WO2017171690A1 - Method for combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and industrial complex for implementing same - Google Patents

Method for combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and industrial complex for implementing same Download PDF

Info

Publication number
WO2017171690A1
WO2017171690A1 PCT/UA2017/000031 UA2017000031W WO2017171690A1 WO 2017171690 A1 WO2017171690 A1 WO 2017171690A1 UA 2017000031 W UA2017000031 W UA 2017000031W WO 2017171690 A1 WO2017171690 A1 WO 2017171690A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium oxide
silicon monoxide
silicon
synthesis
nanopowder
Prior art date
Application number
PCT/UA2017/000031
Other languages
French (fr)
Russian (ru)
Inventor
Андрей ЦЫБА
Александр КАРПЛЮК
Павел КУЗЕМА
Original Assignee
Андрей ЦЫБА
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей ЦЫБА filed Critical Андрей ЦЫБА
Publication of WO2017171690A1 publication Critical patent/WO2017171690A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates

Definitions

  • the invention relates to the field of nanotechnology, namely the production of nanopowders, which are used as raw materials for the manufacture of semiconductor elements, various ceramics, flame retardant coatings, composite materials, catalysts and the like.
  • a known method for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US N_ 4755365 (A), CO 1G 25/02), in which zircon and carbon-containing material that does not emit gas at a temperature that is below 1000 ° C, mixed in a certain percentage.
  • the resulting mixture is loaded into a furnace for the synthesis of zirconium oxide and silicon monoxide, in which a non-oxidizing medium and a temperature are maintained in the first stage in the temperature range from 1200 ° C to 1550 ° C and in the second stage from 1550 ° C to 2000 ° C.
  • a zirconium oxide nanopowder is simultaneously synthesized, which is sent to the product acceptance unit, where it is cooled and the silicon monoxide gas that is released.
  • a disadvantage of the known method is that a mixture of zircon and auxiliary material, which has insufficient dispersion and homogenization, is loaded into the synthesis furnace of zirconium oxide and silicon monoxide, which complicates the reaction between them, as a result of which the synthesis of zirconium oxide and silicon monoxide is carried out at elevated temperatures.
  • a known method for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US N ° 5096685 (A), B01J 3/00, C01B 33/113, COIF P / 22, COIF 7/38, COIG 25 / O2), selected as the closest analogue in which silicon dioxide, which is bound to zircon, and silicon are mixed in a certain percentage, the resulting mixture is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, in which a non-oxidizing medium and a temperature in the range from 1300 ° C to 2000 are maintained ° C.
  • silicon monoxide gas and zirconia nanopowder are simultaneously synthesized, which are sent to the product acceptance unit, where they are cooled.
  • silicon monoxide gas is deposited to form a silicon monoxide nanopowder.
  • the features by which zircon and silicon are mixed in a certain percentage ratio load the mixture into a synthesis furnace of silicon monoxide and zirconium oxide, in which a non-oxidizing environment and a temperature in the range from 1300 ° C are maintained up to 1600 ° C.
  • silicon monoxide gas and zirconia nanopowder are simultaneously synthesized, which are sent to the product acceptance unit, where they are cooled.
  • silicon monoxide gas is deposited to form a silicon monoxide nanopowder.
  • a disadvantage of the known method is that a mixture of zircon and zircon is loaded into a synthesis furnace of silicon monoxide and zirconium oxide. silicon, which has insufficient dispersion and homogenization, which complicates the reaction between them, as a result of which the synthesis of silicon monoxide and zirconium oxide is carried out at elevated temperatures.
  • the invention is based on the task of improving the known method, in which by technological changes to improve the dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a furnace for the synthesis of silicon monoxide and zirconium oxide, to facilitate the reaction between them, resulting in the synthesis of silicon monoxide and zirconium oxide is carried out at low temperatures.
  • a well-known industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US JMb 4755365 (A), SOYU 25/02), which contains loaders of zircon and carbon-containing material, a mixer, a furnace for the synthesis of zirconium oxide and silicon monoxide, which linked to a non-oxidative environment maintenance system.
  • the output of this furnace is connected to the input of the product acceptance unit and configured to exit the gas of silicon monoxide.
  • a disadvantage of the known industrial complex is the insufficient conditions for dispersion and homogenization of a mixture of zircon and auxiliary material, which is loaded into a furnace for the synthesis of zirconium oxide and silicon monoxide, which complicates the reaction between them, as a result of which the synthesis of zirconium oxide and silicon monoxide is carried out at elevated temperatures.
  • a well-known industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ.
  • US 5096685 (A), B01J 3/00, C01B 33/113, C01F 1 1/22, C01F 7/38, CO 1G 25/02 ), selected as the closest analogue that contains silica and zircon loaders, and a silicon, a mixer, a silica and zirconia synthesis furnace that contains a silica container that is bound to zircon and silicon. This furnace is connected to a system for maintaining a non-oxidizing environment and its output is connected to the input of the product acceptance unit with cooling elements.
