WO2017175843A1 - Rotation detecting device and electromotive power steering device using same - Google Patents

Rotation detecting device and electromotive power steering device using same Download PDF

Info

Publication number
WO2017175843A1
WO2017175843A1 PCT/JP2017/014421 JP2017014421W WO2017175843A1 WO 2017175843 A1 WO2017175843 A1 WO 2017175843A1 JP 2017014421 W JP2017014421 W JP 2017014421W WO 2017175843 A1 WO2017175843 A1 WO 2017175843A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
unit
signal
sensor
detection
Prior art date
Application number
PCT/JP2017/014421
Other languages
French (fr)
Japanese (ja)
Inventor
敏博 藤田
林 勝彦
崇晴 小澤
修平 宮地
功一 中村
祐希 渡邉
篤子 岡
修司 倉光
利光 坂井
雅也 滝
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017023442A external-priority patent/JP7035317B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780022347.8A priority Critical patent/CN108885097B/en
Priority to US16/091,247 priority patent/US11091201B2/en
Priority to DE112017001940.0T priority patent/DE112017001940T5/en
Publication of WO2017175843A1 publication Critical patent/WO2017175843A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Definitions

  • the present disclosure relates to a rotation detection device and an electric power steering device using the rotation detection device.
  • Patent Document 1 discloses a typical example of the known device. That is, Patent Document 1 discloses an electronic control unit for electric power steering having a motor that assists the steering force of the steering wheel by the driver. This electronic control unit has first and second magnetic sensors which are examples of first and second rotation detection sensors. The first magnetic sensor measures a magnetic change based on the rotation of the motor and outputs first rotation information indicating the measured magnetic change. A second magnetic sensor provided independently of the first magnetic sensor measures a magnetic change based on the rotation of the motor and outputs second rotation information indicating the measured magnetic change.
  • the electronic control unit further includes a single monitoring circuit unit, and the monitoring circuit unit calculates a rotation angle signal representing the rotation angle of the motor based on the first and second rotation information.
  • the electronic control unit has a control circuit unit, and the control circuit unit calculates the position of the steering wheel based on the rotation angle signal calculated by the monitoring circuit unit.
  • An object of the present invention is to provide a rotation detection device capable of continuously calculating a signal and a rotation frequency signal representing the rotation frequency of the detection target, and an electric power steering device using the rotation detection device.
  • a rotation detection device includes at least first and second sensor elements, a circuit unit, and a package unit.
  • Each of the first and second sensor elements detects rotation of a detection target.
  • the circuit unit includes first and second rotation angle calculation units that calculate a rotation angle of the detection target based on first and second detection values of the first and second sensor elements, respectively.
  • First and second rotation number calculation units for calculating the number of rotations of the detection target based on the first and second detection values of the second sensor element, and a rotation angle that is a signal related to the rotation angle It has the 1st and 2nd communication part which outputs the rotation frequency signal which concerns on a signal and the said rotation frequency to a control part, respectively.
  • the package unit seals the first and second sensor elements and the circuit unit, and is mounted on a substrate separately from the control unit.
  • the circuit unit is based on the first and second rotation angle calculation units that calculate the rotation angle of the detection target, and the first and second detection values of the first and second sensor elements. It has the 1st and 2nd rotation frequency calculating part which calculates the rotation frequency of the said detection object, respectively. For this reason, even if an abnormality occurs in one of the clothing of the first and second rotation angle calculation units or one of the first and second rotation number calculation units, the rotation angle and the number of rotations of the detection target Can be calculated continuously.
  • FIG. 1 is a schematic configuration diagram of a steering system according to a first embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram illustrating a driving device according to a first embodiment of the present disclosure. It is a top view of the drive device by a 1st embodiment of this indication.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • 3 is a side view of a first substrate according to a first embodiment of the present disclosure.
  • FIG. 5 is a side view of a second substrate according to the first embodiment of the present disclosure.
  • FIG. It is a side view showing an example of a rotation detection device by a 1st embodiment of this indication. It is a side view showing other examples of a rotation detecting device by a 1st embodiment of this indication.
  • It is a block diagram which shows the rotation detection apparatus by 3rd Embodiment of this indication. It is a time chart explaining communication with a sensor part and a microcomputer by a 3rd embodiment of this indication.
  • It is a block diagram showing a rotation detection device by a 4th embodiment of this indication.
  • It is a block diagram which shows the rotation detection apparatus by 5th Embodiment of this indication.
  • It is a block diagram showing a rotation detection device by a 6th embodiment of this indication.
  • the rotation detection device 1 according to the first embodiment is provided in a drive device 8 of a steering system 100 having an electric power steering device 108.
  • the electric power steering device 108 is mounted on the vehicle V.
  • the electric power steering device 108 has a function of assisting the steering operation of the steering wheel by the driver of the vehicle V.
  • the drive device 8 includes a motor unit 10 having a shaft 15 and a controller unit 20 related to drive control of the motor unit 10, and the motor unit 10 and the controller unit 20 are integrally formed to constitute a motor module. ing.
  • the controller unit 20 is described as “ECU”.
  • FIG. 1 shows an example of the overall configuration of a steering system 100 including an electric power steering device 108.
  • the steering system 100 includes a steering wheel 101 as a steering member by a driver, a steering shaft 102, a torque sensor 103, a pinion gear 104, a rack shaft 105, wheels 106, an electric power steering device 108, and the like.
  • the steering shaft 102 has first and second ends, and the steering wheel 101 is connected to the first end.
  • the steering shaft 102 is provided with a torque sensor 103 that detects torque (steering torque) based on a steering process of the steering shaft 102 by the driver.
  • a pinion gear 104 is provided at the second end of the steering shaft 102, and the pinion gear 104 meshes with the rack in a rack shaft 105 having a rod-shaped rack gear.
  • a pair of wheels 106 are provided at both ends of the rack shaft 105 via tie rods or the like.
  • each wheel 106 is steered via each tie rod.
  • the steering angle of each wheel 106 is determined based on an angle corresponding to the rack displacement amount of the rack shaft 105.
  • the electric power steering device 108 includes a driving device 8, a reduction gear mechanism 109 as a power transmission unit, a torque sensor 103, and the like.
  • the reduction gear mechanism 109 includes, for example, a first gear coupled to the shaft 15 of the motor unit 10 and a second gear provided on the steering shaft 102 and meshing with the first gear.
  • the reduction gear mechanism 109 generates the assist torque generated based on the rotation of the shaft 15 of the motor unit 10 and the rotation speed of the motor unit 10 at a predetermined gear ratio between the first gear and the second gear. It is supplied to the steering shaft 102 while decreasing (that is, increasing the assist torque at a predetermined gear ratio).
  • the electric power steering device 108 is configured to generate assist torque by driving the motor unit 10 based on the steering torque and / or the vehicle state signal acquired from the torque sensor 103 by the controller unit 20. ing.
  • the vehicle state signal includes, for example, the speed of the vehicle V and represents the operation state of the vehicle V, and is obtained from another in-vehicle network such as a CAN (Controller Area Network) (not shown). That is, the electric power steering device 108 of the present embodiment is a so-called shaft assist system that assists the rotation of the steering shaft 102 with the assist torque generated by the motor unit 10. So-called rack assist may be used. In other words, in this embodiment, the steering shaft 102 is an assist target, but the rack shaft 105 may be an assist target.
  • the motor unit 10 is, for example, a three-phase brushless motor having a stator 10a, a rotor 10b, a shaft 15, and a field portion (not shown) (for example, a permanent magnet, a field coil, etc.).
  • the stator 10a includes a stator core (not shown), a first winding set 11 having a U1 coil 111, a V1 coil 112, and a W1 coil 113, and a second winding having a U2 coil 121, a V2 coil 122, and a W2 coil 123.
  • Set 12 The rotor 10b to which the shaft 15 is attached is configured to rotate with the shaft 15 relative to the stator core.
  • the U1 coil 111, the V1 coil 112, and the W1 coil 113 in the first winding set 11, and the U2 coil 121, the V2 coil 122, and the W2 coil 123 in the second winding set 12, respectively, are, for example, slots of the stator core and It is wound around.
  • the field part is attached to the rotor 10b and generates a field. That is, the motor unit 10 includes the rotating magnetic field generated by the three-phase coils 111, 112, and 113 in the first winding set 11 and the three-phase coils 121, 122, and 123 in the second winding set 12 and the rotor.
  • the rotor 10b can be rotated by a magnetic interaction with the field generated by the field portion 10b.
  • phase currents flowing through the respective phases of the first winding set 11 are referred to as phase currents Iu1, Iv1, Iw1, and currents flowing through the respective phases of the second winding set 12 are referred to as phase currents Iu2, Iv2, Iw2.
  • the controller unit 20 includes first and second circuit boards 21 and 22, first and second inverters 30 and 40, first and second current sensors 31 and 41, First and second relays 32 and 42 are provided.
  • the controller unit 20 also includes first and second reverse connection protection relays 33 and 43, choke coils 35 and 45, first and second capacitors 36 and 46, and first and second motor control units 501.
  • the rotation detection device 1 mounted on the drive device 8 includes a sensor package 65.
  • the sensor package 65 includes first and second sensor units 61 and 62 for measuring the rotation of the rotor 10b of the motor unit 10, respectively.
  • the first sensor unit 61 is referred to as “sensor 1”
  • the second sensor unit 62 is referred to as “sensor 2”.
  • the drive device 8 includes first and second batteries 39 and 49, fuses 38 and 48, and a connector unit 70 (see FIGS. 3 and 4).
  • the connector unit 70 includes first and second power connectors 75 and 76 and first and second signal connectors 77 and 78.
  • the first battery 39 has positive and negative terminals, the positive terminal of the first battery 39 is connected to the first power connector 75 via the fuse 38, and the negative terminal is the first power connector 75. It is connected to the.
  • the first battery 39 is connected to the first battery via the fuse 38, the first power connector 75, the first choke coil 35, the first relay 32, the first reverse connection protection relay 33, and the first capacitor 36.
  • the inverter 30 is connected.
  • the first inverter 30 is connected to the three-phase windings 111, 112 and 113 of the first winding set 11.
  • six switching elements 301 to 306 are bridge-connected. That is, switching elements 301 and 304 are a pair of U-phase upper and lower arm switching elements connected in series, switching elements 302 and 303 are a pair of V-phase upper and lower arm switching elements connected in series, Switching elements 303 and 306 are a pair of W-phase upper and lower arm switching elements connected in series.
  • the “switching element” is referred to as “SW element”.
  • the SW elements 301 to 306 of this embodiment are metal-oxide-semiconductor.
  • MOSFETs field-effect transistors
  • IGBTs insulated-gate bipolar transistors
  • thyristors and the like are also used.
  • Parasitic diodes of the respective SW elements 301 to 306 formed of MOSFETs can function as freewheeling diodes connected in antiparallel to the corresponding SW elements 301 to 306.
  • Other freewheeling diodes may be connected in antiparallel to the respective SW elements 301-306.
  • the SW elements 301 to 303 are arranged on the high potential side, and the SW elements 304 to 306 are arranged on the low potential side.
  • a first end of the U1 coil 111 is connected to a connection point between the pair of U-phase SW elements 301 and 304 (a connection point between the source of the SW element 301 and the drain of the SW element 304).
  • a first end of the V1 coil 112 is connected to a connection point between the paired V-phase SW elements 302 and 305 (a connection point between the source of the SW element 302 and the drain of the SW element 305).
  • a first end portion of the W1 coil 113 is connected to a connection point between the pair of W-phase SW elements 303 and 306 (a connection point between the source of the SW element 303 and the drain of the SW element 306).
  • the drains of the upper arm SW elements 301 to 303 are connected to the first reverse connection protection relay 33, the first relay 32, the first choke coil 35, the first power connector 75, and the fuse 38 through the first reverse connection protection relay 33.
  • the positive terminal of the battery 39 is connected.
  • the second end portions of the U1, V1, and W1 coils 111, 112, and 113 facing the first end portions are connected to a common connection point, that is, a neutral point by, for example, star connection.
  • the first current sensor 31 includes current detection elements 311, 312, and 313.
  • each of the current detection elements 311, 312, and 313 has a shunt resistor.
  • Each current detection element 311, 312, and 313 has first and second end portions that face each other. The first end of each current detection element 311, 312, and 313 is connected to the source of the corresponding SW element 304-306, and the second end is a common signal ground and first power connector 75. Is connected to the negative terminal of the first battery 39.
  • the third series connection body with the element 313 is connected in parallel to the first battery 39.
  • the current detection element 311 detects the phase current Iu1 flowing through the U1 coil 111
  • the current detection element 312 detects the phase current Iv1 flowing through the V1 coil 112
  • the current detection element 313 detects the phase current Iw1 flowing through the W1 coil 113. Is detected.
  • other types of current detection elements for example, Hall elements may be used.
  • the first inverter 30 receives DC power from the first battery 39 and converts this DC power into AC power. Then, the first inverter 30 applies this AC power to the three-phase windings 111, 112, and 113 of the first winding set 11.
  • the first relay 32 is, for example, a MOSFET, is provided between the first battery 39 and the first inverter 30, and conducts or cuts off a current between the first battery 39 and the first inverter 30.
  • the first reverse connection protection relay 33 is, for example, a MOSFET, and is provided between the first relay 32 and the first inverter 30.
  • the first reverse connection protection relay 33 is connected so that the direction of the parasitic diode of the first reverse connection protection relay 33 is opposite to that of the first relay 32.
  • the first choke coil 35 is connected between the first relay 32 and the first battery 39 via a first power connector 75 and a fuse 38.
  • the first capacitor 36 is connected in parallel to the first to third series connected bodies in the first inverter 30.
  • the first choke coil 35 and the first capacitor 36 constitute a filter circuit, reduce noise transmitted from other devices sharing the first battery 39, and share the first battery 39 from the drive device 8. Reduce the noise transmitted to other devices. Further, the first capacitor 36 can assist the power supply to the first inverter 30 by storing electric charge.
  • the second battery 49 has a positive terminal and a negative terminal.
  • the positive terminal of the second battery 49 is connected to the second power connector 76 via the fuse 48, and the negative terminal is the second power connector 76. It is connected to the.
  • the second battery 49 is connected to the second battery 49 via the fuse 48, the second power connector 76, the second choke coil 45, the second relay 42, the second reverse connection protection relay 43, and the second capacitor 46. It is connected to the inverter 40.
  • a second inverter 40 is connected to the three-phase windings 121, 122, and 123 of the second winding set 12. In the second inverter 40, six SW elements 401 to 406 are bridge-connected.
  • SW elements 401 and 404 are a pair of U-phase upper and lower arm SW elements connected in series
  • SW elements 402 and 403 are a pair of V-phase upper and lower arm SW elements connected in series
  • the SW elements 403 and 406 are a pair of W-phase upper and lower arm SW elements connected in series.
  • the parasitic diodes of the SW elements 401 to 406 constituted by MOSFETs are opposite to the corresponding SW elements 401 to 406. It can function as a freewheeling diode connected in parallel. Other freewheeling diodes may be connected in antiparallel to the respective SW elements 401-406. That is, the SW elements 401 to 403 are disposed on the high potential side, and the SW elements 404 to 406 are disposed on the low potential side.
  • the first end of the U2 coil 121 is connected to a connection point between the U-phase SW elements 401 and 404 (connection point between the source of the SW element 401 and the drain of the SW element 404).
  • a first end of the V2 coil 122 is connected to a connection point between the paired V-phase SW elements 402 and 405 (a connection point between the source of the SW element 402 and the drain of the SW element 405).
  • a first end portion of the W2 coil 123 is connected to a connection point between the pair of W-phase SW elements 403 and 406 (a connection point between the source of the SW element 403 and the drain of the SW element 406).
  • the drains of the upper arm SW elements 401 to 403 are connected to the second reverse connection protection relay 43, the second relay 42, the second choke coil 45, the second power connector 76, and the fuse 48 through the second
  • the battery 49 is connected to the positive terminal.
  • the second end portions of the U2, V2, and W2 coils 121, 122, and 123 that are opposed to the first end portions are connected to a common connection point, that is, a neutral point by, for example, star connection.
  • the second current sensor 41 includes current detection elements 411, 412, and 413.
  • each current detection element 411, 412 and 413 has a shunt resistor.
  • Each of the current detection elements 411, 412 and 413 has first and second ends facing each other.
  • each current detection element 411, 412, and 413 is connected to the source of the corresponding SW element 404-406, and the second end is a common signal ground and second power connector 76. Is connected to the negative terminal of the second battery 49.
  • the first series connection body of SW elements 401 and 404 and current detection element 411, the second series connection body of SW elements 402 and 405 and current detection element 412, and SW elements 403 and 406 and current detection is connected to the second battery 49 in parallel.
  • the current detection element 411 detects the phase current Iu2 flowing through the U2 coil 121
  • the current detection element 412 detects the phase current Iv2 flowing through the V2 coil 122
  • the current detection element 413 detects the phase current Iw2 flowing through the W2 coil 123. Is detected.
  • the second inverter 40 receives DC power from the second battery 49 and converts this DC power into AC power. Then, the second inverter 40 applies this AC power to the three-phase windings 121, 122, and 123 of the second winding set 12.
  • the second relay 42 is, for example, a MOSFET and is provided between the second battery 49 and the second inverter 40.
  • the second reverse connection protection relay 43 is, for example, a MOSFET, and the second relay 42, the second inverter 40, Between.
  • the second choke coil 45 is connected between the second relay 42 and the second battery 49 via a second power connector 76 and a fuse 48.
  • the second capacitor 46 is connected in parallel to the first to third series connected bodies in the second inverter 40. Details of the second relay 42, the second reverse connection protection relay 43, the second choke coil 45, and the second capacitor 46 are the first relay 32, the first reverse connection protection relay 33, the first choke coil 35, and the first Since it is the same as the capacitor 36, the description thereof is omitted. If the first and second relays 32 and 42 are mechanical relays, the first and second reverse connection protection relays 33 and 43 can be omitted.
  • the first motor control unit 501 controls energization of the first winding set 11 and includes a first microcomputer 51 and a first integrated circuit 56 that are communicably connected to each other.
  • the integrated circuit is referred to as “ASIC”.
  • the first microcomputer 51 is composed of, for example, a memory unit including a CPU, ROM, and RAM, and is communicably connected to the rotation detection device 1, the first current sensor 31, and the torque sensor 103 (see FIG. 1). Yes.
  • the first microcomputer 51 includes the SW elements 301 to 306 and the relays 32 and 33 of the first inverter 30 based on the detection values of the rotation detection device 1, the first current sensor 31, and the torque sensor 103, that is, the detection signals.
  • a control signal for controlling the on / off operation of is generated.
  • the CPU of the first microcomputer 51 can implement the processing of the first microcomputer 51 as software processing by executing one or more programs (program instructions) stored in the memory unit. It is also possible to have a specific hardware electronic circuit, and to implement the processing of the first microcomputer 51 as hardware processing by this hardware electronic circuit.
  • the first integrated circuit 56 includes a pre-driver, a signal amplifier, a regulator, and the like. Based on the control signals for the respective SW elements 301 to 306, the pre-driver generates a gate signal corresponding to the SW elements 301 to 306, and outputs the generated gate signal to the gates of the respective SW elements 301 to 306. . Thereby, the on / off operation of the SW elements 301 to 306 is controlled.
  • the signal amplifying unit amplifies the detection signal from the first current sensor 31 and outputs the amplified detection signal to the first microcomputer 51.
  • the regulator is a stabilization circuit that stabilizes an operating voltage supplied from the power source (not shown) to the first microcomputer 51 and the like.
  • the second motor control unit 502 controls energization of the second winding set 12 and includes a second microcomputer 52 and a second integrated circuit 57 that are connected to be communicable with each other.
  • the second microcomputer 52 is composed of, for example, a memory unit including a CPU, a ROM, and a RAM, and is communicably connected to the rotation detection device 1, the second current sensor 41, and the torque sensor 103 (see FIG. 1). Yes.
  • the second microcomputer 52 includes the SW elements 401 to 406 of the second inverter 30 and the relays 42 and 43 based on the detection values of the rotation detection device 1, the second current sensor 41, and the torque sensor 103, that is, the detection signals.
  • a control signal for controlling the on / off operation of is generated.
  • the CPU of the second microcomputer 52 can implement the processing of the second microcomputer 52 as software processing by executing one or more programs (program instructions) stored in the memory unit. It is also possible to have a specific hardware electronic circuit, and to implement the processing of the second microcomputer 52 as hardware processing by this hardware electronic circuit.
  • the second integrated circuit 57 includes a pre-driver, a signal amplifier, a regulator, and the like.
  • the pre-driver generates a gate signal corresponding to each SW element 401 to 406 based on the control signal for each SW element 401 to 406, and outputs the generated gate signal to the gate of each SW element 401 to 406. . Thereby, the on / off operation of the SW elements 401 to 406 is controlled.
  • the signal amplifier amplifies the detection signal of the second current sensor 41 and outputs the amplified detection signal to the second microcomputer 52.
  • the regulator is a stabilization circuit that stabilizes the operating voltage supplied from the power source (not shown) to the second microcomputer 52, for example.
  • the rotation detection device 1 includes the first sensor unit 61 and the second sensor unit 62.
  • the first sensor unit 61 is described as “sensor 1”
  • the second sensor unit 62 is described as “sensor 2”. Details of the rotation detection device 1 will be described later.
  • the first microcomputer 51 and the second microcomputer 52 correspond to a “control unit”.
  • first motor drive system 901 the first winding set 11 and the first inverter 30 and the first motor control unit 501 provided corresponding to the first winding set 11 will be referred to as a first motor drive system 901 as appropriate.
  • the second winding set 12 and the second inverter 40 and the second motor control unit 502 provided corresponding to the second winding set 12 are defined as a second motor drive system 902.
  • the rotation detection device 1 is not included in the first and second motor drive systems 901 and 902, but the first sensor unit 61 is included in the first motor drive system 901. It may be understood that the second sensor unit 62 is included in the second motor drive system 902.
  • circuit components such as the first inverter 30 and the first motor control unit 501 are provided corresponding to the first winding set 11, and circuit components such as the second inverter 40 and the second motor control unit 502 are provided. , Provided corresponding to the second winding set 12.
  • the driving device 8 has a redundant configuration including at least the first and second inverters 30 and 40 and the first and second motor control units 501 and 502. Due to this redundant configuration, an abnormality has occurred in one of the first motor control unit 501 or the second motor control unit 502 in addition to the case where an abnormality has occurred in some of the circuit components of the first and second inverters 30 and 40. However, the drive of the motor unit 10 can be continued.
  • the drive device 8 includes a first battery 39 for the first winding set 11 and a second battery 49 for the second winding set 12, and has a battery redundant configuration.
  • the rated voltages of the first and second batteries 39 and 49 may be different.
  • the voltage is applied to at least one of the first battery 39 and the first inverter 30 and between the second battery 49 and the second inverter 40.
  • a converter or the like for converting can be provided as appropriate.
  • SW elements 301 to 306 and 401 to 406 as drive components, current detection elements 311 to 313 and 411 to 413, relays 32, 33, 42, and 43, choke coil 35 , 45 and capacitors 36, 46 are mounted on the first substrate 21.
  • the first and second microcomputers 51 and 52 and the integrated circuits 56 and 57 that are control components are mounted on the second substrate 22.
  • the drive component is an electronic component in which a relatively large current equivalent to the motor current flowing in the coils 111 to 113 and 121 to 123 flows, and the control component can be regarded as a component in which no motor current flows.
  • the rotation detection device 1 is mounted on the first substrate 21.
  • the first power connector 75 has a power terminal 751 and a ground terminal 752, and the second power connector 76 has a power terminal 761 and a ground terminal 762.
  • the first signal connector 77 has a torque signal terminal 771 and a vehicle signal terminal 772
  • the second signal connector 78 has a torque signal terminal 781 and a vehicle signal terminal 782.
  • the driving device 8 has an internal signal terminal 771.
  • the white triangles in FIG. 2 indicate connection points between the terminals and the first and second substrates 21 and 22.
  • the power supply terminals 751 and 761, the ground terminals 752 and 762, and the internal signal terminal 717 are connected to the first substrate 21 and the second substrate 22, respectively.
  • the torque signal terminals 771 and 781 and the vehicle signal terminals 772 and 782 are connected to the second substrate 22 and are not connected to the first substrate 21.
  • the power supply terminals are “power supply 1”, “power supply 2”, the ground terminals are “GND1” and “GND2”, the torque signal terminals are “trq1” and “trq2”, the vehicle signal terminals are “CAN1”, “ CAN2 ”. Also, in the circuit diagram of FIG. 2 and the like, the fact that the line indicating the connection relationship between the terminal and the first and second substrates 21 and 22 is branched means that the actual terminal is branched. I will add a point that is not.
  • FIGS. 3 is a plan view of the drive device 8
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3
  • FIG. 5 is a schematic side view of the first substrate 21,
  • FIG. FIG. 3 is a schematic side view of a second substrate 22.
  • the motor unit 10 includes a stator 10a (see FIG. 2), a rotor 10b (see FIG. 1), a shaft 15 attached to the rotor 10b, and the like.
  • the motor unit 10 includes a motor case 17 having a substantially cylindrical housing 171, and the stator 10 a is fixed inside the cylindrical housing 171 in the motor case 17.
  • the rotor 10b is provided to be rotatable relative to the stator 10a.
  • the rotor 10b has a substantially cylindrical rotor core, and a shaft 15 is fixed to the axial center of the rotor core. As a result, the shaft 15 and the rotor rotate together.
  • the cylindrical housing 171 of the motor case 17 has first and second end portions facing in the axial direction.
  • the first axial end of the cylindrical housing 171 has an opening, and the controller unit 20 is attached to the opening of the first axial end of the cylindrical housing 171.
  • the cylindrical housing 171 has a ring-shaped groove 172 provided at the first axial end thereof.
  • the shaft 15 has first and second ends that face each other in the axial direction. The first end of the shaft 15 is disposed so as to face the controller unit 20.
  • the second end portion of the shaft 15 functions as an output end connected to the reduction gear mechanism 109 (see FIG. 1). Thereby, torque generated by the rotation of the rotor 10b and the shaft 15 is transmitted to the steering shaft 102 via the reduction gear mechanism 109.
  • the motor unit 10 includes, for example, a disk-shaped magnet 16 attached to the end surface of the first end portion of the shaft 15.
  • a virtual line extending through the center of the magnet 16 and extending the axis of the shaft 15 is defined as a rotation center line Ac (see, for example, FIG. 8).
  • the motor unit 10 includes a substantially cylindrical frame member 18 that approaches the inner peripheral surface of the cylindrical housing 171 with respect to the first end of the housing 171 and has a shaft. 15 is provided so as to protrude from the frame member 18 in a freely rotatable manner.
  • the frame member 18 is fixed in the cylindrical housing 171 of the motor case 17 by press fitting.
  • the motor case 17 and the frame member 18 form an outer shell that includes components of the motor unit 10.
  • the frame member 18 has an end surface 181 facing the controller unit 20, and a concave recess is provided at the center of the end surface 181, and the magnet 16 is stored in the recess and exposed toward the controller unit 20. is doing.
  • first and second substrate fixing portions 185 and 186 having first and second heights, respectively, and the height direction thereof is substantially orthogonal to the end surface 181. It is provided as follows.
  • the second height from the end surface 181 of the second substrate fixing portion 186 is formed to be higher than the first height from the end surface 181 of the first substrate fixing portion 185.
  • a first substrate 21 having a through hole is placed on the first substrate fixing portion 185 and is fixed by a screw 195, and the second substrate fixing portion 186 penetrates the through hole of the first substrate 21. Yes.
  • the second substrate 22 is placed on the second substrate fixing portion 186 and is fixed by screws 196.
  • the substrates 21 and 22 and the frame member 18 may be fixed by means other than screws.
  • the coils 111 to 113 of each phase of the first winding set 11 and the coils 121 to 123 of each phase of the second winding set 12 are respectively connected to motor wires (not shown).
  • the motor wire is inserted into a motor wire insertion hole (not shown) formed in the frame member 18, taken out to the controller unit 20 side, and connected to the first substrate 21.
  • the controller unit 20 provided at the first axial end of the cylindrical housing 171 of the motor case 17 projects the motor case 17 in the axial direction into the opening of the first axial end. It is provided to fit within the motor silhouette that is the projected area.
  • the axial direction and radial direction of the motor unit 10 are referred to as “axial direction” and “radial direction” as the driving device 8, and are also simply referred to as “axial direction” and “radial direction”.
  • the controller unit 20 includes, for example, the first and second substrates 21 and 22 and the connector unit 70.
  • the first substrate 21 and the second substrate 22 are provided substantially parallel to the end surface 181 of the frame member 18.
  • the first substrate 21 and the second substrate 22 are arranged in this order from the motor unit 10 side.
  • the surface of the first substrate 21 on the motor unit 10 side is the first main surface 211
  • the surface opposite to the motor unit 10 is the second main surface 212
  • the surface of the second substrate 22 on the motor unit 10 side is the first surface.
  • the first main surface 221 and the surface opposite to the motor unit 10 are defined as a second main surface 222 (see FIGS. 5 and 6).
  • SW elements 301 to 306 and 401 to 406, current detection elements 311 to 313 and 411 to 413, and the rotation detection device 1 are provided on the first main surface 211 of the first substrate 21. Etc. are implemented. Choke coils 35 and 45, capacitors 36 and 46, and the like are mounted on the second main surface 212 of the first substrate 21.
  • the SW elements 301, 302, 401, and 402 are shown as appearing.
  • the current detection elements 311 to 313, 411 to 413, the choke coils 35 and 45, etc. are not shown in FIGS.
  • the frame member 18 is made of a heat sink member, for example, metal, and the SW elements 301 to 306 and 401 to 406 are provided on the frame member 18 so that heat can be radiated. Thereby, the heat of the SW elements 301 to 306 and 401 to 406 is absorbed by the frame member 18, and the absorbed heat is radiated from the motor case 17 to the outside of the driving device 8.
  • “A is thermally linked to B” is not limited to the SW elements 301 to 306 and 401 to 406 being in direct contact with the frame member 18; The state which contact
  • the SW elements 301 to 306 and 401 to 406 are separated from the frame member 18. It should be noted that components other than the SW element such as the current detection elements 311 to 313 and 411 to 413 may be regarded as the heating elements and provided in the frame member 18 so as to be able to dissipate heat.
  • the frame member 18 functions as a heat sink.
  • the frame member 18 has a function as an outline of the motor unit 10 and a function as a heat sink.
  • the number of parts of the drive device 8 can be reduced and the physique can be reduced in size.
  • the frame member 18 as a heat sink, the heat transfer path to the atmosphere can be shortened and heat can be radiated with high efficiency.
  • the first and second integrated circuits 56 and 57 are mounted on the first main surface 221 of the second substrate 22, and the first and second integrated circuits 56 and 57 are mounted on the second main surface 222.
  • Microcomputers 51 and 52 are mounted.
  • the drive component that is energized with the motor current is mounted on the first substrate 21, and the control component is mounted on the second substrate 22.
  • the driving device 8 uses the first substrate 21 as a power substrate and the second substrate 22 as a control substrate, and the power unit and the control unit are separated by separating the substrates. Thereby, since the large current which can become a noise source does not flow through the second substrate 22 which is the control substrate, the influence of noise in the control component is reduced.
  • Spring terminals 26 are provided on the first and second substrates 21 and 22.
  • the connector unit 70 includes a cover portion 71, power feeding connectors 75 and 76, and signal connectors 77 and 78.
  • the cover portion 71 has a cylindrical portion 711 formed in a substantially cylindrical shape with an upper end of the opening and a bottom, and the bottom portion of the cylindrical portion 711 functions as a connector forming portion 715.
  • the distal end portion 712 of the cylindrical portion 711 is inserted into a groove portion 172 formed at the first axial end portion of the cylindrical portion 171 of the motor case 17 and is fixed to the cylindrical portion 171 with an adhesive or the like.
  • the connector forming portion 715 has first and second main surfaces that face each other, and the first main surface faces the motor portion 10. On the second main surface of the connector forming portion 715, power supply connectors 75 and 76 and signal connectors 77 and 78 are formed. Connectors 75-78 are arranged in the motor silhouette.
  • the connectors 75 to 78 of the present embodiment have a hollow tube shape whose upper portions (openings) are open, and harnesses (not shown) are inserted into the connectors 75 to 78 in the axial direction for electrical connection. Is done.
  • the first power supply terminal 751 of the first power supply connector 75 connects the positive terminal of the first battery 39 and the first motor drive system 901, and the first ground terminal 752 is the first power terminal 752. 1 Connect the negative terminal of the battery 39 and the common signal ground.
  • the second power supply terminal 761 of the second power feeding connector 76 connects the positive terminal of the second battery 49 and the second motor drive system 902, and the second ground terminal 762 is connected to the negative terminal of the second battery 49. Connect between common signal grounds.
  • the first signal connector 77 connects between the first motor drive system 901 and the torque sensor 103 and between the first motor drive system 901 and the in-vehicle network. That is, the torque signal terminal 771 of the first signal connector 77 receives a detection signal (representing detected torque) from the torque sensor 103 to the first motor drive system 901, and the vehicle signal terminal 772 of the first signal connector 77 is A vehicle state signal transmitted from the outside to the first motor drive system 901 via the in-vehicle network is received.
  • the second signal connector 78 torque signal terminal 772 receives a detection signal (representing detected torque) from the torque sensor 103 to the second motor drive system 902, and the vehicle signal terminal 782 of the second signal connector 78 is A vehicle state signal sent from the outside to the second motor drive system 902 via the in-vehicle network is received. Due to the redundancy of the first and second power supply connectors 75 and 76 provided for the first and second drive systems 901 and 902, one wiring line between the first drive system 901 and the first power supply connector 75 is provided. The drive of the motor unit 10 can be continued even when the unit is disconnected or disconnected. Similarly, even when a part of the wiring between the second drive system 902 and the second power feeding connector 76 is disconnected or disconnected, the driving of the motor unit 10 can be continued.
  • the internal signal terminal 717 is provided on the first main surface of the connector forming portion 715 of the cover portion 71.
  • the internal signal terminal 717 is connected to the first substrate 21 and the second substrate 22 and is used for signal transmission between the first substrate 21 and the second substrate 22.
  • the internal signal terminal 717 is provided separately from the terminals 751, 752, 761, 762, 771, 772, 781, 782 of the connectors 75 to 78, and drives the batteries 39, 49, the torque sensor 103, the in-vehicle network, etc.
  • the external device of the device 8 is not connected.
  • the internal signal terminal 717 transmits the detection value of the rotation detection device 1 to electronic components such as the first and second microcomputers 51 and 52 mounted on the second substrate 22, and It is used to transmit command signals from the second microcomputers 51 and 52 to the electronic components mounted on the first substrate 21.
  • the number of terminals, arrangement, allocation, and the like in the first power supply connector 75 can be changed as appropriate.
  • the internal signal terminal 717 may be formed at any position as long as it does not interfere with the respective terminals of the connectors 75 to 78, and the number is not limited to the illustrated number.
  • the terminals 751, 752, 761, 762, 771, 772, 781, 782, and 717 are inserted into the corresponding spring terminals 26 provided on the substrates 21 and 22, respectively.
  • the spring terminal 26 comes into contact with the terminal while being elastically deformed by inserting the corresponding terminal. Accordingly, the terminals 751, 752, 761, 762, 771, 772, 781, 782, and 717 are electrically connected to the substrates 21 and 22.
  • the terminals 751, 752, 761, 762, and 717 connected to the first substrate 21 and the second substrate 22 are connected via the space between the two substrates 21 and 22 when projected in the axial direction.
  • the two substrates 22 are formed so as to extend to the first substrate 21 side.
  • the terminals 751, 752, 761, 762, and 717 are inserted into the corresponding spring terminals 26 provided on the first substrate 21 and the second substrate 22, respectively, so that the first substrate 21 and the second substrate 22 are connected. Connected. Thereby, the length of the terminals 751, 752, 761, 762, and 717 can be shortened, and an increase in wiring space due to redundancy can be prevented.
  • each terminal can be shortened by forming each terminal substantially straight and extending through the second substrate 22 to the first substrate 21. Thereby, the impedance of wiring can be reduced.
  • the rotation detection device 1 detects rotation of the motor unit 10, and includes a first sensor unit 61, a second sensor unit 62, 1 microcomputer 51 and 2nd microcomputer 52 are provided.
  • the first sensor unit 61 and the second sensor unit 62 are provided in one package 65 and mounted on the first circuit board 21. Thereby, compared with the case where the package of each of the 1st and 2nd sensor parts 61 and 62 is mounted in the 1st circuit board 21, a mounting area can be held down.
  • the first sensor unit 61 includes a sensor element 601 and a circuit unit 610, and the sensor element 601 and the circuit unit 610 are configured as one chip 641.
  • the sensor element 601 is built in the chip 641 constituting the circuit unit 610.
  • the second sensor unit 62 includes a sensor element 602 and a circuit unit 620, and the sensor element 602 and the circuit unit 620 are configured as one chip 642.
  • the sensor element 602 is incorporated in the chip 642 constituting the circuit unit 620.
  • the package 65 of the rotation detection device 1 is mounted on the first main surface 211 of the first substrate 21. As shown in FIG. Since the distance between the package 65 and the magnet 16 can be set short by mounting on the first main surface 211, the rotation detection accuracy of the motor unit 10 by the package 65 is increased. Further, the thickness and diameter of the magnet 16 can be reduced.
  • the package 65 may be mounted on the second main surface 212 of the first substrate 21. By mounting on the second main surface 212, the first main surface 211 can be effectively used, for example, by mounting a heat generating element other than the SW elements 301 to 306 and 401 to 406 on the first main surface 211 so as to be able to dissipate heat. Can be used.
  • FIG. 7A and FIG. 7B mounting components other than the rotation detection device 1 are omitted. The same applies to FIGS. 22, 23, and 30 described later.
  • the sensor package 65 is formed in a substantially rectangular parallelepiped shape, and sensor terminals 67 are provided on both side surfaces on the long side.
  • the sensor terminals 67 include command terminals 671 and 673, output terminals 672 and 674, power supply terminals 675 and 677, and ground terminals 676 and 678.
  • Power is supplied to the rotation detection device 1 from the first and second batteries 39 and 49 via a regulator and power terminals 675 and 677 (not shown).
  • the first sensor unit 61 is supplied with power from the first battery 39 via the power supply terminal 675 and the like
  • the second sensor unit 62 is supplied with power via the power supply terminal 677 and the like. 2 Electric power is supplied from the battery 49.
  • the rotation detecting device 1 is connected to a common signal ground via ground terminals 676 and 678.
  • the chip 641 constituting the first sensor unit 61 and the chip 642 constituting the second sensor unit 62 are both mounted on a lead frame 66 built in the sensor package 65.
  • the chips 641 and 642 and the sensor terminal 67 are connected by a wire or the like.
  • the sensor terminal 67 is connected to a wiring pattern formed in advance on the first main surface 211 of the first substrate 21. Thereby, the sensor parts 61 and 62 and the 1st board
  • the sensor elements 601 and 602 are magnetic detection elements that detect a change in the magnetic field accompanying the rotation of the magnet 16 that rotates integrally with the shaft 15.
  • the sensor elements 601 and 602 of this embodiment are, for example, MR elements such as GMR, AMR, and TMR, or Hall elements.
  • the motor unit 10 more specifically, the magnet 16 that rotates integrally with the shaft 15 of the motor unit 10 corresponds to the “detection target”.
  • the sensor elements 601 and 602, that is, the chips 641 and 642 are arranged point-symmetrically with respect to the intersection between the rotation center line Ac and the first substrate 21.
  • A is arranged in point symmetry with B with respect to the intersection of the rotation center line Ac and the first substrate 21, simply“ A is arranged in point symmetry with B with respect to the rotation center line Ac. "
  • the circuit unit 610 includes AD conversion units (A / D) 613 and 614, a rotation angle calculation unit 615, a rotation number calculation unit 616, and a communication unit 617.
  • the circuit unit 620 includes AD conversion units 623 and 624, a rotation angle calculation unit 625, a rotation number calculation unit 626, and a communication unit 627.
  • the configurations and functions of the components 623, 624, 625, and 627 of the circuit unit 620 are substantially the same as the configurations and functions of the components 613, 614, 615, and 617 of the circuit unit 610. The description will focus on the part 610.
  • the AD conversion unit 613 digitally converts the detection value of the sensor element 601, that is, the detection information indicating the magnetic change of the magnet 16, and outputs it to the rotation angle calculation unit 615.
  • the AD conversion unit 614 digitally converts a detection value of the sensor element 601, that is, detection information indicating a magnetic change of the magnet 16, and outputs the digital value to the rotation number calculation unit 616.
  • the detection value after digital conversion is simply referred to as “detection value of sensor element”. Note that the AD conversion units 613 and 614 may be omitted as appropriate.
  • the rotation angle calculation unit 615 calculates the rotation angle ⁇ m of the motor unit 10 based on the detection value of the sensor element 601.
  • the value calculated by the rotation angle calculation unit 615 is not limited to the rotation angle ⁇ m itself, but is information related to the rotation angle ⁇ m.
  • the first microcomputer 51 can calculate the rotation angle ⁇ m based on this information. May be. Including such a case, hereinafter, it is simply referred to as “calculation of the rotation angle ⁇ m”.
  • the rotation angle ⁇ m is a mechanical angle, but may be an electrical angle.
  • the rotation number calculation unit 616 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 601.
  • the value calculated by the rotation number calculation unit 616 is not limited to the rotation number TC itself, but is information related to the rotation number TC. Based on this information, the first microcomputer 51 can calculate the rotation number TC. May be. Including such a case, hereinafter, it is simply referred to as “calculation of the number of rotations TC”.
  • one rotation of the motor unit 10 is divided into at least three regions (first to third rotation angle regions of 120 degrees), and the predetermined first rotation direction is the count-up direction. , And a second rotation direction opposite to the first rotation direction is defined as the countdown direction.
  • the rotation number calculation unit 616 includes a hardware counter or a software counter, and is a counter when the rotation angle ⁇ m of the motor unit 10 changes from the current rotation angle region to the adjacent rotation angle region along the count-up direction.
  • the number of rotations TC of the motor unit 10 can be calculated based on the value.
  • the count value is also included in the concept of “the number of rotations TC”.
  • the rotation direction of the motor unit 10 can be identified. Further, if the number of divided areas per rotation of the motor unit 10 is set to 5 or more, the rotation direction can be determined even when the change of the rotation angle ⁇ m of the motor unit 10 from the current area to the adjacent area is skipped. It is. Further, the rotation number calculation unit 616 may calculate the rotation number TC from the rotation angle ⁇ m.
  • the “number of rotations” in this specification is not a so-called rotation number (that is, rotation speed) expressed in unit rpm or the like but a value indicating “how many rotations the rotor has rotated”. Further, in this specification, the so-called “rotation speed” expressed in unit rpm or the like is referred to as “rotation speed”.
  • the communication unit 617 generates an output signal including a rotation angle signal related to the rotation angle ⁇ m and a rotation frequency signal related to the rotation frequency TC, and uses the output signal as a frame by digital communication such as SPI (Serial Peripheral Interface) communication.
  • the first microcomputer 51 transmits a command to the first sensor unit 61 via the communication line 691 and the command terminal 671, and the first sensor unit 61 includes the first sensor unit 61.
  • an output signal is output as a frame to the first microcomputer 51 via the output terminal 672 and the communication line 692.
  • Each frame of the output signal transmitted to the first microcomputer 51 functions as a run counter signal and an error check signal in addition to the rotation angle signal related to the rotation angle ⁇ m and the rotation frequency signal related to the rotation frequency TC.
  • a cyclic redundancy check code that is, a CRC signal is included.
  • the run counter signal is omitted.
  • Other error check signals such as a checksum signal may be used instead of the CRC code.
  • the communication unit 617 of the second sensor unit 62 includes a rotation angle signal related to the rotation angle ⁇ m calculated by the rotation angle calculation unit 625 and a rotation frequency signal related to the rotation frequency TC calculated by the rotation frequency calculation unit 626. Is generated and output to the second microcomputer 52.
  • the second microcomputer 52 transmits a command to the second sensor unit 62 via the communication line 693 and the command terminal 673, and the second sensor unit 62 receives a command from the second microcomputer 52 as a communication line. 693 and the command terminal 673.
  • the second sensor unit 62 When receiving the command from the second microcomputer 52, the second sensor unit 62 outputs an output signal to the second microcomputer 52 via the output terminal 674 and the communication line 694.
  • each of the first and second microcomputers 51 and 52 since both the first and second microcomputers 51 and 52 are mounted on the second substrate 22, the communication lines 691 to 694 are connected to the substrate wiring on the substrates 21 and 22, and the internal signals.
  • the terminal 717 is configured.
  • Each of the first and second microcomputers 51 and 52 has a run counter with an initial value of zero, and a run counter signal is input from one of the corresponding first and second sensor units 61 and 62. Each time the counter is incremented, the counter is incremented by one. Thereby, each of the first and second microcomputers 51 and 52 can check whether communication with one of the corresponding first and second sensor units 61 and 62 is normally performed.
  • the first microcomputer 51 calculates the rotation angle ⁇ m of the motor unit 10 based on the rotation angle signal included in the output signal acquired from the first sensor unit 61.
  • the first microcomputer 51 controls the driving of the motor unit 10 by controlling the on / off switching operations of the switching elements 301 to 306 of the first inverter 30 and the relays 32 and 33 based on the calculated rotation angle ⁇ m.
  • the first microcomputer 51 calculates the steering angle ⁇ s of the steering shaft 102 based on the rotation angle signal included in the output signal acquired from the first sensor unit 61 and the rotation frequency signal.
  • the first microcomputer 51 sets the steering angle ⁇ s to the rotation angle ⁇ m, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109. It can be calculated based on this.
  • the second microcomputer 52 also performs the same calculation based on the output signal acquired from the second sensor unit 62.
  • the position of the steering wheel 101 when the vehicle V on which the electric power steering device 108 is mounted goes straight is defined as a neutral position.
  • Each of the first and second microcomputers 51 and 52 can learn the neutral position while the vehicle V is traveling straight ahead at a constant speed for a certain period of time, for example.
  • the learned neutral position is stored in the first and second microcomputers 51 and 52.
  • the first and second microcomputers 51 and 52 calculate the steering angle ⁇ s based on the rotation angle ⁇ m, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109 with the neutral position as a reference.
  • the steering sensor can be omitted by the configuration in which the first and second microcomputers 51 and 52 perform the steering angle calculation based on the rotation angle ⁇ m and the like.
  • FIG. XY shows the rotation angle ⁇ m of the motor unit 10 periodically obtained by the first sensor unit 61
  • FIG. 10B shows the number of rotations TC of the motor unit 10 obtained by the first sensor unit 61
  • FIG. 10C shows an output signal periodically transmitted from the first sensor unit 61 to the first microcomputer 51
  • FIG. 10D shows a command signal periodically transmitted from the first microcomputer 51 to the sensor unit 61
  • FIG. 10A shows the rotation angle ⁇ m of the motor unit 10 periodically obtained by the first sensor unit 61
  • FIG. 10B shows the number of rotations TC of the motor unit 10 obtained by the first sensor unit 61
