WO2017177711A1 - 一种基于来车实时检测的隧道照明***的控制装置及方法 - Google Patents

一种基于来车实时检测的隧道照明***的控制装置及方法 Download PDF

Info

Publication number
WO2017177711A1
WO2017177711A1 PCT/CN2016/110562 CN2016110562W WO2017177711A1 WO 2017177711 A1 WO2017177711 A1 WO 2017177711A1 CN 2016110562 W CN2016110562 W CN 2016110562W WO 2017177711 A1 WO2017177711 A1 WO 2017177711A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
illumination
section
lighting
controlled
Prior art date
Application number
PCT/CN2016/110562
Other languages
English (en)
French (fr)
Inventor
温惠英
刘敏
靳辉
游峰
刘丹
黄姣
赵胜
漆巍巍
刘建荣
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017177711A1 publication Critical patent/WO2017177711A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the field of highway traffic safety, energy saving, emission reduction and environmental protection, and particularly relates to a control device and method for tunnel lighting system based on real-time detection of vehicles.
  • the lighting system of highway tunnels is an important part of the highway traffic engineering system. In terms of ensuring driving safety and improving driving comfort, the quality of tunnel lighting artificial light environment plays an important role. At present, the level of intelligent control and adaptive control of tunnel lighting systems in China's expressways is low, and there are many problems such as unreasonable brightness distribution and waste of electric energy. Specifically, when the tunnel lighting system is designed in the past, the distribution and number of the lamps in each section of the tunnel are determined based on historical data such as the maximum brightness outside the annual hole and the maximum traveling speed of the vehicle.
  • the factors involved in the design parameters are considered by the limit values, so that the illumination intensity of each section is always at the maximum during the operation of the later tunnel, which causes a large amount of electric energy to be wasted and increases the operating cost, which seriously affects the stable, reliable and long-term operation of the tunnel lighting system.
  • the existing control systems mostly adopt a control strategy of timing on or off, so that the tunnel always maintains the brightest state of the tunnel illumination in the current period (day/night) within a certain period of time.
  • the practical efficiency of tunnel lighting is low, resulting in waste of electrical energy and increasing the cost of tunnel operation.
  • Patent "Control method of tunnel modeling system based on geomagnetic induction coil” discloses a control method of tunnel illumination system based on geomagnetic induction, including several equidistant settings a lighting module in the tunnel and an initial triggering module disposed outside the tunnel; the initial triggering module is disposed at a preset distance threshold before entering the tunnel, including a geomagnetic sensor, a microcontroller, and a communication node; the lighting module includes a geomagnetic sensor, and a micro The controller, the communication node, the light intensity sensor, the relay, and a plurality of illumination lamps arranged equidistantly along the tunnel.
  • the geomagnetic sensor senses the vehicle, its corresponding communication node sends a message to the previous and next communication nodes respectively; when the message of the previous communication node is received in the illumination module, the count is incremented by one, and when the message of the next communication node is received Count minus 1; illuminate when the lighting module count is not zero.
  • tunnel lighting control system and energy saving method discloses a tunnel lighting control system and an energy saving method, which comprise a control device and a lighting device disposed in the tunnel, wherein the control The device is configured to acquire position information of the vehicle passing through the tunnel, and control the lighting device on the front side of the vehicle to be turned on according to the vehicle position information, and the lighting device on the rear side is closed.
  • the above two patents have proposed segmentation processing of the tunnel section, and control the tunnel illumination according to the location of the vehicle, which has a good energy saving effect to some extent.
  • the two patents propose to immediately turn on the section lighting device, and when the vehicle leaves the corresponding section, the lighting device is immediately turned off.
  • This kind of tunnel lighting control scheme makes the intensity of the light change drastically, and when the different vehicles enter the tunnel, the light and the light alternately change, which is a serious stimulus to the driver's vision, which makes the driver repeatedly experience the “glare” when entering and exiting the tunnel. State, it is difficult to guarantee the driver's visual reliability.
  • the solution may cause the tunnel lighting device to be in a completely closed state, and the vehicle entering the tunnel is difficult to quickly and timely sense the tunnel scene, and the safety hazard is large.
  • the tunnel lighting is turned on and off in real time according to the detection status of the vehicle, which is effective on the basis of ensuring the normal lighting requirements of the tunnel. Energy saving and emission reduction.
  • the invention provides a highway tunnel lighting control device and method based on real-time detection of vehicles, which is particularly suitable for a highway tunnel area with unbalanced traffic, many tunnels, long tunnel length and large energy consumption of tunnel lighting.
  • An aspect of the present invention provides a control device for a tunnel lighting system based on real-time detection of an on-vehicle, comprising an incoming traffic flow detecting module, a central main control module, and a tunnel lighting segment control module, wherein the incoming traffic flow detecting module includes a road along the road A plurality of traffic flow detection sub-modules that are continuously and equidistantly distributed upstream of the tunnel entrance, within the tunnel, and at the exit of the tunnel, are used for acquiring traffic flow values through the illumination sections of each tunnel, and transmitting to the central main control module according to a predetermined time period;
  • the central main control module is configured to send a corresponding illumination state control instruction to the tunnel illumination segment control module after comparing a plurality of adjacent continuous tunnel illumination segment traffic volume values;
  • the tunnel illumination segment control module includes a plurality of A tunnel illumination sub-controller that respectively connects the illumination lamps of each illumination segment in the tunnel is configured to control the illumination state of the illumination of the corresponding illumination segment according to the received illumination state
  • the incoming traffic flow detecting submodule comprises a buried annular induction coil group, a counter, and a communication device, and the counter is counted under the trigger of the buried annular induction coil group, and the communication device is used for realizing the buried Between the ring induction coil set and the counter, Periodic data transmission between the counter and the central main control module, and the communication device adopts a wireless communication method or a wired communication method.
  • the tunnel lighting control section length is 200. ⁇ 500m.
  • the illumination state includes three levels of the brightest, the second brightest and the darkest, and the brightness level of different illumination states can be realized by controlling the number of illumination lights to meet the energy saving and ensuring the visual reliability of the driver. purpose.
  • the tunnel lighting control section sub-controller comprises a 51 series single chip microcomputer, a communication device for receiving an illumination state control instruction, and the communication device adopts a wireless communication mode or a wired communication mode.
  • the central main control module includes a data processing module for comparing a plurality of adjacent continuous tunnel illumination segment traffic volume values and calling a corresponding illumination state control command, a storage device for storing information, and each A communication device for communicating the traffic flow detecting submodule and the tunnel lighting sub-controller, and a solution library for providing an illumination state control command, wherein the communication device adopts a wireless communication method or a wired communication method.
  • a constant-light segment in which the illumination lamp always maintains the brightest state in the current period is further disposed, and the length of the constant-light segment is 10m ⁇ 100m.
  • the constant bright section does not include the lighting sub-controller, and does not perform variable lighting control, mainly for tunnel marking and warning.
  • Another aspect of the present invention provides a control method of a tunnel illumination system based on real-time detection of an on-board vehicle, comprising the steps of:
  • each predetermined traffic flow detecting sub-module sends the obtained current vehicle flowmeter value to the central main control module according to a predetermined time period
  • the central main control module After receiving the current vehicle flowmeter value sent by each incoming traffic flow detecting sub-module, the central main control module separately uses the forward direction of the vehicle for the tunnel lighting section to be controlled, and respectively controls the illuminated area of the tunnel to be controlled.
  • the current vehicle flowmeter value obtained by the incoming traffic flow detecting sub-module set at the beginning of the segment and the starting point of two adjacent tunnel lighting sections located behind the lighting section of the tunnel to be controlled and a tunnel located in front of the lighting section of the tunnel to be controlled The current vehicle flow meter value (a total of 4 vehicle count values) obtained by the incoming traffic flow detecting sub-module at the beginning of the lighting section is compared, and the lighting state control for the lighting section of the tunnel to be controlled is determined according to the comparison result and the solution library. instruction;
  • the central total control module sends the determined illumination state control command to the tunnel illumination sub-controller corresponding to the illumination section of the tunnel to be controlled;
  • the tunnel illumination sub-controller controls the number of illuminations of the to-be-controlled tunnel illumination segment to be turned on or off according to the received illumination state control command, and changes the illumination state of the segment.
  • the step of determining an illumination state control instruction for the to-be-controlled tunnel illumination segment according to the comparison result specifically includes:
  • the current vehicle flowmeter value of the tunnel illumination section farther away from the illumination section to be controlled in the two adjacent tunnel illumination sections in the rear is greater than the current traffic flowmeter value of the illumination section of the tunnel to be controlled, and the rear
  • the current traffic meter value of the tunnel lighting section near the control tunnel lighting section of the two adjacent tunnel lighting sections is equal to the current traffic meter value of the tunnel lighting section to be controlled and a tunnel lighting ahead
  • the illumination state control instruction of the tunnel lighting section to be controlled is determined to be the second light
  • the current vehicle flowmeter value of the tunnel illumination section farther away from the control tunnel illumination section in the two adjacent tunnel illumination sections at the rear is greater than the current traffic flowmeter value of the illumination section of the tunnel to be controlled, and the rear