  • a disadvantage of the known industrial complex is the insufficient conditions for dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, which complicates the reaction between them, as a result of which the synthesis of silicon monoxide and zirconium oxide is carried out at temperatures.
  • the invention is based on the task of improving a well-known industrial complex, in which, through structural changes, improve the conditions for dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, than to facilitate the reaction between them, resulting in synthesis silicon monoxide and zirconium oxide to conduct at low temperatures.
  • the resulting mixture is loaded into a synthesis furnace of silicon monoxide and zirconium oxide in which a non-oxidizing medium is maintained, a temperature in the range of 1300 ° C.
  • the mixer output is connected to the input of the resonance vortex mill, the output of which is connected to the input of the ultrasonic coagulator, the output of which is connected to the input of the cyclo and whose output is connected to an input of the synthesis furnace silicon monoxide and zirconium oxide, which is made with the possibility of mixing the particles reaktsiynnoy mixture.
  • the Set of the main features of the proposed method provides a solution to the problem.
  • the used resonance vortex mill grinds zircon particles from 50 ⁇ m to 150 ⁇ m in size and silicon particles from 1 mm in size up to 3 mm, to the size of units of micrometers, intensively mixes them, which ensures a high degree of dispersion and homogenization and, consequently, an increase in the surface of the phase distribution of these reagents. This improves the conditions for starting the synthesis.
  • the crushed particles Immediately after exiting this mill, the crushed particles have increased energy activity, which further contributes to the homogenization of the mixture components and their aggregation into structured agglomerates in an ultrasonic coagulator.
  • An additional positive effect of the creation of these agglomerates is the appearance of stable physical contact between a significant part of the components of the mixture of zircon and silicon, which contributes to the active synthesis of silicon monoxide and zirconium oxide at low temperatures. Compared with both analogues, the maximum synthesis temperature is reduced by 400 ° C. Also an additional positive effect in comparison with the prototype is a significant reduction in time for the manufacture of a similar volume of products. In the prototype, operations with containers take hours, and for the proposed method, the time from loading the input components to the manufacture of products from them is about half an hour.
  • FIG. 1 shows a block diagram of an industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide.
  • FIG. 2 schematically shows a synthesis furnace of silicon monoxide and zirconium oxide.
  • the industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide contains a loader I zircon and a silicon loader 2, which are connected to the mixer 3.
  • the mixer 3 is connected in series with a resonance vortex mill 4, an ultrasonic coagulator 5, a cyclone 6 and a furnace 7 for the synthesis of silicon monoxide and zirconium oxide, which is connected to the product acceptance unit 8, which contains cooling elements .
  • the furnace 7 includes a housing 9 with a heating shell, which, as an option, is installed obliquely and connected with the device 10 for input components and the device
  • the housing 9 is made with the possibility of its rotation and is connected with a drive, which is not shown in the figure.
  • the cavity of the housing 9 contains elements for mixing the reaction mixture.
  • the figure does not show the loading hopper on the device 10, which is connected to the lock chamber, heating elements, which are located in the device 1 1, as well as a system for maintaining a non-oxidizing environment, which is connected with the cavity of the housing 9.
  • the geometric dimensions of the furnace 7 are calculated according to the technical task for it productivity.
  • the input components from the zircon loader 1 and the silicon loader 2 are fed into the mixer 3, from which the resulting mixture enters the resonance vortex mill 4 and is intensively crushed by cavitation forces.
  • the crushed particles of the mixture which have not yet managed to substantially oxidize their surface, enter the ultrasonic coagulator 5 and form structured agglomerates under the influence of ultrasonic vibrations of a certain frequency. They are collected using cyclone 6 and fed into the loading hopper and the lock chamber of the device 10, through which they enter the furnace 7 for the synthesis of silicon monoxide and zirconium oxide.
  • Support synthesis temperature in the range from 1300 ° C to 1600 ° C, depending on the task regarding the size of the nanoparticles of the product and its other parameters.
  • the structured agglomerates are constantly mixed by rotating the housing 9 or, alternatively, by elements for mixing.
  • a forevacuum and / or flow argon is maintained using a non-oxidative environment maintenance system.
  • the movement of gases in the cavity of the housing 9 is carried out under the action of gas, which is pumped, and / or as a result of their evacuation by a vacuum pump of a system for maintaining a non-oxidizing environment.
  • the vacuum pump pumps out the synthesized silicon monoxide gas from the cavity of the casing 9, which enters the device 1 1, heated to a temperature of about 1200 ° C, which prevents solid silicon monoxide from sticking to its walls.
  • silicon monoxide gas is deposited to form a silicon monoxide nanopowder.
  • the structure of these particles is amorphous in the form of fluffy agglomerates.

