay of uplink transmission scheduling of an LTE system according to an embodiment of the invention.
  • the time length of each subframe is 1 ms.
  • the information of the Up-Link Grant ("UL Grant") is sent by the PDCCH on the PDCCH.
  • the frequency domain resources allocated by the eNB to the UE are continuous in the time domain, and the UE does not need to perform resource scheduling application for uploading data.
  • the frequency domain resources allocated by the eNB to the UE are time-interval.
  • the size of the time interval can be determined according to the type of service to be transmitted. For example, for the upload of the relay data, the time interval can be set to 1 ms, so that the low delay requirement of the relay data transmission can be satisfied, and when the data upload is completed, the frequency domain can be The resources are released and allocated to other services, so that the utilization of transmission resources can be improved.
  • any method for transmitting data through static scheduling or semi-persistent scheduling belongs to the scope of protection of the present invention.
  • the base station may also adopt static scheduling mode or semi-static scheduling.
  • the frequency domain resource allocated by the mode sends data to the user equipment, and the data transmitted by the base station may also be data generated by other power devices.
  • the value of the semi-persistent scheduling period N may be determined according to the requirement of the actually transmitted data. Therefore, the method 200 for transmitting information in the power communication communication system provided by the embodiment of the present invention can satisfy the low time of the uplink data transmission in the power communication system by allocating the exclusive frequency domain resource or the periodically scheduled frequency domain resource to the power device. Delay request.
  • the wireless transmission inevitably causes the error caused by the interference, the error information needs to be compensated by retransmitting the data.
  • synchronous non-adaptive HARQ Hybrid
  • Automatic Repeat reQuest, hybrid automatic retransmission request technology retransmits data.
  • new data the data transmitted for the first time
  • retransmission data the retransmitted data
  • the retransmission data in the prior art uses the same frequency domain resource as the new data (that is, in the same frequency domain location).
  • the method of frequency domain resources the retransmission data will collide with the new data that arrives periodically.
  • the power communication system performs communication by using frequency domain resources located in at least two frequency domain locations, where the at least two frequency domain locations are compared with the at least two transmission times of the power data.
  • each of the frequency domain locations is configured to transmit the power data of the corresponding number of transmissions; and the terminal device transmits the power data on the at least two transmission resources according to the time interval, including:
  • the terminal device Determining, by the terminal device, the first frequency domain location according to the number of transmissions of the first power data, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the terminal device transmits the first power data on the first frequency domain resource according to the time interval and the first frequency domain location.
  • the method 200 further includes:
  • the terminal device retransmits the power data on a transmission resource required for the next transmission according to the failure of the power data transmission;
  • the terminal device does not transmit the power data according to the success of the power data transmission.
  • the frequency domain location of the frequency domain resource is in one-to-one correspondence with the number of transmissions, for example, the frequency domain resource required for the first transmission of the first power data (hereinafter, collectively referred to as “initial transmission frequency domain” The resource ”) is located at the first frequency domain location, and the frequency domain resource (ie, "first retransmission frequency domain resource") required for the second transmission of the first power data is located in the second frequency domain location, the first power data
  • the frequency domain resource required for the third transmission ie, the “second retransmission frequency domain resource” is located in the third frequency domain location, wherein the initial transmission frequency domain, the first retransmission frequency domain resource, and the second retransmission frequency
  • the domain resources belong to the frequency domain resources of the first transmission resource carrying the first power data, and the frequency domain locations do not coincide with each other, and the user equipment can determine the transmission resources used for the transmission according to the time interval, and further according to the power data to be transmitted. M times of transmission, determining to use the frequency
  • the initial frequency domain resources and retransmission frequency domain resources of the power data have passed before the new data is uploaded.
  • the primary scheduling grant of the base station is allocated to the user equipment, and the user equipment saves the initial frequency domain resource and the retransmission frequency domain resource for the power data uploading.
  • the base station dynamically allocates the weight to the user equipment.
  • the time domain resource corresponding to the frequency domain resource if the user equipment does not need to retransmit, the base station may not allocate the time domain resource corresponding to the retransmission frequency domain resource to the user equipment, thereby improving resource utilization.
  • the user equipment can also save the initial transmission frequency domain resources and the retransmission frequency domain resources in a pre-configured manner, and is used for uploading power data. When retransmission is required, the transmission is performed on the corresponding frequency domain resources, when not When retransmission is required, the transmission is no longer performed.
  • the foregoing embodiment is only an example, and the embodiment of the present invention is not limited thereto.
  • the number of retransmissions and the number of retransmission frequency domain resources may also be other numbers.
  • FIG. 4 is a schematic diagram of transmitting retransmission data in a method for transmitting information in a power communication system according to an embodiment of the present invention.
  • the SR information is sent to the eNB.
  • the time domain resource corresponding to the resource so that the time-frequency resource used for retransmitting the data can be determined according to whether the new data transmitted in the uplink is successfully transmitted.
  • the above embodiments are merely illustrative, and embodiments of the present invention are not limited thereto.
  • FIG. 5 is a schematic diagram of a solution for an uplink retransmission data collision problem according to an embodiment of the invention.
  • the interval between the first transmission and the first retransmission of data 1 may be 8 ms, and the interval between the second retransmission and the first retransmission may also be 8 ms.
  • the relay data taking relay data transmission as an example, the relay data generates a new data every 2 ms, and the upload time of the new data is 1 ms. Therefore, the first retransmission of data 1 and the initial transmission of data 5 are used.
  • the time domain resources are the same.
  • the embodiment completely solves the problem that the uplink retransmission data is the same as the uplink new data when the packet transmission frequency is high. Collision issues when transmitting on domain resources.
  • the above embodiments are merely illustrative, and embodiments of the present invention are not limited thereto.
  • the method 200 further includes:
  • the base station determines, according to a data packet size of the new data to be transmitted, a bandwidth of the initial transmission frequency domain resource and the retransmission frequency domain resource.
  • the user equipment may send a buffer status report message to the base station to inform the base station of the current size of the data packet in the uplink buffer of the user equipment, and the base station may determine the frequency domain allocated to the user equipment according to the size of the data packet to be transmitted.
  • the bandwidth of the resource which includes the initial transmission frequency domain resource and the retransmission frequency domain resource. Therefore, the bandwidth of the frequency domain resource can be allocated according to actual conditions, thereby avoiding waste of transmission resources.
  • the method 200 further includes:
  • the terminal device receives, by the base station, a radio resource control RRC connection reconfiguration message that carries a static scheduling identifier.
  • the terminal device configures the transmission resource with a time interval of 0 milliseconds according to the RRC connection reconfiguration message.
  • the method 200 further includes:
  • the terminal device receives, by the base station, an RRC connection reconfiguration message that carries a semi-persistent scheduling identifier and a semi-persistent scheduling period.
  • the terminal device configures the transmission resource whose time interval is not 0 milliseconds according to the RRC connection reconfiguration message.
  • the eNB may use, for example, a static scheduling wireless network temporary identifier (Persistent Scheduling-Cell-Radio Network Temporary Identifier).
  • the PS-C-RNTI performs an authorization indication for the allocation, activation, and release of the static frequency domain resource, and the static frequency domain resource refers to a continuous frequency domain resource in the time domain.
  • the eNB may instruct the UE to perform activation and release of the static scheduling resource by using a PDCCH (Physical Downlink Control Channel) signaling masked by the PS-C-RNTI.
  • PDCCH Physical Downlink Control Channel
  • the upper layer for example, the MME determines that the service uses the semi-persistent scheduling mode and the scheduling period is 1 ms.
  • the eNB may use, for example, a Semi Persistent Scheduling-Cell-Radio Network Temporary Identifier.
  • the SPS-C-RNTI is used to perform the allocation, activation, and release of the semi-static frequency domain resource.
  • the semi-static frequency domain resource is a frequency domain resource that is periodically allocated to the user equipment, that is, the periodic time exists. Interval frequency domain resources.
  • the eNB may instruct the UE to perform activation and release of static scheduling resources by using PDCCH signaling masked by the SPS-C-RNTI.
  • FIG. 6 is a schematic diagram of a frequency domain resource scheduling procedure according to an embodiment of the present invention.
  • the eNB sends an RRC (Radio Resource Control) connection reconfiguration message to the UE. If the static scheduling mode is adopted, the message carries the PS- C-RNTI; if the semi-persistent scheduling mode is adopted, the message carries the SPS-C-RNTI and the semi-persistent scheduling period is 1 ms.
  • RRC Radio Resource Control
  • the UE After receiving the RRC connection reconfiguration message, the UE saves the static scheduling identifier, or saves the semi-persistent scheduling identifier and the semi-persistent scheduling period, and returns an acknowledgement message of the RRC connection reconfiguration completion to the base station.
  • the uplink SR message is sent to the eNB, and the buffer status report message is sent to inform the eNB of the size of the data packet in the current UE uplink buffer to assist the eNB in performing the frequency domain resource bandwidth required for the uplink transmission. Calculation.
  • the eNB allocates a corresponding time-frequency resource to the UE according to the size of the data packet in the uplink buffer of the UE, and informs the UE of the time-frequency resource allocated by the uplink service by using the UL Grant message, thereby improving the utilization of the transmission resource.
  • the time-frequency resource includes a first frequency domain resource required for new data uploading, and a retransmission frequency domain resource required for M times of retransmission, where M is the maximum number of retransmissions, and the maximum number of retransmissions of the UE is set by the RRC.
  • the value of maxHARQ-Tx is determined.
  • the UE After receiving the UL grant message, the UE activates the static scheduling mode or the semi-static scheduling mode, and transmits new data on the allocated first frequency domain resource, and may transmit the retransmitted data on the allocated retransmission frequency domain resource.
  • the method 200 for transmitting information in a power communication communication system may determine, by using a preset manner, or by receiving indication information sent by a base station, a time interval of transmission resources required for transmitting power data, and the terminal
  • the device does not need to perform scheduling when transmitting data, so that it can meet the low delay requirement of data transmission in the power communication system;
  • the transmission of new data and retransmission data on the frequency domain resource of the location can solve the collision problem of transmitting the retransmitted data and the new data on the frequency domain resource located in the same frequency domain position in the case of high frequency transmission; Whether the transmission is successful or not, and determining the time domain resources used for retransmitting data, thereby improving the utilization of the transmission resources.
  • a method 200 for transmitting information in a power communication system is described from the perspective of a terminal device.
  • power according to an embodiment of the present invention will be described in detail from the perspective of a base station in conjunction with FIG. 7 .
  • a method 700 of transmitting information in a communication system is described.
  • FIG. 7 illustrates a method 700 of power communication in accordance with an embodiment of the present invention, the method 700 including:
  • the base station determines a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds.
  • the base station transmits power data on at least two transmission resources according to the time interval, where the at least two transmission resources are in the same frequency domain location, and two transmission resources adjacent in the time domain are There is such a time interval between.