  • the current vehicle flow meter value of the tunnel illumination section near the control tunnel illumination section of the two adjacent tunnel illumination sections is greater than the current vehicle flowmeter value of the tunnel illumination section to be controlled and a tunnel illumination ahead If the current vehicle flow meter value of the section is equal to the current vehicle flow meter value of the tunnel lighting section to be controlled, the illumination state control command of the tunnel lighting section to be controlled is determined to be the brightest;
  • the current vehicle flowmeter value of the tunnel illumination section located farther from the to-be-controlled tunnel illumination section in the two adjacent tunnel illumination sections at the rear is greater than or equal to the current vehicle flowmeter value of the illumination section of the tunnel to be controlled.
  • the current vehicle flow meter value of the tunnel illumination section near the illumination section of the adjacent tunnel in the two adjacent tunnel illumination sections is greater than or equal to the current traffic meter value of the illumination section of the tunnel to be controlled and the front If the current vehicle flowmeter value of one tunnel illumination section is greater than the current traffic flowmeter value of the tunnel illumination section to be controlled, the illumination state control command of the tunnel illumination section to be controlled is determined to be the brightest;
  • the current vehicle flowmeter value of the tunnel illumination section farther away from the control tunnel illumination section in the two adjacent tunnel illumination sections at the rear is equal to the current vehicle flowmeter value of the to-be-controlled tunnel illumination section, and the rear
  • the current traffic meter value of the tunnel lighting section near the control tunnel lighting section of the two adjacent tunnel lighting sections is equal to the current traffic meter value of the tunnel lighting section to be controlled and a tunnel lighting ahead
  • the illumination state control command of the tunnel lighting section to be controlled is determined to be the darkest.
  • the predetermined time period in the step 2 is 1 to 3 s. If the time period is too long, the real-time performance of the traffic flow data may be affected, and thus the instruction given by the main control module is seriously delayed from the actual situation. The situation can not play the proper control effect; if this time period is too short, it will seriously increase the burden of the central host controller, increase the system data processing time, affect the real-time performance, and at the same time, the excessive data volume to the system devices Increased performance requirements will greatly increase the difficulty of system implementation and affect the implementation possibilities of the system.
  • the present invention has the following beneficial effects:
  • the invention realizes the real-time detection, transmission and release of the incoming vehicle, realizes the accurate grasp of the arrival of the highway tunnel section, and improves the variable control method of the tunnel section illumination to a practical level.
  • the invention comprehensively considers the specific problems of some highways (especially mountainous highways) or part of the tunnel sections with less traffic flow and frequent illumination of energy, and conducts intelligent lighting control based on real-time detection of vehicle location.
  • the research results have strong practicability.
  • the method of the present invention can control the lighting state of the tunnel in real time based on the condition of the vehicle, which can greatly reduce the energy consumption of the tunnel lighting and fully reflect the effect of energy saving and emission reduction. It has a strong guiding role in promoting and applying.
  • the present invention provides a constant length segment of a certain length at the entrance of the tunnel, which can serve as an indication of the entrance of the tunnel, a warning, and the like.
  • the front of the vehicle entering or about to enter the tunnel always keeps the light in the two lighting control sections at the same time reaching the brightest state, and the illumination intensity is consistent, avoiding the sudden intensity of light in the junction area of the lighting control section.
  • the change caused serious problems of driver's visual incompatibility, which improved the safety and comfort of driving.
  • the invention designs the brightness of the light according to the national standard of the highway tunnel lighting setting, and provides specific protection for driving safety.
  • the invention has the characteristics of strong practicability, strong operability, good energy saving and emission reduction effect.
  • FIG. 1 is a schematic diagram showing the structure of a highway tunnel lighting control system according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a complete facility of a highway tunnel lighting control system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the arrangement position of the traffic flow detection sub-module according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of illumination implementation of an i-th tunnel illumination section according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of implementing a highway tunnel lighting control method according to an embodiment of the present invention.
  • the figure shows: 1-grounded ring induction coil set; 2-wireless communication device; 3-counter; 4-tunnel illumination section; 5-tunnel illumination sub-controller; 6-lighting lamp; 7-tunnel entrance; 8-constant section; 9-tunnel exit; 10-tuner external illumination monitoring module; 11-command traffic detection sub-module; 20-tunnel illumination monitoring module.
  • a control device for a tunnel illumination system based on real-time detection of an on-board vehicle includes an on-vehicle flow detection module, a central main control module, and a tunnel illumination segment control module
  • the on-vehicle flow detection module includes a plurality of traffic flow detection sub-modules 11 that are continuously and equidistantly distributed along the road upstream of the tunnel entrance 7, within the tunnel, and at the tunnel exit 9, for acquiring traffic flow values through the tunnel illumination sections 4 and transmitting to the a central main control module
  • the central main control module is configured to send a corresponding illumination state control instruction to the tunnel illumination segment control module after comparing the traffic values of the plurality of adjacent continuous tunnel illumination segments 4
  • the segment control module includes a plurality of tunnel illumination sub-controllers 5 respectively connected to the illumination segments 6 of the illumination segments in the tunnel for controlling the illumination state of the illumination segments 6 of the respective illumination segments in accordance with the received illumination state control commands.
  • the system can be divided into a data acquisition layer, a data processing layer, a scheme decision layer, and a scheme execution layer.
  • the data acquisition layer corresponds to the traffic flow detection module 1 and the data processing layer.
  • the scheme decision layer corresponds to the central main control module, and the scheme execution layer corresponds to the tunnel illumination segment control module.
  • the incoming traffic flow detecting sub-module 11 includes a buried ring-shaped induction coil group 1, a counter 3, and a communication device, and the counter 3 is counted under the trigger of the buried ring-shaped induction coil group 1, and the communication is shown.
  • the device is used for realizing periodic data transmission between the buried ring induction coil group 1 and the counter 3, between the counter 3 and the central main control module, and the buried annular induction coil group 1 is arranged upstream of the tunnel entrance 7, tunnel At the exit 9 and the lane at the beginning of each illumination section, a plurality of induction coils of the same lane section form an induction coil group, and the counter 3 is arranged at a roadside near the corresponding buried loop induction coil group 1,
  • the buried toroidal induction coil set 1 communicates with a counter by wired communication
  • the counter 3 is in communication with a central main control module via a wireless communication device 2
  • the wireless communication device 2 includes a wireless receiving and transmitting device.
  • the tunnel area is divided into a tunnel external illumination monitoring module 10 and a tunnel internal illumination monitoring module 20.
  • the tunnel external illumination monitoring module 10 segment includes two equidistantly arranged pre-detected segments I (far) and pre-detected segments II (near), pre-detected segment I (far) and pre-detected segment II (near) lengths 500m;
  • the tunnel inner illumination monitoring module 20 road section includes a constant light section 8 at the tunnel entrance 7, and a plurality of equally spaced tunnel illumination sections 4 (numbered III to N), wherein the length of the normally bright section 8 Temporarily set to 100m, the section illumination always maintains the brightest (100%) state in the current period;
  • the length of the single tunnel illumination section 4 in the temporary tunnel is 500m, and the pre-detection section I (far) outside the tunnel and
  • the length of the pre-detection section II (near) is the same, that is, every 500m in the tunnel (excluding the 100m of the always-on section of the tunnel
  • the illumination state includes three levels of the brightest, the second brightest, and the darkest.
  • the control method of combining the segmented lighting and the divided lighting intensity into the tunnel lighting divides the tunnel lighting intensity into three levels, that is, the most Bright, second brightest and darkest, wherein the "brightest" state is the same as the illumination state (general state) in which the tunnel is always bright when the variable illumination intensity control of the present invention is not implemented.
  • the lighting control strong grading rules are defined: the tunnel lighting state under day/night general conditions is defined as 100% brightness, and the three illuminations of this embodiment The intensity is: brightest (100%), second bright (50%) and darkest (20%).
  • the three lighting intensities include different lighting in day and night environments.
  • the specific settings and control principles are as follows:
  • the tunnel lighting system currently in operation is inconsistent in the intensity of daylight and nighttime illumination, for example, during the daytime, half of the lights in the tunnel are turned on, and this state (half of the lights is turned on) is the brightest state in the tunnel during the daytime. (100%), at the same time, by using this as a standard, the brightness is changed by controlling the number of illuminations of the illumination lamp, so that the brightness of the illumination inside the tunnel changes to the next brightest (50%) and the darkest (20%) in the daytime environment; At night, all the lights in the tunnel are turned on.
  • the three illumination intensities of the illumination lamps in the tunnel can also be set with reference to the night environment.
  • the tunnel illumination sub-controller 5 is disposed at the inner wall of the tunnel at the beginning of the corresponding tunnel illumination section 4, and includes a 51 series single chip microcomputer, a wireless communication device 2 for receiving illumination state control commands, and each of the sections A wired device connected between the lights 6 is mounted equidistantly on the tunnel wall.
  • the central main control module is disposed at a roadside outside the tunnel, and includes a data processing module for comparing a plurality of adjacent continuous tunnel illumination sections 4 traffic flow values and invoking corresponding illumination state control commands, A storage device that stores information, a wireless communication device 2 that communicates with each of the vehicle flow detection sub-modules 11 and the tunnel illumination sub-controller 5, and a solution library for providing illumination state control commands.