Abstract

A method for the combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and an industrial complex for implementing same relate to the field of producing nanomaterials used as raw materials for producing semiconducting elements, various ceramics, fire-resistant coatings, composite materials, catalysts and the like. Zircon and silicon are mixed, fed into a resonant vortex mill (4), an ultrasonic coagulator (5), a cyclone (6) and a furnace (7) for synthesizing silicon monoxide and zirconium oxide. Combined synthesis is carried out in a non-oxidizing environment at a temperature in the range of 1300°C to 1600°C. The product is cooled, as a result of which a silicon monoxide gas is precipitated, forming a silicon monoxide nanopowder. A zirconium oxide nanopowder is produced as a solid product of said synthesis.

Description

Способ совместного производства нанопорошков монооксида кремния и оксида циркония и промышленный комплекс для его реализации  Method for the joint production of nanopowders of silicon monoxide and zirconium oxide and an industrial complex for its implementation
[001] Изобретение относится к отрасли нанотехнологий, а именно производства нанопорошков, которые используются в качестве сырья для изготовления полупроводниковых элементов, разнообразной керамики, огнестойких покрытий, композитных материалов, катализаторов и тому подобное. [001] The invention relates to the field of nanotechnology, namely the production of nanopowders, which are used as raw materials for the manufacture of semiconductor elements, various ceramics, flame retardant coatings, composite materials, catalysts and the like.
[002] Известный способ совместного производства нанопорошков монооксида кремния и оксида циркония (публ. US N_ 4755365 (А), СО 1G 25/02), по которому циркон и углеродосодержащий материал, который не выделяет газ при температуре, которая ниже 1000 °С, смешивают в определенном процентном соотношении. Полученную смесь загружают в печь синтеза оксида циркония и монооксида кремния, в которой поддерживают неокислительную среду и температуру на первом этапе в диапазоне температур от 1200 °С до 1550 °С и на втором этапе - от 1550 °С до 2000 °С. В этой печи одновременно синтезируют нанопорошок оксида циркония, который направляют к блоку приемки продукции, где его охлаждают и газ монооксида кремния, который выпускают.  [002] A known method for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US N_ 4755365 (A), CO 1G 25/02), in which zircon and carbon-containing material that does not emit gas at a temperature that is below 1000 ° C, mixed in a certain percentage. The resulting mixture is loaded into a furnace for the synthesis of zirconium oxide and silicon monoxide, in which a non-oxidizing medium and a temperature are maintained in the first stage in the temperature range from 1200 ° C to 1550 ° C and in the second stage from 1550 ° C to 2000 ° C. In this furnace, a zirconium oxide nanopowder is simultaneously synthesized, which is sent to the product acceptance unit, where it is cooled and the silicon monoxide gas that is released.
[003] Совпадают с существенными признаками способа, который заявляется, признаки, по которым циркон и вспомогательный материал смешивают в определенном процентном соотношении. Полученную смесь загружают в печь синтеза оксида циркония и монооксида кремния, в которой поддерживают неокислительную среду и температуру диапазоне в диапазоне от 1300 °С до 1600 °С. В этой печи одновременно синтезируют нанопорошок оксида циркония, который направляют в блок приемки продукции, где его охлаждают, и газ монооксида кремния. [004] Недостаток известного способа состоит в том, что в печь синтеза оксида циркония и монооксида кремния загружают смесь циркона и вспомогательного материала, которая имеет недостаточную диспергацию и гомогенизацию, что затрудняет реакцию между ними, в результате чего синтез оксида циркония и монооксида кремния проводят при повышенных температурах. [003] Coincide with the essential features of the method that is claimed, the features by which zircon and auxiliary material are mixed in a certain percentage. The resulting mixture is loaded into a furnace for the synthesis of zirconium oxide and silicon monoxide, in which a non-oxidizing medium and a temperature in the range from 1300 ° C to 1600 ° C are maintained. In this furnace, zirconium oxide nanopowder is simultaneously synthesized, which is sent to the product acceptance unit, where it is cooled, and silicon monoxide gas. [004] A disadvantage of the known method is that a mixture of zircon and auxiliary material, which has insufficient dispersion and homogenization, is loaded into the synthesis furnace of zirconium oxide and silicon monoxide, which complicates the reaction between them, as a result of which the synthesis of zirconium oxide and silicon monoxide is carried out at elevated temperatures.
[005] Известный способ совместного производства нанопорошков монооксида кремния и оксида циркония (публ. US N° 5096685 (А), B01J 3/00, С01В 33/113, COIF П/22, COIF 7/38, COIG 25/O2), выбранный как ближайший аналог, по которому диоксид кремния, который связан с цирконом, и кремний смешивают в определенном процентном соотношении, загружают полученную смесь в печь синтеза монооксида кремния и оксида циркония, в которой поддерживают неокислительную среду и температуру в диапазоне от 1300 °С до 2000 °С. В этой печи одновременно синтезируют газ монооксида кремния и нанопорошок оксида циркония, которые направляют в блок приемки продукции, где их охлаждают. При этом газ монооксида кремния осаждается с образованием нанопорошка монооксида кремния.  [005] A known method for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US N ° 5096685 (A), B01J 3/00, C01B 33/113, COIF P / 22, COIF 7/38, COIG 25 / O2), selected as the closest analogue in which silicon dioxide, which is bound to zircon, and silicon are mixed in a certain percentage, the resulting mixture is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, in which a non-oxidizing medium and a temperature in the range from 1300 ° C to 2000 are maintained ° C. In this furnace, silicon monoxide gas and zirconia nanopowder are simultaneously synthesized, which are sent to the product acceptance unit, where they are cooled. In this case, silicon monoxide gas is deposited to form a silicon monoxide nanopowder.
[006] Совпадают с существенными признаками способа, который заявляется, признаки, по которым циркон и кремний смешивают в определенном процентном соотношении, загружают полученную смесь в печь синтеза монооксида кремния и оксида циркония, в которой поддерживают неокислительную среду и температуру в диапазоне от 1300 °С до 1600 °С. В этой печи одновременно синтезируют газ монооксида кремния и нанопорошок оксида циркония, которые направляют к блоку приемки продукции, где их охлаждают. При этом газ монооксида кремния осаждается с образованием нанопорошка монооксида кремния.  [006] Coincide with the essential features of the method that is claimed, the features by which zircon and silicon are mixed in a certain percentage ratio, load the mixture into a synthesis furnace of silicon monoxide and zirconium oxide, in which a non-oxidizing environment and a temperature in the range from 1300 ° C are maintained up to 1600 ° C. In this furnace, silicon monoxide gas and zirconia nanopowder are simultaneously synthesized, which are sent to the product acceptance unit, where they are cooled. In this case, silicon monoxide gas is deposited to form a silicon monoxide nanopowder.
