WO2017178606A1 - Nez de lance de soufflage - Google Patents

Nez de lance de soufflage Download PDF

Info

Publication number
WO2017178606A1
WO2017178606A1 PCT/EP2017/058973 EP2017058973W WO2017178606A1 WO 2017178606 A1 WO2017178606 A1 WO 2017178606A1 EP 2017058973 W EP2017058973 W EP 2017058973W WO 2017178606 A1 WO2017178606 A1 WO 2017178606A1
Authority
WO
WIPO (PCT)
Prior art keywords
nose
separator
central
bath
advantageously
Prior art date
Application number
PCT/EP2017/058973
Other languages
English (en)
Inventor
Jean-Philippe Thomas
Original Assignee
Soudobeam Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soudobeam Sa filed Critical Soudobeam Sa
Priority to EP17719524.5A priority Critical patent/EP3443131B1/fr
Priority to PL17719524T priority patent/PL3443131T3/pl
Priority to ES17719524T priority patent/ES2794843T3/es
Priority to US16/093,608 priority patent/US10858714B2/en
Priority to CA3020361A priority patent/CA3020361C/fr
Priority to JP2019505284A priority patent/JP6953510B2/ja
Priority to KR1020187030184A priority patent/KR102330422B1/ko
Publication of WO2017178606A1 publication Critical patent/WO2017178606A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C2005/4626Means for cooling, e.g. by gases, fluids or liquids