  • FIG. 10C shows an output signal periodically transmitted from the first sensor unit 61 to the first microcomputer 51
  • FIG. 10D shows a command signal periodically transmitted from the first microcomputer 51 to the sensor unit 61
  • FIGS. 10A to 10E shows calculation processing of the rotation angle ⁇ m and the steering angle ⁇ s in the first microcomputer 51.
  • the communication between the first sensor unit 61 and the first microcomputer 51 and the communication between the second sensor unit 62 and the second microcomputer 52 are substantially the same. Therefore, here, communication between the first sensor unit 61 and the first microcomputer 51 will be described.
  • each pulse shown in FIG. 10A includes a first half period Px1 and a second half period Px2.
  • the AD conversion unit 613 digitally converts the detection value of the sensor element 601, and in the second half period Px2 following the period Px1, the rotation angle calculation unit 615 is converted.
  • the rotation angle ⁇ m is calculated, and the data related to the rotation angle ⁇ m is updated.
  • the data related to the rotation angle ⁇ m is updated as 1A, 2A,... 11A.
  • the first and second half periods Px1 and Px2 are shown for the calculation period of the data 1A, but the same applies to the calculation periods of the other data.
  • each pulse shown in FIG. 10B is composed of a first half period Py1 and a second half period Py2.
  • the AD conversion unit 614 converts the detection value of the sensor element 601 into a digital value
  • the second half period Py2 following the first half period Py1, the rotation number calculation unit 616.
  • the number of rotations TC is calculated based on the detected value converted, and the data related to the number of rotations TC is updated.
  • each pulse nA (n is an arbitrary natural number) represents detection data and a corresponding rotation angle signal for the rotation angle ⁇ m
  • each pulse nB (n is an arbitrary natural number) means detection data related to the rotation number TC and a corresponding rotation number signal.
  • the update cycle DRT_sa of the rotation angle ⁇ m and the update cycle DRT_sb of the number of rotations TC are equal and shorter than the calculation cycle DRT_m in the first microcomputer 51 described later. .
  • the first microcomputer 51 transmits a command signal com1 for requesting transmission of an output signal to the first sensor unit 61 at the next command transmission timing.
  • the communication unit 617 transmits an output signal Sd10 based on a command signal com0 (not shown) immediately before the command signal com1 to the first microcomputer 51 at time x11 which is a timing at which the command signal com1 is received.
  • the output signal Sd10 includes a signal related to the rotation angle ⁇ m and the number of rotations TC based on the latest data, and a CRC signal.
  • the output signal Sd10 includes, for example, the latest detection data 1A of a predetermined bit based on the rotation angle ⁇ m, that is, the latest detection data 1B of the predetermined bit based on the latest rotation angle signal and the number of rotations TC, that is, The latest rotation number signal, and a CRC code that is a cyclic redundancy check signal of a predetermined bit calculated based on the latest rotation angle signal and rotation number signal are included.
  • the first microcomputer 51 starts calculation of the rotation angle ⁇ m and the steering angle ⁇ s based on the rotation angle signal and the rotation frequency signal included in the output signal Sd10 at time x12.
  • [1A, 1B] in FIG. 10E means that the data 1A, 1B are used for the calculation of the rotation angle ⁇ m and the steering angle ⁇ s.
  • the first microcomputer 51 does not have to calculate the steering angle ⁇ s every time an output signal is transmitted. That is, the first microcomputer 51 calculates the steering angle ⁇ s based on the update cycle DRT_m longer than the update cycle DRT_sa of the rotation angle ⁇ m and the update cycle DRT_sb of the number of rotations TC.
  • the steering angle ⁇ s may be calculated at the rate of rotation.
  • the first sensor unit 61 causes the rotation angle signal based on the data 4A based on the rotation angle ⁇ m and the rotation count based on the data 4B based on the rotation count TC.
  • the output signal Sd11 including the signal and the CRC signal is transmitted to the first microcomputer 51.
  • the first microcomputer 51 starts calculation of the rotation angle ⁇ m and the steering angle ⁇ s based on the rotation angle vibration 4A and the rotation frequency signal 4B included in the output signal Sd11 at time x14.
  • the first sensor unit 61 causes the rotation angle signal based on the data 8A based on the rotation angle ⁇ m, the rotation frequency signal based on the data 8B based on the rotation frequency TC, The output signal Sd12 including the CRC signal is transmitted to the first microcomputer 51.
  • FIGS. 11A to 11E corresponding to FIGS. 10A to 10E show first and second microcomputers 51 and 52 corresponding to the first and second sensor units 61 and 62 when the update periods DRT_sa and DRT_sb are different. Will be described.
  • the update cycle DRT_sb of the number of rotations TC may be longer than the update cycle DRT_sa of the rotation angle ⁇ m.
  • the update cycle DRT_sa of the rotation angle ⁇ m needs to be sufficiently shorter than the calculation cycle DRT_m of the first microcomputer 51.
  • the number of rotations TC is detected without skipping each quadrant obtained by dividing one rotation of the motor unit 10, the number of rotations is not erroneously detected.
  • the update cycle DRT_sb of the number of rotations TC may be appropriately set to a length that does not skip reading according to the set rotation speed of the motor unit 10.
  • the set rotation speed may be the maximum rotation speed of the motor unit 10 or a predetermined rotation speed that requires counting of the number of rotations TC.
  • the processing at times x21 and x22 is the same as the processing at times x11 and x12 in FIGS. 10C and 10D, and the first sensor unit 61 stores data 1A at time x21.
  • the output signal Sd21 including the rotation angle signal based on the data and the rotation frequency signal based on the data 1B is transmitted to the first microcomputer 51.
  • the first microcomputer 51 determines the rotation angle ⁇ m based on the output signal Sd21 at time x22. And calculation of the steering angle ⁇ s is started.
  • the first sensor unit 61 When the command signal com2 is transmitted from the first microcomputer 51 at time x23, the first sensor unit 61 outputs the output signal Sd22 including the rotation angle signal based on the data 4A and the rotation frequency signal based on the data 3B to the first microcomputer. 51.
  • the first microcomputer 51 starts calculating the rotation angle ⁇ m and the steering angle ⁇ s based on the output signal Sd22 at time x24.
  • the first sensor unit 61 receives the output signal Sd23 including the rotation angle signal based on the data 8A and the rotation number signal based on the data 4B. 1 is transmitted to the microcomputer 51.
  • the rotation detection device (a rotation angle sensor for detecting a rotation angle and a rotation frequency sensor for detecting the rotation frequency are provided in separate first and second chips, respectively.
  • 29A to 29E corresponding to FIGS. 10A to 10E are shown for communication between the microcomputer and the microcomputer.
  • the rotation angle signal and the rotation frequency signal are alternately transmitted from the rotation angle detection sensor (first chip) and the rotation frequency sensor (second chip) in accordance with chip selection in SPI communication.
  • the update cycles DRT_sa and DRT_sb are the same as those in FIG.
  • an output signal Sd91 is transmitted from the rotation angle sensor.
  • the output signal Sd91 includes a rotation angle signal based on the data 1A.
  • the rotation signal is not included in the output signal Sd91.
  • the microcomputer sets the rotation angle ⁇ m and the steering angle. ⁇ s is calculated.
  • the rotation detection device 1 is configured by mounting the rotation angle calculation unit 615 and the rotation number calculation unit 616 on one chip 641, and the rotation angle signal and the rotation number signal are used as a series of output signals. And transmitted from the communication unit 617 to the first microcomputer 51. Therefore, as shown in FIGS. 10A to 10E, if the update timings of the data related to the rotation angle ⁇ m and the data related to the number of rotations TC are synchronized, the first microcomputer 51 simultaneously detects the synchronization. Based on the detected value, the rotation angle ⁇ m, the number of rotations TC, and the steering angle ⁇ s can be calculated. As shown in FIGS.
  • the rotation detection device 1 is configured to transmit the same output signal including the rotation angle signal and the rotation frequency signal. ing. Therefore, the shift width Td between the detection timing of the rotation angle ⁇ m and the detection timing of the rotation speed TC can be made shorter than the command cycle from the microcomputer 51, and the rotation angle signal based on the rotation angle ⁇ m as in the comparative example. And the rotation number signal based on the rotation speed TC can be compared with the case where the rotation frequency signal is transmitted as separate signals, and the difference between the detection timing of the rotation angle ⁇ m and the detection timing of the rotation speed TC can be reduced.
  • the rotation detection device 1 includes a rotation angle signal and a rotation frequency signal in a series of output signals, and transmits them to the first microcomputer 51 via one communication line 692.
  • the number of communication lines can be reduced.
  • the drive device 8 of the present embodiment is configured as a redundant system as described above, and is mounted on the electric power steering device 108. Since the electric power steering device 108 is a device that controls the “bend” function, which is one of the basic functions of the vehicle V, the redundant configuration of the drive device 8 causes an abnormality in one of the redundant configurations. However, the assist of the steering process of the steering wheel 101 by the driver can be continued.
  • the rotation detection device 1 calculates the rotation angle ⁇ m and the number of rotations TC by the duplicated circuit units 610 and 620, respectively. With this configuration, the assist operation of the electric power steering device 108 can be continued even when an abnormality occurs in one of the duplicated circuit units 610 and 620. Further, the rotation detection device 1 can be downsized by integrating the redundant circuit units 610 and 620 as the corresponding one chips 641 and 642, respectively. The downsizing of the rotation detection device 1 can contribute to the downsizing of the drive device 8, and as a result, the passenger space in the passenger compartment of the vehicle V can be increased and the fuel consumption of the vehicle V can be improved.
  • the rotation detection device 1 of the present embodiment includes the first and second sensor units 61 and 62, the first microcomputer 51, and the second microcomputer 52.
  • the first sensor unit 61 includes a sensor element 601 and a circuit unit 610
  • the second sensor unit 62 includes a sensor element 602 and a circuit unit 620.
  • the sensor elements 601 and 602 detect the rotation of the motor unit 10, respectively.
  • the circuit unit 610 includes a rotation angle calculation unit 615, a rotation number calculation unit 616, and a communication unit 617.
  • the rotation angle calculation unit 615 calculates the rotation angle ⁇ m of the motor unit 10 based on the detection value of the sensor element 601.
  • the rotation number calculation unit 616 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 601.
  • the communication unit 617 transmits a rotation angle signal that is a signal related to the rotation angle ⁇ m and a rotation frequency signal that is a signal related to the rotation frequency TC to the first microcomputer 51.
  • the circuit unit 620 includes a rotation angle calculation unit 625, a rotation number calculation unit 626, and a communication unit 627.
  • the rotation angle calculation unit 625 calculates the rotation angle ⁇ m of the motor unit 10 based on the detection value of the sensor element 602.
  • the rotation number calculation unit 626 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 602.
  • the communication unit 627 transmits a rotation angle signal that is a signal related to the rotation angle ⁇ m and a rotation frequency signal that is a signal related to the rotation frequency TC to the second microcomputer 52.
  • the sensor package 65 has the sensor elements 601 and 602 and the circuit units 610 and 620 sealed (packaged) inside, and is mounted on the first substrate 21 separately from the first and second microcomputers 51 and 52.
  • the circuit units 610 and 620 and the sensor elements 601 and 602 are packaged separately from the packages of the microcomputers 51 and 52 by the sensor package 65. Thereby, for example, the first and second microcomputers 51 and 52 can be mounted on the second substrate 22 which is a substrate different from the first substrate 21 on which the rotation detection device 1 is mounted. The degree of freedom of element arrangement on the first substrate 21 and the second substrate 22 is increased.
  • the rotation detection device 1 of the present application can suppress the mounting area of the sensor package 65 on the first substrate 21.
  • a mounting region of elements that require heat dissipation to the frame member 18 such as the SW elements 301 to 306 and 401 to 406 can be secured on the surface of the first substrate 21 on the first main surface 211 side.
  • the sensor elements 601 and 602 can be arranged close to the rotation center line Ac, the magnet 16 can be reduced in size and the detection accuracy of the rotation detection device 1 can be prevented from deteriorating.
  • All the sensor elements 601 and 602 and the circuit units 610 and 620 are provided in one package 65. Thereby, the rotation detection apparatus 1 can be reduced in size.
  • the sensor elements 601 and 602 are arranged point-symmetrically with respect to the rotation center line Ac of the motor unit 10. Thereby, the detection error between the sensor elements 601 and 602 can be reduced.
  • the sensor element 601 is included in the same chip 641 as the circuit unit 610. By making the sensor element 601 and the circuit portion 610 into one chip, the size can be further reduced. The same applies to the sensor element 602 and the circuit unit 620.
  • the first substrate 21, which is a substrate on which the sensor package 65 is mounted, and the second substrate 22 provided on the opposite side of the motor unit 10 with respect to the first substrate 21 are internal connection terminals 717 provided in the connector unit 70. Connected with.
  • First and second microcomputers 51 and 52 are mounted on the second substrate 22.
  • the rotation angle signal and the rotation frequency signal detected by the first and second sensor units 61 and 62 are transmitted to the corresponding first and second microcomputers 51 and 52 via the internal connection terminal 717. Thereby, the rotation angle signal and the rotation frequency signal detected by the first and second sensor units 61 and 62 can be appropriately transmitted to the first and second microcomputers 51 and 52.
  • the communication unit 617 transmits an output signal, which is a series of signals including a corresponding rotation angle signal and rotation number signal, to the first microcomputer 51 using one communication line 692.
  • the communication unit 627 transmits an output signal, which is a series of signals including the corresponding rotation angle signal and rotation number signal, to the second microcomputer 52 using one communication line 693. Since the rotation angle signal and the rotation frequency signal are included in the series of output signals, the rotation angle signal and the rotation frequency signal calculated by the first and second sensor units 61 and 62, respectively, correspond to each other in one communication. And can be transmitted to the second microcomputers 51 and 52. Thereby, a shift in detection timing between the detection value related to the rotation angle ⁇ m and the detection value related to the rotation number TC can be reduced.
  • the rotation angle signal and the rotation frequency signal can be transmitted from the communication unit 617 to the first microcomputer 51 through one communication line 692.
  • the rotation angle signal and the rotation frequency signal can be transmitted from the communication unit 627 to the second microcomputer 52 through one communication line 694.
  • the electric power steering device 108 includes the motor unit 10, the rotation detection device 1, and first and second microcomputers 51 and 52.
  • the motor unit 10 outputs auxiliary torque that assists the driver in steering the steering wheel 101.
  • the first and second microcomputers 51 and 52 control the motor unit 10 using the plurality of sets of rotation angle signals and rotation frequency signals that have been sent.
  • the sensor elements 601 and 602 detect the rotation of the motor unit 10 as a detection target.
  • the calculation function of the rotation angle ⁇ m and the calculation function of the number of rotations TC are integrated into one chip, and the rotation detection device 1 is downsized, which contributes to downsizing of the electric power steering device 108.
  • the first and second microcomputers 51 and 52 calculate the steering angle ⁇ s of the steering shaft 102 based on the rotation angle ⁇ m and the number of rotations TC included in the corresponding output signals.
  • a steering sensor that detects the steering angle ⁇ s by providing a gear or the like on the steering shaft 102 can be omitted.
  • the rotation detection device 2 is different from the rotation detection device 1 of the first embodiment, and the other configuration is the same as that of the above-described embodiment, and thus the description thereof is omitted.
  • the rotation detection device 2 of the present embodiment includes a first sensor unit 261 and a second sensor unit 262.
  • the first sensor unit 261 includes a sensor element 603 for detecting the rotation angle of the motor unit 10, a sensor element 604 for detecting the number of rotations of the motor unit 10, and the circuit unit 610.
  • the sensor elements 603 and 604 and the circuit unit 610 are provided on one chip 641.
  • the second sensor unit 262 includes a sensor element 605 for detecting the rotation angle of the motor unit 10, a sensor element 606 for detecting the number of rotations of the motor unit 10, and the circuit unit 620.
  • the sensor elements 605 and 606 and the circuit unit 620 are provided on one chip 642.
  • Chips 641 and 642 are provided in one sensor package 65. The same applies to the third to sixth embodiments.
  • the sensor elements 603 to 606 are magnetic detection elements such as Hall elements that detect magnetic flux that changes as the magnet 16 rotates.
  • the AD conversion unit 613 converts the detection value of the sensor element 603 into a digital value and outputs it to the rotation angle calculation unit 615.
  • the AD conversion unit 614 converts the detection value of the sensor element 604 into a digital value and outputs the digital value to the rotation number calculation unit 616.
  • the AD conversion unit 623 digitally converts the detection value of the sensor element 605 and outputs the digital value to the rotation angle calculation unit 625.
  • the AD conversion unit 624 digitally converts the detection value of the sensor element 606 and outputs the digital value to the rotation number calculation unit 616.
  • sensor elements 603 and 605 for calculating the rotation angle ⁇ m and sensor elements 604 and 606 for calculating the number of rotations TC are separately provided. This makes it possible to select an optimum element for calculating the rotation angle ⁇ m or the number of rotations TC.
  • the sensor elements 603 and 605 for calculating the rotation angle ⁇ m use those having high detection accuracy, and the sensor elements 604 and 606 for calculating the number of rotations TC use elements that consume less power. is there.
  • FIGS. 13A and 13B The arrangement of the sensor elements 603 to 606 is shown in FIGS. 13A and 13B. As shown in FIGS. 13A and 13B, the sensor elements 603 and 605 for calculating the rotation angle ⁇ m are arranged point-symmetrically with respect to the rotation center line Ac. The sensor elements 604 and 606 for calculating the number of rotations TC are arranged symmetrically with respect to the rotation center line Ac.
  • the sensor elements 603 and 605 for calculating the rotation angle ⁇ m are disposed closer to the rotation center line Ac than the rotation numbers TC detection 604 and 6-6, and the rotation number TC calculation sensor elements. It arrange
  • the sensor elements 603 and 604 and the sensor elements 605 and 606 are arranged in parallel with the lateral width on the short side of the lead frame 66 in a state facing the rotation center line Ac. May be.
  • the sensor elements 603 and 605 for detecting the rotation angle ⁇ m are arranged point-symmetrically with respect to the rotation center line Ac
  • the sensor elements 604 and 606 for detecting the number of rotations TC are point-symmetric with respect to the rotation center line Ac. Be placed.
  • the rotation angle calculation unit 615 calculates the rotation angle ⁇ m based on the detection value of the sensor element 603, and the rotation number calculation unit 616 calculates the rotation number TC based on the detection value of the sensor element 604. Is calculated.
  • the rotation angle calculation unit 625 calculates the rotation angle ⁇ m based on the detection value of the sensor element 605, and the rotation number calculation unit 626 calculates the rotation number TC based on the detection value of the sensor element 606.
  • the rotation angle ⁇ m and the number of rotations TC are calculated based on detection values of different sensor elements.
  • the second embodiment configured as described above also has the same effect as the first embodiment.
  • the rotation detection device 3 of the present embodiment includes a first sensor unit 361 and a second sensor unit 362.
  • the first sensor unit 361 includes a circuit unit 611.
  • the circuit unit 611 includes a self-diagnosis unit 618 in addition to the components of the circuit unit 610 of the first embodiment.
  • the second sensor unit 362 includes a circuit unit 621.
  • the circuit unit 621 includes a self-diagnosis unit 628 in addition to the components of the circuit unit 621 of the first embodiment.
  • the sensor element 601 and the circuit unit 611 are provided on one chip 641, and the sensor element 602 and the circuit unit 621 are provided on one chip 642.
  • a sensor element may be provided separately for the rotation angle ⁇ m calculation and the rotation number TC calculation.
  • the self-diagnosis unit 618 diagnoses an abnormality in the first sensor unit 361. That is, the self-diagnosis unit 618 monitors the occurrence of power supply abnormality such as a power supply fault or a ground fault in the sensor element 601, the AD conversion units 613 and 614, the rotation angle calculation unit 615, and the rotation number calculation unit 616.
  • the self-diagnosis unit 628 diagnoses an abnormality in the second sensor unit 362. That is, the self-diagnosis unit 628 monitors the occurrence of a power supply abnormality such as a power fault or a ground fault in the sensor element 602, the AD conversion units 623 and 624, the rotation angle calculation unit 625, and the rotation number calculation unit 626.
  • the self-monitoring results in the self-diagnosis units 618 and 628 are included in the output signal as status signals and transmitted to the first and second microcomputers 51 and 52. In the present embodiment, the status signal corresponds to an “abnormal signal”.
  • the first sensor unit 361 changes the type of information included in the output signal according to the type of command signal transmitted from the first microcomputer 51.
  • the communication unit 617 receives information corresponding to the command signal com_a, that is, rotation at time x32, which is the timing at which the next command signal is received.
  • An output signal Sd_a including an angle signal, a rotation frequency signal, a status signal, and a CRC signal is transmitted to the first microcomputer 51.
  • the command transmitted at the output timing of the output signal Sd_a may be an instruction to output any signal, and the type is not limited.
  • the communication unit 617 When the command signal com_b is transmitted from the first microcomputer 51 at time x32, the communication unit 617 outputs an output signal corresponding to the command signal com_b, that is, the rotation angle at time x33, which is the timing at which the next command is received.
  • An output signal Sd_b (no status signal) including a signal, a rotation frequency signal, and a CRC signal is transmitted to the first microcomputer 51.
  • the communication unit 617 When the command signal com_c is transmitted from the first microcomputer 51 at time x33, the communication unit 617 outputs an output signal corresponding to the command signal com_c, that is, the rotation at time x34, which is the timing at which the next command is received.
  • An output signal Sd_c including an angle signal, a status signal, and a CRC signal (no rotation number signal and no status signal) is transmitted to the first microcomputer 51.
  • the communication unit 617 receives the rotation angle signal corresponding to the command signal com_d at time x35, which is the timing at which the next command is received, and An output signal Sd_d including a CRC signal (rotation number signal, no status signal) is transmitted to the first microcomputer 51.
  • the command signal from the first microcomputer 51 is transmitted in the order of com_a, com_b, com_c, and com_d, and the output signal from the first sensor unit 361 is Sd_a, Sd_b, Although they are transmitted in the order of Sd_c and Sd_d, the transmission order is not limited to this, and the transmission order may be different. Further, for example, the first microcomputer 51 transmits the command signals com_a, com_b, and com_c according to each transmission cycle so as to acquire the rotation frequency signal at the rotation frequency transmission cycle and acquire the status signal at the status transmission cycle.
  • a command signal com_d for acquiring a rotation angle signal may be transmitted.
  • the number-of-rotations transmission cycle and the status transmission cycle may be the same or different. If the rotation frequency transmission cycle and the status transmission cycle are equal, the command signals com_b and com_c may not be used.
  • the command signals com_a, com_b, com_c may be transmitted. In the first microcomputer 51, an operation according to the acquired signal is performed.
  • FIG. 15E describes that the periods of the respective calculations are equal, the calculation periods may be different depending on the actually performed calculation.
  • the case where the self-diagnosis unit 618 is provided has been described as an example.
  • the signal included in the output signal according to the type of the command signal The type of can be changed. That is, when the self-diagnosis unit 618 is not provided, the first sensor unit 61 transmits, for example, the output signal Sd_b including the rotation angle signal and the rotation frequency signal according to the command signal com_b, and according to the command signal com_d.
  • the output signal Sd_d including the rotation angle signal is transmitted.
  • the communication units 617 and 627 can appropriately transmit output signals in response to requests from the first and second microcomputers 51 and 52.
  • the abnormality diagnosis result is output to the first and second microcomputers 51 and 52 as a status signal.
  • the first microcomputer 51 can prohibit the calculation based on the output signal including the abnormality diagnosis result, thereby improving the reliability of the rotation detection device 3. Can do.
  • the third embodiment has the same effects as the first embodiment.
  • FIG. 16 A fourth embodiment of the present disclosure is shown in FIG. As shown in FIG. 16, the rotation detection device 4 of the present embodiment includes a first sensor unit 461 and a second sensor unit 462. In the present embodiment, sensor elements 601 and 607 and a circuit unit 612 are provided on one chip 641. Similarly for the second sensor unit 462, two sensor elements and a circuit unit are provided in one chip 642.
  • the circuit unit 612 of the first sensor unit 461 includes a sensor element 607, AD conversion units 633 and 634, a rotation angle calculation unit 635, and a rotation number calculation unit 636 in addition to the components of the circuit unit 611 of the third embodiment.
  • the sensor element 601, the AD conversion units 613 and 614, the rotation angle calculation unit 615, and the rotation number calculation unit 616 serve as the rotation information calculation circuit 951
  • the rotation number calculation unit 636 is a rotation information calculation circuit 952.
  • the first sensor unit 461 includes two systems of rotation information calculation circuits 951 and 952.
  • the second sensor unit 462 includes two systems of rotation information calculation circuits 953 and 954.
  • each of the sensor units 61 and 62 in the first embodiment is provided with one system of rotation information calculation circuit.
  • the self-diagnostic unit 618 compares the corresponding calculation results (corresponding calculation values) of the rotation information calculation circuits 951 and 952 in addition to the power supply abnormality such as a power fault and a ground fault, so that An intermediate abnormality can be detected.
  • the intermediate abnormality is an abnormality in which each calculation result itself is within a normal range, for example, an offset abnormality in which a difference (offset) between the corresponding calculation values exceeds a predetermined range.
  • the communication unit 617 also includes an intermediate abnormality in the output signal as a status signal and transmits it to the first microcomputer 51.
  • the rotation angle signal and the rotation frequency signal of each system are transmitted to the first microcomputer 51.
  • the corresponding calculation values may be compared on the first microcomputer 51 side to detect an intermediate abnormality.
  • a sensor element may be separately provided for the rotation angle ⁇ m calculation and the rotation number TC calculation.
  • the sensor units 461 and 462 each have four elements, and the rotation detection device 4 as a whole has eight elements.
  • a plurality of rotation information calculation circuits 951 and 952 are provided for one communication unit 617. As a result, an intermediate abnormality such as an offset abnormality can be detected.
  • this embodiment has the same effect as the first embodiment.
  • FIGS. 17 and 18 A fifth embodiment of the present disclosure is shown in FIGS. 17 and 18. It is assumed that the electric power steering device 108 is stopped when a start switch such as an ignition switch is off. At this time, power supply to the first and second microcomputers 51 and 52 is not performed, and the first and second microcomputers 51 and 52 do not perform various calculations and communication.
  • power is directly supplied to the rotation detection device 1 from the first and second batteries 39 and 49 even when the electric power steering device 108 is stopped. Specifically, even when the electric power steering device 108 is stopped, the first sensor unit 61 is directly supplied with electric power from the first battery 39, and the second sensor unit 62 is directly supplied from the second battery 49. Electric power is supplied. Thereby, even when the electric power steering device 108 is stopped, the calculation in the rotation detection device 1 can be continued.
  • the steering angle ⁇ s is calculated based on the rotation angle ⁇ m, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109.
  • the steering wheel 101 is steered by the driver while the electric power steering device 108 is stopped, the steering shaft 102 rotates and the motor unit 10 rotates via the reduction gear mechanism 109. If the number of rotations TC is not counted, the steering angle ⁇ s cannot be calculated until the relearning of the neutral position of the steering wheel 101 is completed.
  • the calculation of the rudder angle ⁇ s requires information on what rotation angle ⁇ m the rotation position of the motor unit 10 is, and an instantaneous value at the time of restart may be used for the rotation angle ⁇ m. Therefore, it is not necessary to continue the calculation during the stop for the rotation angle ⁇ m.
  • the rotation detection device concerned supplies power directly to the rotation detection device 1 from the first and second batteries 39 and 49, so that the rotation detection device 1 is connected to the electric power steering device 108.
  • the calculation of the number of rotations TC is continued even during the stop.
  • the calculation of the rotation angle ⁇ m may or may not be continued, but it is preferable not to continue the calculation in terms of power consumption. Since the first and second microcomputers 51 and 52 are stopped, the rotation detection device 1 does not communicate with the microcomputers 51 and 52 and internally holds the counted number of rotations TC.
  • output signals including a rotation angle signal and a rotation frequency signal are output to the first and second microcomputers 51 in accordance with command signals from the first and second microcomputers 51 and 52. , 52.
  • the first and second microcomputers 51 and 52 can appropriately calculate the steering angle ⁇ s even at the restart without re-learning the neutral position of the steering wheel 101 or the like.
  • the rotation detection device 1 according to the first embodiment has been described as an example, but the rotation detection devices 2 to 4 according to the second to fourth embodiments may be used. The same applies to the sixth embodiment.
  • step S101 is omitted, and is simply referred to as “S”. The same applies to the other steps.
  • the first sensor unit 61 determines whether or not the electric power steering device 108 is operating.
  • the electric power steering apparatus is described as “EPS”.
  • EPS electric power steering apparatus
  • the rotation information calculation process is S104.
  • the first sensor unit 61 calculates the rotation angle ⁇ m and the number of rotations TC.
  • the first sensor unit 61 transmits an output signal in response to a command from the first microcomputer 51.
  • the first microcomputer 51 uses the signals included in the acquired output signal to calculate the rotation angle ⁇ m, the steering angle ⁇ s, and the like.
  • the first sensor unit 61 determines whether or not the motor unit 10 is stopped. . Whether or not the motor unit 10 is stopped is regarded as the motor unit 10 being stopped, for example, when the rotational speed of the motor unit 10 is smaller than the determination threshold. Further, for example, when the rotation angle ⁇ m is not calculated, or when the change amount of the value output from the AD conversion unit 614 (for example, a difference value or differential value from the previous value) is smaller than the determination threshold, the motor unit 10 Assume that it is stopped.
  • the motor unit 10 when one rotation of the motor unit 10 is divided into three or more regions and counted, the motor unit 10 is considered to be stopped when the same count value is continued for a predetermined period.
  • the rotation information calculation process proceeds to S105.
  • the rotation information calculation process proceeds to S106.
  • the rotation number calculation unit 616 calculates the rotation number TC at the first frequency f1.
  • the first frequency f1 is set to such an extent that skipping of the number of rotations does not occur when the motor unit 10 is driven.
  • the rotation number calculation unit 616 calculates the rotation number TC at the second frequency f2.
  • the second frequency f2 is assumed to be lower than the first frequency f1. That is, f1> f2. Since the number of rotations TC does not change while the motor unit 10 is stopped, power consumption can be suppressed by reducing the calculation frequency of the number of rotations TC, for example, intermittent operation.
  • the calculation frequency of the rotation frequency TC during the operation of the electric power steering device 108 is set to be equal to or higher than the first frequency f1, it is possible to prevent skipping of the rotation frequency TC.
  • the rotation angle ⁇ m is transmitted to the first microcomputer 51, so that the first microcomputer 51 can calculate the number of rotations TC based on the rotation angle ⁇ m. Therefore, the calculation frequency of the number of rotations TC during the operation of the electric power steering apparatus 108 may be smaller than the first frequency f1.
  • the first sensor unit 61 keeps the number of rotations TC in the first sensor unit 61. In addition, it is not necessary to hold the calculated values of all the rotation times TC, and it is only necessary to hold the latest value of the rotation number TC.
  • the first sensor unit 61 transmits the rotation number signal related to the rotation number TC to the first microcomputer 51 together with the rotation angle signal related to the rotation angle ⁇ m when the electric power steering device 108 is restarted.
  • the update frequency of the rotation frequency TC in the rotation frequency calculation units 616 and 626 is changed depending on whether or not the motor unit 10 is operating. More specifically, when the motor unit 10 is stopped, the update frequency of the number of rotations TC is reduced as compared with that during operation. Thereby, it is possible to reduce power consumption particularly when the electric power steering device 108 is stopped.
  • the present embodiment power is supplied from the first battery 39 to the sensor elements 601 and 602 and the circuit units 610 and 620 even when the electric power steering apparatus 108 that is a system including the motor unit 10 is stopped. .
  • the power supply to the rotation detection device 1 is continued, and the calculation of the number of rotations TC can be continued.
  • the calculation of the number of rotations TC is continued, so that the steering angle is not re-learned even when the electric power steering device 108 is restarted. ⁇ s can be appropriately calculated.
  • the fifth embodiment has the same effects as the first embodiment.
  • FIG. 6 A sixth embodiment of the present disclosure is shown in FIG.
  • the present embodiment is a modification of the fifth embodiment, and a constant voltage power circuit 37 is provided in the power supply path from the first battery 39 to the first sensor unit 61.
  • a constant voltage power supply circuit 47 is provided in the power supply path from the second battery 49 to the second sensor unit 62.
  • a constant voltage power supply circuit may be shared, and each sensor part 61 and 62 is used. It may be provided for each.
  • the constant voltage power supply circuits 37 and 47 are regulators or the like that have a small power consumption so that the rotation detecting device 1 can be driven (for example, about several mA).
  • the constant voltage power supply circuits 37 and 47 are provided separately from the regulators of the integrated circuits 56 and 57 and can supply power to the rotation detection device 1 even when the driving device 8 is stopped.
  • the rotation detection device regardless of the voltage of the first and second batteries 39 and 49. There is no need to change the pressure resistance design of 1.
  • the sixth embodiment has the same effect as the first embodiment.
  • FIG. 20 is a schematic diagram corresponding to FIG.
  • the sensor element 601 and the circuit unit 610 are configured by one chip 641
  • the sensor element 602 and the circuit unit 620 are configured by one chip 642.
  • the chip 643 including the circuit unit 610 and the chip 644 including the sensor element 601 are divided into different chips. Further, the chip 645 including the circuit portion 620 and the chip 646 including the sensor element 602 are divided into different chips.
  • the sensor elements and circuit numbers included in the chip are omitted.
  • the circuit units 611 and 612 may be used instead of the circuit unit 610, or the circuit units 621 and 622 may be used instead of the circuit unit 620.
  • the chip 643 including the circuit unit 610 is provided on the lead frame 66.
  • the chip 644 including the sensor element 601 is provided on the upper surface of the chip 643.
  • the “upper surface” of the chip means a surface opposite to the lead frame 66 of the chip.
  • the chip 645 including the circuit unit 620 is provided on the lead frame 66.
  • a chip 646 including the sensor element 602 is provided on the upper surface of the chip 645.
  • chips 644 and 646 including sensor elements are arranged on the inner side so as to be closer to the rotation center line Ac side than chips 643 and 645 including circuit parts, and chips 643 and 645 including circuit parts are provided. May be arranged outside.
  • the chips 644 and 646 are arranged so as to be point-symmetric with respect to the rotation center line Ac.
  • the sensor element 601 is provided separately from the chip 643 of the circuit unit 610.
  • the sensor element 602 is provided separately from the chip 645 of the circuit portion 620.
  • elements for example, MR elements
  • the sensor element 601 is disposed on the upper surface of the chip 643 of the circuit portion 610, and the sensor element 602 is disposed on the upper surface of the chip 645 of the circuit portion 620.
  • the sensor elements 601 and 602 are arranged on the rotation center line Ac side of the motor unit 10 with respect to the chips 643 and 645 of the circuit units 610 and 620. Thereby, since the sensor elements 601 and 602 can be disposed close to the rotation center line Ac, the detection accuracy is increased. Further, the seventh embodiment has the same effect as the first embodiment.
  • the two sensor units are provided in one sensor package 65.
  • the first sensor unit 61 is provided in the first package 661
  • the second sensor unit 62 is provided in the second package 662. That is, in this embodiment, the packages 661 and 662 are provided for each of the sensor units 61 and 62.
  • the configuration of the sensor unit and the like are not limited to those of the first embodiment, and may be those described in the second to seventh embodiments. The same applies to the ninth embodiment.
  • the first package 661 is mounted on the first main surface 211 of the first substrate 21, and the second package 662 is mounted on the second main surface 212 of the first substrate 21.
  • the mounting area of the rotation detection device 6 on the first substrate 21 can be reduced.
  • the sensor elements 601 and 602 of the sensor units 61 and 62 are both arranged on the rotation center line Ac. Thereby, the detection accuracy of the rotation of the motor unit 10 can be increased.
  • both the packages 661 and 662 may be mounted on the first main surface 211 of the first substrate 21 as shown in FIG. 23A, or both the second main surface 212 of the first substrate 21 as shown in FIG. 23B. May be implemented.
  • the package 661 is provided corresponding to the sensor element 601 and the circuit unit 610 that uses the detection value of the sensor element 601.
  • the package 662 is provided corresponding to the sensor element 602 and the circuit portion 620 that uses the detection value of the sensor element 602. That is, the packages 661 and 662 are provided for each of the sensor units 61 and 62.
  • the degree of freedom of arrangement of the rotation detection device 6 is increased.
  • simultaneous failure of a plurality of systems due to package failure can be prevented, and even when an abnormality occurs in one package, the rotation angle ⁇ m and the number of rotations TC can be calculated by each configuration included in the other package. Can continue.
  • the eighth embodiment has the same effect as the first embodiment.
  • FIG. 24 shows a ninth embodiment of the present disclosure.
  • the SW elements 301 to 306 and 401 to 406, the capacitors 36 and 46, the rotation detection device 1 and the like are mounted on the first substrate 21, and the microcomputers 51 and 52 and the integrated circuit are integrated on the second substrate 22. Circuits 56 and 57 are mounted.
  • SW elements 301 to 306, capacitors 36 and 46, first and second microcomputers 51 and 52, integrated circuits 56 and 57, and rotation detection are performed on one substrate 23.
  • a device 6 is implemented. Specifically, the SW elements 301 to 306 and 401 to 406, the integrated circuits 56 and 57, the package 661 of the rotation detection device 6, and the like are mounted on the first main surface 231 that is the surface of the substrate 23 on the motor unit 10 side. Is done.
  • the capacitors 36 and 46, the first and second microcomputers 51 and 52, the package 662 of the rotation detection device 6, and the like are mounted on the second main surface 232 that is the surface opposite to the motor unit 10 of the substrate 23.
  • FIG. 24 shows an example in which packages 661 and 662 are provided for each of the sensor units 61 and 62 and are mounted on both main surfaces 231 and 232 of the substrate 23. May be implemented.
  • the sensor units 61 and 62 may be a single package.
  • the rotation detection device 6 is mounted on the first surface 231 of the substrate 23.
  • the number of components can be reduced.
  • the physique in the axial direction can be reduced as compared with the case where a plurality of substrates are stacked in the axial direction. Even if comprised in this way, there exists an effect similar to the said 1st Embodiment.
  • FIGS. 10th Embodiment A tenth embodiment will be described with reference to FIGS.
  • the element arrangement in the case where two sensor elements 601 and 607 (see FIG. 16) are provided for one circuit unit 612 will be mainly described.
  • the sensor elements 601 and 607 and the circuit unit 612 are provided on the same chip 641, but in the present embodiment, the sensor elements 601 and 607 are configured by different chips for explanation.
  • the chips of the sensor elements 601 and 607 are simply referred to as “sensor elements 601 and 607”.
  • FIG. 25, FIG. 26, and FIG. 28 descriptions of the components other than the sensor elements 601 and 607 are omitted.
  • the sensor elements 601 and 607 are magnetic detection elements that detect a magnetic field change accompanying rotation of the magnet 16 (see FIG. 4), and have directionality related to magnetic detection.
  • the sensor elements 601 and 607 have the same structure, and the magnetic detection characteristic directions of the sensor elements 601 and 607 are indicated by arrows.
  • the magnetic detection characteristic direction may be a direction corresponding to the arrangement of the Hall elements. And it is sufficient.
  • the detection value Ap of the sensor element 601 and the detection value Aq of the sensor element 607 match as shown in FIG. 25B.
  • the detected value Ap is a value obtained by converting the sin signal and the cos signal output from the sensor element 601 into an angle by using a predetermined conversion function such as an arctangent function (arctangent).
  • the detection value Aq is a value obtained by converting the sin signal and the cos signal output from the sensor element 607 into an angle by using a predetermined conversion function such as an arctangent function (arctangent).
  • a predetermined conversion function such as an arctangent function (arctangent).
  • the digital conversion value Dp of the detection value Ap and the digital conversion value Dq of the detection value Aq match.
  • the digital conversion values Dp and Dq are represented by 14 bits, as shown in FIG. 25C, the digital conversion values Dp and Dq when the mechanical angle of the motor unit 10 is 0 ° are both “00000000000000”.
  • the number of bits can be set as appropriate.
  • the rotational positions of the sensor elements 601 and 607 are shifted so that the detection values Ap and Aq are out of phase.
  • the magnetic detection characteristic direction is shifted in the rotational direction (the rotational direction of the motor unit 10).
  • “displace the magnetic detection characteristic directions of the two sensor elements 601 and 607” means that the angle formed by the magnetic detection characteristic directions of the two sensor elements 601 and 607 is non-zero.
  • the “shift amount” means the amount of rotation (angle difference) between the respective magnetic detection characteristic directions.
  • the rotational positions of the sensor elements 601 and 607 are shifted by 180 °, so that the respective magnetic detection characteristic directions are shifted by 180 °.
  • the phases of the detection values Ap and Aq are shifted by 180 ° as shown in FIG. 26B. Therefore, as shown in FIG. 26C, when the mechanical angle of the motor unit 10 is 0 °, the digital conversion value Dp is “00000000000000” and the digital conversion value Dq is “10000000000000”, which are different values.
  • the digital conversion values Dp and Dq are both “00000000000000”. That is, by shifting the magnetic detection characteristic direction of the sensor elements 601 and 607, the digital conversion values Dp and Dq in the normal state become different values. Therefore, the first microcomputer 51 has the same digital conversion values Dp and Dq. When the value is reached, it can be determined that a sticking abnormality has occurred.
  • the normal digital conversion values Dp and Dq are different values by shifting the respective magnetic detection characteristic directions of the sensor elements 601 and 607 by an angle d or more corresponding to the resolution. Therefore, it is possible to determine the sticking abnormality.
  • the angle errors of the detection values Ap and Aq of the sensor elements 601 and 607 will be described with reference to FIG. In FIG. 27, the angle error when the detection values Ap and Aq are added is indicated by a solid line, and the angle error when the detection values are subtracted is indicated by a broken line.
  • the angle error can be canceled by adding the detection values Ap and Aq.
  • the angle error can be canceled by subtracting the detection values Ap and Aq.
  • the digital conversion values Dp and Dq in the normal state are the same, and the sticking abnormality determination cannot be performed. Therefore, the digital conversion values Dp and Dq
  • the range of 0 ⁇ d is excluded so that is shifted by at least one bit.
  • the shift amount in the magnetic detection characteristic direction is in the range R1 of (0 + d) ° to 45 °, R2 of 135 ° to 225 °, and R3 of 315 ° to (360-d) °.
  • FIG. 28A is 45 ° in the magnetic detection characteristic direction
  • FIG. 28B is 135 ° in the magnetic detection characteristic direction
  • FIG. 28C is 225 ° in the magnetic detection characteristic direction
  • the shift amount in the magnetic detection characteristic direction is 315 °.
  • the angle formed by the sensor elements 601 and 607 itself becomes 45 °.
  • the magnetic detection characteristic directions of the sensor elements 601 and 607 corresponding to the same circuit unit 612 are shifted.
  • the sensor elements 601 and 607 of the sensor unit 461 and the sensor elements of the sensor unit 462 may or may not have the same magnetic detection characteristic direction. The same applies when the sensors 461 and 462 have different packages.
  • the two sensor elements 601 and 607 provided corresponding to one circuit unit 612 are arranged by shifting the magnetic detection characteristic direction related to magnetic detection in the rotation direction. Since the digital conversion values Dp and Dq in the normal state are different by giving the phase deviation to the detection values Ap and Aq of the plurality (two in the present embodiment) of the sensor elements 601 and 607, the fixing abnormality or the like It becomes easier to detect digital output failure.
  • the two sensor elements 601 and 607 are arranged with the magnetic detection characteristic direction shifted by 180 °. Thereby, the angle error can be canceled by adding the detection values Ap and Aq.
  • the shift amount in the magnetic detection characteristic direction of the two sensor elements 601 and 607 is (0 + d) ° or more and 45 ° or less, 135 °, where d is an angle corresponding to the resolution corresponding to the number of bits of the rotation angle detection signal.
  • the angle is 225 ° or less, 315 ° or more (360-d) ° or less. Thereby, the angle error can be kept relatively small.
  • the microcomputer 51 determines that an abnormality has occurred when the digital conversion values Dp and Dq corresponding to the detection values Ap and Aq of the sensor elements 601 and 607 arranged with the magnetic detection characteristic direction shifted in the rotation direction match. To do. Thereby, a digital output failure can be detected appropriately.
  • the rotation detection device is provided with two circuit units. In other embodiments, the number of circuit units may be three or more. In the above embodiment, one or two rotation information calculation circuits are provided in one sensor unit. In another embodiment, three or more rotation information calculation circuits may be provided in one sensor unit. In the above embodiment, the sensor element is a Hall element. In other embodiments, the sensor element may be any element that can detect the rotation of the detection target, such as an MR element. In the above embodiment, one or two sensor elements are provided for one circuit unit. In another embodiment, three or more sensor elements may be provided for one circuit unit. Of course, the first and second sensor elements and the first and second circuit units are not limited to two, but “at least the first and second sensor elements and at least the first and second sensor elements”. 2 ".
  • the rotation positions of the chips constituting the sensor elements are shifted so that the magnetic detection characteristic directions of the plurality of sensor elements provided corresponding to the same circuit unit are shifted in the rotation direction.
  • the magnetic detection characteristic direction can be shifted in the rotation direction. Good.
  • the command signal from a control part and the output signal from a sensor part are transmitted / received by a separate communication line.
  • the command signal and the output signal may be configured to be transmitted and received through the same signal line.
  • SPI communication is exemplified as a communication method between the control unit and the sensor unit.
  • the communication method between the control unit and the sensor unit is not limited to SPI communication, but SENT (Single Edge Nibble Any system may be used as long as the rotation angle signal and the rotation frequency signal can be included in the series of signals such as transmission communication.
  • the rotation angle signal and the rotation frequency signal may be transmitted as separate signals to the control unit.
  • the detection target is a motor unit.
  • the detection target is not limited to a motor, but may be a device other than a motor that requires rotation detection.
  • the motor unit is a three-phase brushless motor.
  • the motor unit is not limited to a three-phase brushless motor, and may be any motor.
  • the motor unit is not limited to a motor (electric motor), and may be a generator, or a so-called motor generator having both functions of an electric motor and a generator.
  • the drive component and the rotation detection device are mounted on the first substrate, and the control component is mounted on the second substrate.
  • at least a part of the control component may be mounted on the first substrate, or at least a part of the drive component may be mounted on the second substrate.
  • the driving component and the control component according to the first system may be mounted on the first substrate, and the driving component and the control component according to the second system may be mounted on the second substrate.
  • the drive device is applied to an electric power steering device.
  • the drive device may be applied to a device other than the electric power steering device.
  • this indication is not limited to the said embodiment at all, and can be implemented with a various form in the range which does not deviate from the meaning of invention.
  • Rotation detection device 10 Motor unit (detection target) 51, 52 ... Microcomputer (control unit) 601 to 607... Sensor elements 610 to 612, 620 to 622... Circuit units 615, 625, 635... Rotation angle calculation units 616, 626, 636. Communication part 65,661,662 ... package

