WO2017177558A1 - 一种光路诊断方法和装置 - Google Patents

一种光路诊断方法和装置 Download PDF

Info

Publication number
WO2017177558A1
WO2017177558A1 PCT/CN2016/088424 CN2016088424W WO2017177558A1 WO 2017177558 A1 WO2017177558 A1 WO 2017177558A1 CN 2016088424 W CN2016088424 W CN 2016088424W WO 2017177558 A1 WO2017177558 A1 WO 2017177558A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
optical path
optical signal
optical power
Prior art date
Application number
PCT/CN2016/088424
Other languages
English (en)
French (fr)
Inventor
那婷
黄新刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017177558A1 publication Critical patent/WO2017177558A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to, but is not limited to, the field of optical communication technologies, and in particular, to an optical path diagnosis method and apparatus.
  • TWDM-PON Time and Wavelength Division Multiplexed Passive Optical Network
  • WDM-PON Wavelength Division Multiplexing Passive Optical Network
  • OFDM-PON Orthogonal Frequency Division Multiplexing Passive Optical Network
  • TWDM PON and WDM PON technologies have wavelength management and wavelength tuning functions. Operators can transfer end users from one wavelength to another, which can balance network load and flexibly allocate network bandwidth for energy saving. And if a wavelength channel fails, the end user is transferred to another wavelength through wavelength management, which can greatly reduce the operation and maintenance cost and enhance the user experience.
  • wavelength management has many advantages, it must be ensured that the optical path of the target wavelength channel is intact and the target wavelength channel is available. Otherwise, the ONU migration failure of the optical network unit may occur.
  • the present application provides an optical path diagnosis method and apparatus for diagnosing the integrity of an optical path of a target wavelength channel.
  • An optical path diagnosis method includes:
  • the optical power of the optical signal is detected.
  • the optical path is diagnosed based on the result of the judgment.
  • the acquired optical signal is a partial optical signal of a target wavelength in the optical path.
  • determining whether the optical power of the optical signal is abnormal includes:
  • the diagnosing the optical path according to the determination result includes: when the determination result is that the optical power of the optical signal is abnormal, the optical path is diagnosed as abnormal; and the determining result is the optical signal When the optical power is normal, it is diagnosed that the optical path is normal.
  • the method further includes: when the optical signal of the target wavelength is not acquired in the optical path, the optical path diagnosed as the target wavelength is abnormal.
  • the method further comprises: outputting the result of the diagnosis.
  • An optical path diagnosis device includes: a signal acquisition module and a diagnosis module.
  • the signal acquisition module is configured to acquire an optical signal of a target wavelength in the optical path.
  • the diagnosis module is configured to detect the optical power of the optical signal, determine whether the optical power of the optical signal is abnormal, and diagnose the optical path according to the determination result.
  • the diagnostic module includes: a light detecting unit and a determining unit.
  • the light detecting unit is configured to receive an optical signal acquired by the signal acquiring module and transmit the optical signal to the determining unit.
  • the determining unit is configured to detect an optical power of the optical signal transmitted by the light detecting unit.
  • the determining, by the diagnostic module, whether the optical power of the optical signal is abnormal includes:
  • the determining unit is further configured to compare the optical power of the optical signal with a set optical power threshold, and if the optical power of the optical signal is less than the optical power threshold, the determination result is the optical signal The optical power is abnormal; if the optical power of the optical signal is greater than or equal to the optical power threshold, The result of the judgment is that the optical power of the optical signal is normal.
  • the diagnosing module diagnoses the optical path according to the determination result, including:
  • the determining unit is further configured to: if the determination result is that the optical power of the optical signal is abnormal, diagnose that the optical path is abnormal; and if the determination result is that the optical power of the optical signal is normal, It is diagnosed that the optical path is normal.
  • the optical signal acquired by the signal acquiring module is a partial optical signal of the target wavelength.
  • the optical path diagnostic device is deployed on an optical path of a target wavelength between the OLT and the multiplexer/demultiplexer.
  • the signal acquisition module is a beam splitter.
  • the beam splitter is configured to split a portion of the optical signal on the optical path of the target wavelength output by the OLT.
  • the optical path diagnostic device is disposed between the multiplexer/demultiplexer and the backbone fiber.
  • the signal acquisition module includes: a beam splitter and a tunable filter.
  • the beam splitter is arranged to split a portion of the optical signal on the optical path of the multiplexer/demultiplexer output.
  • the tunable filter is configured to perform filtering processing on a part of the optical signal split by the optical splitter to obtain an optical signal of a target wavelength.
  • the diagnostic module is further configured to diagnose that the optical path of the target wavelength is abnormal when the signal acquiring module does not acquire the optical signal of the target wavelength in the optical path.
  • the optical path diagnostic device further includes: an output module.
  • the output module is configured to output a diagnosis result of the diagnostic module.
  • the optical path abnormality of the target wavelength is diagnosed.
  • the optical path diagnosis can ensure that the ONU can successfully perform wavelength migration during wavelength management, avoid user service interruption for a long time, affect the user experience, and do not need wavelength migration. It can also be used for daily inspection and maintenance of the system, reducing operating and maintenance costs.
  • FIG. 1 is a flowchart of an optical path diagnosis method according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of an optical path diagnosing device according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of an optical path diagnosing device in a TWDM-PON system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of deployment of an optical path diagnosis apparatus in the structure of FIG. 3 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of still another deployment of the optical path diagnosing device in the structure of FIG. 3 according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing another structure of an optical path diagnosing device in a TWDM-PON system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of deployment of an optical path diagnosis apparatus in the structure of FIG. 6 according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of an optical path diagnosis method in the deployment mode of FIG. 4 and FIG. 5 according to an embodiment of the present invention
