WO2017173694A1 - 人体实际距离测量及眼镜架的定制方法 - Google Patents

人体实际距离测量及眼镜架的定制方法 Download PDF

Info

Publication number
WO2017173694A1
WO2017173694A1 PCT/CN2016/081194 CN2016081194W WO2017173694A1 WO 2017173694 A1 WO2017173694 A1 WO 2017173694A1 CN 2016081194 W CN2016081194 W CN 2016081194W WO 2017173694 A1 WO2017173694 A1 WO 2017173694A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye
actual
frame
maximum
Prior art date
Application number
PCT/CN2016/081194
Other languages
English (en)
French (fr)
Inventor
乐美华
Original Assignee
广州小亮点科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州小亮点科技有限公司 filed Critical 广州小亮点科技有限公司
Priority to JP2018517469A priority Critical patent/JP2018521363A/ja
Priority to US15/735,223 priority patent/US10353222B2/en
Priority to CA3020325A priority patent/CA3020325C/en
Publication of WO2017173694A1 publication Critical patent/WO2017173694A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/111Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring interpupillary distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles
    • G02C13/005Measuring geometric parameters required to locate ophtalmic lenses in spectacles frames
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor

Definitions

  • the invention relates to the technical field of ranging, in particular to a method for measuring an actual distance of a human body based on a cornea, and a customization of a spectacle frame according to the actual distance measuring method of the human body.
  • the glasses are mainly composed of lenses and frames.
  • Spectacle frames also need to be customized, depending on the face structure, such as the interpupillary distance, the height and width of the bridge of the nose, and the distance from the tip of the cornea to the plane of the auricle.
  • the existing spectacle frames are mass-produced by the factory according to common parameters, and can not be customized.
  • the customized scheme must be the optician to the optical shop or the optician center to complete the selection and manual adjustment of the spectacle frame size according to their own feelings. Mirrors spend a lot of time, and manual manual measurements sometimes cause parametric errors, and the frame of the training is uncomfortable with the final configuration of the glasses.
  • the optician it is necessary for the optician to make an eyeglass frame suitable for the anatomical data of the head and face according to the parameters of the head and face, such as the anatomical shape of the bridge of the nose and the distance from the tip of the cornea to the plane of the auricle. It can improve the stability of the eyeglass frame during wearing to improve the experience of children's myopia control lens, progressive lens, etc., and can also greatly improve the efficiency and wearing comfort of the eyeglass fitting.
  • an object of the present invention is to provide a method for measuring an actual distance between two points of a human body based on an eye corneal image, which is a method for measuring a human body parameter in an infield, which passes through the cornea of the eye (applies to the eye)
  • the actual measurement of the black part of the eye can measure the actual distance between any two points of the human body according to the horizontal maximum length of the acquired cornea image, which brings convenience for the customization work.
  • a method for measuring an actual distance of a human body based on an image of a cornea comprising the following steps:
  • Step 1 Obtain a frontal photographed image with a black part of the eye or a front frame of a frame with a black part of the eye from the video;
  • Step 2 Detecting and locating the front camera image or one of the black portions of a front frame Minute
  • Step 3 determining a lateral maximum length L p of one of the black portions of the eye
  • Step 4 to determine the actual geometry of the linear image camera or a linear picture by the scaling factor ⁇ maximum transverse length L p;
  • Step 5 Measure the actual image distance of any two points in the front camera image or a front frame of the frame, and multiply the actual image distance by the proportional coefficient ⁇ to obtain the actual distance between the corresponding two points of the human body.
  • the step 3 includes the following steps:
  • Step 31 placing one of the black portions of the eye into a first quadrant of an XY coordinate system
  • Step 32 Select one of the black parts of the eye to obtain a positive integer set I(x, y) of the image I of the black part of the eye; wherein the abscissa x and the ordinate y are both positive integers, and 0 ⁇ x ⁇ x 1 , 0 ⁇ y ⁇ y 1, x 1 and y 1, respectively for the black eye part image of the maximum abscissa and ordinate maximum;
  • Step 34 Acquire all positive integers INT(y') satisfying the value of the ordinate y', and calculate a maximum value and a minimum value of the abscissa x' corresponding to each positive integer INT(y'), and the abscissa x After the maximum and minimum values are subtracted, the maximum difference of the abscissa x' corresponding to each positive integer INT(y') is obtained, and the maximum difference of the abscissa x' corresponding to all positive integers INT(y') is taken.
  • the maximum value in the value is taken as the lateral maximum length L p of the image of the black part of the eye, that is:
  • x max (INT i (y')) and x min (INT i (y')) are the maximum and minimum values in the abscissa x' corresponding to the i-th positive integer INT(y'), respectively; To satisfy the number of positive integers INT(y') of the ordinate y' value, 1 ⁇ i ⁇ n.
  • the method for determining the proportional coefficient ⁇ in the step 4 is:
  • L r is the actual measured value of the lateral maximum length of the actual eye black portion of the human body corresponding to one of the eye black portions.
  • Another object of the present invention is to apply to a custom eye based on the above-described measurement method of the in-situ human body parameter.
  • the frame can realize the real-time design and manufacture of the spectacle frame by the optician, or directly send the front and side images of the face to the optical shop or the optician center to complete the design of the spectacle frame, saving the time of the optician and accurately measuring the data.
  • the glasses frame is perfect for you and comfortable to wear.
  • a method of customizing a spectacle frame comprising the steps of:
  • Step 10 performing photo shooting or video shooting on the face of the optician through a mobile device or a computer, obtaining a front image and a side image of the photographed photograph, or a frame image with a front image and a side image in the photographed video. Another frame of picture;
  • Step 20 detecting and locating an eye in the frontal image
  • Step 30 determining a lateral maximum length L p of the black portion of the eye in the front image
  • Step 40 ⁇ determining the actual linear geometry proportional coefficient and front linear image by the maximum transverse length L p;
  • Step 50 measuring the interpupillary distance L 1 , the bridge width L 2 , and the bridge height H in the front image, measuring the distance L 3 from the tip of the cornea to the top of the ear in the side image, and measuring the distance L 1 and the width of the bridge of the nose L 2
  • the distance L 3 from the tip of the cornea to the top of the ear is multiplied by the proportional coefficient ⁇ to obtain the actual interpupillary distance L 1 ', the actual bridge width L 2 ', the actual distance from the tip of the cornea to the top of the ear L 3 ' and the actual bridge height H';