Definitions

  • the present invention relates to a blowing nozzle nose, intended for brewing baths, comprising
  • a central tube for supplying stirring gas closed at one end facing the bath by a first end wall provided with at least two openings,
  • an inner tube forming, with the central tube, a first annular cavity for the passage of a cooling liquid and terminated at one end facing the bath by a second end wall, called a separator, having a central opening and a through-hole; opening provided in said first front wall,
  • an outer tube forming with the inner tube a second annular cavity for the passage of the cooling liquid and closed at one end facing the bath by a third end wall having an opening opening opening provided in said first end wall and presenting a inner surface comprising a conical central zone which is directed towards said central opening and which has a curved envelope surface in axial section,
  • an outlet duct for the stirring gas called an injector, starting from each opening in said first end wall and going up to said corresponding outlet orifice passing through said corresponding through orifice in a manner that is impervious to the cooling liquid.
  • central conical zone which is directed towards said central opening and which has a surface
  • the curved envelope in axial section will sometimes only be expressed by the words "central depression”.
  • the blowing nozzle nose as described in the present invention is used, inter alia, in oxygen converters for the manufacture of steel (BOF Basic Oxygen Furnace, AOD Argon Oxygen Decarburization).
  • the converters make it possible to obtain steel by injecting oxygen into a bath of molten iron in order to burn the carbon contained therein.
  • the basic principle in the field of oxygen blowing in the converters (for example LD (for Linz-Donawitz)) is to propel 3 to 6 jets of oxygen arranged in a ring on a bath of molten iron. The lance that allows the formation of these jets of oxygen is then placed at a distance of 1 to 5 m above a bath of molten iron whose temperature can reach 1700 ° C.
  • the temperature of the nose of the lance can then grow rapidly up to 400 ° C and have to stay in this environment for about 20 minutes.
  • the nose is then removed and returns to room temperature, ie 20 ° C.
  • a coolant can circulate along the inner wall facing the bath of the lance nose.
  • a coolant usually water
  • the calories of the metal forming the wall are transferred to this coolant.
  • the temperature of the lance nose is uniformized over the nose, and no longer elevated only at the walls exposed to the bath.
  • Poor circulation of the coolant can also cause a local rise in coolant temperature.
  • locally the liquid can pass into the vapor phase under thermal stress. This results in the formation of cavities filled with trapped gas within the coolant. This formation of gaseous cavities in a liquid is known as the phenomenon of cavitation.
  • US4432534 and WO9623082 have, for example, lance noses designed to allow the flow of a coolant at high speed along the inner surface of the front wall, the same front wall has a slight central depression to to optimize this flow.
  • the document WO0222892 attempts to further improve the flow of the coolant in the heat exchange space of the lance nose by developing a central depression in the face facing the bath having a well-defined ratio between height and base of this depression. This ratio allows the heat exchange space to have a section for the passage of the coolant substantially constant so as to obtain a coolant flow rate through this space which is approximately constant.
  • DE 19506718 discloses a blow lance nose used in or above liquid steel and having a cooling system based on the difference in roughness between the two walls of the heat exchange space, namely the separator and the inner surface of the third end wall.
  • the ratio between the roughness difference and the minimum radius of curvature of the surface exposed to the liquid steel must be kept constant to ensure good cooling.
  • the diameter of the outlets of the injectors tends to increase following the erosion of the edges thereof. This increase in diameter deforms the oxygen jets, which causes, in addition to the destruction of the lance nose, a dispersion of these jets and consequently a decrease in the effectiveness thereof.
  • the carbon oxidation reaction is, in fact, favored by the depth of penetration of the jets in the bath and by stirring thereof.
  • the lance noses are placed at a distance of 1 to 5 m above the cast iron bath, in order to be effective, the jets must present a coherent profile over a longest possible distance. The reaction yield is then decreased when these jets are dispersed because they penetrate less deeply into the melt.
  • the reaction efficiency in the bath is therefore not optimal and in addition has a significant variability over the lifetime of the nose lance.
  • Effective cooling is therefore important for the proper functioning of the lance noses, because it has the advantage of increasing the life of these but also to ensure a better reaction performance stability throughout their service life. and this by minimizing erosion at the edges of the front wall. Only such cooling is also very difficult to implement, in the extreme conditions encountered during the use of spear noses.
  • the object of the present invention is to overcome these drawbacks of the state of the art by providing a simple lance nose to be manufactured whose life is increased and which makes it possible to ensure a reaction efficiency in the improved pigtank and stable throughout the life of the lance nose.
  • a lance nose as indicated at the beginning in which the separator has at the central opening an edge in axial section which is curved such that a height H3 is defined between a front of said edge and said inner surface of the third end wall and that in the heat exchange space a predetermined minimum height H1 is present on the side of said central opening such that the ratio H1 / H3 is between 5% and 80 %, advantageously between 5% and 75%, preferably between 5% and 70%, preferably between 5% and 65%, particularly advantageously between 5% and 60%, preferably between 10% and 60%; , advantageously between 15% and 60%, preferably between 20% and 60%, preferably between 25% and 60%, particularly advantageously between 25% and 55%, preferably between 30% and 55%.
  • the flow of coolant can be surprisingly improved by acting on both the configuration of the separator, in particular its edge at the central opening, and on its positioning relative to the third front wall.
  • the edge of the separator at the central opening thanks to its curved axial section, allows the cooling liquid, coming from the first annular cavity, to make a progressive rotation between this curved edge and the central depression of the inner surface of the third end wall to arrive without disturbance in the heat exchange space.
  • the injectors in the lance nose represent obstacles that are in the path of the coolant, firstly between the first and second end wall and then in the heat exchange space between the second and third walls end. It is therefore appropriate to "calm" the coolant after the bypass of the first obstacle that is the injectors between the first and second end wall.
  • This role is achieved according to the present invention by the edge of the separator which is curved in axial section and which makes it possible to form at the central opening and in the heat exchange space optimized passage sections for the cooling liquid.
  • this curved edge in axial section of the separator makes it possible to minimize energy losses in the flow of the coolant, which improves the acceleration of this liquid as it passes between the curved edge of the separator and the conical central zone. of the inner surface of the third end wall, before its arrival in the heat exchange space.
  • This first acceleration is regulated by the passage section of the coolant between the edge of the separator and the central depression.
  • H1 is the height minimum of the water passage along the inner surface of the third end wall, in the heat exchange space.
  • passage section is meant, according to the present invention, a section taken perpendicularly to the direction of flow of the coolant.
  • the positioning of the separator relative to the third end wall makes it possible to form a heat exchange space having a predetermined height which regulates the acceleration of the coolant.
  • the separator according to the present invention is substantially flat and substantially parallel to the third end wall thus ensuring a flow of the coolant with reduced turbulence and cavitation phenomenon.
  • the lance nose according to the present invention thus makes it possible both to optimize the path of the coolant, which minimizes turbulence, and to improve the acceleration of this liquid to effectively cool the wall exposed to thermal stresses. Therefore, the life of the lance nose according to the present invention is greatly increased and the erosion of the outlet edges of the injectors is minimized so that the reaction efficiency in the bath is improved and maintained stable throughout. the life span of the spearhead. In fact, good cooling makes it possible to reduce the erosion of the outlet edges for the stirring gas, which makes it possible to obtain more coherent jets at the outlet of the injectors. These more consistent jets penetrate deeper into the melt and provide better mixing thereof, thus ensuring an improved reaction performance in the bath.
  • the gases and dust emitted on the surface of the bath and rising towards the lance nose have less impact on the degradation of the nose when the cooling thereof is improved, as for the nose of the nose. present invention. As a result, the life of the nose according to the present invention is increased.
  • the lance nose according to the present invention has a predetermined outside diameter Dext and said edge of the separator is defined by a thickness e1 so that the ratio e1 / D ex t is between 3% and 30%, preferably between 4% and 25%, advantageously between 5% and 20%, preferably between 5% and 15%.
  • the thickness, e1 of the edge of the separator is the distance, taken parallel to the axis of revolution of the injectors, between the surface facing the first end wall and the surface facing the bath of the separator.
  • This particular thickness of the edge of the separator allows on the one hand to further improve the rotation of the coolant around the edge of the separator which faces the central depression.
  • the particular thickness of the edge of the separator advantageously reduces the energy losses during the flow of the coolant. The reduction of energy losses leads in turn to the maintenance of the acceleration of the liquid and thus to the optimization of the cooling of the nose.
  • the separator of the lance nose has a surface, facing the bath, substantially sinusoidal.
  • sinusoidal surface is meant a surface which forms a wavy curve, that is to say which has for example a convex part between two concave parts.
  • the separator having a sinusoidal surface therefore has a convex portion between two concave portions with respect to the third end wall. A minimum thickness is therefore located between two maximum thicknesses of the separator.
  • This sinusoidal surface has the advantage of offering the coolant a passage section in the improved heat exchange space. Indeed, as mentioned above, a first Coolant acceleration occurs before entering the heat exchange space.
  • the sinusoidal surface of the separator results in increasing the flow section for the coolant substantially in the center of the separator. Indeed, the injectors that pass through the separator substantially in its center, encumber the heat exchange space. This is where the separator is made concave (has a bulge inwards) to leave room for the passage of coolant.
  • the sinusoidal shape of the surface facing the bath of the separator thus makes it possible to reduce the energy losses during the second bypass of the injectors between the separator and the internal surface of the third end wall. This sinusoidal surface is advantageous for the good cooling of the wall exposed to the molten iron bath.
  • said surface facing the substantially sinusoidal bath of said separator is such that the heat exchange space has a maximum height substantially in the center of said separator.
  • the lance nose according to the invention has a pillar comprising a first end located opposite the bath and a second end facing the bath connected to the central zone of the third end wall.
  • This pillar on the one hand improves the flow of coolant when it dives into the central opening.
  • the central opening may be a collision site and the pillar present in the center of this central opening allows, therefore, minimize turbulence.
  • the liquid will then go along the pillar before arriving in the heat exchange space.
  • this pillar advantageously consists of a material of good thermal conductivity, such as copper, ensures a good transfer of calories accumulated in the front wall exposed to the bath to the coolant. This phenomenon of calorie transfer is called "cold well". The heat transferred by the pillar then diffuses to the coolant circulating around it.
  • the pillar has between said first and second ends a thinned portion connected to the central zone which has a predetermined length L1 and an axial section decreasing continuously towards the central zone so that the pillar forms with the central zone. from the inner surface of the third end wall a continuous curved surface.
  • continuous curved surface means a surface which has a “continuity of curves”, preferably a “continuity of tangents”.
  • discontinuity of tangents is meant, according to the present invention, that, in an axial section of the pillar, the curve of the thinned portion of the pillar and the curve of the central conical zone of the inner surface of the third front wall have equal tangents at their common end, that is to say at their junction (second end of the pillar).
  • the tangents are the first derivatives of the curves at their common end.
  • a second degree of “continuity of curves” may possibly be a “continuity of curvature”, which means that the radii of curvature of the two curves (thinned portion of the pillar and the conical central zone of the inner surface of the third wall frontal) are equal at their common end, that is to say at their junction (second end of the pillar).
  • the curves of the thinned portion of the pillar and the conical central zone of the inner surface of the third end wall have the same direction at their junction and also have the same radius at this point.
  • the radii of curvature are the second derivatives of the curves at their common end, that is to say at their junction at the second end of the pillar.
  • the coolant coming from the peripheral part of the nose converges in the central opening where it rotates about 80 ° between the pillar and the edge of the separator before arriving in the exchange space thermal, for example frontal.
  • This pillar having a particular geometry makes it possible, on the one hand, to further optimize the flow of the cooling liquid passing through the central opening where it passes between the thinned portion of the pillar and the edge of the separator and other part of accelerating the coolant before its arrival in the heat exchange space.
  • the edge of the separator according to the present invention has a complementary shape with the thinned portion of the central pillar advantageously present in the center of the central opening.
  • This complementary form between these two elements is particularly advantageous for accompanying the cooling liquid during its rotation of about 180 ° in the central opening thus reducing the turbulence in the liquid, the "tranquilize", and to maintain a good contact with the pillar serving as “cold well” and then with the third front wall. Furthermore, this geometry also allows the acceleration of the coolant before it passes through the heat exchange space.
  • the pillar has a second portion of predetermined length L2 joining said thinned portion and said first end, said second portion having a circular cross section defined by a predetermined diameter D2, constant over the entire length.
  • length L2 such that the ratio D2 / D ex t is between 2% and 30%, advantageously between 7.5% and 17.5%, preferably between 10% and 15% of said outer diameter (D ex t) of spear nose.
  • the pillar can be considered “massive" in view of the volume it occupies in the nose.
  • This massive pillar made of a material of good thermal conductivity, such as the copper, ensures a good transfer of calories accumulated in the front wall exposed to the bath to the coolant, thus improving the phenomenon of "cold well".
  • the heat transferred by the pillar then diffuses to the coolant circulating around it and the metal / liquid heat exchange surface is increased by the thinned portion having a curved profile.
  • the heat is, therefore, better distributed within the lance nose which ensures more particularly a good cooling of the area most exposed to extreme temperatures, namely the center of the third end wall.
