WO2017169561A1 - 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 - Google Patents

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2017169561A1
WO2017169561A1 PCT/JP2017/008957 JP2017008957W WO2017169561A1 WO 2017169561 A1 WO2017169561 A1 WO 2017169561A1 JP 2017008957 W JP2017008957 W JP 2017008957W WO 2017169561 A1 WO2017169561 A1 WO 2017169561A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel plate
steel sheet
production method
Prior art date
Application number
PCT/JP2017/008957
Other languages
English (en)
French (fr)
Inventor
秀和 南
船川 義正
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2018011861A priority Critical patent/MX2018011861A/es
Priority to JP2017535939A priority patent/JP6304455B2/ja
Priority to US16/086,431 priority patent/US11008632B2/en
Publication of WO2017169561A1 publication Critical patent/WO2017169561A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a thin steel plate and a plated steel plate, a hot rolled steel plate manufacturing method, a cold rolled full hard steel plate manufacturing method, a heat treated plate manufacturing method, a thin steel plate manufacturing method, and a plated steel plate manufacturing method.
  • the thin steel sheet and the like of the present invention can be suitably used as a structural member for automobile parts and the like.
  • Patent Document 1 provides excellent ductility by defining the component composition and by defining the volume fraction of ferrite, bainitic ferrite, and retained austenite. Steel plates have been proposed.
  • Patent Document 2 proposes a method for producing a high-strength cold-rolled steel sheet in which variation in elongation in the sheet width direction is improved.
  • Patent Documents 1 and 2 are particularly excellent in ductility, but none of the in-plane anisotropy of YP is considered.
  • the present invention was developed in view of such circumstances, has a TS of 540 MPa or more, is excellent in ductility, has a low yield ratio (YR), is excellent in in-plane anisotropy of YP, and is plated. And a manufacturing method of a hot-rolled steel sheet necessary for obtaining the thin steel sheet and the plated steel sheet, a manufacturing method of a cold-rolled full hard steel sheet, It is another object of the present invention to provide a method for manufacturing a heat treatment plate.
  • excellent ductility that is, El (total elongation) means that the value of TS ⁇ El is 15000 MPa ⁇ % or more.
  • being excellent in YP in-plane anisotropy means that the value of
  • is obtained by the following equation (1).
  • ⁇ YP ⁇ (YPL-2 ⁇ YPD + YPC) / 2 (1)
  • YPL, YPD and YPC are respectively the rolling direction (L direction) of the steel plate, the 45 ° direction (D direction) with respect to the rolling direction of the steel plate, and the direction perpendicular to the rolling direction of the steel plate (C direction). It is a value of YP measured by performing a tensile test at a crosshead speed of 10 mm / min using a JIS No. 5 test piece taken from the direction in accordance with the provisions of JIS Z 2241 (2011).
  • the inventors are eager to obtain a thin steel sheet having TS of 540 MPa or more, excellent ductility, low YR, excellent YP in-plane anisotropy, and excellent plating properties when plated. As a result of repeated studies, the following was found.
  • the second phase meaning phases other than ferrite. Specifically, martensite, non-recrystallized ferrite, tempered martensite, bainite, tempered bainite, By appropriately adjusting the area ratio of martensite, which is one of pearlite, cementite (including alloy carbide), retained austenite, etc., it is possible to improve ductility, decrease YR, and in-plane YP It has been found that the reduction of anisotropy can be realized at the same time, and the plating performance when plating is improved.
  • the present invention has been made based on the above findings. That is, the gist configuration of the present invention is as follows.
  • the component composition further includes, by mass%, Mo: 0.01% to 0.50%, Ti: 0.001% to 0.100%, Nb: 0.001% to 0.100 %: V: 0.001% to 0.100%, B: 0.0001% to 0.0050%, Cr: 0.01% to 1.00%, Cu: 0.01% to 1 0.000% or less, Ni: 0.01% or more and 1.00% or less, As: 0.001% or more and 0.500% or less, Sb: 0.001% or more and 0.200% or less, Sn: 0.001% 0.200% or less, Ta: 0.001% or more and 0.100% or less, Ca: 0.0001% or more and 0.0200% or less, Mg: 0.0001% or more and 0.0200% or less, Zn: 0.001% or less. 001% to 0.020%, Co: 0.001% to 0.020.
  • the steel slab having the component composition described in [1] or [3] is heated and subjected to rough rolling, and in the subsequent finish rolling, the finish rolling entry temperature is 1020 ° C. or higher and 1180 ° C. or lower.
  • the manufacturing method of the hot-rolled steel plate which cools by average cooling rate 5 degreeC / s or more and 90 degrees C / s or less, and winds on the conditions whose winding temperature is 300 degreeC or more and 700 degrees C or less.