  • Step 60 Send the actual distance L 1 ' of the optician, the actual bridge width L 2 ', the actual distance L 3 ' from the tip of the cornea to the top of the ear, and the actual nose height H' to the mobile device or computer for 3D modeling.
  • the results of the 3D modeling are sent to a data center or 3D printer.
  • the step 30 includes the following steps:
  • Step 301 Place the front image into a first quadrant of an XY coordinate system
  • Step 302 Select one of the eye images in the front image to obtain a positive integer set I(x, y) of the eye image I; wherein the abscissa x and the ordinate y are both positive integers, and 0 ⁇ x ⁇ x 1 , 0 ⁇ y ⁇ y 1 , x 1 and y 1 are the maximum abscissa and the maximum ordinate of the front image, respectively;
  • Step 304 Acquire all positive integers INT(y') satisfying the value of the ordinate y', and calculate a maximum value and a minimum value of the abscissa x' corresponding to each positive integer INT(y'), and the abscissa x After the maximum and minimum values are subtracted, the maximum difference of the abscissa x' corresponding to each positive integer INT(y') is obtained, and the maximum difference of the abscissa x' corresponding to all positive integers INT(y') is taken.
  • the maximum value in the value is taken as the lateral maximum length L p of the dark part of the eye, ie:
  • x max (INT i (y')) and x min (INT i (y')) are the maximum and minimum values in the abscissa x' corresponding to the i-th positive integer INT(y'), respectively; To satisfy the number of positive integers INT(y') of the ordinate y' value, 1 ⁇ i ⁇ n.
  • the method for determining the proportional coefficient ⁇ in the step 40 is:
  • L r is the actual measured value of the lateral maximum length of the black portion of any one of the glasses.
  • the step 50 is: the mobile device or the computer performs 3D modeling according to the four spectacle frame basic data, and sends the result of the 3D modeling to a data center or a 3D printer to obtain a customized spectacle frame.
  • the step 50 is: the mobile device or the computer combines the basic data of the four spectacle frames and the appearance parameters of the spectacle frame to form a spectacle frame model, and then the spectacle frame model is matched with the front image and the side image respectively, and the glasses are matched.
  • the frame is respectively worn in the front image and the side image, and the virtual reality frame for generating the movement of the human head is generated by the image conversion tool; or the frame model of the frame is respectively combined with one frame of the front image and another frame with the side image Matching, and the spectacle frame is respectively worn in the front image and the side image, the virtual reality spectacle frame of the human head movement is generated by the image conversion tool, and the customized spectacle frame is obtained according to the virtual reality spectacle frame.
  • the spectacle frame appearance parameters include the color and style of the spectacle frame.
  • the invention has the beneficial effects of:
  • the lateral maximum length of the black part of the eye is measured, and then the scale factor of the actual size and the image size is obtained, so that the non-field measurement can be performed on any two points of the human body, and the data calculation is accurate and widely used;
  • the optician can perform 3D modeling on the mobile device or computer by taking the actual interpupillary distance L 1 ', the actual bridge width L 2 ', the actual distance from the tip of the cornea to the top of the ear L 3 ' and the actual bridge height H'.
  • the production of the spectacle frame by the 3D printer, or the above data is sent to the data center, and the design of the spectacle frame or the optician center of the data center docking data frame saves the optician a large amount of time.
  • FIG. 1 is a flow chart of a method for measuring an actual distance of a human body based on an eye cornea image according to the present invention
  • FIG. 2 is a flow chart of a method of customizing a spectacle frame of the present invention.
  • a method for measuring a human body actual distance based on an eye cornea image which is a measurement of an in-vivo human body parameter, as shown in FIG. 1 , which includes the following steps:
  • Step 1 Obtain a photographed image with a black part of the eye or intercept a frame with a black part of the eye from the video; the angle of the captured image or video is unlimited, as long as it is guaranteed to be in the captured image or in a certain frame of the video.
  • the dark part of the eye here the image of the dark part of the eye can be approximated as the cornea image.
  • it is only necessary to obtain an image or a picture with a black part in the photographed image or video but if a photographing angle problem is present in a frame image taken in the photographed image or video, If there are two black parts, the larger one is selected, and the selection process is completed by a computer or mobile device.
  • the frame image captured in the photographed image or the video is preferably front view, that is, the diameters of the two eye portions are equal in size, and at the same time, because there are multiple frames in the video (at least 100 pictures in the video of about 5 seconds)
  • a plurality of angle pictures of the human body including the front view picture may be included. Therefore, as another preferred solution, the human body image acquisition may be performed by using a video method.
  • Step 2 detecting and locating the photographed image or an eye part of a frame of the image
  • This step can be done manually or automatically by computer.
  • the computer automatically detects and locates an image (here specifically refers to a certain image in a captured image or a video).
  • an image here specifically refers to a certain image in a captured image or a video.
  • the method and software of the eye in the face are relatively more mature, such as the following documents:
  • Step 3 determining the maximum transverse length L p photographing black eye portion of the image or a picture
  • Eyes especially Chinese
  • Eyes are mostly composed of white eyes and black eyes.
  • the distinction is obvious, which is conducive to the data collection of the dark part of the eye.
  • the white of the eye interferes less; 2.
  • everyone's eyes Although the size is different, but the normal human eye has almost no difference in the actual lateral maximum length of the eye part after the eyeball development is completed in about 3 years old, which is convenient for the calculation of the step coefficient of step 4.
  • This step roughly includes:
  • Step 31 placing the front image into the first quadrant of an XY coordinate system
  • Step 32 Select one of the eye images in the front image to obtain a positive integer set I(x, y) of the eye image I; wherein the abscissa x and the ordinate y are both positive integers, and 0 ⁇ x ⁇ x 1 , 0 ⁇ y ⁇ y 1 , x 1 and y 1 are the maximum abscissa and the maximum ordinate of the front image, respectively;
  • Step 34 Obtain all positive integers INT(y') satisfying the value of the ordinate y', and calculate the maximum value and the minimum value of the abscissa x' corresponding to each positive integer INT(y'), and the abscissa x' After the maximum value and the minimum value are subtracted, the maximum difference of the abscissa x' corresponding to each positive integer INT(y') is obtained, and the maximum difference of the abscissa x' corresponding to all positive integers INT(y') is taken.
  • the maximum value is the lateral maximum length L p of the dark part of the eye, ie:
  • x max (INT i (y')) and x min (INT i (y')) are the maximum and minimum values in the abscissa x' corresponding to the i-th positive integer INT(y'), respectively; To satisfy the number of positive integers INT(y') of the ordinate y' value, 1 ⁇ i ⁇ n.