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

The present invention provides a rotation detecting device provided with: first and second sensor elements which detect rotation of a subject to be detected; circuit units which respectively have first and second rotation angle calculating units which calculate rotation angles of the subject to be detected on the basis of first and second detection values respectively obtained by the first and second sensor elements, first and second rotation number calculating units which calculate the number of rotations of the subject to be detected on the basis of the first and second detection values, and first and second communicating units which output, to a control unit, rotation angle signals related to the rotation angles and rotation number signals related to the number of rotations; and a package unit which seals the first and second sensor elements and the circuit units, and is mounted on a substrate separately from the control unit.

Description

回転検出装置、および、これを用いた電動パワーステアリング装置Rotation detection device and electric power steering device using the same
 本開示は、回転検出装置、および、これを用いた電動パワーステアリング装置に関する。 The present disclosure relates to a rotation detection device and an electric power steering device using the rotation detection device.
 検出対象であるモータの回転に基づく磁気変化を検出し、検出した磁気変化に基づいて、前記モータの回転を示す情報を生成する回転角検出装置がある。例えば特許文献1は、上記公知の装置の典型的な一例を開示している。すなわち、この特許文献1には、運転者によるステアリングホイールの操舵力をアシストするモータを有する電動パワーステアリング用の電子制御ユニットが開示されている。この電子制御ユニットは、第1および第2の回転検出センサの一例である第1および第2の磁気センサを有している。第1の磁気センサは、モータの回転に基づく磁気変化を計測し、この計測された磁気変化を示す第1の回転情報を出力する。上記第1の磁気センサとは独立して設けられた第2の磁気センサは、上記モータの回転に基づく磁気変化を計測し、この計測された磁気変化を示す第2の回転情報を出力する。
 電子制御ユニットはさらに単一の監視回路部を有しており、この監視回路部は、第1および第2の回転情報に基づいて、前記モータの回転角を表す回転角信号を算出する。そして、電子制御ユニットは、制御回路部を有しており、この制御回路部は、監視回路部により算出された回転角信号に基づいて、前記ステアリングホイールの位置を算出している。
There is a rotation angle detection device that detects a magnetic change based on the rotation of a motor that is a detection target, and generates information indicating the rotation of the motor based on the detected magnetic change. For example, Patent Document 1 discloses a typical example of the known device. That is, Patent Document 1 discloses an electronic control unit for electric power steering having a motor that assists the steering force of the steering wheel by the driver. This electronic control unit has first and second magnetic sensors which are examples of first and second rotation detection sensors. The first magnetic sensor measures a magnetic change based on the rotation of the motor and outputs first rotation information indicating the measured magnetic change. A second magnetic sensor provided independently of the first magnetic sensor measures a magnetic change based on the rotation of the motor and outputs second rotation information indicating the measured magnetic change.
The electronic control unit further includes a single monitoring circuit unit, and the monitoring circuit unit calculates a rotation angle signal representing the rotation angle of the motor based on the first and second rotation information. The electronic control unit has a control circuit unit, and the control circuit unit calculates the position of the steering wheel based on the rotation angle signal calculated by the monitoring circuit unit.
特開2015-116964号公報JP2015-116964A
 特許文献1では、複数のセンサ素子である上記第1および第2の磁気センサに対して単一の監視回路が設けられている構成である。このため、監視回路の一部に異常が生じた場合、第1および第2の磁気センサそれぞれにより検出された第1および第2の回転角情報に基づいて監視回路により回転角信号を算出することが困難になる恐れがある。この場合、電動パワーステアリング装置の駆動を継続できない虞がある。
 本開示は、上述の課題に鑑みてなされたものであり、その目的は、複数のセンサ素子、すなわち少なくとも第1および第2のセンサ素子、によりそれぞれ検出された検出対象の回転を表す情報に基づいて該検出対象の回転角を表す回転角信号および該検出対象の回転回数を表す回転回数信号を演算する部分の一部に異常が生じた場合においても、前記検出対象の回転角を表す回転角信号および該検出対象の回転回数を表す回転回数信号を継続して演算可能である回転検出装置、および、これを用いた電動パワーステアリング装置を提供することにある。
In patent document 1, it is the structure by which the single monitoring circuit is provided with respect to the said 1st and 2nd magnetic sensor which is a several sensor element. For this reason, when an abnormality occurs in a part of the monitoring circuit, the monitoring circuit calculates the rotation angle signal based on the first and second rotation angle information detected by the first and second magnetic sensors, respectively. May be difficult. In this case, there is a possibility that the drive of the electric power steering device cannot be continued.
This indication is made in view of the above-mentioned subject, and the object is based on information showing rotation of a detection object detected by a plurality of sensor elements, ie, at least the 1st and 2nd sensor elements, respectively. The rotation angle indicating the rotation angle of the detection target even when an abnormality occurs in a part of the rotation angle signal indicating the rotation angle of the detection target and the rotation number signal indicating the rotation number of the detection target. An object of the present invention is to provide a rotation detection device capable of continuously calculating a signal and a rotation frequency signal representing the rotation frequency of the detection target, and an electric power steering device using the rotation detection device.
 本開示の例示的態様に関わる回転検出装置は、少なくとも第1および第2のセンサ素子と、回路部と、パッケージ部とを備える。前記第1および第2のセンサ素子はそれぞれ、検出対象の回転を検出する。
 前記回路部は、前記第1および第2のセンサ素子それぞれの第1および第2の検出値に基づいて前記検出対象の回転角を演算する第1および第2の回転角演算部、前記第1および第2のセンサ素子の第1および第2の検出値に基づいて前記検出対象の回転回数を演算する第1および第2の回転回数演算部、ならびに、前記回転角に係る信号である回転角信号および前記回転回数に係る回転回数信号を制御部に出力する第1および第2の通信部をそれぞれ有している。
A rotation detection device according to an exemplary aspect of the present disclosure includes at least first and second sensor elements, a circuit unit, and a package unit. Each of the first and second sensor elements detects rotation of a detection target.
The circuit unit includes first and second rotation angle calculation units that calculate a rotation angle of the detection target based on first and second detection values of the first and second sensor elements, respectively. First and second rotation number calculation units for calculating the number of rotations of the detection target based on the first and second detection values of the second sensor element, and a rotation angle that is a signal related to the rotation angle It has the 1st and 2nd communication part which outputs the rotation frequency signal which concerns on a signal and the said rotation frequency to a control part, respectively.
 前記パッケージ部は、前記第1および第2のセンサ素子および前記回路部を封止しており、前記制御部とは別途に基板に実装される。
 本開示では、回路部は、前記検出対象の回転角を演算する第1および第2の回転角演算部、および前記第1および第2のセンサ素子の第1および第2の検出値に基づいて前記検出対象の回転回数を演算する第1および第2の回転回数演算部をそれぞれ有している。このため、第1および第2の回転角演算部の衣一方、あるいは第1および第2の回転回数演算部の一方に異常が生じた場合であっても、前記検出対象の回転角および回転回数を継続して演算することができる。
The package unit seals the first and second sensor elements and the circuit unit, and is mounted on a substrate separately from the control unit.
In the present disclosure, the circuit unit is based on the first and second rotation angle calculation units that calculate the rotation angle of the detection target, and the first and second detection values of the first and second sensor elements. It has the 1st and 2nd rotation frequency calculating part which calculates the rotation frequency of the said detection object, respectively. For this reason, even if an abnormality occurs in one of the clothing of the first and second rotation angle calculation units or one of the first and second rotation number calculation units, the rotation angle and the number of rotations of the detection target Can be calculated continuously.
本開示の第1実施形態によるステアリングシステムの概略構成図である。1 is a schematic configuration diagram of a steering system according to a first embodiment of the present disclosure. 本開示の第1実施形態による駆動装置を示す回路図である。FIG. 3 is a circuit diagram illustrating a driving device according to a first embodiment of the present disclosure. 本開示の第1実施形態による駆動装置の平面図である。It is a top view of the drive device by a 1st embodiment of this indication. 図3のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 本開示の第1実施形態による第1基板の側面図である。3 is a side view of a first substrate according to a first embodiment of the present disclosure. FIG. 本開示の第1実施形態による第2基板の側面図である。5 is a side view of a second substrate according to the first embodiment of the present disclosure. FIG. 本開示の第1実施形態による回転検出装置の一例を示す側面図である。It is a side view showing an example of a rotation detection device by a 1st embodiment of this indication. 本開示の第1実施形態による回転検出装置の他の例を示す側面図である。It is a side view showing other examples of a rotation detecting device by a 1st embodiment of this indication. 本開示の第1実施形態による回転検出装置の内部構成を説明する平面図である。It is a top view explaining an internal configuration of a rotation detecting device by a 1st embodiment of this indication. 本開示の第1実施形態による回転検出装置を示すブロック図である。It is a block diagram showing a rotation detecting device by a 1st embodiment of this indication. 本開示の第1実施形態によるセンサ部とマイコンとの通信を説明するタイムチャートである。It is a time chart explaining communication with a sensor part and a microcomputer by a 1st embodiment of this indication. 本開示の第1実施形態によるセンサ部とマイコンとの通信を説明するタイムチャートである。It is a time chart explaining communication with a sensor part and a microcomputer by a 1st embodiment of this indication. 本開示の第2実施形態による回転検出装置を示すブロック図である。It is a block diagram which shows the rotation detection apparatus by 2nd Embodiment of this indication. 本開示の第2実施形態による回転検出装置の内部構成の一例を説明する平面図である。It is a top view explaining an example of an internal configuration of a rotation detecting device by a 2nd embodiment of this indication. 本開示の第2実施形態による回転検出装置の内部構成の他の例を説明する平面図である。It is a top view explaining other examples of an internal configuration of a rotation detecting device by a 2nd embodiment of this indication. 本開示の第3実施形態による回転検出装置を示すブロック図である。It is a block diagram which shows the rotation detection apparatus by 3rd Embodiment of this indication. 本開示の第3実施形態によるセンサ部とマイコンとの通信を説明するタイムチャートである。It is a time chart explaining communication with a sensor part and a microcomputer by a 3rd embodiment of this indication. 本開示の第4実施形態による回転検出装置を示すブロック図である。It is a block diagram showing a rotation detection device by a 4th embodiment of this indication. 本開示の第5実施形態による回転検出装置を示すブロック図である。It is a block diagram which shows the rotation detection apparatus by 5th Embodiment of this indication. 本開示の第5実施形態による回転情報演算処理を説明するフローチャートである。It is a flowchart explaining the rotation information calculation process by 5th Embodiment of this indication. 本開示の第6実施形態による回転検出装置を示すブロック図である。It is a block diagram showing a rotation detection device by a 6th embodiment of this indication. 本開示の第7実施形態による回転検出装置の内部構成の一例を説明する平面図である。It is a top view explaining an example of an internal configuration of a rotation detecting device by a 7th embodiment of this indication. 本開示の第7実施形態による回転検出装置の内部構成の他の例を説明する平面図である。It is a top view explaining other examples of an internal configuration of a rotation detecting device by a 7th embodiment of this indication. 本開示の第8実施形態による第1基板の側面図である。It is a side view of the 1st substrate by an 8th embodiment of this indication. 本開示の第8実施形態による回転検出装置を示す側面図である。It is a side view showing a rotation detecting device by an 8th embodiment of this indication. 本開示の第8実施形態による回転検出装置の一例を示す側面図である。It is a side view showing an example of a rotation detecting device by an 8th embodiment of this indication. 本開示の第8実施形態による回転検出装置の他の例を示す側面図である。It is a side view showing other examples of a rotation detecting device by an 8th embodiment of this indication. 本開示の第9実施形態による基板の側面図である。It is a side view of the board | substrate by 9th Embodiment of this indication. 比較例のセンサ素子の配置を説明する図である。It is a figure explaining arrangement | positioning of the sensor element of a comparative example. 比較例のセンサ素子の検出値を説明する説明図である。It is explanatory drawing explaining the detection value of the sensor element of a comparative example. 比較例のセンサ素子の検出値のデジタル換算値を説明する図である。It is a figure explaining the digital conversion value of the detected value of the sensor element of a comparative example. 本開示の第10実施形態のセンサ素子の配置を説明する図である。It is a figure explaining arrangement of a sensor element of a 10th embodiment of this indication. 第10実施形態のセンサ素子の検出値を説明する説明図である。It is explanatory drawing explaining the detected value of the sensor element of 10th Embodiment. 第10実施形態のセンサ素子の検出値のデジタル換算値を説明する図である。It is a figure explaining the digital conversion value of the detected value of the sensor element of 10th Embodiment. 本開示の第10実施形態による複数のセンサ素子間のずらし量と検出誤差の関係を説明する説明図である。It is explanatory drawing explaining the relationship between the shift amount and the detection error between several sensor elements by 10th Embodiment of this indication. 本開示の第10実施形態による複数のセンサ素子の配置のバリエーションを説明する図である。It is a figure explaining the variation of arrangement of a plurality of sensor elements by a 10th embodiment of this indication. 比較例によるセンサ部とマイコンとの通信を説明するタイムチャートである。It is a time chart explaining communication with the sensor part by a comparative example, and a microcomputer. 参考例による回転検出装置を示す側面図である。It is a side view which shows the rotation detection apparatus by a reference example.
 以下、本開示に関わる複数の実施形態を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
 本開示の第1実施形態を図1~図11に示す。
 図1に示すように、第1実施形態に関わる回転検出装置1は、電動パワーステアリング装置108を有するステアリングシステム100の駆動装置8に設けられる。電動パワーステアリング装置108は車両Vに搭載されている。この電動パワーステアリング装置108は、車両Vの運転者によるステアリングホイールのステアリング操作を補助する機能を有している。駆動装置8は、シャフト15を有するモータ部10と、モータ部10の駆動制御に係るコントローラ部20とを備え、このモータ部10およびコントローラ部20が一体に形成されており、モータモジュールを構成している。図1では、コントローラ部20を「ECU」と記載した。
Hereinafter, a plurality of embodiments according to the present disclosure will be described with reference to the drawings. Hereinafter, in a plurality of embodiments, the same numerals are given to the substantially same composition, and explanation is omitted.
(First embodiment)
A first embodiment of the present disclosure is shown in FIGS.
As shown in FIG. 1, the rotation detection device 1 according to the first embodiment is provided in a drive device 8 of a steering system 100 having an electric power steering device 108. The electric power steering device 108 is mounted on the vehicle V. The electric power steering device 108 has a function of assisting the steering operation of the steering wheel by the driver of the vehicle V. The drive device 8 includes a motor unit 10 having a shaft 15 and a controller unit 20 related to drive control of the motor unit 10, and the motor unit 10 and the controller unit 20 are integrally formed to constitute a motor module. ing. In FIG. 1, the controller unit 20 is described as “ECU”.
 図1は、電動パワーステアリング装置108を備えるステアリングシステム100の全体構成の一例を示すものである。ステアリングシステム100は、運転手による操舵部材としてのステアリングホイール101、ステアリングシャフト102、トルクセンサ103、ピニオンギア104、ラック軸105、車輪106、および電動パワーステアリング装置108等から構成される。 FIG. 1 shows an example of the overall configuration of a steering system 100 including an electric power steering device 108. The steering system 100 includes a steering wheel 101 as a steering member by a driver, a steering shaft 102, a torque sensor 103, a pinion gear 104, a rack shaft 105, wheels 106, an electric power steering device 108, and the like.
 ステアリングシャフト102は、第1および第2の端部を有し、第1の端部には、ステアリングホイール101が接続される。ステアリングシャフト102には、運転者によるこのステアリングシャフト102の操舵処理に基づくトルク(操舵トルク)を検出するトルクセンサ103が設けられる。ステアリングシャフト102の第2の端部には、ピニオンギア104が設けられ、ピニオンギア104は、棒状のラックギアを有するラック軸105における該ラックに噛み合っている。ラック軸105の両端には、タイロッド等を介して一対の車輪106が設けられる。 The steering shaft 102 has first and second ends, and the steering wheel 101 is connected to the first end. The steering shaft 102 is provided with a torque sensor 103 that detects torque (steering torque) based on a steering process of the steering shaft 102 by the driver. A pinion gear 104 is provided at the second end of the steering shaft 102, and the pinion gear 104 meshes with the rack in a rack shaft 105 having a rod-shaped rack gear. A pair of wheels 106 are provided at both ends of the rack shaft 105 via tie rods or the like.
 運転者がステアリングホイール101を回転させると、ステアリングホイール101に接続されたステアリングシャフト102が回転する。ステアリングシャフト102の回転運動は、ピニオンギア104によりラック軸105のラックの直線運動に変換される。ラック軸105のラックの直線運動は、それぞれのタイロッドを介してそれぞれの車輪106が操舵される。各車輪106の操舵角は、ラック軸105のラックの変位量に応じた角度に基づいて定まる。 When the driver rotates the steering wheel 101, the steering shaft 102 connected to the steering wheel 101 rotates. The rotational movement of the steering shaft 102 is converted into a linear movement of the rack of the rack shaft 105 by the pinion gear 104. In the linear movement of the rack of the rack shaft 105, each wheel 106 is steered via each tie rod. The steering angle of each wheel 106 is determined based on an angle corresponding to the rack displacement amount of the rack shaft 105.
 電動パワーステアリング装置108は、駆動装置8、動力伝達部としての減速ギア機構109、および、トルクセンサ103等を備える。減速ギア機構109は、例えば、モータ部10のシャフト15に連結された第1のギア、および前記ステアリングシャフト102に設けられ、第1のギアに噛み合う第2のギア、を備えている。例えば、この減速ギア機構109は、モータ部10のシャフト15の回転に基づいて生成されたアシストトルクを、モータ部10の回転速度を第1のギアおよび第2のギア間の所定のギア比で低下させながら(すなわち、所定のギア比でアシストトルクを増大させながら)、ステアリングシャフト102に供給するものである。
 電動パワーステアリング装置108は、そのコントローラ部20により、トルクセンサ103から取得される操舵トルクおよび/または車両状態信号に基づいて、モータ部10を駆動することにより、アシストトルクを生成するように構成されている。車両状態信号は、例えば車両Vの速度を含み、車両Vの動作状態を表しており、他の電子制御ユニットから例えば図示しないCAN(Controller Area Network)等の車内ネットワークから取得される。
 すなわち、本実施形態の電動パワーステアリング装置108は、モータ部10にて発生したアシストトルクにてステアリングシャフト102の回転をアシストする、所謂シャフトアシストシステムであるが、ラック軸105のラックの軸方向変位をアシストする、所謂ラックアシストとしてもよい。換言すると、本実施形態では、ステアリングシャフト102がアシスト対象であるが、ラック軸105をアシスト対象としてもよい、ということである。
The electric power steering device 108 includes a driving device 8, a reduction gear mechanism 109 as a power transmission unit, a torque sensor 103, and the like. The reduction gear mechanism 109 includes, for example, a first gear coupled to the shaft 15 of the motor unit 10 and a second gear provided on the steering shaft 102 and meshing with the first gear. For example, the reduction gear mechanism 109 generates the assist torque generated based on the rotation of the shaft 15 of the motor unit 10 and the rotation speed of the motor unit 10 at a predetermined gear ratio between the first gear and the second gear. It is supplied to the steering shaft 102 while decreasing (that is, increasing the assist torque at a predetermined gear ratio).
The electric power steering device 108 is configured to generate assist torque by driving the motor unit 10 based on the steering torque and / or the vehicle state signal acquired from the torque sensor 103 by the controller unit 20. ing. The vehicle state signal includes, for example, the speed of the vehicle V and represents the operation state of the vehicle V, and is obtained from another in-vehicle network such as a CAN (Controller Area Network) (not shown).
That is, the electric power steering device 108 of the present embodiment is a so-called shaft assist system that assists the rotation of the steering shaft 102 with the assist torque generated by the motor unit 10. So-called rack assist may be used. In other words, in this embodiment, the steering shaft 102 is an assist target, but the rack shaft 105 may be an assist target.
 次に、電動パワーステアリング装置108の電気的構成の一例を図2に基づいて説明する。なお、図2においては、後述する基板21、22それぞれの配線および基板21および22間の配線を細線で記載するとともに、上記電動パワーステアリング装置108の電気的構成が複雑に図示されることを避けるため、上記配線における一部の配線を省略している。
 モータ部10は、例えば、ステータ10a、ロータ10b、シャフト15、および図示しない界磁部(例えば永久磁石、界磁コイル等)を有する三相ブラシレスモータである。ステータ10aは、図示しないステータコアと、U1コイル111、V1コイル112、およびW1コイル113を有する第1巻線セット11と、U2コイル121、V2コイル122、および、W2コイル123を有する第2巻線セット12とを備えている。前記シャフト15が取り付けられたロータ10bは、シャフト15と共に、ステータコアに対して回転するように構成されている。
 第1巻線セット11におけるU1コイル111、V1コイル112、およびW1コイル113、および第2巻線セット12におけるU2コイル121、V2コイル122、および、W2コイル123は、それぞれ、例えばステータコアのスロットおよび周囲に巻回されている。界磁部は、ロータ10bに取り付けられており、界磁を生成する。すなわち、モータ部10は、第1巻線セット11における三相コイル111、112、および113、および第2巻線セット12における三相コイル121、122、および123により生成された回転磁界と前記ロータ10bの界磁部により生成された界磁との間の磁気的相互作用により、ロータ10bを回転させることができる。
 ここで、第1巻線セット11の各相に流れる電流を、相電流Iu1、Iv1、Iw1、第2巻線セット12の各相に流れる電流を、相電流Iu2、Iv2、Iw2とする。
Next, an example of the electrical configuration of the electric power steering apparatus 108 will be described with reference to FIG. In FIG. 2, the wirings of the substrates 21 and 22 to be described later and the wirings between the substrates 21 and 22 are described by thin lines, and the electrical configuration of the electric power steering device 108 is avoided from being illustrated in a complicated manner. For this reason, some of the wirings are omitted.
The motor unit 10 is, for example, a three-phase brushless motor having a stator 10a, a rotor 10b, a shaft 15, and a field portion (not shown) (for example, a permanent magnet, a field coil, etc.). The stator 10a includes a stator core (not shown), a first winding set 11 having a U1 coil 111, a V1 coil 112, and a W1 coil 113, and a second winding having a U2 coil 121, a V2 coil 122, and a W2 coil 123. Set 12. The rotor 10b to which the shaft 15 is attached is configured to rotate with the shaft 15 relative to the stator core.
The U1 coil 111, the V1 coil 112, and the W1 coil 113 in the first winding set 11, and the U2 coil 121, the V2 coil 122, and the W2 coil 123 in the second winding set 12, respectively, are, for example, slots of the stator core and It is wound around. The field part is attached to the rotor 10b and generates a field. That is, the motor unit 10 includes the rotating magnetic field generated by the three- phase coils 111, 112, and 113 in the first winding set 11 and the three- phase coils 121, 122, and 123 in the second winding set 12 and the rotor. The rotor 10b can be rotated by a magnetic interaction with the field generated by the field portion 10b.
Here, currents flowing through the respective phases of the first winding set 11 are referred to as phase currents Iu1, Iv1, Iw1, and currents flowing through the respective phases of the second winding set 12 are referred to as phase currents Iu2, Iv2, Iw2.
 図2に示すように、コントローラ部20は、第1および第2の回路基板21および22と、第1および第2のインバータ30および40と、第1および第2の電流センサ31および41と、第1および第2のリレー32および42と、を備えている。コントローラ部20は、また、第1および第2の逆接保護リレー33および43と、チョークコイル35および45と、第1および第2のコンデンサ36および46と、第1および第2のモータ制御部501および502と、を備えている。
 特に、駆動装置8に搭載された回転検出装置1は、センサパッケージ65を備えている。このセンサパッケージ65は、それぞれモータ部10のロータ10bの回転を計測するための第1および第2のセンサ部61および62を備えている。
 図2においては、第1センサ部61を「センサ1」、第2センサ部62を「センサ2」と記載する。
 駆動装置8は、第1および第2のバッテリ39および49と、ヒューズ38および48と、コネクタユニット70(図3および4参照)と、を備えている。このコネクタユニット70は、第1および第2の電源コネクタ75および76と、第1および第2の信号コネクタ77および78と、を備えている。
 第1のバッテリ39は正極および負極端子を有し、該第1のバッテリ39の正極端子はヒューズ38を介して第1の電源コネクタ75に接続されており、負極端子は第1の電源コネクタ75に接続されている。
 第1のバッテリ39は、ヒューズ38、第1の電源コネクタ75、第1のチョークコイル35、第1のリレー32、第1の逆接保護リレー33、および第1のコンデンサ36を介して第1のインバータ30に接続されている。
 第1巻線セット11の三相巻線111、112および113には、第1インバータ30が接続されている。
 第1インバータ30は、6つのスイッチング素子301~306がブリッジ接続されている。
 すなわち、スイッチング素子301および304は、直列接続された一対のU相上および下アームスイッチング素子であり、スイッチング素子302および303は、直列接続された一対のV相上および下アームスイッチング素子であり、スイッチング素子303および306は、直列接続された一対のW相上および下アームスイッチング素子である。以下、「スイッチング素子」を「SW素子」と記す。本実施形態のSW素子301~306は、metal-oxide-semiconductor
field-effect transistors (MOSFETs)等の半導体スイッチが用いられる。第1実施形態では、上記SW素子301~306、401~406、および、リレー32、33、42、43として、MOSFETを用いているが、例えばInsulated-gate bipolar transistors (IGBTs)、サイリスタ等も用いることができる。
 MOSFETにより構成された各SW素子301~306の寄生ダイオ―ドは、対応するSW素子301~306に逆並列に接続された還流ダイオードとして機能可能である。他の還流ダイオードをそれぞれのSW素子301~306に逆並列に接続してもよい。
As shown in FIG. 2, the controller unit 20 includes first and second circuit boards 21 and 22, first and second inverters 30 and 40, first and second current sensors 31 and 41, First and second relays 32 and 42 are provided. The controller unit 20 also includes first and second reverse connection protection relays 33 and 43, choke coils 35 and 45, first and second capacitors 36 and 46, and first and second motor control units 501. And 502.
In particular, the rotation detection device 1 mounted on the drive device 8 includes a sensor package 65. The sensor package 65 includes first and second sensor units 61 and 62 for measuring the rotation of the rotor 10b of the motor unit 10, respectively.
In FIG. 2, the first sensor unit 61 is referred to as “sensor 1”, and the second sensor unit 62 is referred to as “sensor 2”.
The drive device 8 includes first and second batteries 39 and 49, fuses 38 and 48, and a connector unit 70 (see FIGS. 3 and 4). The connector unit 70 includes first and second power connectors 75 and 76 and first and second signal connectors 77 and 78.
The first battery 39 has positive and negative terminals, the positive terminal of the first battery 39 is connected to the first power connector 75 via the fuse 38, and the negative terminal is the first power connector 75. It is connected to the.
The first battery 39 is connected to the first battery via the fuse 38, the first power connector 75, the first choke coil 35, the first relay 32, the first reverse connection protection relay 33, and the first capacitor 36. The inverter 30 is connected.
The first inverter 30 is connected to the three- phase windings 111, 112 and 113 of the first winding set 11.
In the first inverter 30, six switching elements 301 to 306 are bridge-connected.
That is, switching elements 301 and 304 are a pair of U-phase upper and lower arm switching elements connected in series, switching elements 302 and 303 are a pair of V-phase upper and lower arm switching elements connected in series, Switching elements 303 and 306 are a pair of W-phase upper and lower arm switching elements connected in series. Hereinafter, the “switching element” is referred to as “SW element”. The SW elements 301 to 306 of this embodiment are metal-oxide-semiconductor.
Semiconductor switches such as field-effect transistors (MOSFETs) are used. In the first embodiment, MOSFETs are used as the SW elements 301 to 306 and 401 to 406 and the relays 32, 33, 42, and 43. For example, insulated-gate bipolar transistors (IGBTs), thyristors, and the like are also used. be able to.
Parasitic diodes of the respective SW elements 301 to 306 formed of MOSFETs can function as freewheeling diodes connected in antiparallel to the corresponding SW elements 301 to 306. Other freewheeling diodes may be connected in antiparallel to the respective SW elements 301-306.
 すなわち、SW素子301~303が高電位側に配置され、SW素子304~306が低電位側に配置される。対になるU相のSW素子301および304の接続点(SW素子301のソースとSW素子304のドレインとの接続点)には、U1コイル111の第1の端部が接続される。対になるV相のSW素子302、305の接続点(SW素子302のソースとSW素子305のドレインとの接続点)には、V1コイル112の第1の端部が接続される。対になるW相のSW素子303、306の接続点(SW素子303のソースとSW素子306のドレインとの接続点)には、W1コイル113の第1の端部が接続される。
 上アームのSW素子301~303それぞれのドレインは、第1の逆接保護リレー33、第1のリレー32、第1のチョークコイル35、第1の電源コネクタ75、およびヒューズ38を介して第1のバッテリ39の正極端子に接続されている。
 U1、V1、およびW1コイル111、112、および113における第1の端部に対向する第2の端部は、共通の接続点、すなわち中性点に対して例えばスター結線で接続されている。
That is, the SW elements 301 to 303 are arranged on the high potential side, and the SW elements 304 to 306 are arranged on the low potential side. A first end of the U1 coil 111 is connected to a connection point between the pair of U-phase SW elements 301 and 304 (a connection point between the source of the SW element 301 and the drain of the SW element 304). A first end of the V1 coil 112 is connected to a connection point between the paired V-phase SW elements 302 and 305 (a connection point between the source of the SW element 302 and the drain of the SW element 305). A first end portion of the W1 coil 113 is connected to a connection point between the pair of W-phase SW elements 303 and 306 (a connection point between the source of the SW element 303 and the drain of the SW element 306).
The drains of the upper arm SW elements 301 to 303 are connected to the first reverse connection protection relay 33, the first relay 32, the first choke coil 35, the first power connector 75, and the fuse 38 through the first reverse connection protection relay 33. The positive terminal of the battery 39 is connected.
The second end portions of the U1, V1, and W1 coils 111, 112, and 113 facing the first end portions are connected to a common connection point, that is, a neutral point by, for example, star connection.
 第1の電流センサ31は、電流検出素子311、312、および313を有している。例えば、各電流検出素子311、312、および313は、シャント抵抗を有している。各電流検出素子311、312、および313は、対向する第1および第2の端部を有している。各電流検出素子311、312、および313の第1の端部は、対応するSW素子304~306におけるソースに接続されており、第2の端部は共通のシグナルグランドおよび第1の電源コネクタ75を介して第1のバッテリ39の負極端子に接続されている。これにより、SW素子301および304と電流検出素子311との第1の直列接続体、SW素子302および305と電流検出素子312との第2の直列接続体、およびSW素子303および306と電流検出素子313との第3の直列接続体は、第1のバッテリ39に対してそれぞれ並列に接続されている。
 電流検出素子311は、U1コイル111を流れる相電流Iu1を検出し、電流検出素子312は、V1コイル112を流れる相電流Iv1を検出し、電流検出素子313は、W1コイル113を流れる相電流Iw1を検出する。本実施形態の電流検出素子311~313および後述する電流検出素子411~413として、他のタイプの電流検出素子、例えばホール素子等を用いても良い。
 第1のインバータ30は、第1のバッテリ39からの直流電力を受け取り、この直流電力を交流電力に変換する。そして、第1のインバータ30は、この交流電力を第1巻線セット11の三相巻線111、112、および113に印可する。
The first current sensor 31 includes current detection elements 311, 312, and 313. For example, each of the current detection elements 311, 312, and 313 has a shunt resistor. Each current detection element 311, 312, and 313 has first and second end portions that face each other. The first end of each current detection element 311, 312, and 313 is connected to the source of the corresponding SW element 304-306, and the second end is a common signal ground and first power connector 75. Is connected to the negative terminal of the first battery 39. Thus, the first series connection body of SW elements 301 and 304 and current detection element 311, the second series connection body of SW elements 302 and 305 and current detection element 312, and SW elements 303 and 306 and current detection The third series connection body with the element 313 is connected in parallel to the first battery 39.
The current detection element 311 detects the phase current Iu1 flowing through the U1 coil 111, the current detection element 312 detects the phase current Iv1 flowing through the V1 coil 112, and the current detection element 313 detects the phase current Iw1 flowing through the W1 coil 113. Is detected. As the current detection elements 311 to 313 and current detection elements 411 to 413 to be described later, other types of current detection elements, for example, Hall elements may be used.
The first inverter 30 receives DC power from the first battery 39 and converts this DC power into AC power. Then, the first inverter 30 applies this AC power to the three- phase windings 111, 112, and 113 of the first winding set 11.
 第1リレー32は、例えばMOSFETであり、第1バッテリ39と第1インバータ30との間に設けられ、第1バッテリ39と第1インバータ30との間における電流を導通または遮断する。
 第1逆接保護リレー33は、例えばMOSFETであり、第1リレー32と第1インバータ30との間に設けられる。第1逆接保護リレー33は、この第1逆接保護リレー33の寄生ダイオードの向きが第1リレー32と逆向きとなるように接続される。これにより、第1バッテリ39が、その正極端子が共通のシグナルグランドが接続されるように逆向きに接続された場合に、第1のインバータ30から第1のバッテリ39に向かって電流が流れるのを防ぐ。
The first relay 32 is, for example, a MOSFET, is provided between the first battery 39 and the first inverter 30, and conducts or cuts off a current between the first battery 39 and the first inverter 30.
The first reverse connection protection relay 33 is, for example, a MOSFET, and is provided between the first relay 32 and the first inverter 30. The first reverse connection protection relay 33 is connected so that the direction of the parasitic diode of the first reverse connection protection relay 33 is opposite to that of the first relay 32. As a result, when the first battery 39 is connected in the reverse direction so that the positive terminal is connected to the common signal ground, current flows from the first inverter 30 toward the first battery 39. prevent.
 第1チョークコイル35は、第1リレー32および第1バッテリ39の間に第1の電源コネクタ75およびヒューズ38を介して接続されている。第1コンデンサ36は、第1インバータ30における上記第1~第3の直列接続体に対して並列に接続される。第1のチョークコイル35および第1のコンデンサ36は、フィルタ回路を構成し、第1のバッテリ39を共有する他の装置から伝わるノイズを低減するとともに、駆動装置8から第1のバッテリ39を共有する他の装置に伝わるノイズを低減する。また、第1のコンデンサ36は、電荷を蓄えることで、第1インバータ30への電力供給を補助することができる。 The first choke coil 35 is connected between the first relay 32 and the first battery 39 via a first power connector 75 and a fuse 38. The first capacitor 36 is connected in parallel to the first to third series connected bodies in the first inverter 30. The first choke coil 35 and the first capacitor 36 constitute a filter circuit, reduce noise transmitted from other devices sharing the first battery 39, and share the first battery 39 from the drive device 8. Reduce the noise transmitted to other devices. Further, the first capacitor 36 can assist the power supply to the first inverter 30 by storing electric charge.
 第2のバッテリ49は正極および負極端子を有し、該第2のバッテリ49の正極端子はヒューズ48を介して第2の電源コネクタ76に接続されており、負極端子は第2の電源コネクタ76に接続されている。
 第2のバッテリ49は、ヒューズ48、第2の電源コネクタ76、第2のチョークコイル45、第2のリレー42、第2の逆接保護リレー43、および第2のコンデンサ46を介して第2のインバータ40に接続されている。
 第2巻線セット12の三相巻線121、122および123には、第2インバータ40が接続されている。
 第2インバータ40は、6つのSW素子401~406がブリッジ接続されている。
 すなわち、SW素子401および404は、直列接続された一対のU相上および下アームSW素子であり、SW素子402および403は、直列接続された一対のV相上および下アームSW素子であり、SW素子403および406は、直列接続された一対のW相上および下アームSW素子である
 MOSFETにより構成された各SW素子401~406の寄生ダイオ―ドは、対応するSW素子401~406に逆並列に接続された還流ダイオードとして機能可能である。他の還流ダイオードをそれぞれのSW素子401~406に逆並列に接続してもよい。
 すなわち、SW素子401~403が高電位側に配置され、SW素子404~406が低電位側に配置される。対になるU相のSW素子401および404の接続点(SW素子401のソースとSW素子404のドレインとの接続点)には、U2コイル121の第1の端部が接続される。対になるV相のSW素子402、405の接続点(SW素子402のソースとSW素子405のドレインとの接続点)には、V2コイル122の第1の端部が接続される。対になるW相のSW素子403、406の接続点(SW素子403のソースとSW素子406のドレインとの接続点)には、W2コイル123の第1の端部が接続される。
 上アームのSW素子401~403それぞれのドレインは、第2の逆接保護リレー43、第2のリレー42、第2のチョークコイル45、第2の電源コネクタ76、およびヒューズ48を介して第2のバッテリ49の正極端子に接続されている。
 U2、V2、およびW2コイル121、122、および123における第1の端部に対向する第2の端部は、共通の接続点、すなわち中性点に対して例えばスター結線で接続されている。
 第2の電流センサ41は、電流検出素子411、412、および413を有している。例えば、各電流検出素子411、412、および413は、シャント抵抗を有している。各電流検出素子411、412、および413は、対向する第1および第2の端部を有している。各電流検出素子411、412、および413の第1の端部は、対応するSW素子404~406におけるソースに接続されており、第2の端部は共通のシグナルグランドおよび第2の電源コネクタ76を介して第2のバッテリ49の負極端子に接続されている。これにより、SW素子401および404と電流検出素子411との第1の直列接続体、SW素子402および405と電流検出素子412との第2の直列接続体、およびSW素子403および406と電流検出素子413との第3の直列接続体は、第2のバッテリ49に対してそれぞれ並列に接続されている。
 電流検出素子411は、U2コイル121を流れる相電流Iu2を検出し、電流検出素子412は、V2コイル122を流れる相電流Iv2を検出し、電流検出素子413は、W2コイル123を流れる相電流Iw2を検出する。
 第2のインバータ40は、第2のバッテリ49からの直流電力を受け取り、この直流電力を交流電力に変換する。そして、第2のインバータ40は、この交流電力を第2巻線セット12の三相巻線121、122、および123に印可する。
The second battery 49 has a positive terminal and a negative terminal. The positive terminal of the second battery 49 is connected to the second power connector 76 via the fuse 48, and the negative terminal is the second power connector 76. It is connected to the.
The second battery 49 is connected to the second battery 49 via the fuse 48, the second power connector 76, the second choke coil 45, the second relay 42, the second reverse connection protection relay 43, and the second capacitor 46. It is connected to the inverter 40.
A second inverter 40 is connected to the three- phase windings 121, 122, and 123 of the second winding set 12.
In the second inverter 40, six SW elements 401 to 406 are bridge-connected.
That is, SW elements 401 and 404 are a pair of U-phase upper and lower arm SW elements connected in series, SW elements 402 and 403 are a pair of V-phase upper and lower arm SW elements connected in series, The SW elements 403 and 406 are a pair of W-phase upper and lower arm SW elements connected in series. The parasitic diodes of the SW elements 401 to 406 constituted by MOSFETs are opposite to the corresponding SW elements 401 to 406. It can function as a freewheeling diode connected in parallel. Other freewheeling diodes may be connected in antiparallel to the respective SW elements 401-406.
That is, the SW elements 401 to 403 are disposed on the high potential side, and the SW elements 404 to 406 are disposed on the low potential side. The first end of the U2 coil 121 is connected to a connection point between the U-phase SW elements 401 and 404 (connection point between the source of the SW element 401 and the drain of the SW element 404). A first end of the V2 coil 122 is connected to a connection point between the paired V-phase SW elements 402 and 405 (a connection point between the source of the SW element 402 and the drain of the SW element 405). A first end portion of the W2 coil 123 is connected to a connection point between the pair of W-phase SW elements 403 and 406 (a connection point between the source of the SW element 403 and the drain of the SW element 406).
The drains of the upper arm SW elements 401 to 403 are connected to the second reverse connection protection relay 43, the second relay 42, the second choke coil 45, the second power connector 76, and the fuse 48 through the second The battery 49 is connected to the positive terminal.
The second end portions of the U2, V2, and W2 coils 121, 122, and 123 that are opposed to the first end portions are connected to a common connection point, that is, a neutral point by, for example, star connection.
The second current sensor 41 includes current detection elements 411, 412, and 413. For example, each current detection element 411, 412 and 413 has a shunt resistor. Each of the current detection elements 411, 412 and 413 has first and second ends facing each other. The first end of each current detection element 411, 412, and 413 is connected to the source of the corresponding SW element 404-406, and the second end is a common signal ground and second power connector 76. Is connected to the negative terminal of the second battery 49. Thereby, the first series connection body of SW elements 401 and 404 and current detection element 411, the second series connection body of SW elements 402 and 405 and current detection element 412, and SW elements 403 and 406 and current detection The third series connection body with the element 413 is connected to the second battery 49 in parallel.
The current detection element 411 detects the phase current Iu2 flowing through the U2 coil 121, the current detection element 412 detects the phase current Iv2 flowing through the V2 coil 122, and the current detection element 413 detects the phase current Iw2 flowing through the W2 coil 123. Is detected.
The second inverter 40 receives DC power from the second battery 49 and converts this DC power into AC power. Then, the second inverter 40 applies this AC power to the three- phase windings 121, 122, and 123 of the second winding set 12.
 第2リレー42は、例えばMOSFETであり、第2バッテリ49と第2インバータ40との間に設けられ、第2逆接保護リレー43は、例えばMOSFETであり、第2リレー42と第2インバータ40との間に設けられる。第2チョークコイル45は、第2リレー42および第2バッテリ49の間に第2の電源コネクタ76およびヒューズ48を介して接続されている。第2コンデンサ46は、第2インバータ40における上記第1~第3の直列接続体に対して並列に接続される。
 第2リレー42、第2逆接保護リレー43、第2チョークコイル45、および、第2コンデンサ46の詳細は、第1リレー32、第1逆接保護リレー33、第1チョークコイル35、および、第1コンデンサ36と同様であるので、説明を省略する。なお、第1および第2のリレー32および42がメカニカルリレーであれば、第1および第2の逆接保護リレー33、43は省略可能である。
The second relay 42 is, for example, a MOSFET and is provided between the second battery 49 and the second inverter 40. The second reverse connection protection relay 43 is, for example, a MOSFET, and the second relay 42, the second inverter 40, Between. The second choke coil 45 is connected between the second relay 42 and the second battery 49 via a second power connector 76 and a fuse 48. The second capacitor 46 is connected in parallel to the first to third series connected bodies in the second inverter 40.
Details of the second relay 42, the second reverse connection protection relay 43, the second choke coil 45, and the second capacitor 46 are the first relay 32, the first reverse connection protection relay 33, the first choke coil 35, and the first Since it is the same as the capacitor 36, the description thereof is omitted. If the first and second relays 32 and 42 are mechanical relays, the first and second reverse connection protection relays 33 and 43 can be omitted.
 第1モータ制御部501は、第1巻線セット11の通電を制御するものであって、互いに通信可能に接続された第1マイコン51および第1集積回路56を有する。図中、集積回路を「ASIC」と記す。
 第1マイコン51は、例えばCPUおよびROMおよびRAMを含むメモリユニットから構成されており、回転検出装置1、第1の電流センサ31、およびトルクセンサ103(図1参照)に通信可能に接続されている。この第1のマイコン51は、回転検出装置1、第1電流センサ31、および、トルクセンサ103の検出値、すなわち検出信号等に基づき、第1インバータ30のSW素子301~306およびリレー32、33のオンオフ作動を制御する制御信号を生成する。例えば、第1のマイコン51のCPUは、メモリユニットに記憶された1または複数のプログラム(プログラム命令)を実行することにより、第1のマイコン51の処理をソフトウェア処理として実現することも可能であり、また、特定のハードウェア電子回路を有し、このハードウェア電子回路により前記第1のマイコン51の処理をハードウェア処理として実現することも可能である。
The first motor control unit 501 controls energization of the first winding set 11 and includes a first microcomputer 51 and a first integrated circuit 56 that are communicably connected to each other. In the figure, the integrated circuit is referred to as “ASIC”.
The first microcomputer 51 is composed of, for example, a memory unit including a CPU, ROM, and RAM, and is communicably connected to the rotation detection device 1, the first current sensor 31, and the torque sensor 103 (see FIG. 1). Yes. The first microcomputer 51 includes the SW elements 301 to 306 and the relays 32 and 33 of the first inverter 30 based on the detection values of the rotation detection device 1, the first current sensor 31, and the torque sensor 103, that is, the detection signals. A control signal for controlling the on / off operation of is generated. For example, the CPU of the first microcomputer 51 can implement the processing of the first microcomputer 51 as software processing by executing one or more programs (program instructions) stored in the memory unit. It is also possible to have a specific hardware electronic circuit, and to implement the processing of the first microcomputer 51 as hardware processing by this hardware electronic circuit.
 第1集積回路56は、プリドライバ、信号増幅部、および、レギュレータ等を有する。プリドライバは、それぞれのSW素子301~306に対する制御信号に基づき、該SW素子301~306に対応するゲート信号を生成し、生成したゲート信号を、それぞれのSW素子301~306のゲートに出力する。これにより、SW素子301~306のオンオフ作動を制御する。信号増幅部は、第1電流センサ31等の検出信号を増幅し、増幅した検出信号を第1マイコン51に出力する。レギュレータは、例えば図示しない電源から第1マイコン51等に供給される動作電圧を安定化させる安定化回路である。 The first integrated circuit 56 includes a pre-driver, a signal amplifier, a regulator, and the like. Based on the control signals for the respective SW elements 301 to 306, the pre-driver generates a gate signal corresponding to the SW elements 301 to 306, and outputs the generated gate signal to the gates of the respective SW elements 301 to 306. . Thereby, the on / off operation of the SW elements 301 to 306 is controlled. The signal amplifying unit amplifies the detection signal from the first current sensor 31 and outputs the amplified detection signal to the first microcomputer 51. The regulator is a stabilization circuit that stabilizes an operating voltage supplied from the power source (not shown) to the first microcomputer 51 and the like.
 第2モータ制御部502は、第2巻線セット12の通電を制御するものであって、互いに通信可能に接続された第2マイコン52および第2集積回路57を有する。
 第2マイコン52は、例えばCPUおよびROMおよびRAMを含むメモリユニットから構成されており、回転検出装置1、第2の電流センサ41、およびトルクセンサ103(図1参照)に通信可能に接続されている。この第2のマイコン52は、回転検出装置1、第2電流センサ41、および、トルクセンサ103の検出値、すなわち検出信号等に基づき、第2インバータ30のSW素子401~406およびリレー42、43のオンオフ作動を制御する制御信号を生成する。例えば、第2のマイコン52のCPUは、メモリユニットに記憶された1または複数のプログラム(プログラム命令)を実行することにより、第2のマイコン52の処理をソフトウェア処理として実現することも可能であり、また、特定のハードウェア電子回路を有し、このハードウェア電子回路により前記第2のマイコン52の処理をハードウェア処理として実現することも可能である。
The second motor control unit 502 controls energization of the second winding set 12 and includes a second microcomputer 52 and a second integrated circuit 57 that are connected to be communicable with each other.
The second microcomputer 52 is composed of, for example, a memory unit including a CPU, a ROM, and a RAM, and is communicably connected to the rotation detection device 1, the second current sensor 41, and the torque sensor 103 (see FIG. 1). Yes. The second microcomputer 52 includes the SW elements 401 to 406 of the second inverter 30 and the relays 42 and 43 based on the detection values of the rotation detection device 1, the second current sensor 41, and the torque sensor 103, that is, the detection signals. A control signal for controlling the on / off operation of is generated. For example, the CPU of the second microcomputer 52 can implement the processing of the second microcomputer 52 as software processing by executing one or more programs (program instructions) stored in the memory unit. It is also possible to have a specific hardware electronic circuit, and to implement the processing of the second microcomputer 52 as hardware processing by this hardware electronic circuit.
 第2集積回路57は、プリドライバ、信号増幅部、および、レギュレータ等を有する。プリドライバは、それぞれのSW素子401~406に対する制御信号に基づき、該SW素子401~406に対応するゲート信号を生成し、生成したゲート信号を、それぞれのSW素子401~406のゲートに出力する。これにより、SW素子401~406のオンオフ作動を制御する。信号増幅部は、第2電流センサ41等の検出信号を増幅し、増幅した検出信号を第2マイコン52に出力する。レギュレータは、例えば図示しない電源から第2マイコン52等に供給される動作電圧を安定化させる安定化回路である。 The second integrated circuit 57 includes a pre-driver, a signal amplifier, a regulator, and the like. The pre-driver generates a gate signal corresponding to each SW element 401 to 406 based on the control signal for each SW element 401 to 406, and outputs the generated gate signal to the gate of each SW element 401 to 406. . Thereby, the on / off operation of the SW elements 401 to 406 is controlled. The signal amplifier amplifies the detection signal of the second current sensor 41 and outputs the amplified detection signal to the second microcomputer 52. The regulator is a stabilization circuit that stabilizes the operating voltage supplied from the power source (not shown) to the second microcomputer 52, for example.
 上述したように、回転検出装置1は、第1センサ部61および第2センサ部62を有する。図中、第1センサ部61を「センサ1」、第2センサ部62を「センサ2」と記載する。回転検出装置1の詳細は後述する。
 本実施形態では、第1マイコン51および第2マイコン52が「制御部」に対応する。
As described above, the rotation detection device 1 includes the first sensor unit 61 and the second sensor unit 62. In the figure, the first sensor unit 61 is described as “sensor 1”, and the second sensor unit 62 is described as “sensor 2”. Details of the rotation detection device 1 will be described later.
In the present embodiment, the first microcomputer 51 and the second microcomputer 52 correspond to a “control unit”.
 以下適宜、第1巻線セット11、ならびに、第1巻線セット11に対応して設けられる第1インバータ30および第1モータ制御部501等を、第1モータ駆動系統901とする。第2巻線セット12、ならびに、第2巻線セット12に対応して設けられる第2インバータ40および第2モータ制御部502等を、第2モータ駆動系統902とする。図中、煩雑になることを避けるため、回転検出装置1については第1および第2モータ駆動系統901、902に含めていないが、第1センサ部61が第1モータ駆動系統901に含まれ、第2センサ部62が第2モータ駆動系統902に含まれる、と捉えてもよい。 Hereinafter, the first winding set 11 and the first inverter 30 and the first motor control unit 501 provided corresponding to the first winding set 11 will be referred to as a first motor drive system 901 as appropriate. The second winding set 12 and the second inverter 40 and the second motor control unit 502 provided corresponding to the second winding set 12 are defined as a second motor drive system 902. In order to avoid complication in the figure, the rotation detection device 1 is not included in the first and second motor drive systems 901 and 902, but the first sensor unit 61 is included in the first motor drive system 901. It may be understood that the second sensor unit 62 is included in the second motor drive system 902.
 本実施形態では、第1インバータ30等の回路部品および第1モータ制御部501が第1巻線セット11に対応して設けられ、第2インバータ40等の回路部品および第2モータ制御部502が、第2巻線セット12に対応して設けられる。言い換えれば、駆動装置8は、少なくとも第1および第2のインバータ30および40、および第1および第2のモータ制御部501および502を備えた冗長構成となっている。この冗長構成により、第1および第2のインバータ30および40の回路部品の一部に異常が生じた場合に加え、第1モータ制御部501または第2モータ制御部502の一方に異常が生じたとしてもモータ部10の駆動を継続可能である。 In the present embodiment, circuit components such as the first inverter 30 and the first motor control unit 501 are provided corresponding to the first winding set 11, and circuit components such as the second inverter 40 and the second motor control unit 502 are provided. , Provided corresponding to the second winding set 12. In other words, the driving device 8 has a redundant configuration including at least the first and second inverters 30 and 40 and the first and second motor control units 501 and 502. Due to this redundant configuration, an abnormality has occurred in one of the first motor control unit 501 or the second motor control unit 502 in addition to the case where an abnormality has occurred in some of the circuit components of the first and second inverters 30 and 40. However, the drive of the motor unit 10 can be continued.
 本実施形態では、駆動装置8は、第1巻線セット11用の第1バッテリ39および第2巻線セット12用の第2バッテリ49を備えており、バッテリ冗長構成を有している。なお、第1および第2のバッテリ39および49の定格電圧は異なっていてもよい。第1および第2のバッテリ39および49の定格電圧が異なる場合、例えば第1バッテリ39と第1インバータ30との間、および、第2バッテリ49と第2インバータ40との間の少なくとも一方に電圧を変換するためのコンバータ等を適宜設けてもよい。 In the present embodiment, the drive device 8 includes a first battery 39 for the first winding set 11 and a second battery 49 for the second winding set 12, and has a battery redundant configuration. The rated voltages of the first and second batteries 39 and 49 may be different. When the rated voltages of the first and second batteries 39 and 49 are different, for example, the voltage is applied to at least one of the first battery 39 and the first inverter 30 and between the second battery 49 and the second inverter 40. A converter or the like for converting can be provided as appropriate.