  • the buried ring-shaped induction coil group 1 and the counter 3 communicate by wire, and the counter 3 and the central main control module, the central main control module and the tunnel illumination segment sub-controller 5 are wirelessly connected. Communication, tunnel illumination sub-controller 5 and each illumination lamp 6 communicate in a wired manner.
  • a constant-light section 8 in which the illumination lamp 6 always maintains the brightest state in the current period is further disposed.
  • the bright section 8 has a length of 10 m to 100 m.
  • the constant-light segment 8 does not include the tunnel illumination sub-controller 5, and does not perform variable illumination control, and mainly serves as a tunnel signage and warning function.
  • the buried ring induction coil group 1 in the traffic flow detection sub-module 11 detects the arrival vehicle passage information, and the corresponding counter executes the traffic flow meter value plus 1 operation; 1s is the tunnel illumination system control period, and all incoming traffic flow detection
  • the counter 3 corresponding to the sub-module 11 wirelessly transmits the current vehicle flow meter value information to the central main control module for processing; the central main control module according to the incoming vehicle flow detection sub-module 11 sends the incoming vehicle count value information and the tunnel illumination.
  • the control plan library selects a suitable segment lighting control scheme for each tunnel lighting control section 4; and transmits the control scheme to the tunnel lighting control section 4 via wireless communication, and the tunnel lighting sub-controller 5 controls the corresponding section lighting
  • the number of 6 on/offs is implemented to realize intelligent control of highway tunnel lighting based on real-time detection of vehicles.
  • Figure 3 shows the arrangement position of the incoming traffic flow detecting sub-module 1 in this embodiment in the form of a section x#. It can be seen from the figure that two traffic flow detecting sub-modules 11 are arranged upstream of the tunnel entrance 7, and one traffic flow detecting sub-module 11 is arranged at the starting point of each inner lighting section and the tunnel exit 9, and a total of N+1 is set. A traffic flow detection sub-module 11 is provided.
  • the segmentation on/off control is implemented on the illumination light in the tunnel by the control device, so that the illumination lights of the two tunnel illumination sections 4 are gradually turned on in the forward direction of the vehicle.
  • the illumination in a tunnel illumination section 4 in the opposite direction is turned off step by step.
  • the main functional modules of the system include a tunnel external illumination monitoring module 10 and a tunnel internal illumination monitoring module 20.
  • the tunnel external illumination monitoring module 10 is mainly composed of two incoming traffic flow detecting sub-modules 11 and a tunnel central main control module and a plurality of wireless communication devices 4 disposed at an upstream of the tunnel entrance;
  • the in-tunnel monitoring module 20 mainly includes a a lighting device arranged in a certain length at the entrance of the tunnel maintains a normally bright section 8 in a constantly bright state, a plurality of continuously equidistantly distributed lighting control section modules 4 (except the normally bright section), and several consecutively arranged in each lighting control zone
  • the starting point of the segment and an incoming traffic detecting sub-module 11 disposed at the exit of the tunnel, and a plurality of wired and wireless communication connecting devices.
  • wired communication can be used instead of the vehicle traffic detection sub-module 11 and the central main control module, the central main control module and the tunnel lighting sub-controllers. 5 wireless communication methods.
  • FIG. 5 is a schematic flow chart of a control method of a tunnel illumination system based on real-time detection of an on-board vehicle of the device, comprising the steps of:
  • the buried ring induction coil group 1 of each incoming traffic flow detecting sub-module 11 detects that the vehicle passes, and performs a 1 plus operation with the corresponding counter 3 count value;
  • the tunnel lighting system control time period is 1 s, and the counter 3 of each incoming traffic flow detecting sub-module 11 wirelessly transmits the obtained current vehicle flow meter value to the central main control module;
  • the central main control module After receiving the current vehicle flowmeter value sent by each incoming traffic flow detecting sub-module 11, the central main control module separately illuminates the to-be-controlled tunnel for the to-be-controlled tunnel lighting section with the forward direction of the vehicle as a positive direction.
  • the current vehicle flow meter value obtained by the incoming traffic flow detecting sub-module 11 at the starting point of the section is at the beginning of two adjacent tunnel lighting sections 4 located behind the lighting section of the tunnel to be controlled and in front of the lighting section of the tunnel to be controlled.
  • the current vehicle flow meter value obtained by the incoming traffic flow detecting sub-module 11 at the beginning of a tunnel lighting section 4 is compared, and the lighting section for the tunnel to be controlled is determined according to the comparison result and combined with the solution library (numbers III to N) Illumination state control command;
  • the central total control module sends the determined illumination state control command to the tunnel illumination sub-controller 5 corresponding to the illumination section of the tunnel to be controlled;
  • the tunnel illumination sub-controller 5 controls the number of the illumination lights 6 of the to-be-controlled tunnel illumination segment to be turned on or off according to the received illumination state control command, and changes the illumination state of the segment;
  • the step of determining the illumination state control instruction for the to-be-controlled tunnel illumination segment according to the comparison result specifically includes:
  • the current vehicle flowmeter value of the tunnel illumination section 4 at a distance from the adjacent tunnel illumination section in the two adjacent tunnel illumination sections 4 at the rear is greater than the current traffic flowmeter value of the illumination section of the tunnel to be controlled.
  • the current vehicle flow meter value of the tunnel illumination section 4 in the rear of the two adjacent tunnel illumination sections 4 that is closer to the illumination section of the tunnel to be controlled is equal to the current vehicle flowmeter value of the illumination section of the tunnel to be controlled and the front
  • the current vehicle flow meter value of one tunnel illumination section 4 is equal to the current vehicle flow meter value of the tunnel illumination section to be controlled, and then the illumination state control instruction of the tunnel illumination section to be controlled is determined to be the second light;
  • the current vehicle flowmeter value of the tunnel illumination section 4 at a distance from the to-be-controlled tunnel illumination section of the two adjacent tunnel illumination sections at the rear is greater than the current traffic flowmeter value of the illumination section of the tunnel to be controlled,
  • the current vehicle flow meter value of the tunnel illumination section 4 near the control tunnel illumination section in the two adjacent tunnel illumination sections is greater than the current vehicle flowmeter value of the tunnel illumination section to be controlled and one of the front
  • the illumination state control instruction of the tunnel illumination section to be controlled is determined to be the brightest;
  • the current vehicle flow meter value of the tunnel illumination section 4 at a distance from the to-be-controlled tunnel illumination section in the two adjacent tunnel illumination sections at the rear is greater than or equal to the current traffic flow count of the to-be-controlled tunnel illumination section.
  • the current vehicle flow meter value of the tunnel illumination section 4 in the vicinity of the two adjacent tunnel illumination sections 4 that is closer to the control tunnel illumination section is greater than or equal to the current traffic flow count of the tunnel illumination section to be controlled. If the current vehicle flow meter value of one tunnel illumination section 4 in front is greater than the current vehicle flow meter value of the illumination section of the tunnel to be controlled, the illumination state control instruction of the tunnel illumination section to be controlled is determined to be the brightest;
  • the current vehicle flow meter value of the tunnel illumination section 4 at a distance from the adjacent tunnel illumination section in the two adjacent tunnel illumination sections 4 at the rear is equal to the current traffic flowmeter value of the illumination section of the tunnel to be controlled.
  • the current vehicle flow meter value of the tunnel illumination section 4 in the vicinity of the two adjacent tunnel illumination sections that is closer to the illumination section of the tunnel to be controlled is equal to the current vehicle flowmeter value of the illumination section of the tunnel to be controlled and is in front of
  • the illumination state control command of the tunnel illumination section to be controlled is determined to be the darkest.
  • FIG. 4 is a schematic diagram of illumination control of the i-th (3 ⁇ i ⁇ N) tunnel illumination sections 4 in the tunnel, and the counter 3 corresponding to the i-th traffic flow detection sub-module 11 has a count value C i in a certain period. Then, the illumination lamp 6 of the i-th tunnel illumination section 4 is lit, and the light-off scheme control scheme library is as shown in Table 1.
  • Table 1 shows the lighting control plan library for the section i at a certain time.
  • the method implements segmental opening/closing control of the lighting facilities in the tunnel by the control device, so that the lighting devices in the two tunnel lighting segments 4 in the forward direction of the vehicle are turned on step by step.
  • the illumination device in the tunnel illumination section 4 is gradually closed, that is, the illumination device in the two tunnel illumination sections 4 in front of the vehicle maintains the 'brightest' state, avoiding the light intensity in the junction area of the tunnel illumination section 4. Sudden changes cause serious discomfort of the driver's vision, improve the safety and comfort of driving, provide specific protection for driving safety, and have the characteristics of strong practicability, strong operability, and good energy saving and emission reduction.
  • Table 1 shows the lighting control plan library for the section i at a certain time.
  • the method implements segmental opening/closing control of the lighting facilities in the tunnel by the control device, so that the lighting devices in the two tunnel lighting segments 4 in the forward direction of the vehicle are turned on step by step.
  • the illumination device in the tunnel illumination section 4 is gradually closed, that is, the illumination device in the two tunnel illumination sections 4 in front of the vehicle maintains the 'brightest' state, avoiding the light intensity in the junction area of the tunnel illumination section 4. Sudden changes cause serious discomfort of the driver's vision, improve the safety and comfort of driving, provide specific protection for driving safety, and have the characteristics of strong practicability, strong operability, and good energy saving and emission reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种基于来车实时检测的隧道照明***的控制装置,包括:车流量检测模块,包括沿道路连续等距分布在隧道入口上游、隧道内及隧道出口的若干来车流量检测子模块,用于获取经过各隧道照明区段车流量数值并按预定时间周期传输至所述中央主控模块;中央主控模块,用于在比较若干相邻的连续隧道照明区段车流量数值大小后向隧道照明区段控制模块发送相应的照明状态控制指令;隧道照明区段控制模块,包括若干分别连接隧道内各照明区段照明灯的隧道照明分控制器。本发明还公开了一种基于来车实时检测的隧道照明***的控制方法。本发明具有实际适应性高、节约能源、可操作性强、更能够保证行车安全的优点。