  • FIG. 9 is a flowchart of an optical path diagnosis method in the deployment mode of FIG. 7 according to an embodiment of the present invention.
  • Embodiments of the present invention provide an optical path diagnosis method and apparatus, which are applicable to TWDM PON and WDM PON systems, and are used to detect whether the optical path of each wavelength channel in the system is intact.
  • the optical path diagnosis method provided by the embodiment of the present invention includes steps S101-S104:
  • Step S101 acquiring an optical signal of a target wavelength in the optical path.
  • the acquired optical signal is a partial optical signal of the target wavelength in order not to affect the transmission characteristics of the detected optical path.
  • Step S102 detecting optical power of the optical signal.
  • Step S103 determining whether the optical power of the optical signal is abnormal.
  • determining whether the optical power of the optical signal is abnormal includes:
  • the preset optical power threshold is preferably a work that can be achieved by the normal optical signal. Rate value.
  • Step S104 diagnosing the optical path according to the determination result.
  • the diagnosing the optical path according to the determination result includes: when the determination result is that the optical power of the optical signal is abnormal, it is diagnosed that the optical path is abnormal (ie, the optical path is unavailable); When the result of the determination is that the optical power of the optical signal is normal, it is diagnosed that the optical path is normal (ie, the optical path is available).
  • the optical path abnormality of the target wavelength is directly diagnosed.
  • the diagnosis result is obtained, the result of the diagnosis is output.
  • the diagnosis result may be output to the OLT, and the diagnosis result is transmitted by the OLT to the corresponding processing chip.
  • the diagnosis result can also be directly output to the corresponding processing chip.
  • the method according to the embodiment of the present invention realizes the diagnosis of the abnormality of the optical path of the target wavelength, provides guarantee for wavelength migration, and can also serve as a means for daily detection and maintenance of the system.
  • An embodiment of the present invention further provides an optical path diagnosing device. As shown in FIG. 2, the device includes:
  • the signal acquisition module 210 is configured to acquire an optical signal of a target wavelength in the optical path.
  • the diagnostic module 220 is configured to detect optical power of the optical signal, determine whether the optical power of the optical signal is abnormal, and diagnose the optical path according to the determination result.
  • the diagnostic module 220 includes: a light detecting unit 221 and a determining unit 222.
  • the light detecting unit 221 is configured to receive the optical signal acquired by the signal acquisition module 210 and transmit it to the decision unit.
  • the determining unit 222 is configured to detect the optical power of the optical signal transmitted by the light detecting unit 221.
  • the determining, by the diagnostic module, whether the optical power of the optical signal is abnormal includes:
  • the determining unit is further configured to compare the optical power of the optical signal with a set optical power threshold, and if the optical power of the optical signal is less than the optical power threshold, the determination result is the The optical power of the optical signal is abnormal; if the optical power of the optical signal is greater than or equal to the optical power threshold, the result of the determination is that the optical power of the optical signal is normal.
  • the diagnosing the optical path according to the determination result includes: the determining unit 222 is further configured to: when the determination result is that the optical power of the optical signal is abnormal, diagnose that the optical path is Abnormal; if the result of the determination is that the optical power of the optical signal is normal, it is diagnosed that the optical path is normal.
  • the light detecting unit 221 converts the optical signal into an electrical signal, and transmits the converted electrical signal to the determining unit 222.
  • a signal amplifier is further disposed between the light detecting unit 221 and the determining unit 222, and is arranged to perform amplification processing on the signal output from the light detecting unit 221 to the determining unit.
  • the amplification processing is only a processing form, and the user can also perform filtering and the like on the signal output from the photo detecting unit 221 to the decision unit according to requirements, so that the power judgment is more accurate.
  • the optical signal acquired by the signal acquiring module 210 is a partial optical signal of the target wavelength.
  • the optical path diagnostic device is disposed on an optical path of a target wavelength between the OLT and the multiplexer/demultiplexer.
  • the signal acquisition module 210 is a beam splitter; the beam splitter is arranged to split a part of the optical signal on the optical path of the target wavelength output by the OLT.
  • the optical path diagnostic device is disposed between the multiplexer/demultiplexer and the backbone fiber.
  • the signal acquisition module includes: a beam splitter and a tunable filter.
  • the beam splitter is arranged to split a portion of the optical signal on the optical path of the multiplexer/demultiplexer output.
  • the tunable filter is configured to perform filtering processing on a part of the optical signal split by the optical splitter to obtain an optical signal of a target wavelength.
  • the diagnostic module 220 is further configured to directly diagnose the optical path abnormality of the target wavelength when the signal acquiring module 210 does not acquire the optical signal of the target wavelength.
  • the optical path diagnosing device further includes: an output module 230, It is set to output the diagnosis result of the diagnosis module 220.
  • the diagnosis result may be output to the OLT, and the diagnosis result is transmitted by the OLT to the corresponding processing chip.
  • the diagnosis result can also be directly output to the corresponding processing chip.
  • the device realizes the diagnosis of the abnormality of the optical path of the target wavelength, provides protection for wavelength migration, and can also serve as a routine detection and maintenance device for the system.
  • the optical path diagnosing device provided by the embodiment of the present invention is deployed in the downlink optical path of the TWDM PON system, and there are two deployment modes:
  • the optical path diagnostic device is deployed before the ⁇ 1 ⁇ ⁇ n wavelength optical path from the OLT of the TWDM PON system enters the Mux/DeMux device, optionally, the optical path diagnostic device and the Mux/DeMux (multiplexer/demultiplexer) The device is integrated into one.
  • the optical path diagnostic device is deployed in the TWDM PON system Mux/DeMux device.
  • the optional optical path diagnosis device is integrated with the Mux/DeMux device.
  • the structure of the optical path diagnostic device used varies according to the deployment method.
  • the scheme is as follows:
