WO2017175407A1 - 光学部材の製造方法 - Google Patents

光学部材の製造方法 Download PDF

Info

Publication number
WO2017175407A1
WO2017175407A1 PCT/JP2016/076848 JP2016076848W WO2017175407A1 WO 2017175407 A1 WO2017175407 A1 WO 2017175407A1 JP 2016076848 W JP2016076848 W JP 2016076848W WO 2017175407 A1 WO2017175407 A1 WO 2017175407A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mixture
optical member
bis
mol
Prior art date
Application number
PCT/JP2016/076848
Other languages
English (en)
French (fr)
Inventor
幸夫 影山
上坂 昌久
山本 明典
Original Assignee
ホヤ レンズ タイランド リミテッド
幸夫 影山
上坂 昌久
山本 明典
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 幸夫 影山, 上坂 昌久, 山本 明典 filed Critical ホヤ レンズ タイランド リミテッド
Priority to JP2016568453A priority Critical patent/JPWO2017175407A1/ja
Publication of WO2017175407A1 publication Critical patent/WO2017175407A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts

Definitions

  • the present invention relates to a method for producing an optical member and a method for producing a polythiol mixture.
  • Patent Document 1 describes a method of manufacturing a plastic lens that can stabilize the dyeability of a thiourethane plastic lens.
  • a plastic lens manufacturing method for manufacturing a plastic lens from a polymer obtained by polymerizing a thiol compound containing a thiol group and an isocyanate compound containing an isocyanate group the thiol group and the isocyanate group are predetermined.
  • a method for producing a plastic lens characterized in that a thiol compound and an isocyanate compound are used so that the fluctuation of the functional group molar ratio falls within a predetermined range. .
  • Patent Document 1 states that stabilization of the dyeability of a plastic lens is an issue, and it is described that the dispersion of the dyeability has a great influence on the thiol equivalent representing the purity of the raw material thiol compound, but the heat resistance is evaluated. It has not been.
  • An object of one embodiment of the present invention is to provide a method for producing an optical member from which an optical member having excellent heat resistance is obtained, and a method for producing a polythiol mixture.
  • the inventor When using a mixture of specific thiol compounds as the monomer of the polymerization composition, the inventor obtains an optical member having excellent heat resistance by setting the measured value of the thiol equivalent of the mixture within a predetermined range. I found out that
  • Step 1 A step of mixing a mixture 1 of the following compound 1-1, the following compound 1-2 and the following compound 1-3 with a polyiso (thio) cyanate compound to obtain a polymerization composition
  • Step 2 a step of polymerizing the polymerization composition obtained in Step 1 to obtain an optical member
  • It is a manufacturing method of the optical member whose measured value of the thiol equivalent of the mixture 1 of the process 1 is 102 g / eq or less.
  • Step A 2-Mercaptoethanol and epichlorohydrin are reacted in the presence of an amine catalyst to obtain a compound represented by the formula (1): Obtaining a compound represented by: Step B: By reacting the compound obtained in Step A with sodium sulfide, the formula (2): Obtaining a compound represented by: Step C: reacting the compound obtained in Step B with thiourea in the presence of a mineral acid to obtain an isothiuronium salt; Step D: a step of hydrolyzing the isothiuronium salt obtained in Step C with a basic substance to obtain a mixture of Compound 1-1, Compound 1-2, and Compound 1-3; Step E: washing the mixture obtained in Step D with mineral acid and water and purifying the mixture, It is a manufacturing method of the polythiol mixture which makes the measured value of the thiol equivalent of the mixture obtained at the process E below 102 g / eq.
  • Step 1 Mixture 1 of Compound 1-1, Compound 1-2 and Compound 1-3 (hereinafter also referred to as “polythiol mixture” or “mixture 1”) and a polyiso (thio) cyanate compound are mixed to form a polymerization composition.
  • Obtaining Step 2 a step of polymerizing the polymerization composition obtained in Step 1 to obtain an optical member; With The measured value of the thiol equivalent of the mixture 1 in step 1 is 102 g / eq or less.
  • Tg of the optical member obtained can be raised by using the mixture of the measured value of the thiol equivalent of the above-mentioned range, and the optical member which has the outstanding heat resistance is obtained.
  • the polythiol mixture includes the following compound 1-1, the following compound 1-2, and the following compound 1-3.
  • the measured value of the thiol equivalent of the polythiol mixture is 102 g / eq or less, preferably 100 g / eq or less, more preferably 99 g / eq or less.
  • the measured value of the thiol equivalent of the polythiol mixture is preferably 95 g / eq or more, more preferably 96 g / eq or more, still more preferably 97 g / eq or more, and further preferably 98 g / eq or more in order to obtain excellent heat resistance. In this range, in addition to excellent heat resistance, there are also effects of suppressing striae and cloudiness.
  • a thiol equivalent means the mass (g) per unit quantity (eq) of the mercapto group contained in a polythiol mixture.
  • the measuring method of the measured value of thiol equivalent is based on the method described in the Examples.
  • the polythiol mixture is not particularly limited, but is preferably obtained by a production method including the following steps A to E for adjustment of the measured value of the thiol equivalent.
  • step A 2-mercaptoethanol and epichlorohydrin are reacted in the presence of an amine catalyst to obtain the formula (1): To obtain a compound represented by:
  • the molar ratio of 2-mercaptoethanol to epichlorohydrin is preferably 60/40 to 40/60, more preferably 60/40 to 50/50, and still more preferably 55/45 to 50/50.
  • amine catalyst examples include triethylamine, trimethylamine, tripropylamine, and the like.
  • the compounding amount of the amine catalyst is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass, and further preferably 0 to 100 parts by mass of the total of 2-mercaptoethanol and epichlorohydrin. .5 to 5 parts by mass.
  • the reaction temperature is preferably 0 to 60 ° C., more preferably 10 to 55 ° C., and still more preferably 20 to 50 ° C.
  • the reaction time is, for example, 30 minutes to 2 hours.