 図2、図4および図5に示すように、駆動部品であるSW素子301~306、401~406、電流検出素子311~313、411~413、リレー32、33、42、43、チョークコイル35、45、および、コンデンサ36、46が、第1基板21に実装される。また、図2、図4および図6に示すように、制御部品である第1および第2のマイコン51、52および集積回路56、57が、第2基板22に実装される。駆動部品は、コイル111~113、121~123に流れるモータ電流と同等の比較的大きな電流が流れる電子部品であり、制御部品は、モータ電流が流れない部品である、と捉えることもできる。
 また、第1基板21には、回転検出装置1が実装される。
2, 4, and 5, SW elements 301 to 306 and 401 to 406 as drive components, current detection elements 311 to 313 and 411 to 413, relays 32, 33, 42, and 43, choke coil 35 , 45 and capacitors 36, 46 are mounted on the first substrate 21. As shown in FIGS. 2, 4, and 6, the first and second microcomputers 51 and 52 and the integrated circuits 56 and 57 that are control components are mounted on the second substrate 22. The drive component is an electronic component in which a relatively large current equivalent to the motor current flowing in the coils 111 to 113 and 121 to 123 flows, and the control component can be regarded as a component in which no motor current flows.
In addition, the rotation detection device 1 is mounted on the first substrate 21.
 第1の電源コネクタ75は、電源端子751およびグランド端子752を有し、第2の電源コネクタ76は、電源端子761およびグランド端子762を有している。第1の信号コネクタ77は、トルク信号端子771および車両信号端子772を有し、第2の信号コネクタ78は、トルク信号端子781および車両信号端子782を有している。駆動装置8は、内部信号端子771を有している。
 図2における白抜きの三角形は、各端子と第1および第2の基板21、22との接続箇所を示す。本実施形態では、電源端子751、761、グランド端子752、762、および、内部信号端子717は、それぞれ、第1基板21および第2基板22に接続される。一方、トルク信号端子771、781、および、車両信号端子772、782は、第2基板22と接続され、第1基板21とは接続されない。
The first power connector 75 has a power terminal 751 and a ground terminal 752, and the second power connector 76 has a power terminal 761 and a ground terminal 762. The first signal connector 77 has a torque signal terminal 771 and a vehicle signal terminal 772, and the second signal connector 78 has a torque signal terminal 781 and a vehicle signal terminal 782. The driving device 8 has an internal signal terminal 771.
The white triangles in FIG. 2 indicate connection points between the terminals and the first and second substrates 21 and 22. In the present embodiment, the power supply terminals 751 and 761, the ground terminals 752 and 762, and the internal signal terminal 717 are connected to the first substrate 21 and the second substrate 22, respectively. On the other hand, the torque signal terminals 771 and 781 and the vehicle signal terminals 772 and 782 are connected to the second substrate 22 and are not connected to the first substrate 21.
 図2中では、電源端子を「電源1」、「電源2」、グランド端子を「GND1」、「GND2」、トルク信号端子を「trq1」、「trq2」、車両信号端子を「CAN1」、「CAN2」と記載する。また、図2等の回路図において、端子と第1および第2の基板21および22との接続関係を示す線が分岐していることが、実際の端子が分岐していることを意味するものではない点
を補足しておく。
In FIG. 2, the power supply terminals are “power supply 1”, “power supply 2”, the ground terminals are “GND1” and “GND2”, the torque signal terminals are “trq1” and “trq2”, the vehicle signal terminals are “CAN1”, “ CAN2 ”. Also, in the circuit diagram of FIG. 2 and the like, the fact that the line indicating the connection relationship between the terminal and the first and second substrates 21 and 22 is branched means that the actual terminal is branched. I will add a point that is not.
 駆動装置8の構造を図3~図6に示す。すなわち、図3は、駆動装置8の平面図であり、図4は、図3におけるIV-IV矢視断面図であり、図5は、第1基板21の概略側面図であり、図6は、第2基板22の概略側面図である。
 図4に示すように、モータ部10は、ステータ10a(図2参照)、ロータ10b(図1参照)、およびロータ10bに取り付けられたシャフト15等を備えている。モータ部10は、略円筒状ハウジング171を有するモータケース17を備えており、ステータ10aは、モータケース17における円筒状ハウジング171の内側に固定される。上述したように、ロータ10bは、ステータ10aに対して相対回転可能に設けられる。ロータ10bは、略円筒状のロータコアを有し、このロータコアの軸中心には、シャフト15が固定される。これにより、シャフト15とロータとが一体となって回転する。
The structure of the driving device 8 is shown in FIGS. 3 is a plan view of the drive device 8, FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3, FIG. 5 is a schematic side view of the first substrate 21, and FIG. FIG. 3 is a schematic side view of a second substrate 22.
As shown in FIG. 4, the motor unit 10 includes a stator 10a (see FIG. 2), a rotor 10b (see FIG. 1), a shaft 15 attached to the rotor 10b, and the like. The motor unit 10 includes a motor case 17 having a substantially cylindrical housing 171, and the stator 10 a is fixed inside the cylindrical housing 171 in the motor case 17. As described above, the rotor 10b is provided to be rotatable relative to the stator 10a. The rotor 10b has a substantially cylindrical rotor core, and a shaft 15 is fixed to the axial center of the rotor core. As a result, the shaft 15 and the rotor rotate together.
 モータケース17の円筒状ハウジング171は、その軸方向に対向する第1および第2の端部を有している。円筒状ハウジング171の第1の軸方向端部は、開口部を有しており、コントローラ部20は、この円筒状ハウジング171の第1の軸方向端部の開口部に取り付けられている。円筒状ハウジング171は、その第1の軸方向端部に設けられたリング状の溝部172を有している。シャフト15は、その軸方向に対向する第1および第2の端部を有している。シャフト15の第1の端部は、コントローラ部20に対向するように配置されている。図4においては図示されていないが、シャフト15の第2の端部は、減速ギア機構109(図1参照)と接続される出力端として機能する。これにより、ロータ10bおよびシャフト15の回転により生じるトルクが、減速ギア機構109を経由してステアリングシャフト102に伝達される。本明細書では、適宜、ロータ10bおよびシャフト15が回転することを、単に「モータ部10が回転する」またはその類似の表現で記載する。
 モータ部10は、シャフト15の第1の端部における端面に取り付けられた、例えば円板状のマグネット16を備えている。ここで、マグネット16の中心を通り、シャフト15の軸線を延長した仮想線を回転中心線Acとする(例えば、図8参照)。
The cylindrical housing 171 of the motor case 17 has first and second end portions facing in the axial direction. The first axial end of the cylindrical housing 171 has an opening, and the controller unit 20 is attached to the opening of the first axial end of the cylindrical housing 171. The cylindrical housing 171 has a ring-shaped groove 172 provided at the first axial end thereof. The shaft 15 has first and second ends that face each other in the axial direction. The first end of the shaft 15 is disposed so as to face the controller unit 20. Although not shown in FIG. 4, the second end portion of the shaft 15 functions as an output end connected to the reduction gear mechanism 109 (see FIG. 1). Thereby, torque generated by the rotation of the rotor 10b and the shaft 15 is transmitted to the steering shaft 102 via the reduction gear mechanism 109. In the present specification, the fact that the rotor 10b and the shaft 15 rotate as appropriate is simply described as “the motor unit 10 rotates” or a similar expression thereof.
The motor unit 10 includes, for example, a disk-shaped magnet 16 attached to the end surface of the first end portion of the shaft 15. Here, a virtual line extending through the center of the magnet 16 and extending the axis of the shaft 15 is defined as a rotation center line Ac (see, for example, FIG. 8).
 モータ部10は、略円筒状のフレーム部材18を有しており、このフレーム部材18は、円筒状ハウジング171の内周面に、該ハウジング171の第1の端部に対して近付き、かつシャフト15が回転自在にフレーム部材18から突出するように設けられている。例えば、フレーム部材18は、モータケース17の円筒状ハウジング171内に圧入により固定されている。モータケース17およびフレーム部材18は、モータ部10の部品を包含する外郭をなしている。フレーム部材18はコントローラ部20に対向する端面181を有し、この端面181の中心部には、凹状の窪みが設けられており、マグネット16は、この窪みに収納されコントローラ部20に向かって露出している。 The motor unit 10 includes a substantially cylindrical frame member 18 that approaches the inner peripheral surface of the cylindrical housing 171 with respect to the first end of the housing 171 and has a shaft. 15 is provided so as to protrude from the frame member 18 in a freely rotatable manner. For example, the frame member 18 is fixed in the cylindrical housing 171 of the motor case 17 by press fitting. The motor case 17 and the frame member 18 form an outer shell that includes components of the motor unit 10. The frame member 18 has an end surface 181 facing the controller unit 20, and a concave recess is provided at the center of the end surface 181, and the magnet 16 is stored in the recess and exposed toward the controller unit 20. is doing.
 フレーム部材18のコントローラ部20側の端面181には、第1および第2の高さをそれぞれ有する第1および第2の基板固定部185、186が、その高さ方向が端面181に略直交するように設けられている。第2基板固定部186の端面181からの第2の高さは、第1基板固定部185の端面181からの第1の高さより高くなるように形成される。第1基板固定部185には、貫通孔を有する第1基板21が載置され、ねじ195により固定されており、第2基板固定部186は、第1基板21の上記貫通孔に貫通している。第2基板固定部186には、第2基板22が載置され、ねじ196により固定される。基板21、22とフレーム部材18とは、ねじ以外にて固定してもよい。 On the end surface 181 of the frame member 18 on the controller unit 20 side, there are first and second substrate fixing portions 185 and 186 having first and second heights, respectively, and the height direction thereof is substantially orthogonal to the end surface 181. It is provided as follows. The second height from the end surface 181 of the second substrate fixing portion 186 is formed to be higher than the first height from the end surface 181 of the first substrate fixing portion 185. A first substrate 21 having a through hole is placed on the first substrate fixing portion 185 and is fixed by a screw 195, and the second substrate fixing portion 186 penetrates the through hole of the first substrate 21. Yes. The second substrate 22 is placed on the second substrate fixing portion 186 and is fixed by screws 196. The substrates 21 and 22 and the frame member 18 may be fixed by means other than screws.
 第1巻線セット11の各相のコイル111~113および第2巻線セット12の各相のコイル121~123は、それぞれ図示しないモータ線と接続される。モータ線は、フレーム部材18に形成される図示しないモータ線挿通孔に挿通されてコントローラ部20側に取り出され、第1基板21と接続される。 The coils 111 to 113 of each phase of the first winding set 11 and the coils 121 to 123 of each phase of the second winding set 12 are respectively connected to motor wires (not shown). The motor wire is inserted into a motor wire insertion hole (not shown) formed in the frame member 18, taken out to the controller unit 20 side, and connected to the first substrate 21.
 モータケース17の円筒状ハウジング171における第1軸方向端部に設けられたコントローラ部20は、該第1軸方向端部の開口部内に対し、そのコントローラ部20がモータケース17を軸方向に投影した投影領域であるモータシルエット内に収まるように設けられる。以下、モータ部10の軸方向および径方向を、駆動装置8としての「軸方向」、「径方向」とし、単に「軸方向」、「径方向」ともいう。 The controller unit 20 provided at the first axial end of the cylindrical housing 171 of the motor case 17 projects the motor case 17 in the axial direction into the opening of the first axial end. It is provided to fit within the motor silhouette that is the projected area. Hereinafter, the axial direction and radial direction of the motor unit 10 are referred to as “axial direction” and “radial direction” as the driving device 8, and are also simply referred to as “axial direction” and “radial direction”.
 上述したように、コントローラ部20は、例えば、第1および第2の基板21および22、およびコネクタユニット70を有する。
 第1基板21および第2基板22は、フレーム部材18の端面181に対して略水平に平行して設けられる。本実施形態では、モータ部10側から、第1基板21、第2基板22の順に配置される。ここで、第1基板21のモータ部10側の面を第1主面211、モータ部10と反対側の面を第2主面212とし、第2基板22のモータ部10側の面を第1主面221、モータ部10と反対側の面を第2主面222とする(図5および図6参照)。
As described above, the controller unit 20 includes, for example, the first and second substrates 21 and 22 and the connector unit 70.
The first substrate 21 and the second substrate 22 are provided substantially parallel to the end surface 181 of the frame member 18. In the present embodiment, the first substrate 21 and the second substrate 22 are arranged in this order from the motor unit 10 side. Here, the surface of the first substrate 21 on the motor unit 10 side is the first main surface 211, the surface opposite to the motor unit 10 is the second main surface 212, and the surface of the second substrate 22 on the motor unit 10 side is the first surface. The first main surface 221 and the surface opposite to the motor unit 10 are defined as a second main surface 222 (see FIGS. 5 and 6).
 図4および図5に示すように、第1基板21の第1主面211には、SW素子301~306、401~406、電流検出素子311~313、411~413、および、回転検出装置1等が実装される。
 第1基板21の第2主面212には、チョークコイル35、45、および、コンデンサ36、46等が実装される。
 なお、図4では、SW素子301、302、401、402が表れているものとして記載した。また、図示を簡潔にするために、図4および図5においては、電流検出素子311~313、411~413、および、チョークコイル35、45等の図示を省略した。
As shown in FIGS. 4 and 5, SW elements 301 to 306 and 401 to 406, current detection elements 311 to 313 and 411 to 413, and the rotation detection device 1 are provided on the first main surface 211 of the first substrate 21. Etc. are implemented.
Choke coils 35 and 45, capacitors 36 and 46, and the like are mounted on the second main surface 212 of the first substrate 21.
In FIG. 4, the SW elements 301, 302, 401, and 402 are shown as appearing. For simplicity of illustration, the current detection elements 311 to 313, 411 to 413, the choke coils 35 and 45, etc. are not shown in FIGS.
 フレーム部材18は、ヒートシンク部材、例えば金属により製造され、SW素子301~306、401~406は、フレーム部材18に放熱可能に設けられる。これにより、SWす子301~306、401~406の熱は、フレーム部材18により吸収され、この吸収された熱は、モータケース17から駆動装置8の外部に放熱される。
 ここで、「Aが放熱可能に設けられるB(A is thermally linked to B)」とは、SW素子301~306、401~406がフレーム部材18に直接的に当接することに限らず、例えば放熱ゲル等の放熱部材を介して当接している状態も含む。図4では、放熱部材が省略されているため、SW素子301~306、401~406とフレーム部材18とが離間している。なお、電流検出素子311~313、411~413等、SW素子以外の部品を発熱素子とみなし、フレーム部材18に放熱可能に設けてもよい。
The frame member 18 is made of a heat sink member, for example, metal, and the SW elements 301 to 306 and 401 to 406 are provided on the frame member 18 so that heat can be radiated. Thereby, the heat of the SW elements 301 to 306 and 401 to 406 is absorbed by the frame member 18, and the absorbed heat is radiated from the motor case 17 to the outside of the driving device 8.
Here, “A is thermally linked to B” is not limited to the SW elements 301 to 306 and 401 to 406 being in direct contact with the frame member 18; The state which contact | abuts via heat radiating members, such as gel, is also included. In FIG. 4, since the heat radiating member is omitted, the SW elements 301 to 306 and 401 to 406 are separated from the frame member 18. It should be noted that components other than the SW element such as the current detection elements 311 to 313 and 411 to 413 may be regarded as the heating elements and provided in the frame member 18 so as to be able to dissipate heat.
 本実施形態では、フレーム部材18をヒートシンクとして機能させている。換言すると、フレーム部材18は、モータ部10の外郭としての機能と、ヒートシンクとしての機能を兼ね備えている。これにより、別途にヒートシンクを設ける場合と比較して、駆動装置8の部品点数を低減可能であるとともに、体格を小型化することができる。また、フレーム部材18をヒートシンクとして利用することで、大気への熱伝達経路を短くすることができ、高効率に放熱可能である。 In this embodiment, the frame member 18 functions as a heat sink. In other words, the frame member 18 has a function as an outline of the motor unit 10 and a function as a heat sink. Thereby, compared with the case where a heat sink is provided separately, the number of parts of the drive device 8 can be reduced and the physique can be reduced in size. Further, by using the frame member 18 as a heat sink, the heat transfer path to the atmosphere can be shortened and heat can be radiated with high efficiency.
 図4および図6に示すように、第2基板22の第1主面221には第1および第2の集積回路56、57が実装され、第2主面222には第1および第2のマイコン51、52が実装される。
 すなわち、本実施形態では、モータ電流が通電される駆動部品が第1基板21に実装され、制御部品が第2基板22に実装される。換言すると、駆動装置8は、第1基板21をパワー基板、第2基板22を制御基板とし、基板を分けることでパワー部と制御部とが分離されている。
これにより、制御基板である第2基板22には、ノイズ源となり得る大電流が流れないので、制御部品におけるノイズの影響が低減される。
 第1および第2の基板21、22には、ばね端子26が設けられる。
As shown in FIGS. 4 and 6, the first and second integrated circuits 56 and 57 are mounted on the first main surface 221 of the second substrate 22, and the first and second integrated circuits 56 and 57 are mounted on the second main surface 222. Microcomputers 51 and 52 are mounted.
In other words, in the present embodiment, the drive component that is energized with the motor current is mounted on the first substrate 21, and the control component is mounted on the second substrate 22. In other words, the driving device 8 uses the first substrate 21 as a power substrate and the second substrate 22 as a control substrate, and the power unit and the control unit are separated by separating the substrates.
Thereby, since the large current which can become a noise source does not flow through the second substrate 22 which is the control substrate, the influence of noise in the control component is reduced.
Spring terminals 26 are provided on the first and second substrates 21 and 22.
 図3および図4に示すように、コネクタユニット70は、カバー部71、給電コネクタ75、76、および、信号コネクタ77、78を有する。
 カバー部71は、開口上端および有底の略筒状に形成された円筒部711を有し、この円筒部711の底部はコネクタ形成部715として機能する。円筒部711の先端部712は、モータケース17の筒部171の第1の軸方向端部に形成された溝部172に挿入され、接着剤等で筒部171に固定される。
As shown in FIGS. 3 and 4, the connector unit 70 includes a cover portion 71, power feeding connectors 75 and 76, and signal connectors 77 and 78.
The cover portion 71 has a cylindrical portion 711 formed in a substantially cylindrical shape with an upper end of the opening and a bottom, and the bottom portion of the cylindrical portion 711 functions as a connector forming portion 715. The distal end portion 712 of the cylindrical portion 711 is inserted into a groove portion 172 formed at the first axial end portion of the cylindrical portion 171 of the motor case 17 and is fixed to the cylindrical portion 171 with an adhesive or the like.
 コネクタ形成部715は、対向する第1および第2の主面を有しており、この第1主面は、モータ部10に対向している。コネクタ形成部715の第2の主面上には、給電コネクタ75、76、および信号コネクタ77、78が形成される。コネクタ75~78は、モータシルエット内に配置される。本実施形態のコネクタ75~78は、上部(間口)が開口する中空管形状を有しており、この各コネクタ75~78に対して図示しないハーネスが軸方向に挿入され、電気的に接続される。 The connector forming portion 715 has first and second main surfaces that face each other, and the first main surface faces the motor portion 10. On the second main surface of the connector forming portion 715, power supply connectors 75 and 76 and signal connectors 77 and 78 are formed. Connectors 75-78 are arranged in the motor silhouette. The connectors 75 to 78 of the present embodiment have a hollow tube shape whose upper portions (openings) are open, and harnesses (not shown) are inserted into the connectors 75 to 78 in the axial direction for electrical connection. Is done.
 図2~図4に示すように、第1給電コネクタ75の第1電源端子751は、第1バッテリ39の正極端子と第1モータ駆動系統901間を接続し、第1グランド端子752は、第1バッテリ39の負極端子と共通シグナルグランド間を接続する。同様に、第2給電コネクタ76の第2電源端子761は、第2バッテリ49の正極端子と第2モータ駆動系統902間を接続し、第2グランド端子762は、第2バッテリ49の負極端子と共通シグナルグランド間を接続する。 As shown in FIGS. 2 to 4, the first power supply terminal 751 of the first power supply connector 75 connects the positive terminal of the first battery 39 and the first motor drive system 901, and the first ground terminal 752 is the first power terminal 752. 1 Connect the negative terminal of the battery 39 and the common signal ground. Similarly, the second power supply terminal 761 of the second power feeding connector 76 connects the positive terminal of the second battery 49 and the second motor drive system 902, and the second ground terminal 762 is connected to the negative terminal of the second battery 49. Connect between common signal grounds.
 第1信号コネクタ77は、第1モータ駆動系統901およびトルクセンサ103間、並びに第1モータ駆動系統901および車内ネットワーク間を接続している。
 すなわち、第1信号コネクタ77のトルク信号端子771は、トルクセンサ103からの第1モータ駆動系統901に対する検出信号(検出トルクを表す)を受信し、第1信号コネクタ77の車両信号端子772は、外部から車内ネットワークを介して第1モータ駆動系統901に対して送られた車両状態信号を受信する。
 同様に、第2信号コネクタ78トルク信号端子772は、トルクセンサ103からの第2モータ駆動系統902に対する検出信号(検出トルクを表す)を受信し、第2信号コネクタ78の車両信号端子782は、外部から車内ネットワークを介して第2モータ駆動系統902に対して送られた車両状態信号を受信する。
 第1および第2駆動系統901および902に対して設けられた第1および第2の給電コネクタ75、76の冗長化により、第1駆動系統901と第1給電コネクタ75との間の配線の一部が外れたり、断線したりした場合にも、モータ部10の駆動を継続可能である。同様に、第2駆動系統902と第2給電コネクタ76との間の配線の一部が外れたり、断線したりした場合にも、モータ部10の駆動を継続可能である。
The first signal connector 77 connects between the first motor drive system 901 and the torque sensor 103 and between the first motor drive system 901 and the in-vehicle network.
That is, the torque signal terminal 771 of the first signal connector 77 receives a detection signal (representing detected torque) from the torque sensor 103 to the first motor drive system 901, and the vehicle signal terminal 772 of the first signal connector 77 is A vehicle state signal transmitted from the outside to the first motor drive system 901 via the in-vehicle network is received.
Similarly, the second signal connector 78 torque signal terminal 772 receives a detection signal (representing detected torque) from the torque sensor 103 to the second motor drive system 902, and the vehicle signal terminal 782 of the second signal connector 78 is A vehicle state signal sent from the outside to the second motor drive system 902 via the in-vehicle network is received.
Due to the redundancy of the first and second power supply connectors 75 and 76 provided for the first and second drive systems 901 and 902, one wiring line between the first drive system 901 and the first power supply connector 75 is provided. The drive of the motor unit 10 can be continued even when the unit is disconnected or disconnected. Similarly, even when a part of the wiring between the second drive system 902 and the second power feeding connector 76 is disconnected or disconnected, the driving of the motor unit 10 can be continued.
 内部信号端子717は、カバー部71のコネクタ形成部715の第1の主面上に設けられる。内部信号端子717は、第1基板21および第2基板22に接続され、第1基板21と第2基板22との間の信号伝達に用いられる。内部信号端子717は、コネクタ75~78の端子751、752、761、762、771、772、781、782とは別途に設けられており、バッテリ39、49、トルクセンサ103および車内ネットワーク等、駆動装置8の外部装置とは接続されていない。本実施形態では、内部信号端子717は、回転検出装置1の検出値を第2基板22に実装される第1および第2のマイコン51、52等の電子部品に伝達すること、および第1および第2のマイコン51、52からの指令信号を第1基板21に実装される電子部品に伝達するのに用いられる。 The internal signal terminal 717 is provided on the first main surface of the connector forming portion 715 of the cover portion 71. The internal signal terminal 717 is connected to the first substrate 21 and the second substrate 22 and is used for signal transmission between the first substrate 21 and the second substrate 22. The internal signal terminal 717 is provided separately from the terminals 751, 752, 761, 762, 771, 772, 781, 782 of the connectors 75 to 78, and drives the batteries 39, 49, the torque sensor 103, the in-vehicle network, etc. The external device of the device 8 is not connected. In the present embodiment, the internal signal terminal 717 transmits the detection value of the rotation detection device 1 to electronic components such as the first and second microcomputers 51 and 52 mounted on the second substrate 22, and It is used to transmit command signals from the second microcomputers 51 and 52 to the electronic components mounted on the first substrate 21.
 なお、第1給電コネクタ75における端子数や配置、割り振り等は、適宜変更可能である。第2給電コネクタ76、信号コネクタ77、78についても同様である。また、内部信号端子717は、コネクタ75~78の各端子と干渉しない箇所であれば、いずれの箇所に形成してもよく、本数についても、図示した本数に限らない。 It should be noted that the number of terminals, arrangement, allocation, and the like in the first power supply connector 75 can be changed as appropriate. The same applies to the second power supply connector 76 and the signal connectors 77 and 78. Further, the internal signal terminal 717 may be formed at any position as long as it does not interfere with the respective terminals of the connectors 75 to 78, and the number is not limited to the illustrated number.
 各端子751、752、761、762、771、772、781、782、717は、基板21、22に設けられる対応するばね端子26に挿通される。ばね端子26は、対応する端子が挿通されることで、弾性変形しつつ、該端子と当接する。これにより、各端子751、752、761、762、771、772、781、782、717は、基板21、22と電気的に接続される。 The terminals 751, 752, 761, 762, 771, 772, 781, 782, and 717 are inserted into the corresponding spring terminals 26 provided on the substrates 21 and 22, respectively. The spring terminal 26 comes into contact with the terminal while being elastically deformed by inserting the corresponding terminal. Accordingly, the terminals 751, 752, 761, 762, 771, 772, 781, 782, and 717 are electrically connected to the substrates 21 and 22.
 本実施形態では、第1基板21および第2基板22と接続する端子751、752、761、762、717は、軸方向に投影したときに2枚の基板21および22間のスペースを介して第2基板22を貫通し、第1基板21側まで延びて形成される。また、端子751、752、761、762、717は、第1基板21および第2基板22のそれぞれに設けられ対応するばね端子26に挿通されることで、第1基板21および第2基板22と接続される。
 これにより、端子751、752、761、762、717の長さを短縮化し、冗長化に伴う配線スペースの増大を防ぐことができる。
 また、各端子を略真っ直ぐに形成し、第2の基板22を貫いて第1の基板21まで延びる構造とすることで、該各端子を短くすることができる。これにより、配線のインピーダンスを低減することができる。
In the present embodiment, the terminals 751, 752, 761, 762, and 717 connected to the first substrate 21 and the second substrate 22 are connected via the space between the two substrates 21 and 22 when projected in the axial direction. The two substrates 22 are formed so as to extend to the first substrate 21 side. The terminals 751, 752, 761, 762, and 717 are inserted into the corresponding spring terminals 26 provided on the first substrate 21 and the second substrate 22, respectively, so that the first substrate 21 and the second substrate 22 are connected. Connected.
Thereby, the length of the terminals 751, 752, 761, 762, and 717 can be shortened, and an increase in wiring space due to redundancy can be prevented.
In addition, each terminal can be shortened by forming each terminal substantially straight and extending through the second substrate 22 to the first substrate 21. Thereby, the impedance of wiring can be reduced.
 以下、回転検出装置1について説明する。
 図4、図5、および、図7~図9に示すように、回転検出装置1は、モータ部10の回転を検出するものであって、第1センサ部61、第2センサ部62、第1のマイコン51、および第2のマイコン52を備える。本実施形態では、第1センサ部61および第2センサ部62は、1つのパッケージ65内に設けられて第1の回路基板21に実装される。これにより、第1および第2のセンサ部61および62それぞれのパッケージを第1の回路基板21に実装する場合と比べて、実装面積を抑えることができる。
Hereinafter, the rotation detection device 1 will be described.
As shown in FIGS. 4, 5, and 7 to 9, the rotation detection device 1 detects rotation of the motor unit 10, and includes a first sensor unit 61, a second sensor unit 62, 1 microcomputer 51 and 2nd microcomputer 52 are provided. In the present embodiment, the first sensor unit 61 and the second sensor unit 62 are provided in one package 65 and mounted on the first circuit board 21. Thereby, compared with the case where the package of each of the 1st and 2nd sensor parts 61 and 62 is mounted in the 1st circuit board 21, a mounting area can be held down.
 図9に示すように、第1センサ部61は、センサ素子601、および、回路部610を有し、センサ素子601および回路部610が1つのチップ641として構成されている。換言すると、回路部610を構成するチップ641には、センサ素子601が内蔵されている。
 第2センサ部62は、センサ素子602、および、回路部620を有し、センサ素子602および回路部620が1つのチップ642として構成されている。換言すると、回路部620を構成するチップ642には、センサ素子602が内蔵されている。
As shown in FIG. 9, the first sensor unit 61 includes a sensor element 601 and a circuit unit 610, and the sensor element 601 and the circuit unit 610 are configured as one chip 641. In other words, the sensor element 601 is built in the chip 641 constituting the circuit unit 610.
The second sensor unit 62 includes a sensor element 602 and a circuit unit 620, and the sensor element 602 and the circuit unit 620 are configured as one chip 642. In other words, the sensor element 602 is incorporated in the chip 642 constituting the circuit unit 620.
 図4および図7Aに示すように、回転検出装置1のパッケージ65は、第1基板21の第1主面211に実装される。第1主面211に実装することで、パッケージ65とマグネット16との距離を短く設定できるので、パッケージ65によるモータ部10の回転検出精度が高まる。また、マグネット16の厚みや径を小さくすることができる。また、図7Bに示すように、パッケージ65を、第1基板21の第2主面212に実装してもよい。第2主面212に実装することで、第1主面211にSW素子301~306、401~406以外の発熱素子をフレーム部材18に放熱可能に実装する等、第1主面211を有効に活用することができる。なお、図示を簡潔にするため、図7Aおよび図7Bでは、回転検出装置1以外の実装部品等を省略した。後述の図22、図23および図30も同様である。 4 and 7A, the package 65 of the rotation detection device 1 is mounted on the first main surface 211 of the first substrate 21. As shown in FIG. Since the distance between the package 65 and the magnet 16 can be set short by mounting on the first main surface 211, the rotation detection accuracy of the motor unit 10 by the package 65 is increased. Further, the thickness and diameter of the magnet 16 can be reduced. In addition, as shown in FIG. 7B, the package 65 may be mounted on the second main surface 212 of the first substrate 21. By mounting on the second main surface 212, the first main surface 211 can be effectively used, for example, by mounting a heat generating element other than the SW elements 301 to 306 and 401 to 406 on the first main surface 211 so as to be able to dissipate heat. Can be used. In addition, in order to simplify illustration, in FIG. 7A and FIG. 7B, mounting components other than the rotation detection device 1 are omitted. The same applies to FIGS. 22, 23, and 30 described later.
 図8および図9に示すように、センサパッケージ65は、略直方体状に形成され、長手側の両側面にセンサ端子67が設けられる。センサ端子67には、指令端子671、673、出力端子672、674、電源端子675、677およびグランド端子676、678が含まれる。回転検出装置1には、図示しないレギュレータおよび電源端子675、677等を経由して第1および第2のバッテリ39、49から電力が供給される。本実施形態では、第1センサ部61には、電源端子675等を経由して、第1バッテリ39から電力が供給され、第2センサ部62には、電源端子677等を経由して、第2バッテリ49から電力が供給される。なお、ここでは、第1バッテリ39から第1センサ部61に電力が供給され、第2バッテリ49から第2センサ部62に電力が供給されるが、第1バッテリ39または第2バッテリ49の一方から、第1センサ部61および第2センサ部62に電力が供給されるようにしてもよい。後述の実施形態についても同様である。
 また、回転検出装置1は、グランド端子676、678を経由して共通のシグナルグランドと接続される。
As shown in FIGS. 8 and 9, the sensor package 65 is formed in a substantially rectangular parallelepiped shape, and sensor terminals 67 are provided on both side surfaces on the long side. The sensor terminals 67 include command terminals 671 and 673, output terminals 672 and 674, power supply terminals 675 and 677, and ground terminals 676 and 678. Power is supplied to the rotation detection device 1 from the first and second batteries 39 and 49 via a regulator and power terminals 675 and 677 (not shown). In the present embodiment, the first sensor unit 61 is supplied with power from the first battery 39 via the power supply terminal 675 and the like, and the second sensor unit 62 is supplied with power via the power supply terminal 677 and the like. 2 Electric power is supplied from the battery 49. Here, power is supplied from the first battery 39 to the first sensor unit 61, and power is supplied from the second battery 49 to the second sensor unit 62, but either the first battery 39 or the second battery 49 is supplied. Therefore, electric power may be supplied to the first sensor unit 61 and the second sensor unit 62. The same applies to later-described embodiments.
The rotation detecting device 1 is connected to a common signal ground via ground terminals 676 and 678.
 図8に示すように、第1センサ部61を構成するチップ641および第2センサ部62を構成するチップ642は、いずれもセンサパッケージ65に内蔵されるリードフレーム66に実装される。チップ641、642とセンサ端子67とは、ワイヤ等により接続される。また、センサ端子67は、第1基板21における第1の主面211に予め形成された配線パターンと接続される。これにより、センサ部61、62と第1基板21とが接続される。 As shown in FIG. 8, the chip 641 constituting the first sensor unit 61 and the chip 642 constituting the second sensor unit 62 are both mounted on a lead frame 66 built in the sensor package 65. The chips 641 and 642 and the sensor terminal 67 are connected by a wire or the like. The sensor terminal 67 is connected to a wiring pattern formed in advance on the first main surface 211 of the first substrate 21. Thereby, the sensor parts 61 and 62 and the 1st board | substrate 21 are connected.
 センサ素子601、602は、シャフト15と一体となって回転するマグネット16の回転に伴う磁界の変化を検出する磁気検出素子である。本実施形態のセンサ素子601、602は、例えばGMR、AMR、TMR等のMR素子、または、ホール素子等である。本実施形態では、モータ部10、より詳細にはモータ部10のシャフト15と一体に回転するマグネット16が、「検出対象」に対応する。
 センサ素子601、602、すなわちチップ641および642は、回転中心線Acと第1基板21との交点に対して点対称に配置される。以下、「Aは回転中心線Acと第1基板21との交点に対してBと点対称に配置されることを、単に「Aは回転中心線Acに対してBと点対称に配置される」という。センサ素子601、602を回転中心線Acに対して点対称配置とすることで、センサ素子601および602間の検出誤差を低減することができる。
The sensor elements 601 and 602 are magnetic detection elements that detect a change in the magnetic field accompanying the rotation of the magnet 16 that rotates integrally with the shaft 15. The sensor elements 601 and 602 of this embodiment are, for example, MR elements such as GMR, AMR, and TMR, or Hall elements. In the present embodiment, the motor unit 10, more specifically, the magnet 16 that rotates integrally with the shaft 15 of the motor unit 10 corresponds to the “detection target”.
The sensor elements 601 and 602, that is, the chips 641 and 642 are arranged point-symmetrically with respect to the intersection between the rotation center line Ac and the first substrate 21. Hereinafter, “A is arranged in point symmetry with B with respect to the intersection of the rotation center line Ac and the first substrate 21, simply“ A is arranged in point symmetry with B with respect to the rotation center line Ac. " By making the sensor elements 601 and 602 point-symmetric with respect to the rotation center line Ac, detection errors between the sensor elements 601 and 602 can be reduced.
 図9に示すように、回路部610は、AD変換部(A/D)613、614、回転角演算部615、回転回数演算部616、および、通信部617を有する。回路部620は、AD変換部623、624、回転角演算部625、回転回数演算部626、および、通信部627を有する。
 以下、回路部620の構成要素623、624、625、および627の構成および機能は、回路部610の構成要素613、614、615、および617の構成および機能と略同様であるので、以下、回路部610を中心に説明する。
As illustrated in FIG. 9, the circuit unit 610 includes AD conversion units (A / D) 613 and 614, a rotation angle calculation unit 615, a rotation number calculation unit 616, and a communication unit 617. The circuit unit 620 includes AD conversion units 623 and 624, a rotation angle calculation unit 625, a rotation number calculation unit 626, and a communication unit 627.
Hereinafter, the configurations and functions of the components 623, 624, 625, and 627 of the circuit unit 620 are substantially the same as the configurations and functions of the components 613, 614, 615, and 617 of the circuit unit 610. The description will focus on the part 610.
 AD変換部613は、センサ素子601の検出値、すなわちマグネット16の磁気変化を表す検出情報、をデジタル変換し、回転角演算部615に出力する。AD変換部614は、センサ素子601の検出値、すなわちマグネット16の磁気変化を表す検出情報、をデジタル変換し、回転回数演算部616に出力する。以下適宜、デジタル変換後の検出値を、単に「センサ素子の検出値」とする。なお、AD変換部613、614は、適宜省略してもよい。 The AD conversion unit 613 digitally converts the detection value of the sensor element 601, that is, the detection information indicating the magnetic change of the magnet 16, and outputs it to the rotation angle calculation unit 615. The AD conversion unit 614 digitally converts a detection value of the sensor element 601, that is, detection information indicating a magnetic change of the magnet 16, and outputs the digital value to the rotation number calculation unit 616. Hereinafter, the detection value after digital conversion is simply referred to as “detection value of sensor element”. Note that the AD conversion units 613 and 614 may be omitted as appropriate.
 回転角演算部615は、センサ素子601の検出値に基づき、モータ部10の回転角θmを演算する。回転角演算部615にて演算される値は、回転角θmそのものに限らず、回転角θmに関する情報であり、この情報に基づいて第1マイコン51にて回転角θmを演算可能な値であってもよい。このような場合も含め、以下単に「回転角θmの演算」とする。
 本実施形態では、回転角θmを機械角とするが、電気角としてもよい。
The rotation angle calculation unit 615 calculates the rotation angle θm of the motor unit 10 based on the detection value of the sensor element 601. The value calculated by the rotation angle calculation unit 615 is not limited to the rotation angle θm itself, but is information related to the rotation angle θm. The first microcomputer 51 can calculate the rotation angle θm based on this information. May be. Including such a case, hereinafter, it is simply referred to as “calculation of the rotation angle θm”.
In the present embodiment, the rotation angle θm is a mechanical angle, but may be an electrical angle.
 回転回数演算部616は、センサ素子601の検出値に基づき、モータ部10の回転回数TCを演算する。回転回数演算部616にて演算される値は、回転回数TCそのものに限らず、回転回数TCに関する情報であり、この情報に基づいて第1マイコン51にて回転回数TCを演算可能な値であってもよい。このような場合も含め、以下単に「回転回数TCの演算」とする。
 例えば、本実施形態では、例えばモータ部10の1回転を少なくとも3つの領域(第1~第3の120度の回転角領域)に分けられており、所定の第1の回転方向がカウントアップ方向、および該第1の回転方向に反対の第2の回転方向がカウントダウン方向に定められている。
 例えば、回転回数演算部616は、ハードウェアカウンタあるいはソフトウェアカウンタを有しており、モータ部10の回転角θmが現在の回転角領域からカウントアップ方向に沿って隣接回転角領域に変化した際にカウンタの現在のカウント値をインクリメントし、モータ部10の回転角θmが現在の回転角領域からカウントダウン方向に沿って隣接回転角領域に変化した際にカウンタの現在のカウント値をデクリメントすることにより、カウント値に基づいてモータ部10の回転回数TCを演算可能である。当該カウント値についても、「回転回数TC」の概念に含まれるものとする。
The rotation number calculation unit 616 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 601. The value calculated by the rotation number calculation unit 616 is not limited to the rotation number TC itself, but is information related to the rotation number TC. Based on this information, the first microcomputer 51 can calculate the rotation number TC. May be. Including such a case, hereinafter, it is simply referred to as “calculation of the number of rotations TC”.
For example, in the present embodiment, for example, one rotation of the motor unit 10 is divided into at least three regions (first to third rotation angle regions of 120 degrees), and the predetermined first rotation direction is the count-up direction. , And a second rotation direction opposite to the first rotation direction is defined as the countdown direction.
For example, the rotation number calculation unit 616 includes a hardware counter or a software counter, and is a counter when the rotation angle θm of the motor unit 10 changes from the current rotation angle region to the adjacent rotation angle region along the count-up direction. By incrementing the current count value of the motor unit 10 and decrementing the current count value of the counter when the rotation angle θm of the motor unit 10 changes from the current rotation angle region to the adjacent rotation angle region along the countdown direction, The number of rotations TC of the motor unit 10 can be calculated based on the value. The count value is also included in the concept of “the number of rotations TC”.
 モータ部10の1回転を3領域以上に分割することにより、モータ部10の回転方向を識別可能である。また、モータ部10の1回転の分割領域数を5領域以上とすれば、モータ部10の回転角θmの現在の領域から隣接領域への変化が読み飛ばされた場合でも、回転方向を判別可能である。また、回転回数演算部616は、回転回数TCを回転角θmから演算するようにしてもよい。
 なお、本明細書でいう「回転回数」とは、単位rpm等で表される、いわゆる回転数(すなわち回転速度)ではなく、「ロータが何回転したか」を表す値である。また、本明細書では、単位rpm等で表される、いわゆる「回転数」については、「回転速度」とする。
By dividing one rotation of the motor unit 10 into three or more regions, the rotation direction of the motor unit 10 can be identified. Further, if the number of divided areas per rotation of the motor unit 10 is set to 5 or more, the rotation direction can be determined even when the change of the rotation angle θm of the motor unit 10 from the current area to the adjacent area is skipped. It is. Further, the rotation number calculation unit 616 may calculate the rotation number TC from the rotation angle θm.
The “number of rotations” in this specification is not a so-called rotation number (that is, rotation speed) expressed in unit rpm or the like but a value indicating “how many rotations the rotor has rotated”. Further, in this specification, the so-called “rotation speed” expressed in unit rpm or the like is referred to as “rotation speed”.
 通信部617は、回転角θmに係る回転角信号、および、回転回数TCに係る回転回数信号を含む出力信号を生成し、SPI(Serial Peripheral Interface)通信等のデジタル通信により、出力信号をフレームとして第1マイコン51に出力する。
 本実施形態では、第1マイコン51は、通信線691および指令端子671を介して指令を第1センサ部61に送信し、第1のセンサ部61は、第1センサ部61は、第1マイコン51からの指令を受信すると、出力端子672および通信線692を経由して第1マイコン51に出力信号をフレームとして出力する。
 第1のマイコン51に送信される出力信号の各フレームは、上記回転角θmに係る回転角信号および、回転回数TCに係る回転回数信号に加えて、ランカウンタ信号、およびエラー検査信号として機能する巡回冗長検査コード(CRCコード)、すなわち、CRC信号を含んでいる。図10において、ランカウンタ信号は省略されている。チェックサム信号等の他のエラー検査信号をCRCコードの代わりに用いてもよい。
The communication unit 617 generates an output signal including a rotation angle signal related to the rotation angle θm and a rotation frequency signal related to the rotation frequency TC, and uses the output signal as a frame by digital communication such as SPI (Serial Peripheral Interface) communication. Output to the first microcomputer 51.
In the present embodiment, the first microcomputer 51 transmits a command to the first sensor unit 61 via the communication line 691 and the command terminal 671, and the first sensor unit 61 includes the first sensor unit 61. When a command from 51 is received, an output signal is output as a frame to the first microcomputer 51 via the output terminal 672 and the communication line 692.
Each frame of the output signal transmitted to the first microcomputer 51 functions as a run counter signal and an error check signal in addition to the rotation angle signal related to the rotation angle θm and the rotation frequency signal related to the rotation frequency TC. A cyclic redundancy check code (CRC code), that is, a CRC signal is included. In FIG. 10, the run counter signal is omitted. Other error check signals such as a checksum signal may be used instead of the CRC code.
 第2センサ部62の通信部617は、回転角演算部625にて演算された回転角θmに係る回転角信号、および、回転回数演算部626にて演算された回転回数TCに係る回転回数信号を含む出力信号を生成し、第2マイコン52に出力する。
 本実施形態では、第2マイコン52は、通信線693および指令端子673を介して指令を第2センサ部62に送信し、第2のセンサ部62は、第2マイコン52からの指令が通信線693および指令端子673から第2センサ部62に入力される。第2センサ部62は、第2マイコン52からの指令を受信すると、出力端子674および通信線694を経由して第2マイコン52に出力信号を出力する。
 なお、本実施形態では、第1および第2のマイコン51、52がいずれも第2基板22に実装されているので、通信線691~694は、基板21、22における基板配線、および、内部信号端子717により構成される。
 また、各第1および第2のマイコン51および52は、初期値がゼロのランカウンタを有しており、対応する第1および第2のセンサ部61および62の一方からランカウンタ信号が入力される毎にカウンタを1インクリメントするようになっている。これにより、各第1および第2のマイコン51および52は、対応する第1および第2のセンサ部61および62の一方との通信が正常に行われているか否かをチェックすることができる。
The communication unit 617 of the second sensor unit 62 includes a rotation angle signal related to the rotation angle θm calculated by the rotation angle calculation unit 625 and a rotation frequency signal related to the rotation frequency TC calculated by the rotation frequency calculation unit 626. Is generated and output to the second microcomputer 52.
In the present embodiment, the second microcomputer 52 transmits a command to the second sensor unit 62 via the communication line 693 and the command terminal 673, and the second sensor unit 62 receives a command from the second microcomputer 52 as a communication line. 693 and the command terminal 673. When receiving the command from the second microcomputer 52, the second sensor unit 62 outputs an output signal to the second microcomputer 52 via the output terminal 674 and the communication line 694.
In the present embodiment, since both the first and second microcomputers 51 and 52 are mounted on the second substrate 22, the communication lines 691 to 694 are connected to the substrate wiring on the substrates 21 and 22, and the internal signals. The terminal 717 is configured.
Each of the first and second microcomputers 51 and 52 has a run counter with an initial value of zero, and a run counter signal is input from one of the corresponding first and second sensor units 61 and 62. Each time the counter is incremented, the counter is incremented by one. Thereby, each of the first and second microcomputers 51 and 52 can check whether communication with one of the corresponding first and second sensor units 61 and 62 is normally performed.
 第1マイコン51は、第1センサ部61から取得した出力信号に含まれる回転角信号に基づき、モータ部10の回転角θmを演算する。第1マイコン51は、演算された回転角θmに基づいて、第1のインバータ30のスイッチング素子301~306およびリレー32および33のオンオフスイッチング動作を制御することにより、モータ部10の駆動制御を行う。
 また、第1マイコン51は、第1センサ部61から取得した出力信号に含まれる回転角信号、および、回転回数信号に基づき、ステアリングシャフト102の舵角θsを演算する。ステアリングシャフト102は減速ギア機構109を介してモータ部10と接続されているので、第1マイコン51は、舵角θsを、回転角θm、回転回数TC、および、減速ギア機構109のギア比に基づいて演算可能である。第2マイコン52においても、第2センサ部62から取得した出力信号に基づき、同様の演算を行う。
The first microcomputer 51 calculates the rotation angle θm of the motor unit 10 based on the rotation angle signal included in the output signal acquired from the first sensor unit 61. The first microcomputer 51 controls the driving of the motor unit 10 by controlling the on / off switching operations of the switching elements 301 to 306 of the first inverter 30 and the relays 32 and 33 based on the calculated rotation angle θm. .
Further, the first microcomputer 51 calculates the steering angle θs of the steering shaft 102 based on the rotation angle signal included in the output signal acquired from the first sensor unit 61 and the rotation frequency signal. Since the steering shaft 102 is connected to the motor unit 10 via the reduction gear mechanism 109, the first microcomputer 51 sets the steering angle θs to the rotation angle θm, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109. It can be calculated based on this. The second microcomputer 52 also performs the same calculation based on the output signal acquired from the second sensor unit 62.
 電動パワーステアリング装置108が搭載される車両Vが直進するときのステアリングホイール101の位置を中立位置と定義する。各第1および第2のマイコン51および52は、車両Vが例えば一定速度で直進進行を一定時間行っている間において、上記中立位置を学習可能である。学習された中立位置は、第1および第2のマイコン51、52に記憶される。本実施形態では、第1および第2のマイコン51、52は、中立位置を基準とし、回転角θm、回転回数TCおよび減速ギア機構109のギア比に基づいて舵角θsを演算する。第1および第2のマイコン51、52にて回転角θm等に基づいて舵角演算を行う構成により、ステアリングセンサを省略すること
ができる。
The position of the steering wheel 101 when the vehicle V on which the electric power steering device 108 is mounted goes straight is defined as a neutral position. Each of the first and second microcomputers 51 and 52 can learn the neutral position while the vehicle V is traveling straight ahead at a constant speed for a certain period of time, for example. The learned neutral position is stored in the first and second microcomputers 51 and 52. In the present embodiment, the first and second microcomputers 51 and 52 calculate the steering angle θs based on the rotation angle θm, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109 with the neutral position as a reference. The steering sensor can be omitted by the configuration in which the first and second microcomputers 51 and 52 perform the steering angle calculation based on the rotation angle θm and the like.
 続いて、第1および第2のセンサ部61、62と対応する第1および第2のマイコン51、52との間における通信について、図10における(A)~(E)に基づいて説明する。なお、以下では、図Xにおける(Y)を、図XYとして表す。
 図10Aは、第1のセンサ部61により周期的に求められるモータ部10の回転角θmを示しており、図10Bは、第1のセンサ部61により求められるモータ部10の回転回数TCを示しており、図10Cは、第1のセンサ部61から第1マイコン51へ周期的に送信される出力信号を示している。図10Dは、第1マイコン51からセンサ部61へ周期的に送信される指令信号を示しており、図10Eは、第1のマイコン51における回転角θmおよびステアリング角θsの演算処理を示す。
 図10A~図10Eに示すように、第1センサ部61と第1マイコン51との間での通信と、第2センサ部62と第2マイコン52との間での通信とは略同様であるので、ここでは、第1センサ部61と第1マイコン51との間での通信について説明する。
Next, communication between the first and second sensor units 61 and 62 and the corresponding first and second microcomputers 51 and 52 will be described based on (A) to (E) in FIG. In the following, (Y) in FIG. X is represented as FIG. XY.
10A shows the rotation angle θm of the motor unit 10 periodically obtained by the first sensor unit 61, and FIG. 10B shows the number of rotations TC of the motor unit 10 obtained by the first sensor unit 61. FIG. 10C shows an output signal periodically transmitted from the first sensor unit 61 to the first microcomputer 51. FIG. 10D shows a command signal periodically transmitted from the first microcomputer 51 to the sensor unit 61, and FIG. 10E shows calculation processing of the rotation angle θm and the steering angle θs in the first microcomputer 51.
As shown in FIGS. 10A to 10E, the communication between the first sensor unit 61 and the first microcomputer 51 and the communication between the second sensor unit 62 and the second microcomputer 52 are substantially the same. Therefore, here, communication between the first sensor unit 61 and the first microcomputer 51 will be described.
 図10Aに示すように、第1のマイコン51は、回転角θmを、更新周期DRT_saで更新する。図10Aに示すパルスの一定間隔それぞれが更新周期DRT_saを表している。図10Aにおける各パルスの幅は、回転角演算部615における回転角θmのデータ更新に係る演算期間を示している。すなわち、図10Aに示す各パルスは、第1の半期間Px1および第2の半期間Px2から構成されている。各パルスにおける第1の半期間Px1にて、AD変換部613がセンサ素子601の検出値をデジタル変換し、期間Px1に続く第2の半期間Px2にて、回転角演算部615が変換された検出値に基づいて回転角θmを演算し、回転角θmに係るデータを更新する。図10Aでは、回転角θmに係るデータが、1A、2A、・・・11Aと更新されていくものとする。なお、図10Aでは、データ1Aの演算期間について、第1および第2の半期間Px1、Px2を記載しているが、他のデータの演算期間についても同様である。 As shown in FIG. 10A, the first microcomputer 51 updates the rotation angle θm with the update cycle DRT_sa. Each fixed interval of the pulses shown in FIG. 10A represents the update cycle DRT_sa. The width of each pulse in FIG. 10A indicates a calculation period related to data update of the rotation angle θm in the rotation angle calculation unit 615. That is, each pulse shown in FIG. 10A includes a first half period Px1 and a second half period Px2. In the first half period Px1 of each pulse, the AD conversion unit 613 digitally converts the detection value of the sensor element 601, and in the second half period Px2 following the period Px1, the rotation angle calculation unit 615 is converted. Based on the detected value, the rotation angle θm is calculated, and the data related to the rotation angle θm is updated. In FIG. 10A, the data related to the rotation angle θm is updated as 1A, 2A,... 11A. In FIG. 10A, the first and second half periods Px1 and Px2 are shown for the calculation period of the data 1A, but the same applies to the calculation periods of the other data.
 図10Bに示すように、第1のマイコン51は、回転回数TCを、更新周期DRT_sbで更新する。図10Bにおける各パルスの幅は、回転回数演算部616における回転回数TCのデータ更新に係る演算期間を示している。すなわち、図10Bに示す各パルスは、第1の半期間Py1および第2の半期間Py2から構成されている。各パルスにおける第1の半期間Py1にて、AD変換部614がセンサ素子601の検出値をデジタル変換し、第1の半期間Py1に続く第2の半期間Py2にて、回転回数演算部616が変換された検出値に基づいて回転回数TCを演算し、回転回数TCに係るデータを更新する。図10Bでは、回転回数TCに関するデータが、1B、2B、・・・11Bと更新されていくものとする。なお、図10Bでは、データ1Bの演算期間について、第1の半期間Py1、第1の半Py2を記載しているが、他のデータの演算期間についても同様である。
 すなわち、図10A、11A、15A、および29Aにおいて、各パルスnA(nは、任意の自然数)は、回転角θmのための検出データおよび対応する回転角信号を表し、図10B、11B、15B、および29Bにおいて、各パルスnB(nは、任意の自然数)は、回転回数TCに係る検出データおよび対応する回転回数信号を意味するものとする。
As shown in FIG. 10B, the first microcomputer 51 updates the number of rotations TC with the update cycle DRT_sb. The width of each pulse in FIG. 10B indicates a calculation period related to data update of the rotation number TC in the rotation number calculation unit 616. That is, each pulse shown in FIG. 10B is composed of a first half period Py1 and a second half period Py2. In the first half period Py1 of each pulse, the AD conversion unit 614 converts the detection value of the sensor element 601 into a digital value, and in the second half period Py2 following the first half period Py1, the rotation number calculation unit 616. The number of rotations TC is calculated based on the detected value converted, and the data related to the number of rotations TC is updated. In FIG. 10B, it is assumed that data regarding the number of rotations TC is updated as 1B, 2B,. In FIG. 10B, the first half period Py1 and the first half Py2 are shown for the calculation period of the data 1B, but the same applies to the calculation periods of other data.