  • the optical path diagnosis device When the optical path diagnosis device is deployed before the ⁇ 1 ⁇ n wavelength optical path sent by the OLT of the TWDM PON system enters the Mux/DeMux device, as shown in FIG. 3, the optical path diagnosis device includes: a beam splitter, a diagnosis module, and an output module.
  • the schematic diagram of the optical path diagnosing device deployed in the downstream optical path of the TWDM PON system is shown in FIGS. 4 and 5. In FIG. 4, each wavelength optical path shares an output module, and in FIG. 5, each wavelength optical path includes an output module. .
  • the optical path diagnosis device When the optical path diagnosis device is deployed in the TWDM PON system Mux/DeMux device, before the trunk fiber, as shown in FIG. 6, the optical path diagnosis device includes: a beam splitter, a tunable filter, a diagnosis module, and an output module.
  • FIG. 7 A schematic diagram of the optical path diagnosis apparatus deployed in the downlink optical path of the TWDM PON system is shown in FIG. 7.
  • the above diagnostic module includes: a light detecting unit and a determining unit.
  • the light detecting unit is configured to receive an optical signal branched by the optical splitter and transmit it to the determining unit.
  • the determining unit detects the power of the optical signal, and provides a threshold value, which is set to determine whether the signal output by the light detecting unit meets the normal standard of the optical path, and gives a decision signal.
  • a signal amplifying device can also be added between the light detecting unit and the determining unit according to the situation, and the device can put the signal output by the light detecting unit Big deal.
  • the output module includes: a transmission unit and an interface that is matched with the device that receives the diagnosis result.
  • the device that receives the diagnosis result is an OLT.
  • the transmission unit is configured to transmit an output signal of the diagnostic module to an interface that matches the OLT; the interface that matches the OLT sends the diagnostic result to the OLT.
  • the implementation process of the optical path diagnosis is as shown in FIG. 8 , including steps S801-S805:
  • Step S801 the ⁇ i wavelength optical path sent by the OLT enters the optical splitter of the optical path diagnosing device, and the optical splitter splits a small portion of the optical signal, that is, the optical signal to be detected. It should be pointed out that the splitter does not affect the transmission characteristics of the detected optical path after splitting.
  • Step S802 the optical signal to be detected enters the diagnostic module of the optical path diagnosing device, and the optical detecting unit in the diagnostic module transmits the optical signal to be detected to the determining unit.
  • Step S803 the determining unit performs optical path abnormality diagnosis according to the optical power of the optical signal to be detected.
  • the optical path abnormality of the TWDM PON system is basically divided into two cases. One is that the wavelength channel has no light, and the other is that the wavelength channel has light, but the optical power is abnormal, and the output optical power requirement is not met, so the light detecting unit corresponds to three. Kind of output, one is a normal optical signal, one is a low optical power signal, and the other is a zero optical power signal.
  • the decision unit After the three signals corresponding to the optical path condition of the TWDM PON system enter the decision unit, two decision signals are obtained, one is the decision signal 0 corresponding to the optical path of the TWDM PON system, and the other is the decision signal 1 corresponding to the optical path abnormality of the TWDM PON system.
  • Step S804 the decision signal enters the output module, and the decision signal is transmitted to the OLT through the output module.
  • Step S805 the OLT sends the decision signal to the corresponding processing chip, and the processing chip determines whether the optical path is available through the decision signal, and then directs the next operation of the OLT, such as sending an instruction to the ONU to perform wavelength migration.
  • Step S901 the optical signal after the Mux/DeMux device of the TWDM PON system enters the optical splitter, and the optical splitter splits a small portion of the optical signal, that is, the optical signal to be detected. It should be pointed out that the splitter does not affect the transmission characteristics of the detected optical path after splitting.
  • Step S902 the optical signal to be detected enters a tunable filter, and the tunable filter filters the optical signal to be detected (only the signal to be detected is reserved) to obtain a wavelength signal ⁇ i to be detected.
  • Step S903 the optical signal ⁇ i to be detected enters the light detecting unit in the diagnostic module, and the light detecting unit transmits the optical signal to be detected to the determining unit.
  • Step S904 the signal output by the light detecting unit enters a decision unit, and the determining unit performs optical path abnormality diagnosis according to the optical power of the optical signal to be detected.
  • the optical path abnormality of the TWDM PON system is basically divided into two cases. One is that the wavelength channel has no light, and the other is that the wavelength channel has light, but the optical power is abnormal, and the output optical power requirement is not met, so the light detecting unit corresponds to three. Kind of output, one is a normal optical signal, one is a low optical power signal, and the other is a zero optical power signal.
  • the decision unit After the three signals corresponding to the optical path condition of the TWDM PON system enter the decision unit, two decision signals are obtained, one is the decision signal 0 corresponding to the optical path of the TWDM PON system, and the other is the decision signal 1 corresponding to the optical path abnormality of the TWDM PON system.
  • step S905 the decision signal enters the output module, and the decision signal is transmitted to the OLT through the output module.
  • step S906 the OLT sends the decision signal to the corresponding processing chip, and the processing chip determines the availability of the optical path through the decision signal, thereby guiding the next operation of the OLT, such as sending an instruction to the ONU for wavelength migration.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the optical path diagnostic method.
  • the computer program can be implemented in a computer readable storage medium, the computer program being executed on a corresponding hardware platform (such as a system, device, device, device, etc.), when executed, including One or a combination of the steps of the method embodiments.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the optical path abnormality of the target wavelength is diagnosed.
  • the optical path diagnosis can ensure that the ONU can successfully perform wavelength migration during wavelength management, avoid user service interruption for a long time, affect the user experience, and do not need wavelength migration. It can also be used for daily inspection and maintenance of the system, reducing operating and maintenance costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光路诊断方法和装置,所述方法包括:获取光路中目标波长的光信号;检测所述光信号的光功率;判断所述光信号的光功率是否异常;根据判断结果诊断所述光路。