Description

一种基于来车实时检测的隧道照明***的控制装置及方法
技术领域
本发明涉及高速公路交通安全领域和节能减排、环境保护领域,具体涉及一种基于来车实时检测的隧道照明***的控制装置及方法。
背景技术
公路隧道的照明***是高速公路交通工程***的重要组成部分。在保障行车安全、提高驾驶舒适性等方面,隧道照明人工光环境的优劣起着重要的作用。目前,我国高速公路的隧道照明***智能控制和自适应控制水平低,多存在亮度分布不合理、电能浪费等问题。具体而言,以往设计隧道的照明***时,隧道内各区段灯具的分布和数量均依据年洞外最大亮度和车辆最高行驶速度等历史数据来确定。所涉设计参数的因素以限值考虑,致使在后期隧道运营时各区段的照明强度始终处于最大值,造成大量电能浪费,并增加运营成本,严重影响隧道照明***稳定、可靠、长期运行。
对于高速公路隧道而言,按照我国国家标准设置照明,每公里隧道照明负荷应不小于60KW,隧道年均用电成本高昂,竟高达数十万元之巨,形成高速公路隧道照明***“配置易、运营难”的尴尬局面。为此,高速公路实际运营管理过程中, 为节省隧道运营开支,部分隧道照明***采取“少开灯”、“不开灯”的方式,由此造成驾驶员进出隧道的视觉适应时间增长,难以迅速感知交通场景,易产生错误驾驶决策,行车安全隐患较大。此外,由于隧道是半封闭式交通设施,一旦发生交通事故,难以组织救援,可能导致更为严重的二次或衍生交通事故。
在隧道照明***控制中,现有的控制***大多采取定时开启或关闭的控制策略,使得一定时间段内隧道始终保持当前时期(白天/夜晚)隧道照明最亮状态,该种控制方式对于车流量较少的高速公路隧道路段,或者交通流量较少的时段来说,隧道照明的实用效率低,造成电能的浪费,增加隧道运营的成本。
目前,部分专利改善设计如下:
专利“基于地磁感应线圈的隧道造型***的控制方法”(申请号:201510729921.6,申请日:2015-11-02)公开了一种基于地磁感应的隧道照明***的控制方法,包含若干个等距设置在隧道内的照明模块和一个设置在隧道外的初始触发模块;初始触发模块设置在进入隧道前预设的距离阈值处,包含地磁传感器、微控制器和通信节点;照明模块包含地磁传感器、微控制器、通信节点、光强传感器、继电器和若干沿隧道等距设置的照明灯。地磁传感器感应到车辆时,其对应的通信节点分别朝上一个和下一个通信节点发送消息;照明模块中接收到上一个通信节点的消息时,计数加1,接收到下一个通信节点的消息时计数减1;当照明模块计数不为零时进行照明。
专利“隧道照明控制***及节能方法”(申请号:201510990626.6,申请日:2015.12.25)公开了一种隧道照明控制***及节能方法,其包括控制装置以及设在隧道内的照明装置,其中控制装置用于获取通过隧道车辆的位置信息,并根据车辆位置信息控制车辆前侧的照明装置开启,后侧的照明装置关闭。
以上两个专利都提出了对隧道路段进行分段处理,并根据来车位置情况进行隧道照明的控制,一定程度上起到较好的节能效果。但是存在问题有:当车辆进入该隧道照明控制区段时,两个专利提出的方案均是立即开启该区段照明装置,当车辆一离开相应区段时,其照明装置立即关闭。此种隧道照明控制方案使得灯光强度的剧烈变化,且不同车辆进入隧道时,光线明暗交替变化,均对驾驶员视觉形成严重刺激,使得驾驶员多次重复性的经历进出隧道时的“炫目”状态,难以保证驾驶员视觉可靠性。此外,所述方案可能使隧道照明装置处于完全关闭状态,进入隧道的车辆难以迅速、及时感知隧道场景,安全隐患较大。
发明内容
为了在高速公路交通量较少时段或者交通量较少的高速公路隧道运营中节约电能消耗,根据来车检测情况实时控制隧道照明灯的开启与关闭,在保证隧道正常照明需求的基础上,有效的节能减排。本发明提供了一种基于来车实时检测的高速公路隧道照明控制装置及方法,特别适用于交通量不均衡、隧道多、隧道长度较长、隧道照明能耗较大的高速公路隧道区域。
为了实现上述目的,本发明采用以下技术方案:
本发明一方面提供了一种基于来车实时检测的隧道照明***的控制装置,包括来车流量检测模块、中央主控模块、隧道照明区段控制模块,所述来车流量检测模块包括沿道路连续等距分布在隧道入口上游、隧道内及隧道出口的若干来车流量检测子模块,用于获取经过各隧道照明区段车流量数值,并按预定时间周期传输至所述中央主控模块;所述中央主控模块用于在比较若干相邻的连续隧道照明区段车流量数值大小后,向隧道照明区段控制模块发送相应的照明状态控制指令;所述隧道照明区段控制模块包括若干分别连接隧道内各照明区段照明灯的隧道照明分控制器,用于根据接收的照明状态控制指令控制相应照明区段照明灯的照明状态。
进一步地,所述的来车流量检测子模块包括地埋环形感应线圈组、计数器、通信装置,所述计数器在地埋环形感应线圈组的触发下进行计数,所示通讯装置用于实现地埋环形感应线圈组与计数器之间、 计数器与中央主控模块之间的周期性数据传输,所述的通信装置采用无线通信方式或有线通信方式。
进一步地,根据人机工程学原理,以及驾驶员对光照敏感度和适应能力、车辆安全制动距离、驾驶员超速不遵从率等方面的研究成果,所述的隧道照明控制区段长度为200~500m。
进一步地,所述的照明状态包括最亮、次亮和最暗三个级别,可通过控制照明灯开启数量来实现不同的照明状态的亮度级别,以满足节能和保证驾驶员视觉可靠性的双重目的。
进一步地,所述的隧道照明控制区段分控制器包括51系列单片机、用于接收照明状态控制指令的通信装置,所述的通信装置采用无线通信方式或有线通信方式。
进一步地,所述的中央主控制模块包括用于比较若干相邻的连续隧道照明区段车流量数值大小及调用相应照明状态控制指令的数据处理模块、用于存储信息的存储设备、与各来车流量检测子模块和隧道照明分控制器通信的通信装置、用于提供照明状态控制指令的方案库,所述的通信装置采用无线通信方式或有线通信方式。
进一步地,位于隧道入口内的第一个来车流量检测子模块与所述隧道入口之间还设置有照明灯始终保持当前时期最亮状态的常亮区段,所述常亮区段长度为10m~100m。常亮区段不包含照明分控制器,不进行可变照明控制,主要起到隧道标示、警示作用。
本发明另一方面提供了一种基于来车实时检测的隧道照明***的控制方法,包括步骤:
S1、各个来车流量检测子模块检测到车辆通过时,分别执行车流量计数值加1操作;
S2、按预定时间周期,各个来车流量检测子模块将获取的当前车流量计数值发送到中央主控制模块;
S3、中央主控制模块接收到各个来车流量检测子模块发送来的当前车流量计数值后,针对待控隧道照明区段,以车辆前进方向为正方向,分别将所述待控隧道照明区段起点处设置的来车流量检测子模块获取的当前车流量计数值与位于待控隧道照明区段后方的两个相邻隧道照明区段起点处和位于待控隧道照明区段前方的一个隧道照明区段起点处的来车流量检测子模块获取的当前车流量计数值(共4个车辆计数值)进行对比,根据比对结果并结合方案库确定针对待控隧道照明区段的照明状态控制指令;
S4、所述中央总控制模块将确定的照明状态控制指令发送待控隧道照明区段对应的隧道照明分控制器;
S5、所述隧道照明分控制器根据接收到的照明状态控制指令控制待控隧道照明区段的照明灯的开启或关闭的数量,改变该区段的照明状态。
进一步地,所述的步骤S3中,根据比对结果确定针对待控隧道照明区段的照明状态控制指令的步骤具体包括:
S31、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为次亮;
S32、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