  • the base station may determine the value of the time interval according to the time interval information preset in the device, and then perform transmission on the corresponding transmission resource, so that the transmission may be performed without scheduling, and the transmission resource is scheduled.
  • the introduced delay is reduced to 0, and the base station may further determine the time interval according to the indication of the upper layer before transmitting the data, and send the time interval to the terminal device, so that the low delay requirement of the data transmission in the power communication system can be satisfied. It can also flexibly allocate transmission resources.
  • a base station transmits power data through a transmission resource with a time interval of less than 10 ms, so that the power can be satisfied. Low latency requirements for data transmission in communication systems.
  • the time interval is a preset value.
  • the method 700 further includes: the base station sending indication information to the terminal device, where the indication information is used to indicate the time interval.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system communicates using frequency domain resources located in at least two frequency domain locations, the at least two frequency domain locations being in one-to-one correspondence with at least two transmission times of the power data, each The frequency domain location is used to transmit the power data of the corresponding number of transmissions; the base station transmits the power data on the at least two transmission resources according to the time interval, including:
  • the base station Determining, by the base station, a first frequency domain location according to a number of transmissions of the first power data, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the base station transmits the first power data on the first frequency domain resource according to the time interval and the number of transmissions.
  • the method 700 further includes:
  • the base station allocates a required time domain resource for the next transmission of the terminal device according to a new data or a retransmission data transmission failure condition; or
  • the base station does not allocate the required time domain resource for the next transmission of the terminal device according to the success of the new data or the retransmission data transmission.
  • the base station allocates the primary transmission frequency domain resource and the retransmission frequency domain resource primary scheduling authorization to the user equipment before the new data is uploaded, and the user equipment allocates the initial transmission frequency domain resource and the retransmission frequency domain resource.
  • the device is saved for the uploading of the power data.
  • the base station dynamically allocates the time domain resource corresponding to the retransmission frequency domain resource for the user equipment. If the user equipment does not need to retransmit, the base station may no longer The user equipment allocates time domain resources corresponding to the retransmission frequency domain resources, thereby improving resource utilization.
  • the method 700 further includes:
  • the base station receives the buffer status information sent by the terminal device, where the buffer status information is used to indicate a data packet size of the power data to be transmitted.
  • the user equipment may send a buffer status report message to the base station to inform the base station of the current size of the data packet in the uplink buffer of the user equipment, and the base station may determine the frequency domain allocated to the user equipment according to the size of the data packet to be transmitted.
  • the bandwidth of the resource which includes the initial transmission frequency domain resources and the retransmission frequency domain resources required for transmitting new data.
  • the method 700 further includes:
  • the base station sends, to the terminal device, a radio resource control RRC connection reconfiguration message carrying a static scheduling identifier, where the RRC connection reconfiguration message is used to indicate that the terminal device is configured.
  • the transmission resource with an interval of 0 milliseconds.
  • the method 200 further includes:
  • the base station sends an RRC connection reconfiguration message carrying a semi-persistent scheduling identifier and a semi-persistent scheduling period to the terminal device, where the RRC connection reconfiguration message is used to indicate that the terminal device configuration time interval is not 0 milliseconds.
  • the transmission resource The transmission resource.
  • the eNB may use the PS-C-RNTI to perform an authorization indication for the allocation, activation, and release of the static frequency domain resource, where the static frequency domain is used.
  • a resource is a frequency domain resource that is exclusive to a user equipment.
  • the eNB may instruct the UE to perform activation and release of static scheduling resources by using PDCCH signaling masked by the PS-C-RNTI.
  • the upper layer for example, the MME determines that the service uses the semi-persistent scheduling mode and the scheduling period is 1 ms.
  • the eNB can use the SPS-C-RNTI to perform the allocation, activation, and release authorization of the semi-static frequency domain resources.
  • the semi-static frequency domain resource refers to a frequency domain resource that is periodically allocated to the user equipment, that is, a frequency domain resource that has a periodic time interval.
  • the eNB may instruct the UE to perform activation and release of static scheduling resources by using PDCCH signaling masked by the SPS-C-RNTI.
  • the base station may determine the time interval of the transmission resource required for transmitting the power data by using a preset manner or by sending the indication information to the user equipment, and the base station transmits the data.
  • the base station transmits the data.
  • the collision problem between the retransmitted data and the new data is transmitted on the frequency domain resource located in the same frequency domain location; the time domain resource used for retransmitting the data may be determined according to whether the new data transmission is successful, thereby improving the utilization of the transmission resource.
  • FIG. 8 is a schematic block diagram of an apparatus 800 for transmitting information in a power communication communication system according to an embodiment of the present invention. As shown in FIG. 8, the apparatus 800 includes:
  • the processing module 810 is configured to determine a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds;
  • a transmission module 820 configured to determine, according to the time interval determined by the processing module 810, The power data is transmitted on less than two transmission resources, wherein the at least two transmission resources are in the same frequency domain location, and the time interval is between two adjacent transmission resources in the time domain.
  • the time interval is a preset value.
  • the transmitting module 820 is further configured to receive indication information that is sent by the base station, where the indication information is used to indicate the time interval, and the processing module 810 determines the time interval, where the processing module 810 is configured to: The indication information determines the time interval.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system performs communication by using transmission resources located in at least two frequency domain locations, where the at least two frequency domain locations are in one-to-one correspondence with at least two transmission times of the power data, each frequency The domain location is used to transmit power data corresponding to the number of transmissions;
  • the transmitting module 820 transmits power data on the at least two transmission resources according to the time interval, including:
  • the processing module 810 determines a first frequency domain location according to the number of transmissions of the first power data, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the transmission module 820 transmits the first power data on the first frequency domain resource according to the time interval and the first frequency domain location.
  • the transmitting module 820 is further configured to retransmit the new data or the heavyweight on the time domain resource required by the base station to allocate the next retransmission according to the new data or the retransmission data transmission failure.
  • the data is transmitted; or the new data or the retransmitted data is no longer transmitted according to the new data or the retransmission data is successfully transmitted.
  • the transmission module 820 is further configured to: send buffer status information to the base station, where the buffer status information is used to indicate a data packet size of the power data to be transmitted.
  • the transmitting module 820 is further configured to: receive, by the base station, a radio resource control RRC connection reconfiguration message that carries a static scheduling identifier, where the processing module 810 is further configured to use the RRC connection that carries the static scheduling identifier. Reconfigure the message to configure the static scheduling resource.
  • the transmitting module 820 is further configured to: receive, by the base station, send a semi-static scheduling identifier And the RRC connection reconfiguration message of the semi-persistent scheduling period, where the processing module 810 is further configured to perform configuration of the semi-persistent scheduling resource according to the RRC connection reconfiguration message carrying the semi-persistent scheduling identifier and the semi-persistent scheduling period.
  • the apparatus 800 may correspond to the terminal apparatus in the method embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the apparatus 800 respectively implement the corresponding processes of the method 200 in FIG. For the sake of brevity, we will not repeat them here.
  • the apparatus 800 for transmitting information in the power communication system may determine the time interval of the transmission resource required for transmitting the power data by using a preset manner or by receiving the indication information sent by the base station, and the terminal device No need to perform scheduling when transmitting data, so as to meet the low latency requirements of data transmission in power communication systems; transmission of new data and retransmission of data over frequency domain resources located in different frequency domain locations can be solved in the case of high frequency transmission.
  • the collision problem between the retransmitted data and the new data is transmitted on the frequency domain resource located in the same frequency domain location; the time domain resource used for retransmitting the data may be determined according to whether the new data transmission is successful, thereby improving the utilization of the transmission resource.
  • FIG. 9 is a schematic block diagram of an apparatus 900 for transmitting information in a power communication system according to another embodiment of the present invention. As shown in FIG. 9, the apparatus 900 includes:
  • the processing module 910 is configured to determine a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds;
  • the transmission module 920 is configured to transmit power data on the at least two transmission resources according to the time interval determined by the processing module 910, where the at least two transmission resources are in the same frequency domain location, and in the time domain.
  • the time interval is between two adjacent transmission resources.
  • the time interval is a preset value.
  • the transmitting module 920 is further configured to: send the indication information to the terminal device, where the indication information is used to indicate the time interval.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, and 0 ⁇ N ⁇ 10.
  • the power communication system communicates using frequency domain resources located in at least two frequency domain locations, the at least two frequency domain locations being paired with at least two transmission times of the power data Should, each frequency domain location is used to transmit power data corresponding to the number of transmissions;
  • the transmitting module 920 transmits power data on the at least two transmission resources according to the time interval, including:
  • the processing module 910 determines, according to the number of transmissions of the first power data, a first frequency domain location, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the transmission module 920 transmits the first power data on the first frequency domain resource according to the time interval and the number of transmissions.
  • the processing module 910 is further configured to: allocate a required time domain resource for a next retransmission according to a new data or a retransmission data transmission failure; or according to the new data or the retransmitted data In the case of successful transmission, the time domain resources required for the next retransmission are no longer allocated.
  • the transmission module 920 is further configured to receive buffer status information that is sent by the terminal device, where the buffer status information is used to indicate a data packet size of the power data to be transmitted; And determining, according to the buffer status information, a bandwidth of the initial transmission frequency domain resource and the retransmission resource
  • the transmitting module 920 is further configured to: send, to the terminal device, a radio resource control RRC connection reconfiguration message carrying a static scheduling identifier, where the RRC connection reconfiguration message carrying the static scheduling identifier is used to indicate the The user equipment performs configuration of static scheduling resources.
  • the transmitting module 920 is further configured to: send, to the terminal device, an RRC connection reconfiguration message carrying a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the RRC carries a semi-persistent scheduling identifier and a semi-persistent scheduling period.
  • the connection reconfiguration message is used to instruct the user equipment to perform configuration of the semi-persistent scheduling resource.
  • Apparatus 900 in accordance with an embodiment of the present invention may correspond to a base station in a method embodiment of the present invention, and the above and other operations and/or functions of the various modules in apparatus 900 are respectively implemented to implement the respective processes of method 700 in FIG. For the sake of brevity, it will not be repeated here.
  • the apparatus 900 for transmitting information in the power communication system may determine the time interval of the transmission resource required for transmitting the power data by using a preset manner or by sending the indication information to the user equipment, and transmitting the base station.
  • the data does not need to be scheduled again, so that the low delay requirement of the data transmission of the power communication system can be satisfied; the transmission of new data and the retransmission of data by frequency domain resources located in different frequency domain locations can be solved in the case of high frequency transmission. Collision of retransmitted data with new data on frequency domain resources located in the same frequency domain; can be transmitted according to new data Whether the loss is successful, determine the time domain resources used to retransmit the data, thereby improving the utilization of the transmission resources.