  • Step 4 to determine the actual geometry of the linear image camera or a linear picture by the scaling factor ⁇ maximum transverse length L p;
  • the method for determining the scale factor ⁇ is:
  • L r is an actual measurement value of the horizontal maximum length of the eye part of the human body corresponding to the photographed image or the one-frame picture, and can be regarded as a fixed value for a normal population over 3 years old, and the set value is for gender and ethnicity (such as yellow, white, etc.) is slightly different, but the same population (referring to the same gender and ethnicity) is the same.
  • Step 5 Measure the distance between any two points in the photographed image or a frame, and multiply the distance between the two points by the proportional coefficient ⁇ to obtain the actual distance between the corresponding two points of the human body.
  • the coordinates of the two points are then constructed in the XY coordinate system (preferably the first quadrant) to perform the actual measurement.
  • the coordinates of the two points in the first quadrant of the XY coordinate system are respectively (x a , y a ).
  • (x b , y b ) the distance between the two in the captured image or a frame is Therefore, the actual distance between the two points corresponding to the human body is Or it can be calculated by the computer according to the coordinates of two points.
  • a method for customizing a spectacle frame includes the following steps:
  • Step 10 Performing front and side photographs on the face of the optician through a mobile device or a computer to obtain a front image and a side image, and of course, two images of a face with a face and a side image may be captured in a video with a human face.
  • the frame picture (the one frame picture with the face front image captured in the video is completely consistent with the face image method for the face picture). The following is only the front picture as an example, and the side picture is the same.
  • the distance from the mobile device to the optician is preferably 33cm (1 ft.). This is the same distance as the usual optician, which is conducive to the design and manufacture of the frame.
  • the front image and the side image are uniform in size, which is beneficial to the later stage.
  • the mobile device is a handheld device, preferably a mobile phone or a tablet computer, etc., the purpose is to install Related clients make post-production 3D modeling more convenient.
  • Step 20 Detect and locate the eye in the front image.
  • step 2 For the specific method, refer to step 2 in the first embodiment.
  • Step 30 it is determined in the frontal image of the eye ocular maximum transverse length L p of the black portion, the specific method steps can see a three cases of embodiment.
  • Step 40 determining the actual geometry of the front linear images by the linear maximum transverse length L p scaling factor [eta], a specific embodiment of the method can be found in Example 4 step.
  • Step 50 measuring the distance L 3 from the tip of the cornea to the top of the ear and the height H of the bridge of the nose (the vertical distance from the midpoint of the bridge of the nose to the plane of the face) by the distance L 1 in the front image and the width L 2 of the bridge of the nose. Multiplying the interpupillary distance L 1 , the bridge width L 2 and the distance L 3 from the tip of the cornea to the top of the ear by the proportional coefficient ⁇ to obtain the actual interpupillary distance L 1 ', the actual bridge width L 2 ', and the corneal tip to the ear. The actual distance L 3 ' of the top and the actual nose height H'.
  • the distance L 1 in the front image, the width L 2 of the bridge of the nose, and the height H of the bridge of the nose, the method of obtaining the distance L 3 from the tip of the cornea to the top of the ear in the measurement side image, and the method of measuring the photographed image or a frame in the step 5 of the first embodiment The method of the distance between any two points is the same.
  • the protrusion height of the nasal root and the angle of the angle formed on both sides of the nasal bridge in the range of 2 cm from the beginning of the nasal root can be measured by the above method.
  • Step 60 Customizing the spectacle frame by 3D printing: transmitting the actual interpupillary distance L 1 ', the actual bridge width L 2 ', the actual distance L 3 ' from the tip of the cornea to the top of the ear, and the actual bridge height H' to the mobile device or 3D modeling on the computer, the modeling method is very simple, according to the actual distance L 1 ' can get the frame frame diameter data, the actual nose width L 2 ' can get the data of the middle beam distance of the frames and the nose pad width Data, the actual distance L 3 ' from the top of the cornea to the top of the ear can be obtained from the leg length data of the spectacle frame.
  • the actual nose height H' can be obtained by bending the nose pad.
  • the above data can be used to obtain the 3D model of the spectacle frame, and the 3D model can be modeled.
  • the results are sent to the data center or 3D printer along with the regular data (choose the shape, material, pattern and color of the frames and temples) and sent to the 3D printer to complete the design and processing of the lens holder's own glasses frame, while in its condition If it is not allowed, it can be sent to the data center, because the data center is connected to the relevant optician shop or the optician center to design and process the spectacle frame, saving Time's Mirror.
  • Step 60′ modeling by virtual reality mode: a virtual reality glasses frame that tracks the movement of the face (head), and comparing the step 60 directly to the customized glasses frame, the virtual reality modeling method increases the appearance parameters of the glasses frame, and is targeted. Stronger, and improve the perspective of virtual reality by tracking and compensating for head movements, the user's visual system and the motion perception system can be connected to each other, increasing the user experience (the user can see the glasses after the virtual wear on the mobile device) Effect), further customize the more suitable optician Spectacle frame.
  • the implementation principle is firstly sent to the mobile device or the computer according to the actual pupil distance L 1 ', the actual bridge width L 2 ', the actual distance L 3 ' from the tip of the cornea to the top of the ear, and the actual nose height H'.
  • the color and style or style of the frame (the color and style are a database, which are selected by the database respectively) are combined to generate a frame model, and then the frame model is worn at an appropriate angle to the front image.
  • the front image is on the eye, and then a three-dimensional model of the human head wearing the spectacle frame model is generated by an image processing tool (for example, 3DMAX software, Cura software, etc.), and the wearer actually wears the three-dimensional model of the human head.
  • an image processing tool for example, 3DMAX software, Cura software, etc.
  • the effect of the spectacle frame model is that when the spectacle frame model meets the requirements of the optician, the spectacle frame that more closely meets the needs of the optician is obtained through the 3D printing method.
  • more images can be added to the image processing tool in combination with the spectacle frame model. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Multimedia (AREA)
  • Eyeglasses (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Processing (AREA)