  • the lance nose according to this embodiment therefore results in further improvement of nose cooling.
  • said thinned portion I of the pillar has a predetermined minimum diameter D3 at its second end and said central zone has a height h and a base b such that the ratio h / (b-D3) is between 20% and 120%, preferably between 20% and 110%, advantageously between 30% and 110%, preferably between 30% and 100%, in particular between 40% and 100%, particularly advantageously between 40% and 90%, preferably between 45% and 85%, advantageously between 50% and 80%.
  • the heat exchange surface is thus increased with respect to the same surface of the heat front coming from the bath, and this without causing swirling or cavitation in the liquid.
  • the passage section of the liquid in the heat exchange space is such that the coolant has a suitable speed profile so that the cooling of the front wall exposed to the bath is further improved.
  • the lance nose according to the present invention is characterized by a distance R, for the passage of the cooling liquid, taken perpendicular to the longitudinal axis L of the nose in the central opening.
  • this passage distance is then called Ri and is measured between the front of the separator and the longitudinal axis of the nose, and therefore corresponds to the minimum radius of the central opening.
  • the passage distance R for the liquid is then measured between the front of the separator and the outer surface of the thinned portion i of the pillar, the distance is then called i3 ⁇ 4.
  • this passage distance R is such that the ratio R / H3 is between 20% and 150%, preferably between 30% and 140%, advantageously between 30% and 130%, preferably between 40% and 130%, particularly advantageously between 50% and 130%, preferably between 60% and 120%, advantageously between 60% and 1%, of reference between 70% and 1%, with R corresponding to R 1 in the absence of a pillar or corresponding to R2 in the presence of a pillar.
  • This particular passage distance for the coolant further improves the flow of coolant which will converge in the central opening before reaching the heat exchange space.
  • the passage distance of the liquid in the central opening in combination with the aforementioned nose characteristics, further improves the flow by improving the reduction of disturbances and the acceleration of the coolant.
  • said separator has a surface facing said first substantially sinusoidal front wall.
  • a deflector is present substantially in the center of said central tube for supplying the mixing gas of the lance nose according to the present invention.
  • This deflector makes it possible to appropriately divert the gas leaving the central duct to engage in the outlet ducts for the stirring gas.
  • said outlet ducts for the gas of stirring have axes of revolution placed obliquely to a longitudinal axis of the lance nose.
  • the aforesaid elements of the nose are made separately and fixed in a zone of mutual attachment by high-energy welding, preferably electron beam welding.
  • the aforementioned nose is made of several nose elements each consisting of a material chosen according to the function to be filled. These elements are then fixed together by high-energy welding, preferably by electron beam. This type of welding ensures copper-steel junctions easily achievable and having a good liquid tightness and this despite fatigue constraints due to successive thermal cycles to which the nose is subjected.
  • Figure 1 is a front view of a lance nose.
  • FIG. 2 illustrates a sectional view along line II-II of FIG.
  • Figure 1 a particular embodiment of the lance nose according to the invention.
  • Figure 3 shows a detail of a lance nose according to the invention, to illustrate the characterizing part of the invention.
  • FIG. 4 represents a view similar to FIG. 2 of a variant of a blowing nozzle nose according to the invention.
  • FIG. 5 represents a detail of a lance nose according to the invention, to illustrate the measurement mode of the parameters necessary for an advantageous embodiment of the invention.
  • FIG. 1 illustrates the third end wall 12 of the lance nose 1 which faces the bath.
  • the lance nose 1 has six brewing gas outlet ports 13 arranged in a ring around a central zone 14 of the third end wall 12.
  • FIG. 2 represents the lance nose according to the present invention. in which the stirring gas is fed by the central tube 2.
  • This central tube 2 is closed by a front wall 3 directed towards the bath provided with at least two openings 4.
  • An inner tube 5 is arranged coaxially around the central tube 2 so as to form between them an annular cavity 6 for supplying cooling liquid in the direction of the arrow Fi.
  • This inner tube 5 is terminated by a front wall 7 which is called a separator.
  • This front wall 7 is provided with a central opening 8 and an orifice 9 in alignment with each opening 4 in the central tube 2.
  • the separator 7, according to the present invention, has a geometry and an arrangement with respect to the third particular front wall 12 which will be developed below.
  • An outer tube 10 is arranged coaxially around the inner tube 5.
  • This outer tube forms with the inner tube 5 an annular cavity 11 which serves for the outlet of the coolant in the direction of the arrow F ?.
  • This outer tube is closed by a front wall 12 which faces the bath to be stirred and which has an inner surface 30.
  • the inner surface 30 of the third end wall 12 is provided with a central zone 14. conical which is directed towards the central opening 8 and which has a curved envelope surface in axial section.
  • the front wall 12 is also provided with an outlet orifice 13 in alignment with each opening 4 provided in the front wall 3 and with each passage opening 9 provided in the front wall 7.
  • an outlet duct 17 for the ejection of mixing gas outside the lance nose.
  • the axes of revolution m of the ducts 17 are advantageously placed obliquely to the longitudinal axis L of the lance nose.
  • this front wall 12 is ensured by the circulation of the cooling liquid in the heat exchange space 16 which is located between the separator 7 and the inner surface 30 of the front wall 12.
  • the coolant coming from the cavity 6 passes through the central opening 8 in the heat exchange zone 16 along the arrow F 3 .
  • the liquid then flows in the direction of the arrow F 2 outwards, that is to say towards the cavity 11.
  • the separator 7, is substantially plane and substantially parallel to the inner surface 30 of the third end wall 12.
  • This separator 7 has, at the central opening 8, an edge 18 of curved axial section. .
  • a minimum diameter of the central opening 8 can then be measured from the front 19 of the edge 18 of the separator 7.
  • the tangent passing through this front 19 and parallel to the longitudinal axis L of the lance nose makes it possible to measure the diameter the smallest of the central opening 8.
  • the height taken along the tangent passing through the front 19 and parallel to the longitudinal axis L of the lance nose and measured between said front 19 and the inner surface 30 of the third end wall 12 corresponds to the height H3, such that 'shown in Figure 3.
  • the height H1 is itself measured "parallel to the axis of rotation m of the injectors 1, between the surface facing the bath 20 of the separator 7 and the inner surface 30 of the third end wall 12 on the side of the central opening 8.
  • This height H1 defines a minimum passage height for the coolant in the heat exchange space 16 at the central opening 8.
  • H1 is the minimum height of the water passage along the inner surface of the third end wall, in the space heat exchange.
  • the ratio H1 / H3 is advantageously between 30% and 55%.
  • the curved axial section of the edge 18 of the separator 7 has the advantage of accompanying the cooling liquid during its convergence in the central opening 8.
  • the liquid is kept in contact with the inner surface of the third end wall 12 the most exposed to thermal stresses. Therefore, a disturbance coolant flow and reduced cavitation phenomena can be obtained and maintained throughout its trajectory.
  • the coolant thus "tranquilized” can then calmly bypass the obstacles represented by the injectors 17 in the heat exchange space 16 before emerging from the nose by the second annular cavity 11 along the arrow F 2 .
  • the outer diameter D ext of the lance nose 1 according to the present invention corresponds to the diameter measured between the outer surfaces of the outer tube 10, as shown in FIG. 2.
  • a thickness of the separator 7 is measured between the surface 21 facing the first end wall 3 and the surface facing the bath 20 of the separator 7.
  • the thickness e1 of the edge 18 of the separator 7 is thus measured parallel to the axis of revolution m of the injector 17 in the continuity of the minimum height H1 of the heat exchange space 16 at the central opening 8.
  • This thickness allows the separator to occupy a substantial volume in the lance nose and allows in combination with the curved section of the edge 18 to maintain a reduced disturbance flow and a good acceleration of the coolant.
  • the ratio e1 / D ext is between 5% and 15%,
  • the bath-facing surface 20 of the separator 7 is substantially sinusoidal.
  • the maximum thickness, e1 is measured between the surface 21 facing the first end wall 3 and the tangent passing through the minimum of the part concave surface facing the bath 20.
  • a minimum thickness is measured between the surface 21 facing the first end wall 3 and the tangent passing through the maximum of the convex portion of the surface facing the bath 20,
  • the separator 7 has in addition to its thickness e1 at the central opening 8, a minimum thickness substantially at its center such that the heat exchange space 16 has a maximum height Hmax substantially in the center of the separator 7.
  • This maximum height H max is intended to leave more space for the coolant during its passage at the injectors 17 in the heat exchange space 16.
  • Figure 4 shows a particular embodiment of the lance nose according to the present invention.
  • a central pillar 22 of particular configuration is present in the center of the central opening 8.
  • the pillar 22 has a first end E1 on the side of the first end wall 3 and a second end E2 connected to the central zone 14 of the inner surface 30 of the third end wall 12.
  • This pillar preferably has a thinned portion I between the first end E1 and the second end E2 which makes it possible to form a continuous curved surface 23 with the conical central zone 14 of the inner surface 30 of the third end wall 12. In this way, the coolant coming from the first cavity ring 6 along the arrow Fi, along the upper face 21 of the separator 7 where it must bypass the injectors which represent a first obstacle in the path of the liquid and then converges in the central opening 8.
  • the pillar 22 present in the center of this central opening 8 then guides the cooling liquid to the inner surface 30 of the third end wall 12 where the thinned portion I of the pillar provides the passage of the liquid between this pillar 22 and the edge 18 of the separator 7, along the arrow F 3 .
  • the junction of the conical central zone 14 of the inner surface 30 of the third end wall 12 with the pillar 22 has a continuous curved surface 23 ensuring a progressive rotation of the liquid along the arrow F 3 .
  • the turbulence in the coolant then arriving in the heat exchange space 16 is reduced and the liquid can quietly bypass the injectors occupying a large volume in the heat exchange space 18.
  • the calories accumulated in the front wall 12 exposed to the bath of liquid iron are transferred to the pillar 22, the contact surface with the cooling liquid is increased thanks to its thinned portion I, which improves the heat transfer metal / liquid
  • the pillar 22 advantageously has a second portion II of predetermined length L2 joining said thinned portion I and said first end E1, said second portion II having a circular cross section defined by a predetermined diameter D2, constant over the entire length L2 , such that the ratio D 2 / D ex t is advantageously between 10% and 15%.
  • the pillar 22 being made of a material of good thermal conductivity, the heat from the bath and transmitted to the third end wall 12 and its central zone 14 where it can then be driven by the pillar 22 to the coolant .
  • the latter circulating around the pillar 22 ensures a constant capture of the heat of the third end wall 12.
  • the parts most exposed to the bath namely the third front wall 12 and the pillar 22, are made of wrought copper which provides better thermal conductivity than cast copper.
  • the first thinned portion I is further characterized by a predetermined diameter D1 which varies progressively from the diameter D2 at the junction with the second portion 11 to a value preferably between 60% and 80% from D2 to the second E2 end of the pillar 22.
  • the diameter D1 of the thinned portion I of the pillar 22 therefore decreases progressively as one moves along the longitudinal axis L of the lance nose to the bath until reaching a minimum value, then called D3 corresponding to the second end E2 of the pillar.
  • the continuous curved surface 23 between the thinned portion I of the pillar 22 and the central conical zone 14 of the inner surface 30 of the third end wall 12 is characterized by a radius of curvature greater than or equal to 30% of the diameter D2 of second part II of pillar 22.
  • the separator 7 and the thinned portion I of the abutment 22 facing each other have a complementarity of shape thus ensuring a most delicate accompaniment of the coolant possible.
  • the edge 18 of the separator 7 and the thinned portion I of the pillar 22 can form for the coolant a trajectory decreasing turbulence in the liquid.
  • a deflector 24 may also be placed in the center of the mixing gas supply tube 2. This deflector 24 makes it possible to appropriately divert the oxygen leaving the central pipe 2 to engage the injectors 17.
  • FIG. 5 represents a detail of the conical central zone 14 in order to explain how to measure the parameters relating to this central zone 14 of the inner surface 30 of the third front wall 12.
  • the height h is measured between the tangent plane 32 the inner wall 30 of the lance nose perpendicular to the longitudinal axis L and the parallel plane 31 tangential to the top of the central conical zone 14. If an additional element to the conical central zone 14 is provided at the top thereof, like example the pillar 22, the plane 31 remains in the position it would have if this additional element did not exist.
  • the top of the conical central zone 14 coinciding with the cross section of the thinned portion i of the pillar 18 having a minimum diameter D3, the plane 31 also passes through this minimum diameter section D3 of the pillar 22.
  • the base b is located in the tangent plane 32 of the inner wall 30. It is circumscribed by the points of intersection 33 with the extension of the inner wall 30.
  • the nose according to the present invention has a ratio h / (b-D3) of between 50% and 80%. Therefore, in the case where no additional element, such as for example a pillar, is present on the central zone 14, D3 is impaired and the h / b ratio is preferably between 50% and 80%.
  • FIG. 5 also shows the distance R for the passage of the coolant taken perpendicular to the longitudinal axis L of the nose in the central opening 8.
  • the distance R is measured between the front 19 of the separator 7 and the longitudinal axis L, this distance for the passage of the coolant is then called Ri and corresponds to the minimum radius of the central opening 8.
  • Ri corresponds to the minimum radius of the central opening 8.
  • the passage distance R for the liquid is then measured between the separator front 7 and the outer surface of the thinned portion I of the pillar 22, the distance is then called R 2 .
  • this distance for the passage of the cooling liquid is such that the ratio R / H3 is preferably between 70% and 110%, with R corresponding to R1 in the absence of a pillar or corresponding to R2 in the presence of a pillar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Nez de lance de soufflage, comprenant : un tube central (2) d'alimentation en gaz de brassage, un tube interne (5) pour l'entrée d'un liquide de refroidissement et terminé à une extrémité tournée vers le bain par une deuxième paroi frontale appelée séparateur (7) présentant une ouverture centrale (8), un tube externe (10) pour la sortie du liquide de refroidissement, un espace d'échange thermique (16), et un conduit de sortie (17) pour le gaz de brassage partant de chaque ouverture (4) dans la paroi frontale (3), ledit séparateur (7) présentant à l'ouverture centrale (8) un bord (18) en section axiale qui est incurvé tel qu'une hauteur (H3) est définie entre un front (19) dudit bord (18) et ladite troisième paroi frontale (12) et que dans l'espace d'échange thermique (16) une hauteur minimum prédéterminée (H1) est présente du côté de ladite ouverture centrale (8).