Description

一种光路诊断方法和装置 技术领域
本申请涉及但不限于光通信技术领域,尤其涉及一种光路诊断方法和装置。
背景技术
随着用户端业务的多样化,如高清网络电视、云存储云计算、社交网络、视频分享等的普及,用户对接入带宽的需求不断增大,基于相关的E/GPON(以太无源光网络/无源光网络)技术均难以满足不断增长的带宽需求,于是时分波分堆叠复用无源光网络(TWDM-PON,Time and Wavelength Division Multiplexed Passive Optical Network)技术、波分复用无源光网络(WDM-PON,Wavelength Division Multiplexing Passive Optical Network)技术、以及正交频分复用无源光网络(OFDM-PON,Orthogonal Frequency Division Multiplexing Passive Optical Network)技术等被提出用于提供超过10Gb/s的接入带宽。
其中,TWDM PON和WDM PON技术有波长管理和波长调谐功能,运营商可以将终端用户从一个波长转移到另一个波长上,这样可以使网络负载均衡,可以灵活的分配网络带宽,达到节能的目的,而且如果一个波长通道故障时,通过波长管理将终端用户转移到另一个波长上,可以极大的降低运维成本,增强用户体验。
然而,虽然波长管理有以上诸多优点,但在使用中必须保证目标波长通道光路是完好的,目标波长通道可用,否则会导致光网络单元ONU迁移失败。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种光路诊断方法和装置,用以诊断目标波长通道光路的完好性。
一种光路诊断方法,包括:
获取光路中目标波长的光信号。
检测所述光信号的光功率。
判断所述光信号的光功率是否异常。
根据判断结果诊断所述光路。
可选地,获取的所述光信号为光路中目标波长的部分光信号。
可选地,判断所述光信号的光功率是否异常包括:
将所述光信号的光功率与预设的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值,则判断结果为所述光信号的光功率正常。
可选地,根据判断结果诊断所述光路包括:在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常;在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常。
可选地,所述方法还包括:当在光路中未获取到目标波长的光信号时,诊断为所述目标波长的光路异常。
可选地,所述方法还包括:将诊断的结果输出。
一种光路诊断装置,包括:信号获取模块和诊断模块。
信号获取模块,设置为获取光路中目标波长的光信号。
诊断模块,设置为检测所述光信号的光功率,判断所述光信号的光功率是否异常,并根据判断结果诊断所述光路。
可选地,所述诊断模块包括:光检测单元和判决单元。
所述光检测单元,设置为接收所述信号获取模块获取的光信号,并将其传输至判决单元。
所述判决单元,设置为检测所述光检测单元发送的光信号的光功率。
所述诊断模块判断所述光信号的光功率是否异常包括:
所述判决单元,还设置为将所述光信号的光功率与设定的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值, 则判断结果为所述光信号的光功率正常。
可选地,所述诊断模块根据判断结果诊断所述光路包括:
判决单元还设置为,在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常;在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常。
可选地,所述信号获取模块获取的光信号为目标波长的部分光信号。
可选地,所述光路诊断装置部署在OLT与多路复用器/多路解复用器之间目标波长的光路上。
所述信号获取模块为分光器。
所述分光器,设置为在OLT输出的目标波长的光路上分出部分光信号。
可选地,所述光路诊断装置部署在多路复用器/多路解复用器与主干光纤之间。
所述信号获取模块包括:分光器和可调滤波器。
所述分光器,设置为在所述多路复用器/多路解复用器输出的光路上分出部分光信号。
所述可调滤波器,设置为对所述分光器分出的部分光信号进行滤波处理,得到目标波长的光信号。
可选地,所述诊断模块,还设置为在所述信号获取模块未在光路中获取到目标波长的光信号时,诊断为所述目标波长的光路异常。
可选地,所述光路诊断装置还包括:输出模块。输出模块设置为将所述诊断模块的诊断结果输出。
本发明实施例实现了对目标波长的光路异常性的诊断,通过光路诊断不但可以保证波长管理时ONU进行波长迁移能够成功,避免用户业务长时间中断,影响用户体验,同时,在不需要波长迁移时也可以用于***的日常检测维护,降低运维成本。
附图概述
图1为本发明实施例提供的一种光路诊断方法的流程图;
图2为本发明实施例提供的一种光路诊断装置的结构框图;
图3为本发明实施例中TWDM-PON***中光路诊断装置的一种结构框图;
图4为本发明实施例中图3结构下的光路诊断装置部署示意图;
图5为本发明实施例中图3结构下的光路诊断装置的又一部署示意图;
图6为本发明实施例中TWDM-PON***中光路诊断装置的又一结构框图;