[007] Недостаток известного способа состоит в том, что в печь синтеза монооксида кремния и оксида циркония загружают смесь циркона и кремния, которая имеет недостаточную диспергацию и гомогенизацию, что затрудняет реакцию между ними, в результате чего синтез монооксида кремния и оксида циркония проводят при повышенных температурах. [007] A disadvantage of the known method is that a mixture of zircon and zircon is loaded into a synthesis furnace of silicon monoxide and zirconium oxide. silicon, which has insufficient dispersion and homogenization, which complicates the reaction between them, as a result of which the synthesis of silicon monoxide and zirconium oxide is carried out at elevated temperatures.
[008] В основу изобретения поставлена задача усовершенствования известного способа, в котором путем технологических изменений улучшить диспергацию и гомогенизацию смеси циркона и кремния, которую загружают в печь синтеза монооксида кремния и оксида циркония, чем облегчить реакцию между ними, в результате чего синтез монооксида кремния и оксида циркония проводить при пониженных температурах. [008] The invention is based on the task of improving the known method, in which by technological changes to improve the dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a furnace for the synthesis of silicon monoxide and zirconium oxide, to facilitate the reaction between them, resulting in the synthesis of silicon monoxide and zirconium oxide is carried out at low temperatures.
[009] Известный промышленный комплекс для совместного производства нанопорошков монооксида кремния и оксида циркония (публ. US JMb 4755365 (А), СОЮ 25/02), который содержит загрузчики циркона и углесодержащего материала, смеситель, печь синтеза оксида циркония и монооксида кремния, которая связана с системой поддержания неокислительной среды. Выход этой печи связан с входом блока приемки продукции и выполненый с возможностью выхода газа монооксида кремния. [009] A well-known industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US JMb 4755365 (A), SOYU 25/02), which contains loaders of zircon and carbon-containing material, a mixer, a furnace for the synthesis of zirconium oxide and silicon monoxide, which linked to a non-oxidative environment maintenance system. The output of this furnace is connected to the input of the product acceptance unit and configured to exit the gas of silicon monoxide.
[010] Совпадают с существенными признаками промышленного комплекса, который заявляется, загрузчики циркона и вспомогательного материала, смеситель, печь синтеза оксида циркония и моноксида кремния, которая связана с системой поддержания неокислительной среды. Выход этой печи связан с входом блока приемки продукции.  [010] Coincide with the essential features of the industrial complex, which is claimed, loaders of zircon and auxiliary material, a mixer, a furnace for the synthesis of zirconium oxide and silicon monoxide, which is associated with a system for maintaining a non-oxidizing environment. The output of this furnace is connected to the input of the product acceptance unit.
[011] Недостаток известного промышленного комплекса состоит в недостаточном обеспечении условий для диспергации и гомогенизации смеси циркона и вспомогательного материала, которую загружают в печь синтеза оксида циркония и монооксида кремния, что затрудняет реакцию между ними, в результате чего синтез оксида циркония и монооксида кремния проводят при повышенных температурах. [012] Известный промышленный комплекс для совместного производства нанопорошков монооксида кремния и оксида циркония (публ. US 5096685 (A), B01J 3/00, С01В 33/113, C01F 1 1/22, C01F 7/38, СО 1G 25/02), выбранный как ближайший аналог, который содержит загрузчики диоксида кремния, который связан с цирконом, и кремния, смеситель, печь синтеза монооксида кремния и оксида циркония, которая содержит контейнер для диоксида кремния, который связан с цирконом, и кремния. Эта печь связана с системой поддержания неокислительной среды и ее выход связан с входом блока приемки продукции с элементами охлаждения. [011] A disadvantage of the known industrial complex is the insufficient conditions for dispersion and homogenization of a mixture of zircon and auxiliary material, which is loaded into a furnace for the synthesis of zirconium oxide and silicon monoxide, which complicates the reaction between them, as a result of which the synthesis of zirconium oxide and silicon monoxide is carried out at elevated temperatures. [012] A well-known industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide (publ. US 5096685 (A), B01J 3/00, C01B 33/113, C01F 1 1/22, C01F 7/38, CO 1G 25/02 ), selected as the closest analogue that contains silica and zircon loaders, and a silicon, a mixer, a silica and zirconia synthesis furnace that contains a silica container that is bound to zircon and silicon. This furnace is connected to a system for maintaining a non-oxidizing environment and its output is connected to the input of the product acceptance unit with cooling elements.
[013] Совпадают с существенными признаками промышленного комплекса, который заявляется, загрузчики циркона и кремния, смеситель, печь синтеза монооксида кремния и оксида циркония. Эта печь связана с системой поддержания неокислительной среды и ее выход связан с входом блока приемки продукции с элементами охлаждения.  [013] Coincide with the essential features of the industrial complex that is claimed, zircon and silicon loaders, a mixer, a furnace for the synthesis of silicon monoxide and zirconium oxide. This furnace is connected to a system for maintaining a non-oxidizing environment and its output is connected to the input of the product acceptance unit with cooling elements.
[014] Недостаток известного промышленного комплекса состоит в недостаточном обеспечении условий для диспергации и гомогенизации смеси циркона и кремния, которую загружают в печь синтеза монооксида кремния и оксида циркония, что затрудняет реакцию между ними, в результате чего синтез монооксида кремния и оксида циркония проводят при повышенных температурах.  [014] A disadvantage of the known industrial complex is the insufficient conditions for dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, which complicates the reaction between them, as a result of which the synthesis of silicon monoxide and zirconium oxide is carried out at temperatures.