Description

"Nez de lance de soufflage "
La présente invention se rapporte à un nez de lance de soufflage, destinée au brassage de bains, comprenant
- un tube central d'alimentation en gaz de brassage, fermé à une extrémité tournée vers le bain par une première paroi frontale pourvue d'au moins deux ouvertures,
- un tube interne formant avec le tube central une première cavité annulaire pour le passage d'un liquide de refroidissement et terminé à une extrémité tournée vers le bain par une deuxième paroi frontale, appelée séparateur, présentant une ouverture centrale et un orifice de passage par ouverture prévue dans ladite première paroi frontale,
- un tube externe formant avec le tube interne une deuxième cavité annulaire pour le passage du liquide de refroidissement et fermé à une extrémité tournée vers le bain par une troisième paroi frontale présentant un orifice de sortie par ouverture prévue dans ladite première paroi frontale et présentant une surface interne comprenant une zone centrale conique qui est dirigée vers ladite ouverture centrale et qui présente une surface d'enveloppe incurvée en section axiale,
- un espace d'échange thermique qui est situé entre, d'une part, ladite deuxième paroi frontale et ladite surface interne de la troisième paroi frontale et, d'autre part, ladite ouverture centrale et ladite deuxième cavité annulaire, et dans lequel s'écoule le liquide de refroidissement, et
- un conduit de sortie pour le gaz de brassage appelé injecteur, partant de chaque ouverture dans ladite première paroi frontale et allant jusqu'audit orifice de sortie correspondant en passant par ledit orifice de passage correspondant d'une manière étanche au liquide de refroidissement.
Dans la suite de la description, les termes « zone centrale conique qui est dirigée vers ladite ouverture centrale et qui présente une surface d'enveloppe incurvée en section axiale » seront, pour des raisons de simplicité, parfois uniquement exprimés par les termes « dépression centrale ».
Le nez de lance de soufflage tel que décrit dans la présente invention est utilisé, entre autres, dans les convertisseurs à oxygène pour la fabrication de l'acier (BOF Basic Oxygen Furnace, AOD Argon Oxygen Decarburization). Les convertisseurs permettent d'obtenir de l'acier en injectant de l'oxygène dans un bain de fonte liquide afin de brûler le carbone contenu dans celle-ci. Le principe de base dans le domaine du soufflage d'oxygène dans les convertisseurs (par exemple LD (pour Linz- Donawitz)) est de propulser 3 à 6 jets d'oxygène disposés en couronne sur un bain de fonte liquide. La lance qui permet la formation de ces jets d'oxygène est alors placée à une distance de 1 à 5 m au-dessus d'un bain de fonte en fusion dont la température peut atteindre 1700 °C.
La température du nez de la lance peut alors croître rapidement jusqu'à 400 °C et devoir rester dans cet environnement durant environ 20 minutes. Le nez est alors retiré et revient à la température ambiante, c'est- à-dire 20 °C. Ces contraintes endommagent les nez de lance utilisés pour les bains de convertisseurs d'aciérie et typiquement, la durée de vie de ceux-ci est réduite suite aux importantes sollicitations auxquelles ils sont soumis, pendant un nombre significatif d'utilisations successives.
Pour améliorer le refroidissement des nez de lance, des espaces d'échange thermique ont été développés afin qu'un liquide de refroidissement puisse circuler le long de la paroi interne tournée vers le bain du nez de lance. Lorsqu'un liquide de refroidissement, généralement de l'eau, circule le long de la paroi frontale, les calories du métal formant cette paroi sont transférées à ce liquide de refroidissement. De cette manière, la température du nez de lance est uniformisée sur î'entièreté du nez, et non plus particulière élevée uniquement au niveau des parois exposées au bain. Une mauvaise circulation du liquide de refroidissement peut également engendrer une élévation locale de la température du liquide de refroidissement. En conséquence, localement le liquide peut passer en phase vapeur sous la contrainte thermique. II en résulte la formation de cavités remplies de gaz piégées au sein du liquide de refroidissement. Cette formation de cavités gazeuses dans un liquide est connue sous le nom de phénomène de cavitation. Ces phénomènes de cavitation provoquent alors une diminution de l'efficacité du refroidissement de la paroi frontale étant donné que l'échange thermique entre une phase gazeuse et une phase solide est beaucoup moins bon qu'entre une phase liquide et une phase solide. Si le refroidissement n'est pas uniforme sur toute la paroi exposée aux variations thermiques, des tensions mécaniques apparaissent entre les différentes zones de cette paroi. Cette répartition inhomogène de la température engendre, en conséquence, une diminution de la longévité du nez de lance. En effet, ce dernier présente, après quelques cycles de fonctionnement, des dérèglements qui limitent considérablement sa durée de vie.
Les documents US4432534 et WO9623082 présentent, par exemple, des nez de lance conçus pour permettre l'écoulement d'un liquide de refroidissement à grande vitesse le long de la surface interne de la paroi frontale, cette même paroi frontale présente une légère dépression centrale afin d'optimiser cet écoulement.
Le document EP0340207 prévoit quant à lui une dépression importante dans la zone centrale du nez de lance sur laquelle sont dirigés des jets secondaires de liquide de refroidissement provoquant un tourbillonnement dans l'écoulement du liquide.
Le document WO0222892 tente d'améliorer davantage l'écoulement du liquide de refroidissement dans l'espace d'échange thermique du nez de lance en développant une dépression centrale dans la face tournée vers le bain ayant un rapport bien déterminé entre hauteur et base de cette dépression. Ce rapport permet à l'espace d'échange thermique d'avoir une section pour le passage du liquide de refroidissement sensiblement constante de manière à obtenir une vitesse de passage du liquide de refroidissement à travers cet espace qui soit approximativement constante.
Le document DE 19506718 décrit un nez de lance de soufflage utilisé dans ou au-dessus d'acier liquide et présentant un système de refroidissement basé sur la différence de rugosité entre les deux parois de l'espace d'échange thermique, à savoir le séparateur et la surface interne de la troisième paroi frontale. Le rapport entre la différence de rugosité et le rayon minimum de courbure de la surface exposée à l'acier liquide doit être maintenu constant pour assurer un bon refroidissement.
Lorsque le refroidissement des nez de lance n'est pas efficace, outre l'apparition des tensions mécaniques, il a également été constaté qu'un phénomène d'érosion de la paroi frontale apparaît en périphérie des orifices de sortie des conduits pour le gaz de brassage.
Dans la suite de la description, l'expression « conduit de sortie de gaz de brassage » sera, pour des raisons de simplicité, exprimé parfois seulement par le terme injecteur.
Le diamètre des orifices de sortie des injecteurs tend à augmenter suite à l'érosion des bords de ceux-ci. Cette augmentation de diamètre déforme les jets d'oxygène, ce qui provoque, en plus de la destruction du nez de lance, une dispersion de ces jets et en conséquence une diminution de l'efficacité de ceux-ci. La réaction d'oxydation du carbone est, en effet, favorisée par la profondeur de pénétration des jets dans le bain et par le brassage de celui-ci. Les nez de lance étant placés à une distance de 1 à 5 m au-dessus du bain de fonte, afin d'être efficaces, les jets doivent présenter un profil cohérent sur une distance la plus longue possible. Le rendement de réaction est alors diminué lorsque ces jets sont dispersés car ils pénètrent moins profondément dans le bain de fonte. Le rendement de réaction dans le bain n'est, dès lors, pas optimal et présente de surcroit une variabilité importante au cours de la durée de vie du nez de lance. Un refroidissement efficace est donc important pour le bon fonctionnement des nez de lance, car il a comme avantage d'augmenter la durée de vie de ceux-ci mais également de garantir une meilleure stabilité de rendement de réaction tout en long de leur durée de vie et ce en minimisant l'érosion au niveau des bords de la paroi frontale. Seulement, un tel refroidissement est aussi très difficile à mettre en œuvre, dans les conditions extrêmes rencontrées pendant l'utilisation des nez de lance.
Bien que les documents décrits ci-dessus contribuent à l'amélioration de la technique de refroidissement des nez, malheureusement, ils ne présentent toujours pas une durée de vie suffisante et n'assurent pas un rendement de réaction dans le bain qui soit stable tout au long de cette durée de vie.
La présente invention a pour but de pallier ces inconvénients de l'état de la technique en procurant un nez de lance simple à fabriquer dont la durée de vie est augmentée et qui permet d'assurer un rendement de réaction dans le bain de fonte amélioré et stable tout au long de la durée de vie du nez de lance.
Pour résoudre ce problème, il est prévu suivant l'invention, un nez de lance tel qu'indiqué au début dans lequel le séparateur présente à l'ouverture centrale un bord en section axiale qui est incurvé tel qu'une hauteur H3 est définie entre un front dudit bord et ladite surface interne de la troisième paroi frontale et que dans l'espace d'échange thermique une hauteur minimum prédéterminée H1 est présente du côté de ladite ouverture centrale tel que le rapport H1/H3 est compris entre 5 % et 80 %, avantageusement entre 5 % et 75 %, de préférence compris entre 5 % et 70 %, de manière préférentielle compris entre 5 % et 65 %, de manière particulièrement avantageuse entre 5 % et 60 %, de préférence entre 10 % et 60 %, avantageusement entre 15 % et 60 %, de préférence compris entre 20 % et 60 %, de manière préférentielle compris entre 25 % et 60 %, de manière particulièrement avantageuse entre 25 % et 55 %, de préférence entre 30 % et 55 %. Contrairement aux documents cités ci-dessus, il a été découvert que l'écoulement du liquide de refroidissement pouvait être amélioré de manière surprenante en agissant à la fois sur la configuration du séparateur, en particulier son bord à l'ouverture centrale, et sur son positionnement par rapport à la troisième paroi frontale.
En effet, d'une part, le bord du séparateur à l'ouverture centrale, grâce à sa section axiale incurvée, permet au liquide de refroidissement, arrivant de la première cavité annulaire, d'effectuer une rotation progressive entre ce bord courbe et la dépression centrale de la surface interne de la troisième paroi frontale pour arriver sans perturbation dans l'espace d'échange thermique.