图7为本发明实施例中图6结构下的光路诊断装置部署示意图;
图8为本发明实施例中图4、5部署方式下的光路诊断方法的流程图;
图9为本发明实施例中图7部署方式下的光路诊断方法的流程图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供了一种光路诊断方法和装置,适用于TWDM PON和WDM PON***,用于检测***中每个波长通道光路是否完好。
如图1所示,本发明实施例提供的光路诊断方法,包括步骤S101-S104:
步骤S101,获取光路中目标波长的光信号。
在本发明可选实施例中,为了不影响被检测光路的传输特性,获取的光信号为目标波长的部分光信号。
步骤S102,检测所述光信号的光功率。
步骤S103,判断所述光信号的光功率是否异常。
在本发明可选实施例中,判断所述光信号的光功率是否异常包括:
将所述光信号的光功率与预设的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值,则判断结果为所述光信号的光功率正常。其中,预设的光功率阈值优选为正常光信号所能达到的功 率值。
步骤S104,根据判断结果诊断所述光路。
在本发明实施例中,根据判断结果诊断所述光路包括:在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常(即光路不可用);在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常(即光路可用)。
可选地,本发明实施例中,如果在步骤S101中未获取到目标波长的光信号,则直接诊断出所述目标波长的光路异常。
可选地,本发明实施例中,在得到诊断结果后,将诊断的结果输出。可以是将诊断结果输出给OLT,再由OLT将诊断结果传送给相应的处理芯片。当然,也可以直接将诊断结果输出给相应的处理芯片。
综上可知,本发明实施例所述方法,实现了对目标波长的光路的异常性的诊断,为波长迁移提供了保障,同时,还可作为***日常检测维护的手段。
本发明实施例还提供一种光路诊断装置,如图2所示,所述装置包括:
信号获取模块210,设置为获取光路中目标波长的光信号。
诊断模块220,设置为检测所述光信号的光功率,判断所述光信号的光功率是否异常,并根据判断结果诊断所述光路。
基于上述结构框架及实施原理,下面给出在上述结构下的几个可选实施方式,用以细化和优化本发明实施例所述装置的功能,以使本发明实施例方案的实施更方便,准确。本发明实施例中,诊断模块220包括:光检测单元221和判决单元222。
光检测单元221,设置为接收信号获取模块210获取的光信号,并将其传输至判决单元。
判决单元222,设置为检测光检测单元221发送的光信号的光功率。
所述诊断模块判断所述光信号的光功率是否异常包括:
所述判决单元,还设置为将所述光信号的光功率与设定的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述 光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值,则判断结果为所述光信号的光功率正常。
可选地,所述诊断模块根据判断结果诊断所述光路包括:所述判决单元222还设置为,在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常;在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常。
可选地,光检测单元221在接收到信号获取模块210获取的光信号后,将该光信号转换为电信号,并将转换得到的电信号传输至判决单元222。
可选地,在光检测单元221和判决单元222之间还设有信号放大器,设置为对光检测单元221输出给判决单元的信号进行放大处理。当然,进行放大处理仅是一种处理形式,用户还可以根据需求对光检测单元221输出给判决单元的信号进行滤波等处理,以使功率判断更为精确。
可选地,本发明实施例中,信号获取模块210获取的光信号为目标波长的部分光信号。
在本发明实施例中,所述光路诊断装置部署在OLT与多路复用器/多路解复用器之间目标波长的光路上。
此时,信号获取模块210为分光器;所述分光器,设置为在OLT输出的目标波长的光路上分出部分光信号。
在本发明实施例中,所述光路诊断装置部署在多路复用器/多路解复用器与主干光纤之间。
此时,信号获取模块包括:分光器和可调滤波器。
所述分光器,设置为在所述多路复用器/多路解复用器输出的光路上分出部分光信号。
所述可调滤波器,设置为对所述分光器分出的部分光信号进行滤波处理,得到目标波长的光信号。
可选地,本发明实施例中,诊断模块220,还设置为在信号获取模块210未获取到目标波长的光信号时,直接诊断出所述目标波长的光路异常。
可选地,本发明实施例中,所述光路诊断装置还包括:输出模块230, 设置为将所述诊断模块220的诊断结果输出。可以是将诊断结果输出给OLT,再由OLT将诊断结果传送给相应的处理芯片。当然,也可以直接将诊断结果输出给相应的处理芯片。
综上可知,本发明实施例所述装置,实现了对目标波长的光路的异常性的诊断,为波长迁移提供了保障,同时,还可作为***日常检测维护装置。
下面以TWDM PON***为例详细阐述本发明实施例实施过程。
本发明实施例提供的光路诊断装置部署于TWDM PON***下行光路中,部署方式有两种:
一、光路诊断装置部署在TWDM PON***OLT发出的λ1~λn波长光路进入Mux/DeMux装置之前,可选的,光路诊断装置与Mux/DeMux(多路复用器/多路解复用器)装置集成为一体。
二、光路诊断装置部署在TWDM PON***Mux/DeMux装置之后,主干光纤之前,可选的,光路诊断装置与Mux/DeMux装置集成为一体。
根据部署方式的不同所用光路诊断装置的结构不同,方案如下:
当光路诊断装置部署在TWDM PON***OLT发出的λ1~λn波长光路进入Mux/DeMux装置之前时,如图3所示,光路诊断装置包括:分光器、诊断模块和输出模块。所述光路诊断装置部署在TWDM PON***下行光路中的示意图如图4、5所示,其中,图4中每条波长光路共用一个输出模块,图5中是每条波长光路都包含一个输出模块。
当光路诊断装置部署在TWDM PON***Mux/DeMux装置之后,主干光纤之前时,如图6所示,光路诊断装置包括:分光器、可调滤波器、诊断模块和输出模块。所述光路诊断装置部署在TWDM PON***下行光路中的示意图如图7所示。
上述诊断模块包括:光检测单元和判决单元。所述光检测单元设置为接收分光器分出的一路光信号,并将其传输给判决单元。所述判决单元检测光信号的功率,同时提供一个阈值,设置为判决光检测单元输出的信号是否符合光路正常的标准,并给出一个判决信号。光检测单元和判决单元之间还可以根据情况加入信号放大装置,该装置可以将光检测单元输出的信号进行放 大处理。
上述输出模块包括:传输单元和与接收诊断结果的设备匹配对接的接口。本实施例中,令接收诊断结果的设备为OLT。所述传输单元设置为传输诊断模块的输出信号至与OLT匹配的接口;所述与OLT匹配的接口将诊断结果发送至OLT。
本实施例中,当光路诊断装置部署在TWDM PON***OLT发出的λ1~λn波长光路进入Mux/DeMux装置之前时,实现光路诊断的实施流程如图8所示,包括步骤S801-S805:
步骤S801,OLT发出的λi波长光路进入光路诊断装置的分光器,分光器分出小部分光信号,即为待检测光信号。需要指出的是,分光器进行分光后不影响被检测光路的传输特性。
步骤S802,待检测光信号进入光路诊断装置的诊断模块,诊断模块中的光检测单元将待检测光信号传输至判决单元。
步骤S803,判决单元根据待检测光信号的光功率,进行光路异常诊断。
由于TWDM PON***光路异常基本分为两种情况,一种是该波长通道无光,一种是该波长通道有光,但光功率异常,达不到输出光功率要求,所以光检测单元对应三种输出,一种是正常光信号,一种是低光功率信号,一种是零光功率信号。
TWDM PON***光路情况对应的三种信号进入判决单元后,得到两种判决信号,一种是TWDM PON***光路正常对应的判决信号0,一种是TWDM PON***光路异常对应的判决信号1。
步骤S804,判决信号进入输出模块,通过输出模块将判决信号传输给OLT。
步骤S805,OLT将判决信号送给相应的处理芯片,处理芯片会通过判决信号得出光路是否可用的结论,进而指引OLT的下一步操作,比如发送指令给ONU,让其进行波长迁移。
当光路诊断装置部署在TWDM PON***Mux/DeMux装置之后,主干光纤之前时,光路诊断装置实现光路诊断的实施流程如图9所示,包括步骤 S901-S906:
步骤S901,TWDM PON***Mux/DeMux装置之后的光信号进入分光器,分光器分出小部分光信号,即为待检测光信号。需要指出的是,分光器进行分光后不影响被检测光路的传输特性。
步骤S902,待检测光信号进入可调滤波器,可调滤波器对待检测光信号进行滤波(只保留待检测波长信号),得到待检测波长信号λi。
步骤S903,待检测光信号λi进入诊断模块中的光检测单元,光检测单元将待检测光信号传输至判决单元。
步骤S904,光检测单元输出的信号进入判决单元,判决单元根据待检测光信号的光功率,进行光路异常诊断。
由于TWDM PON***光路异常基本分为两种情况,一种是该波长通道无光,一种是该波长通道有光,但光功率异常,达不到输出光功率要求,所以光检测单元对应三种输出,一种是正常光信号,一种是低光功率信号,一种是零光功率信号。
TWDM PON***光路情况对应的三种信号进入判决单元后,得到两种判决信号,一种是TWDM PON***光路正常对应的判决信号0,一种是TWDM PON***光路异常对应的判决信号1。
步骤S905,判决信号进入输出模块,通过输出模块将判决信号传输给OLT。
步骤S906,OLT将判决信号送给相应的处理芯片,处理芯片会通过判决信号得出光路是否可用的结论,进而指引OLT的下一步操作,比如发送指令给ONU,让其进行波长迁移。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的光路诊断方法。
本领域普通技术人员可以理解上述实施例的每种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一个计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例实现了对目标波长的光路异常性的诊断,通过光路诊断不但可以保证波长管理时ONU进行波长迁移能够成功,避免用户业务长时间中断,影响用户体验,同时,在不需要波长迁移时也可以用于***的日常检测维护,降低运维成本。