  • step B the compound obtained in step A is reacted with sodium sulfide to give the formula (2): To obtain a compound represented by:
  • the amount of sodium sulfide used is preferably more than 50.0 mol%, more preferably, in order to adjust the measured value of thiol equivalent and obtain excellent heat resistance with respect to 100 mol% of the compound obtained in Step A. 51.0 mol% or more, more preferably 52.0 mol% or more.
  • the amount of sodium sulfide used is preferably 55.0 mol% or less, more preferably, in order to adjust the measured value of the thiol equivalent with respect to 100 mol% of the compound obtained in Step A and to obtain excellent heat resistance. It is 54.0 mol% or less, More preferably, it is 53.0 mol% or less, More preferably, it is 52.0 mol% or less, More preferably, it is 51.5 mol% or less.
  • Sodium sulfide is preferably added as an aqueous solution.
  • concentration of the aqueous sodium sulfide solution is preferably 40 to 80% by mass, more preferably 45 to 70% by mass, and further preferably 50 to 60% by mass.
  • the reaction temperature is preferably 0 to 60 ° C., more preferably 10 to 55 ° C., and still more preferably 20 to 50 ° C.
  • the reaction time is, for example, about 30 minutes to 2 hours.
  • Step C the compound obtained in Step B is reacted with thiourea in the presence of a mineral acid to obtain an isothiuronium salt.
  • the mineral acid include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • the mineral acid is preferably added as an aqueous solution.
  • the concentration of the mineral acid aqueous solution is preferably 10 to 50% by mass, more preferably 20 to 45% by mass, and further preferably 30 to 40% by mass.
  • the blending amount of the mineral acid is preferably 100 to 300 mol%, more preferably 110 to 200 mol%, still more preferably with respect to 100 mol% of the total blending amount of 2-mercaptoethanol and epichlorohydrin in Step A. Is 130 to 180 mol%.
  • the reaction temperature is preferably 80 to 130 ° C, more preferably 90 to 120 ° C, and still more preferably 100 to 115 ° C.
  • the reaction time is, for example, about 5 to 15 hours.
  • Step D the isothiuronium salt obtained in Step C is hydrolyzed with a basic substance to obtain a mixture of Compound 1-1, Compound 1-2, and Compound 1-3.
  • the basic substance include sodium hydroxide and potassium hydroxide, and sodium hydroxide is preferable.
  • the basic substance is preferably added as an aqueous solution. In this case, the concentration of the basic substance aqueous solution is preferably 10 to 50% by mass, more preferably 20 to 45% by mass, and still more preferably 25 to 45% by mass. is there.
  • the reaction temperature is preferably 40 to 100 ° C, more preferably 50 to 90 ° C, and still more preferably 55 to 80 ° C.
  • the reaction time is, for example, about 1 to 8 hours.
  • step E the mixture obtained in step D is washed with mineral acid and water to purify the mixture.
  • Suitable examples of the mineral acid are the same as those exemplified in Step C. Washing with water is carried out by a conventional method. In addition, you may remove the organic solvent used by washing
  • the mixture obtained in step E is preferably used as mixture 1 in step 1.
  • the polyiso (thio) cyanate compound means at least one selected from a polyisocyanate compound and a polyisothiocyanate compound.
  • the polyiso (thio) cyanate compound is preferably a polyisocyanate compound.
  • Examples of the polyiso (thio) cyanate compound include a polyiso (thio) cyanate compound having one or more aromatic rings, an alicyclic polyiso (thio) cyanate compound, and a linear or branched aliphatic polyiso (thio) cyanate compound. Can be mentioned.
  • polyiso (thio) cyanate compound having one or more aromatic rings examples include diisocyanatobenzene, 2,4-diisocyanatotoluene, ethylphenylene diisocyanate, isopropylphenylene diisocyanate, dimethylphenylene diisocyanate, diethylphenylene diisocyanate, diisopropylphenylene.
  • Examples of alicyclic polyiso (thio) cyanate compounds include diisocyanatocyclohexane, bis (isocyanatomethyl) cyclohexane, bis (isocyanatocyclohexyl) methane, bis (isocyanatomethyl) bicycloheptane, 2,5-diisocyanato-1, 4-dithiane, 2,5-bis (isocyanatomethyl) -1,4-dithiane, 4,5-diisocyanato-1,3-dithiolane, 4,5-bis (isocyanatomethyl) -1,3-dithiolane, Examples include 4,5-bis (isocyanatomethyl) -2-methyl-1,3-dithiolane.
  • linear or branched aliphatic polyiso (thio) cyanate compounds include hexamethylene diisocyanate, 2,2-dimethylpentane diisocyanate, 2,2,4-trimethylhexane diisocyanate, butene diisocyanate, and 1,3-butadiene-1.
  • the polyiso (thio) cyanate compound is preferably selected from xylylene diisocyanate, bis (isocyanatomethyl) cyclohexane, bis (isocyanatocyclohexyl) methane, and bis (isocyanatomethyl) bicycloheptane in order to improve heat resistance. At least one.
  • the mixing ratio of the polyiso (thio) cyanate compound and the polythiol mixture is such that the molar ratio of iso (thio) cyanate group / mercapto group is usually 0.5 to 2.0, preferably 0.95 to 1.05. is there.
  • Step 1 in addition to a polyiso (thio) cyanate compound and a polythiol mixture, a polymerization catalyst such as organic tin such as dimethyltin dichloride, a release agent such as butoxyethyl acid phosphate, an antioxidant, an ultraviolet stabilizer, and coloring prevention You may mix
  • a polymerization composition can be obtained by mixing the above-mentioned various components by a usual method.
  • step 2 the polymerization composition obtained in step 1 is polymerized to obtain an optical member.
  • the optical member is a spectacle lens
  • the polymerization is preferably a cast polymerization method.
  • the spectacle lens can be obtained, for example, by performing polymerization by injecting a polymerization composition into a mold die in which a glass or metal mold and a tape or gasket are combined.
  • the polymerization conditions can be appropriately set according to the polymerization composition.
  • the polymerization initiation temperature is usually 0 to 50 ° C., preferably 20 to 40 ° C. It is preferable to raise the temperature from the polymerization start temperature and then heat to form a cured film. For example, the temperature rise is usually 110 to 130 ° C.
  • the spectacle lens may be released and an annealing process may be performed.
  • the temperature of the annealing treatment is preferably 100 to 150 ° C.
  • optical member An example of the optical member is a spectacle lens.