  • [6] A method for producing a cold-rolled full hard steel plate, wherein the hot-rolled steel plate obtained by the production method according to [5] is pickled and cold-rolled at a rolling reduction of 35% or more.
  • a hot-rolled steel sheet obtained by the production method described in [5] or a cold-rolled full hard steel sheet obtained by the production method described in [6] has a maximum attainment temperature of T1 temperature or more and T2 temperature or less, [ Heating is performed under the condition that the residence time in the temperature range from the maximum temperature -50 ° C to the maximum temperature is 500 s or less, and the average cooling rate in the temperature range from [T1 temperature -10 ° C] to 550 ° C is 3 ° C / s.
  • T1 temperature (° C.) 745 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • T2 temperature (° C.) 960 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr] +350 ⁇ [% Ti] + 104 ⁇ [% V] It is.
  • [% X] is the content (mass%) of the component element X of the steel sheet.
  • the hot-rolled steel sheet obtained by the production method according to [5] or the cold-rolled full hard steel sheet obtained by the production method according to [6], has a maximum attainment temperature of T1 temperature or more and T2 temperature or less, [ A method for producing a heat-treated plate in which the residence time in the temperature range from the maximum temperature to -50 ° C. to the maximum temperature is heated under conditions of 500 s or less, then cooled and pickled.
  • T1 temperature (° C.) 745 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • T2 temperature (° C.) 960 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr] +350 ⁇ [% Ti] + 104 ⁇ [% V] It is.
  • [% X] is the content (mass%) of the component element X of the steel sheet.
  • the heat-treated plate obtained by the production method according to [8] is heated again to T1 temperature or higher, and then the average cooling rate in the temperature range from [T1 temperature ⁇ 10 ° C.] to 550 ° C. is 3 ° C./s.
  • [10] A method for producing a plated steel sheet, in which a thin steel sheet obtained by the production method according to [7] or [9] is plated.
  • the thin steel plate and plated steel plate obtained by the present invention have a TS of 540 MPa or more, excellent ductility, low yield ratio (YR), excellent YP in-plane anisotropy, and plating. Excellent plating ability. Further, by applying the thin steel plate and the plated steel plate obtained by the present invention to, for example, an automobile structural member, the fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
  • TS is preferably 590 MPa or more.
  • the manufacturing method of the hot-rolled steel sheet of the present invention, the manufacturing method of the cold-rolled full hard steel sheet, and the manufacturing method of the heat-treated sheet are thin steel sheets as a manufacturing method of intermediate products for obtaining the above excellent thin steel sheets and plated steel sheets. And contributes to the above-described improvement of the properties of plated steel sheets.
  • the present invention is a thin steel plate and a plated steel plate, a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, a method for producing a heat-treated plate, a method for producing a thin steel plate, and a method for producing a plated steel plate.
  • the thin steel plate of the present invention is also an intermediate product for obtaining the plated steel plate of the present invention.
  • a steel material such as a slab
  • the thin steel plate of the present invention is a thin steel plate in the above process. In some cases, a thin steel plate is the final product.
  • the manufacturing method of the hot-rolled steel sheet of the present invention is a manufacturing method until obtaining the hot-rolled steel sheet in the above process.
  • the method for producing a cold-rolled full hard steel plate according to the present invention is a method for obtaining a cold-rolled full hard steel plate from a hot-rolled steel plate in the above process.
  • the method for producing a heat-treated plate according to the present invention is a method for producing a heat-treated plate from a hot-rolled steel plate or a cold-rolled full hard steel plate in the above process in the case of the two-time method.
  • the manufacturing method of the thin steel plate of the present invention is the above-described process, in the case of the one-time method, the manufacturing method until obtaining the thin steel plate from the hot-rolled steel plate or the cold-rolled full hard steel plate, and in the case of the two-time method, from the heat-treated plate to the thin steel plate It is a manufacturing method until it obtains.
  • the method for producing a plated steel sheet according to the present invention is a process for obtaining a plated steel sheet from a thin steel sheet in the above process.
  • the component compositions of hot-rolled steel sheet, cold-rolled full hard steel sheet, heat-treated sheet, thin steel sheet and plated steel sheet are common, and the steel structures of thin steel sheet and plated steel sheet are common.
  • a thin steel plate, a plated steel plate, and a manufacturing method are common.
  • the thin steel sheets and the like of the present invention are in mass%, C: 0.03% or more and 0.20% or less, Si: 0.70% or less, Mn: 1.50% or more and 3.00% or less, P: 0.00. 001% to 0.100%, S: 0.0001% to 0.0200%, Al: 0.001% to 1.000%, N: 0.0005% to 0.0100%
  • the balance has a component composition consisting of Fe and inevitable impurities.