[015] В основу изобретения поставлена задача усовершенствования известного промышленного комплекса, в котором путем конструктивных изменений улучшить условия для диспергации и гомогенизации смеси циркона и кремния, которую загружают в печь синтеза монооксида кремния и оксида циркония, чем облегчить реакцию между ними, в результате чего синтез монооксида кремния и оксида циркония проводить при пониженных температурах. [016] В способе совместного производства нанопорошков монооксида кремния и оксида циркония, по которому циркон и кремний смешивают в определенном процентном соотношении, загружают полученную смесь в печь синтеза монооксида кремния и оксида циркония, в которой поддерживают неокислительную среду, температуру в диапазоне от 1300 °С до 1600 °С и одновременно синтезируют газ монооксида кремния и нанопорошок оксида циркония, которые направляют к блоку приемки продукции, где их охлаждают, при этом газ монооксида кремния осаждается с образованием нанопорошка монооксида кремния, согласно изобреиению циркон и кремний дополнительно смешивают в резонансновихревой мельнице, полученные частицы смеси подвергают коагуляции под действием ультразвуковых волн и направляют через циклон в печь синтеза монооксида кремния и оксида циркония, в которой процесс синтеза проводят с перемешиванием частиц реакцийнной смеси. [015] The invention is based on the task of improving a well-known industrial complex, in which, through structural changes, improve the conditions for dispersion and homogenization of a mixture of zircon and silicon, which is loaded into a synthesis furnace of silicon monoxide and zirconium oxide, than to facilitate the reaction between them, resulting in synthesis silicon monoxide and zirconium oxide to conduct at low temperatures. [016] In the method for co-production of nanopowders of silicon monoxide and zirconium oxide, in which zircon and silicon are mixed in a certain percentage, the resulting mixture is loaded into a synthesis furnace of silicon monoxide and zirconium oxide in which a non-oxidizing medium is maintained, a temperature in the range of 1300 ° C. up to 1600 ° C and at the same time synthesize a gas of silicon monoxide and nanopowder of zirconium oxide, which are sent to the unit for receiving products, where they are cooled, while the gas of silicon monoxide is deposited with the formation of n noporoshka silicon monoxide, according izobreieniyu zircon and silicon is further mixed in rezonansnovihrevoy mill, the particles obtained mixture was subjected to coagulation by the action of ultrasonic waves through a cyclone and directed to the furnace silicon monoxide and the synthesis of zirconium oxide, wherein the synthesis process is carried out with stirring reaktsiynnoy particle mixture.
[017] В промышленном комплексе для совместного производства нанопорошков монооксида кремния и оксида циркония, который содержит загрузчики циркона и кремния, смеситель, печь синтеза монооксида кремния и оксида циркония, которая связана с системой поддержания неокислительной среды и выход которой связан с входом блока приемки продукции с элементами охлаждения, согласно изобреиению выход смесителя связан с входом резонансновихревой мельницы, выход которой связан с входом ультразвукового коагулятора, выход которого связан с входом циклона, выход которого связан с входом печи синтеза монооксида кремния и оксида циркония, которая изготовлена с возможностью перемешивания частиц реакцийнной смеси. [017] In an industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide, which contains loaders of zircon and silicon, a mixer, a furnace for the synthesis of silicon monoxide and zirconium oxide, which is connected to a non-oxidative environment maintenance system and the output of which is connected to the input of the product acceptance unit with cooling elements, according to the invention, the mixer output is connected to the input of the resonance vortex mill, the output of which is connected to the input of the ultrasonic coagulator, the output of which is connected to the input of the cyclo and whose output is connected to an input of the synthesis furnace silicon monoxide and zirconium oxide, which is made with the possibility of mixing the particles reaktsiynnoy mixture.
[018] Совокупность основных признаков предлагаемого способа обеспечивает решение поставленной задачи. Использованная резонансновихревая мельница перемалывает частицы циркону, размер которых от 50 мкм до 150 мкм, и частицы кремния, размер которых от 1 мм до 3 мм, до размеров единиц микрометров, интенсивно перемешивает их, чем обеспечивает високую степень диспергацп и гомогенизации а следовательно увеличение поверхности распределения фаз этих реагентов. Это улучшает условия для начала синтеза. Сразу после выхода из этой мельницы измельченные частицы имеют повышенную энергетическую активность, что дополнительно способствует гомогенизации компонент смеси и агрегатизации их в структурированные агломераты в ультразвуковом коагуляторе. Дополнительным положительным эффектом создания этих агломератов есть появление стабильного физического контакта между значительной частью компонент смеси циркона и кремния, который способствует активному синтезу монооксида кремния и оксида циркония при пониженных температурах. По сравнению с обоими аналогами максимальная температура синтеза снижена на 400 °С. Также дополнительным положительным эффектом по сравнению с прототипом есть значительное сркращение времени для изготовления аналогичного объема продукции. В прототипе операции с контейнерами занимают часы, а за предлагаемым способом время от загрузки входных компонент до изготовления из них продукции составляет около получаса. [018] the Set of the main features of the proposed method provides a solution to the problem. The used resonance vortex mill grinds zircon particles from 50 μm to 150 μm in size and silicon particles from 1 mm in size up to 3 mm, to the size of units of micrometers, intensively mixes them, which ensures a high degree of dispersion and homogenization and, consequently, an increase in the surface of the phase distribution of these reagents. This improves the conditions for starting the synthesis. Immediately after exiting this mill, the crushed particles have increased energy activity, which further contributes to the homogenization of the mixture components and their aggregation into structured agglomerates in an ultrasonic coagulator. An additional positive effect of the creation of these agglomerates is the appearance of stable physical contact between a significant part of the components of the mixture of zircon and silicon, which contributes to the active synthesis of silicon monoxide and zirconium oxide at low temperatures. Compared with both analogues, the maximum synthesis temperature is reduced by 400 ° C. Also an additional positive effect in comparison with the prototype is a significant reduction in time for the manufacture of a similar volume of products. In the prototype, operations with containers take hours, and for the proposed method, the time from loading the input components to the manufacture of products from them is about half an hour.
[019] Совокупность основных признаков предлагаемого промышленного комплекса обеспечивает решение поставленной задачи, что подтверждается теми же доводами, которые приведены више относительно решения поставленной задачи в способе. [019] the Set of the main features of the proposed industrial complex provides a solution to the problem, which is confirmed by the same arguments that are given above regarding the solution of the problem in the method.
[020] На фиг. 1 изображено блок-схему промышленного комплекса для совместного производства нанопорошков монооксида кремния и оксида циркония.  [020] FIG. 1 shows a block diagram of an industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide.
[021] На фиг. 2 схематически изображено печ синтеза монооксида кремния и оксида циркония.  [021] In FIG. 2 schematically shows a synthesis furnace of silicon monoxide and zirconium oxide.