  • the surface shape of the spectacle lens is not particularly limited, and may be any of a flat surface, a convex surface, a concave surface, and the like.
  • the spectacle lens may be any of a single focus lens, a multifocal lens, a progressive power lens, and the like.
  • a progressive-power lens normally, the near portion region (near portion) and the progressive portion region (intermediate region) are included in the lower region, and the far portion region (distance portion) is the upper portion. Included in the region.
  • the spectacle lens may be a finish spectacle lens or a semi-finish spectacle lens.
  • the thickness and diameter of the spectacle lens are not particularly limited, but the thickness is usually about 1 to 30 mm and the diameter is usually about 50 to 100 mm.
  • the refractive index ne of the spectacle lens is preferably 1.53 or more, more preferably 1.55 or more, more preferably 1.58 or more, still more preferably 1.60 or more, still more preferably 1.67 or more, still more preferably. 1.70 or more, preferably 1.80 or less.
  • Tg glass transition temperature
  • the test resin was observed under a fluorescent lamp in a dark box and judged according to the following criteria.
  • Example 1 (Synthesis of polythiol mixture) 92.5 g (1.000 mol) of epichlorohydrin was added dropwise to a mixed solution of 78.1 g (1.000 mol) of 2-mercaptoethanol and 2.0 g of triethylamine over 1 hour while maintaining the internal temperature at 35 to 40 ° C. Aging was performed at 40 ° C. for 1 hour (step A). An aqueous solution in which 125.0 g (0.520 mol) of sodium sulfide nonahydrate was previously dissolved in 100 g of pure water was added dropwise to this reaction solution over 1 hour while maintaining the internal temperature at 40 to 45 ° C., and further at 45 ° C. for 1 hour. Aging was performed (step B).
  • Step C 303.8 g (3.0 mol) of 36 mass% hydrochloric acid aqueous solution and 190.3 g (2.50 mol) of thiourea were added to the reaction solution, and the mixture was heated and stirred at 110 ° C. for 9 hours (Step C).
  • 400 mL of toluene was added, 600.4 g (4.5 mol) of a 30% by mass aqueous sodium hydroxide solution was gradually added, and hydrolysis was performed at 60 ° C. for 4 hours (Step D).
  • 130 mL of 36 mass% hydrochloric acid aqueous solution was added, and washing was performed at 40 ° C for 1 hour. Subsequently, it was washed twice with 100 mL of water, the organic layer was recovered, and toluene was removed with a rotary evaporator to obtain a target polythiol mixture (Step E).
  • the measured value of the thiol equivalent of the polythiol mixture was 98 g / eq.
  • This polymerized composition was defoamed at 200 Pa for 1 hour, and then filtered through a PTFE (polytetrafluoroethylene, filtration accuracy: 5.0 ⁇ m) filter.
  • the mixture was poured into a lens mold composed of a glass mold having a diameter of 75 mm and ⁇ 4.00 D and a tape.
  • the mold was removed from the electric furnace and released to obtain a spectacle lens.
  • the obtained spectacle lens was further annealed at 120 ° C. for 3 hours.
  • the obtained polymer had a heat resistance (Tg) of 103 ° C.
  • striae and cloudiness were evaluated. The results are summarized in Table 1.
  • Example 2 the amount of sodium sulfide nonahydrate used is 0.515 mol, in Example 3, the amount of sodium sulfide nonahydrate used is 0.510 mol, and in Comparative Example 1, the amount of sodium sulfide nonahydrate used is In 0.500 mol, in Comparative Example 2, the amount of sodium sulfide nonahydrate was changed to 0.490 mol, and polymerization was performed in the same manner as in Example 1 except that polythiol mixtures having different thiol equivalents were used. Prepared and measured heat resistance. Furthermore, striae and cloudiness were evaluated. The results are summarized in Table 1. In addition, the thiol equivalent in a table
  • surface is a measured value.
  • Examples 4-6 Polymerization was carried out in the same manner as in Example 3 except that the type and amount of the polyisocyanate compound and the amount of polythiol were changed as shown in Table 2, and the heat resistance was measured. Furthermore, striae and cloudiness were evaluated. The results are summarized in Table 2. In addition, the thiol equivalent in a table
  • surface is a measured value.
  • Comparative Examples 3-5 Polymerization was performed in the same manner as in Comparative Example 1 except that the type and amount of the polyisocyanate compound and the amount of polythiol were changed as shown in Table 2, and the heat resistance was measured. Furthermore, striae and cloudiness were evaluated. The results are summarized in Table 2. In addition, the thiol equivalent in a table
  • surface is a measured value.
  • Step 1 A step of mixing a mixture 1 of the following compound 1-1, the following compound 1-2 and the following compound 1-3 with a polyiso (thio) cyanate compound to obtain a polymerization composition
  • Step 2 a step of polymerizing the polymerization composition obtained in Step 1 to obtain an optical member
  • It is a manufacturing method of the optical member whose measured value of the thiol equivalent of the mixture 1 of the process 1 is 102 g / eq or less.
  • the Tg of the obtained optical member can be increased, and an optical member having excellent heat resistance can be obtained.
  • Step A 2-Mercaptoethanol and epichlorohydrin are reacted in the presence of an amine catalyst to obtain a compound represented by the formula (1): Obtaining a compound represented by: Step B: By reacting the compound obtained in Step A with sodium sulfide, the formula (2): Obtaining a compound represented by: Step C: reacting the compound obtained in Step B with thiourea in the presence of a mineral acid to obtain an isothiuronium salt; Step D: a step of hydrolyzing the isothiuronium salt obtained in Step C with a basic substance to obtain a mixture of Compound 1-1, Compound 1-2, and Compound 1-3; Step E: washing the mixture obtained in Step D with mineral acid and water and purifying the mixture, It is a manufacturing method of the polythiol mixture which makes the measured value of the thiol equivalent of the mixture obtained at the process E below 102 g / eq.
  • the manufacturing method of one embodiment when it is used for manufacturing an optical member by using a mixture of thiol equivalents in the above range, the Tg of the obtained optical member can be increased, and excellent heat resistance can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