S33、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
S34、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最暗。
进一步地,所述步骤2中的预定时间周期为1~3s,如若此时间周期过长,可能会影响车流量数据的实时性,进而极有可能造成主控制模块给出的指令严重滞后于实际情况,不能起到应有的控制效果;若此时间周期过短,将严重增加中央主控制器的负担,增加***数据处理时间,影响实时性,同时,过大的数据量对***各装置的性能要求增加,将大大增加***实施难度,影响***的实施可能性。
相比现有技术,本发明具有如下有益效果:
1)本发明实现了对来车的实时检测、传输与发布,实现了对高速公路隧道路段来车的精确把握,使隧道路段照明可变控制方法提升到实用层面。
2)本发明综合考虑了部分高速公路(尤其是山区高速公路)或部分时段隧道路段车流量较少、照明灯常亮造成能源浪费等具体问题,进行基于来车位置实时检测的隧道照明智能控制,研究结果具有较强的实用性。
3)本发明方法在保证车辆通行对隧道照明的基本需求的基础上,基于来车情况实时控制隧道照明状态的变化,可以较大限度的节约隧道照明能耗,充分体现节能减排的作用,对推广应用具有很强的指导作用。
4)本发明在隧道入口处设置一定长度的常亮段,可以起到隧道入口的标示、警告等作用。
5)本发明实施效果中,进入或即将进入隧道的车辆的前方始终保持两个照明控制区段内灯光同时达到最亮状态,照明强度一致,避免了在照明控制区段交界区光强的突然变化造成驾驶员视觉的严重不适应问题,提高了行车的安全性和舒适性。
6)本发明根据高速公路隧道灯光设置的国家标准,进行灯光亮度的设计,为行车安全提供了具体保障。
7)本发明具有实用性强、可操作性强、节能减排效果好的特点。
附图说明
图1为本发明实施的高速公路隧道照明控制***简易结构示意图。
图2为本发明实施的高速公路隧道照明控制***完整设施结构图。
图3为本发明实施例的来车流量检测子模块布置位置示意图。
图4为本发明实施例的第i段隧道照明区段照明实施示意图。
图5为本发明实施例的高速公路隧道照明控制方法实施流程图。
图中所示为:1-地埋环形感应线圈组;2-无线通信装置;3-计数器;4-隧道照明区段;5-隧道照明分控制器;6-照明灯;7-隧道入口;8-常亮区段;9-隧道出口;10-隧道外照度监控模块;11-来车流量检测子模块;20-隧道内照度监控模块。
具体实施方式
下面结合实施例及附图,对本发明作进一步的详细说明,但本发明的实施方式不仅限于此。
如图1、2所示,一种基于来车实时检测的隧道照明***的控制装置,包括来车流量检测模块、中央主控模块、隧道照明区段控制模块,所述来车流量检测模块包括沿道路连续等距分布在隧道入口7上游、隧道内及隧道出口9的若干来车流量检测子模块11,用于获取经过各隧道照明区段4车流量数值并按预定时间周期传输至所述中央主控模块;所述中央主控模块用于在比较若干相邻的连续隧道照明区段4车流量数值大小后向隧道照明区段控制模块发送相应的照明状态控制指令;所述隧道照明区段控制模块包括若干分别连接隧道内各照明区段照明灯6的隧道照明分控制器5,用于根据接收的照明状态控制指令控制相应照明区段照明灯6的照明状态。
根据数据处理的过程,本***可以分为数据采集层、数据处理层、方案决策层、方案执行层,根据***安装的位置,所述的数据采集层对应来车流量检测模块1,数据处理层和方案决策层对应中央主控制模块,方案执行层对应隧道照明区段控制模块。
具体而言,所述的来车流量检测子模块11包括地埋环形感应线圈组1、计数器3、通信装置,所述计数器3在地埋环形感应线圈组1的触发下进行计数,所示通讯装置用于实现地埋环形感应线圈组1与计数器3之间、计数器3与中央主控模块之间的周期性数据传输,所述的地埋环形感应线圈组1布置在隧道入口7上游、隧道出口9处以及各照明区段起点处的车道上,同一个车道断面的多个感应线圈构成一个感应线圈组,同时计数器3布置在对应的地埋环形感应线圈组1附近的路边,所述的地埋环形感应线圈组1通过有线通信方式与计数器实现通信,所述计数器3通过无线通信装置2与中央主控模块实现通信,无线通信装置2包括无线接收和发射设备。
如图2所示,本实施例中将隧道区域分为隧道外照度监控模块10和隧道内照度监控模块20。隧道外照度监控模块10路段包括两个等距设置的预检测区段Ⅰ(远)和预检测区段Ⅱ(近),预检测区段Ⅰ(远)和预检测区段Ⅱ(近)长度为500m;隧道内照度监控模块20路段包括位于隧道入口7处的常亮区段8,以及若干等距布置的隧道照明区段4(编号为Ⅲ~N),其中常亮区段8的长度暂设为100m,该区段照明始终维持当前时期内最亮(100%)状态;暂设隧道内单个隧道照明区段4的长度为500m,与隧道外的预检测区段Ⅰ(远)和预检测区段Ⅱ(近)长度相同,即隧道内每500m(除去入口常亮段100m)为一个隧道照明区段4,尾端不足500m的按500m计算,最终将其划分为N-2个隧道照明区段4(Ⅲ~N)。
具体而言,所述的照明状态包括最亮、次亮和最暗三个级别,本发明对隧道照明实行分区段、分照明强度相结合的控制方式将隧道照明强度分为三级,即最亮、次亮和最暗,其中“最亮”状态与不实行本发明所述的可变照明强度控制时隧道常亮的照明状态(一般状态)相同。一般情况下,高速公路隧道在白天和夜间采取不同照明强度的固定控制方案,故而定义照明控制强分级规则:将白天/夜晚一般状况下隧道照明状态定义100%亮度,本实施例的三种照明强度分别为:最亮(100%)、次亮(50%)和最暗(20%),三种照明强度包括在白天和夜晚两种环境下不同照明,具体设定和控制原理如下:
因现在运作的隧道照明***对白天和晚上采取的照明强度是不一致,比如,白天的时候,隧道内一半的照明灯开启,设此状态(一半照明灯开启)作为白天时隧道内的最亮状态(100%),同时,以此为标准,通过控制照明灯的亮起的数量来改变亮度,实现白天环境下隧道内照明亮度改变为次亮(50%)和最暗(20%);而夜晚时,隧道内所有照明灯开启,此时,设此状态(全部照明灯开启)作为夜晚时的最亮状态(100%),同时,以此为标准,通过控制照明灯的亮起的数量来改变亮度,实现夜晚状态下隧道内照明亮度改变为次亮(50%)和最暗(20%)。
当然,在隧道长度较长时,也可以参照夜晚环境设定隧道内照明灯的三种照明强度。
实际应用时,本领域普通技术人员也可以根据实际需要,适当调整最亮、次亮和最暗三个级别的亮灯数量,以满足节能和保证驾驶员视觉可靠性的双重目的。
具体而言,所述的隧道照明分控制器5布置在相应隧道照明区段4起点处的隧道内壁,包括51系列单片机、用于接收照明状态控制指令的无线通信装置2、与该区段各照明灯6之间连接的有线设备,所述的照明灯6等距离安装在隧道墙壁上。
具体而言,所述的中央主控制模块布置在隧道外的路边,包括用于比较若干相邻的连续隧道照明区段4车流量数值大小及调用相应照明状态控制指令的数据处理模块、用于存储信息的存储设备、与各来车流量检测子模块11和隧道照明分控制器5通信的无线通信装置2、用于提供照明状态控制指令的方案库。
本实施例中,所述地埋环形感应线圈组1与计数器3之间使用有线方式通信,计数器3与中央主控制模块、中央主控制模块与隧道照明区段分控制器5之间采用无线方式通信,隧道照明分控制器5与各照明灯6之间采用有线方式通信。