[022] Промышленный комплекс для совместного производства нанопорошков монооксида кремния и оксида циркония содержит загрузчик I циркона и загрузчик 2 кремния, которые связаны со смесителем 3. Смеситель 3 последовательно связан с резонансновихревой мельницей 4, ультразвуковым коагулятором 5, циклоном 6 и печью 7 синтеза монооксида кремния и оксида циркония, которая связана с блоком 8 приемки продукции, который содержит элементы охлаждения. Печь 7 содержит корпус 9 с нагревательной оболочкой, который, как вариант, установлен наклонно и связан с устройством 10 для входных компонент и устройством[022] The industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide contains a loader I zircon and a silicon loader 2, which are connected to the mixer 3. The mixer 3 is connected in series with a resonance vortex mill 4, an ultrasonic coagulator 5, a cyclone 6 and a furnace 7 for the synthesis of silicon monoxide and zirconium oxide, which is connected to the product acceptance unit 8, which contains cooling elements . The furnace 7 includes a housing 9 with a heating shell, which, as an option, is installed obliquely and connected with the device 10 for input components and the device
I I для выхода продуктов синтеза, которое связано з блоком 8. Корпус 9 изготовлен с возможностью его вращения и связан с приводом, который на рисунке не показан. По другому варианту полость корпуса 9 содержит элементы для перемешивания реакционной смеси. На рисунке не показаны загрузочный бункер на устройстве 10, который связан с шлюзовой камерой, нагревательные элементы, которые расположены в устройстве 1 1 , а также система поддержания неокислительной среды, которая связана с полостью корпуса 9. Геометрические размеры печи 7 рассчитывают соответственно техническому заданию по ее продуктивности. I I for the output of the synthesis products, which is connected to block 8. The housing 9 is made with the possibility of its rotation and is connected with a drive, which is not shown in the figure. In another embodiment, the cavity of the housing 9 contains elements for mixing the reaction mixture. The figure does not show the loading hopper on the device 10, which is connected to the lock chamber, heating elements, which are located in the device 1 1, as well as a system for maintaining a non-oxidizing environment, which is connected with the cavity of the housing 9. The geometric dimensions of the furnace 7 are calculated according to the technical task for it productivity.
[023] Промышленный комплекс для совместного производства нанопорошков монооксида кремния и оксида циркония, в котором реализован способ, который заявляется, работает таким образом.  [023] An industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide, which implements the method that is claimed to work in this way.
[024] Входные компонента из загрузчика 1 циркона и загрузчика 2 кремния подают в смеситель 3, из которого полученная смесь поступает в резонансновихревую мельницу 4 и интенсивно измельчается под действием сил кавитации. Измельченные частицы смеси, которые еще не успели в значительной степени окислить свою поверхность, поступают в ультразвуковой коагулятор 5 и под влиянием ультразвуковых колебаний определенной частоты образуют структурированные агломераты. Их собирают с помощью циклона 6 и подают в загрузочный бункер и шлюзовую камеру устройства 10, через которую они поступают в печь 7 синтеза монооксида кремния и оксида циркония. Поддерживают температуру синтеза в диапазоне от 1300 °С до 1600 °С в зависимости от задания относительно размеров наночастиц продукции и других ее параметров. При этом структурированные агломераты постоянно перемешивают путем вращения корпуса 9 или по другому варианту элементами для перемешивания. В полости корпуса 9 с помощью системы поддержания неокислительной среды поддерживают или форвакуум и/или проточний аргон. Движение газов в полости корпуса 9 осуществляют под действием газа, который нагнетают, и/или в результате их откачки вакуумным насосом системы поддержания неокислительной среды. В частности вакуумний насос откачивает из полости корпуса 9 синтезированный газ монооксида кремния, который поступает в устройство 1 1 , нагретое до температуры около 1200 °С, которая препятствует налипанию на его стенках твердого монооксида кремния. Вместе с газом монооксида кремния конгломераты наночастиц оксида циркония одновременно поступают в устройство И и дальше в блок 8 приемки продукции, где охлаждаются. При этом газ монооксида кремния осаждается с образованием нанопорошка монооксида кремния. Чистота полученого нанопорошка монооксида кремния > 99,9, размеры его частиц от 15 нм до 35 нм, чистота полученого нанопорошка оксида циркония > 99,9, размеры его частиц от 30 нм до 200 нм. Структура этих частиц аморфная в виде пушистых агломератов. [024] The input components from the zircon loader 1 and the silicon loader 2 are fed into the mixer 3, from which the resulting mixture enters the resonance vortex mill 4 and is intensively crushed by cavitation forces. The crushed particles of the mixture, which have not yet managed to substantially oxidize their surface, enter the ultrasonic coagulator 5 and form structured agglomerates under the influence of ultrasonic vibrations of a certain frequency. They are collected using cyclone 6 and fed into the loading hopper and the lock chamber of the device 10, through which they enter the furnace 7 for the synthesis of silicon monoxide and zirconium oxide. Support synthesis temperature in the range from 1300 ° C to 1600 ° C, depending on the task regarding the size of the nanoparticles of the product and its other parameters. At the same time, the structured agglomerates are constantly mixed by rotating the housing 9 or, alternatively, by elements for mixing. In the cavity of the casing 9, either a forevacuum and / or flow argon is maintained using a non-oxidative environment maintenance system. The movement of gases in the cavity of the housing 9 is carried out under the action of gas, which is pumped, and / or as a result of their evacuation by a vacuum pump of a system for maintaining a non-oxidizing environment. In particular, the vacuum pump pumps out the synthesized silicon monoxide gas from the cavity of the casing 9, which enters the device 1 1, heated to a temperature of about 1200 ° C, which prevents solid silicon monoxide from sticking to its walls. Together with the gas of silicon monoxide, conglomerates of zirconium nanoparticles simultaneously enter the device And and then into the unit 8 for receiving products, where they are cooled. In this case, silicon monoxide gas is deposited to form a silicon monoxide nanopowder. The purity of the obtained nanopowder of silicon monoxide> 99.9, the size of its particles from 15 nm to 35 nm, the purity of the obtained nanopowder of zirconium oxide> 99.9, the size of its particles from 30 nm to 200 nm. The structure of these particles is amorphous in the form of fluffy agglomerates.
[025] Предлагаемые способ совместного производства нанопорошков монооксида кремния и оксида циркония и промышленный комплекс для его реализации успешно прошли экспериментальные испытания в условиях, близких к промышленному производству. Подтвердилась их високая экономичность, надежность, экологичность и высокое качество продукции.  [025] The proposed method for the joint production of nanopowders of silicon monoxide and zirconium oxide and an industrial complex for its implementation have successfully passed experimental tests in conditions close to industrial production. Their high profitability, reliability, environmental friendliness and high quality of products were confirmed.