  • an embodiment of the present invention further provides an apparatus 1000 for transmitting information in a power communication system, the apparatus 1000 comprising: a processor 1010, a memory 1020, a bus system 1030, and a transceiver 1040, wherein the processor 1010, the memory 1020 and the transceiver 1040 are connected by the bus system 1030, the memory 1020 is used to store instructions, and the processor 1010 is configured to execute instructions stored by the memory 1020 to control the transceiver 1040 to receive or transmit signals;
  • the processor 1010 is configured to determine a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds; the transceiver 1040 is configured to transmit power on at least two transmission resources according to the time interval determined by the processor 1010. Data, wherein the at least two transmission resources are in the same frequency domain location and have the time interval between two transmission resources adjacent in the time domain.
  • the processor 1010 may be a central processing unit ("CPU"), and the processor 1010 may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1020 can include read only memory and random access memory and provides instructions and data to the processor 1010. A portion of the memory 1020 may also include a non-volatile random access memory. For example, the memory 1020 can also store information of the device type.
  • the bus system 1030 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as the bus system 1030 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1010 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1020, and the processor 1010 reads the information in the memory 1020 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the time interval is a preset value.
  • the transceiver 1040 is further configured to receive indication information sent by a base station, where the indication information is used to indicate the time interval; the processor 1010 determines the The time interval includes: the processor 1010 determines the time interval according to the indication information.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, where ⁇ N ⁇ 10.
  • the power communication system performs communication by using transmission resources located in at least two frequency domain locations, where the at least two frequency domain locations and the power data are transmitted at least twice.
  • each frequency domain location is used to transmit power data corresponding to the number of transmissions;
  • the transceiver 1040 transmits power data on the at least two transmission resources according to the time interval, including:
  • the processor 1010 determines, according to the number of transmissions of the first power data, a first frequency domain location, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the transceiver 1040 transmits the first power data on the first frequency domain resource according to the time interval and the first frequency domain location.
  • the transceiver 1040 is further configured to retransmit the time domain resource required for the next retransmission allocation according to the new data or the retransmission data transmission failure. New data or the retransmitted data; or the new data or the retransmitted data is no longer transmitted according to the new data or the retransmission data is successfully transmitted.
  • the transceiver 1040 is further configured to: send buffer status information to the base station, where the buffer status information is used to indicate a data packet size of new data to be transmitted.
  • the transceiver 1040 is further configured to: receive, by the base station, a radio resource control RRC connection reconfiguration message that carries a static scheduling identifier, where the processor 1110 is further configured to carry according to the The RRC connection reconfiguration message of the static scheduling identifier configures a transmission resource with a time interval of 0 milliseconds.
  • the transceiver 1040 is further configured to: receive, by the base station, an RRC connection reconfiguration message that carries a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the processor 1010 is further configured to: The RRC connection reconfiguration message carrying the semi-persistent scheduling identifier and the semi-persistent scheduling period configures a transmission resource whose time interval is not 0 milliseconds.
  • the device 1000 may correspond to the terminal design in the method embodiment of the present invention.
  • the above and other operations and/or functions of the respective modules in the device 1000 are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 2, and are not described herein again for brevity.
  • the device 1000 for transmitting information in the power communication system may determine the time interval of the transmission resource required for transmitting the power data by using a preset manner or by receiving the indication information sent by the base station, and the terminal device No need to perform scheduling when transmitting data, so as to meet the low latency requirements of data transmission in power communication systems; transmission of new data and retransmission of data over frequency domain resources located in different frequency domain locations can be solved in the case of high frequency transmission.
  • the collision problem between the retransmitted data and the new data is transmitted on the frequency domain resource located in the same frequency domain location; the time domain resource used for retransmitting the data may be determined according to whether the new data transmission is successful, thereby improving the utilization of the transmission resource.
  • an embodiment of the present invention further provides a device 1100 for transmitting information in a power communication system
  • the power communication device 1100 includes: a processor 1110, a memory 1120, a bus system 1130, and a transceiver 1140, where The processor 1110, the memory 1120 and the transceiver 1140 are connected by the bus system 1130.
  • the memory 1120 is configured to store instructions
  • the processor 1110 is configured to execute instructions stored by the memory 1120 to control the transceiver 1140 to receive or send. signal;
  • the processor 1110 is configured to determine a time interval, where the time interval is greater than or equal to 0 milliseconds and less than 10 milliseconds; the transceiver 1140 is configured to use at least two transmission resources according to the time interval determined by the processor 1110.
  • the power data is transmitted, wherein the at least two transmission resources are in the same frequency domain location and the time interval is between two adjacent transmission resources in the time domain.
  • the processor 1110 may be a central processing unit (“CPU"), and the processor 1110 may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1120 can include read only memory and random access memory and provides instructions and data to the processor 1110. A portion of the memory 1120 can also include a non-volatile random access memory. For example, the memory 1120 can also store information of the device type.
  • the bus system 1130 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are marked as total in the figure. Line system 1130.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1110 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1120, and the processor 1110 reads the information in the memory 1120 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the time interval is a preset value.
  • the transceiver 1140 is further configured to: send the indication information to the terminal device, where the indication information is used to indicate the time interval.
  • the indication information includes: a static scheduling identifier, where the static scheduling identifier is used to indicate that the time interval is 0 milliseconds.
  • the indication information includes: a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-persistent scheduling identifier and the semi-persistent scheduling period are used to indicate that the time interval is N milliseconds, where ⁇ N ⁇ 10.
  • the power communication system performs communication by using frequency domain resources located in at least two frequency domain locations, where the at least two frequency domain locations are at least two transmission times of the power data.
  • each frequency domain location is used to transmit power data corresponding to the number of transmissions;
  • the transceiver 1140 transmits power data on the at least two transmission resources according to the time interval, including:
  • the processor 1110 determines, according to the number of transmissions of the first power data, a first frequency domain location, where the first frequency domain location is a frequency domain location to which the first transmission resource for carrying the first power data belongs;
  • the transceiver 1140 transmits the first power data on the first frequency domain resource according to the time interval and the number of transmissions.
  • the processor 1110 is further configured to: allocate a required time domain resource for a next retransmission according to the new data or the retransmission data transmission failure; or according to the When the new data or the retransmission data is successfully transmitted, the time domain resources required for the next retransmission are no longer allocated.
  • the processor 1110 is further configured to: according to the new number to be transmitted
  • the bandwidth of the frequency domain resource is determined according to the data packet size, and the frequency domain resource includes a first frequency domain resource required for transmitting new data and a retransmission frequency domain resource required for transmitting the retransmission data.
  • the transceiver 1140 is further configured to: send, to the user equipment, a radio resource control RRC connection reconfiguration message carrying a static scheduling identifier, where the RRC connection reconfiguration message carrying the static scheduling identifier is used by And instructing the user equipment to perform configuration of a static scheduling resource.
  • the transceiver 1140 is further configured to: send, to the user equipment, an RRC connection reconfiguration message carrying a semi-persistent scheduling identifier and a semi-persistent scheduling period, where the semi-static scheduling identifier and the semi-static are carried.
  • the RRC connection reconfiguration message of the scheduling period is used to instruct the user equipment to perform configuration of the semi-persistent scheduling resource.
  • the device 1100 may correspond to a base station in an embodiment of the method of the present invention, and the above and other operations and/or functions of the respective modules in the device 1100 are respectively implemented in order to implement the corresponding flow of the method 700 in FIG. Concise, no longer repeat here.
  • the device 1100 for transmitting information in the power communication system may determine the time interval of the transmission resource required for transmitting the power data by using a preset manner or by sending the indication information to the user equipment, and transmitting the base station.
  • the data does not need to be scheduled again, so that the low delay requirement of the data transmission of the power communication system can be satisfied; the transmission of new data and the retransmission of data by frequency domain resources located in different frequency domain locations can be solved in the case of high frequency transmission.
  • the collision problem between the retransmitted data and the new data is transmitted on the frequency domain resource located in the same frequency domain location; the time domain resource used for retransmitting the data may be determined according to whether the new data transmission is successful, thereby improving the utilization of the transmission resource.
  • an embodiment of the present invention further provides a method 1200 for transmitting information in a power communication system, where the method 1200 can be performed, for example, by a terminal device or a base station, where the power communication system is used in at least two frequency domains.
  • the frequency domain resources of the location are in communication
  • the at least two frequency domain locations are in one-to-one correspondence with the at least two transmission times of the power data
  • each of the frequency domain locations is used for transmitting the power data of the corresponding number of transmissions
  • the method 1200 includes :
  • S1220 Transmit the first power data on the frequency domain resource according to the first frequency domain location.
  • the frequency domain location of the frequency domain resource is in one-to-one correspondence with the number of transmissions, for example, the frequency domain resource required for the first transmission of the first power data (ie, “initial transmission frequency domain resource”) a frequency domain resource required for the second transmission of the first power data at the first frequency domain location (ie, "first Retransmitting the frequency domain resource”) is located in the second frequency domain location, and the frequency domain resource required for the third transmission of the first power data (ie, the "second retransmission frequency domain resource”) is located in the third frequency domain location, where The first transmission frequency domain, the first retransmission frequency domain resource, and the second retransmission frequency domain resource belong to the frequency domain resource of the first transmission resource that carries the first power data, and the frequency domain locations do not coincide with each other, and the user equipment can
  • the time interval determines a transmission resource used for transmission, and further determines, according to the Mth transmission of the power data to be transmitted, using the frequency domain resource located in the Mth frequency domain position in
  • the method 1200 further includes:
  • the initial transmission frequency domain resource and the retransmission frequency domain resource of the first power data are allocated to the user equipment by using one scheduling authorization of the base station before the first transmission, and the user equipment transmits the initial transmission frequency domain resource and the retransmission frequency domain resource.
  • the base station is configured to dynamically allocate the time domain resource corresponding to the retransmission frequency domain resource when the user equipment needs to retransmit. If the user equipment does not need to retransmit, the base station may no longer The user equipment is allocated a time domain resource corresponding to the retransmission frequency domain resource, thereby improving resource utilization.
  • the user equipment may also save the initial transmission frequency domain resource and the retransmission frequency domain resource in a pre-configured manner for the first power data to be uploaded, and when the retransmission is needed, the transmission is performed on the corresponding frequency domain resource. When no retransmission is required, the transmission is no longer performed.
  • the foregoing embodiment is only an example.
  • the embodiment of the present invention is not limited thereto.
  • the number of retransmissions and the number of retransmission frequency domain resources may be other numbers, and the execution body of the method 1200 may also be a base station.
  • the terminal device or the base station may transmit new data through frequency domain resources located in different frequency domain locations by using a preset manner or by sending the indication information by the base station. And retransmitting the data, which can solve the collision problem of transmitting the retransmitted data and the new data on the frequency domain resource located in the same frequency domain position in the case of high frequency transmission; determining whether the retransmission data is used according to whether the new data transmission is successful or not Time domain resources, thereby increasing the utilization of transmission resources.