Les injecteurs dans le nez de lance représentent des obstacles qui se trouvent sur la trajectoire du liquide de refroidissement, tout d'abord entre la première et la deuxième paroi frontale et ensuite dans l'espace d'échange thermique entre la deuxième et la troisième paroi frontale. Il y a donc lieu de « tranquilliser » le liquide de refroidissement après le contournement du premier obstacle que sont les injecteurs entre la première et la deuxième paroi frontale. Ce rôle est atteint selon la présente invention par le bord du séparateur qui est incurvé en section axiale et qui permet de former à l'ouverture centrale et dans l'espace d'échange thermique des sections de passage pour le liquide de refroidissement optimisées.
De plus ce bord incurvé en section axiale du séparateur permet de minimiser les pertes d'énergie dans l'écoulement du liquide de refroidissement ce qui améliore l'accélération de ce liquide lors de son passage entre le bord courbe du séparateur et la zone centrale conique de la surface interne de la troisième paroi frontale, avant son arrivée dans l'espace d'échange thermique. Cette première accélération est régulée par la section de passage du liquide de refroidissement entre le bord du séparateur et la dépression centrale. Dans le volume contenu dans le cône passant par les axes de révolution des injecteurs, H1 est la hauteur minimale du passage d'eau le long de la surface interne de la troisième paroi frontale, dans l'espace d'échange thermique. Cette première accélération permet d'améliorer le refroidissement de la partie centrale du nez de lance qui est la partie où la surface d'échange métal/liquide est le moins importante et donc la zone la plus difficile à refroidir.
Par les termes « section de passage », on entend, selon la présente invention, une section prise perpendiculairement au sens d'écoulement du liquide de refroidissement.
D'autre part, le positionnement du séparateur par rapport à la troisième paroi frontale permet de former un espace d'échange thermique présentant une hauteur prédéterminée qui régule l'accélération du liquide de refroidissement. Le séparateur selon la présente invention est sensiblement plan et sensiblement parallèle à la troisième paroi frontale assurant ainsi un écoulement du liquide de refroidissement à turbulence et phénomène de cavitation réduits.
Le nez de lance selon la présente invention permet donc à la fois d'optimiser la trajectoire du liquide de refroidissement, ce qui minimise les turbulences, et d'améliorer l'accélération de ce liquide pour refroidir efficacement la paroi exposée aux contraintes thermiques. Par conséquent, la durée de vie du nez de lance selon la présente invention est considérablement augmentée et l'érosion des bords de sortie des injecteurs est minimisée de manière à ce que le rendement de réaction dans le bain est amélioré et maintenu stable tout au long de la durée de vie du nez de lance. En effet, un bon refroidissement permet de diminue l'érosion des bords de sortie pour le gaz de brassage, ce qui permet d'obtenir des jets plus cohérents à la sortie des injecteurs. Ces jets plus cohérents pénètrent plus profondément dans le bain de fonte et assurent un meilleur brassage de celui-ci, assurant ainsi une amélioration du rendement de la réaction dans le bain. De plus, les gaz et les poussières émis à la surface du bain et remontant vers le nez de lance impactent moins la dégradation du nez lorsque le refroidissement de celui-ci est amélioré comme pour le nez de la présente invention. En conséquence, ia durée de vie du nez selon la présente invention est augmentée.
Dans une autre forme de réalisation particulière, le nez de lance selon la présente invention, présente un diamètre extérieur prédéterminé Dext et ledit bord du séparateur est défini par une épaisseur e1 de sorte que le rapport e1/Dext est compris entre 3 % et 30 %, de préférence compris entre 4 % et 25 %, avantageusement entre 5 % et 20 %, de manière préférentielle entre 5 % et 15 %.
L'épaisseur, e1 , du bord du séparateur est la distance, prise parallèlement à l'axe de révolution des injecteurs, entre la surface tournée vers la première paroi frontale et la surface tournée vers le bain du séparateur. Cette épaisseur particulière du bord du séparateur permet d'une part d'améliorer davantage la rotation du liquide de refroidissement autour du bord du séparateur qui fait face à la dépression centrale. D'autre part, l'épaisseur particulière du bord du séparateur permet de réduire avantageusement les pertes d'énergie lors de l'écoulement du liquide de refroidissement. La diminution des pertes d'énergie mène à son tour au maintien de l'accélération du liquide et donc à l'optimisation du refroidissement du nez.
De manière avantageuse, le séparateur du nez de lance présente une surface, tournée vers le bain, sensiblement sinusoïdale.
Par les termes « surface sinusoïdale », on entend une surface qui forme une courbe ondulée, c'est-à-dire qui possède par exemple une partie convexe entre deux parties concaves. Le séparateur possédant une surface sinusoïdale présente, dès lors, une partie convexe entre deux parties concaves par rapport à la troisième paroi frontale. Une épaisseur minimum est en conséquence située entre deux épaisseurs maximum du séparateur.
Cette surface sinusoïdale a comme avantage d'offrir au liquide de refroidissement une section de passage dans l'espace d'échange thermique améliorée. En effet, comme mentionné ci-dessus, une première accélération du liquide de refroidissement survient avant l'entrée dans l'espace d'échange thermique. La surface sinusoïdale du séparateur a comme conséquence d'augmenter la section de passage pour le liquide de refroidissement sensiblement au centre du séparateur. En effet, les injecteurs qui traversent le séparateur sensiblement en son centre, encombrent l'espace d'échange thermique. C'est donc à cet endroit que le séparateur est rendu concave (présente un renflement vers l'intérieur) pour laisser de la place pour le passage du liquide de refroidissement. La forme sinusoïdale de la surface tournée vers le bain du séparateur permet donc d'amoindrir les pertes d'énergie lors du second contournement des injecteurs entre le séparateur et la surface interne de la troisième paroi frontale. Cette surface sinusoïdale est avantageuse pour le bon refroidissement de la paroi exposée au bain de fonte liquide.
De préférence, ladite surface tournée vers le bain sensiblement sinusoïdale dudit séparateur est telle que l'espace d'échange thermique présente une hauteur maximum sensiblement au centre dudit séparateur.
De préférence, le nez de lance selon l'invention présente un pilier comprenant une première extrémité située à l'opposé du bain et une deuxième extrémité tournée vers le bain reliée à la zone centrale de la troisième paroi frontale.
Ce pilier permet d'une part d'améliorer la circulation du liquide de refroidissement lorsque celui-ci plonge dans l'ouverture centrale. En effet l'ouverture centrale peut être un lieu de collision et le pilier présent au centre de cette ouverture centrale permet, dès lors, de minimiser les turbulences. Le liquide va alors longer le pilier avant d'arriver dans l'espace d'échange thermique.
Par ailleurs, ce pilier avantageusement constitué d'un matériau de bonne conductivité thermique, tel que le cuivre, permet d'assurer un bon transfert des calories accumulées dans la paroi frontale exposée au bain vers le liquide de refroidissement. Ce phénomène de transfert des calories est appelé « puits froid ». La chaleur transférée par le pilier diffuse alors vers le liquide de refroidissement circulant autour de celui-ci.
De manière particulièrement avantageuse, le pilier présente entre lesdites première et deuxième extrémités une partie amincie reliée à la zone centrale qui présente une longueur prédéterminée L1 et une section axiale décroissant de manière continue vers la zone centrale de manière que le pilier forme avec la zone centrale de la surface interne de la troisième paroi frontale une surface incurvée continue.
Selon la présente invention par les termes « surface incurvée continue », on entend une surface qui présente une « continuité de courbes », de préférence une « continuité des tangentes ».
Par les termes « continuité des tangentes», on entend, selon la présente invention, que, dans une coupe axiale du pilier, la courbe de la partie amincie du pilier et la courbe de de la zone centrale conique de la surface interne de la troisième paroi frontale possèdent des tangentes égales au niveau de leur extrémité commune, c'est-à-dire au niveau de leur jonction (deuxième extrémité du pilier). Les tangentes sont les dérivées premières des courbes en leur extrémité commune.
Un deuxième degré de « continuité de courbes » peut être éventuellement une « continuité de courbures », ce qui signifie alors que les rayons de courbures des deux courbes (partie amincie du pilier et de la zone centrale conique de la surface interne de la troisième paroi frontale) sont égaux au niveau de leur extrémité commune, c'est-à-dire au niveau de leur jonction (deuxième extrémité du pilier). En d'autres termes, les courbes de la partie amincie du pilier et de la zone centrale conique de la surface interne de la troisième paroi frontale ont la même direction au niveau de leur jonction et ont également le même rayon en ce point. Les rayons de courbures sont les dérivées secondes des courbes en leur extrémité commune, c'est-à-dire au niveau de leur jonction à la deuxième extrémité du pilier. Le liquide de refroidissement arrivant de la partie périphérique du nez (cavité annulaire) converge dans l'ouverture centrale où il effectue une rotation d'environ 80° entre le pilier et le bord du séparateur avant d'arriver dans l'espace d'échange thermique, par exemple frontal. La présence de ce pilier présentant une géométrie particulière permet, d'une part, d'optimiser davantage l'écoulement du liquide de refroidissement traversant l'ouverture centrale où il passe entre la partie amincie du pilier et le bord du séparateur et d'autre part d'accélérer le liquide de refroidissement avant son arrivée dans l'espace d'échange thermique. En effet, le bord du séparateur selon la présente invention présente une complémentarité de forme avec la partie amincie du pilier central avantageusement présent au centre de l'ouverture centrale. Cette complémentarité de forme entre ces deux éléments est particulièrement avantageuse pour l'accompagnement du liquide de refroidissement lors de sa rotation d'environ 180° dans l'ouverture centrale permettant ainsi d'amoindrir les turbulences dans le liquide, de le « tranquilliser », et de maintenir un bon contact avec le pilier servant de « puits froid » et ensuite avec la troisième paroi frontale. Par ailleurs, cette géométrie permet aussi l'accélération du liquide de refroidissement avant son passage dans l'espace d'échange thermique.