Abstract

一种基于眼角膜图像的人体实际距离测量方法和眼镜架的定制方法,这种测量方法包括以下步骤:步骤1、获取带有眼睛眼黑部分的正面拍照图像或者从视频中截取带有眼睛眼黑部分的一帧正面画面;步骤2、检测并定位眼黑部分;步骤3、确定眼黑部分的横向最大长度;步骤4、确定实际线性几何尺寸与正面图像线性的比例系数;步骤5、测量拍照图像或一帧画面中任意两点实际距离,从而通过实际距离乘以比例系数η得到人体相应两点间的实际距离。这种测量方法对眼黑部分的横向最大长度进行测量,进而获取实际尺寸和图像尺寸的比例系数,从而可对人体、包含人体的图像或视频中任意两点进行不在场测量,数据计算准确,应用广泛。

Description

人体实际距离测量及眼镜架的定制方法 技术领域
本发明涉及测距技术领域,具体涉及一种基于眼角膜的人体实际距离测量方法,以及根据该人体实际距离测量方法进行眼镜架的定制。
背景技术
定制衣服或者眼镜等时,需要对人体相应两点间距离进行实际测量,以眼镜为例,眼镜主要由镜片、眼镜架组成。根据人脸结构例如瞳距、鼻梁高度和宽度以及角膜顶端到耳顶平面的距离不同,眼镜架也需要定制。现有的眼镜架由工厂根据常见参数进行批量生产,无法实现定制,定制方案必须是配镜者到眼镜店或配镜中心等根据自身感觉完成眼镜架大小参数的选择和人工调整工作,对于配镜者则花费了大量的时间,而且人工手动测量有时候会造成参数的误差,调教的镜架随着使最终配制的眼镜带上去不舒服。因此,配镜者根据自己的头面部参数,比如鼻梁的解剖形状、角膜顶端到耳顶平面的距离,制作适合自己头面部解剖数据的眼镜框,是十分必要的。既可以提高眼镜框在佩戴中的稳定性以提高儿童近视控制镜片、渐进镜等体验效果,也可以大幅提高眼镜验配的效率和佩戴的舒适度。
发明内容
针对上述不足,本发明的目的是提供一种基于眼角膜图像的人体任意两点间实际距离的测量方法,为一种不在场人体参数的测量方法,其通过对眼角膜(应用时为眼睛的眼黑部分)的实际测量,根据获取的眼角膜图像横向最大长度,即可测量人体任意两点间的实际距离,为定制工作带来了便利。
为实现上述目的,本发明采取的技术方案是:
一种基于眼角膜图像的人体实际距离测量方法,其包括以下步骤:
步骤1、获取带有眼睛眼黑部分的正面拍照图像或者从视频中截取带有眼睛眼黑部分的一帧正面画面;
步骤2、检测并定位所述正面拍照图像或者一帧正面画面的其中一个眼黑部 分;
步骤3、确定所述其中一个眼黑部分的横向最大长度Lp
步骤4、通过所述横向最大长度Lp确定实际线性几何尺寸与拍照图像或者一帧画面线性的比例系数η;
步骤5、测量所述正面拍照图像或一帧正面画面中任意两点实际图像距离,从而通过该实际图像距离乘以比例系数η得到人体相应两点间的实际距离。
所述步骤3包括以下步骤:
步骤31、将所述其中一个眼黑部分放入一XY坐标系的第一象限中;
步骤32、选中所述其中一个眼黑部分,得到该眼黑部分图像I的正整数集I(x,y);其中,横坐标x和纵坐标y均为正整数,且0≤x≤x1,0≤y≤y1,x1和y1分别为该眼黑部分图像的最大横坐标和最大纵坐标;
步骤33、从该眼黑部分图像I中截取一子图像I1,以消除该眼黑部分图像中上、下眼皮的干扰,所述子图像I1满足I1=I1(x′,y′),其中,横坐标x′和纵坐标y′满足:0≤x′≤x1,y1/4≤y′≤3y1/4;
步骤34、获取所有满足纵坐标y′值的正整数INT(y′),并计算每个正整数INT(y′)对应的横坐标x′的最大值和最小值,将所述横坐标x′的最大值和最小值相减后获取每个正整数INT(y′)对应的横坐标x′的最大差值,并取所有正整数INT(y′)对应的横坐标x′的最大差值中的最大值作为该眼黑部分图像的横向最大长度Lp,即:
Figure PCTCN2016081194-appb-000001
其中,xmax(INTi(y′))和xmin(INTi(y′))分别为第i个正整数INT(y′)对应的横坐标x′中的最大值和最小值;n为满足纵坐标y′值的正整数INT(y′)的个数,1≤i≤n。
所述步骤4中确定比例系数η的方法是:
Figure PCTCN2016081194-appb-000002
其中,Lr为所述其中一个眼黑部分对应的人体的实际眼黑部分的横向最大长度的实际测量值。
本发明的另一目的在于基于上述不在场人体参数的测量方法,应用于定制眼 镜架,其可以实现配镜者自行即时设计制作眼镜架,或者直接将人脸正面图像和侧面图像发送给眼镜店或配镜中心完成眼镜架的设计,节约配镜者时间,同时测量数据准确,眼镜架完全适合自己,佩戴舒适。
一种眼镜架的定制方法,其包括以下步骤:
步骤10、通过移动设备或电脑对配镜者的人脸进行照片拍摄或视频拍摄,获取拍摄照片的正面图像和侧面图像、或者拍摄视频中带有正面图像的一帧画面和带有侧面图像的另一帧画面;
步骤20、检测并定位正面图像中的眼睛;
步骤30、确定正面图像眼睛中眼黑部分的横向最大长度Lp
步骤40、通过所述横向最大长度Lp确定实际线性几何尺寸与正面图像线性的比例系数η;
步骤50、测量正面图像中的瞳距L1、鼻梁宽度L2以及鼻梁高度H,测量侧图像中角膜顶端到耳顶的距离L3,并将所述瞳距L1、鼻梁宽度L2以及角膜顶端到耳顶的距离L3分别乘以比例系数η得到配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′;
步骤60、将配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′发送至移动设备或电脑上进行3D建模,并将所述3D建模的结果发送至数据中心或3D打印机。
所述步骤30包括以下步骤:
步骤301、将正面图像放入一XY坐标系的第一象限中;
步骤302、选中正面图像中其中一眼睛图像,得到该眼睛图像I的正整数集I(x,y);其中,横坐标x和纵坐标y均为正整数,且0≤x≤x1,0≤y≤y1,x1和y1分别为正面图像的最大横坐标和最大纵坐标;
步骤303、从眼睛图像I中截取一子图像I1,以消除该眼睛图像中上、下眼皮的干扰,所述子图像I1满足I1=I1(x′,y′),其中,横坐标x′和纵坐标y′满足:0≤x′≤x1,y1/4≤y′≤3y1/4;