  • an embodiment of the present invention further provides an apparatus 1300 for transmitting information in a power communication system, wherein the power communication system performs communication using frequency domain resources located in at least two frequency domain locations, the at least two The frequency domain location corresponds to at least two transmission times of the power data, each The frequency domain location is used to transmit the power data of the corresponding number of transmissions, and the apparatus 1300 includes:
  • the processing module 1310 is configured to determine, according to the number of transmissions of the first power data, a first frequency domain location for transmitting the first power data;
  • the transmission module 1320 is configured to transmit the first power data on the frequency domain resource according to the first frequency domain location determined by the processing module 1310.
  • the transmission module 1320 is further configured to:
  • the frequency domain resources required for the next transmission are not used for transmission.
  • the apparatus 1300 may correspond to a base station or user equipment in the method 1200, and the above and other operations and/or functions of the respective modules in the apparatus 1300 are respectively implemented in order to implement the corresponding processes of the method 1200 in FIG. Concise, no longer repeat here.
  • the device 1300 for transmitting information in the power communication communication system may transmit new data and retransmit data through frequency domain resources located in different frequency domain locations by using a preset manner or by sending indication information by the base station.
  • the problem of collision between retransmitted data and new data transmitted on frequency domain resources located in the same frequency domain position in the case of high frequency transmission can be solved; the time domain resource used for retransmitting data can be determined according to whether the new data transmission is successful or not , thereby improving the utilization of transmission resources.
  • an embodiment of the present invention further provides a device 1400 for transmitting information in a power communication system, the device 1400 comprising: a processor 1410, a memory 1420, a bus system 1430, and a transceiver 1440, wherein the processor 1410, the memory 1420 and the transceiver 1440 are connected by the bus system 1430, the memory 1420 is used to store instructions, the processor 1410 is configured to execute instructions stored by the memory 1420 to control the transceiver 1440 to receive or transmit signals;
  • the processor 1410 is configured to determine, according to the number of transmissions of the first power data, a first frequency domain location for transmitting the first power data, where the transceiver 1440 is configured to transmit the frequency domain resource according to the first frequency domain location.
  • the first power data is configured to determine, according to the number of transmissions of the first power data, a first frequency domain location for transmitting the first power data, where the transceiver 1440 is configured to transmit the frequency domain resource according to the first frequency domain location. The first power data.
  • the processor 1410 may be a central processing unit (“CPU"), and the processor 1410 may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1420 can include read only memory and random access memory and provides instructions and data to the processor 1410. A portion of the memory 1420 can also include a non-volatile random access memory. For example, the memory 1420 can also store information of the device type.
  • the bus system 1430 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1430 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1410 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1420, and the processor 1410 reads the information in the memory 1420 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the transceiver 1440 is further configured to: when the first power data transmission fails, transmit the first power data on a frequency domain resource required for a next transmission; or
  • the frequency domain resources required for the next transmission are not used for transmission.
  • Apparatus 1400 in accordance with an embodiment of the present invention may correspond to a base station or user equipment in method 1200, and the above and other operations and/or functions of the various modules in apparatus 1400 are respectively implemented to implement the corresponding flow of method 1200 in FIG. Concise, no longer repeat here.
  • the device 1400 for transmitting information in the power communication communication system may transmit new data and retransmit data through frequency domain resources located in different frequency domain locations by using a preset manner or by sending indication information by the base station.
  • the problem of collision between retransmitted data and new data transmitted on frequency domain resources located in the same frequency domain position in the case of high frequency transmission can be solved; the time domain resource used for retransmitting data can be determined according to whether the new data transmission is successful or not , thereby improving the utilization of transmission resources.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software. The form of the functional unit is implemented.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种电力通信的方法、装置和设备。该方法包括:终端设备确定时间间隔,该时间间隔大于等于0毫秒且小于10毫秒;该终端设备根据该时间间隔,在至少两个传输资源上传输电力数据,其中,该至少两个传输资源处于相同频域位置,且该至少两个传输资源中在时域上相邻的两个传输资源之间具有该时间间隔。该方法、装置和设备可以满足电力通信***中传输数据的发包频率高、时延要求小的传输需求。

Description

电力通信***中传输信息的方法、装置和设备 技术领域
本发明涉及通信领域,尤其涉及一种电力通信***中传输信息的方法、装置和设备。
背景技术
无线通信是电力通信的主要通信手段之一,已经应用于电力网络,特别是智能电网中。LTE(Long Term Evolution,长期演进)***作为一种成熟的无线通信***在电力通信中具有广泛的应用前景,但是,对于一些发包频率高、通信时延要求小的智能电网业务,例如,主动配电网中的广域继电保护业务,发包频率高达600次/秒,要求单向通信时延小于10毫秒(ms),现有的LTE***无法满足其需求。
此外,在上行传输时,需要通过重传数据来补偿传输过程中的误码,针对数据包大小固定,时间间隔固定的实时性业务,LTE***通过调度器每隔固定的周期在相同的频域资源位置上进行业务数据的发送或接收,由于新数据和重传数据使用相同的频域资源,因此会发生碰撞,目前LTE***通过采用周期性偏移的方法来解决这一问题,即,在两个调度传输周期内通过一个小的偏移量对周期进行修正,但是,周期性偏移无法解决智能电网业务在高频传输情况下的碰撞问题,例如,主动配电网中的广域继电保护业务,每隔2ms发送一次新数据,相邻两个数据包间隔为1ms,一旦发生重传,重传数据与新数据发生碰撞的概率大大增加,并且随着重传次数的增加,还会发生多重碰撞问题。
发明内容
有鉴于此,本发明实施例提供了一种电力通信***中传输信息的方法、装置和设备,能够降低电力通信***上行调度时延,并且能够解决高频传输时重传数据与新数据的碰撞问题。
第一方面,提供了一种电力通信方法,该方法包括:终端设备确定时间间隔,该时间间隔大于等于0毫秒且小于10毫秒;终端设备根据该时间间隔,在至少两个传输资源上传输电力数据,其中,该至少两个传输资源处于 相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
本发明实施例提供的电力通信***中传输信息的方法,终端设备通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据传输的低时延要求。
可选地,所述时间间隔为预设值。从而,终端设备在传输数据时无需再进行调度,可以满足电力通信***中数据传输的低时延要求。
可选地,终端设备确定时间间隔,包括:终端设备接收基站发送的指示信息,该指示信息用于指示该时间间隔;该终端设备根据该指示信息确定该时间间隔。可以通过一次调度,将频域资源分配给终端设备使用,从而可以灵活的分配传输资源。
可选地,该指示信息包括:静态调度标识,该静态调度标识用于指示该时间间隔为0毫秒。
可选地,该指示信息包括:半静态调度标识和半静态调度周期,该半静态调度标识和该半静态调度周期用于指示该时间间隔为N毫秒,0<N<10。
可选地,电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;终端设备根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:终端设备根据第一电力数据的传输次数,确定第一频域位置,该第一频域位置是用于承载该第一电力数据的第一传输资源所属于的频域位置;该终端设备根据该时间间隔和该第一频域位置,在所述第一频域资源上传输所述第一电力数据。
终端设备通过位于不同频域位置的频域资源上传输电力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
第二方面,提供了一种电力通信***中传输信息的方法,该方法包括:基站确定时间间隔,该时间间隔大于等于0毫秒且小于10毫秒;基站根据该时间间隔,在至少两个传输资源上传输电力数据,其中,该至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有该时间间隔。