Avantageusement, dans le nez de lance selon la présente invention, le pilier présente une deuxième partie de longueur prédéterminée L2 joignant ladite partie amincie et ladite première extrémité, ladite deuxième partie présentant une section transversale circulaire définie par un diamètre prédéterminé D2, constant sur toute la longueur L2 tel que le rapport D2/Dext, est compris entre 2 % et 30 %, avantageusement entre 7,5 % et 17,5 %, de préférence entre 10 % et 15 % dudit diamètre extérieur (Dext) du nez de lance.
Dans cette forme de réalisation particulière du nez de lance selon la présente invention, étant donné son diamètre, le pilier peut être considéré comme « massif » au vu du volume qu'il occupe dans le nez. Ce pilier massif constitué d'un matériau de bonne conductivité thermique, tel que le cuivre, permet d'assurer un bon transfert des calories accumulées dans la paroi frontale exposée au bain vers le liquide de refroidissement, améliorant ainsi le phénomène de « puits froid ». La chaleur transférée par le pilier diffuse alors vers le liquide de refroidissement circulant autour de celui-ci et dont la surface d'échange thermique métal/liquide est augmentée grâce à la partie amincie présentant un profil courbe. La chaleur est, de ce fait, mieux répartie au sein du nez de lance ce qui assure plus particulièrement un bon refroidissement de la zone la plus exposée au températures extrêmes, à savoir le centre de la troisième paroi frontale. Le nez de lance selon cette forme de réalisation résulte donc en une amélioration supplémentaire du refroidissement du nez.
Avantageusement, ladite partie amincie I du pilier présente un diamètre minimum prédéterminé D3 à sa deuxième extrémité et ladite zone centrale présente une hauteur h et une base b telles que le rapport h/(b-D3) est compris entre 20 % et 120%, de préférence entre 20 % et 110 %, avantageusement entre 30 % et 110 %, de manière préférentielle entre 30 % et 100 %, en particulier compris entre 40 % et 100 %, de manière particulièrement avantageuse entre 40 % et 90 %, de préférence entre 45 % et 85 %, avantageusement entre 50 %et 80 %.
Lorsqu'aucun pilier n'est présent au sommet de la zone centrale conique, D3 est nul et h/(b-D3) = h/b.
La surface d'échange thermique est ainsi augmentée par rapport à une même surface du front de chaleur provenant du bain, et cela sans entraîner ni tourbillonnement, ni cavitation dans le liquide. De plus, la section de passage du liquide dans l'espace d'échange thermique est tel que le liquide de refroidissement présente un profil de vitesse adéquat pour que le refroidissement de la paroi frontale exposée au bain soit amélioré davantage.
De préférence, le nez de lance selon la présente invention est caractérisé par une distance R, pour le passage du liquide de refroidissement, prise perpendiculairement à l'axe longitudinal L du nez dans l'ouverture centrale. Lorsqu'aucun pilier n'est présent dans l'ouverture centrale, cette distance de passage est alors appelée Ri et est mesurée entre le front du séparateur et l'axe longitudinal du nez, et correspond donc au rayon minimum de l'ouverture centrale. Lorsqu'un pilier est présent dans l'ouverture centrale, la distance de passage R pour le liquide est alors mesurée entre le front du séparateur et la surface externe de la partie amincie i du pilier, la distance est alors appelée i¾. Dans les deux cas de figure, cette distance de passage R est telle que le rapport R/H3 est compris entre 20% et 150%, de préférence entre 30 % et 140 %, avantageusement entre 30 % et 130 %, de manière préférentielle entre 40 % et 130 %, de manière particulièrement avantageuse entre 50 % et 130 %, de préférence entre 60 % et 120 %, avantageusement entre 60 % et 1 10 %, de référence entre 70 % et 1 10 %, avec R correspondant à R1 en absence de pilier ou correspondant à R2 en présence d'un pilier.
Cette distance de passage particulière pour le liquide de refroidissement permet d'améliorer davantage l'écoulement du liquide de refroidissement qui va converger dans l'ouverture centrale avant d'atteindre l'espace d'échange thermique. Le distance de passage du liquide dans l'ouverture centrale en combinaison avec les caractéristiques du nez sus mentionnées, permet d'améliorer davantage l'écoulement en améliorant la réduction des perturbations et l'accélération du liquide de refroidissement.
Avantageusement ledit séparateur présente une surface tournée vers ladite première paroi frontale sensiblement sinusoïdale.
Dans une forme de réalisation particulière, un déflecteur est présent sensiblement au centre dudit tube central d'alimentation en gaz de brassage du nez de lance selon la présente invention.
Ce déflecteur permet de dériver de façon appropriée le gaz quittant le conduit central pour s'engager dans les conduits de sortie pour le gaz de brassage.
Dans une forme de réalisation particulièrement avantageuse du dispositif selon l'invention, lesdits conduits de sortie pour le gaz de brassage présentent des axes de révolution placés en oblique par rapport à un axe longitudinal du nez de lance.
Dans une forme de réalisation particulière, les éléments susdits du nez sont réalisés séparément et fixés en zone de rattachement mutuel par soudage à haute énergie, de préférence un soudage à faisceau d'électrons.
Le nez précité est réalisé en plusieurs éléments de nez étant chacun constitué d'une matériau choisi selon la fonction à remplir. Ces éléments sont ensuite fixés entre eux par soudage à haute énergie, de préférence par faisceau d'électrons. Ce type de soudage assure des jonctions cuivre- acier facilement réalisables et présentant une bonne étanchéité au liquide et cela malgré les contraintes de fatigue dues aux cycles thermiques successifs auxquels le nez est soumis.
D'autres formes de dispositif suivant l'invention sont indiquées dans les revendications annexées.
D'autres détails et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et en faisant référence aux dessins annexés.
La figure 1 est une vue de face d'un nez de lance. La figure 2 illustre une vue en coupe suivant la ligne ll-ll de la
Figure 1 , d'une forme de réalisation particulière du nez de lance selon l'invention.
La figure 3 représente un détail d'un nez de lance suivant l'invention, pour illustrer la partie caractérisante de l'invention.
La figure 4 représente une vue analogue à la figure 2 d'une variante de nez de lance de soufflage selon l'invention.
La figure 5 représente un détail d'un nez de lance selon l'invention, pour illustrer le mode de mesure des paramètres nécessaires à un mode de réalisation avantageux de l'invention.
Sur les figures, les éléments identiques ou analogues portent les mêmes références. La figure 1 illustre la troisième paroi frontale 12 du nez de lance 1 qui est tournée vers le bain. Selon cette forme de réalisation, le nez de lance 1 présente six orifices de sortie de gaz de brassage 13 placés en couronne autour d'une zone centrale 14 de la troisième paroi frontale 12, La figure 2 représente le nez de lance selon la présente invention dans lequel le gaz de brassage est alimenté par le tube central 2. Ce tube central 2 est fermé par une paroi frontale 3 dirigée vers le bain munie d'au moins deux ouvertures 4.
Un tube interne 5 est agencé de manière coaxiale autour du tube central 2 de manière à former entre eux une cavité annulaire 6 servant à l'alimentation en liquide de refroidissement dans le sens de la Flèche Fi. Ce tube interne 5 est terminé par une paroi frontale 7 que l'on appelle un séparateur. Ceie paroi frontale 7 est pourvue d'une ouverture centrale 8 et d'un orifice 9 dans l'alignement de chaque ouverture 4 dans le tube central 2. Le séparateur 7, selon la présente invention, présente une géométrie et une disposition par rapport à la troisième paroi frontale 12 particulières qui seront développées ci-dessous.
Un tube externe 10 est agencé de manière coaxiale autour du tube interne 5. Ce tube externe forme avec le tube interne 5 une cavité annulaire 11 qui sert à la sortie du liquide de refroidissement dans le sens de la flèche F?. Ce tube externe est fermé par une paroi frontale 12 qui fait face au bain à brasser et qui comporte une surface interne 30. Comme ie montre la figure 2, la surface interne 30 de la troisième paroi frontale 12 est pourvue d'une zone centrale 14 conique qui est dirigée vers l'ouverture centrale 8 et qui présente une surface d'enveloppe incurvée en section axiale.
La paroi frontale 12 est aussi pourvue d'un orifice de sortie 13 en alignement avec chaque ouverture 4 prévue dans la paroi frontale 3 et avec chaque orifice de passage 9 prévu dans la paroi frontale 7. Dans chacun de ces orifices et ouvertures alignés est agencé un conduit de sortie 17 pour l'éjection de gaz de brassage à l'extérieur du nez de lance. Les axes de révolution m des conduits 17 sont avantageusement placés en oblique par rapport à l'axe longitudinal L du nez de lance.
Le refroidissement de cette paroi frontale 12 est assuré par la circulation du liquide de refroidissement dans l'espace d'échange thermique 16 qui est situé entre le séparateur 7 et la surface interne 30 de la paroi frontale 12. Dans l'exemple de réalisation illustré, le liquide de refroidissement venant de la cavité 6 passe par l'ouverture centrale 8 dans la zone d'échange thermique 16 suivant la flèche F3. Le liquide s'écoule alors dans le sens de la flèche F2 vers l'extérieur, c'est-à-dire vers la cavité 11.
Sur la figure 3, le séparateur 7, selon la présente invention, est sensiblement plan et sensiblement parallèle à la surface interne 30 de la troisième paroi frontale 12. Ce séparateur 7 présente à l'ouverture centrale 8, un bord 18 de section axiale incurvée. Un diamètre minimum, de l'ouverture centrale 8 peut alors être mesuré à partir du front 19 du bord 18 du séparateur 7. La tangente passant par ce front 19 et parallèle à l'axe longitudinal L du nez de lance permet de mesurer le diamètre le plus petit de l'ouverture centrale 8.