Claims

Формула изобретения Claim
1. Способ совместного производства нанопорошков монооксида кремния и оксида циркония, по которому циркон и кремний смешивают в определенном процентном соотношении, загружают полученную смесь в печь синтеза монооксида кремния и оксида циркония, в которой поддерживают неокислительную среду, температуру в диапазоне от 1300 °С до 1600 °С и одновременно синтезируют газ монооксида кремния и нанопорошок оксида циркония, которые направляют к блоку приемки продукции, где их охлаждают, при этом газ монооксида кремния осаждается с образованием нанопорошка монооксида кремния, который отличается тем, что циркон и кремний дополнительно смешивают в резонансновихревой мельнице, полученные частицы смеси подвергают коагуляции под действием ультразвуковых волн и направляют через циклон в печь синтеза монооксида кремния и оксида циркония, в которой процесс синтеза проводят с перемешиванием частиц реакцийнной смеси. 1. The method of co-production of nanopowders of silicon monoxide and zirconium oxide, in which zircon and silicon are mixed in a certain percentage, load the mixture into a furnace for the synthesis of silicon monoxide and zirconium oxide, in which a non-oxidizing medium is maintained, a temperature in the range from 1300 ° C to 1600 ° C and at the same time synthesize a gas of silicon monoxide and nanopowder of zirconium oxide, which are sent to the unit for receiving products, where they are cooled, while the gas of silicon monoxide is deposited with the formation of nanoparticles silica monoxide powder, characterized in that zircon and silicon are additionally mixed in a resonance vortex mill, the obtained particles of the mixture are coagulated by ultrasonic waves and sent through a cyclone to a synthesis furnace of silicon monoxide and zirconium oxide, in which the synthesis process is carried out with mixing of particles of the reaction mixture .
2. Промышленный комплекс для совместного производства нанопорошков монооксида кремния и оксида циркония, который содержит загрузчики циркона и кремния, смеситель, печь синтеза монооксида кремния и оксида циркония, которая связана с системой поддержания неокислительной среды и выход которой связан с входом блока приемки продукции с элементами охлаждения, который отличается тем, что выход смесителя связан с входом резонансновихревой мельницы, выход которой связан с входом ультразвукового коагулятора, выход которого связан с входом циклона, выход которого связан с входом печи синтеза монооксида кремния и оксида циркония, которая изготовлена с возможностью перемешивания частиц реакцийнной смеси.  2. Industrial complex for the joint production of nanopowders of silicon monoxide and zirconium oxide, which contains loaders of zircon and silicon, a mixer, a furnace for the synthesis of silicon monoxide and zirconium oxide, which is connected to a system for maintaining a non-oxidizing environment and the output of which is connected to the input of the product acceptance unit with cooling elements , which differs in that the mixer output is connected to the input of the resonance vortex mill, the output of which is connected to the input of the ultrasonic coagulator, the output of which is connected to the input of the cycle it, the output of which is connected to the input of the synthesis furnace of silicon monoxide and zirconium oxide, which is made with the possibility of mixing particles of the reaction mixture.
PCT/UA2017/000031 2016-03-29 2017-03-28 Method for combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and industrial complex for implementing same WO2017171690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201603256A UA114572C2 (en) 2016-03-29 2016-03-29 METHOD OF CO-OPERATIVE PRODUCTION OF NANO-POWDER MONOXIDE SILICON AND ZIRCONIUM OXIDE AND INDUSTRIAL COMPLEX FOR ITS IMPLEMENTATION
UAA201603256 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017171690A1 true WO2017171690A1 (en) 2017-10-05