優れた耐熱性を有する光学部材が得られる光学部材の製造方法、及びポリチオール混合物の製造方法の提供。 工程1:化合物1-1、化合物1-2及び化合物1-3の混合物1と、ポリイソ(チオ)シアネート化合物とを混合し重合組成物を得る工程と、 工程2:工程1で得られた重合組成物を重合して光学部材を得る工程と、 を備え、 工程1の混合物1のチオール当量の測定値が102g/eq以下である、光学部材の製造方法。

Description

光学部材の製造方法
 本発明は、光学部材の製造方法、及びポリチオール混合物の製造方法に関する。
 プラスチック製の眼鏡レンズは、ガラス製の眼鏡レンズと比較して、軽量で衝撃耐久性に優れている。現在の眼鏡レンズ市場においては、プラスチック製の眼鏡レンズが主流となっている。
 特許文献1では、チオウレタン系のプラスチックレンズにおける染色性が安定化できるプラスチックレンズの製造方法が記載されている。ここでは、チオール基を含有するチオール化合物とイソシアナート基を含有するイソシアナート化合物を重合させて得られる重合体からプラスチックレンズを製造するプラスチックレンズの製造方法において、チオール基とイソシアナート基とを所定の官能基モル比で用い、かつ、この官能基モル比の変動が所定の範囲内となるようにチオール化合物とイソシアナート化合物とを用いることを特徴とするプラスチックレンズの製造方法が記載されている。
特開2000-47003号公報
 特定のチオール化合物を用いてプラスチックレンズを製造する場合、製造ロットによっては、ガラス転移温度(以下、「Tg」ともいう)が低く、充分な耐熱性が得られないことがあった。
 特許文献1では、プラスチックレンズの染色性の安定化を課題としており、染色性のバラツキは、原料チオール化合物の純度を表すチオール当量により大きな影響を与えると記載しているが、耐熱性に関しては評価されていない。
 本発明の一実施例は、優れた耐熱性を有する光学部材が得られる光学部材の製造方法、及びポリチオール混合物の製造方法を提供することを課題とする。
 本発明者は、重合組成物のモノマーとして、特定のチオール化合物の混合物を用いる場合には、混合物のチオール当量の測定値を所定の範囲にすることで、優れた耐熱性を有する光学部材が得られることを見出した。
 一実施例は、
工程1:下記化合物1-1、下記化合物1-2及び下記化合物1-3の混合物1と、ポリイソ(チオ)シアネート化合物とを混合し重合組成物を得る工程と、
 工程2:工程1で得られた重合組成物を重合して光学部材を得る工程と、
を備え、
 工程1の混合物1のチオール当量の測定値が102g/eq以下である、光学部材の製造方法である。
Figure JPOXMLDOC01-appb-C000007
 一実施例は、
 工程A:2-メルカプトエタノールとエピクロロヒドリンをアミン触媒の存在下に反応させ、式(1):
Figure JPOXMLDOC01-appb-C000008

で表される化合物を得る工程と、
 工程B:工程Aで得られた化合物を硫化ナトリウムと反応させることにより、式(2):
Figure JPOXMLDOC01-appb-C000009

で表される化合物を得る工程と、
 工程C:工程Bで得られた化合物を鉱酸の存在下にチオ尿素と反応させ、イソチウロニウム塩を得る工程と、
 工程D:工程Cで得られたイソチウロニウム塩を塩基性物質で加水分解し、化合物1-1、化合物1-2及び化合物1-3の混合物を得る工程と、
 工程E:工程Dで得られた混合物を鉱酸及び水で洗浄し、混合物を精製する工程と
を備え、
 工程Eで得られる混合物のチオール当量の測定値を102g/eq以下とする、ポリチオール混合物の製造方法である。
 上述した一実施例によれば、優れた耐熱性を有する光学部材が得られる光学部材の製造方法、及びポリチオール混合物の製造方法を提供することができる。
[光学部材の製造方法]
 一実施例の光学部材の製造方法は、
 工程1:化合物1-1、化合物1-2及び化合物1-3の混合物1(以下、「ポリチオール混合物」又は「混合物1」ともいう)と、ポリイソ(チオ)シアネート化合物とを混合し重合組成物を得る工程と、
 工程2:工程1で得られた重合組成物を重合して光学部材を得る工程と、
を備え、
 工程1の混合物1のチオール当量の測定値が102g/eq以下である。
 一実施例の製造方法によれば、上述の範囲のチオール当量の測定値の混合物を用いることで、得られる光学部材のTgを高めることができ、優れた耐熱性を有する光学部材が得られる。
[工程1]
<ポリチオール混合物>
 ポリチオール混合物は、下記化合物1-1、下記化合物1-2及び下記化合物1-3を含む。
Figure JPOXMLDOC01-appb-C000010
 ポリチオール混合物のチオール当量の測定値は、優れた耐熱性を得るため、102g/eq以下、好ましくは更に好ましくは100g/eq以下、より好ましくは99g/eq以下である。
 ポリチオール混合物のチオール当量の測定値は、優れた耐熱性を得るため、好ましくは95g/eq以上、より好ましくは96g/eq以上、更に好ましくは97g/eq以上、更に好ましくは98g/eq以上ある。当該範囲においては、優れた耐熱性に加えて、更には、脈理及び白濁を抑制する効果も奏する。
 本明細書において、チオール当量とは、ポリチオール混合物中に含まれるメルカプト基の単位数量(eq)当たりの質量(g)を意味する。
 チオール当量の測定値の測定方法は、実施例に記載の方法による。
 ポリチオール混合物は、特に限定されないが、チオール当量の測定値の調整のため、好ましくは、以下の工程A~工程Eを備える、製造方法により得られる。
〔工程A〕
 工程Aでは、2-メルカプトエタノールとエピクロロヒドリンをアミン触媒の存在下に反応させ、式(1):
Figure JPOXMLDOC01-appb-C000011

で表される化合物を得る。
 2-メルカプトエタノールとエピクロロヒドリンとのモル比は、好ましくは60/40~40/60、より好ましくは60/40~50/50、更に好ましくは55/45~50/50である。
 アミン触媒としては、例えば、トリエチルアミン、トリメチルアミン、トリプロピルアミンなどが挙げられる。
 アミン触媒の配合量は、2-メルカプトエタノールとエピクロロヒドリンの合計100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~7質量部、更に好ましくは0.5~5質量部である。
 工程Aにおいて、反応温度は、好ましくは0~60℃、より好ましくは10~55℃、更に好ましくは20~50℃である。
 工程Aにおいて反応時間は、例えば、30分~2時間である。
〔工程B〕
 工程Bでは、工程Aで得られた化合物を硫化ナトリウムと反応させることにより、式(2):
Figure JPOXMLDOC01-appb-C000012