步骤304、获取所有满足纵坐标y′值的正整数INT(y′),并计算每个正整数INT(y′)对应的横坐标x′的最大值和最小值,将所述横坐标x′的最大值和最小值相减后获取每个正整数INT(y′)对应的横坐标x′的最大差值,并取所有正整 数INT(y′)对应的横坐标x′的最大差值中的最大值作为眼睛中眼黑部分的横向最大长度Lp,即:
Figure PCTCN2016081194-appb-000003
其中,xmax(INTi(y′))和xmin(INTi(y′))分别为第i个正整数INT(y′)对应的横坐标x′中的最大值和最小值;n为满足纵坐标y′值的正整数INT(y′)的个数,1≤i≤n。
所述步骤40中确定比例系数η的方法是:
Figure PCTCN2016081194-appb-000004
其中,Lr为所述配镜者任意一眼黑部分的横向最大长度的实际测量值。
所述步骤50为:移动设备或电脑根据四个眼镜架基础数据进行3D建模,并将所述3D建模的结果发送至数据中心或3D打印机,获得定制的眼镜架。
所述步骤50为:移动设备或电脑根据四个眼镜架基础数据以及眼镜架外观参数进行结合,形成眼镜架模型,然后将该眼镜架模型分别与正面图像和侧面图像相匹配,并将该眼镜架分别佩戴于正面图像和侧面图像中,通过图像转换工具生成人体头部运动的虚拟现实眼镜架;或者将该眼镜架模型分别与正面图像的一帧画面和带有侧面图像的另一帧画面相匹配,并将该眼镜架分别佩戴于正面图像和侧面图像中,通过图像转换工具生成人体头部运动的虚拟现实眼镜架,根据所述虚拟现实眼镜架获得定制的眼镜架。
所述眼镜架外观参数包括眼镜架的颜色和款式。
本发明与现有技术相比,其有益效果在于:
1、对眼黑部分的横向最大长度进行测量,进而获取实际尺寸和图像尺寸的比例系数,从而可对人体任意两点进行不在场测量,数据计算准确,应用广泛;
2、通过对人脸正面图像和侧面图像的测量,完成眼镜架相关参数的收集,数据来源真实、准确,佩戴舒服;
3、配镜者可以将获取的实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′在移动设备或电脑上进行3D建模,由3D打印机进行眼镜架的制作,或者将以上数据发送给数据中心,由于数据中心的数据对接的相关配镜店或配镜中心进行眼镜架的设计,节约配镜者大量时间。
附图说明
图1是本发明一种基于眼角膜图像的人体实际距离测量方法的流程图;
图2是本发明一种眼镜架的定制方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例一
一种基于眼角膜图像的人体实际距离测量方法,其为不在场人体参数的测量,请参照图1所示,其包括以下步骤:
步骤1、获取带有眼睛眼黑部分的拍照图像或者从视频中截取带有眼睛眼黑部分的一帧画面;拍摄图像或者视频的角度无限制,只要保证拍摄的图像中或者视频的某一帧画面中带有眼睛眼黑部分(这里眼黑部分图像可近似认为眼角膜图像)。不过需要说明的是,因为在本申请中只需要获取拍照图像或视频中带有一个眼黑部分的图像或画面即可,但是由于拍摄角度问题,在拍照图像或视频中截取的一帧画面中如果有二个眼黑部分,则选取其中较大的一个眼黑部分,选取过程有计算机或移动设备完成。作为优选方案,拍照图像或者视频中截取的一帧画面最好是正视,即二个眼黑部分的直径大小相等,同时,由于视频中具有多帧画面(5秒左右的视频中至少有100幅图片),在这多帧画面中,可以包括正视画面在内的人体多个角度画面,因此,作为另一个优选方案,可以采用视频方式进行人体图像采集。
步骤2、检测并定位所述拍照图像或者一帧画面的眼黑部分;
这一步骤可以手动完成,也可以通过计算机自动完成。目前计算机自动检测并定位图像(这里具体指拍摄图像或者视频中某一画面)内人脸中的眼睛(具体为眼黑部分)的方法与软件相对较多,也比较成熟例如以下文献:
1、David Balya,Tamas Roska,Face and Eye Detection by CNN Algorithms,Journal of VLSI Signal Processing 23,(1999),pp.497-511.
2、Antonio Haro,Myron Flickner,Irfan Essa,Detecting and tracking eyes by using their physiological properties,dynamics,and appearance,Proc.of IEEE International Conference on Computer Vision and Pattern Recognition,2000,Vol.1, pp.163-168.
3、So-Hee Park,Jang-Hee Yoo,A new implementation method of ASEF for eye detection,2012 7th International Conference on Computing and Convergence Technology(ICCCT),pp.1034-1037.
4、Eye detection and tracking using opencv.\http://opencv-code.com/tutorials/eye-detection-and-tracking/
均有相关记载,这里不再赘述。
步骤3、确定所述拍照图像或者一帧画面的眼黑部分的横向最大长度Lp
该步骤采用眼黑的目的在于:1、眼睛(尤其是中国人)多为眼白和眼黑组成,其区分明显,利于对眼黑部分的数据采集,同时,眼白对其干扰较少;2、每个人眼睛大小虽有不同,但是正常人眼在3岁左右眼球发育基本完成后眼黑部分的实际横向最大长度基本无差别,便于步骤4对比例系数的计算。
该步骤大致包括:
步骤31、将正面图像放入一XY坐标系的第一象限中;
步骤32、选中正面图像中其中一眼睛图像,得到该眼睛图像I的正整数集I(x,y);其中,横坐标x和纵坐标y均为正整数,且0≤x≤x1,0≤y≤y1,x1和y1分别为正面图像的最大横坐标和最大纵坐标;
步骤33、从眼睛图像I中截取一子图像I1,以消除该眼睛图像中上、下眼皮的干扰,子图像I1满足I1=I1(x′,y′),其中,横坐标x′和纵坐标y′满足:0≤x′≤x1,y1/4≤y′≤3y1/4;