本发明实施例提供的电力通信***中传输信息的方法,基站通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据 传输的低时延要求。
可选地,所述时间间隔为预设值。从而,基站在传输数据时无需再进行调度,可以满足电力通信***中数据传输的低时延要求。
可选地,该方法还包括:基站向终端设备发送指示信息,该指示信息用于指示该时间间隔。可以通过一次调度,将频域资源分配给终端设备使用,从而可以灵活的分配传输资源。
可选地,该指示信息包括:静态调度标识,该静态调度标识用于指示所述时间间隔为0毫秒。
可选地,该指示信息包括:半静态调度标识和半静态调度周期,该半静态调度标识和该半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
可选地,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;基站根据时间间隔,在至少两个传输资源上传输电力数据,包括:该基站根据第一电力数据的传输次数,确定第一频域位置,该第一频域位置是用于承载该第一电力数据的第一传输资源所属于的频域位置;该基站根据该时间间隔和该传输次数,在该第一频域资源上传输该第一电力数据。
基站通过位于不同频域位置的频域资源上传输电力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
第三方面,提供了一种电力通信***中传输信息的装置,该装置包括:处理模块,用于确定时间间隔,该时间间隔大于等于0毫秒且小于10毫秒;传输模块,用于根据该处理模块确定的该时间间隔,在至少两个传输资源上传输电力数据,其中,该至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有该时间间隔。
本发明实施例提供的电力通信***中传输信息的装置,通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据传输的低时延要求。
可选地,所述时间间隔为预设值。从而,该装置在传输数据时无需再进行调度,可以满足电力通信***中数据传输的低时延要求。
可选地,传输模块还用于接收基站发送的指示信息,该指示信息用于指示该时间间隔;处理模块确定时间间隔,包括:处理模块根据该指示信息确定该时间间隔。从而可以灵活的分配传输资源。
可选地,该指示信息包括:静态调度标识,该静态调度标识用于指示该时间间隔为0毫秒。
可选地,该指示信息包括:半静态调度标识和半静态调度周期,该半静态调度标识和该半静态调度周期用于指示该时间间隔为N毫秒,0<N<10。
可选地,所述电力通信***使用位于至少两个频域位置的传输资源进行通信,该至少两个频域位置与电力数据的至少两次传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;传输模块根据时间间隔,在至少两个传输资源上传输电力数据,包括:处理模块根据第一电力数据的传输次数,确定第一频域位置,该第一频域位置是用于承载该第一电力数据的第一传输资源所属于的频域位置;该传输模块根据该时间间隔和该第一频域位置,在该第一频域资源上传输该第一电力数据。
本发明实施例提供的装置通过位于不同频域位置的频域资源上传输电力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
第四方面,提供了一种电力通信***中传输信息的装置,该装置包括:处理模块,用于确定时间间隔,该时间间隔大于等于0毫秒且小于10毫秒;传输模块,用于根据该处理模块确定的该时间间隔,在至少两个传输资源上传输电力数据,其中,该至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有该时间间隔。
本发明实施例提供的电力通信***中传输信息的装置,通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据传输的低时延要求。
可选地,所述时间间隔为预设值。从而,该装置在传输数据时无需再进行调度,可以满足电力通信***中数据传输的低时延要求。
可选地,传输模块还用于:向终端设备发送指示信息,该指示信息用于指示所述时间间隔。从而可以灵活的分配传输资源。
可选地,该指示信息包括:静态调度标识,该静态调度标识用于指示该时间间隔为0毫秒。
可选地,该指示信息包括:半静态调度标识和半静态调度周期,该半静态调度标识和该半静态调度周期用于指示该时间间隔为N毫秒,0<N<10。
可选地,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与该电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;传输模块根据时间间隔,在至少两个传输资源上传输电力数据,包括:处理模块根据第一电力数据的传输次数,确定第一频域位置,该第一频域位置是用于承载该第一电力数据的第一传输资源所属于的频域位置;该传输模块根据该时间间隔和该传输次数,在该第一频域资源上传输该第一电力数据。
本发明实施例提供的装置通过位于不同频域位置的频域资源上传输电力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
第五方面,提供了一种电力通信***中传输信息的设备,该设备包括:处理器、存储器、总线***和收发器。其中,该处理器、该存储器和该收发器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种电力通信***中传输信息的设备,该设备包括:处理器、存储器、总线***和收发器。其中,该处理器、该存储器和该收发器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种电力通信***中传输信息的方法,其中,该电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据,该方法包括:根据第一电力数据的传输次数,确定传输该第一电力数据的第一频域位置;根据该第一频域位置在频域资源上传输该第一电力数据。
本发明实施例提供的方法,通过位于不同频域位置的频域资源上传输电 力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
可选地,所述方法还包括:根据所述第一电力数据传输失败的情况,在下一次传输所需的频域资源上传输所述第一电力数据;或者根据所述第一电力数据传输成功的情况,不再使用下一次传输所需的频域资源进行传输。从而可以提高传输资源的利用率。
第八方面,提供了一种电力通信***中传输信息的装置,其中,该电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据,该装置包括:处理模块,用于根据第一电力数据的传输次数,确定传输该第一电力数据的第一频域位置;传输模块,用于根据该处理模块确定的该第一频域位置,在频域资源上传输该第一电力数据。
本发明实施例提供的装置,通过位于不同频域位置的频域资源上传输电力数据的初传数据和重传数据,可以解决在相同的频域资源上传输时重传数据与初传数据的碰撞问题。
可选地,该传输模块还用于:根据所述第一电力数据传输失败的情况,在下一次传输所需的频域资源上传输所述第一电力数据;或者根据所述第一电力数据传输成功的情况,不再使用下一次传输所需的频域资源进行传输。从而可以提高传输资源的利用率。
第九方面,提供了一种电力通信***中传输信息的设备,该设备包括:处理器、存储器、总线***和收发器。其中,该处理器、该存储器和该收发器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第七方面或第七方面的任意可能的实现方式中的方法。
本发明实施例提供的电力通信***中传输信息的方法、装置和设备,可以将传输资源预先配置在基站和终端设备中,也可以通过基站一次授权调度,分配给终端设备使用,终端设备上传数据时无需再进行调度,从而可以满足电力通信***上行数据传输的低时延要求;通过在不同的频域资源上传输初传数据和重传数据,可以解决在相同的频域资源上初传数据与重传数据的碰撞问题。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是一种电力通信场景的示意图;
图2是本发明一实施例提供的电力通信***中传输信息的方法的示意性流程图;
图3是本发明一实施例提供的电力通信***中传输信息的方法的上行调度时延示意图;
图4是本发明一实施例提供的电力通信***中传输信息的方法中传输重传数据的示意图;
图5是本发明一实施例提供的电力通信***中传输信息的方法中重传数据碰撞问题解决方案的示意图;
图6是本发明一实施例提供的电力通信***中传输信息的频域资源调度流程示意图;
图7是本发明另一实施例提供的电力通信***中传输信息的方法的示意性流程图;
图8是本发明一实施例提供的电力通信***中传输信息的装置的示意性框图;
图9是本发明另一实施例提供的电力通信***中传输信息的装置的示意性框图;
图10是本发明一实施例提供的电力通信***中传输信息的设备的示意性框图;
图11是本发明另一实施例提供的电力通信***中传输信息的设备的示意性框图;
图12是本发明再一实施例提供的电力通信***中传输信息的方法的示意性流程图;
图13是本发明再一实施例提供的电力通信***中传输信息的装置的示意性性框图;
图14是本发明再一实施例提供的电力通信***中传输信息的设备的示意性性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,在本发明实施例中,终端设备可称为用户设备(User Equipment,UE)、用户单元、远程终端、用户终端、终端、无线通信设备。用户设备可以为具有无线通信功能的电力设备或未来智能电网中的终端设备。
还应理解,在本发明实施例中,基站可用于与用户设备通信,该基站可以是还可以是LTE***中的演进型基站(Evolutional Node B,简称为“eNB”或“eNode B”),也可以为中继站、接入点或未来5G网络中的基站设备等。
图1示出了一种适用本发明实施例的电力通信方法的电力通信场景示意图。图1的例子仅仅是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。例如,在图1中,继电器130、传感器140、电闸150都属于电力***的用户设备,基站120接收到用户设备上行传输的业务数据后转发给电力控制中心110,供电力控制中心110做相关决策。
图1分别描述了一个继电器、传感器、电闸、基站和电力控制中心,但用户设备的数目和基站的数目还可以是其它的数目,本发明实施例对此不作限定,也就是说,本发明实施例可以只包括一个用户设备和一个基站,也可以包括多个用户设备和一个基站,还可以包括多个用户设备和多个基站。应理解,本发明实施例可以包括一种用户设备和一种基站,也可以包括一种用户设备和多种基站,还可以包括多种用户设备和一种基站,还可以包括多种用户设备和多种基站。
为方便描述,下面,以继电器业务数据在频分双工(Frequency Division Duplex)LTE***中的传输为例对本发明实施例进行说明,但本发明实施例不限于此,传输的数据还可以是其它电力设备产生的数据,通信***也可以是其它通信***。
图2示出了根据本发明一实施例的电力通信的方法200,该方法200包 括:
S210,终端设备确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
S220,所述终端设备根据所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
例如在电力通信***中传输的继电器数据,以上行数据为主、发包频率高且数据包大小固定、时延要求非常小,当继电器有数据需要上传时,可以直接通过预设在继电器中的时间间隔信息确定上传所需的传输资源,也可以通过基站发送的携带时间间隔信息的指示信息,确定本次传输所需的传输资源,这样,每隔2ms产生的继电器数据就可以立即通过分配的频域资源上传,不需要再重新申请、调度,从而可以满足电力通信***上行数据传输的低时延要求。
继电器所使用的频域资源可以是该继电器独占的频域资源,也可以周期性分配给继电器使用的,例如,可以根据继电器上传数据的特点,将时间间隔为1毫秒,时域长度为1毫秒的多个频域资源分配给继电器使用;也可以将时间间隔为1毫秒,时域长度为5毫秒的频域资源分配给继电器使用;还可以将时间间隔为0.5毫秒,时域长度为1.5毫秒的频域资源分配给继电器使用;还可以将时域上连续(即,时间间隔为0毫秒)的频域资源分配给继电器使用。
上述实施例仅仅是举例说明,本发明实施例不限于此,例如,至少两个传输资源所包括的频域资源的带宽可以相同,也可以不同,传输的电力数据也可以是具有其它传输间隔要求的电力数据。
本发明实施例提供的电力通信***中传输信息的方法,终端设备通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据传输的低时延要求。
可选地,所述时间间隔为预设值。
可选地,所述终端设备确定时间间隔,包括:
S211,所述终端设备接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;
S212,所述终端设备根据所述指示信息确定所述时间间隔。
例如继电器可以根据预设在设备内的时间间隔信息确定所述时间间隔的值,进而在相应的传输资源上进行传输,这样,无需调度即可进行传输,将上行传输中调度传输资源所引入的时延降为0,继电器还可以在传输数据前,根据基站发送的指示信息确定所述时间间隔,这样,既可以满足电力通信***中数据传输的低时延要求,又可以灵活的调配传输资源。
可选地,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0 <N<10。
图3是根据本发明一实施例的LTE***上行传输调度的时延示意图。如图3所示,每个子帧的时间长度为1ms,当UE产生上传数据准备上传时,首先在子帧n=0上向eNB发送SR(Scheduling Request,调度请求)信息,eNB在子帧n=2上通过PDCCH发送上行链路调度授权(Up-Link Grant,简称“UL Grant”)信息,UE收到该调度授权信息后,在子帧n=6上传输相应的上行数据,在静态调度情况下,eNB给UE配置的频域资源在时域上是连续的,UE上传数据无需再进行资源调度申请,在半静态调度情况下,eNB给UE分配的频域资源是有时间间隔的,时间间隔的大小可以根据待传输的业务类型确定,例如对于继电器数据的上传,可以将时间间隔设置为1ms,从而可以满足继电器数据传输的低时延要求,当数据上传完成后,可以将频域资源释放,分配给其它业务使用,从而可以提高传输资源的利用率。
上述具体实施方式仅仅是举例说明,本发明实施例不限于此,任何通过静态调度或半静态调度传输数据的方法都属于本发明保护的范围,例如,基站还可以通过静态调度方式或半静态调度方式分配的所述频域资源向用户设备发送数据,基站传输的数据还可以是其它电力设备产生的数据,相应的,可以根据实际传输的数据的需求,确定半静态调度周期N的值。因此,本发明实施例提供的电力通信通信***中传输信息的方法200,通过为电力设备分配独占频域资源或者周期性调度的频域资源,可以满足电力通信***中对上行数据传输的低时延要求。
由于无线传输不可避免的会出现干扰导致的误码,因此,需要通过重传数据对误码信息进行补偿,例如,可以采用同步非自适应的HARQ(Hybrid  Automatic Repeat reQuest,混合式自动重传请求)技术对数据进行重传。目前,对于同一个数据,半静态调度技术要求第一次传输的该数据(以下,统称为“新数据”)和重新传输的该数据(以下,统称为“重传数据”)在位于同一频域位置的频域资源上进行传输,因此,对于电力通信***中发包频率高的待传输数据,如果采用现有技术中重传数据与新数据使用相同频域资源(即,位于同一频域位置的频域资源)的方法,重传数据与周期性到达的新数据间会发生碰撞。
可选地,方法200中,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;所述终端设备根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述终端设备根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述终端设备根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
可选地,方法200还包括:
S230,所述终端设备根据所述电力数据传输失败的情况,在下一次传输所需的传输资源上重新传输所述电力数据;或者
S240,所述终端设备根据所述电力数据传输成功的情况,不再传输所述电力数据。