That is, in FIGS. 10A, 11A, 15A, and 29A, each pulse nA (n is an arbitrary natural number) represents detection data and a corresponding rotation angle signal for the rotation angle θm, and FIGS. 10B, 11B, 15B, And 29B, each pulse nB (n is an arbitrary natural number) means detection data related to the rotation number TC and a corresponding rotation number signal.
 図10Aおよび図10Bに示すように、本実施形態では、回転角θmの更新周期DRT_saと、回転回数TCの更新周期DRT_sbとは等しく、後述する第1マイコン51における演算周期DRT_mと比較して短い。 As shown in FIGS. 10A and 10B, in this embodiment, the update cycle DRT_sa of the rotation angle θm and the update cycle DRT_sb of the number of rotations TC are equal and shorter than the calculation cycle DRT_m in the first microcomputer 51 described later. .
 図10Cおよび図10Dに示すように、時刻x11にて、第1マイコン51は、次の指令送信のタイミングにて出力信号の送信を要求する指令信号com1を第1センサ部61に送信する。また、通信部617は、指令信号com1を受信したタイミングである時刻x11にて、指令信号com1の直前の指令信号com0(不図示)に基づく出力信号Sd10を第1マイコン51に送信する。
 出力信号Sd10には、最新データに基づく回転角θmおよび回転回数TCに係る信号、および、CRC信号が含まれる。詳細には、出力信号Sd10には、回転角θmに基づく例えば所定ビットの最新の検出データ1A、すなわち、最新の回転角信号、回転回数TCに基づく例えば所定ビットの最新の検出データ1B、すなわち、最新の回転回数信号、および、最新の回転角信号および回転回数信号に基づいて演算される所定ビットの巡回冗長検査信号であるCRCコードが含まれる。
As shown in FIGS. 10C and 10D, at time x11, the first microcomputer 51 transmits a command signal com1 for requesting transmission of an output signal to the first sensor unit 61 at the next command transmission timing. In addition, the communication unit 617 transmits an output signal Sd10 based on a command signal com0 (not shown) immediately before the command signal com1 to the first microcomputer 51 at time x11 which is a timing at which the command signal com1 is received.
The output signal Sd10 includes a signal related to the rotation angle θm and the number of rotations TC based on the latest data, and a CRC signal. Specifically, the output signal Sd10 includes, for example, the latest detection data 1A of a predetermined bit based on the rotation angle θm, that is, the latest detection data 1B of the predetermined bit based on the latest rotation angle signal and the number of rotations TC, that is, The latest rotation number signal, and a CRC code that is a cyclic redundancy check signal of a predetermined bit calculated based on the latest rotation angle signal and rotation number signal are included.
 第1マイコン51は、時刻x12にて、出力信号Sd10に含まれる回転角信号および回転回数信号に基づく回転角θmおよび舵角θsの演算を開始する。図10E中における[1A、1B]の記載は、回転角θmおよび舵角θsの演算にデータ1A、1Bを用いることを意味する。なお、第1マイコン51は、出力信号が送信される毎に舵角θsを演算しなくてもよい。すなわち、第1マイコン51は、回転角θmの更新周期DRT_saおよび回転回数TCの更新周期DRT_sbよりも長い更新周期DRT_mに基づいて舵角θsを算出しているが、所定数の周期DRT_m毎に1回の割合で舵角θsを算出するようにしてもよい。 The first microcomputer 51 starts calculation of the rotation angle θm and the steering angle θs based on the rotation angle signal and the rotation frequency signal included in the output signal Sd10 at time x12. [1A, 1B] in FIG. 10E means that the data 1A, 1B are used for the calculation of the rotation angle θm and the steering angle θs. Note that the first microcomputer 51 does not have to calculate the steering angle θs every time an output signal is transmitted. That is, the first microcomputer 51 calculates the steering angle θs based on the update cycle DRT_m longer than the update cycle DRT_sa of the rotation angle θm and the update cycle DRT_sb of the number of rotations TC. The steering angle θs may be calculated at the rate of rotation.
 また、時刻x13にて、第1マイコン51から指令信号com2が送信されると、第1センサ部61は、回転角θmによるデータ4Aに基づく回転角信号、回転回数TCによるデータ4Bに基づく回転回数信号、および、CRC信号を含む出力信号Sd11を第1マイコン51に送信する。第1マイコン51は、時刻x14にて、出力信号Sd11に含まれる回転角振動4Aおよび回転回数信号4Bに基づく回転角θmおよび舵角θsの演算を開始する。
 時刻x15にて、第1マイコン51から指令信号com3が送信されると、第1センサ部61は、回転角θmによるデータ8Aに基づく回転角信号、回転回数TCによるデータ8Bに基づく回転回数信号、および、CRC信号を含む出力信号Sd12を第1マイコン51に送信する。
Further, when the command signal com2 is transmitted from the first microcomputer 51 at time x13, the first sensor unit 61 causes the rotation angle signal based on the data 4A based on the rotation angle θm and the rotation count based on the data 4B based on the rotation count TC. The output signal Sd11 including the signal and the CRC signal is transmitted to the first microcomputer 51. The first microcomputer 51 starts calculation of the rotation angle θm and the steering angle θs based on the rotation angle vibration 4A and the rotation frequency signal 4B included in the output signal Sd11 at time x14.
When the command signal com3 is transmitted from the first microcomputer 51 at time x15, the first sensor unit 61 causes the rotation angle signal based on the data 8A based on the rotation angle θm, the rotation frequency signal based on the data 8B based on the rotation frequency TC, The output signal Sd12 including the CRC signal is transmitted to the first microcomputer 51.
 図10A~図10Eに対応する図11A~図11Eは、更新周期DRT_sa、DRT_sbが異なっている場合における第1および第2のセンサ部61、62と対応する第1および第2のマイコン51、52との間における通信について説明する。
 詳細には、回転回数TCの更新周期DRT_sbは、回転角θmの更新周期DRT_saより長くてもよい。回転角θmの更新周期DRT_saは、第1マイコン51の演算周期DRT_mより十分に短い必要がある。一方、回転回数TCは、モータ部10の1回転を分割した各象限を読み飛ばすことなく検出すれば、回転回数を誤検出することがない。そのため、回転回数TCの更新周期DRT_sbは、モータ部10の設定回転速度に応じ、読み飛ばしがないような長さに適宜設定すればよい。なお、設定回転速度は、モータ部10の最大回転速度としてもよいし、回転回数TCのカウントを要する所定の回転速度としてもよい。
FIGS. 11A to 11E corresponding to FIGS. 10A to 10E show first and second microcomputers 51 and 52 corresponding to the first and second sensor units 61 and 62 when the update periods DRT_sa and DRT_sb are different. Will be described.
Specifically, the update cycle DRT_sb of the number of rotations TC may be longer than the update cycle DRT_sa of the rotation angle θm. The update cycle DRT_sa of the rotation angle θm needs to be sufficiently shorter than the calculation cycle DRT_m of the first microcomputer 51. On the other hand, if the number of rotations TC is detected without skipping each quadrant obtained by dividing one rotation of the motor unit 10, the number of rotations is not erroneously detected. For this reason, the update cycle DRT_sb of the number of rotations TC may be appropriately set to a length that does not skip reading according to the set rotation speed of the motor unit 10. The set rotation speed may be the maximum rotation speed of the motor unit 10 or a predetermined rotation speed that requires counting of the number of rotations TC.
 図11Cおよび11Dの例では、時刻x21、x22での処理は、図10Cおよび図10D中の時刻x11、x12の処理と同様であり、第1センサ部61は、時刻x21にて、データ1Aに基づく回転角信号およびデータ1Bに基づく回転回数信号を含む出力信号Sd21を第1マイコン51に送信する。第1マイコン51は、時刻x22にて、出力信号Sd21に基づき、回転角θm
および舵角θsの演算を開始する。
In the examples of FIGS. 11C and 11D, the processing at times x21 and x22 is the same as the processing at times x11 and x12 in FIGS. 10C and 10D, and the first sensor unit 61 stores data 1A at time x21. The output signal Sd21 including the rotation angle signal based on the data and the rotation frequency signal based on the data 1B is transmitted to the first microcomputer 51. The first microcomputer 51 determines the rotation angle θm based on the output signal Sd21 at time x22.
And calculation of the steering angle θs is started.
 時刻x23にて、第1マイコン51から指令信号com2が送信されると、第1センサ部61は、データ4Aに基づく回転角信号およびデータ3Bに基づく回転回数信号を含む出力信号Sd22を第1マイコン51に送信する。第1マイコン51は、時刻x24にて、出力信号Sd22に基づき、回転角θmおよび舵角θsの演算を開始する。
 時刻x25にて、第1マイコン51から指令信号com3が送信されると、第1センサ部61は、データ8Aに基づく回転角信号、および、データ4Bに基づく回転回数信号を含む出力信号Sd23を第1マイコン51に送信する。
When the command signal com2 is transmitted from the first microcomputer 51 at time x23, the first sensor unit 61 outputs the output signal Sd22 including the rotation angle signal based on the data 4A and the rotation frequency signal based on the data 3B to the first microcomputer. 51. The first microcomputer 51 starts calculating the rotation angle θm and the steering angle θs based on the output signal Sd22 at time x24.
When the command signal com3 is transmitted from the first microcomputer 51 at time x25, the first sensor unit 61 receives the output signal Sd23 including the rotation angle signal based on the data 8A and the rotation number signal based on the data 4B. 1 is transmitted to the microcomputer 51.
 ここで、比較例に関わる回転検出装置(回転角を検出する回転角センサと回転回数を検出する回転回数センサとが別々の第1および第2のチップに設けられており、それぞれ回転角信号と回転回数信号とを別々の信号として送信する)とマイコンとの通信を、図10A~図10Eに対応する図29A~図29Eに示す。
 ここでは、SPI通信におけるチップセレクトに応じて、回転角検出センサ(第1のチップ)および回転回数センサ(第2のチップ)から回転角信号および回転回数信号が交互に送信されるものとする。また、更新周期DRT_sa、DRT_sbは、図11と同様とする。
Here, the rotation detection device according to the comparative example (a rotation angle sensor for detecting a rotation angle and a rotation frequency sensor for detecting the rotation frequency are provided in separate first and second chips, respectively. 29A to 29E corresponding to FIGS. 10A to 10E are shown for communication between the microcomputer and the microcomputer.
Here, it is assumed that the rotation angle signal and the rotation frequency signal are alternately transmitted from the rotation angle detection sensor (first chip) and the rotation frequency sensor (second chip) in accordance with chip selection in SPI communication. The update cycles DRT_sa and DRT_sb are the same as those in FIG.
 時刻x91では、マイコンから送られた指令信号com1cの直前の指令信号com0c(不図示)に基づいて、回転角センサから出力信号Sd91が送信される。出力信号Sd91には、データ1Aに基づく回転角信号が含まれる。一方、出力信号Sd91には、回転回数信号が含まれない。
 時刻x92では、出力信号Sd91に含まれるデータ1A、および、指令信号com0cが送信されたタイミングで送信される出力信号Sd90(不図示)に含まれるデータ1Bに基づき、マイコンにより回転角θmおよび舵角θsが演算される。
At time x91, based on a command signal com0c (not shown) immediately before the command signal com1c sent from the microcomputer, an output signal Sd91 is transmitted from the rotation angle sensor. The output signal Sd91 includes a rotation angle signal based on the data 1A. On the other hand, the rotation signal is not included in the output signal Sd91.
At time x92, based on the data 1A included in the output signal Sd91 and the data 1B included in the output signal Sd90 (not shown) transmitted at the timing at which the command signal com0c is transmitted, the microcomputer sets the rotation angle θm and the steering angle. θs is calculated.
 時刻x93では、マイコンから指令信号com2cが送信されると、回転回数センサから、データ3Bに基づく回転回数信号を含む出力信号Sd92が送信される。また、時刻x94では、マイコンから指令信号com3cが送信されると、回転角センサから、データ8Aに基づく回転角信号を含む出力信号Sd93が送信される。
 時刻x95では、出力信号Sd93に含まれるデータ8Aに基づく回転回数信号、および、出力信号Sd92に含まれるデータ3Bに基づく回転回数信号を用いて、マイコンにより、回転角θmおよび舵角θsが演算される。
At time x93, when command signal com2c is transmitted from the microcomputer, output signal Sd92 including a rotation number signal based on data 3B is transmitted from the rotation number sensor. At time x94, when a command signal com3c is transmitted from the microcomputer, an output signal Sd93 including a rotation angle signal based on the data 8A is transmitted from the rotation angle sensor.
At time x95, the microcomputer calculates the rotation angle θm and the steering angle θs using the rotation number signal based on the data 8A included in the output signal Sd93 and the rotation number signal based on the data 3B included in the output signal Sd92. The
 比較例では、回転角θmの検出に用いられる回転各センサ部と、回転回数TCの検出に用いられる回転回数センサ部とが別々であるので、回転角信号と回転回数信号とは別途にマイコンに送信される。そのため、例えば時刻x95における演算に用いられる回転角信号の検出タイミングと回転回数信号の検出タイミングとのずれ幅Tdcは、マイコンの指令周期よりも長い。比較例のように、検出タイミングのずれが大きい回転角θmおよび回転回数TCを用いると、舵角θsを正確に演算できない虞がある。 In the comparative example, since each rotation sensor unit used for detecting the rotation angle θm and the rotation number sensor unit used for detecting the rotation number TC are separate, the rotation angle signal and the rotation number signal are separately transmitted to the microcomputer. Sent. Therefore, for example, the deviation width Tdc between the detection timing of the rotation angle signal and the detection timing of the rotation frequency signal used for the calculation at time x95 is longer than the command period of the microcomputer. If the rotation angle θm and the number of rotations TC with a large detection timing deviation are used as in the comparative example, the steering angle θs may not be accurately calculated.
 一方、本実施形態に関わる回転検出装置1は、回転角演算部615および回転回数演算部616を1つのチップ641に搭載して構成し、回転角信号と回転回数信号とを一連の出力信号として、通信部617から第1マイコン51に送信している。
 このため、図10A~図10Eに示すように、回転角θmに係るデータと回転回数TCに係るデータとの更新タイミングが同期していれば、第1マイコン51では、同期して検出された同時に検出された検出値に基づいて、回転角θm、回転回数TC、および、舵角θsを演算することができる。
 また、図11A~図11Eに示すように、更新周期DRT_sa、DRT_sbが異なっていても、回転検出装置1は、同一の出力信号に回転角信号および回転回数信号を含めて送信するように構成されている。このため、回転角θmの検出タイミングと回転数TCの検出タイミングのずれ幅Tdは、マイコン51からの指令周期より短くすることが可能になり、比較例のように回転角θmに基づく回転角信号と回転数TCに基づく回転回数信号とを別々の信号として送信する場合と比較し、回転角θmの検出タイミングと回転数TCの検出タイミングとのずれを低減することができる。
On the other hand, the rotation detection device 1 according to the present embodiment is configured by mounting the rotation angle calculation unit 615 and the rotation number calculation unit 616 on one chip 641, and the rotation angle signal and the rotation number signal are used as a series of output signals. And transmitted from the communication unit 617 to the first microcomputer 51.
Therefore, as shown in FIGS. 10A to 10E, if the update timings of the data related to the rotation angle θm and the data related to the number of rotations TC are synchronized, the first microcomputer 51 simultaneously detects the synchronization. Based on the detected value, the rotation angle θm, the number of rotations TC, and the steering angle θs can be calculated.
As shown in FIGS. 11A to 11E, even if the update periods DRT_sa and DRT_sb are different, the rotation detection device 1 is configured to transmit the same output signal including the rotation angle signal and the rotation frequency signal. ing. Therefore, the shift width Td between the detection timing of the rotation angle θm and the detection timing of the rotation speed TC can be made shorter than the command cycle from the microcomputer 51, and the rotation angle signal based on the rotation angle θm as in the comparative example. And the rotation number signal based on the rotation speed TC can be compared with the case where the rotation frequency signal is transmitted as separate signals, and the difference between the detection timing of the rotation angle θm and the detection timing of the rotation speed TC can be reduced.
 また、本実施形態に関わる回転検出装置1は、回転角信号および回転回数信号を一連の出力信号に含め、1本の通信線692を経由して第1マイコン51に送信する。これにより、回転角信号と回転回数信号とを別々の通信線を用いてマイコンに送信する場合と比較して、通信線の数を減らすことができる。 In addition, the rotation detection device 1 according to the present embodiment includes a rotation angle signal and a rotation frequency signal in a series of output signals, and transmits them to the first microcomputer 51 via one communication line 692. Thereby, compared with the case where a rotation angle signal and a rotation frequency signal are transmitted to a microcomputer using separate communication lines, the number of communication lines can be reduced.
 本実施形態の駆動装置8は、上述したように冗長システムとして構成されており、電動パワーステアリング装置108に搭載されている。電動パワーステアリング装置108は、車両Vの基本機能の1つである「曲がる」機能を司る装置であるため、駆動装置8の冗長化構成により、冗長化構成の一方に異常が生じた場合であっても、運転者によるステアリングホイール101の操舵処理のアシストを継続できる。 The drive device 8 of the present embodiment is configured as a redundant system as described above, and is mounted on the electric power steering device 108. Since the electric power steering device 108 is a device that controls the “bend” function, which is one of the basic functions of the vehicle V, the redundant configuration of the drive device 8 causes an abnormality in one of the redundant configurations. However, the assist of the steering process of the steering wheel 101 by the driver can be continued.
 特に、回転検出装置1は、二重化された回路部610および620それぞれにより回転角θmおよび回転回数TCを算出している。この構成により、二重化された回路部610および620の何れか一方に異常が生じた場合であっても、電動パワーステアリング装置108のアシスト動作を継続可能である。また、回転検出装置1は、冗長化された回路部610、620をそれぞれ対応する1チップ641、642として一体化することで、回転検出装置1を小型化可能である。この回転検出装置1の小型化により駆動装置8の小型化に寄与することができ、この結果、車両Vの乗客室における乗員スペースを増大し、車両Vの燃費向上に寄与することができる。 In particular, the rotation detection device 1 calculates the rotation angle θm and the number of rotations TC by the duplicated circuit units 610 and 620, respectively. With this configuration, the assist operation of the electric power steering device 108 can be continued even when an abnormality occurs in one of the duplicated circuit units 610 and 620. Further, the rotation detection device 1 can be downsized by integrating the redundant circuit units 610 and 620 as the corresponding one chips 641 and 642, respectively. The downsizing of the rotation detection device 1 can contribute to the downsizing of the drive device 8, and as a result, the passenger space in the passenger compartment of the vehicle V can be increased and the fuel consumption of the vehicle V can be improved.
 以上説明したように、本実施形態の回転検出装置1は、第1および第2のセンサ部61および62、第1のマイコン51、および第2のマイコン52とを備えている。
 第1のセンサ部61は、センサ素子601および回路部610を備え、第2のセンサ部62は、センサ素子602および回路部620を備えている。
 センサ素子601および602は、それぞれモータ部10の回転を検出する。
 回路部610は、回転角演算部615、回転回数演算部616、および、通信部617を有する。回転角演算部615は、センサ素子601の検出値に基づいてモータ部10の回転角θmを演算する。回転回数演算部616は、センサ素子601の検出値に基づいてモータ部10の回転回数TCを演算する。通信部617は、回転角θmに係る信号である回転角信号および回転回数TCに係る信号である回転回数信号を第1マイコン51に送信する。
As described above, the rotation detection device 1 of the present embodiment includes the first and second sensor units 61 and 62, the first microcomputer 51, and the second microcomputer 52.
The first sensor unit 61 includes a sensor element 601 and a circuit unit 610, and the second sensor unit 62 includes a sensor element 602 and a circuit unit 620.
The sensor elements 601 and 602 detect the rotation of the motor unit 10, respectively.
The circuit unit 610 includes a rotation angle calculation unit 615, a rotation number calculation unit 616, and a communication unit 617. The rotation angle calculation unit 615 calculates the rotation angle θm of the motor unit 10 based on the detection value of the sensor element 601. The rotation number calculation unit 616 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 601. The communication unit 617 transmits a rotation angle signal that is a signal related to the rotation angle θm and a rotation frequency signal that is a signal related to the rotation frequency TC to the first microcomputer 51.
 回路部620は、回転角演算部625、回転回数演算部626、および、通信部627を有する。回転角演算部625は、センサ素子602の検出値に基づいてモータ部10の回転角θmを演算する。回転回数演算部626は、センサ素子602の検出値に基づいてモータ部10の回転回数TCを演算する。通信部627は、回転角θmに係る信号である回転角信号および回転回数TCに係る信号である回転回数信号を第2マイコン52に送信する。
 センサパッケージ65は、センサ素子601、602および回路部610、620を内部に封止(パッケージ化)しており、第1および第2のマイコン51、52とは別途に第1基板21に実装される。
The circuit unit 620 includes a rotation angle calculation unit 625, a rotation number calculation unit 626, and a communication unit 627. The rotation angle calculation unit 625 calculates the rotation angle θm of the motor unit 10 based on the detection value of the sensor element 602. The rotation number calculation unit 626 calculates the rotation number TC of the motor unit 10 based on the detection value of the sensor element 602. The communication unit 627 transmits a rotation angle signal that is a signal related to the rotation angle θm and a rotation frequency signal that is a signal related to the rotation frequency TC to the second microcomputer 52.
The sensor package 65 has the sensor elements 601 and 602 and the circuit units 610 and 620 sealed (packaged) inside, and is mounted on the first substrate 21 separately from the first and second microcomputers 51 and 52. The
 すなわち、本実施形態では、回転角θmの演算機能および回転回数TCの演算機能をそれぞれ有する複数の回路部610、620を設けているので、回路部610、620の一方に異常が生じた場合であっても、残りの回路部により回転角θmおよび回転回数TCの演算を継続することができる。また、回路部610、620とセンサ素子601、602とをセンサパッケージ65により、マイコン51および52のパッケージとは別個にパッケージ化している。これにより、例えば、第1および第2のマイコン51、52を、回転検出装置1が実装される第1基板21とは別の基板である第2基板22に実装することが可能になり、
第1基板21および第2基板22における素子配置の自由度が高まる。
That is, in the present embodiment, since a plurality of circuit units 610 and 620 each having a calculation function of the rotation angle θm and a calculation function of the number of rotations TC are provided, an abnormality occurs in one of the circuit units 610 and 620. Even if it exists, calculation of rotation angle (theta) m and rotation frequency TC can be continued by the remaining circuit part. Further, the circuit units 610 and 620 and the sensor elements 601 and 602 are packaged separately from the packages of the microcomputers 51 and 52 by the sensor package 65. Thereby, for example, the first and second microcomputers 51 and 52 can be mounted on the second substrate 22 which is a substrate different from the first substrate 21 on which the rotation detection device 1 is mounted.
The degree of freedom of element arrangement on the first substrate 21 and the second substrate 22 is increased.
 また、図30に示す参考例である回転検出装置655のように、回転角θmの演算に係るパッケージ656、657と、回転回数TCの演算に係るパッケージ658、659とをそれぞれ別途に設けて対応する第1の基板21に実装する場合と比較し、本願の回転検出装置1は、センサパッケージ65の第1の基板21における実装面積を抑えることができる。これにより、例えば第1基板21の第1主面211側の面にSW素子301~306、401~406等のフレーム部材18への放熱を要する素子の実装領域を確保することができる。また、センサ素子601、602を回転中心線Acに近づけて配置できるので、マグネット16を小型化可能であるとともに、回転検出装置1の検出精度の悪化を防ぐことができる。 Further, like the rotation detection device 655 which is a reference example shown in FIG. 30, packages 656 and 657 related to the calculation of the rotation angle θm and packages 658 and 659 related to the calculation of the rotation number TC are provided separately. Compared with the case of mounting on the first substrate 21, the rotation detection device 1 of the present application can suppress the mounting area of the sensor package 65 on the first substrate 21. Thereby, for example, a mounting region of elements that require heat dissipation to the frame member 18 such as the SW elements 301 to 306 and 401 to 406 can be secured on the surface of the first substrate 21 on the first main surface 211 side. In addition, since the sensor elements 601 and 602 can be arranged close to the rotation center line Ac, the magnet 16 can be reduced in size and the detection accuracy of the rotation detection device 1 can be prevented from deteriorating.
 全てのセンサ素子601、602、および、回路部610、620は、1つのパッケージ65内に設けられる。これにより、回転検出装置1を小型化することができる。
 センサ素子601、602は、モータ部10の回転中心線Acに対して点対称に配置される。これにより、センサ素子601および602間の検出誤差を低減することができる。
 センサ素子601は、回路部610と同一のチップ641に含まれる。センサ素子601と回路部610とを1チップとすることで、より小型化が可能である。センサ素子602および回路部620についても同様である。
All the sensor elements 601 and 602 and the circuit units 610 and 620 are provided in one package 65. Thereby, the rotation detection apparatus 1 can be reduced in size.
The sensor elements 601 and 602 are arranged point-symmetrically with respect to the rotation center line Ac of the motor unit 10. Thereby, the detection error between the sensor elements 601 and 602 can be reduced.
The sensor element 601 is included in the same chip 641 as the circuit unit 610. By making the sensor element 601 and the circuit portion 610 into one chip, the size can be further reduced. The same applies to the sensor element 602 and the circuit unit 620.
 センサパッケージ65が実装される基板である第1基板21と、当該第1基板21と挟んでモータ部10と反対側に設けられる第2基板22とは、コネクタユニット70に設けられる内部接続端子717で接続される。第2基板22には、第1および第2のマイコン51、52が実装される。第1および第2のセンサ部61および62によりそれぞれ検出された回転角信号および回転回数信号は、内部接続端子717を経由して対応する第1および第2のマイコン51、52に送信される。これにより、第1および第2のセンサ部61および62により検出された回転角信号および回転回数信号を第1および第2のマイコン51、52に適切に送信することができる。 The first substrate 21, which is a substrate on which the sensor package 65 is mounted, and the second substrate 22 provided on the opposite side of the motor unit 10 with respect to the first substrate 21 are internal connection terminals 717 provided in the connector unit 70. Connected with. First and second microcomputers 51 and 52 are mounted on the second substrate 22. The rotation angle signal and the rotation frequency signal detected by the first and second sensor units 61 and 62 are transmitted to the corresponding first and second microcomputers 51 and 52 via the internal connection terminal 717. Thereby, the rotation angle signal and the rotation frequency signal detected by the first and second sensor units 61 and 62 can be appropriately transmitted to the first and second microcomputers 51 and 52.
 通信部617は、対応する回転角信号および回転回数信号を含む一連の信号である出力信号を、1つの通信線692を用いて第1マイコン51に送信する。同様に、通信部627は、対応する回転角信号および回転回数信号を含む一連の信号である出力信号を、1つの通信線693を用いて第2マイコン52に送信する。
 回転角信号および回転回数信号が一連の出力信号に含まれるので、第1および第2のセンサ部61および62それぞれにより算出された回転角信号および回転回数信号を1回の通信で対応する第1および第2のマイコン51、52に送信可能である。これにより、回転角θmに係る検出値と回転回数TCに係る検出値との検出タイミングのずれを低減することができる。また、1本の通信線692にて、回転角信号および回転回数信号を通信部617から第1マイコン51に送信することができる。同様に、1本の通信線694にて、回転角信号および回転回数信号を通信部627から第2マイコン52に送信することができる。これにより、回転角信号および回転回数信号ごとに通信線を設ける場合と比較し、通信線の数を減らすことができる。
The communication unit 617 transmits an output signal, which is a series of signals including a corresponding rotation angle signal and rotation number signal, to the first microcomputer 51 using one communication line 692. Similarly, the communication unit 627 transmits an output signal, which is a series of signals including the corresponding rotation angle signal and rotation number signal, to the second microcomputer 52 using one communication line 693.
Since the rotation angle signal and the rotation frequency signal are included in the series of output signals, the rotation angle signal and the rotation frequency signal calculated by the first and second sensor units 61 and 62, respectively, correspond to each other in one communication. And can be transmitted to the second microcomputers 51 and 52. Thereby, a shift in detection timing between the detection value related to the rotation angle θm and the detection value related to the rotation number TC can be reduced. In addition, the rotation angle signal and the rotation frequency signal can be transmitted from the communication unit 617 to the first microcomputer 51 through one communication line 692. Similarly, the rotation angle signal and the rotation frequency signal can be transmitted from the communication unit 627 to the second microcomputer 52 through one communication line 694. Thereby, compared with the case where a communication line is provided for every rotation angle signal and rotation frequency signal, the number of communication lines can be reduced.
 電動パワーステアリング装置108は、モータ部10と、回転検出装置1と、第1および第2のマイコン51、52と、を備える。モータ部10は、運転者によるステアリングホイール101の操舵を補助する補助トルクを出力する。第1および第2のマイコン51、52は、送られた複数セットの回転角信号および回転回数信号を用いてモータ部10を制御する。センサ素子601、602は、検出対象としてモータ部10の回転を検出する。
 本実施形態では、回転角θmの演算機能および回転回数TCの演算機能を1チップ化し、回転検出装置1を小型化しているので、電動パワーステアリング装置108の小型化に寄与する。
 第1および第2のマイコン51、52は、対応する出力信号に含まれる回転角θmおよび回転回数TCに基づき、ステアリングシャフト102の舵角θsを演算する。これにより、例えばステアリングシャフト102にギア等を設けて舵角θsを検出するステアリングセンサを省略することができる。
The electric power steering device 108 includes the motor unit 10, the rotation detection device 1, and first and second microcomputers 51 and 52. The motor unit 10 outputs auxiliary torque that assists the driver in steering the steering wheel 101. The first and second microcomputers 51 and 52 control the motor unit 10 using the plurality of sets of rotation angle signals and rotation frequency signals that have been sent. The sensor elements 601 and 602 detect the rotation of the motor unit 10 as a detection target.
In the present embodiment, the calculation function of the rotation angle θm and the calculation function of the number of rotations TC are integrated into one chip, and the rotation detection device 1 is downsized, which contributes to downsizing of the electric power steering device 108.
The first and second microcomputers 51 and 52 calculate the steering angle θs of the steering shaft 102 based on the rotation angle θm and the number of rotations TC included in the corresponding output signals. Thus, for example, a steering sensor that detects the steering angle θs by providing a gear or the like on the steering shaft 102 can be omitted.
(本開示)
 本開示の第2実施形態を図12および図13を用いて説明する。本実施形態は、回転検出装置2が第1実施形態の回転検出装置1と異なっており、それ以外の構成については上記実施形態と同様であるので、説明を省略する。
 図12に示すように、本実施形態の回転検出装置2は、第1センサ部261、および第2センサ部262を有する。
(This disclosure)
A second embodiment of the present disclosure will be described with reference to FIGS. 12 and 13. In the present embodiment, the rotation detection device 2 is different from the rotation detection device 1 of the first embodiment, and the other configuration is the same as that of the above-described embodiment, and thus the description thereof is omitted.
As illustrated in FIG. 12, the rotation detection device 2 of the present embodiment includes a first sensor unit 261 and a second sensor unit 262.
 第1センサ部261は、モータ部10の回転角検出用のセンサ素子603、モータ部10の回転回数検出用のセンサ素子604、および、上記回路部610を有する。センサ素子603、604および回路部610は、1つのチップ641に設けられる。
 第2センサ部262は、モータ部10の回転角検出用のセンサ素子605、モータ部10の回転回数検出用のセンサ素子606、および、上記回路部620を有する。センサ素子605、606および回路部620は、1つのチップ642に設けられる。チップ641、642は、1つのセンサパッケージ65に設けられる。第3実施形態~第6実施形態においても同様である。
The first sensor unit 261 includes a sensor element 603 for detecting the rotation angle of the motor unit 10, a sensor element 604 for detecting the number of rotations of the motor unit 10, and the circuit unit 610. The sensor elements 603 and 604 and the circuit unit 610 are provided on one chip 641.
The second sensor unit 262 includes a sensor element 605 for detecting the rotation angle of the motor unit 10, a sensor element 606 for detecting the number of rotations of the motor unit 10, and the circuit unit 620. The sensor elements 605 and 606 and the circuit unit 620 are provided on one chip 642. Chips 641 and 642 are provided in one sensor package 65. The same applies to the third to sixth embodiments.
 センサ素子603~606は、マグネット16の回転により変化する磁束を検出するホール素子等の磁気検出素子である。
 AD変換部613は、センサ素子603の検出値をデジタル変換し、回転角演算部615に出力する。AD変換部614は、センサ素子604の検出値をデジタル変換し、回転回数演算部616に出力する。
The sensor elements 603 to 606 are magnetic detection elements such as Hall elements that detect magnetic flux that changes as the magnet 16 rotates.
The AD conversion unit 613 converts the detection value of the sensor element 603 into a digital value and outputs it to the rotation angle calculation unit 615. The AD conversion unit 614 converts the detection value of the sensor element 604 into a digital value and outputs the digital value to the rotation number calculation unit 616.
 第2センサ部262についても同様に、AD変換部623は、センサ素子605の検出値をデジタル変換し、回転角演算部625に出力する。AD変換部624は、センサ素子606の検出値をデジタル変換し、回転回数演算部616に出力する。
 第1および第2のセンサ部261、262と対応する第1および第2のマイコン51、52との通信等については、上記第1の実施形態と同様である。
Similarly for the second sensor unit 262, the AD conversion unit 623 digitally converts the detection value of the sensor element 605 and outputs the digital value to the rotation angle calculation unit 625. The AD conversion unit 624 digitally converts the detection value of the sensor element 606 and outputs the digital value to the rotation number calculation unit 616.
The communication and the like with the first and second microcomputers 51 and 52 corresponding to the first and second sensor units 261 and 262 are the same as those in the first embodiment.
 本実施形態では、回転角θm演算用のセンサ素子603、605と、回転回数TC演算用のセンサ素子604、606とが、別途に設けられている。これにより、回転角θmまたは回転回数TCの演算に最適な素子を選定することができる。例えば、回転角θm演算用のセンサ素子603、605には、検出精度の高いのもを用い、回転回数TC演算用のセンサ素子604、606には、電力消費の少ないものを用いる、といった具合である。 In the present embodiment, sensor elements 603 and 605 for calculating the rotation angle θm and sensor elements 604 and 606 for calculating the number of rotations TC are separately provided. This makes it possible to select an optimum element for calculating the rotation angle θm or the number of rotations TC. For example, the sensor elements 603 and 605 for calculating the rotation angle θm use those having high detection accuracy, and the sensor elements 604 and 606 for calculating the number of rotations TC use elements that consume less power. is there.
 センサ素子603~606の配置を図13Aおよび図13Bに示す。
 図13Aおよび図13Bに示すように、回転角θm演算用のセンサ素子603、605は、回転中心線Acに対して点対称に配置される。また、回転回数TC演算用のセンサ素子604、606は、回転中心線Acに対して点対称に配置される。
The arrangement of the sensor elements 603 to 606 is shown in FIGS. 13A and 13B.
As shown in FIGS. 13A and 13B, the sensor elements 603 and 605 for calculating the rotation angle θm are arranged point-symmetrically with respect to the rotation center line Ac. The sensor elements 604 and 606 for calculating the number of rotations TC are arranged symmetrically with respect to the rotation center line Ac.
 図13Aでは、回転角θm演算用のセンサ素子603、605が回転回数TC検出用の604、6-6よりも回転中心線Acに対して近い内側に配置され、回転回数TC演算用のセンサ素子604、606が外側となるように配置される。すなわち、より検出精度が要求される回転角θm演算用のセンサ素子603、605を内側に配置することで、回転中心線Acに近接させ、検出誤差を低減している。なお、回転回数TCの演算には、回転角θmと比較して検出精度が要求されないため、外側に配置している。 In FIG. 13A, the sensor elements 603 and 605 for calculating the rotation angle θm are disposed closer to the rotation center line Ac than the rotation numbers TC detection 604 and 6-6, and the rotation number TC calculation sensor elements. It arrange | positions so that 604,606 may become an outer side. That is, by arranging the sensor elements 603 and 605 for calculating the rotation angle θm that require higher detection accuracy, the sensor elements 603 and 605 are arranged on the inner side to reduce the detection error. In addition, since the detection accuracy is not required for the calculation of the rotation number TC as compared with the rotation angle θm, the rotation number TC is arranged on the outside.
 また、図13Bに示すように、センサ素子603、604、および、センサ素子605、606を、回転中心線Acに対向した状態で、リードフレーム66の短手側の横幅に対して並列に配列してもよい。このとき、回転角θm検出用のセンサ素子603、605が回転中心線Acに対して点対称に配置され、回転回数TC検出用のセンサ素子604、606が回転中心線Acに対して点対称に配置される。 Further, as shown in FIG. 13B, the sensor elements 603 and 604 and the sensor elements 605 and 606 are arranged in parallel with the lateral width on the short side of the lead frame 66 in a state facing the rotation center line Ac. May be. At this time, the sensor elements 603 and 605 for detecting the rotation angle θm are arranged point-symmetrically with respect to the rotation center line Ac, and the sensor elements 604 and 606 for detecting the number of rotations TC are point-symmetric with respect to the rotation center line Ac. Be placed.
 第1実施形態と同様に、回転角演算部615は、センサ素子603の検出値に基づいて回転角θmを演算し、回転回数演算部616は、センサ素子604の検出値に基づいて回転回数TCを演算する。
 また、回転角演算部625は、センサ素子605の検出値に基づいて回転角θmを演算し、回転回数演算部626は、センサ素子606の検出値に基づいて回転回数TCを演算する。換言すると、回転角θmと回転回数TCとは、異なるセンサ素子の検出値に基づいて演算される。
 このように構成した第2実施形態においても上記第1実施形態と同様の効果を奏する。
As in the first embodiment, the rotation angle calculation unit 615 calculates the rotation angle θm based on the detection value of the sensor element 603, and the rotation number calculation unit 616 calculates the rotation number TC based on the detection value of the sensor element 604. Is calculated.
The rotation angle calculation unit 625 calculates the rotation angle θm based on the detection value of the sensor element 605, and the rotation number calculation unit 626 calculates the rotation number TC based on the detection value of the sensor element 606. In other words, the rotation angle θm and the number of rotations TC are calculated based on detection values of different sensor elements.
The second embodiment configured as described above also has the same effect as the first embodiment.
(第3実施形態)
 本開示の第3実施形態を図14および図15に示す。
 図14に示すように、本実施形態の回転検出装置3は、第1センサ部361、および、第2センサ部362を有する。
 第1センサ部361は回路部611を有し、この回路部611は、第1実施形態の回路部610の各構成に加え、自己診断部618を有する。第2センサ部362は回路部621を有し、この回路部621は、第1実施形態の回路部621の各構成に加え、自己診断部628を有する。本実施形態では、センサ素子601および回路部611が1つのチップ641に設けられ、センサ素子602および回路部621が1つのチップ642に設けられる。第2実施形態のように、回転角θm演算用と、回転回数TC演算用とで、別途にセンサ素子を設ける構成としてもよい。
(Third embodiment)
A third embodiment of the present disclosure is shown in FIGS. 14 and 15.
As illustrated in FIG. 14, the rotation detection device 3 of the present embodiment includes a first sensor unit 361 and a second sensor unit 362.
The first sensor unit 361 includes a circuit unit 611. The circuit unit 611 includes a self-diagnosis unit 618 in addition to the components of the circuit unit 610 of the first embodiment. The second sensor unit 362 includes a circuit unit 621. The circuit unit 621 includes a self-diagnosis unit 628 in addition to the components of the circuit unit 621 of the first embodiment. In the present embodiment, the sensor element 601 and the circuit unit 611 are provided on one chip 641, and the sensor element 602 and the circuit unit 621 are provided on one chip 642. As in the second embodiment, a sensor element may be provided separately for the rotation angle θm calculation and the rotation number TC calculation.
 自己診断部618は、第1のセンサ部361における異常を診断する。すなわち、自己診断部618は、センサ素子601、AD変換部613、614、回転角演算部615および回転回数演算部616の天絡や地絡等の電源異常の発生の有無を監視する。
 自己診断部628は、第2のセンサ部362における異常を診断する。すなわち、自己診断部628は、センサ素子602、AD変換部623、624、回転角演算部625および回転回数演算部626の天絡や地絡等の電源異常の発生の有無を監視する。
 自己診断部618、628における自己監視結果は、ステータス信号として出力信号に含め、第1および第2のマイコン51、52に送信する。本実施形態では、ステータス信号が「異常信号」に対応する。
The self-diagnosis unit 618 diagnoses an abnormality in the first sensor unit 361. That is, the self-diagnosis unit 618 monitors the occurrence of power supply abnormality such as a power supply fault or a ground fault in the sensor element 601, the AD conversion units 613 and 614, the rotation angle calculation unit 615, and the rotation number calculation unit 616.
The self-diagnosis unit 628 diagnoses an abnormality in the second sensor unit 362. That is, the self-diagnosis unit 628 monitors the occurrence of a power supply abnormality such as a power fault or a ground fault in the sensor element 602, the AD conversion units 623 and 624, the rotation angle calculation unit 625, and the rotation number calculation unit 626.
The self-monitoring results in the self- diagnosis units 618 and 628 are included in the output signal as status signals and transmitted to the first and second microcomputers 51 and 52. In the present embodiment, the status signal corresponds to an “abnormal signal”.
 第1マイコン51と第1センサ部361との間における通信について、図15A~図15Eに基づいて説明する。通信タイミング等については、図11A~図11Eと同様であるので、ここでは、第1センサ部361は、送信する出力信号を、第1マイコン51からの指令に応じて変更する
点を中心に説明する。なお、上記実施形態と同様、第2マイコン52と第2センサ部362との間での通信は、第1マイコン51と第1センサ部361との間での通信と略同様であるので、ここでは、第1マイコン51と第1センサ部361との間の通信を例に説明する。
Communication between the first microcomputer 51 and the first sensor unit 361 will be described with reference to FIGS. 15A to 15E. Since the communication timing and the like are the same as those in FIGS. 11A to 11E, here, the description will focus on the point that the first sensor unit 361 changes the output signal to be transmitted in accordance with a command from the first microcomputer 51. To do. As in the above embodiment, the communication between the second microcomputer 52 and the second sensor unit 362 is substantially the same as the communication between the first microcomputer 51 and the first sensor unit 361. Now, communication between the first microcomputer 51 and the first sensor unit 361 will be described as an example.
 本実施形態では、第1センサ部361は、第1マイコン51から送信される指令信号の種類に応じて出力信号に含まれる情報の種類を変更している。
 時刻x31にて、第1マイコン51から指令信号com_aが送信されると、通信部617は、次の指令信号を受信したタイミングである時刻x32にて、ら指令信号com_aに対応する情報、すなわち回転角信号、回転回数信号、ステータス信号、および、CRC信号を含む出力信号Sd_aを第1マイコン51に送信する。なお、出力信号Sd_aの出力タイミングにて送信される指令は、どの信号の出力を指示するものであってもよく、種類は問わない。
In the present embodiment, the first sensor unit 361 changes the type of information included in the output signal according to the type of command signal transmitted from the first microcomputer 51.
When the command signal com_a is transmitted from the first microcomputer 51 at time x31, the communication unit 617 receives information corresponding to the command signal com_a, that is, rotation at time x32, which is the timing at which the next command signal is received. An output signal Sd_a including an angle signal, a rotation frequency signal, a status signal, and a CRC signal is transmitted to the first microcomputer 51. Note that the command transmitted at the output timing of the output signal Sd_a may be an instruction to output any signal, and the type is not limited.
 時刻x32にて、第1マイコン51から指令信号com_bが送信されると、通信部617は、次の指令を受信したタイミングである時刻x33にて、指令信号com_bに対応する出力信号、すなわち回転角信号、回転回数信号、および、CRC信号を含む出力信号Sd_b(ステータス信号無)を第1マイコン51に送信する。
 時刻x33にて、第1マイコン51から指令信号com_cが送信されると、通信部617は、次の指令を受信したタイミングである時刻x34にて、指令信号com_cに対応する出力信号、すなわち、回転角信号、ステータス信号、および、CRC信号(回転回数信号およびステータス信号無)を含む出力信号Sd_cを第1マイコン51に送信する。
 時刻x34にて、第1マイコン51から指令信号com_dが送信されると、通信部617は、次の指令を受信したタイミングである時刻x35にて、指令信号com_dに対応する回転角信号、および、CRC信号(回転回数信号、ステータス信号無)を含む出力信号Sd_dを第1マイコン51に送信する。
When the command signal com_b is transmitted from the first microcomputer 51 at time x32, the communication unit 617 outputs an output signal corresponding to the command signal com_b, that is, the rotation angle at time x33, which is the timing at which the next command is received. An output signal Sd_b (no status signal) including a signal, a rotation frequency signal, and a CRC signal is transmitted to the first microcomputer 51.
When the command signal com_c is transmitted from the first microcomputer 51 at time x33, the communication unit 617 outputs an output signal corresponding to the command signal com_c, that is, the rotation at time x34, which is the timing at which the next command is received. An output signal Sd_c including an angle signal, a status signal, and a CRC signal (no rotation number signal and no status signal) is transmitted to the first microcomputer 51.
When the command signal com_d is transmitted from the first microcomputer 51 at time x34, the communication unit 617 receives the rotation angle signal corresponding to the command signal com_d at time x35, which is the timing at which the next command is received, and An output signal Sd_d including a CRC signal (rotation number signal, no status signal) is transmitted to the first microcomputer 51.
 図15A~図15Eの例では、説明のため、第1マイコン51からの指令信号が、com_a、com_b、com_c、com_dの順に送信され、第1センサ部361からの出力信号が、Sd_a、Sd_b、Sd_c、Sd_dの順に送信されているが、この順に限らず、送信順が異なっていてもよい。
 また例えば、第1マイコン51は、回転回数信号を回転回数送信周期で取得し、ステータス信号をステータス送信周期で取得するように、各送信周期に応じて指令信号com_a、com_b、com_cを送信し、その他のタイミングでは回転角信号を取得する指令信号com_dを送信するようにしてもよい。回転回数送信周期とステータス送信周期とは、等しくてもよいし、異なっていてもよい。回転回数送信周期とステータス送信周期とが等しければ、指令信号com_b、com_cを用いなくてもよい。また、所定の周期に限らず、第1マイコン51にて、回転回数TCまたは第1センサ部361における自己監視結果の取得を要するとき、適宜、指令信号com_dに替えて、指令信号com_a、com_b、com_cのいずれかを送信するようにしてもよい。
 第1マイコン51では、取得された信号に応じた演算が行われる。図15Eは、それぞれの演算の期間が等しいものとして記載しているが、実際に行われる演算に応じ、演算期間が異なっていてもよい。
In the example of FIGS. 15A to 15E, for the sake of explanation, the command signal from the first microcomputer 51 is transmitted in the order of com_a, com_b, com_c, and com_d, and the output signal from the first sensor unit 361 is Sd_a, Sd_b, Although they are transmitted in the order of Sd_c and Sd_d, the transmission order is not limited to this, and the transmission order may be different.
Further, for example, the first microcomputer 51 transmits the command signals com_a, com_b, and com_c according to each transmission cycle so as to acquire the rotation frequency signal at the rotation frequency transmission cycle and acquire the status signal at the status transmission cycle. At other timings, a command signal com_d for acquiring a rotation angle signal may be transmitted. The number-of-rotations transmission cycle and the status transmission cycle may be the same or different. If the rotation frequency transmission cycle and the status transmission cycle are equal, the command signals com_b and com_c may not be used. In addition, when the first microcomputer 51 needs to acquire the number of rotations TC or the result of self-monitoring in the first sensor unit 361, the command signals com_a, com_b, com_c may be transmitted.
In the first microcomputer 51, an operation according to the acquired signal is performed. Although FIG. 15E describes that the periods of the respective calculations are equal, the calculation periods may be different depending on the actually performed calculation.
 本実施形態では、自己診断部618が設けられる場合を例に説明したが、第1実施形態等、自己診断部が設けられない場合においても、指令信号の種類に応じ、出力信号に含まれる信号の種類を変更可能である。すなわち、自己診断部618が設けられていない場合、第1のセンサ部61は、例えば、指令信号com_bに応じて回転角信号および回転回数信号を含む出力信号Sd_bを送信し、指令信号com_dに応じて回転角信号を含む出力信号Sd_dを送信する、といった具合である。
 これにより、通信部617、627は、第1および第2のマイコン51、52の要求に応じた出力信号を適切に送信することができる。また、自己診断部618、628を設け、異常診断結果をステータス信号として第1および第2のマイコン51および52に出力するように構成されている。この構成により、例えば異常な自己診断結果を受信した場合、第1のマイコン51は、この異常診断結果を含む出力信号に基づく演算を禁止することができ、回転検出装置3の信頼性を高めることができる。
 また、第3の実施形態は、上記第1実施形態と同様の効果を奏する。
In the present embodiment, the case where the self-diagnosis unit 618 is provided has been described as an example. However, even when the self-diagnosis unit is not provided as in the first embodiment, the signal included in the output signal according to the type of the command signal The type of can be changed. That is, when the self-diagnosis unit 618 is not provided, the first sensor unit 61 transmits, for example, the output signal Sd_b including the rotation angle signal and the rotation frequency signal according to the command signal com_b, and according to the command signal com_d. The output signal Sd_d including the rotation angle signal is transmitted.
Thereby, the communication units 617 and 627 can appropriately transmit output signals in response to requests from the first and second microcomputers 51 and 52. In addition, self- diagnosis units 618 and 628 are provided, and the abnormality diagnosis result is output to the first and second microcomputers 51 and 52 as a status signal. With this configuration, for example, when an abnormal self-diagnosis result is received, the first microcomputer 51 can prohibit the calculation based on the output signal including the abnormality diagnosis result, thereby improving the reliability of the rotation detection device 3. Can do.
Further, the third embodiment has the same effects as the first embodiment.
(第4実施形態)
 本開示の第4実施形態を図16に示す。
 図16に示すように、本実施形態の回転検出装置4は、第1センサ部461、および第2センサ部462を有する。本実施形態では、センサ素子601、607および回路部612が1つのチップ641に設けられる。第2センサ部462についても同様、2つのセンサ素子および回路部が1つのチップ642に設けられる。
(Fourth embodiment)
A fourth embodiment of the present disclosure is shown in FIG.
As shown in FIG. 16, the rotation detection device 4 of the present embodiment includes a first sensor unit 461 and a second sensor unit 462. In the present embodiment, sensor elements 601 and 607 and a circuit unit 612 are provided on one chip 641. Similarly for the second sensor unit 462, two sensor elements and a circuit unit are provided in one chip 642.
 第1センサ部461の回路部612は、第3実施形態の回路部611の各構成に加え、センサ素子607、AD変換部633、634、回転角演算部635、および、回転回数演算部636を有する。ここで、センサ素子601、AD変換部613、614、回転角演算部615および回転回数演算部616を回転情報演算回路951とし、センサ素子607、AD変換部633、634、回転角演算部635および回転回数演算部636を回転情報演算回路952とする。すなわち、第1センサ部461は、2系統の回転情報演算回路951および952を有している。第2センサ部462についても同様に、2系統の回転情報演算回路953、954を有している。補足として、例えば第1実施形態等のセンサ部61、62には、それぞれ1系統の回転情報演算回路が設けられる。 The circuit unit 612 of the first sensor unit 461 includes a sensor element 607, AD conversion units 633 and 634, a rotation angle calculation unit 635, and a rotation number calculation unit 636 in addition to the components of the circuit unit 611 of the third embodiment. Have. Here, the sensor element 601, the AD conversion units 613 and 614, the rotation angle calculation unit 615, and the rotation number calculation unit 616 serve as the rotation information calculation circuit 951, and the sensor element 607, AD conversion units 633 and 634, the rotation angle calculation unit 635, and The rotation number calculation unit 636 is a rotation information calculation circuit 952. In other words, the first sensor unit 461 includes two systems of rotation information calculation circuits 951 and 952. Similarly, the second sensor unit 462 includes two systems of rotation information calculation circuits 953 and 954. As a supplement, for example, each of the sensor units 61 and 62 in the first embodiment is provided with one system of rotation information calculation circuit.
 自己診断部618は、天絡、地絡等の電源異常に加え、回転情報演算回路951、952それぞれの対応する演算結果(対応する演算値)を比較することで、第1のセンサ461内の中間異常を検出することができる。中間異常とは、それぞれの演算結果自体は正常範囲内である異常であって、例えばそれぞれの対応する演算値の差(オフセット)が所定の範囲を超えるオフセット異常等である。通信部617は、中間異常についてもステータス信号として出力信号に含め、第1マイコン51に送信する。
 なお、自己診断部618にて回転情報演算回路951、952の対応する演算値を比較することに替えて、それぞれの系統の回転角信号および回転回数信号等を第1マイコン51に送信するようにし、第1マイコン51側にて対応する演算値を比較し、中間異常を検出するようにしてもよい。
The self-diagnostic unit 618 compares the corresponding calculation results (corresponding calculation values) of the rotation information calculation circuits 951 and 952 in addition to the power supply abnormality such as a power fault and a ground fault, so that An intermediate abnormality can be detected. The intermediate abnormality is an abnormality in which each calculation result itself is within a normal range, for example, an offset abnormality in which a difference (offset) between the corresponding calculation values exceeds a predetermined range. The communication unit 617 also includes an intermediate abnormality in the output signal as a status signal and transmits it to the first microcomputer 51.
Instead of comparing the corresponding calculation values of the rotation information calculation circuits 951 and 952 in the self-diagnosis unit 618, the rotation angle signal and the rotation frequency signal of each system are transmitted to the first microcomputer 51. The corresponding calculation values may be compared on the first microcomputer 51 side to detect an intermediate abnormality.