で表される化合物を得る。
 硫化ナトリウムの使用量は、工程Aで得られた化合物100モル%に対して、チオール当量の測定値を調整し、優れた耐熱性を得るため、好ましくは50.0モル%超、より好ましくは51.0モル%以上、より好ましくは52.0モル%以上である。
 硫化ナトリウムの使用量は、工程Aで得られた化合物100モル%に対して、チオール当量の測定値を調整し、優れた耐熱性を得るため、好ましくは55.0モル%以下、より好ましくは54.0モル%以下、更に好ましくは53.0モル%以下、更に好ましくは52.0モル%以下、更に好ましくは51.5モル%以下である。
 硫化ナトリウムは水溶液として添加されることが好ましく、その場合、硫化ナトリウム水溶液の濃度は、好ましくは40~80質量%、より好ましくは45~70質量%、更に好ましくは50~60質量%である。
 工程Bにおいて、反応温度は、好ましくは0~60℃、より好ましくは10~55℃、更に好ましくは20~50℃である。
 工程Bにおいて反応時間は、例えば、30分~2時間程度である。
〔工程C〕
 工程Cでは、工程Bで得られた化合物を鉱酸の存在下にチオ尿素と反応させ、イソチウロニウム塩を得る。
 鉱酸としては、例えば、塩酸、硝酸、硫酸等が挙げられる。
 鉱酸は水溶液として添加されることが好ましく、その場合、鉱酸水溶液の濃度は、好ましくは10~50質量%、より好ましくは20~45質量%、更に好ましくは30~40質量%である。
 鉱酸の配合量は、工程Aの2-メルカプトエタノールとエピクロロヒドリンの配合量の合計100モル%に対して、好ましくは100~300モル%、より好ましくは110~200モル%、更に好ましくは130~180モル%である。
 工程Cにおいて、反応温度は、好ましくは80~130℃、より好ましくは90~120℃、更に好ましくは100~115℃である。
 工程Cにおいて反応時間は、例えば、5~15時間程度である。
〔工程D〕
 工程Dでは、工程Cで得られたイソチウロニウム塩を塩基性物質で加水分解し、化合物1-1、化合物1-2及び化合物1-3の混合物を得る。
 塩基性物質は、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられ、好ましくは水酸化ナトリウムである。
 塩基性物質は水溶液として添加されることが好ましく、その場合、塩基性物質水溶液の濃度は、好ましくは10~50質量%、より好ましくは20~45質量%、更に好ましくは25~45質量%である。
 工程Dにおいて、反応温度は、好ましくは40~100℃、より好ましくは50~90℃、更に好ましくは55~80℃である。
 工程Dにおいて反応時間は、例えば、1~8時間程度である。
〔工程E〕
 工程Eでは、工程Dで得られた混合物を鉱酸及び水で洗浄し、混合物を精製する。
 鉱酸の好適例は、工程Cで例示したものと同様である。
 水での洗浄は常法により行われる。なお、必要に応じて、洗浄又は先の工程で使用した有機溶媒を除去してもよい。
 工程Eで得られた混合物は、好ましくは工程1の混合物1として用いられる。
 以上のとおり、上記の製造方法において、工程Aで得られた化合物に対する硫化ナトリウムの使用量の調整、並びに技術常識を考慮して諸条件の調整することで、得られるチオール混合物のチオール当量の測定値を調整できる。
<ポリイソ(チオ)シアネート化合物>
 ポリイソ(チオ)シアネート化合物とは、ポリイソシアネート化合物及びポリイソチオシアネート化合物から選ばれる少なくとも1種を意味する。ポリイソ(チオ)シアネート化合物は、好ましくはポリイソシアネート化合物である。
 ポリイソ(チオ)シアネート化合物としては、例えば、芳香環を1個以上有するポリイソ(チオ)シアネート化合物、脂環式ポリイソ(チオ)シアネート化合物、直鎖又は分岐鎖の脂肪族ポリイソ(チオ)シアネート化合物が挙げられる。
 芳香環を1個以上有するポリイソ(チオ)シアネート化合物としては、例えば、ジイソシアナトベンゼン、2,4-ジイソシアナトトルエン、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、ビフェニルジイソシアネート、トルイジンジイソシアネート、4,4’-メチレンビス(フェニルイソシアネート)、4,4’-メチレンビス(2-メチルフェニルイソシアネート)、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアナトフェニル)エチレン、キシリレンジイソシアネート、ビス(イソシアナトエチル)ベンゼン、ビス(イソシアナトプロピル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトブチル)ベンゼン、ビス(イソシアナトメチル)ナフタリン、ビス(イソシアナトメチルフェニル)エーテル、2-イソシアナトフェニル-4-イソシアナトフェニルスルフィド、ビス(4-イソシアナトフェニル)スルフィド、ビス(4-イソシアナトメチルフェニル)スルフィド、ビス(4-イソシアナトフェニル)ジスルフィド、ビス(2-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(3-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(3-メチル-6-イソシアナトフェニル)ジスルフィド、ビス(4-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(3-メトキシ-4-イソシアナトフェニル)ジスルフィド、ビス(4-メトキシ-3-イソシアナトフェニル)ジスルフィド、ジイソチオシアナトベンゼン、2,4-ジイソチオシアナトトルエン、2,5-ジイソチオシアナト-m-キシレン、4,4’-メチレンビス(フェニルイソチオシアネート)、4,4’-メチレンビス(2-メチルフェニルイソチオシアネート)、4,4’-メチレンビス(3-メチルフェニルイソチオシアネート)、4,4’-ジイソチオシアナトベンゾフェノン、4,4’-ジイソチオシアナト-3,3’-ジメチルベンゾフェノン、ビス(4-イソチオシアナトフェニル)エーテル等が挙げられる。
 脂環式ポリイソ(チオ)シアネート化合物としては、ジイソシアナトシクロヘキサン、ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトシクロヘキシル)メタン、ビス(イソシアナトメチル)ビシクロヘプタン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-2-メチル-1,3-ジチオラン等が挙げられる。
 直鎖又は分岐の脂肪族ポリイソ(チオ)シアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、2,2-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、リジンジイソシアナトメチルエステル、リジントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトプロピル)スルフィド、ビス(イソシアナトヘキシル)スルフィド、ビス(イソシアナトメチル)スルホン、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトプロピル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトメチルチオ)エタン、ビス(イソシアナトエチルチオ)エタン、1,5-ジイソシアネート-2-イソシアナトメチル-3-ペンタン、1,2,3-トリス(イソシアナトメチルチオ)プロパン、1,2,3-トリス(イソシアナトエチルチオ)プロパン、3,5-ジチア-1,2,6,7-ヘプタンテトライソシアネート、2,6-ジイソシアナトメチル-3,5-ジチア-1,7-ヘプタンジイソシネート、2,5-ジイソシアネートメチルチオフェン、4-イソシアナトエチルチオ-2,6-ジチア-1,8-オクタンジイソシアネート、1,2-ジイソチオシアナトエタン、1,6-ジイソチオシアナトヘキサンが挙げられる。
 ポリイソ(チオ)シアネート化合物は、1種又は2種以上を使用してもよい。
 ポリイソ(チオ)シアネート化合物は、耐熱性を向上させるため、好ましくは、キシリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトシクロヘキシル)メタン、及びビス(イソシアナトメチル)ビシクロヘプタンから選ばれる少なくとも1種である。
 ポリイソ(チオ)シアネート化合物とポリチオール混合物との配合割合は、イソ(チオ)シアネート基/メルカプト基のモル比が、通常0.5~2.0であり、好ましくは0.95~1.05である。