La hauteur prise le long de la tangente passant par le front 19 et parallèle à l'axe longitudinal L du nez de lance et mesurée entre ledit front 19 et la surface interne 30 de la troisième paroi frontale 12 correspond à la hauteur H3, telle qu'indiquée sur la figure 3. La hauteur H1 est quant à elle mesurée» parallèlement à l'axe de révolution m des injecteurs 1 , entre la surface tournée vers le bain 20 du séparateur 7 et la surface interne 30 de la troisième paroi frontale 12, du côté de l'ouverture centrale 8. Cette hauteur H1 définit une hauteur de passage minimum pour le liquide de refroidissement dans l'espace d'échange thermique 16 à l'ouverture centrale 8. Dans le volume contenu dans le cône passant par les axes de révolution m des injecteurs, H1 est la hauteur minimale du passage d'eau le long de la surface interne de la troisième paroi frontale, dans l'espace d'échange thermique. Selon la présente invention, le rapport H1/H3 est avantageusement compris entre 30 % et 55 %.
La section axiale courbe du bord 18 du séparateur 7 a comme avantage d'accompagner le liquide de refroidissement lors de sa convergence dans l'ouverture centrale 8. De plus, comme le montre la figure 3, il existe une complémentarité de forme entre le bord 18 du séparateur 7 et la zone centrale 14 conique de la surface interne 30 de la troisième paroi frontale 12. De ce fait, le liquide est maintenu en contact avec la surface interne de la troisième paroi frontale 12 la plus exposée aux contraintes thermiques. Par conséquent, un écoulement du liquide de refroidissement à perturbation et phénomènes de cavitation réduits peut être obtenu et maintenu tout au long de sa trajectoire. Le liquide de refroidissement ainsi « tranquillisé » peut alors contourner calmement les obstacles que représentent les injecteurs 17 dans l'espace d'échange thermique 16 avant de ressortir du nez par la deuxième cavité annulaire 11 suivant la flèche F2.
Le diamètre extérieur Dext du nez de lance 1 selon la présente invention correspond au diamètre mesuré entre les surfaces externes du tube externe 10, tel que représenté sur la figure 2.
Généralement, une épaisseur du séparateur 7 est mesurée entre la surface 21 tournée vers la première paroi frontale 3 et la surface tournée vers le bain 20 du séparateur 7.
L'épaisseur e1 du bord 18 du séparateur 7 est donc mesurée parallèlement à l'axe de révolution m de l'injecteur 17 dans la continuité de la hauteur minimum H1 de l'espace d'échange thermique 16 à l'ouverture centrale 8. Cette épaisseur permet au séparateur d'occuper un volume conséquent dans le nez de lance et permet en combinaison avec la section courbe du bord 18 de maintenir un écoulement à perturbation réduite et une bonne accélération du liquide de refroidissement. De préférence le rapport e1 /Dext est compris entre 5 % et 15 %, Dans une forme de réalisation particulière du nez de lance représentée sur la figure 3, la surface tournée vers le bain 20 du séparateur 7 est sensiblement sinusoïdale. Dans le cas où la surface tournée vers le bain 20 du séparateur 7 présente une forme sensiblement sinusoïdale, l'épaisseur maximum, e1 , est mesurée entre la surface 21 tournée vers la première paroi frontale 3 et la tangente passant par le minimum de la partie concave de la surface tournée vers le bain 20. Au contraire une épaisseur minimum est mesurée entre la surface 21 tournée vers la première paroi frontale 3 et la tangente passant par le maximum de la partie convexe de la surface tournée vers le bain 20,
Ceci signifie que le séparateur 7 présente outre son épaisseur e1 à l'ouverture centrale 8, une épaisseur minimum sensiblement en son centre telle que l'espace d'échange thermique 16 présente une hauteur maximum Hmax sensiblement au centre du séparateur 7. Cette hauteur maximum Hmax a pour but de laisser plus d'espace au liquide de refroidissement lors de son passage au niveau des injecteurs 17 dans l'espace d'échange thermique 16.
La figure 4 représente une forme particulière de réalisation du nez de lance selon la présente invention. Dans cette forme de réalisation, un pilier central 22 de configuration particulière est présent au centre de l'ouverture centrale 8.
Le pilier 22 présente une première extrémité E1 du côté de la première paroi frontale 3 et une deuxième extrémité E2 reliée à la zone centrale 14 de la surface interne 30 de la troisième paroi frontale 12. Ce pilier présente, de préférence, une partie amincie I entre la première extrémité E1 et la deuxième extrémité E2 qui permet de former une surface incurvée continue 23 avec la zone centrale conique 14 de la surface interne 30 de la troisième paroi frontale 12. De cette manière, le liquide de refroidissement provenant de la première cavité annulaire 6 suivant la flèche Fi, longe la face supérieure 21 du séparateur 7 où il doit contourner les injecteurs qui représentent un premier obstacle sur la trajectoire du liquide et converge ensuite dans l'ouverture centrale 8. Le pilier 22 présent au centre de cette ouverture centrale 8 permet alors de guider le liquide de refroidissement vers la surface interne 30 de la troisième paroi frontale 12 où la partie amincie I du pilier assure le passage du liquide entre ce pilier 22 et le bord 18 du séparateur 7, suivant la flèche F3. Par ailleurs, la jonction de la zone centrale conique 14 de la surface interne 30 de la troisième paroi frontale 12 avec le pilier 22 présente une surface incurvée continue 23 assurant une rotation progressive du liquide selon la flèche F3. Les turbulences dans le liquide de refroidissement arrivant alors dans l'espace d'échange thermique 16 sont diminuées et le liquide peut contourner tranquillement les injecteurs occupant un volume important dans l'espace d'échange thermique 18. Dans cet exemple, les calories accumulées dans la paroi frontale 12 exposée au bain de fonte liquide sont transférées au pilier 22 dont la surface de contact avec le liquide de refroidissement est augmentée grâce à sa partie amincie I, ce qui améliore le transfert thermique métal/liquide
Par ailleurs, le pilier 22, présente avantageusement une deuxième partie II de longueur prédéterminée L2 joignant ladite partie amincie I et ladite première extrémité E1 , ladite deuxième partie II présentant une section transversale circulaire définie par une diamètre prédéterminé D2, constant sur toute la longueur L2, tel que le rapport D2/Dext est compris avantageusement entre 10 % et 15 %.
En effet, le pilier 22 étant réalisé en un matériau de bonne conductivité thermique, la chaleur provenant du bain et transmise à la troisième paroi frontale 12 et à sa zone centrale 14 où elle peut alors être conduite par le pilier 22 vers le liquide de refroidissement. Ce dernier circulant autour du pilier 22 permet d'assurer un captage constant de la chaleur de la troisième paroi frontale 12. Afin d'optimiser celui-ci, les parties les plus exposées au bain, à savoir la troisième paroi frontale 12 et le pilier 22, sont réalisées en cuivre corroyé qui assure une meilleur conductivité thermique que le cuivre coulé. Avantageusement, la première partie amincie I est caractérisée, en outre, par un diamètre prédéterminé D1 qui varie progressivement du diamètre D2 à la jonction avec la deuxième partie 11 à une valeur de préférence comprise entre 60 % et 80 % de D2 à !a deuxième extrémité E2 du pilier 22. Le diamètre D1 de la partie amincie I du pilier 22 diminue donc progressivement lorsque l'on se déplace le long de l'axe longitudinal L du nez de lance vers le bain jusqu'à atteindre une valeur minimum, alors appelée D3 correspondant à la deuxième extrémité E2 du pilier.
De préférence, la surface incurvée continue 23 entre la partie amincie I du pilier 22 et la zone centrale conique 14 de la surface interne 30 de la troisième paroi frontale 12 est caractérisée par un rayon de courbure supérieur ou égale à 30 % du diamètre D2 de la deuxième partie II du pilier 22.
Dans la forme de réalisation présentée à la figure 4, le séparateur 7 et la partie amincie I du pilier 22 se faisant face présentent une complémentarité de forme assurant ainsi un accompagnement du liquide de refroidissement le plus délicat possible. En effet, le bord 18 du séparateur 7 et la partie amincie I du pilier 22 permettent de former pour le liquide de refroidissement une trajectoire diminuant les turbulences dans le liquide.
Un déflecteur 24 peut également être placé au centre du tube d'alimentation en gaz de brassage 2. Ce déflecteur 24 permet de dériver de façon appropriée l'oxygène quittant le conduite central 2 pour s'engager dans les injecteurs 17.
La figure 5 représente un détail de la zone centrale conique 14 afin d'expliciter la façon de mesurer les paramètres relatifs à cette zone centrale 14 de la surface interne 30 de la troisième paroi frontale 12. La hauteur h se mesure entre le plan tangent 32 de la paroi interne 30 du nez de lance perpendiculaire à l'axe longitudinal L et le plan parallèle 31 tangent au sommet de la zone centrale conique 14. Si un élément additionnel à la zone centrale conique 14 est prévu au sommet de celle-ci, comme par exemple le pilier 22, le plan 31 reste dans la position qu'il aurait si cet élément additionnel n'existait pas. Le sommet de la zone centrale conique 14 coïncidant avec la section transversale de la partie amincie i du pilier 18 présentant un diamètre minimum D3, le plan 31 passe également par cette section de diamètre minimum D3 du pilier 22.
La base b est située dans le plan tangent 32 de la paroi interne 30. Elle est circonscrite par les points d'intersection 33 avec le prolongement de la paroi interne 30.
Avantageusement, le nez selon la présente invention présente un rapport h/(b-D3) compris entre 50 % et 80%. De ce fait, dans le cas où aucun élément additionnel, comme par exemple un pilier, n'est présent sur la zone centrale 14, D3 est nui et le rapport h/b est compris de préférence entre 50 % et 80%.
La figure 5 représente également la distance R pour le passage du liquide de refroidissement prise perpendiculairement à l'axe longitudinal L du nez dans l'ouverture centrale 8. Lorsqu'aucun pilier n'est présent dans l'ouverture centrale 8, la distance R est mesurée entre le front 19 du séparateur 7 et l'axe longitudinal L, cette distance pour le passage du liquide de refroidissement est alors appelée Ri et correspond au rayon minimum de l'ouverture centrale 8. Lorsqu'un pilier 22 est présent dans l'ouverture centrale 8, la distance de passage R pour le liquide est alors mesurée entre le front 19 séparateur 7 et la surface externe de la partie amincie I du pilier 22, la distance est alors appelée R2. Dans les deux cas de figure, cette distance pour le passage du liquide de refroidissement est telle que le rapport R/H3 est compris de préférence entre 70 % et 110 %, avec R correspondant à R1 en absence de pilier ou correspondant à R2 en présence d'un pilier.
Il est bien entendu que la présente invention n'est en aucune façon limitée aux formes de réalisations décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées.