在本发明实施例中,频域资源的频域位置与传输次数是一一对应的,例如,第一电力数据的第一次传输所需的频域资源(以下,统称为“初传频域资源”)位于第一频域位置,第一电力数据的第二次传输所需的频域资源(即,“第一重传频域资源”)位于第二频域位置,第一电力数据的第三次传输所需的频域资源(即,“第二重传频域资源”)位于第三频域位置,其中,初传频域、第一重传频域资源和第二重传频域资源都属于承载第一电力数据的第一传输资源的频域资源,且频域位置互不重合,用户设备可以根据时间间隔确定传输所使用的传输资源,进而根据待传输的电力数据的第M次传输,确定使用该传输资源中的位于第M个频域位置的频域资源进行传输。
电力数据的初传频域资源和重传频域资源在新数据上传前就已经通过 基站的一次调度授权分配给用户设备,用户设备将初传频域资源和重传频域资源都保存下来,用于电力数据的上传,当用户设备需要重传时,基站为用户设备动态分配重传频域资源对应的时域资源,如果用户设备不需要重传,则基站可以不再为该用户设备分配重传频域资源所对应的时域资源,从而可以提高资源利用率。用户设备也可以通过预配置的方式将初传频域资源和重传频域资源都保存下来,用于电力数据的上传,当需要重传时,在相应的频域资源上进行传输,当不需要重传时,不再进行传输。
上述实施例仅是举例说明,本发明实施例不限于此,例如,重传次数与重传频域资源的数量还可以是其它数量。
图4是本发明一实施例提供的电力通信***中传输信息的方法中传输重传数据的示意图,如图4所示,每个子帧的时间长度为1ms,UE在子帧n=0上发送SR信息给eNB,eNB在子帧n=2上通过PDCCH发送UL Grant信息,UE收到该调度授权信息后,在子帧n=6上传输相应的上行数据,eNB将在子帧n=10上反馈确认/非确认(ACK/NACK)信息给UE,其中,如果eNB成功获取到数据,在子帧n=10上向UE反馈ACK信息,表示传输成功,并且不再给UE分配重传频域资源所对应的时域资源;如果eNB没有成功获取到数据,在子帧n=10上向UE反馈NACK信息,表示传输失败,eNB为UE分配下一次传输该数据所述的重传频域资源对应的时域资源,从而可以根据上行传输的新数据是否传输成功确定重传数据所使用的时频资源。
例如,如果UE收到数据1的NACK信息,说明数据1传输失败,UE需要在子帧n=14上重传数据1;如果UE收到数据1的ACK信息,则说明数据1传输成功,eNB就不需要再为数据1分配下一次重传的时域资源,相应的时频资源就可以分配给其他数据使用,从而可以提高传输资源的利用率。上述实施例仅是举例说明,本发明实施例不限于此。
图5示出了根据本发明一实施例的上行重传数据碰撞问题解决方案的示意图。例如,在频分双工LTE***中,数据1的初次传输与第一次重传间隔时间可以为8ms,第二次重传与第一次重传间隔时间也可以是8ms。如图5所示,以继电器数据的传输为例,继电器数据每隔2ms生成一个新数据,新数据的上传用时为1ms,因此,数据1的第一次重传与数据5的初次传输所使用的时域资源相同,如果两者使用的频域资源也相同,则必然会发生碰撞,并且由于发包频率较高,无法通过偏移重传数据的传输周期避免碰撞,本发 明实施例通过为数据1的第一次重传和数据5的初次传输配置不同的频域资源,从而彻底解决了在发包频率较高的情况下,上行重传数据与上行新数据在同一频域资源上传输时的碰撞问题。上述实施例仅是举例说明,本发明实施例不限于此。
可选地,方法200还包括:
S201,所述基站根据待传输的新数据的数据包大小,确定所述初传频域资源和所述重传频域资源的带宽。
用户设备可以在产生上传数据后,向基站发送缓存状态报告消息,告知基站当前该用户设备的上行缓存器中数据包的大小,基站可以根据待传输数据包的大小确定分配给用户设备的频域资源的带宽,该频域资源包括初传频域资源和重传频域资源。从而可以根据实际情况分配频域资源的带宽,避免传输资源的浪费。
在本发明实施例中,可选地,方法200还包括:
S202,所述终端设备接收所述基站发送携带静态调度标识的无线资源控制RRC连接重配消息;
所述终端设备根据所述RRC连接重配消息配置时间间隔为0毫秒的所述传输资源。
可选地,方法200还包括:
S203,所述终端设备接收所述基站发送携带半静态调度标识和半静态调度周期的RRC连接重配消息;
所述终端设备根据所述RRC连接重配消息配置时间间隔不为0毫秒的所述传输资源。
在S202中,高层例如MME(Mobility Management Entity,移动管理实体)确定此次业务采用静态调度方式并通知给eNB后,eNB例如可以使用静态调度无线网络临时标识(Persistent Scheduling-Cell-Radio Network Temporary Identifier,PS-C-RNTI)进行静态频域资源的调配、激活、释放的授权指示,所述静态频域资源是指在时域上连续的频域资源。eNB可以通过以PS-C-RNTI掩码的PDCCH(Physical Downlink Control Channel,物理下行控制信道)信令指示UE进行静态调度资源的激活和释放。上述实施例仅是举例说明,本发明实施例不限于此,任何可以指示UE配置时间间隔为0毫秒的所述传输资源的方法都属于本发明保护的范围。
在S203中,高层例如MME确定此次业务采用半静态调度方式且调度周期为1ms,通知给eNB后,eNB例如可以使用半静态调度无线网络临时标识(Semi Persistent Scheduling-Cell-Radio Network Temporary Identifier,SPS-C-RNTI)进行半静态频域资源的调配、激活、释放的授权指示,所述半静态频域资源是指在周期性分配给用户设备使用的频域资源,即,存在周期性时间间隔的频域资源。eNB可以通过以SPS-C-RNTI掩码的PDCCH信令指示UE进行静态调度资源的激活和释放。上述实施例仅是举例说明,本发明实施例不限于此,任何可以指示UE配置时间间隔不为0毫秒(小于10ms)的所述传输资源的方法都属于本发明保护的范围。
图6示出了根据本发明一实施例的频域资源调度流程的示意图,eNB向UE发送RRC(Radio Resource Control,无线资源控制)连接重配消息,如果采用静态调度方式,该消息携带PS-C-RNTI;如果采用半静态调度方式,该消息携带SPS-C-RNTI以及半静态调度周期1ms。
UE收到RRC连接重配消息后保存该静态调度标识,或者保存该半静态调度标识和该半静态调度周期,并向基站返回RRC连接重配完成的确认消息。
当UE产生上传数据准备上传时,向eNB发送上行SR消息,并发送缓存状态报告消息,告知eNB当前UE上行缓存器中数据包的大小,以协助eNB进行上行传输所需的频域资源带宽的计算。
eNB根据UE上行缓存器中数据包的大小为UE分配相应的时频资源,并通过UL Grant消息告知UE此次上传业务分配的时频资源,从而可以提高传输资源的利用率。该时频资源包括新数据上传所需的第一频域资源、M次重传所需的重传频域资源,其中,M为重传最大次数,UE的最大重传次数由RRC设置的参数maxHARQ-Tx的值确定。
UE收到UL授权消息后,激活静态调度方式或半静态调度方式,在分配的第一频域资源上传输新数据,可以在分配的重传频域资源上传输重传数据。
本发明实施例提供的电力通信通信***中传输信息的方法200,终端设备可以通过预设方式,或者通过接收基站发送的指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,终端设备传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域 位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
上文结合图2至图6,从终端设备的角度描述了根据本发明实施例的电力通信***中传输信息的方法200,下面结合图7,从基站的角度详细描述根据本发明实施例的电力通信***中传输信息的方法700。
图7示出了根据本发明一实施例的电力通信的方法700,该方法700包括:
S710,基站确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
S720,所述基站根据所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
在本发明实施例中,基站可以根据预设在设备内的时间间隔信息确定所述时间间隔的值,进而在相应的传输资源上进行传输,这样,无需调度即可进行传输,将调度传输资源所引入的时延降为0,基站还可以在传输数据前,根据高层的指示确定所述时间间隔,并发送给终端设备,这样,既可以满足电力通信***中数据传输的低时延要求,又可以灵活的调配传输资源。
上述具体实施方式仅仅是举例说明,本发明实施例不限于此,本发明实施例提供的电力通信***中传输信息的方法700,基站通过时间间隔小于10ms的传输资源传输电力数据,从而可以满足电力通信***中数据传输的低时延要求。
可选地,方法700中,所述时间间隔为预设值。
可选地,方法700还包括:所述基站向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
可选地,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
可选地,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;所述基站根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述基站根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述基站根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
可选地,方法700还包括:
S730,基站根据新数据或重传数据传输失败的情况,为所述终端设备的下一次传输分配所需的时域资源;或者
S740,基站根据新数据或重传数据传输成功的情况,不再为所述终端设备的下一次传输分配所需的时域资源。
在本发明实施例中,基站在新数据上传前就已经将初传频域资源和重传频域资源一次调度授权分配给用户设备,用户设备将初传频域资源和重传频域资源都保存下来,用于电力数据的上传,当用户设备需要重传时,基站为用户设备动态分配重传频域资源对应的时域资源,如果用户设备不需要重传,则基站可以不再为该用户设备分配重传频域资源所对应的时域资源,从而可以提高资源利用率。
可选地,方法700还包括:
S701,基站接收所述终端设备发送的缓存状态信息,所述缓存状态信息用于指示待传输的所述电力数据的数据包大小;
所述基站根据所述缓存状态信息确定所述初传频域资源和所述重传输资源的带宽。
用户设备可以在产生上传数据后,向基站发送缓存状态报告消息,告知基站当前该用户设备的上行缓存器中数据包的大小,基站可以根据待传输数据包的大小确定分配给用户设备的频域资源的带宽,该频域资源包括传输新数据所需的初传频域资源和重传频域资源。
在本发明实施例中,可选地,方法700还包括:
S702,所述基站向所述终端设备发送携带静态调度标识的无线资源控制RRC连接重配消息,所述RRC连接重配消息用于指示所述终端设备配置时 间间隔为0毫秒的所述传输资源。
可选地,方法200还包括:
S703,所述基站向所述终端设备发送携带半静态调度标识和半静态调度周期的RRC连接重配消息,所述RRC连接重配消息用于指示所述终端设备配置时间间隔不为0毫秒的所述传输资源。
在S702中,高层例如MME确定此次业务采用静态调度方式并通知给eNB后,eNB例如可以使用PS-C-RNTI进行静态频域资源的调配、激活、释放的授权指示,所述静态频域资源是指在用户设备独占的频域资源。eNB可以通过以PS-C-RNTI掩码的PDCCH信令指示UE进行静态调度资源的激活和释放。上述实施例仅是举例说明,本发明实施例不限于此,任何可以指示UE配置时间间隔为0毫秒的传输资源的方法都属于本发明保护的范围。
在S703中,高层例如MME确定此次业务采用半静态调度方式且调度周期为1ms,通知给eNB后,eNB例如可以使用SPS-C-RNTI进行半静态频域资源的调配、激活、释放的授权指示,所述半静态频域资源是指在周期性分配给用户设备使用的频域资源,即,存在周期性时间间隔的频域资源。eNB可以通过以SPS-C-RNTI掩码的PDCCH信令指示UE进行静态调度资源的激活和释放。上述实施例仅是举例说明,本发明实施例不限于此,任何可以指示UE配置半静态频域资源的方法都属于本发明保护的范围。
本发明实施例提供的电力通信***中传输信息的方法700,基站可以通过预设方式,或者通过向用户设备发送指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,基站传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
下面,将结合图8和图9,详细描述根据本发明实施例的电力通信装置。
图8示出了根据本发明一实施例的电力通信通信***中传输信息的装置800的示意性框图,如图8所示,该装置800包括:
处理模块810,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
传输模块820,用于根据所述处理模块810确定的所述时间间隔,在至 少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
可选地,所述时间间隔为预设值。
可选地,所述传输模块820还用于接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;所述处理模块810确定所述时间间隔,包括:所述处理模块810根据所述指示信息确定所述时间间隔。
可选地,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
可选地,所述电力通信***使用位于至少两个频域位置的传输资源进行通信,所述至少两个频域位置与所述电力数据的至少两次传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
所述传输模块820根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述处理模块810根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述传输模块820根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
可选地,传输模块820还用于:根据新数据或重传数据传输失败的情况,在所述基站为下一次重传分配所需的时域资源上重新传输所述新数据或所述重传数据;或者根据所述新数据或所述重传数据传输成功的情况,不再传输所述新数据或所述重传数据。
可选地,传输模块820还用于:向所述基站发送缓存状态信息,所述缓存状态信息用于指示待传输的电力数据的数据包大小。
可选地,传输模块820还用于:接收所述基站发送携带静态调度标识的无线资源控制RRC连接重配消息;其中,所述处理模块810还用于根据所述携带静态调度标识的RRC连接重配消息进行静态调度资源的配置。
可选地,传输模块820还用于:接收所述基站发送携带半静态调度标识 和半静态调度周期的RRC连接重配消息;其中,所述处理模块810还用于根据所述携带半静态调度标识和半静态调度周期的RRC连接重配消息进行半静态调度资源的配置。
根据本发明实施例的装置800可对应于本发明的方法实施例中的终端设备,并且装置800中的各个模块的上述和其它操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例提供的电力通信***中传输信息的装置800,可以通过预设方式,或者通过接收基站发送的指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,终端设备传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
图9示出了根据本发明另一实施例的电力通信***中传输信息的装置900的示意性框图,如图9所示,该装置900包括:
处理模块910,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
传输模块920,用于根据所述处理模块910确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
可选地,所述时间间隔为预设值。
可选地,所述传输模块920还用于:向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
可选地,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0 <N<10。
可选地,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对 应,每个频域位置用于传输所对应的传输次数的电力数据;
所述传输模块920根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述处理模块910根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述传输模块920根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