 工程1においては、ポリイソ(チオ)シアネート化合物とポリチオール混合物の他、ジメチル錫ジクロライドなどの有機錫等の重合触媒、ブトキシエチルアシッドホスフェート等の離型剤、抗酸化剤、紫外線安定化剤、着色防止剤、ブルーイング剤、蛍光増白剤等の各種添加剤を配合してもよい。
 上記各種成分を通常の方法により混合することで、重合組成物が得られる。
[工程2]
 工程2では、工程1により得られた、重合組成物を重合して光学部材を得る。
 光学部材が眼鏡レンズである場合、重合は、注型重合法であることが好ましい。眼鏡レンズは、例えば、重合組成物を、ガラス又は金属製のモールドと、テープ又はガスケットとを組み合わせたモールド型に注入して重合を行うことで得られる。
 重合条件は、重合組成物に応じて、適宜設定することができる。
 重合開始温度は、通常0~50℃、好ましくは20~40℃である。重合開始温度から昇温し、その後、加熱して硬化形成することが好ましい。例えば、昇温温度は、通常110~130℃である。
 重合終了後、眼鏡レンズを離型して、アニール処理を行ってもよい。アニール処理の温度は、好ましくは100~150℃である。
[光学部材]
 光学部材としては、眼鏡レンズが挙げられる。
 眼鏡レンズの表面形状は特に限定されず、平面、凸面、凹面等のいずれであってもよい。
 眼鏡レンズは、単焦点レンズ、多焦点レンズ、累進屈折力レンズ等のいずれであってもよい。例えば、一例として、累進屈折力レンズについては、通常、近用部領域(近用部)及び累進部領域(中間領域)が、下方領域に含まれ、遠用部領域(遠用部)が上方領域に含まれる。
 眼鏡レンズは、フィニッシュ型眼鏡レンズであってもセミフィニッシュ型眼鏡レンズであってもよい。
 眼鏡レンズの厚さ及び直径は、特に限定されるものではないが、厚さは通常1~30mm程度、直径は通常50~100mm程度である。
 眼鏡レンズの屈折率neは、好ましくは1.53以上、より好ましくは1.55以上、より好ましくは1.58以上、更に好ましくは1.60以上、更に好ましくは1.67以上、更に好ましくは1.70以上であり、好ましくは1.80以下である。
 本発明は、上述の各成分の例、含有量、各種物性については、発明の詳細な説明に例示又は好ましい範囲として記載された事項を任意に組み合わせてもよい。
 また、実施例に記載した組成に対し、発明の詳細な説明に記載した組成に調整を行えば、クレームした組成範囲全域にわたって実施例と同様に発明を実施することができる。
 以下、具体的な実施例を示すが、本請求の範囲は、以下の実施例によって限定されるものではない。
 実施例において、各種物性の測定及び評価は以下の方法で行った。
[耐熱性]
 実施例、比較例で得られた眼鏡レンズのガラス転移温度(Tg)を、熱器械分析装置「TMA8310」株式会社リガク製を用いてペネトレーション法により測定した。測定時の昇温速度は10K/分とし、ペネトレーション法用圧子として直径0.5mmの圧子を用いた。
[脈理]
 外観検査装置「オプティカルモデュレックスSX―UI251HQ」ウシオ電機株式会社製を用いて、投影検査を行った。光源の高圧UVランプ「USH―102D」を用いて1mの距離に白色のスクリーンを設置し、被験樹脂を光源とスクリーン間に挿入し、スクリーン上の投影像を観察し下記の基準により判定を行った。
  A:投影像に線状の不整がまったくないもの。
  B:投影像に線状のごく薄い不整があるもの。
  C:投影像に線状の薄い不整があるもの。
  D:投影像に線状の濃い不整があるもの。
  E:投影像に線状の著しい不整があるもの。
[白濁]
 暗箱内で蛍光燈下に被験樹脂を観察し、下記の基準により判定を行った。
  A:樹脂に白濁がまったくないもの。
  B:樹脂にごく薄い白濁があるもの。
  C:樹脂に薄い白濁があるもの。
  D:樹脂に濃い白濁があるもの。
  E:樹脂に著しい白濁があるもの。
[チオール当量の測定値]
 電位差自動滴定装置「AT-610」(京都電子工業株式会社製)を用いて測定を行った。
 ポリチオール混合物0.1gを秤量し、クロロホルム20mLとイソプロピルアルコール10mLの混合溶媒に溶解し、0.05mol/Lヨウ素溶液にて滴定を行い、下記式によってチオール当量(g/eq)を求める。
 チオール当量(g/eq)=[〔サンプル量(g)〕×〔ヨウ素液ファクター〕×100×100]/〔滴定量〕
実施例1
(ポリチオール混合物の合成)
 2-メルカプトエタノール78.1g(1.000mol)とトリエチルアミン2.0gの混合液にエピクロロヒドリン92.5g(1.000mol)を内温35~40℃に保ちながら、1時間かけて滴下し、40℃で1時間熟成を行った(工程A)。この反応液にあらかじめ硫化ナトリウム9水和物125.0g(0.520mol)を純水100gに溶解した水溶液を内温40~45℃に保ちながら1時間かけて滴下し、更に45℃で1時間熟成を行った(工程B)。
 次に、上記反応液に36質量%塩酸水溶液303.8g(3.0mol)及びチオ尿素190.3g(2.50mol)を加えて110℃で9時間加熱撹拌した(工程C)。
 室温まで冷却後、トルエン400mLを加え、30質量%水酸化ナトリウム水溶液600.4g(4.5mol)を徐々に加え、60℃で4時間加水分解を行った(工程D)。
 加水分解終了後、36質量%塩酸水溶液130mLを加え、40℃で1時間洗浄を行った。
 次いで水100mLで2回洗浄し、有機層を回収し、ロータリーエバポレーターでトルエンを除去し、目的とするポリチオール混合物を得た(工程E)。
(眼鏡レンズの作製)
 キシリレンジイソシアネート(以下「XDI」ともいう)50.6質量部、硬化触媒としてジメチル錫ジクロライド0.01質量部、離型剤として酸性リン酸エステル「JP―506h」(城北化学工業株式会社製)0.20質量部、紫外線吸収剤「シーソーブ701」(シプロ化成株式会社製)0.5質量部を混合し、溶解させた。
 さらに、上記のポリチオール混合物49.4質量部を添加し、混合し、重合組成物とした。
 ポリチオール混合物のチオール当量の測定値は98g/eqであった。
 この重合組成物を200Paにて1時間脱泡を行った後、PTFE(ポリテトラフルオロエチレン、濾過精度5.0μm)フィルターにて濾過を行った。次いで直径75mm、-4.00Dのガラスモールドとテープからなるレンズ用モールド型へ注入した。重合終了後、電気炉からモールド型を取り出し、離型して眼鏡レンズを得た。得られた眼鏡レンズを更に120℃で3時間アニールを行った。
 得られたポリマーの耐熱性(Tg)は103℃であった。更に脈理、白濁の評価を行った。結果を表1にまとめた。
実施例2~3、比較例1~2
 実施例2では硫化ナトリウム9水和物の使用量を0.515mol、実施例3では硫化ナトリウム9水和物の使用量を0.510mol、比較例1では硫化ナトリウム9水和物の使用量を0.500mol、比較例2では硫化ナトリウム9水和物の使用量を0.490molにそれぞれ変更し、チオール当量の異なるポリチオール混合物を用いた以外は実施例1と同様に重合を行い、眼鏡レンズを作製し、耐熱性を測定した。更に脈理、白濁の評価を行った。結果を表1にまとめた。なお表中のチオール当量は測定値である。
実施例4~6
 ポリイソシアネート化合物の種類及び量、ポリチオールの量を表2に示すように変更した以外は、実施例3と同様に重合を行い、耐熱性を測定した。更に脈理、白濁の評価を行った。結果を表2にまとめた。なお表中のチオール当量は測定値である。
比較例3~5
 ポリイソシアネート化合物の種類及び量、ポリチオールの量を表2に示すように変更した以外は、比較例1と同様に重合を行い、耐熱性を測定した。更に脈理、白濁の評価を行った。結果を表2にまとめた。なお表中のチオール当量は測定値である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表中の各種材料は以下のとおりである。
XDI:キシリレンジイソシアネート
H6XDI:ビス(イソシアナトメチル)シクロヘキサン
H12MDI:ビス(イソシアナトシクロヘキシル)メタン
NBDI:ビス(イソシアナトメチル)ビシクロヘプタン
 最後に、本発明の実施の形態を総括する。
 一実施の形態は、
 工程1:下記化合物1-1、下記化合物1-2及び下記化合物1-3の混合物1と、ポリイソ(チオ)シアネート化合物とを混合し重合組成物を得る工程と、
 工程2:工程1で得られた重合組成物を重合して光学部材を得る工程と、
を備え、
 工程1の混合物1のチオール当量の測定値が102g/eq以下である、光学部材の製造方法である。
Figure JPOXMLDOC01-appb-C000015
 一実施の形態の製造方法によれば、上述の範囲のチオール当量の混合物を用いることで、得られる光学部材のTgを高めることができ、優れた耐熱性を有する光学部材が得られる。
 一実施の形態は、
 工程A:2-メルカプトエタノールとエピクロロヒドリンをアミン触媒の存在下に反応させ、式(1):
Figure JPOXMLDOC01-appb-C000016