 また、本実施形態についても、第2実施形態のように、回転角θm演算用と、回転回数TC演算用とで、別途にセンサ素子を設ける構成としてもよい。この場合、センサ部461、462の素子数は、各4つとなり、回転検出装置4全体として8つとなる。
 本実施形態では、1つの通信部617に対して複数の回転情報演算回路951、952を設けている。これにより、オフセット異常等の中間異常を検出可能となる。
 また、本実施形態は、上記第1実施形態と同様の効果を奏する。
Further, in the present embodiment, as in the second embodiment, a sensor element may be separately provided for the rotation angle θm calculation and the rotation number TC calculation. In this case, the sensor units 461 and 462 each have four elements, and the rotation detection device 4 as a whole has eight elements.
In the present embodiment, a plurality of rotation information calculation circuits 951 and 952 are provided for one communication unit 617. As a result, an intermediate abnormality such as an offset abnormality can be detected.
Moreover, this embodiment has the same effect as the first embodiment.
(第5実施形態)
 本開示の第5実施形態を図17および図18に示す。
 電動パワーステアリング装置108は、イグニッションスイッチ等である始動スイッチがオフであるとき、停止されているものとする。このとき、第1および第2のマイコン51、52への給電は行われず、第1および第2のマイコン51、52は、各種演算や通信等を行わないものとする。
 本実施形態では、回転検出装置1には、電動パワーステアリング装置108の停止中であっても、第1および第2のバッテリ39、49から直接的に電力が供給される。詳細には、電動パワーステアリング装置108の停止中であっても、第1センサ部61には第1バッテリ39から直接的に電力が供給され、第2センサ部62には第2バッテリ49から直接的に電力が供給される。これにより、電動パワーステアリング装置108の停止中においても、回転検出装置1における演算を継続可能である。
(Fifth embodiment)
A fifth embodiment of the present disclosure is shown in FIGS. 17 and 18.
It is assumed that the electric power steering device 108 is stopped when a start switch such as an ignition switch is off. At this time, power supply to the first and second microcomputers 51 and 52 is not performed, and the first and second microcomputers 51 and 52 do not perform various calculations and communication.
In the present embodiment, power is directly supplied to the rotation detection device 1 from the first and second batteries 39 and 49 even when the electric power steering device 108 is stopped. Specifically, even when the electric power steering device 108 is stopped, the first sensor unit 61 is directly supplied with electric power from the first battery 39, and the second sensor unit 62 is directly supplied from the second battery 49. Electric power is supplied. Thereby, even when the electric power steering device 108 is stopped, the calculation in the rotation detection device 1 can be continued.
 ここで、例えば第1のマイコン51による舵角θsの演算について説明する。上述の通り、舵角θsは、回転角θm、回転回数TC、および、減速ギア機構109のギア比に基づいて演算される。電動パワーステアリング装置108の停止中に、運転者によりステアリングホイール101が操舵されると、ステアリングシャフト102が回転し、減速ギア機構109を介してモータ部10が回転する。回転回数TCがカウントされていないと、ステアリングホイール101の中立位置の再学習が完了するまでの間、舵角θsが演算できない。なお、舵角θsの演算には、モータ部10の回転位置が何回転目の回転角θmにあるかの情報が必要であり、回転角θmについては、再始動時の瞬時値を用いればよいので、回転角θmについては、停止中における演算を継続する必要はない。 Here, for example, calculation of the steering angle θs by the first microcomputer 51 will be described. As described above, the steering angle θs is calculated based on the rotation angle θm, the number of rotations TC, and the gear ratio of the reduction gear mechanism 109. When the steering wheel 101 is steered by the driver while the electric power steering device 108 is stopped, the steering shaft 102 rotates and the motor unit 10 rotates via the reduction gear mechanism 109. If the number of rotations TC is not counted, the steering angle θs cannot be calculated until the relearning of the neutral position of the steering wheel 101 is completed. The calculation of the rudder angle θs requires information on what rotation angle θm the rotation position of the motor unit 10 is, and an instantaneous value at the time of restart may be used for the rotation angle θm. Therefore, it is not necessary to continue the calculation during the stop for the rotation angle θm.
 そこで本実施形態においては、関わる回転検出装置は、第1および第2のバッテリ39、49から回転検出装置1に直接的に電力を供給することで、回転検出装置1は、電動パワーステアリング装置108の停止中においても、少なくとも回転回数TCの演算を継続する。回転角θmの演算は、継続してもしなくてもどちらでもよいが、継続しない方が電力消費の面で好ましい。
 なお、第1および第2のマイコン51、52は停止中であるので、回転検出装置1は、マイコン51、52との通信は行わず、カウントした回転回数TCを内部的に保持しておく。そして、電動パワーステアリング装置108が再始動された後、第1および第2のマイコン51、52の指令信号に応じ、回転角信号および回転回数信号を含む出力信号を第1および第2のマイコン51、52に送信する。これにより、第1および第2のマイコン51、52は、ステアリングホイール101の中立位置の再学習等を行うことなく、再始動時においても適切に舵角θsを演算することができる。
Therefore, in the present embodiment, the rotation detection device concerned supplies power directly to the rotation detection device 1 from the first and second batteries 39 and 49, so that the rotation detection device 1 is connected to the electric power steering device 108. The calculation of the number of rotations TC is continued even during the stop. The calculation of the rotation angle θm may or may not be continued, but it is preferable not to continue the calculation in terms of power consumption.
Since the first and second microcomputers 51 and 52 are stopped, the rotation detection device 1 does not communicate with the microcomputers 51 and 52 and internally holds the counted number of rotations TC. After the electric power steering device 108 is restarted, output signals including a rotation angle signal and a rotation frequency signal are output to the first and second microcomputers 51 in accordance with command signals from the first and second microcomputers 51 and 52. , 52. As a result, the first and second microcomputers 51 and 52 can appropriately calculate the steering angle θs even at the restart without re-learning the neutral position of the steering wheel 101 or the like.
 なお、図17では、第1実施形態の回転検出装置1を例に説明したが、第2実施形態~第4実施形態の回転検出装置2~4を用いてもよい。第6実施形態についても同様である。 In FIG. 17, the rotation detection device 1 according to the first embodiment has been described as an example, but the rotation detection devices 2 to 4 according to the second to fourth embodiments may be used. The same applies to the sixth embodiment.
 本実施形態における回転情報演算処理を図18に示すフローチャートに基づいて説明する。ここでは、第1センサ部61における回転情報演算処理として説明するが、第2センサ部62においても同様の処理が行われる。フローチャートの説明に係り、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップについても同様である。 Rotational information calculation processing in the present embodiment will be described based on the flowchart shown in FIG. Here, the rotation information calculation processing in the first sensor unit 61 will be described, but the same processing is performed in the second sensor unit 62 as well. In the description of the flowchart, “step” in step S101 is omitted, and is simply referred to as “S”. The same applies to the other steps.
 最初のS101では、第1センサ部61は、電動パワーステアリング装置108が動作中か否かを判断する。図中、電動パワーステアリング装置を「EPS」と記載する。例えば、第1マイコン51からのクロック信号や指令信号等が所定期間以上に亘って送信されない場合、電動パワーステアリング装置108が停止していると判断できる。電動パワーステアリング装置108が停止していると判断された場合(S101:NO)、回転情報演算処理はS104
へ移行する。電動パワーステアリング装置108が動作中であると判断された場合(S101:YES)、回転情報演算処理はS102へ移行する。
In the first S101, the first sensor unit 61 determines whether or not the electric power steering device 108 is operating. In the figure, the electric power steering apparatus is described as “EPS”. For example, when a clock signal, a command signal, or the like from the first microcomputer 51 is not transmitted over a predetermined period, it can be determined that the electric power steering device 108 is stopped. When it is determined that the electric power steering device 108 is stopped (S101: NO), the rotation information calculation process is S104.
Migrate to When it is determined that the electric power steering device 108 is operating (S101: YES), the rotation information calculation process proceeds to S102.
 S102では、第1センサ部61は、回転角θmおよび回転回数TCを演算する。
 S103では、第1センサ部61は、第1マイコン51からの指令に応じ、出力信号を送信する。第1マイコン51では、取得した出力信号に含まれる信号を用い、回転角θmおよび舵角θs等の演算を行う。
In S102, the first sensor unit 61 calculates the rotation angle θm and the number of rotations TC.
In S <b> 103, the first sensor unit 61 transmits an output signal in response to a command from the first microcomputer 51. The first microcomputer 51 uses the signals included in the acquired output signal to calculate the rotation angle θm, the steering angle θs, and the like.
 電動パワーステアリング装置108が停止していると判断された場合(S101:NO)に回転情報演算処理が移行するS104では、第1センサ部61は、モータ部10が停止中か否かを判断する。モータ部10が停止中か否かは、例えばモータ部10の回転速度が判定閾値より小さい場合、モータ部10が停止中であるみなす。また例えば、回転角θmが演算されていない場合や、AD変換部614から出力される値の変化量(例えば前回値との差分値や微分値等)が判定閾値より小さい場合、モータ部10が停止中であるとみなす。また例えば、モータ部10の1回転を3以上の領域に分けてカウントする場合、同一のカウント値が所定期間に亘って継続されているとき、モータ部10が停止中であるとみなす。モータ部10が動作中であると判断された場合(S104:NO)、回転情報演算処理はS105へ移行する。モータ部10が停止中であると判断された場合(S104:YES)、回転情報演算処理はS106へ移行する。 When it is determined that the electric power steering device 108 is stopped (S101: NO), in S104 where the rotation information calculation process proceeds, the first sensor unit 61 determines whether or not the motor unit 10 is stopped. . Whether or not the motor unit 10 is stopped is regarded as the motor unit 10 being stopped, for example, when the rotational speed of the motor unit 10 is smaller than the determination threshold. Further, for example, when the rotation angle θm is not calculated, or when the change amount of the value output from the AD conversion unit 614 (for example, a difference value or differential value from the previous value) is smaller than the determination threshold, the motor unit 10 Assume that it is stopped. Further, for example, when one rotation of the motor unit 10 is divided into three or more regions and counted, the motor unit 10 is considered to be stopped when the same count value is continued for a predetermined period. When it is determined that the motor unit 10 is operating (S104: NO), the rotation information calculation process proceeds to S105. When it is determined that the motor unit 10 is stopped (S104: YES), the rotation information calculation process proceeds to S106.
 S105では、回転回数演算部616は、第1の頻度f1にて回転回数TCを演算する。第1の頻度f1は、モータ部10の駆動時に回転回数の読み飛ばしが生じない程度に設定される。
 S106では、回転回数演算部616は、第2の頻度f2にて回転回数TCを演算する。第2の頻度f2は、第1の頻度f1より低いものとする。すなわちf1>f2である。モータ部10の停止中は、回転回数TCは変わらないので、回転回数TCの演算頻度を下げ、例えば間欠動作とすることで、消費電力を抑えることができる。
In S105, the rotation number calculation unit 616 calculates the rotation number TC at the first frequency f1. The first frequency f1 is set to such an extent that skipping of the number of rotations does not occur when the motor unit 10 is driven.
In S106, the rotation number calculation unit 616 calculates the rotation number TC at the second frequency f2. The second frequency f2 is assumed to be lower than the first frequency f1. That is, f1> f2. Since the number of rotations TC does not change while the motor unit 10 is stopped, power consumption can be suppressed by reducing the calculation frequency of the number of rotations TC, for example, intermittent operation.
 また、電動パワーステアリング装置108の動作中における回転回数TCの演算頻度を、第1の頻度f1以上とすることで、回転回数TCの読み飛ばしを防ぐことができる。また、電動パワーステアリング装置108の動作中は、回転角θmが第1マイコン51へ送信されているので、第1マイコン51にて、回転角θmに基づいて回転回数TCを演算可能である。そのため、電動パワーステアリング装置108の動作中における回転回数TCの演算頻度は、第1の頻度f1より小さくてもよい。 Further, by setting the calculation frequency of the rotation frequency TC during the operation of the electric power steering device 108 to be equal to or higher than the first frequency f1, it is possible to prevent skipping of the rotation frequency TC. In addition, during the operation of the electric power steering device 108, the rotation angle θm is transmitted to the first microcomputer 51, so that the first microcomputer 51 can calculate the number of rotations TC based on the rotation angle θm. Therefore, the calculation frequency of the number of rotations TC during the operation of the electric power steering apparatus 108 may be smaller than the first frequency f1.
 S105またはS106に続いて移行するS107では、第1センサ部61は、回転回数TCを該第1センサ部61内にて保持しておく。なお、全ての回転回数TCの演算値を保持しておく必要はなく、最新の回転回数TCの値が保持されていればよい。第1のセンサ部61は、回転回数TCに係る回転回数信号を、電動パワーステアリング装置108の再始動時に、回転角θmに係る回転角信号とともに第1マイコン51に送信する。 In S107, which is shifted to S105 or S106, the first sensor unit 61 keeps the number of rotations TC in the first sensor unit 61. In addition, it is not necessary to hold the calculated values of all the rotation times TC, and it is only necessary to hold the latest value of the rotation number TC. The first sensor unit 61 transmits the rotation number signal related to the rotation number TC to the first microcomputer 51 together with the rotation angle signal related to the rotation angle θm when the electric power steering device 108 is restarted.
 本実施形態では、モータ部10が動作中か否かに応じ、回転回数演算部616、626における回転回数TCの更新頻度を変更する。詳細には、モータ部10が停止中である場合、動作中と比較し、回転回数TCの更新頻度を下げる。これにより、特に電動パワーステアリング装置108の停止中における消費電力を低減することができる。 In this embodiment, the update frequency of the rotation frequency TC in the rotation frequency calculation units 616 and 626 is changed depending on whether or not the motor unit 10 is operating. More specifically, when the motor unit 10 is stopped, the update frequency of the number of rotations TC is reduced as compared with that during operation. Thereby, it is possible to reduce power consumption particularly when the electric power steering device 108 is stopped.
 また本実施形態では、センサ素子601、602および回路部610、620には、モータ部10を含むシステムである電動パワーステアリング装置108の停止中においても、第1のバッテリ39から電力が供給される。これにより、電動パワーステアリング装置108の停止中においても、回転検出装置1への給電が継続され、回転回数TCの演算を継続することができる。電動パワーステアリング装置108の停止中も回転回数TCの演算を継続することで、電動パワーステアリング装置108が再始動された際にも、ステアリング
ホイール101の中立位置の再学習をすることなく、舵角θsを適切に演算することができる。
 また、第5実施形態は、第1実施形態と同様の効果を奏する。
In the present embodiment, power is supplied from the first battery 39 to the sensor elements 601 and 602 and the circuit units 610 and 620 even when the electric power steering apparatus 108 that is a system including the motor unit 10 is stopped. . Thereby, even when the electric power steering device 108 is stopped, the power supply to the rotation detection device 1 is continued, and the calculation of the number of rotations TC can be continued. Even when the electric power steering device 108 is stopped, the calculation of the number of rotations TC is continued, so that the steering angle is not re-learned even when the electric power steering device 108 is restarted. θs can be appropriately calculated.
Further, the fifth embodiment has the same effects as the first embodiment.
(第6実施形態)
 本開示の第6実施形態を図19に示す。
 本実施形態は第5実施形態の変形例であって、第1バッテリ39から第1センサ部61への電力供給路には、定電圧電源回路37が設けられる。また、第2バッテリ49から第2センサ部62への電力供給路には、定電圧電源回路47が設けられる。なお、第1バッテリ39または第2バッテリ49の一方からセンサ部61、62に電力が供給されるように構成する場合、定電圧電源回路を共用してもよいし、それぞれのセンサ部61、62ごとに設けてもよい。
(Sixth embodiment)
A sixth embodiment of the present disclosure is shown in FIG.
The present embodiment is a modification of the fifth embodiment, and a constant voltage power circuit 37 is provided in the power supply path from the first battery 39 to the first sensor unit 61. A constant voltage power supply circuit 47 is provided in the power supply path from the second battery 49 to the second sensor unit 62. In addition, when it comprises so that electric power may be supplied to the sensor parts 61 and 62 from one of the 1st battery 39 or the 2nd battery 49, a constant voltage power supply circuit may be shared, and each sensor part 61 and 62 is used. It may be provided for each.
 定電圧電源回路37、47は、回転検出装置1を駆動できる程度(例えば数mA程度)の電力消費量が小さいレギュレータ等である。定電圧電源回路37、47は、集積回路56、57のレギュレータとは別途に設けられ、駆動装置8の停止中にも回転検出装置1に電力供給可能なものである。第1および第2のバッテリ39、49と回転検出装置1との間に定電圧電源回路37、47を設けることで、第1および第2のバッテリ39、49の電圧によらず、回転検出装置1の耐圧設計を変更する必要がない。
 また、第6実施形態は、上記第1実施形態と同様の効果を奏する。
The constant voltage power supply circuits 37 and 47 are regulators or the like that have a small power consumption so that the rotation detecting device 1 can be driven (for example, about several mA). The constant voltage power supply circuits 37 and 47 are provided separately from the regulators of the integrated circuits 56 and 57 and can supply power to the rotation detection device 1 even when the driving device 8 is stopped. By providing constant voltage power supply circuits 37 and 47 between the first and second batteries 39 and 49 and the rotation detection device 1, the rotation detection device regardless of the voltage of the first and second batteries 39 and 49. There is no need to change the pressure resistance design of 1.
Further, the sixth embodiment has the same effect as the first embodiment.
(第7実施形態)
 本開示の第7実施形態を図20に示す。図20は、図8に対応する模式図である。
 上記実施形態の回転検出装置1では、センサ素子601および回路部610が1つのチップ641で構成され、センサ素子602および回路部620が1つのチップ642で構成される。
(Seventh embodiment)
A seventh embodiment of the present disclosure is shown in FIG. FIG. 20 is a schematic diagram corresponding to FIG.
In the rotation detection device 1 of the above embodiment, the sensor element 601 and the circuit unit 610 are configured by one chip 641, and the sensor element 602 and the circuit unit 620 are configured by one chip 642.
 本実施形態の回転検出装置5では、回路部610を含むチップ643と、センサ素子601を含むチップ644とが別チップに分けられている。また、回路部620を含むチップ645と、センサ素子602を含むチップ646とが別チップに分けられている。図20では、チップに含まれるセンサ素子および回路部の符番を省略している。また、回路部610に替えて、回路部611、612としてもよいし、回路部620に替えて、回路部621、622としてもよい。また、第2実施形態等のように、センサ素子を各2つとしてもよい。 In the rotation detection device 5 of the present embodiment, the chip 643 including the circuit unit 610 and the chip 644 including the sensor element 601 are divided into different chips. Further, the chip 645 including the circuit portion 620 and the chip 646 including the sensor element 602 are divided into different chips. In FIG. 20, the sensor elements and circuit numbers included in the chip are omitted. Further, the circuit units 611 and 612 may be used instead of the circuit unit 610, or the circuit units 621 and 622 may be used instead of the circuit unit 620. Moreover, it is good also as each two sensor elements like 2nd Embodiment.
 図20Aに示すように、回路部610を含むチップ643は、リードフレーム66上に設けられる。センサ素子601を含むチップ644は、チップ643の上面に設けられる。ここで、チップの「上面」とは、チップのリードフレーム66と反対側の面を意味する。
 また、回路部620を含むチップ645は、リードフレーム66上に設けられる。センサ素子602を含むチップ646は、チップ645の上面に設けられる。
 センサ素子を含むチップ644、646を、回路部を含むチップ643、645の上に配置することで、リードフレーム66における実装面積を小さくすることができ、回転検出装置5を小型化することができる。
As shown in FIG. 20A, the chip 643 including the circuit unit 610 is provided on the lead frame 66. The chip 644 including the sensor element 601 is provided on the upper surface of the chip 643. Here, the “upper surface” of the chip means a surface opposite to the lead frame 66 of the chip.
The chip 645 including the circuit unit 620 is provided on the lead frame 66. A chip 646 including the sensor element 602 is provided on the upper surface of the chip 645.
By disposing the chips 644 and 646 including the sensor elements on the chips 643 and 645 including the circuit unit, the mounting area of the lead frame 66 can be reduced, and the rotation detecting device 5 can be downsized. .
 また、図20Bに示すように、センサ素子を含むチップ644、646を回路部を含むチップ643、645よりもい回転中心線Ac側に近付くように内側に配置し、回路部を含むチップ643、645を外側に配置してもよい。また、チップ644、646は、回転中心線Acに対して点対称となるように配置される。
 なお、制御構成等については、いずれの実施形態のものと組み合わせてもよい。
Further, as shown in FIG. 20B, chips 644 and 646 including sensor elements are arranged on the inner side so as to be closer to the rotation center line Ac side than chips 643 and 645 including circuit parts, and chips 643 and 645 including circuit parts are provided. May be arranged outside. The chips 644 and 646 are arranged so as to be point-symmetric with respect to the rotation center line Ac.
In addition, about a control structure etc., you may combine with the thing of any embodiment.
 本実施形態では、センサ素子601は、回路部610のチップ643とは別途に設けられる。また、センサ素子602は、回路部620のチップ645とは別途に設けられる。これにより、回路部610、620とは一体にできない素子(例えばMR素子)をセンサ素子601、602として用いることができる。
 センサ素子601は回路部610のチップ643の上面に配置され、センサ素子602は回路部620のチップ645の上面に配置される。センサ素子601、602をチップ643、645の上面に配置することで、回転検出装置5をより小型化することができる。
 また、センサ素子601、602は、回路部610、620のチップ643、645よりもモータ部10の回転中心線Ac側に配置される。これにより、センサ素子601、602を回転中心線Acに近づけて配置できるので、検出精度が高まる。
 また、第7実施形態は、上記第1実施形態と同様の効果を奏する。
In the present embodiment, the sensor element 601 is provided separately from the chip 643 of the circuit unit 610. The sensor element 602 is provided separately from the chip 645 of the circuit portion 620. Thereby, elements (for example, MR elements) that cannot be integrated with the circuit portions 610 and 620 can be used as the sensor elements 601 and 602.
The sensor element 601 is disposed on the upper surface of the chip 643 of the circuit portion 610, and the sensor element 602 is disposed on the upper surface of the chip 645 of the circuit portion 620. By disposing the sensor elements 601 and 602 on the upper surfaces of the chips 643 and 645, the rotation detection device 5 can be further downsized.
Further, the sensor elements 601 and 602 are arranged on the rotation center line Ac side of the motor unit 10 with respect to the chips 643 and 645 of the circuit units 610 and 620. Thereby, since the sensor elements 601 and 602 can be disposed close to the rotation center line Ac, the detection accuracy is increased.
Further, the seventh embodiment has the same effect as the first embodiment.
(第8実施形態)
 本開示の第8実施形態を図21~図23に示す。
 上述した実施形態では、2つのセンサ部は、1つのセンサパッケージ65に設けられる。本実施形態の回転検出装置6では、第1センサ部61が第1パッケージ661に設けられ、第2センサ部62が第2パッケージ662に設けられる。すなわち本実施形態では、パッケージ661、662が、センサ部61、62毎に設けられている。センサ部の構成等は、第1実施形態のものに限らず、第2実施形態~第7実施形態で説明したものとしてもよい。第9実施形態についても同様である。
(Eighth embodiment)
An eighth embodiment of the present disclosure is shown in FIGS.
In the embodiment described above, the two sensor units are provided in one sensor package 65. In the rotation detection device 6 of the present embodiment, the first sensor unit 61 is provided in the first package 661, and the second sensor unit 62 is provided in the second package 662. That is, in this embodiment, the packages 661 and 662 are provided for each of the sensor units 61 and 62. The configuration of the sensor unit and the like are not limited to those of the first embodiment, and may be those described in the second to seventh embodiments. The same applies to the ninth embodiment.
 図21および図22に示すように、第1パッケージ661が第1基板21の第1主面211に実装され、第2パッケージ662が第1基板21の第2主面212に実装される。パッケージ661、662をセンサ部61、62とし、第1基板21の両主面211および212に実装することで、第1基板21における回転検出装置6の実装面積を低減することができる。また、各センサ部61、62のセンサ素子601、602は、共に回転中心線Ac上に配置される。これにより、モータ部10の回転の検出精度を高めることができる。
 また、パッケージ661、662は、図23Aのように、共に第1基板21の第1主面211に実装してもよいし、図23Bのように、共に第1基板21の第2主面212に実装してもよい。
As shown in FIGS. 21 and 22, the first package 661 is mounted on the first main surface 211 of the first substrate 21, and the second package 662 is mounted on the second main surface 212 of the first substrate 21. By mounting the packages 661 and 662 as the sensor portions 61 and 62 on both the main surfaces 211 and 212 of the first substrate 21, the mounting area of the rotation detection device 6 on the first substrate 21 can be reduced. The sensor elements 601 and 602 of the sensor units 61 and 62 are both arranged on the rotation center line Ac. Thereby, the detection accuracy of the rotation of the motor unit 10 can be increased.
Further, both the packages 661 and 662 may be mounted on the first main surface 211 of the first substrate 21 as shown in FIG. 23A, or both the second main surface 212 of the first substrate 21 as shown in FIG. 23B. May be implemented.
 本実施形態では、パッケージ661は、センサ素子601、および、当該センサ素子601の検出値を用いる回路部610に対応して設けられる。パッケージ662は、センサ素子602、および、当該センサ素子602の検出値を用いる回路部620に対応して設けられる。すなわち、パッケージ661、662は、センサ部61、62ごとに設けられる。センサ部61、62ごとにパッケージ661、662を設けることで、回転検出装置6の配置の自由度が高まる。また、パッケージ故障による複数系統の同時故障を防ぐことができ、一方のパッケージに異常が生じた場合であっても、他方のパッケージに含まれる
各構成により、回転角θmおよび回転回数TCの演算を継続可能である。
In the present embodiment, the package 661 is provided corresponding to the sensor element 601 and the circuit unit 610 that uses the detection value of the sensor element 601. The package 662 is provided corresponding to the sensor element 602 and the circuit portion 620 that uses the detection value of the sensor element 602. That is, the packages 661 and 662 are provided for each of the sensor units 61 and 62. By providing the packages 661 and 662 for each of the sensor units 61 and 62, the degree of freedom of arrangement of the rotation detection device 6 is increased. In addition, simultaneous failure of a plurality of systems due to package failure can be prevented, and even when an abnormality occurs in one package, the rotation angle θm and the number of rotations TC can be calculated by each configuration included in the other package. Can continue.
 パッケージ661、662は、2つである。一方のパッケージ661は、第1基板21のモータ部10側の面である第1主面211に実装される。他方のパッケージ662は、第1基板21のモータ部10と反対側の面である第2主面212に実装される。これにより、実装面積を低減することができるので、回転検出装置1の径方向における体格の小型化に寄与する。
 また、センサ素子601、602は、モータ部10の回転中心線Ac上となる箇所に配置される。これにより、検出精度を高めることができる。
 また、第8実施形態は、上記第1実施形態と同様の効果を奏する。
There are two packages 661 and 662. One package 661 is mounted on the first main surface 211 that is the surface of the first substrate 21 on the motor unit 10 side. The other package 662 is mounted on the second main surface 212 which is the surface of the first substrate 21 opposite to the motor unit 10. Thereby, since a mounting area can be reduced, it contributes to size reduction of the physique in the radial direction of the rotation detector 1.
In addition, the sensor elements 601 and 602 are arranged at locations on the rotation center line Ac of the motor unit 10. Thereby, detection accuracy can be improved.
Further, the eighth embodiment has the same effect as the first embodiment.
(第9実施形態)
 本開示の第9実施形態を図24に示す。図24では、ばね端子等、一部の部品の記載を省略した。
 上述した実施形態では、第1基板21にSW素子301~306、401~406、コンデンサ36、46、および、回転検出装置1等が実装され、第2基板22にマイコン51、52、および、集積回路56、57等が実装される。
(Ninth embodiment)
FIG. 24 shows a ninth embodiment of the present disclosure. In FIG. 24, description of some components, such as a spring terminal, was abbreviate | omitted.
In the embodiment described above, the SW elements 301 to 306 and 401 to 406, the capacitors 36 and 46, the rotation detection device 1 and the like are mounted on the first substrate 21, and the microcomputers 51 and 52 and the integrated circuit are integrated on the second substrate 22. Circuits 56 and 57 are mounted.
 図24に示すように、本実施形態では、1枚の基板23にSW素子301~306、コンデンサ36、46、第1および第2のマイコン51、52、集積回路56、57、および、回転検出装置6が実装される。詳細には、SW素子301~306、401~406、集積回路56、57、および、回転検出装置6のパッケージ661等が、基板23のモータ部10側の面である第1主面231に実装される。また、コンデンサ36、46、第1および第2のマイコン51、52、および、回転検出装置6のパッケージ662等が基板23のモータ部10と反対側の面である第2主面232に実装される。 As shown in FIG. 24, in this embodiment, SW elements 301 to 306, capacitors 36 and 46, first and second microcomputers 51 and 52, integrated circuits 56 and 57, and rotation detection are performed on one substrate 23. A device 6 is implemented. Specifically, the SW elements 301 to 306 and 401 to 406, the integrated circuits 56 and 57, the package 661 of the rotation detection device 6, and the like are mounted on the first main surface 231 that is the surface of the substrate 23 on the motor unit 10 side. Is done. The capacitors 36 and 46, the first and second microcomputers 51 and 52, the package 662 of the rotation detection device 6, and the like are mounted on the second main surface 232 that is the surface opposite to the motor unit 10 of the substrate 23. The
 図24では、センサ部61、62毎にパッケージ661、662が設けられ、基板23の両主面231および232に実装される例を示しているが、パッケージ661、662をいずれか一方の主面に実装してもよい。また、センサ部61、62を1パッケージとしてもよい。センサ部61、62を1パッケージとする場合、回転検出装置6を基板23の第1面231に実装することが、検出精度の面から望ましい。
 1枚の基板23に駆動装置8の制御に係る部品を実装することで、部品点数を低減できる。また、複数の基板を軸方向に積層して設ける場合と比較し、軸方向における体格を小型化することができる。
 このように構成しても、上記第1実施形態と同様の効果を奏する。
FIG. 24 shows an example in which packages 661 and 662 are provided for each of the sensor units 61 and 62 and are mounted on both main surfaces 231 and 232 of the substrate 23. May be implemented. The sensor units 61 and 62 may be a single package. When the sensor units 61 and 62 are formed as one package, it is desirable from the viewpoint of detection accuracy that the rotation detection device 6 is mounted on the first surface 231 of the substrate 23.
By mounting components related to the control of the driving device 8 on one substrate 23, the number of components can be reduced. Further, the physique in the axial direction can be reduced as compared with the case where a plurality of substrates are stacked in the axial direction.
Even if comprised in this way, there exists an effect similar to the said 1st Embodiment.
(第10実施形態)
 第10実施形態を図25~図28に基づいて説明する。
 本実施形態では、1つの回路部612に対して2つのセンサ素子601、607(図16参照)が設けられる場合の素子配置を中心に説明する。図16では、センサ素子601、607および回路部612が同一のチップ641に設けられているが、本実施形態では、説明のため、センサ素子601、607が別のチップにて構成されているものとする。以下適宜、センサ素子601、607のチップを、単に「センサ素子601、607」と記載する。なお、図25、図26および図28では、センサ素子601、607以外の構成についての記載は省略する。
(10th Embodiment)
A tenth embodiment will be described with reference to FIGS.
In the present embodiment, the element arrangement in the case where two sensor elements 601 and 607 (see FIG. 16) are provided for one circuit unit 612 will be mainly described. In FIG. 16, the sensor elements 601 and 607 and the circuit unit 612 are provided on the same chip 641, but in the present embodiment, the sensor elements 601 and 607 are configured by different chips for explanation. And Hereinafter, as appropriate, the chips of the sensor elements 601 and 607 are simply referred to as “ sensor elements 601 and 607”. In FIG. 25, FIG. 26, and FIG. 28, descriptions of the components other than the sensor elements 601 and 607 are omitted.
 センサ素子601、607は、上述の通り、マグネット16(図4参照)の回転に伴う磁界変化を検出する磁気検出素子であって、磁気検出に係る方向性を有している。図25等では、センサ素子601、607は、同一の構造であって、センサ素子601、607の磁気検出特性方向を矢印で示す。ここで、磁気検出特性方向とは、例えばセンサ素子601、607がホールICであれば、ホール素子の配列に応じた方向とすればよいし、TMR素子等であれば、ピン層の着磁方向とすればよい。 As described above, the sensor elements 601 and 607 are magnetic detection elements that detect a magnetic field change accompanying rotation of the magnet 16 (see FIG. 4), and have directionality related to magnetic detection. In FIG. 25 and the like, the sensor elements 601 and 607 have the same structure, and the magnetic detection characteristic directions of the sensor elements 601 and 607 are indicated by arrows. Here, for example, if the sensor elements 601 and 607 are Hall ICs, the magnetic detection characteristic direction may be a direction corresponding to the arrangement of the Hall elements. And it is sufficient.
 図25Aに示すように、センサ素子601、607が、磁気検出特性方向が同一方向となるように平行に配置されている場合、「磁気検出特性方向が一致している」とする。磁気検出特性方向が一致するようにセンサ素子601、607が配置されていると、図25Bに示すように、センサ素子601の検出値Apと、センサ素子607の検出値Aqとが一致する。検出値Apとは、センサ素子601から出力されるsin信号およびcos信号を、逆正接関数(arctangent)等の所定の変換関数を用いて角度換算された値とする。検出値Aqは、センサ素子607から出力されるsin信号およびcos信号を、逆正接関数(arctangent)等の所定の変換関数を用いて角度換算された値とする。
 また、磁気検出特性方向が一致するようにセンサ素子601、607が配置されていると、検出値Apのデジタル換算値Dpと、検出値Aqのデジタル換算値Dqとが一致する。例えば、デジタル換算値Dp、Dqが14ビットで表される場合、図25Cに示すように、モータ部10の機械角が0°のデジタル換算値Dp、Dqは、共に「00000000000000」となる。ビット数は、適宜設定可能である。
As shown in FIG. 25A, when the sensor elements 601 and 607 are arranged in parallel so that the magnetic detection characteristic directions are the same, it is assumed that “the magnetic detection characteristic directions are the same”. When the sensor elements 601 and 607 are arranged so that the magnetic detection characteristic directions match, the detection value Ap of the sensor element 601 and the detection value Aq of the sensor element 607 match as shown in FIG. 25B. The detected value Ap is a value obtained by converting the sin signal and the cos signal output from the sensor element 601 into an angle by using a predetermined conversion function such as an arctangent function (arctangent). The detection value Aq is a value obtained by converting the sin signal and the cos signal output from the sensor element 607 into an angle by using a predetermined conversion function such as an arctangent function (arctangent).
In addition, when the sensor elements 601 and 607 are arranged so that the magnetic detection characteristic directions coincide, the digital conversion value Dp of the detection value Ap and the digital conversion value Dq of the detection value Aq match. For example, when the digital conversion values Dp and Dq are represented by 14 bits, as shown in FIG. 25C, the digital conversion values Dp and Dq when the mechanical angle of the motor unit 10 is 0 ° are both “00000000000000”. The number of bits can be set as appropriate.
 ここで、デジタル換算値Dp、Dqが0に張り付くような異常が生じた場合、デジタル換算値Dp、Dqは、共に「00000000000000」となる。そのため、モータ部10が機械角0°にて停止しているのか、値が0に張り付くような異常が生じているのかを判別することができない。本実施形態では、値が0に固着する異常を例に説明するが、0以外の値に固着する場合も同様である。 Here, when an abnormality occurs such that the digital conversion values Dp and Dq stick to 0, the digital conversion values Dp and Dq are both “00000000000000”. Therefore, it cannot be determined whether the motor unit 10 is stopped at a mechanical angle of 0 ° or whether an abnormality such that the value sticks to 0 has occurred. In the present embodiment, an example in which the value is fixed to 0 will be described as an example, but the same applies to cases where the value is fixed to a value other than 0.
 そこで本実施形態では、検出値Ap、Aqの位相がずれるように、センサ素子601、607の回転位置をずらして配置している。センサ素子601、607の回転位置をずらすことで、磁気検出特性方向を回転方向(モータ部10の回転方向)にずらして配置している。本実施形態でいう「2つのセンサ素子601、607の磁気検出特性方向をずらして配置する」とは、2つのセンサ素子601、607の磁気検出特性方向のなす角度を非0°に配置することであり、「ずらし量」とは、それぞれの磁気検出特性方向間の回転量(角度差)を意味する。 Therefore, in this embodiment, the rotational positions of the sensor elements 601 and 607 are shifted so that the detection values Ap and Aq are out of phase. By shifting the rotational positions of the sensor elements 601 and 607, the magnetic detection characteristic direction is shifted in the rotational direction (the rotational direction of the motor unit 10). In this embodiment, “displace the magnetic detection characteristic directions of the two sensor elements 601 and 607” means that the angle formed by the magnetic detection characteristic directions of the two sensor elements 601 and 607 is non-zero. The “shift amount” means the amount of rotation (angle difference) between the respective magnetic detection characteristic directions.
 図26Aに示すように、本実施形態では、例えばセンサ素子601、607の回転位置を180°ずらして配置することで、それぞれの磁気検出特性方向を180°ずらしている。
 それぞれの磁気検出特性方向が180°ずれるようにセンサ素子601、607を配置することで、図26Bに示すように、検出値Ap、Aqの位相が180°ずれる。そのため、図26Cに示すように、モータ部10の機械角が0°のときのデジタル換算値Dpが「00000000000000」、デジタル換算値Dqが「10000000000000」となり、異なる値となる。一方、値が0に固着する0固着異常が生じた場合、デジタル換算値Dp、Dqが共に「00000000000000」となる。すなわち、センサ素子601、607の磁気検出特性方向をずらして配置することで、正常時のデジタル換算値Dp、Dqが異なる値となるので、第1マイコン51は、デジタル換算値Dp、Dqが同じ値となった場合、固着異常が生じていると判定することができる。
 デジタル換算値Dp、Dqを表現するビット数に応じ、分解能に対応する角度d以上、センサ素子601、607それぞれの磁気検出特性方向をずらすことで、正常時のデジタル換算値Dp、Dqを異なる値とすることができるので、固着異常を判定可能となる。
As shown in FIG. 26A, in this embodiment, for example, the rotational positions of the sensor elements 601 and 607 are shifted by 180 °, so that the respective magnetic detection characteristic directions are shifted by 180 °.
By arranging the sensor elements 601 and 607 so that the respective magnetic detection characteristic directions are shifted by 180 °, the phases of the detection values Ap and Aq are shifted by 180 ° as shown in FIG. 26B. Therefore, as shown in FIG. 26C, when the mechanical angle of the motor unit 10 is 0 °, the digital conversion value Dp is “00000000000000” and the digital conversion value Dq is “10000000000000”, which are different values. On the other hand, in the case where a 0 fixing abnormality in which the value is fixed to 0 occurs, the digital conversion values Dp and Dq are both “00000000000000”. That is, by shifting the magnetic detection characteristic direction of the sensor elements 601 and 607, the digital conversion values Dp and Dq in the normal state become different values. Therefore, the first microcomputer 51 has the same digital conversion values Dp and Dq. When the value is reached, it can be determined that a sticking abnormality has occurred.
Depending on the number of bits representing the digital conversion values Dp and Dq, the normal digital conversion values Dp and Dq are different values by shifting the respective magnetic detection characteristic directions of the sensor elements 601 and 607 by an angle d or more corresponding to the resolution. Therefore, it is possible to determine the sticking abnormality.
 センサ素子601、607それぞれの検出値Ap、Aqの角度誤差を図27に基づいて説明する。図27では、検出値Ap、Aqを加算したときの角度誤差を実線、減算したときの角度誤差を破線で示す。
 例えば、センサ素子601、607の磁気検出特性方向のずらし量が180°のとき、検出値Ap、Aqを加算することで、角度誤差をキャンセルすることができる。また、センサ素子601、607の磁気検出特性方向のずらし量が0°のとき、検出値Ap、Aqを減算することで、角度誤差をキャンセルすることができる。
The angle errors of the detection values Ap and Aq of the sensor elements 601 and 607 will be described with reference to FIG. In FIG. 27, the angle error when the detection values Ap and Aq are added is indicated by a solid line, and the angle error when the detection values are subtracted is indicated by a broken line.
For example, when the shift amount in the magnetic detection characteristic direction of the sensor elements 601 and 607 is 180 °, the angle error can be canceled by adding the detection values Ap and Aq. In addition, when the shift amount in the magnetic detection characteristic direction of the sensor elements 601 and 607 is 0 °, the angle error can be canceled by subtracting the detection values Ap and Aq.
 ここで、検出値の加算または減算により、角度誤差が基準値B以下となる磁気検出特性方向のずらし量の範囲は、315°(=-45°)~45°、および、135°~225°である。なお、-は、モータ部10の回転方向とは反対側のずらし量を表している。
 ただし、上述の通り、磁気検出特性方向のずらし量が0°(=360°)の場合、正常時のデジタル換算値Dp、Dqが同じとなり、固着異常判定ができないため、デジタル換算値Dp、Dqが少なくとも1ビット分ずれるように、0±dの範囲は除く。したがって、磁気検出特性方向のずらし量が(0+d)°以上45°以下の範囲R1、135°以上225°以下の範囲R2、および、315°以上(360-d)°以下の範囲R3となるように、センサ素子601、607を配置するのが好ましい。
Here, the range of the shift amount in the magnetic detection characteristic direction in which the angle error becomes the reference value B or less by addition or subtraction of the detection value is 315 ° (= −45 °) to 45 ° and 135 ° to 225 °. It is. In addition,-represents a shift amount on the opposite side to the rotation direction of the motor unit 10.
However, as described above, when the shift amount in the magnetic detection characteristic direction is 0 ° (= 360 °), the digital conversion values Dp and Dq in the normal state are the same, and the sticking abnormality determination cannot be performed. Therefore, the digital conversion values Dp and Dq The range of 0 ± d is excluded so that is shifted by at least one bit. Therefore, the shift amount in the magnetic detection characteristic direction is in the range R1 of (0 + d) ° to 45 °, R2 of 135 ° to 225 °, and R3 of 315 ° to (360-d) °. In addition, it is preferable to arrange the sensor elements 601 and 607.
 図28(A)は磁気検出特性方向のずらし量が45°、図28(B)は磁気検出特性方向のずらし量が135°、図28(C)は磁気検出特性方向のずらし量が225°、図28(D)は磁気検出特性方向のずらし量が315°である。図28に示すように、磁気検出特性方向のずらし量を45°、135°、225°または315°とすることで、センサ素子601、607自体のなす角度が45°となる。このように配置することで、組み付け時等において、センサ素子601、607それぞれの磁気検出特性方向をずらして配置されていることを容易に確認可能である。 28A is 45 ° in the magnetic detection characteristic direction, FIG. 28B is 135 ° in the magnetic detection characteristic direction, and FIG. 28C is 225 ° in the magnetic detection characteristic direction. In FIG. 28D, the shift amount in the magnetic detection characteristic direction is 315 °. As shown in FIG. 28, by setting the shift amount of the magnetic detection characteristic direction to 45 °, 135 °, 225 °, or 315 °, the angle formed by the sensor elements 601 and 607 itself becomes 45 °. By arranging in this way, it is possible to easily confirm that the magnetic detection characteristic directions of the sensor elements 601 and 607 are shifted when assembling.
 また、図16のように、2つのセンサ部461、462が設けられている場合、同一の回路部612に対応するセンサ素子601、607の磁気検出特性方向がずらして配置されていればよい。センサ部461のセンサ素子601、607と、センサ部462のセンサ素子とは、磁気検出特性方向が一致していてもよいし、一致していなくてもよい。センサ部461、462のパッケージが別々の場合も同様である。 Further, as shown in FIG. 16, when two sensor units 461 and 462 are provided, it is only necessary that the magnetic detection characteristic directions of the sensor elements 601 and 607 corresponding to the same circuit unit 612 are shifted. The sensor elements 601 and 607 of the sensor unit 461 and the sensor elements of the sensor unit 462 may or may not have the same magnetic detection characteristic direction. The same applies when the sensors 461 and 462 have different packages.
 本実施形態では、1つの回路部612に対応して設けられる2つのセンサ素子601、607は、磁気検出に係る磁気検出特性方向を回転方向にずらして配置さている。複数(本実施形態では2つ)のセンサ素子601、607の検出値Ap、Aqに位相ずれを持たせることで、正常時のデジタル換算値Dp、Dqが異なる値となるので、固着異常等のデジタル出力のフェールを検出しやすくなる。 In the present embodiment, the two sensor elements 601 and 607 provided corresponding to one circuit unit 612 are arranged by shifting the magnetic detection characteristic direction related to magnetic detection in the rotation direction. Since the digital conversion values Dp and Dq in the normal state are different by giving the phase deviation to the detection values Ap and Aq of the plurality (two in the present embodiment) of the sensor elements 601 and 607, the fixing abnormality or the like It becomes easier to detect digital output failure.
 2つのセンサ素子601、607は、磁気検出特性方向を180°ずらして配置されている。これにより、検出値Ap、Aqを加算することで、角度誤差をキャンセルすることができる。
 または、2つのセンサ素子601、607の磁気検出特性方向のずらし量は、回転角検出信号のビット数に応じた分解能に相当する角度をdとすると、(0+d)°以上45°以下、135°以上225°以下、315°以上(360-d)°以下である。これにより、角度誤差を比較的小さく抑えることができる。
The two sensor elements 601 and 607 are arranged with the magnetic detection characteristic direction shifted by 180 °. Thereby, the angle error can be canceled by adding the detection values Ap and Aq.
Alternatively, the shift amount in the magnetic detection characteristic direction of the two sensor elements 601 and 607 is (0 + d) ° or more and 45 ° or less, 135 °, where d is an angle corresponding to the resolution corresponding to the number of bits of the rotation angle detection signal. The angle is 225 ° or less, 315 ° or more (360-d) ° or less. Thereby, the angle error can be kept relatively small.
 マイコン51は、磁気検出特性方向を回転方向にずらして配置されているセンサ素子601、607の検出値Ap、Aqに応じたデジタル換算値Dp、Dqが一致する場合、異常が生じていると判定する。これにより、デジタル出力のフェールを適切に検出することができる。 The microcomputer 51 determines that an abnormality has occurred when the digital conversion values Dp and Dq corresponding to the detection values Ap and Aq of the sensor elements 601 and 607 arranged with the magnetic detection characteristic direction shifted in the rotation direction match. To do. Thereby, a digital output failure can be detected appropriately.
(他の実施形態)
 上記実施形態では、回転検出装置には、2つの回路部が設けられる。他の実施形態では、回路部の数を3つ以上としてもよい。
 上記実施形態では、回転情報演算回路は、1つのセンサ部に1系統または2系統設けられる。他の実施形態では、1つのセンサ部に回転情報演算回路を3系統以上設けてもよい。
 上記実施形態では、センサ素子は、ホール素子である。他の実施形態では、センサ素子は、MR素子等、検出対象の回転を検出可能なものであれば、どのようなものであってもよい。上記実施形態では、1つの回路部に対し、1つまたは2つのセンサ素子が設けられる。他の実施形態では、1つの回路部に対し、3つ以上のセンサ素子を設けてもよい。第1および第2のセンサ素子、および第1および第2の回路部は、当然ながら、2個に限定されるものではなく、「少なくとも第1および第2のセンサ素子、および少なくとも第1および第2の回路部」の意味である。
(Other embodiments)
In the above embodiment, the rotation detection device is provided with two circuit units. In other embodiments, the number of circuit units may be three or more.
In the above embodiment, one or two rotation information calculation circuits are provided in one sensor unit. In another embodiment, three or more rotation information calculation circuits may be provided in one sensor unit.
In the above embodiment, the sensor element is a Hall element. In other embodiments, the sensor element may be any element that can detect the rotation of the detection target, such as an MR element. In the above embodiment, one or two sensor elements are provided for one circuit unit. In another embodiment, three or more sensor elements may be provided for one circuit unit. Of course, the first and second sensor elements and the first and second circuit units are not limited to two, but “at least the first and second sensor elements and at least the first and second sensor elements”. 2 ".
 第10実施形態では、同一の回路部に対応して設けられる複数のセンサ素子の磁気検出特性方向が回転方向にずれるように、センサ素子を構成するチップの回転位置をずらして配置する。他の実施形態では、検出値の位相がずれるように、着磁方向や内部レイアウトを変更する等、センサ素子の内部構造が異なるものを用いることで、磁気検出特性方向を回転方向にずらしてもよい。 In the tenth embodiment, the rotation positions of the chips constituting the sensor elements are shifted so that the magnetic detection characteristic directions of the plurality of sensor elements provided corresponding to the same circuit unit are shifted in the rotation direction. In another embodiment, by using a sensor element having a different internal structure such as changing the magnetization direction or internal layout so that the phase of the detection value is shifted, the magnetic detection characteristic direction can be shifted in the rotation direction. Good.
 上記実施形態では、制御部からの指令信号と、センサ部からの出力信号とは、別々の通信線により送受信される。他の実施形態では、指令信号と出力信号とは、同一の信号線にて送受信されるように構成してもよい。上記実施形態では、制御部とセンサ部との間での通信方式として、SPI通信を例示した。他の実施形態では、制御部とセンサ部との間での通信方式は、SPI通信に限らず、SENT(Single Edge Nibble
Transmission)通信等、回転角信号および回転回数信号を一連の信号に含めることができれば、どのような方式であってもよい。また、他の実施形態では、回転角信号と回転回数信号とを別々の信号として制御部に送信してもよい。
In the said embodiment, the command signal from a control part and the output signal from a sensor part are transmitted / received by a separate communication line. In another embodiment, the command signal and the output signal may be configured to be transmitted and received through the same signal line. In the above embodiment, SPI communication is exemplified as a communication method between the control unit and the sensor unit. In another embodiment, the communication method between the control unit and the sensor unit is not limited to SPI communication, but SENT (Single Edge Nibble
Any system may be used as long as the rotation angle signal and the rotation frequency signal can be included in the series of signals such as transmission communication. In another embodiment, the rotation angle signal and the rotation frequency signal may be transmitted as separate signals to the control unit.
 上記実施形態では、検出対象は、モータ部である。他の実施形態では、検出対象は、モータに限らず、回転の検出を要するモータ以外の装置であってもよい。
 上記実施形態では、モータ部は三相ブラシレスモータである。他の実施形態では、モータ部は、三相ブラシレスモータに限らず、どのようなモータであってもよい。また、モータ部は、モータ(電動機)に限らず、発電機であってもよいし、電動機および発電機の機能を併せ持つ所謂モータジェネレータであってもよい。
In the above embodiment, the detection target is a motor unit. In another embodiment, the detection target is not limited to a motor, but may be a device other than a motor that requires rotation detection.
In the above embodiment, the motor unit is a three-phase brushless motor. In other embodiments, the motor unit is not limited to a three-phase brushless motor, and may be any motor. The motor unit is not limited to a motor (electric motor), and may be a generator, or a so-called motor generator having both functions of an electric motor and a generator.
 上記第1実施形態等では、第1基板に駆動部品および回転検出装置が実装され、第2基板に制御部品が実装される。他の実施形態では、第1基板に制御部品の少なくとも一部を実装したり、第2基板に駆動部品の少なくとも一部を実装したりしてもよい。例えば、第1基板に第1系統に係る駆動部品および制御部品を実装し、第2基板に第2系統に係る駆動部品および制御部品を実装するようにしてもよい。系統毎に基板を分けることで、一方の基板に異常が生じた場合にも、他方の基板に実装される駆動部品および制御部品を用いることで、電動パワーステアリング装置の駆動を継続することができる。また、複数の基
板が設けられる場合、基板の間にヒートシンクを設け、放熱が必要な部品の少なくとも一部をヒートシンクに放熱させるようにしてもよい。
In the first embodiment and the like, the drive component and the rotation detection device are mounted on the first substrate, and the control component is mounted on the second substrate. In another embodiment, at least a part of the control component may be mounted on the first substrate, or at least a part of the drive component may be mounted on the second substrate. For example, the driving component and the control component according to the first system may be mounted on the first substrate, and the driving component and the control component according to the second system may be mounted on the second substrate. By dividing the board for each system, even when an abnormality occurs on one board, the drive of the electric power steering device can be continued by using the drive parts and control parts mounted on the other board. . In the case where a plurality of substrates are provided, a heat sink may be provided between the substrates, and at least a part of components that need to be radiated may be radiated to the heat sink.
 上記実施形態では、駆動装置は、電動パワーステアリング装置に適用される。他の実施形態では、駆動装置を電動パワーステアリング装置以外の装置に適用してもよい。
 以上、本開示は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱し
ない範囲において種々の形態で実施可能である。
In the above embodiment, the drive device is applied to an electric power steering device. In another embodiment, the drive device may be applied to a device other than the electric power steering device.
As mentioned above, this indication is not limited to the said embodiment at all, and can be implemented with a various form in the range which does not deviate from the meaning of invention.
 1~6・・・回転検出装置
 10・・・モータ部(検出対象)
 51、52・・・マイコン(制御部)
 601~607・・・センサ素子
 610~612、620~622・・・回路部
 615、625、635・・・回転角演算部
 616、626、636・・・回転回数演算部
 617、627・・・通信部
 65、661、662・・・パッケージ
1 to 6 Rotation detection device 10 Motor unit (detection target)
51, 52 ... Microcomputer (control unit)
601 to 607... Sensor elements 610 to 612, 620 to 622... Circuit units 615, 625, 635... Rotation angle calculation units 616, 626, 636. Communication part 65,661,662 ... package