步骤34、获取所有满足纵坐标y′值的正整数INT(y′),并计算每个正整数INT(y′)对应的横坐标x′的最大值和最小值,将横坐标x′的最大值和最小值相减后获取每个正整数INT(y′)对应的横坐标x′的最大差值,并取所有正整数INT(y′)对应的横坐标x′的最大差值中的最大值作为眼睛中眼黑部分的横向最大长度Lp,即:
Figure PCTCN2016081194-appb-000005
其中,xmax(INTi(y′))和xmin(INTi(y′))分别为第i个正整数INT(y′)对应的横坐标x′中的最大值和最小值;n为满足纵坐标y′值的正整数INT(y′)的个数,1≤i≤n。
步骤4、通过所述横向最大长度Lp确定实际线性几何尺寸与拍照图像或者一帧画面线性的比例系数η;
确定比例系数η的方法是:
Figure PCTCN2016081194-appb-000006
其中,Lr为上述拍照图像或者一帧画面对应的人体的眼黑部分的横向最大长度的实际测量值,对于3岁以上的正常人群其可以认为是定值,该定值针对性别和人种(如黄种人、白人等)稍有不同,但是对于相同人群(指同一性别和人种)是相同的。
步骤5、测量拍照图像或一帧画面中任意两点之间的距离,从而通过该任意两点之间的距离乘以比例系数η得到人体相应两点间的实际距离。测量拍照图像或一帧画面中任意两点之间的距离的方法有多种,可以通过标准图像(与相同距离下测量获得)对配镜者自行拍摄的正面图像和侧面图像进行定位后,选择该两点的坐标,然后在XY坐标系(优选第一象限)中构建直角三角形进行实际测量,设定该两点在XY坐标系的第一象限中的坐标分别为(xa,ya)和(xb,yb),则在拍摄图像或者一帧画面中二者之间的距离为
Figure PCTCN2016081194-appb-000007
从而人体对应的该两点间的实际距离则为
Figure PCTCN2016081194-appb-000008
或者由计算机根据两点的坐标自行计算得到。
实施例二
基于上述原理,本发明以应用于眼镜架的定制为例,对本发明的保护范围进行进一步的解释和说明。
请参照图2所示,一种眼镜架的定制方法,其包括以下步骤:
步骤10、通过移动设备或电脑对配镜者的人脸进行正面和侧面拍照,获取正面图像和侧面图像,当然也可以是对带有人脸的视频中截取带有人脸正面图像和侧面图像的两帧画面(视频中截取的带有人脸正面图像的一帧画面与对人脸拍照的正面图像的处理方法完全一致,以下仅以正面图像为例,侧面图像同理)。
移动设备至配镜者的距离优选33cm(1尺的距离),这样做一来与平时配镜距离相同,利于镜架的设计和制作,二来形成正面图像和侧面图像统一尺寸,利于后期的测量,移动设备为手持设备,优选手机或平板电脑等,其目的在于安装 相关的客户端,使得后期3D建模更为便利。
步骤20、检测并定位正面图像中的眼睛,具体方法可参见实施例一的步骤2。
步骤30、确定正面图像眼睛中眼黑部分的横向最大长度Lp,具体方法可参见实施例一的步骤3。
步骤40、通过横向最大长度Lp确定实际线性几何尺寸与正面图像线性的比例系数η,具体方法可参见实施例一的步骤4。
步骤50、通过正面图像中的瞳距L1、鼻梁宽度L2,测量侧图像中角膜顶端到耳顶的距离L3以及鼻梁高度H(鼻梁侧影中点到脸部平面的垂直距离),并将所述瞳距L1、鼻梁宽度L2以及角膜顶端到耳顶的距离L3分别乘以比例系数η得到配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′。正面图像中的瞳距L1、鼻梁宽度L2以及鼻梁高度H,测量侧图像中角膜顶端到耳顶的距离L3获取的方法与实施例一的步骤5中测量拍照图像或一帧画面中任意两点之间的距离的方法相同。为提高精度还可以用上述方法测量鼻根部的突出高度和鼻根部开始2cm范围鼻梁两侧形成的夹角度数。
步骤60、通过3D打印定制眼镜架:将配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′发送至移动设备或电脑上进行3D建模,建模的方法很简单,根据实际瞳距L1′可以得到眼镜架框型直径数据、实际鼻梁宽度L2′可以得到眼镜架的中梁距离的数据和鼻托宽度数据,角膜顶端到耳顶的实际距离L3′可以得到眼镜架的腿长数据,实际鼻梁高度H′可以获得鼻托弯曲通过上述数据即可得到眼镜架的3D模型,并将3D建模的结果连同常规的数据(选择制作镜框和镜腿的形状、材料、图案和颜色等)发送至数据中心或3D打印机,发送给3D打印机完成配镜者自行眼镜架的设计与加工,而在其条件不允许的情况下,可以发送给数据中心,由于该数据中心进行数据对接的相关配镜店或配镜中心进行眼镜架的设计与加工,节约配镜者的时间。
步骤60′、通过虚拟现实方式建模:即跟踪人脸(头部)运动的虚拟现实眼镜架,对比步骤60直接3D打印定制的眼镜架,虚拟现实建模方式增加眼镜架外观参数,针对性更强,并通过跟踪和补偿头部运动改善虚拟现实的透视效果,用户的视觉***和运动感知***之间就可以联系起来,增加了用户体验(用户可以在移动设备自行看到眼镜虚拟佩戴后的效果),进一步定制出更为合适配镜者 的眼镜架。
其实现原理是先根据上述配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′发送至移动设备或电脑上,与眼镜架的颜色和款式或样式(颜色和款式为一数据库,通过在数据库中分别选择完成)的外观参数进行结合,生成眼镜架模型,然后将该眼镜架模型以与正面图像合适的角度佩戴到该正面图像眼睛上,然后通过图像处理工具(例如3DMAX软件、Cura软件等软件)生成佩戴该眼镜架模型的人体头部三维模型,通过该人体头部三维模型的运动,体验配镜者实际佩戴该眼镜架模型的效果,当眼镜架模型符合配镜者要求时,再通过3D打印方式获得更为符合配镜者需求的眼镜架。为了保证佩戴该眼镜架模型的人体头部三维模型生成更为清晰和流畅,防止失真的发生,在这里可以增加更多的图像(例如侧面图像)与眼镜架模型的结合放入图像处理工具中。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或应用,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (9)