で表される化合物を得る工程と、
 工程B:工程Aで得られた化合物を硫化ナトリウムと反応させることにより、式(2):
Figure JPOXMLDOC01-appb-C000017

で表される化合物を得る工程と、
 工程C:工程Bで得られた化合物を鉱酸の存在下にチオ尿素と反応させ、イソチウロニウム塩を得る工程と、
 工程D:工程Cで得られたイソチウロニウム塩を塩基性物質で加水分解し、化合物1-1、化合物1-2及び化合物1-3の混合物を得る工程と、
 工程E:工程Dで得られた混合物を鉱酸及び水で洗浄し、混合物を精製する工程と
を備え、
 工程Eで得られる混合物のチオール当量の測定値を102g/eq以下とする、ポリチオール混合物の製造方法である。
 一実施の形態の製造方法によれば、上述の範囲のチオール当量の混合物とすることで光学部材の製造に用いた場合に、得られる光学部材のTgを高めることができ、優れた耐熱性を有する光学部材が得られる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。

Claims (7)

  1.  工程1:下記化合物1-1、下記化合物1-2及び下記化合物1-3の混合物1と、ポリイソ(チオ)シアネート化合物とを混合し重合組成物を得る工程と、
     工程2:前記工程1で得られた重合組成物を重合して光学部材を得る工程と、
    を備え、
     前記工程1の混合物1のチオール当量の測定値が102g/eq以下である、光学部材の製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ポリイソ(チオ)シアネート化合物が、キシリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトシクロヘキシル)メタン、及びビス(イソシアナトメチル)ビシクロヘプタンから選ばれる少なくとも1種である、請求項1に記載の光学部材の製造方法。
  3.  工程A:2-メルカプトエタノールとエピクロロヒドリンをアミン触媒の存在下に反応させ、式(1):
    Figure JPOXMLDOC01-appb-C000002

    で表される化合物を得る工程と、
     工程B:前記工程Aで得られた化合物を硫化ナトリウムと反応させることにより、式(2):
    Figure JPOXMLDOC01-appb-C000003