Claims (18)

  1.  検出対象(10)の回転を検出する少なくとも第1および第2のセンサ素子(601~607)と、
     前記第1および第2のセンサ素子それぞれの第1および第2の検出値に基づいて前記検出対象の回転角を演算する第1および第2の回転角演算部(615、625)、前記第1および第2のセンサ素子の第1および第2の検出値に基づいて前記検出対象の回転回数を演算する第1および第2の回転回数演算部(616、626)、ならびに、前記回転角に係る信号である回転角信号および前記回転回数に係る回転回数信号を制御部(51、52)に出力する第1および第2の通信部(617、627)をそれぞれ有する回路部(610~612、620~622)と、
     前記第1および第2のセンサ素子および前記回路部を封止しており、前記制御部とは別途に基板(21、23)に実装されるパッケージ部(65、661、662)と、
    を備える回転検出装置。
    At least first and second sensor elements (601-607) for detecting rotation of the detection object (10);
    First and second rotation angle calculation units (615, 625) for calculating the rotation angle of the detection target based on the first and second detection values of the first and second sensor elements, respectively, First and second rotation number calculation units (616, 626) for calculating the number of rotations of the detection target based on the first and second detection values of the second sensor element, and the rotation angle Circuit units (610 to 612, 620) having first and second communication units (617, 627) for outputting a rotation angle signal as a signal and a rotation number signal related to the number of rotations to a control unit (51, 52), respectively. To 622),
    Package portions (65, 661, 662) that seal the first and second sensor elements and the circuit portion and are mounted on the substrate (21, 23) separately from the control portion;
    A rotation detection device comprising:
  2.  前記パッケージ部は、1つのパッケージを備えており、全ての前記第1および第2のセンサ素子および前記回路部は、前記1つのパッケージ(65)内に設けられる請求項1に記載の回転検出装置。 The rotation detection device according to claim 1, wherein the package part includes one package, and all the first and second sensor elements and the circuit part are provided in the one package (65). .
  3.  前記回路部は少なくとも第1および第2の回路部を備えており、前記第1の回路部は、前記第1の回転角演算部、前記第1の回転回数演算部、および第1の通信部を備え、前記第2の回路部は、前記第2の回転角演算部、前記第2の回転回数演算部、および第2の通信部を備えており、
     前記パッケージ部(661、662)は、少なくとも第1および第2のパッケージを有しており、前記第1のセンサ素子および第1の回路部は、前記第1のパッケージに設けられ、前記第2のセンサ素子および第2の回路部は、前記第2のパッケージに設けられる請求項1または2に記載の回転検出装置。
    The circuit unit includes at least first and second circuit units, and the first circuit unit includes the first rotation angle calculation unit, the first rotation number calculation unit, and a first communication unit. The second circuit unit includes the second rotation angle calculation unit, the second rotation number calculation unit, and a second communication unit,
    The package portions (661, 662) include at least first and second packages, and the first sensor element and the first circuit portion are provided in the first package, and the second package The rotation detection device according to claim 1, wherein the sensor element and the second circuit unit are provided in the second package.
  4.  前記基板は、第1の面(211)、および該第1の面に対向する第2の面(212)を有し、前記基板は、その第1の面が前記検出対象に対向するように配置されており、
     前記第1のパッケージは、前記基板の前記第1の面(211)に実装され、
     前記第2のパッケージは、前記基板の前記第2の面(212)に実装され
    る請求項3に記載の回転検出装置。
    The substrate has a first surface (211) and a second surface (212) facing the first surface, and the substrate has the first surface facing the detection target. Has been placed,
    The first package is mounted on the first surface (211) of the substrate;
    The rotation detection device according to claim 3, wherein the second package is mounted on the second surface (212) of the substrate.
  5.  前記第1および第2のセンサ素子は、前記検出対象の回転中心線上となる箇所に配置される請求項4に記載の回転検出装置。 The rotation detection device according to claim 4, wherein the first and second sensor elements are arranged at a position on the rotation center line of the detection target.
  6.  前記第1および第2のセンサ素子は、前記検出対象の回転中心線に対して点対称に配置される請求項1~4のいずれか一項に記載の回転検出装置。 The rotation detection device according to any one of claims 1 to 4, wherein the first and second sensor elements are arranged point-symmetrically with respect to the rotation center line of the detection target.
  7.  前記回路部は少なくとも第1および第2の回路部を備えており、前記第1の回路部は、前記第1の回転角演算部、前記第1の回転回数演算部、および第1の通信部を備え、前記第2の回路部は、前記第2の回転角演算部、前記第2の回転回数演算部、および第2の通信部を備えており、
     少なくとも第1および第2のチップ(641、642)をさらに備え、
     前記第1のセンサ素子および前記第1の回路部は、前記第1のチップに搭載され、前記第2のセンサ素子および前記第2の回路部は、前記第2のチップに搭載される請求項1~6のいずれか一項に記載の回転検出装置。
    The circuit unit includes at least first and second circuit units, and the first circuit unit includes the first rotation angle calculation unit, the first rotation number calculation unit, and a first communication unit. The second circuit unit includes the second rotation angle calculation unit, the second rotation number calculation unit, and a second communication unit,
    Further comprising at least first and second chips (641, 642);
    The first sensor element and the first circuit section are mounted on the first chip, and the second sensor element and the second circuit section are mounted on the second chip. The rotation detection device according to any one of 1 to 6.
  8.  前記回路部は少なくとも第1および第2の回路部を備えており、前記第1の回路部は、前記第1の回転角演算部、前記第1の回転回数演算部、および第1の通信部を備え、前記第2の回路部は、前記第2の回転角演算部、前記第2の回転回数演算部、および第2の通信部を備えており、
     少なくとも第1~第4のチップ(643、644、645、646)をさらに備え、
     前記第1のセンサ素子および前記第1の回路部は、それぞれ第1および第2のチップに搭載され、前記第2のセンサ素子および前記第2の回路部は、それぞれ第3および第4のチップに搭載される請求項1~6のいずれか一項に記載の回転検出装置。
    The circuit unit includes at least first and second circuit units, and the first circuit unit includes the first rotation angle calculation unit, the first rotation number calculation unit, and a first communication unit. The second circuit unit includes the second rotation angle calculation unit, the second rotation number calculation unit, and a second communication unit,
    At least first to fourth chips (643, 644, 645, 646);
    The first sensor element and the first circuit unit are mounted on a first chip and a second chip, respectively, and the second sensor element and the second circuit unit are respectively a third chip and a fourth chip. The rotation detection device according to any one of claims 1 to 6, wherein the rotation detection device is mounted on the rotation detection device.
  9.  前記第1のセンサ素子が搭載された第1のチップは、前記第1の回路部が搭載された第2のチップの上面に配置され、前記第2のセンサ素子が搭載された第3のチップは、前記第2の回路部が搭載された第4のチップの上面に配置される請求項8に記載の回転検出装置。 The first chip on which the first sensor element is mounted is disposed on the upper surface of the second chip on which the first circuit unit is mounted, and the third chip on which the second sensor element is mounted. The rotation detection device according to claim 8, wherein the rotation detection device is disposed on an upper surface of a fourth chip on which the second circuit unit is mounted.
  10.  前記第1のセンサ素子が搭載された第1のチップは、前記第1の回路部が搭載された第2のチップよりも前記検出対象の回転中心線に近付くように配置され、前記第2のセンサ素子が搭載された第3のチップは、前記第2の回路部が搭載された第4のチップよりも前記検出対象の回転中心線に近付くように配置される請求項8に記載の回転検出装置。 The first chip on which the first sensor element is mounted is disposed closer to the rotation center line of the detection target than the second chip on which the first circuit unit is mounted, and the second chip The rotation detection according to claim 8, wherein the third chip on which the sensor element is mounted is arranged so as to be closer to the rotation center line of the detection target than the fourth chip on which the second circuit unit is mounted. apparatus.
  11.  前記第1および第2のセンサ素子(601、607)は、それぞれ磁気検出に係る第1および第2の磁気検出特性方向を有しており、当該第1および第2のセンサ素子(601、607)は、その第1および第2の磁気検出特性方向の成す角度が所定角を有するように配置されている請求項1~10のいずれか一項に記載の回転検出装置。 The first and second sensor elements (601, 607) respectively have first and second magnetic detection characteristic directions related to magnetic detection, and the first and second sensor elements (601, 607). The rotation detection device according to any one of claims 1 to 10, wherein the rotation detection device is arranged so that an angle formed by the first and second magnetic detection characteristic directions has a predetermined angle.
  12.  前記第1および第2のセンサ素子は、その第1および第2の磁気検出特性方向の成す角度が180°になるように配置されている請求項11に記載の回転検出装置。 The rotation detection device according to claim 11, wherein the first and second sensor elements are arranged so that an angle formed between the first and second magnetic detection characteristic directions is 180 °.
  13.  前記回転角に係る信号である回転角信号は、所定ビットのデジタル信号であり、前記第1および第2の磁気検出特性方向の成す角度は、前記回転角信号のビット数に応じた分解能に相当する角度をdとすると、(0+d)°以上45°以下、135°以上225°以下、または、315°以上(360-d)°以下である請求項11に記載の回転検出装置。 The rotation angle signal, which is a signal related to the rotation angle, is a digital signal of a predetermined bit, and the angle formed by the first and second magnetic detection characteristic directions corresponds to a resolution corresponding to the number of bits of the rotation angle signal. The rotation detection device according to claim 11, wherein d is an angle of (0 + d) ° to 45 °, 135 ° to 225 °, or 315 ° to (360-d) °.
  14.  前記第1および第2のセンサ素子は、それぞれ前記検出対象の回転を検出して第1および第2の検出値を出力するようになっており、
     前記制御部は、前記第1および第2の磁気検出特性方向の成す角度が所定角を有するように配置された前記第1および第2のセンサ素子の前記第1および第2の検出値それぞれをデジタル値に換算した第1のデジタル値および第2のデジタル値が一致する場合、前記回転検出装置に異常が生じていると判定する請求項11~13のいずれか一項に記載の回転検出装置。
    The first and second sensor elements are configured to detect the rotation of the detection target and output first and second detection values, respectively.
    The control unit sets the first and second detection values of the first and second sensor elements arranged so that an angle formed by the first and second magnetic detection characteristic directions has a predetermined angle. The rotation detection device according to any one of claims 11 to 13, wherein when the first digital value converted into a digital value and the second digital value match, it is determined that an abnormality has occurred in the rotation detection device. .
  15.  前記パッケージ部が実装される前記基板は第1基板であり、
     前記制御部が実装される第2の基板をさらに備え、
     前記第2の基板は、前記第1の基板を挟んで前記検出対象と反対側に設けられており、
     前記第1の基板および第2の基板は、内部接続端子(717)で通信可能に接続され、
     前記第1および第2の通信部それぞれから出力される前記回転角信号および前記回転回数信号は、前記内部接続端子を経由して前記制御部に送信される請求項1~14のいずれか一項に記載の回転検出装置。
    The substrate on which the package unit is mounted is a first substrate,
    A second board on which the controller is mounted;
    The second substrate is provided on the opposite side of the detection target across the first substrate,
    The first substrate and the second substrate are communicably connected via an internal connection terminal (717),
    The rotation angle signal and the rotation frequency signal output from each of the first and second communication units are transmitted to the control unit via the internal connection terminal. The rotation detection device described in 1.
  16.  前記第1および第2の通信部はそれぞれ、前記回転角信号および前記回転回数信号を含む一連の信号である出力信号を、1つの通信線(692、694)を用いて前記制御部に送信する請求項1~15のいずれか一項に記載の回転検出装置。 Each of the first and second communication units transmits an output signal, which is a series of signals including the rotation angle signal and the rotation number signal, to the control unit using one communication line (692, 694). The rotation detection device according to any one of claims 1 to 15.
  17.  運転者によるステアリングシャフトの操舵を補助する補助トルクを出力するモータ部(10)と、
     請求項1~16のいずれか一項に記載の回転検出装置(1~6)と、
     前記回転角信号および前記回転回数信号を用いて前記モータ部を制御する前記制御部とを備える電動パワーステアリング装置であって、
     前記第1および第2のセンサ素子はそれぞれ、前記検出対象として前記モータ部の回転を検出する電動パワーステアリング装置。
    A motor unit (10) for outputting an assist torque for assisting the steering of the steering shaft by the driver;
    A rotation detector (1-6) according to any one of the preceding claims,
    An electric power steering apparatus comprising: the control unit that controls the motor unit using the rotation angle signal and the rotation frequency signal;
    Each of the first and second sensor elements is an electric power steering device that detects rotation of the motor unit as the detection target.
  18.  前記制御部は、前記第1および第2の通信部それぞれから出力された前記回転角および前記回転回数に基づき、前記ステアリングシャフトの舵角を演算する請求項17に記載の電動パワーステアリング装置。 The electric power steering apparatus according to claim 17, wherein the control unit calculates a steering angle of the steering shaft based on the rotation angle and the number of rotations output from each of the first and second communication units.
PCT/JP2017/014421 2016-04-06 2017-04-06 Rotation detecting device and electromotive power steering device using same WO2017175843A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780022347.8A CN108885097B (en) 2016-04-06 2017-04-06 Rotation detection device and electric power steering device using the same
US16/091,247 US11091201B2 (en) 2016-04-06 2017-04-06 Rotation detecting apparatus and electric power steering apparatus using the same
DE112017001940.0T DE112017001940T5 (en) 2016-04-06 2017-04-06 Rotation detecting device and electric power steering device using these