  1. 一种基于眼角膜图像的人体实际距离测量方法,其特征在于,其包括以下步骤:
    步骤1、获取带有眼睛眼黑部分的正面拍照图像或者从视频中截取带有眼睛眼黑部分的一帧正面画面;
    步骤2、检测并定位所述正面拍照图像或者一帧正面画面的其中一个眼黑部分;
    步骤3、确定所述其中一个眼黑部分的横向最大长度Lp
    步骤4、通过所述横向最大长度Lp确定实际线性几何尺寸与拍照图像或者一帧画面线性的比例系数η;
    步骤5、测量所述正面拍照图像或一帧正面画面中任意两点实际图像距离,从而通过该实际图像距离乘以比例系数η得到人体相应两点间的实际距离。
  2. 根据权利要求1所述的基于眼角膜图像的人体实际距离测量方法,其特征在于,所述步骤3包括以下步骤:
    步骤31、将所述其中一个眼黑部分放入一XY坐标系的第一象限中;
    步骤32、选中所述其中一个眼黑部分,得到该眼黑部分图像I的正整数集I(x,y);其中,横坐标x和纵坐标y均为正整数,且0≤x≤x1,0≤y≤y1,x1和y1分别为该眼黑部分图像的最大横坐标和最大纵坐标;
    步骤33、从该眼黑部分图像I中截取一子图像I1,以消除该眼黑部分图像中上、下眼皮的干扰,所述子图像I1满足I1=I1(x′,y′),其中,横坐标x′和纵坐标y′满足:0≤x′≤x1,y1/4≤y′≤3y1/4;
    步骤34、获取所有满足纵坐标y′值的正整数INT(y′),并计算每个正整数INT(y′)对应的横坐标x′的最大值和最小值,将所述横坐标x′的最大值和最小值相减后获取每个正整数INT(y′)对应的横坐标x′的最大差值,并取所有正整数INT(y′)对应的横坐标x′的最大差值中的最大值作为该眼黑部分图像的横向最大长度Lp,即:
    Figure PCTCN2016081194-appb-100001
    其中,xmax(INTi(y′))和xmin(INTi(y′))分别为第i个正整数INT(y′)对应的横 坐标x′中的最大值和最小值;n为满足纵坐标y′值的正整数INT(y′)的个数,1≤i≤n。
  3. 根据权利要求2所述的基于眼角膜图像的人体实际距离测量方法,其特征在于,所述步骤4中确定比例系数η的方法是:
    Figure PCTCN2016081194-appb-100002
    其中,Lr为所述其中一个眼黑部分对应的人体的实际眼黑部分的横向最大长度的实际测量值。
  4. 一种眼镜架的定制方法,其特征在于,其包括以下步骤:
    步骤10、通过移动设备或电脑对配镜者的人脸进行照片拍摄或视频拍摄,获取拍摄照片的正面图像和侧面图像、或者拍摄视频中带有正面图像的一帧画面和带有侧面图像的另一帧画面;
    步骤20、检测并定位正面图像中的眼睛;
    步骤30、确定正面图像眼睛中眼黑部分的横向最大长度Lp
    步骤40、通过所述横向最大长度Lp确定实际线性几何尺寸与正面图像线性的比例系数η;
    步骤50、测量正面图像中的瞳距L1、鼻梁宽度L2以及鼻梁高度H,测量侧图像中角膜顶端到耳顶的距离L3,并将所述瞳距L1、鼻梁宽度L2以及角膜顶端到耳顶的距离L3分别乘以比例系数η得到配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′四个眼镜架基础数据;
    步骤60、将配镜者实际瞳距L1′、实际鼻梁宽度L2′、角膜顶端到耳顶的实际距离L3′以及实际鼻梁高度H′发送至移动设备或电脑上,进行眼镜架的定制。
  5. 根据权利要求4所述的眼镜架的定制方法,其特征在于,所述步骤30包括以下步骤:
    步骤301、将正面图像放入一XY坐标系的第一象限中;
    步骤302、选中正面图像中其中一眼睛图像,得到该眼睛图像I的正整数集I(x,y);其中,横坐标x和纵坐标y均为正整数,且0≤x≤x1,0≤y≤y1,x1和y1分别为正面图像的最大横坐标和最大纵坐标;
    步骤303、从眼睛图像I中截取一子图像I1,以消除该眼睛图像中上、下眼 皮的干扰,所述子图像I1满足I1=I1(x′,y′),其中,横坐标x′和纵坐标y′满足:0≤x′≤x1,y1/4≤y′≤3y1/4;
    步骤304、获取所有满足纵坐标y′值的正整数INT(y′),并计算每个正整数INT(y′)对应的横坐标x′的最大值和最小值,将所述横坐标x′的最大值和最小值相减后获取每个正整数INT(y′)对应的横坐标x′的最大差值,并取所有正整数INT(y′)对应的横坐标x′的最大差值中的最大值作为眼睛中眼黑部分的横向最大长度Lp,即:
    Figure PCTCN2016081194-appb-100003
    其中,xmax(INTi(y′))和xmin(INTi(y′))分别为第i个正整数INT(y′)对应的横坐标x′中的最大值和最小值;n为满足纵坐标y′值的正整数INT(y′)的个数,1≤i≤n。
  6. 根据权利要求4所述的眼镜架的定制方法,其特征在于,所述步骤40中确定比例系数η的方法是:
    Figure PCTCN2016081194-appb-100004
    其中,Lr为所述配镜者任意一眼黑部分的横向最大长度的实际测量值。
  7. 根据权利要求4所述的眼镜架的定制方法,其特征在于,所述步骤50为:移动设备或电脑根据四个眼镜架基础数据进行3D建模,并将所述3D建模的结果发送至数据中心或3D打印机,获得定制的眼镜架。
  8. 根据权利要求4所述的眼镜架的定制方法,其特征在于,所述步骤50为:移动设备或电脑根据四个眼镜架基础数据以及眼镜架外观参数进行结合,形成眼镜架模型,然后将该眼镜架模型分别与正面图像和侧面图像相匹配,并将该眼镜架分别佩戴于正面图像和侧面图像中,通过图像转换工具生成人体头部运动的虚拟现实眼镜架;或者将该眼镜架模型分别与正面图像的一帧画面和带有侧面图像的另一帧画面相匹配,并将该眼镜架分别佩戴于正面图像和侧面图像中,通过图像转换工具生成人体头部运动的虚拟现实眼镜架,根据所述虚拟现实眼镜架获得定制的眼镜架。
  9. 根据权利要求8所述的眼镜架的定制方法,其特征在于,所述眼镜架外观参数包括眼镜架的颜色和款式。
PCT/CN2016/081194 2016-04-06 2016-05-05 人体实际距离测量及眼镜架的定制方法 WO2017173694A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018517469A JP2018521363A (ja) 2016-04-06 2016-05-05 人体の実際距離の計測及び眼鏡フレームのオーダーメイド方法
US15/735,223 US10353222B2 (en) 2016-04-06 2016-05-05 Methods for measuring actual distance of human body and customizing spectacle frame
CA3020325A CA3020325C (en) 2016-04-06 2016-05-05 Method for measuring actual distance of human body and customizing spectacle frame