可选地,所述处理模块910还用于:根据新数据或重传数据传输失败的情况,为下一次重传分配所需的时域资源;或者根据所述新数据或所述重传数据传输成功的情况,不再分配下次重传所需的时域资源。
可选地,所述传输模块920还用于接收所述终端设备发送的缓存状态信息,所述缓存状态信息用于指示待传输的所述电力数据的数据包大小;所述处理模块910还用于:根据所述缓存状态信息确定初传频域资源和重传输资源的带宽
可选地,所述传输模块920还用于:向所述终端设备发送携带静态调度标识的无线资源控制RRC连接重配消息,所述携带静态调度标识的RRC连接重配消息用于指示所述用户设备进行静态调度资源的配置。
可选地,所述传输模块920还用于:向所述终端设备发送携带半静态调度标识和半静态调度周期的RRC连接重配消息,所述携带半静态调度标识和半静态调度周期的RRC连接重配消息用于指示所述用户设备进行半静态调度资源的配置。
根据本发明实施例的装置900可对应于本发明的方法实施例中的基站,并且装置900中的各个模块的上述和其它操作和/或功能分别为了实现图7中的方法700的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例提供的电力通信***中传输信息的装置900,可以通过预设方式,或者通过向用户设备发送指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,基站传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传 输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
如图10所示,本发明实施例还提供了一种电力通信***中传输信息的设备1000,该设备1000包括:处理器1010、存储器1020、总线***1030和收发器1040,其中,该处理器1010、该存储器1020和该收发器1040通过该总线***1030相连,该存储器1020用于存储指令,该处理器1010用于执行该存储器1020存储的指令,以控制该收发器1040接收或发送信号;
其中,该处理器1010用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;该收发器1040用于根据该处理器1010确定的时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
在本发明实施例中,该处理器1010可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1010还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1020可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据。存储器1020的一部分还可以包括非易失性随机存取存储器。例如,存储器1020还可以存储设备类型的信息。
该总线***1030除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***1030。
在实现过程中,上述方法的各步骤可以通过处理器1010中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1020,处理器1010读取存储器1020中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述时间间隔为预设值。
可选地,作为一个实施例,所述收发器1040还用于接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;所述处理器1010确定所述 时间间隔,包括:所述处理器1010根据所述指示信息确定所述时间间隔。
可选地,作为一个实施例,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,作为一个实施例,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
可选地,作为一个实施例,所述电力通信***使用位于至少两个频域位置的传输资源进行通信,所述至少两个频域位置与所述电力数据的至少两次传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
所述收发器1040根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述处理器1010根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述收发器1040根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
可选地,作为一个实施例,该收发器1040还用于:根据新数据或重传数据传输失败的情况,在所述基站为下一次重传分配所需的时域资源上重新传输所述新数据或所述重传数据;或者根据所述新数据或所述重传数据传输成功的情况,不再传输所述新数据或所述重传数据。
可选地,作为一个实施例,该收发器1040还用于:向所述基站发送缓存状态信息,所述缓存状态信息用于指示待传输的新数据的数据包大小。
可选地,作为一个实施例,该收发器1040还用于:接收所述基站发送携带静态调度标识的无线资源控制RRC连接重配消息;其中,所述处理器1110还用于根据所述携带静态调度标识的RRC连接重配消息配置时间间隔为0毫秒的传输资源。
可选地,作为一个实施例,该收发器1040还用于:接收所述基站发送携带半静态调度标识和半静态调度周期的RRC连接重配消息;其中,所述处理器1010还用于根据所述携带半静态调度标识和半静态调度周期的RRC连接重配消息配置时间间隔不为0毫秒的传输资源。
根据本发明实施例的设备1000可对应于本发明方法实施例中的终端设 备,并且设备1000中的各个模块的上述和其它操作和/或功能分别为了实现图2中的方法200的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例提供的电力通信***中传输信息的设备1000,可以通过预设方式,或者通过接收基站发送的指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,终端设备传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
如图11所示,本发明实施例还提供了一种电力通信***中传输信息的设备1100,该电力通信设备1100包括:处理器1110、存储器1120、总线***1130和收发器1140,其中,该处理器1110、该存储器1120和该收发器1140通过该总线***1130相连,该存储器1120用于存储指令,该处理器1110用于执行该存储器1120存储的指令,以控制该收发器1140接收或发送信号;
其中,该处理器1110用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;该收发器1140用于根据该处理器1110确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
在本发明实施例中,该处理器1110可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1110还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1120可以包括只读存储器和随机存取存储器,并向处理器1110提供指令和数据。存储器1120的一部分还可以包括非易失性随机存取存储器。例如,存储器1120还可以存储设备类型的信息。
该总线***1130除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总 线***1130。
在实现过程中,上述方法的各步骤可以通过处理器1110中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1120,处理器1110读取存储器1120中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述时间间隔为预设值。
可选地,作为一个实施例,所述收发器1140还用于:向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
可选地,作为一个实施例,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
可选地,作为一个实施例,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
可选地,作为一个实施例,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
所述收发器1140根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
所述处理器1110根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
所述收发器1140根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
可选地,作为一个实施例,该处理器1110还用于:根据所述新数据或所述重传数据传输失败的情况,为下一次重传分配所需的时域资源;或者根据所述新数据或所述重传数据传输成功的情况,不再分配下次重传所需的时域资源。
可选地,作为一个实施例,该处理器1110还用于:根据待传输的新数 据的数据包大小,确定所述频域资源的带宽,所述频域资源包括传输新数据所需的第一频域资源和传输重传数据所需的重传频域资源。
可选地,作为一个实施例,该收发器1140还用于:向所述用户设备发送携带静态调度标识的无线资源控制RRC连接重配消息,所述携带静态调度标识的RRC连接重配消息用于指示所述用户设备进行静态调度资源的配置。
可选地,作为一个实施例,该收发器1140还用于:向所述用户设备发送携带半静态调度标识和半静态调度周期的RRC连接重配消息,所述携带半静态调度标识和半静态调度周期的RRC连接重配消息用于指示所述用户设备进行半静态调度资源的配置。
根据本发明实施例的设备1100可对应于本发明方法实施例中的基站,并且设备1100中的各个模块的上述和其它操作和/或功能分别为了实现图7中的方法700的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例提供的电力通信***中传输信息的设备1100,可以通过预设方式,或者通过向用户设备发送指示信息的方式,确定传输电力数据所需的传输资源的时间间隔,基站传输数据时无需再进行调度,从而可以满足电力通信***数据传输的低时延要求;通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
如图12所示,本发明实施例还提供了一种电力通信***中传输信息的方法1200,该方法1200例如可以由终端设备或者基站执行,其中,该电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据,该方法1200包括:
S1210,根据第一电力数据的传输次数,确定传输该第一电力数据的第一频域位置;
S1220,根据该第一频域位置在频域资源上传输该第一电力数据。
在本发明实施例中,频域资源的频域位置与传输次数是一一对应的,例如,第一电力数据的第一次传输所需的频域资源(即,“初传频域资源”)位于第一频域位置,第一电力数据的第二次传输所需的频域资源(即,“第一 重传频域资源”)位于第二频域位置,第一电力数据的第三次传输所需的频域资源(即,“第二重传频域资源”)位于第三频域位置,其中,初传频域、第一重传频域资源和第二重传频域资源都属于承载第一电力数据的第一传输资源的频域资源,且频域位置互不重合,用户设备可以根据时间间隔确定传输所使用的传输资源,进而根据待传输的电力数据的第M次传输,确定使用该传输资源中的位于第M个频域位置的频域资源进行传输。
可选地,方法1200还包括:
S1230,根据所述第一电力数据传输失败的情况,在下一次传输所需的频域资源上传输所述第一电力数据;或者
S1240,根据所述第一电力数据传输成功的情况,不再使用下一次传输所需的频域资源进行传输。
第一电力数据的初传频域资源和重传频域资源在第一次传输前就已经通过基站的一次调度授权分配给用户设备,用户设备将初传频域资源和重传频域资源都保存下来,用于第一电力数据的传输,当用户设备需要重传时,基站为用户设备动态分配重传频域资源对应的时域资源,如果用户设备不需要重传,则基站可以不再为该用户设备分配重传频域资源所对应的时域资源,从而可以提高资源利用率。用户设备也可以通过预配置的方式将初传频域资源和重传频域资源都保存下来,用于第一电力数据的上传,当需要重传时,在相应的频域资源上进行传输,当不需要重传时,不再进行传输。
上述实施例仅是举例说明,本发明实施例不限于此,例如,重传次数与重传频域资源的数量还可以是其它数量,方法1200的执行主体也可以是基站。
本发明实施例提供的电力通信通信***中传输信息的方法1200,终端设备或者基站可以通过预设方式,或者通过基站发送指示信息的方式,通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
如图13所示,本发明实施例还提供了一种电力通信***中传输信息的装置1300,其中,该电力通信***使用位于至少两个频域位置的频域资源进行通信,该至少两个频域位置与电力数据的至少两个传输次数一一对应,每 个频域位置用于传输所对应的传输次数的电力数据,该装置1300包括:
处理模块1310,用于根据第一电力数据的传输次数,确定传输该第一电力数据的第一频域位置;
传输模块1320,用于根据该处理模块1310确定的该第一频域位置,在频域资源上传输该第一电力数据。
可选地,该传输模块1320还用于:
根据所述第一电力数据传输失败的情况,在下一次传输所需的频域资源上传输所述第一电力数据;或者
根据所述第一电力数据传输成功的情况,不再使用下一次传输所需的频域资源进行传输。
根据本发明实施例的装置1300可对应于方法1200中的基站或用户设备,并且装置1300中的各个模块的上述和其它操作和/或功能分别为了实现图12中的方法1200的相应流程,为了简洁,在此不再赘述。
本发明实施例提供的电力通信通信***中传输信息的装置1300,可以通过预设方式,或者通过基站发送指示信息的方式,通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
如图14所示,本发明实施例还提供了一种电力通信***中传输信息的设备1400,该设备1400包括:处理器1410、存储器1420、总线***1430和收发器1440,其中,该处理器1410、该存储器1420和该收发器1440通过该总线***1430相连,该存储器1420用于存储指令,该处理器1410用于执行该存储器1420存储的指令,以控制该收发器1440接收或发送信号;
其中,该处理器1410用于根据第一电力数据的传输次数,确定传输该第一电力数据的第一频域位置;该收发器1440用于根据该第一频域位置在频域资源上传输该第一电力数据。
在本发明实施例中,该处理器1410可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1410还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1420可以包括只读存储器和随机存取存储器,并向处理器1410提供指令和数据。存储器1420的一部分还可以包括非易失性随机存取存储器。例如,存储器1420还可以存储设备类型的信息。
该总线***1430除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***1430。
在实现过程中,上述方法的各步骤可以通过处理器1410中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1420,处理器1410读取存储器1420中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该收发器1440还用于:根据所述第一电力数据传输失败的情况,在下一次传输所需的频域资源上传输所述第一电力数据;或者
根据所述第一电力数据传输成功的情况,不再使用下一次传输所需的频域资源进行传输。
根据本发明实施例的设备1400可对应于方法1200中的基站或用户设备,并且装置1400中的各个模块的上述和其它操作和/或功能分别为了实现图12中的方法1200的相应流程,为了简洁,在此不再赘述。