    で表される化合物を得る工程と、
     工程C:前記工程Bで得られた化合物を鉱酸の存在下にチオ尿素と反応させ、イソチウロニウム塩を得る工程と、
     工程D:前記工程Cで得られたイソチウロニウム塩を塩基性物質で加水分解し、前記化合物1-1、前記化合物1-2及び前記化合物1-3の混合物を得る工程と、
     工程E:前記工程Dで得られた混合物を鉱酸及び水で洗浄し、混合物を精製する工程と
    を更に備え、
     前記工程Eで得られた混合物を、前記工程1の混合物1として用いる、請求項1又は2に記載の光学部材の製造方法。
  4.  前記工程Bにおいて、前記工程Aで得られた化合物100モル%に対して前記硫化ナトリウムを50.0モル%超用いる、請求項3に記載の光学部材の製造方法。
  5.  前記光学部材が、眼鏡レンズである、請求項1~4のいずれかに記載の光学部材の製造方法。
  6.  工程A:2-メルカプトエタノールとエピクロロヒドリンをアミン触媒の存在下に反応させ、式(1):
    Figure JPOXMLDOC01-appb-C000004

    で表される化合物を得る工程と、
     工程B:前記工程Aで得られた化合物を硫化ナトリウムと反応させることにより式(2):
    Figure JPOXMLDOC01-appb-C000005

    で表される化合物を得る工程と、
     工程C:前記工程Bで得られた化合物を鉱酸の存在下にチオ尿素と反応させ、イソチウロニウム塩を得る工程と、
     工程D:前記工程Cで得られたイソチウロニウム塩を塩基性物質で加水分解し、下記化合物1-1、下記化合物1-2及び下記化合物1-3の混合物を得る工程と、
     工程E:前記工程Dで得られた混合物を鉱酸及び水で洗浄し、混合物を精製する工程と
    を備え、
     前記工程Eで得られる混合物のチオール当量の測定値を102g/eq以下とする、ポリチオール混合物の製造方法。
    Figure JPOXMLDOC01-appb-C000006
  7.  前記工程Bにおいて、前記工程Aで得られた化合物100モル%に対して前記硫化ナトリウムを50.0モル%超用いる、請求項6に記載のポリチオール混合物の製造方法。
PCT/JP2016/076848 2016-04-06 2016-09-12 光学部材の製造方法 WO2017175407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016568453A JPWO2017175407A1 (ja) 2016-04-06 2016-09-12 光学部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076905 2016-04-06
JP2016-076905 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175407A1 true WO2017175407A1 (ja) 2017-10-12

Family

ID=60001059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076848 WO2017175407A1 (ja) 2016-04-06 2016-09-12 光学部材の製造方法

Country Status (2)

Country Link
JP (1) JPWO2017175407A1 (ja)
WO (1) WO2017175407A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189787A1 (ja) * 2018-03-30 2021-02-12 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
CN112430326A (zh) * 2020-11-27 2021-03-02 山东益丰生化环保股份有限公司 一种聚硫醇化合物、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252207A (ja) * 1994-01-26 1995-10-03 Mitsui Toatsu Chem Inc 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JPH0952931A (ja) * 1995-08-14 1997-02-25 Mitsui Toatsu Chem Inc 新規なポリチオールを用いた含硫ウレタン系プラスチックレンズ
JPH09194558A (ja) * 1996-01-23 1997-07-29 Mitsui Toatsu Chem Inc 含硫ウレタン系プラスチックレンズ
WO2014027428A1 (ja) * 2012-08-14 2014-02-20 三井化学株式会社 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
WO2014203812A1 (ja) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 光学材料用組成物
JP2015520765A (ja) * 2012-05-23 2015-07-23 ケイオーシーソリューション カンパニー リミテッドKoc Solution Co., Ltd. 新規のポリチオール化合物の製造方法及びこれを含む光学材料用重合性組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252207A (ja) * 1994-01-26 1995-10-03 Mitsui Toatsu Chem Inc 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JPH0952931A (ja) * 1995-08-14 1997-02-25 Mitsui Toatsu Chem Inc 新規なポリチオールを用いた含硫ウレタン系プラスチックレンズ
JPH09194558A (ja) * 1996-01-23 1997-07-29 Mitsui Toatsu Chem Inc 含硫ウレタン系プラスチックレンズ
JP2015520765A (ja) * 2012-05-23 2015-07-23 ケイオーシーソリューション カンパニー リミテッドKoc Solution Co., Ltd. 新規のポリチオール化合物の製造方法及びこれを含む光学材料用重合性組成物
WO2014027428A1 (ja) * 2012-08-14 2014-02-20 三井化学株式会社 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
WO2014203812A1 (ja) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 光学材料用組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189787A1 (ja) * 2018-03-30 2021-02-12 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
JP7168656B2 (ja) 2018-03-30 2022-11-09 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、組成物、光学材料用重合性組成物、成形体、光学材料及びレンズ
CN112430326A (zh) * 2020-11-27 2021-03-02 山东益丰生化环保股份有限公司 一种聚硫醇化合物、其制备方法及应用

Also Published As

Publication number Publication date
JPWO2017175407A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6077146B2 (ja) ウレタン系光学材料用樹脂の製造方法、樹脂組成物、及び製造された光学材料
JP4928543B2 (ja) 光学材料用ポリチオール化合物の製造方法
KR20140141723A (ko) 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
EP3604279B1 (en) Method for producing polythiol compound, polymerizable composition and use thereof
JP2015506947A (ja) 光学材料用ポリチオール化合物の製造方法及びそれを含む光学材料用組成物
EP3514187B1 (en) Polythiol composition for a plastic optical lens
KR20140061433A (ko) 우레탄계 광학 부재 및 그 제조방법
WO2019066038A1 (ja) 光学部材用樹脂の製造方法、光学部材用樹脂、眼鏡レンズ及び眼鏡
US11021563B2 (en) Method for producing resin for optical component, resin for optical component, spectacle lens, and spectacles
WO2017175407A1 (ja) 光学部材の製造方法
US11834549B2 (en) Method for producing polymerizable composition
JP6851762B2 (ja) 光学材料用ポリチオール化合物の製造方法
KR20210132692A (ko) 광학 부재용 중합성 조성물, 광학 부재, 및 안경 렌즈
JP7208257B2 (ja) 貯蔵安定性が改善されたポリチオールの調製方法
JP7262198B2 (ja) 光学部材用重合性組成物
JP5319036B1 (ja) ポリチオール化合物の製造方法
JP2019171831A (ja) 光学部材の製造方法
KR102537660B1 (ko) 광학 부재용 중합성 조성물
JP2018058773A (ja) 光学材料用ポリチオール化合物の製造方法
JP2018058922A (ja) 光学材料の製造方法
JP2018058774A (ja) 光学材料用ポリチオール化合物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897959

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897959

Country of ref document: EP

Kind code of ref document: A1