具体而言,位于隧道入口内的第一个来车流量检测子模块11与所述隧道入口7之间还设置有照明灯6始终保持当前时期最亮状态的常亮区段8,所述常亮区段8长度为10m~100m。常亮区段8不包含隧道照明分控制器5,不进行可变照明控制,主要起到隧道标示、警示作用。
来车流量检测子模块11中的地埋环形感应线圈组1检测到来车通过信息,其对应的计数器执3行车流量计数值加1操作;以1s为隧道照明***控制周期,所有来车流量检测子模块11对应的计数器3通过无线方式将当前车流量计数值信息发送给中央主控制模块进行处理;中央主控制模块根据各来车流量检测子模块11发送来的来车计数值信息和隧道照明控制方案库为各隧道照明控制区段4选取合适的区段照明控制方案;并经由无线通信方式将控制方案传输给隧道照明控制区段4,由隧道照明分控制器5控制相应区段照明灯6的开启/关闭的数量,以实现基于来车实时检测的高速公路隧道照明智能控制。
图3以断面x#形式标示了本实施例中的来车流量检测子模块1布置位置。由此图可知在隧道入口7上游布置两个来车流量检测子模块11,在各隧道内照明区段起点处以及隧道出口9处各布置一个来车流量检测子模块11,共设置N+1个来车流量检测子模块11。
本实施例所述的控制装置的主要原理为:
根据来车流量检测子模块11实时检测的来车位置情况,依靠控制装置对隧道内照明灯实行分段开启/关闭控制,使得车辆前进方向两个隧道照明区段4的照明灯逐级开启,而相反方向的一个隧道照明区段4内的照明灯逐级关闭。***主要功能模块包含隧道外照度监控模块10和隧道内照度监控模块20。其中,隧道外照度监控模块10主要由两个等距设置在隧道入口上游的来车流量检测子模块11和一个隧道中央主控制模块及若干无线通信装置4构成;隧道内监控模块20主要包括一个布置在隧道入口处一定长度内的照明装置保持常亮状态的常亮区段8、若干连续等距分布的照明控制区段模块4(除常亮段外)、若干连续布置在各照明控制区段起点处和一个布置在隧道出口处的来车流量检测子模块11,以及若干有线、无线通信连接装置。
对于实际应用过程中,为了更好的保证整个隧道照明***的正常运行,可以使用有线通信方式代替各来车流量检测子模块11与中央主控制模块、中央主控制模块与各隧道照明分控制器5之间的无线通信方式。
图5中是基于所述装置的来车实时检测的隧道照明***的控制方法的流程示意图,包括步骤:
S1、各个来车流量检测子模块11的地埋环形感应线圈组1检测到车辆通过,与其对应的计数器3计数值执行加1操作;
S2、设隧道照明***控制时间周期为1s,各个来车流量检测子模块11的计数器3将获取的当前车流量计数值通过无线方式发送到中央主控制模块;
S3、中央主控制模块接收到各个来车流量检测子模块11发送来的当前车流量计数值后,针对待控隧道照明区段,以车辆前进方向为正方向,分别将所述待控隧道照明区段起点处设置的来车流量检测子模块11获取的当前车流量计数值与位于待控隧道照明区段后方的两个相邻隧道照明区段4起点处和位于待控隧道照明区段前方的一个隧道照明区段4起点处的来车流量检测子模块11获取的当前车流量计数值进行对比,根据比对结果并结合方案库确定针对待控隧道照明区段(序号为Ⅲ~N)的照明状态控制指令;
S4、所述中央总控制模块将确定的照明状态控制指令发送待控隧道照明区段对应的隧道照明分控制器5;
S5、所述隧道照明分控制器5根据接收到的照明状态控制指令控制待控隧道照明区段的照明灯6的开启或关闭的数量,改变该区段的照明状态;
S6、***时钟+1,进入下一控制周期。
具体而言,所述的步骤S3中,根据比对结果确定针对待控隧道照明区段的照明状态控制指令的步骤具体包括:
S31、当后方的两个相邻隧道照明区段4中距离待控隧道照明区段较远处的隧道照明区段4的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段4中距离待控隧道照明区段较近处的隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为次亮;
S32、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段4的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段4的当前车流量计数值大于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
S33、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段4的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段4中距离待控隧道照明区段较近处的隧道照明区段4的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段4的当前车流量计数值大于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
S34、当后方的两个相邻隧道照明区段4中距离待控隧道照明区段较远处的隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段4的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最暗。
图4为隧道内的第i(3≤i≤N )个隧道照明区段4的照明控制示意图,记第i个来车流量检测子模块11对应的计数器3某周期内计数值为Ci,则第i隧道照明区段4的照明灯6亮灯、熄灯方案控制方案库如表1所示。
表1 为某时刻区段i照明控制方案库
本方法根据检测装置实时检测的来车位置情况,依靠控制装置对隧道内照明设施实行分段开启/关闭控制,使得车辆前进方向上的两个隧道照明区段4内的照明装置逐级开启,而相反方向的一个隧道照明区段4内照明装置逐级关闭,即车辆前方两个隧道照明区段4内照明装置保持'最亮'状态,避免了在隧道照明区段4交界区光强的突然变化造成驾驶员视觉的严重不适应问题,提高了行车的安全性和舒适性,为行车安全提供了具体保障,具有实用性强、可操作性强、节能减排效果好的特点。
上述实施例是提供给本领域普通技术人员来实现和使用本发明的,本领域普通技术人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书所提到的创新性特征的最大范围。
表1 为某时刻区段i照明控制方案库
条件 控制方案 条件 控制方案
当Ci-2-Ci>0,Ci-1-Ci=0 ,Ci+1-Ci=0 区段i-次亮 当Ci-2-Ci≥0,Ci-1-Ci≥0 ,Ci+1-Ci<0 区段i-最亮
当当Ci-2-Ci>0,Ci-1-Ci>0 ,Ci+1-Ci=0 区段i-最亮 当Ci-2-Ci=0,Ci-1-Ci=0 ,Ci+1-Ci=0 区段i-最暗
本方法根据检测装置实时检测的来车位置情况,依靠控制装置对隧道内照明设施实行分段开启/关闭控制,使得车辆前进方向上的两个隧道照明区段4内的照明装置逐级开启,而相反方向的一个隧道照明区段4内照明装置逐级关闭,即车辆前方两个隧道照明区段4内照明装置保持'最亮'状态,避免了在隧道照明区段4交界区光强的突然变化造成驾驶员视觉的严重不适应问题,提高了行车的安全性和舒适性,为行车安全提供了具体保障,具有实用性强、可操作性强、节能减排效果好的特点。
上述实施例是提供给本领域普通技术人员来实现和使用本发明的,本领域普通技术人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书所提到的创新性特征的最大范围。