Claims

REVENDICATIONS
1. Nez de lance de soufflage (1), destinée au brassage de bain, comprenant :
- un tube centrai d'alimentation en gaz de brassage (2), fermé à une extrémité tournée vers le bain par une première paroi frontale (3) pourvue d'au moins deux ouvertures (4),
- un tube interne (5) formant avec le tube central (2) une première cavité annulaire (6) pour le passage d'un liquide de refroidissement et terminé à une extrémité tournée vers le bain par une deuxième paroi frontale appelée séparateur (7) présentant une ouverture centrale (8) et un orifice de passage (9) par ouverture prévue dans ladite première paroi frontale (4),
- un tube externe (10) formant avec le tube interne (5) une deuxième cavité annulaire (11) pour le passage du liquide de refroidissement et fermé à une extrémité tournée vers le bain par une troisième paroi frontale (12) présentant un orifice de sortie (13) par ouverture prévue dans ladite première paroi frontale (4) et présentant une surface interne (30) comprenant une zone centrale conique (14) qui est dirigée vers ladite ouverture centrale (8) et qui présente une surface d'enveloppe incurvée en section axiale,
- un espace d'échange thermique (16) dans lequel s'écoule le liquide de refroidissement qui est situé entre, d'une part, ledit séparateur (7) et ladite troisième paroi frontale (12) et, d'autre part, ladite ouverture centrale (8) et ladite deuxième cavité annulaire (11), et dans lequel s'écoule le liquide de refroidissement, et
- un conduit de sortie pour le gaz de brassage, appelé injecteur (17), partant de chaque ouverture (4) dans ladite première paroi frontale (3) et allant jusqu'à un orifice de sortie (13) susdit correspondant en passant par un orifice de passage (9) susdit correspondant d'une manière étanche au liquide de refroidissement, caractérisé en ce que ledit séparateur (7) présente à l'ouverture centrale (8) un bord (18) en section axiale qui est incurvé tel qu' une hauteur (H3) est définie entre un front (19) dudit bord (18) et ladite troisième paroi frontale (12) et que dans l'espace d'échange thermique (16) une hauteur minimum prédéterminée (H1 ) est présente du côté de ladite ouverture centrale (8) tel que le rapport H1/H3 est compris entre 5 % et 80 %, avantageusement entre 5 % et 75 %, de préférence compris entre 5 % et 70 %, de manière préférentielle compris entre 5 % et 65 %, de manière particulièrement avantageuse entre 5 % et 60 %, de préférence entre 10 % et 60 %, avantageusement entre 15 % et 60 %, de préférence compris entre 20 % et 60 %, de manière préférentielle compris entre 25 % et 60 %, de manière particulièrement avantageuse entre 25 % et 55 %, de préférence entre 30 % et 55 %.
2. Nez de lance selon la revendication 1 caractérisé par une distance R, pour le passage du liquide de refroidissement, prise perpendiculairement à l'axe longitudinal L du nez entre ledit front (19) du bord (18) du séparateur (7) et l'axe longitudinal L du nez, ladite distance R étant telle que le rapport R/H3 est compris entre 20% et 150%, de préférence entre 30 % et 140 %, avantageusement entre 30 % et 130 %, de manière préférentielle entre 40 % et 130 %, de manière particulièrement avantageuse entre 50 % et 130 %, de préférence entre 60 % et 120 %, avantageusement entre 60 % et 110 %, de référence entre 70 % et 110 %.
3. Nez de lance selon l'une quelconque des revendications 1 et 2 présentant un diamètre extérieur (Dext) prédéterminé et dans lequel ledit bord (18) du séparateur (7) est défini par une épaisseur (e1 ) de sorte que le rapport e1/Dext est compris entre 5 % et 30 %, de préférence compris entre 7 % et 25 %, avantageusement entre 7 % et 20 %, de manière préférentielle entre 7 % et 15 %
4. Nez de lance selon l'une quelconque des revendications 1 à 3 dans lequel ledit séparateur (7) présente une surface tournée vers le bain (20) sensiblement sinusoïdale.
5. Nez de lance selon l'une quelconque des revendications 1 à 4 présentant un pilier (22) comprenant une première extrémité (E1 ) située à l'opposé du bain et une deuxième extrémité (E2) tournée vers le bain reliée à la zone centrale (14) de la surface interne (30) de la troisième paroi frontale (12).
8. Nez de lance selon la revendication 5 dans lequel le pilier (22) présente entre lesdites première et deuxième extrémités (E1 et E2) une partie amincie (I) reliée à la zone centrale (14) qui présente une longueur prédéterminée L1 et une section axiale décroissante de manière que le pilier (18) forme avec la zone centrale (14) de la surface interne (30) de la troisième paroi frontale (12) une surface incurvée continue (23).
7. Nez de lance selon l'une quelconque des revendications 1 à 6 dans lequel ladite partie amincie I du pilier (22) présente un diamètre minimum prédéterminé D3 à ladite deuxième extrémité (E2) et ladite zone centrale (14) de la surface interne (30) de la troisième paroi frontale (12) présente une hauteur h et une base b telles que le rapport h/(b-D3) est compris entre 20 % et 120%, de préférence entre 20 % et 110 %, avantageusement entre 30 % et 110 %» de manière préférentielle entre 30 % et 100 %, en particulier compris entre 40 % et 100 %, de manière particulièrement avantageuse entre 40 % et 90 %, de préférence entre 45 % et 85 %, avantageusement entre 50 %et 80 %.
8. Nez de lance selon l'une quelconque des revendications 1 à 7 dans lequel un déflecteur (24) est présent sensiblement au centre dudit tube central d'alimentation en gaz de brassage (2).
9. Nez de lance selon l'une quelconque des revendications 1 à 8 dans lequel les injecteurs (17) présentent un axe de révolution (m) orienté en oblique par rapport à un axe longitudinal (L) du nez de lance.
10. Nez de lance de soufflage selon l'une quelconque des revendications 1 à 9 caractérisé en ce que les éléments susdits du nez sont réalisés séparément et fixés en zone de rattachement mutuel par soudage à haute énergie, de préférence un soudage à faisceau d'électrons.
PCT/EP2017/058973 2016-04-15 2017-04-13 Nez de lance de soufflage WO2017178606A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17719524.5A EP3443131B1 (fr) 2016-04-15 2017-04-13 Nez de lance de soufflage
PL17719524T PL3443131T3 (pl) 2016-04-15 2017-04-13 Końcówka lancy nadmuchowej
ES17719524T ES2794843T3 (es) 2016-04-15 2017-04-13 Cabeza de lanza de soplado
US16/093,608 US10858714B2 (en) 2016-04-15 2017-04-13 Blowing lance tip
CA3020361A CA3020361C (fr) 2016-04-15 2017-04-13 Nez de lance de soufflage
JP2019505284A JP6953510B2 (ja) 2016-04-15 2017-04-13 吹付けランスチップ
KR1020187030184A KR102330422B1 (ko) 2016-04-15 2017-04-13 취입 랜스 노즐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2016/5263A BE1023609B1 (fr) 2016-04-15 2016-04-15 Nez de lance de soufflage
BE2016/5263 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017178606A1 true WO2017178606A1 (fr) 2017-10-19

Family

ID=56014739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/058973 WO2017178606A1 (fr) 2016-04-15 2017-04-13 Nez de lance de soufflage

Country Status (9)

Country Link
US (1) US10858714B2 (fr)
EP (1) EP3443131B1 (fr)
JP (1) JP6953510B2 (fr)
KR (1) KR102330422B1 (fr)
BE (1) BE1023609B1 (fr)
CA (1) CA3020361C (fr)
ES (1) ES2794843T3 (fr)
PL (1) PL3443131T3 (fr)
WO (1) WO2017178606A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115989325A (zh) * 2020-09-08 2023-04-18 西门子股份公司 拉伐尔喷嘴及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432534A (en) 1982-02-10 1984-02-21 Institut De Recherches De La Siderurgie Francaise Oxygen lance for steel converter
EP0340207A1 (fr) 1988-04-25 1989-11-02 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Lance de soufflage
WO1996023082A1 (fr) 1995-01-25 1996-08-01 Alexandr Leonidovich Kuzmin Embout pour tuyere de conversion de l'oxygene
DE19506718A1 (de) 1995-02-27 1996-08-29 Eko Stahl Gmbh Lanzenkopf für eine wassergekühlte Blaslanze
US6234406B1 (en) * 1995-06-23 2001-05-22 Jacques J. A. Thomas Blasting nozzle with welded lance head for the agitation of baths
WO2002022892A1 (fr) 2000-09-15 2002-03-21 Jacques Thomas Nez de lance de soufflage
US20070126162A1 (en) * 2005-12-07 2007-06-07 Berry Metal Company Metal making lance slag detection system
DE102010034315A1 (de) * 2010-02-01 2011-08-04 SMS Siemag AG, 40237 Verfahren zur Überwachung einer metallurgischen Anlage und metallurgische Anlage
US20120211929A1 (en) * 2008-01-24 2012-08-23 Strelbisky Michael J Post-combustion lance including an internal support assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217824B1 (en) * 1999-05-20 2001-04-17 Berry Metal Company Combined forged and cast lance tip assembly
US20070246869A1 (en) 2006-04-21 2007-10-25 Berry Metal Company Metal making lance tip assembly
US20120211930A1 (en) 2011-02-21 2012-08-23 Ali Bagheri Multi stage impulse absorber
WO2015139045A1 (fr) * 2014-03-14 2015-09-17 Berry Metal Company Lance permettant la fabrication de métal dont l'embout est pourvu d'un appareil photographique ou d'un thermocouple à ressort

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432534A (en) 1982-02-10 1984-02-21 Institut De Recherches De La Siderurgie Francaise Oxygen lance for steel converter
EP0340207A1 (fr) 1988-04-25 1989-11-02 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Lance de soufflage
WO1996023082A1 (fr) 1995-01-25 1996-08-01 Alexandr Leonidovich Kuzmin Embout pour tuyere de conversion de l'oxygene
DE19506718A1 (de) 1995-02-27 1996-08-29 Eko Stahl Gmbh Lanzenkopf für eine wassergekühlte Blaslanze
US6234406B1 (en) * 1995-06-23 2001-05-22 Jacques J. A. Thomas Blasting nozzle with welded lance head for the agitation of baths
WO2002022892A1 (fr) 2000-09-15 2002-03-21 Jacques Thomas Nez de lance de soufflage
US20070126162A1 (en) * 2005-12-07 2007-06-07 Berry Metal Company Metal making lance slag detection system
US20120211929A1 (en) * 2008-01-24 2012-08-23 Strelbisky Michael J Post-combustion lance including an internal support assembly
DE102010034315A1 (de) * 2010-02-01 2011-08-04 SMS Siemag AG, 40237 Verfahren zur Überwachung einer metallurgischen Anlage und metallurgische Anlage

Also Published As

Publication number Publication date
ES2794843T3 (es) 2020-11-19
BE1023609B1 (fr) 2017-05-16
JP2019513905A (ja) 2019-05-30
US20190119765A1 (en) 2019-04-25
PL3443131T3 (pl) 2020-09-21
EP3443131B1 (fr) 2020-04-08
KR102330422B1 (ko) 2021-11-24
CA3020361C (fr) 2023-10-03
CA3020361A1 (fr) 2017-10-19
JP6953510B2 (ja) 2021-10-27
US10858714B2 (en) 2020-12-08
KR20180129835A (ko) 2018-12-05
EP3443131A1 (fr) 2019-02-20

Similar Documents

Publication Publication Date Title
FR2829174A1 (fr) Perfectionnement apportes aux circuits de refroidissement pour aube de turbine a gaz
FR2858352A1 (fr) Circuit de refroidissement pour aube de turbine
FR2714154A1 (fr) Chambre de combustion comportant une paroi munie d'une multiperforation.
CA2652679A1 (fr) Aubes pour roue a aubes de turbomachine avec rainure pour le refroidissement
BE1009743A3 (fr) Tuyere de soufflage a oxygene siderurgique.
WO2015059384A1 (fr) Buse laser a double flux gazeux
EP3443131B1 (fr) Nez de lance de soufflage
EP0049190B1 (fr) Dispositif de refroidissement par film d'air pour tube à flamme de moteur à turbine à gaz
EP3443132B1 (fr) Nez de lance de soufflage
FR2913479A1 (fr) Joint tournant et rotor correspondant pour appareil a helices entrainees par l'ejection de gaz sous pression sur une pale et de l'helice, notamment pour helicoptere.
EP1325161B1 (fr) Nez de lance de soufflage
EP3022009B1 (fr) Cloche de protection pour une buse de projection lors d'un procede de rechargement
BE1023685B1 (fr) Nez de lance de soufflage
FR3024218A1 (fr) Distributeur d'admission pour un evaporateur, procede de fabrication d'un tel distributeur, evaporateur comprenant un tel diffuseur et installation thermique a fluide caloporteur diphasique
WO2017178608A1 (fr) Nez de lance de soufflage
EP3729464B1 (fr) Ensemble de tranquillisation de flux de reacteur nucleaire
WO2003069226A1 (fr) Bruleur a combustion interne, notamment pour l'etirage de fibres minerales
FR3084449A1 (fr) Dispositif d'injection de carburant multipoint
WO1987000779A1 (fr) Procede de fabrication par coulee d'une piece metallique munie interieurement d'une partie evidee entouree par un tube
FR3061063A1 (fr) Sonotrode a canaux de refroidissement non lineaires
FR3104045A1 (fr) Molette de soudage.
CA3223831A1 (fr) Bruleur a gaz a combustion de surface antideflagrant et antidetonant
BE1028247A1 (fr) Distributeur de post-combustion
CA3110912A1 (fr) Boitier d'alimentation en air sous pression d'un dispositif de refroidissement par jets d'air
FR2750286A1 (fr) Tete de torche a plasma

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3020361

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019505284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030184

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017719524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017719524

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17719524

Country of ref document: EP

Kind code of ref document: A1