Claims (13)

  1. 一种光路诊断方法,包括:
    获取光路中目标波长的光信号;
    检测所述光信号的光功率;
    判断所述光信号的光功率是否异常;
    根据判断结果诊断所述光路。
  2. 如权利要求1所述的光路诊断方法其中,所述判断所述光信号的光功率是否异常包括:
    将所述光信号的光功率与预设的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值,则判断结果为所述光信号的光功率正常。
  3. 如权利要求2所述的光路诊断方法,其中,所述根据判断结果诊断所述光路包括:
    在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常;在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常。
  4. 如权利要求1至3任意一项所述的光路诊断方法,其中,获取的所述光信号为光路中目标波长的部分光信号。
  5. 如权利要求1至3任意一项所述的光路诊断方法,所述方法还包括:当在光路中未获取到目标波长的光信号时,诊断为所述目标波长的光路异常。
  6. 一种光路诊断装置,包括:信号获取模块和诊断模块;
    信号获取模块,设置为获取光路中目标波长的光信号;
    诊断模块,设置为检测所述光信号的光功率,判断所述光信号的光功率是否异常,并根据判断结果诊断所述光路。
  7. 如权利要求6所述的光路诊断装置,其中,所述诊断模块包括:光检测单元和判决单元;
    所述光检测单元,设置为接收所述信号获取模块获取的光信号,并将其传输至判决单元;
    所述判决单元,设置为检测所述光检测单元发送的光信号的光功率;
    所述诊断模块判断所述光信号的光功率是否异常包括:
    所述判决单元,还设置为将所述光信号的光功率与设定的光功率阈值进行比较,如果所述光信号的光功率小于所述光功率阈值,则判断结果为所述光信号的光功率异常;如果所述光信号的光功率大于或等于所述光功率阈值,则判断结果为所述光信号的光功率正常。
  8. 如权利要求7所述的光路诊断装置,其中,所述诊断模块根据判断结果诊断所述光路包括:
    所述判决单元还设置为,在所述判断结果为所述光信号的光功率异常的情况下,诊断为所述光路为异常;在所述判断结果为所述光信号的光功率正常的情况下,诊断为所述光路为正常。
  9. 如权利要求6至8任意一项所述的光路诊断装置,其中,所述信号获取模块获取的光信号为目标波长的部分光信号。
  10. 如权利要求9所述的光路诊断装置,其中,所述光路诊断装置部署在光线路终端OLT与多路复用器/多路解复用器之间目标波长的光路上;
    所述信号获取模块为分光器;
    所述分光器,设置为在所述OLT输出的目标波长的光路上分出部分光信号。
  11. 如权利要求9所述的光路诊断装置,其中,所述光路诊断装置部署在多路复用器/多路解复用器与主干光纤之间;
    所述信号获取模块包括:分光器和可调滤波器;
    所述分光器,设置为在所述多路复用器/多路解复用器输出的光路上分出部分光信号;
    所述可调滤波器,设置为对所述分光器分出的部分光信号进行滤波处理,得到目标波长的光信号。
  12. 如权利要求6、7、8、10、11任意一项所述的光路诊断装置,所述诊断模块,还设置为在所述信号获取模块未在光路中获取到目标波长的光信号时,诊断为所述目标波长的光路异常。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1至5任意一项所述的光路诊断方法。
PCT/CN2016/088424 2016-04-12 2016-07-04 一种光路诊断方法和装置 WO2017177558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610223765.0 2016-04-12
CN201610223765.0A CN107294599A (zh) 2016-04-12 2016-04-12 一种光路诊断方法和装置

Publications (1)

Publication Number Publication Date
WO2017177558A1 true WO2017177558A1 (zh) 2017-10-19

Family

ID=60041290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088424 WO2017177558A1 (zh) 2016-04-12 2016-07-04 一种光路诊断方法和装置