Claims (10)

  1. 一种基于来车实时检测的隧道照明***的控制装置,其特征在于:包括来车流量检测模块、中央主控模块、隧道照明区段控制模块,所述来车流量检测模块包括沿道路连续等距分布在隧道入口上游、隧道内及隧道出口的若干来车流量检测子模块,用于获取经过各隧道照明区段车流量数值并按预定时间周期传输至所述中央主控模块;所述中央主控模块用于在比较若干相邻的连续隧道照明区段车流量数值大小后向隧道照明区段控制模块发送相应的照明状态控制指令;所述隧道照明区段控制模块包括若干分别连接隧道内各照明区段照明灯的隧道照明分控制器,用于根据接收的照明状态控制指令控制相应照明区段照明灯的照明状态。
  2. 根据权利要求1所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:所述的来车流量检测子模块包括地埋环形感应线圈组、计数器、通信装置,所述计数器在地埋环形感应线圈组的触发下进行计数,所示通讯装置用于实现地埋环形感应线圈组与计数器之间、 计数器与中央主控模块之间的周期性数据传输,所述的通信装置采用无线通信方式或有线通信方式。
  3. 根据权利要求1所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:所述的隧道照明控制区段长度为200~500m。
  4. 根据权利要求1所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:所述的照明状态包括最亮、次亮和最暗三个级别。
  5. 根据权利要求1所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:所述的隧道照明控制区段分控制器包括51系列单片机、用于接收照明状态控制指令的通信装置,所述的通信装置采用无线通信方式或有线通信方式。
  6. 根据权利要求1所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:所述的中央主控制模块包括用于比较若干相邻的连续隧道照明区段车流量数值大小及调用相应照明状态控制指令的数据处理模块、用于存储信息的存储设备、与各来车流量检测子模块和隧道照明分控制器通信的通信装置、用于提供照明状态控制指令的方案库,所述的通信装置采用无线通信方式或有线通信方式。
  7. 根据权利要求2所述的基于来车实时检测的隧道照明***的控制装置,其特征在于:位于隧道入口内的第一个来车流量检测子模块与所述隧道入口之间设置还设置有照明灯始终保持当前时期最亮状态的常亮区段,所述常亮区段长度为10m~100m。
  8. 一种基于权1至权7中任一项所述装置的控制方法,其特征在于,包括步骤:
    S1、各个来车流量检测子模块检测到车辆通过时,分别执行车流量计数值其加1操作;
    S2、按预定时间周期,各个来车流量检测子模块将获取的当前车流量计数值发送到中央主控制模块;
    S3、中央主控制模块接收到各个来车流量检测子模块发送来的当前车流量计数值后,针对待控隧道照明区段,以车辆前进方向为正方向,分别将所述待控隧道照明区段起点处设置的来车流量检测子模块获取的当前车流量计数值与位于待控隧道照明区段后方的两个相邻隧道照明区段起点处和位于待控隧道照明区段前方的一个隧道照明区段起点处的来车流量检测子模块获取的当前车流量计数值进行对比,根据比对结果并结合方案库确定针对待控隧道照明区段的照明状态控制指令;
    S4、所述中央总控制模块将确定的照明状态控制指令发送待控隧道照明区段对应的隧道照明分控制器;
    S5、所述隧道照明分控制器根据接收到的照明状态控制指令控制待控隧道照明区段的照明灯的开启或关闭的数量,改变该区段的照明状态。
  9. 据权利要求9所述的控制方法,其特征在于,所述的步骤S3中,根据比对结果确定针对待控隧道照明区段的照明状态控制指令的步骤具体包括:
    S31、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为次亮;
    S32、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
    S33、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值大于或等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值大于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最亮;
    S34、当后方的两个相邻隧道照明区段中距离待控隧道照明区段较远处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值、后方的两个相邻隧道照明区段中距离待控隧道照明区段较近处的隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值且前方的一个隧道照明区段的当前车流量计数值等于待控隧道照明区段的当前车流量计数值时,则待控隧道照明区段的照明状态控制指令确定为最暗。
  10. 根据权利要求8所述的控制方法,其特征在于,所述步骤2中的预定时间周期为1~3s。
PCT/CN2016/110562 2016-04-12 2016-12-17 一种基于来车实时检测的隧道照明***的控制装置及方法 WO2017177711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610228446.9A CN105744705B (zh) 2016-04-12 2016-04-12 一种基于来车实时检测的隧道照明***的控制装置及方法
CN201610228446.9 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017177711A1 true WO2017177711A1 (zh) 2017-10-19