本发明实施例提供的电力通信通信***中传输信息的设备1400,可以通过预设方式,或者通过基站发送指示信息的方式,通过位于不同频域位置的频域资源上传输新数据和重传数据,可以解决在高频传输的情况下,在位于相同频域位置的频域资源上传输重传数据与新数据的碰撞问题;可以根据新数据传输是否成功,确定重传数据使用的时域资源,从而提高了传输资源的利用率。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
还应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种电力通信***中传输信息的方法,其特征在于,所述方法包括:
    终端设备确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    所述终端设备根据所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定时间间隔,包括:
    所述终端设备接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;
    所述终端设备根据所述指示信息确定所述时间间隔。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  4. 根据权利要求2所述的方法,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
    所述终端设备根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述终端设备根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述终端设备根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
  6. 一种电力通信***中传输信息的方法,其特征在于,所述方法包括:
    基站确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    所述基站根据所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输 资源之间具有所述时间间隔。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述基站向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
  8. 根据权利要求7所述的方法,其特征在于,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  9. 根据权利要求7所述的方法,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
    所述基站根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述基站根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述基站根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
  11. 一种电力通信***中传输信息的装置,其特征在于,所述装置包括:
    处理模块,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    传输模块,用于根据所述处理模块确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
  12. 根据权利要求11所述的装置,其特征在于,
    所述传输模块还用于接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;
    所述处理模块确定所述时间间隔,包括:所述处理模块根据所述指示信息确定所述时间间隔。
  13. 根据权利要求12所述的装置,其特征在于,所述指示信息包括: 静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  14. 根据权利要求12所述的装置,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,所述电力通信***使用位于至少两个频域位置的传输资源进行通信,所述至少两个频域位置与所述电力数据的至少两次传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
    所述传输模块根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述处理模块根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述传输模块根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
  16. 一种电力通信***中传输信息的装置,其特征在于,所述装置包括:
    处理模块,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    传输模块,用于根据所述处理模块确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
  17. 根据权利要求16所述的装置,其特征在于,所述传输模块还用于:
    向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
  18. 根据权利要求17所述的装置,其特征在于,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  19. 根据权利要求17所述的装置,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于 传输所对应的传输次数的电力数据;
    所述传输模块根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述处理模块根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述传输模块根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
  21. 一种电力通信***中传输信息的设备,其特征在于,所述设备包括:
    处理器,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    收发器,用于根据所述处理器确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
  22. 根据权利要求21所述的设备,其特征在于,
    所述收发器还用于接收基站发送的指示信息,所述指示信息用于指示所述时间间隔;
    所述处理器确定所述时间间隔,包括:所述处理器根据所述指示信息确定所述时间间隔。
  23. 根据权利要求22所述的设备,其特征在于,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  24. 根据权利要求22所述的设备,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  25. 根据权利要求21至24中任一项所述的设备,其特征在于,所述电力通信***使用位于至少两个频域位置的传输资源进行通信,所述至少两个频域位置与所述电力数据的至少两次传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
    所述收发器根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述处理器根据第一电力数据的传输次数,确定第一频域位置,所述第 一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述收发器根据所述时间间隔和所述第一频域位置,在所述第一频域资源上传输所述第一电力数据。
  26. 一种电力通信***中传输信息的设备,其特征在于,所述设备包括:
    处理器,用于确定时间间隔,所述时间间隔大于等于0毫秒且小于10毫秒;
    收发器,用于根据所述处理器确定的所述时间间隔,在至少两个传输资源上传输电力数据,其中,所述至少两个传输资源处于相同频域位置,且在时域上相邻的两个传输资源之间具有所述时间间隔。
  27. 根据权利要求26所述的设备,其特征在于,所述收发器还用于向终端设备发送指示信息,所述指示信息用于指示所述时间间隔。
  28. 根据权利要求27所述的设备,其特征在于,所述指示信息包括:静态调度标识,所述静态调度标识用于指示所述时间间隔为0毫秒。
  29. 根据权利要求27所述的设备,其特征在于,所述指示信息包括:半静态调度标识和半静态调度周期,所述半静态调度标识和所述半静态调度周期用于指示所述时间间隔为N毫秒,0<N<10。
  30. 根据权利要求26至29中任一项所述的设备,其特征在于,所述电力通信***使用位于至少两个频域位置的频域资源进行通信,所述至少两个频域位置与所述电力数据的至少两个传输次数一一对应,每个频域位置用于传输所对应的传输次数的电力数据;
    所述收发器根据所述时间间隔,在至少两个传输资源上传输电力数据,包括:
    所述处理器根据第一电力数据的传输次数,确定第一频域位置,所述第一频域位置是用于承载所述第一电力数据的第一传输资源所属于的频域位置;
    所述收发器根据所述时间间隔和所述传输次数,在所述第一频域资源上传输所述第一电力数据。
PCT/CN2016/079817 2016-04-21 2016-04-21 电力通信***中传输信息的方法、装置和设备 WO2017181378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079817 WO2017181378A1 (zh) 2016-04-21 2016-04-21 电力通信***中传输信息的方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079817 WO2017181378A1 (zh) 2016-04-21 2016-04-21 电力通信***中传输信息的方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2017181378A1 true WO2017181378A1 (zh) 2017-10-26

Family

ID=60115545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079817 WO2017181378A1 (zh) 2016-04-21 2016-04-21 电力通信***中传输信息的方法、装置和设备

Country Status (1)

Country Link
WO (1) WO2017181378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115902451A (zh) * 2022-10-09 2023-04-04 国网安徽省电力有限公司滁州供电公司 基于智能匹配的继电保护监测***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320863A1 (en) * 2010-04-09 2012-12-20 Hyo Jin Lee Wireless communication system and method for retransmission process thereof
CN103001749A (zh) * 2011-09-13 2013-03-27 华为技术有限公司 传输数据的方法、物联网设备和网络侧设备
CN103326823A (zh) * 2012-03-20 2013-09-25 中兴通讯股份有限公司 数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320863A1 (en) * 2010-04-09 2012-12-20 Hyo Jin Lee Wireless communication system and method for retransmission process thereof
CN103001749A (zh) * 2011-09-13 2013-03-27 华为技术有限公司 传输数据的方法、物联网设备和网络侧设备
CN103326823A (zh) * 2012-03-20 2013-09-25 中兴通讯股份有限公司 数据传输方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115902451A (zh) * 2022-10-09 2023-04-04 国网安徽省电力有限公司滁州供电公司 基于智能匹配的继电保护监测***
CN115902451B (zh) * 2022-10-09 2023-09-15 国网安徽省电力有限公司滁州供电公司 基于智能匹配的继电保护监测***

Similar Documents

Publication Publication Date Title
KR102303054B1 (ko) 통신 방법 및 디바이스
US11387946B2 (en) Reliable ultra-low latency communications
EP3298822B1 (en) Method for triggering a buffer status reporting in a wireless communication system and a device therefor
US11153931B2 (en) Interference cancellation method and base station
JP6360171B2 (ja) フィードバック情報の伝送方法及び装置
EP3565148B1 (en) Data transmission method and apparatus
JP2022517073A (ja) サイドリンクにおける高度なフィードバック
CN102264098B (zh) 一种缓冲区状态报告处理的方法和装置
US11129143B2 (en) Wireless communication method, network device, user equipment, and system
US8817636B2 (en) Method, system, and equipment for information processing
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
KR20200142051A (ko) 데이터 송신을 위한 방법 및 장치
CN104685809A (zh) 用于使用通信***中的多个小区的方法和装置
US20220224447A1 (en) Harq process / entity based uplink multiplexing
WO2017201743A1 (zh) 传输方法、基站和终端
WO2018202193A1 (zh) 一种数据传输方法、装置和***
EP3876464A1 (en) Internet of vehicles data transmission method, transmission terminal and network side device
KR20190034244A (ko) 피드백 정보를 전송하는 방법, 단말 장치 및 기지국
JP2023513240A (ja) サイドリンク送信の再送方法及び装置
JP2019502278A (ja) 無線通信の方法、ネットワーク装置及び端末機器
CN114450904A (zh) 一种控制harq进程的方法以及装置
KR20170054218A (ko) 통신 시스템에서의 빠른 접속을 위한 방법 및 장치
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2017181378A1 (zh) 电力通信***中传输信息的方法、装置和设备
US20230319625A1 (en) Replication in a Wireless Communication Network

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898965

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898965

Country of ref document: EP

Kind code of ref document: A1