Country Status (2)

Country Link
CN (1) CN107294599A (zh)
WO (1) WO2017177558A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311451A (zh) * 2019-07-29 2021-02-02 中国石油天然气集团有限公司 一种光器件故障检测方法及装置
CN116429381A (zh) * 2023-06-02 2023-07-14 成都光创联科技有限公司 多端口复合光路器件的光路检测装置及装配方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412686A (zh) * 2018-10-30 2019-03-01 郑州云海信息技术有限公司 一种光功率检测***及方法
CN110149143A (zh) * 2019-05-16 2019-08-20 广东信通通信有限公司 光纤测试数据处理方法、装置、计算机设备和存储介质
CN114244432B (zh) * 2021-12-16 2023-07-18 中国电信股份有限公司 故障检测装置、方法、分析诊断设备、***和存储介质
CN117834006A (zh) * 2024-01-08 2024-04-05 天翼电信终端有限公司 分光器的检测方法及装置、非易失性存储介质、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844751A2 (en) * 1996-11-26 1998-05-27 Fujitsu Limited Optical transmitter, terminal-station apparatus having the optical transmitter and optical communication system, monitoring the optical transmitted signal
CN101296039A (zh) * 2007-04-28 2008-10-29 英保达股份有限公司 被动式光纤网络的光纤链路监测***及方法
CN101521543A (zh) * 2009-03-20 2009-09-02 浙江工业大学 一种无源光网络主干光纤链路保护装置
CN103229516A (zh) * 2012-12-12 2013-07-31 华为技术有限公司 链路检测方法及装置
CN103326777A (zh) * 2012-03-23 2013-09-25 富士通株式会社 光功率监测器、光功率控制***和光功率监测方法
CN104677493A (zh) * 2015-03-24 2015-06-03 国家电网公司 一种光功率实时监测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844751A2 (en) * 1996-11-26 1998-05-27 Fujitsu Limited Optical transmitter, terminal-station apparatus having the optical transmitter and optical communication system, monitoring the optical transmitted signal
CN101296039A (zh) * 2007-04-28 2008-10-29 英保达股份有限公司 被动式光纤网络的光纤链路监测***及方法
CN101521543A (zh) * 2009-03-20 2009-09-02 浙江工业大学 一种无源光网络主干光纤链路保护装置
CN103326777A (zh) * 2012-03-23 2013-09-25 富士通株式会社 光功率监测器、光功率控制***和光功率监测方法
CN103229516A (zh) * 2012-12-12 2013-07-31 华为技术有限公司 链路检测方法及装置
CN104677493A (zh) * 2015-03-24 2015-06-03 国家电网公司 一种光功率实时监测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311451A (zh) * 2019-07-29 2021-02-02 中国石油天然气集团有限公司 一种光器件故障检测方法及装置
CN116429381A (zh) * 2023-06-02 2023-07-14 成都光创联科技有限公司 多端口复合光路器件的光路检测装置及装配方法
CN116429381B (zh) * 2023-06-02 2023-08-18 成都光创联科技有限公司 多端口复合光路器件的光路检测装置及装配方法

Also Published As

Publication number Publication date
CN107294599A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2017177558A1 (zh) 一种光路诊断方法和装置
US8009987B2 (en) Optical add/drop multiplexer
US7684702B2 (en) Optical link monitoring system and method for passive optical network
US10250324B1 (en) Optical time-domain reflectometer interoperable trunk switch
US10666354B2 (en) Monitoring system and monitoring method
EP3119015B1 (en) Optical time domain reflectometer implementation apparatus and system
EP2337240B1 (en) Multichannel WDM-PON module with integrated OTDR function
US9020349B2 (en) Arrangement at a remote node, a remote node, a central office and respective methods therein for supervision of a wavelength division multiplexed passive optical network
US8554070B2 (en) Optical transmission apparatus and optical attenuation amount control method
KR20090028577A (ko) 투과성 광 네트워크를 위한 광 접속 경로의 감시를 위한 방법 및 디바이스
US11165529B2 (en) Optical wavelength multiplex transmission system, optical wavelength multiplex apparatus, and standby system checking method
US20070077072A1 (en) Wavelength division multiplexing apparatus
JP4994300B2 (ja) 光終端装置
CN102594447A (zh) 波分复用***的光信噪比监测装置及方法
US11063684B2 (en) Optical transmission system, optical transmission apparatus and transmission method
EP3297183A1 (en) Optical relay device, control method, and optical transmission system
JP5268485B2 (ja) 光波長多重分割システムの自動波長チューニング制御方式
WO2020135849A1 (zh) 一种光交换装置、***及功率计算方法
JP2016163274A (ja) 光伝送装置及び光伝送システム
CN111628826B (zh) 一种光信号监测装置和***
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及***
US20120318965A1 (en) Optical transmission system and optical transmission method
US8989574B2 (en) Method and device for monitoring WDM signal light
JP6625946B2 (ja) 光伝送システム、光ノード装置及び光伝送方法
US20230155675A1 (en) Failure detection device, failure detection method, and failure-detection-program recording medium

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898373

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898373

Country of ref document: EP

Kind code of ref document: A1