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016076677 2016-04-06
JP2016-076677 2016-04-06
JP2017-023442 2017-02-10
JP2017023442A JP7035317B2 (en) 2016-04-06 2017-02-10 Rotation detection device and electric power steering device using this

Publications (1)

Publication Number Publication Date
WO2017175843A1 true WO2017175843A1 (en) 2017-10-12

Family

ID=60001313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014421 WO2017175843A1 (en) 2016-04-06 2017-04-06 Rotation detecting device and electromotive power steering device using same

Country Status (1)

Country Link
WO (1) WO2017175843A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211771B2 (en) 2016-04-06 2019-02-19 Denso Corporation Drive apparatus and electric power steering apparatus using the same
US10214233B2 (en) 2016-04-06 2019-02-26 Denso Corporation Drive apparatus and electric power steering apparatus using the same
WO2019181938A1 (en) * 2018-03-20 2019-09-26 株式会社デンソー Detection device, calculation device, control device, and electric power steering device using same
JP2019164127A (en) * 2018-03-20 2019-09-26 株式会社デンソー Detection device, arithmetic device, control device, and electric power steering device using the same
CN113353144A (en) * 2020-03-05 2021-09-07 尼得科智动株式会社 Electric power steering control device and control method
WO2022024961A1 (en) * 2020-07-27 2022-02-03 日本精機株式会社 Position detection device
WO2022196458A1 (en) * 2021-03-18 2022-09-22 株式会社デンソー Drive device
US11459025B2 (en) * 2019-03-28 2022-10-04 Denso Corporation Detection unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190803A (en) * 1993-12-27 1995-07-28 Tokyo Cosmos Electric Co Ltd Magnetic angle sensor
JP2009520195A (en) * 2005-12-19 2009-05-21 オーストリアマイクロシステムス アーゲー Magnetic field sensor arrangement and magnetic field non-contact measurement method
JP2014199182A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Magnetic sensor system
WO2015111534A1 (en) * 2014-01-22 2015-07-30 アルプス電気株式会社 Sensor module, and sensor chip and processing circuit chip used therein
JP2015161584A (en) * 2014-02-27 2015-09-07 株式会社デンソー Rotation angle detection device, and electric power steering device using the same
JP2015179070A (en) * 2014-02-27 2015-10-08 株式会社デンソー Rotation angle detector and electric power steering unit using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190803A (en) * 1993-12-27 1995-07-28 Tokyo Cosmos Electric Co Ltd Magnetic angle sensor
JP2009520195A (en) * 2005-12-19 2009-05-21 オーストリアマイクロシステムス アーゲー Magnetic field sensor arrangement and magnetic field non-contact measurement method
JP2014199182A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Magnetic sensor system
WO2015111534A1 (en) * 2014-01-22 2015-07-30 アルプス電気株式会社 Sensor module, and sensor chip and processing circuit chip used therein
JP2015161584A (en) * 2014-02-27 2015-09-07 株式会社デンソー Rotation angle detection device, and electric power steering device using the same
JP2015179070A (en) * 2014-02-27 2015-10-08 株式会社デンソー Rotation angle detector and electric power steering unit using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10556618B2 (en) 2016-04-06 2020-02-11 Denso Corporation Drive apparatus and electric power steering apparatus using the same
US10214233B2 (en) 2016-04-06 2019-02-26 Denso Corporation Drive apparatus and electric power steering apparatus using the same
US10897219B2 (en) 2016-04-06 2021-01-19 Denso Corporation Drive apparatus and electric power steering apparatus using the same
US10211771B2 (en) 2016-04-06 2019-02-19 Denso Corporation Drive apparatus and electric power steering apparatus using the same
JP2019164127A (en) * 2018-03-20 2019-09-26 株式会社デンソー Detection device, arithmetic device, control device, and electric power steering device using the same
CN111788460A (en) * 2018-03-20 2020-10-16 株式会社电装 Detection device, arithmetic device, control device, and electric power steering device using same
WO2019181938A1 (en) * 2018-03-20 2019-09-26 株式会社デンソー Detection device, calculation device, control device, and electric power steering device using same
JP7056602B2 (en) 2018-03-20 2022-04-19 株式会社デンソー Detection device, control device, and electric power steering device using this
CN111788460B (en) * 2018-03-20 2022-06-17 株式会社电装 Detection device, arithmetic device, control device, and electric power steering device
US11459025B2 (en) * 2019-03-28 2022-10-04 Denso Corporation Detection unit
CN113353144A (en) * 2020-03-05 2021-09-07 尼得科智动株式会社 Electric power steering control device and control method
WO2022024961A1 (en) * 2020-07-27 2022-02-03 日本精機株式会社 Position detection device
WO2022196458A1 (en) * 2021-03-18 2022-09-22 株式会社デンソー Drive device

Similar Documents

Publication Publication Date Title
JP7035317B2 (en) Rotation detection device and electric power steering device using this
JP6930125B2 (en) Rotation detection device and electric power steering device using this
WO2017175843A1 (en) Rotation detecting device and electromotive power steering device using same
CN107444481B (en) Rotation detection apparatus and electric power steering apparatus using the same
CN107404196B (en) Drive device and electric power steering device using the same
US10897219B2 (en) Drive apparatus and electric power steering apparatus using the same
US9692350B2 (en) Electrical rotating machine controller
US10673364B2 (en) Motor control method, motor drive system, and electric power steering system
US11904958B2 (en) Detection device, calculation device, control device, and electric power steering device using the same
JP5915635B2 (en) Electronic control unit, electric power steering apparatus, vehicle, and manufacturing method of electronic control unit
US11072245B2 (en) Motor control method, motor control system, and electric power steering system
WO2019181938A1 (en) Detection device, calculation device, control device, and electric power steering device using same
US20200083833A1 (en) Control device for three-phase rotary machine
JP7081386B2 (en) Rotation detection device and electric power steering device using this
JP2020165951A (en) Detector and control device
JP2019170038A (en) motor
JP7172140B2 (en) Rotation detection device and electric power steering device using the same
JP2012214101A (en) Electric power steering system
JP2012228985A (en) Electric power steering apparatus and control device
WO2023054018A1 (en) Detection device
US20220048560A1 (en) Steering assist device and method, and steering system
WO2023054020A1 (en) Detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779221

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779221

Country of ref document: EP

Kind code of ref document: A1