Family

ID=59093305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2017/000031 WO2017171690A1 (en) 2016-03-29 2017-03-28 Method for combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and industrial complex for implementing same

Country Status (2)

Country Link
UA (1) UA114572C2 (en)
WO (1) WO2017171690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141024A (en) * 2022-05-06 2022-10-04 大连海恒纳米科技有限公司 Preparation method of material for preventing refractory concrete from cracking and material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815021A (en) * 1981-07-15 1983-01-28 Showa Denko Kk Simultaneous manufacture of beta-sic and zro2
US5096685A (en) * 1985-07-27 1992-03-17 Kawasaki Steel Corporation Method for manufacturing fine-grained silicon monoxide
RU2058939C1 (en) * 1991-06-26 1996-04-27 Всероссийский научно-исследовательский институт химической технологии Method for production of zirconium dioxide powder for ceramics manufacture
JP2003119017A (en) * 2001-10-11 2003-04-23 Denki Kagaku Kogyo Kk Method of producing lower silicon oxide powder
CN1733611A (en) * 2005-08-12 2006-02-15 安泰科技股份有限公司 Zirconium dioxide nano powder material preparation method
CN103599736A (en) * 2013-11-11 2014-02-26 东华大学 Preparation method of magnetic mesoporous zirconium dioxide compound microsphere

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815021A (en) * 1981-07-15 1983-01-28 Showa Denko Kk Simultaneous manufacture of beta-sic and zro2
US5096685A (en) * 1985-07-27 1992-03-17 Kawasaki Steel Corporation Method for manufacturing fine-grained silicon monoxide
RU2058939C1 (en) * 1991-06-26 1996-04-27 Всероссийский научно-исследовательский институт химической технологии Method for production of zirconium dioxide powder for ceramics manufacture
JP2003119017A (en) * 2001-10-11 2003-04-23 Denki Kagaku Kogyo Kk Method of producing lower silicon oxide powder
CN1733611A (en) * 2005-08-12 2006-02-15 安泰科技股份有限公司 Zirconium dioxide nano powder material preparation method
CN103599736A (en) * 2013-11-11 2014-02-26 东华大学 Preparation method of magnetic mesoporous zirconium dioxide compound microsphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141024A (en) * 2022-05-06 2022-10-04 大连海恒纳米科技有限公司 Preparation method of material for preventing refractory concrete from cracking and material

Also Published As

Publication number Publication date
UA114572C2 (en) 2017-06-26

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling
RU2762897C1 (en) Method for obtaining carbide powder of a high-entropy alloy with a spherical particle shape
CN101125653B (en) Method for synthesizing homogeneous nano silicon carbide powder by burning
CN108329721A (en) It is a kind of modified micaceous and its preparation method and application
JP2005529827A (en) Process for the production of precipitated calcium carbonate and products produced thereby
WO2017171690A1 (en) Method for combined production of silicon monoxide nanopowder and zirconium oxide nanopowder and industrial complex for implementing same
Simonenko et al. Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics
CN1191194C (en) Method for preparing aluminium nitrides and nitrogen oxides by combustion synthesis
JPS61146710A (en) Production of fine barium titanate particle of high purity
US11713251B2 (en) Method for preparing powdered composite carbide of tungsten and titanium
Borovinskaya et al. Aluminum oxynitride by SHS in chemical furnace
KR102235364B1 (en) Process for Synthesizing of Manganese Sulfide using Electrolytic Manganese Flake and Elemental Sulfur Powder
KR101388961B1 (en) Syntheses of zirconium oxide by hydrothermal methed
CN104310992B (en) Molten-salt growth method synthesis La 2o 3-MgO-TiO 2be dielectric ceramic sintering powder and sintering method thereof
JP2013224245A (en) METHOD FOR MANUFACTURING BaTi2O5-BASED COMPOSITE OXIDE
Rongsawat et al. In situ combustion synthesis in air of calcium titanate powders using minerals as a calcium source
JP6734552B1 (en) Catalyst particles and hydrogen production method using the same
Reichle et al. On the Theory and Recent Developments in “Batch Mechanochemical Synthesis–Scale-Up”
RU2697140C1 (en) Method of producing powder based on refractory compounds
JP6923046B2 (en) Catalyst particles and hydrogen production method using them
Bazhin et al. The impact of mechanical effects on granulometric composition of TiB2-based materials
Charoonsuk et al. Perovskite phase formation of monosized lead zirconate (PbZrO3) nanoparticles prepared by the sono-assisted co-precipitation method
RU2678858C1 (en) Method for producing powder on the basis of refractory compounds
RU2808853C1 (en) PREPARATION OF NANOSTRUCTURED MATERIALS BASED ON BaZrO3
JP2007054799A (en) Manufacturing method of combustion synthesis material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17776020

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17776020

Country of ref document: EP

Kind code of ref document: A1