Family

ID=56255364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110562 WO2017177711A1 (zh) 2016-04-12 2016-12-17 一种基于来车实时检测的隧道照明***的控制装置及方法

Country Status (2)

Country Link
CN (1) CN105744705B (zh)
WO (1) WO2017177711A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490312A (zh) * 2021-07-14 2021-10-08 广州市坤龙信息***有限公司 高速公路隧道智慧照明调光方法及***
CN113630942A (zh) * 2021-08-12 2021-11-09 安徽极光照明工程有限公司 一种基于物联网技术的隧道照明***及其控制方法
CN113905474A (zh) * 2021-09-07 2022-01-07 中国电建集团华东勘测设计研究院有限公司 一种城市隧道智能照明***及调光方法
CN115514790A (zh) * 2022-11-10 2022-12-23 四川九通智路科技有限公司 一种隧道内去网关的物联网随车调光***及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744705B (zh) * 2016-04-12 2018-05-15 华南理工大学 一种基于来车实时检测的隧道照明***的控制装置及方法
CN106304483A (zh) * 2016-08-19 2017-01-04 江苏长路能源科技发展有限公司 公路隧道智慧绿色照明***
CN106550523A (zh) * 2016-10-27 2017-03-29 江苏金米智能科技有限责任公司 基于车辆感应器触发的隧道照明***的控制方法
CN108775538A (zh) * 2018-06-28 2018-11-09 郑州云海信息技术有限公司 一种隧道节能照明***
CN110167236B (zh) * 2019-06-21 2024-01-05 长安大学 一种隧道照明控制***及控制方法
CN110700131B (zh) * 2019-10-12 2023-03-14 山东科技大学 基于视觉特征的长隧道距离信息标识装置与使用方法
CN112804798A (zh) * 2021-01-11 2021-05-14 贾祎飞 一种智能隧道照明装置及方法
CN115793548B (zh) * 2023-01-09 2023-05-23 山东通维信息工程有限公司 一种基于大数据云服务的机电控制方法和***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917730A (zh) * 2006-08-03 2007-02-21 上海电器科学研究所(集团)有限公司 车辆通行隧道照明节能控制装置
CN203167354U (zh) * 2013-02-27 2013-08-28 浙江永通科技发展有限公司 隧道照明智能控制***
CN104066243A (zh) * 2014-06-13 2014-09-24 长安大学 隧道led照明控制***及控制方法
CN104918366A (zh) * 2015-06-01 2015-09-16 山东百仕达轻工科技有限公司 一种隧道照明智能控制***及控制方法
CN205137368U (zh) * 2015-08-04 2016-04-06 四川太一新能源开发有限公司 一种在隧道中应用的智能照明控制***
CN105744705A (zh) * 2016-04-12 2016-07-06 华南理工大学 一种基于来车实时检测的隧道照明***的控制装置及方法
CN205622953U (zh) * 2016-04-12 2016-10-05 华南理工大学 一种基于来车实时检测的隧道照明***的控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662863A (zh) * 2008-08-27 2010-03-03 南京汉德森科技股份有限公司 Led隧道灯具智能控制***及其控制方法
CN203181282U (zh) * 2013-01-23 2013-09-04 浙江省机电设计研究院有限公司 应用地磁车辆检测的隧道照明智能控制装置
US10499477B2 (en) * 2013-03-18 2019-12-03 Signify Holding B.V. Methods and apparatus for information management and control of outdoor lighting networks
CN105282947B (zh) * 2015-12-01 2018-08-31 大连海事大学 一种基于监控图像的隧道照明节能智慧控制***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917730A (zh) * 2006-08-03 2007-02-21 上海电器科学研究所(集团)有限公司 车辆通行隧道照明节能控制装置
CN203167354U (zh) * 2013-02-27 2013-08-28 浙江永通科技发展有限公司 隧道照明智能控制***
CN104066243A (zh) * 2014-06-13 2014-09-24 长安大学 隧道led照明控制***及控制方法
CN104918366A (zh) * 2015-06-01 2015-09-16 山东百仕达轻工科技有限公司 一种隧道照明智能控制***及控制方法
CN205137368U (zh) * 2015-08-04 2016-04-06 四川太一新能源开发有限公司 一种在隧道中应用的智能照明控制***
CN105744705A (zh) * 2016-04-12 2016-07-06 华南理工大学 一种基于来车实时检测的隧道照明***的控制装置及方法
CN205622953U (zh) * 2016-04-12 2016-10-05 华南理工大学 一种基于来车实时检测的隧道照明***的控制装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490312A (zh) * 2021-07-14 2021-10-08 广州市坤龙信息***有限公司 高速公路隧道智慧照明调光方法及***
CN113490312B (zh) * 2021-07-14 2024-03-12 广州市坤龙信息***有限公司 高速公路隧道智慧照明调光方法及***
CN113630942A (zh) * 2021-08-12 2021-11-09 安徽极光照明工程有限公司 一种基于物联网技术的隧道照明***及其控制方法
CN113905474A (zh) * 2021-09-07 2022-01-07 中国电建集团华东勘测设计研究院有限公司 一种城市隧道智能照明***及调光方法
CN113905474B (zh) * 2021-09-07 2023-10-31 中国电建集团华东勘测设计研究院有限公司 一种城市隧道智能照明***及调光方法
CN115514790A (zh) * 2022-11-10 2022-12-23 四川九通智路科技有限公司 一种隧道内去网关的物联网随车调光***及方法
CN115514790B (zh) * 2022-11-10 2023-03-07 四川九通智路科技有限公司 一种隧道内去网关的物联网随车调光***及方法

Also Published As

Publication number Publication date
CN105744705A (zh) 2016-07-06
CN105744705B (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2017177711A1 (zh) 一种基于来车实时检测的隧道照明***的控制装置及方法
CN106304483A (zh) 公路隧道智慧绿色照明***
CN106332345B (zh) 连续隧道群智慧照明***
CN110167236B (zh) 一种隧道照明控制***及控制方法
KR100831383B1 (ko) 비상유도 기능을 갖는 led 램프 제어시스템
CN109413796A (zh) 一种隧道智能照明的控制***及控制方法
CN106838749A (zh) 一种节能路灯
CN101699924B (zh) 高速公路隧道照明智能控制***
CN101338870A (zh) 在信号灯头中没有电源或控制单元的发光二极管交通信号灯
CN102752922A (zh) 智能感知道路led照明控制器
CN107575820A (zh) 一种城市多功能智能控制太阳能led路灯
CN202634836U (zh) 智能感知道路led照明控制器
CN108347819A (zh) 一种太阳能路灯控制电路的控制方法
CN206149551U (zh) 一种基于ZigBee和GPRS智能路灯控制***
CN104039058A (zh) 路灯控制***及方法
CN108419343A (zh) 太阳能路灯监控***
Toubal et al. Energy efficient street lighting control system using wireless sensor networks
CN205305199U (zh) 一种城市远程监控控制器
CN205622953U (zh) 一种基于来车实时检测的隧道照明***的控制装置
CN207135323U (zh) 一种led路灯智慧照明控制装置
CN107708272A (zh) 一种远程智能路灯控制装置
CN203279289U (zh) 公路隧道照明智能控制***
CN208016088U (zh) 智能照明控制***
CN109413813B (zh) 一种适用于隧道施工的智能灯控方法与***
CN207201052U (zh) 一种智能路灯***

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898522

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898522

Country of ref document: EP

Kind code of ref document: A1