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610209496.2 2016-04-06
CN201610209496.2A CN105708467B (zh) 2016-04-06 2016-04-06 人体实际距离测量及眼镜架的定制方法

Publications (1)

Publication Number Publication Date
WO2017173694A1 true WO2017173694A1 (zh) 2017-10-12

Family

ID=56160741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081194 WO2017173694A1 (zh) 2016-04-06 2016-05-05 人体实际距离测量及眼镜架的定制方法

Country Status (5)

Country Link
US (1) US10353222B2 (zh)
JP (1) JP2018521363A (zh)
CN (1) CN105708467B (zh)
CA (1) CA3020325C (zh)
WO (1) WO2017173694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904451A (zh) * 2021-01-20 2021-06-04 浙江洁特智慧科技有限公司 一种存在式感应器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106264538A (zh) * 2016-07-29 2017-01-04 广州比特软件科技有限公司 基于虹膜直径的人体头面部数码照片测量分析方法及装置
CN107865473B (zh) * 2016-09-26 2019-10-25 华硕电脑股份有限公司 人体特征测距装置及其测距方法
CN108573204A (zh) * 2017-04-28 2018-09-25 分界线(天津)网络技术有限公司 一种人眼瞳孔距离的测量方法
CN108703738A (zh) * 2017-04-28 2018-10-26 分界线(天津)网络技术有限公司 一种远视屈光度的测量***及方法
CN107589562A (zh) * 2017-09-20 2018-01-16 厦门云镜视界设计有限公司 一种眼镜定制方法
JP6899097B2 (ja) * 2017-12-29 2021-07-07 京セラドキュメントソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理プログラム
CN109146949B (zh) * 2018-09-05 2019-10-22 天目爱视(北京)科技有限公司 一种基于视频数据的3d测量及信息获取装置
JP2020052285A (ja) * 2018-09-27 2020-04-02 三井化学株式会社 アイウェアの前枠調整装置、及び、アイウェアの前枠調整方法
CN110569829B (zh) * 2019-07-30 2023-06-13 南阳师范学院 一种配眼镜参数自动检测识别匹配***
TW202117503A (zh) * 2019-10-15 2021-05-01 視鏡科技股份有限公司 互動式眼鏡框試戴系統及方法
JP7457291B2 (ja) * 2020-02-10 2024-03-28 Fcnt合同会社 血圧測定装置、血圧測定方法及び血圧測定プログラム
CN112596274A (zh) * 2020-10-22 2021-04-02 泰州市出彩网络科技有限公司 现场特征实时监测***
CN112606402A (zh) * 2020-11-03 2021-04-06 泰州芯源半导体科技有限公司 应用多参数解析的产品制造平台
CN113509140B (zh) * 2021-04-25 2023-09-15 极智视觉科技(合肥)有限公司 基于角膜参数的人体参数测量***及其使用方法
NL2031115B1 (en) * 2022-03-01 2023-09-07 Easee Health B V Method and system for determining a pupillary distance for a person.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264474A (zh) * 1997-05-16 2000-08-23 保谷株式会社 眼镜定制***
CN101059871A (zh) * 2007-05-17 2007-10-24 谢亦玲 计算机配镜装置
CN102278978A (zh) * 2011-07-25 2011-12-14 张仕郎 一种瞳距的测量方法
CN104808797A (zh) * 2015-05-08 2015-07-29 杨晨 一种便捷的互动式眼镜配试方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969842B2 (ja) * 1998-05-27 2007-09-05 Hoya株式会社 眼鏡装用シミュレーションにおける合成画像作成方法
JP4619384B2 (ja) * 1999-04-09 2011-01-26 アイリテック株式会社 虹彩同定システム
EP1244896A2 (en) * 2000-06-16 2002-10-02 Eyeweb, Inc. Method of measuring and sizing objects from an image of a human face using iris size
JP2006048205A (ja) * 2004-08-02 2006-02-16 Matsushita Electric Ind Co Ltd 瞳孔検出装置および虹彩認証装置
JP2007011666A (ja) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd 認証装置および認証方法
JP2013022028A (ja) * 2011-07-14 2013-02-04 Advance Co Ltd 循環系診断システム
US20150049952A1 (en) * 2013-08-14 2015-02-19 Vsp Labs, Inc. Systems and methods of measuring facial characteristics
US9304332B2 (en) * 2013-08-22 2016-04-05 Bespoke, Inc. Method and system to create custom, user-specific eyewear
JP2016024456A (ja) * 2014-07-22 2016-02-08 ビジョン開発株式会社 ダイヤモンド微粒子を有する眼鏡用レンズの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264474A (zh) * 1997-05-16 2000-08-23 保谷株式会社 眼镜定制***
CN101059871A (zh) * 2007-05-17 2007-10-24 谢亦玲 计算机配镜装置
CN102278978A (zh) * 2011-07-25 2011-12-14 张仕郎 一种瞳距的测量方法
CN104808797A (zh) * 2015-05-08 2015-07-29 杨晨 一种便捷的互动式眼镜配试方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904451A (zh) * 2021-01-20 2021-06-04 浙江洁特智慧科技有限公司 一种存在式感应器

Also Published As

Publication number Publication date
CA3020325A1 (en) 2017-10-12
US10353222B2 (en) 2019-07-16
CA3020325C (en) 2021-11-09
CN105708467B (zh) 2017-12-29
CN105708467A (zh) 2016-06-29
JP2018521363A (ja) 2018-08-02
US20180180905A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2017173694A1 (zh) 人体实际距离测量及眼镜架的定制方法
US10201273B2 (en) Method for determining ocular measurements using a consumer sensor
US9568748B2 (en) Methods of designing and fabricating custom-fit eyeglasses using a 3D printer
US9323075B2 (en) System for the measurement of the interpupillary distance using a device equipped with a screen and a camera
CN107085864B (zh) 基于特征点的眼镜建模装置及方法、眼镜制作方法及眼镜
US10620454B2 (en) System and method of obtaining fit and fabrication measurements for eyeglasses using simultaneous localization and mapping of camera images
US20130271726A1 (en) Method and Systems for Measuring Interpupillary Distance
US20220207919A1 (en) Methods, devices and systems for determining eye parameters
US9110312B2 (en) Measurement method and equipment for the customization and mounting of corrective ophthalmic lenses
CA3060972C (en) System and method for obtaining lens fabrication measurements that accurately account for natural head position
CN105975920B (zh) 一种眼镜试戴方法及***
US11841555B2 (en) Method for measuring the frame wearing parameter and measuring device thereof
US20230020160A1 (en) Method for determining a value of at least one geometrico-morphological parameter of a subject wearing an eyewear
US11324399B2 (en) Method and system for determining a pupillary distance of an individual
TWI541012B (zh) 用於眼鏡調校的裝置及眼鏡調校的方法
CN112826441A (zh) 一种基于增强现实技术的瞳距测量方法
US20240249477A1 (en) Fit prediction based on feature detection in image data
JP6533925B2 (ja) レンズ装着情報の算出方法、同算出方法を実行するための電子システム及び同電子システムに使用するプログラム
WO2022254409A1 (en) System and method for providing customized headwear based on facial images
TW202115365A (zh) 可經由校準及影像處理以測量精確瞳距的方法與系統
JP2002102171A (ja) どう孔間距離の算出方法およびどう孔間距離算出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15735223

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018517469

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3020325

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897628

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897628

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897628

Country of ref document: EP

Kind code of ref document: A1