  • the component composition further includes, in mass%, Mo: 0.01% to 0.50%, Ti: 0.001% to 0.100%, Nb: 0.001% to 0.100%, V: 0.001% to 0.100%, B: 0.0001% to 0.0050%, Cr: 0.01% to 1.00%, Cu: 0.01% to 1.00%
  • Mo 0.01% to 0.50%
  • Ti 0.001% to 0.100%
  • Nb 0.001% to 0.100%
  • V 0.001% to 0.100%
  • B 0.0001% to 0.0050%
  • Cr 0.01% to 1.00%
  • Cu 0.01% to 1.00%
  • Ni 0.01% to 1.00%
  • Sb 0.001% to 0.200%
  • Sn 0.001% to 0.000.
  • Ta 0.001% to 0.100%
  • Ca 0.0001% to 0.0200%
  • Mg 0.0001% to 0.0200%
  • Zn 0.001% or more 0.020% or less
  • Co 0.001% or more and 0.020% or less
  • Zr 0.001% to 0.020% or less
  • REM may contain at least one element selected from among 0.0001% to 0.0200% or less.
  • % representing the content of a component means “mass%”.
  • C 0.03% or more and 0.20% or less C is one of the important basic components of steel.
  • the area ratio of austenite when heated in a two-phase region, and thus after transformation It is an important element because it affects the area ratio of martensite.
  • the mechanical properties such as the strength of the steel sheet to be obtained greatly depend on the martensite fraction (area ratio), hardness and average size.
  • the C content is less than 0.03%, the martensite fraction cannot be secured, and it is difficult to secure the strength of the steel sheet.
  • the C content is within the range of 0.03% to 0.20%.
  • the preferable C content for the lower limit is 0.04% or more.
  • the preferable C content is 0.15% or less, more preferably 0.12% or less.
  • Si 0.70% or less
  • Si is an element that improves workability such as elongation by reducing the amount of solid solution C in the ⁇ phase.
  • the Si content is 0.70% or less, preferably 0.60% or less, more preferably 0.50% or less.
  • the Si amount is 0.40% or less, it is possible to further suppress an increase in the surface concentration of Si during annealing, and to reduce the wettability of the surface of the annealed plate. Since it can suppress more, plating adhesiveness and adhesiveness become higher. Therefore, the Si content is 0.40% or less, preferably 0.35% or less. In the present invention, the Si content is usually 0.01% or more.
  • Mn 1.50% to 3.00% Mn is effective for securing the strength of the steel sheet.
  • the hardenability is improved to facilitate complex organization.
  • Mn has an effect of suppressing the formation of pearlite and bainite during the cooling process, and facilitates transformation from austenite to martensite.
  • the Mn content needs to be 1.50% or more.
  • the Mn content exceeds 3.00%, the average martensite size increases, so that the local elongation decreases and the total elongation decreases. Moreover, spot weldability and plating property are impaired. In addition, castability is deteriorated.
  • the Mn content is 1.50% or more and 3.00% or less.
  • the preferable Mn content for the lower limit is 1.60% or more.
  • the preferable Mn content for the upper limit is 2.70% or less, more preferably 2.40% or less.
  • P 0.001% or more and 0.100% or less
  • P is an element that has an effect of solid solution strengthening and can be added according to a desired strength.
  • it is an element effective for complex organization in order to promote ferrite transformation. In order to acquire such an effect, it is necessary to make P content 0.001% or more.
  • the P content exceeds 0.100%, it segregates at the ferrite grain boundaries or the heterogeneous interface between ferrite and martensite and embrittles the grain boundaries, so the local elongation decreases and the total elongation decreases.
  • the weldability is deteriorated, and when the hot dip galvanizing is alloyed, the alloying speed is greatly delayed to deteriorate the quality of the plating.
  • the P content is set to 0.001% or more and 0.100% or less.
  • a preferable P content for the lower limit is 0.005% or more.
  • the preferable P content for the upper limit is 0.050% or less.
  • S 0.0001% or more and 0.0200% or less S segregates at the grain boundary and embrittles the steel during hot working, and also exists as a sulfide to reduce local deformability and reduce ductility. Therefore, the S content needs to be 0.0200% or less. On the other hand, it is necessary to make S content 0.0001% or more from the restrictions on production technology. Therefore, the S content is set to 0.0001% or more and 0.0200% or less. A preferable S content for the lower limit is 0.0001% or more. The preferable S content for the upper limit is 0.0050% or less.
  • Al 0.001% or more and 1.000% or less
  • Al is an element effective for suppressing the formation of carbides and promoting the formation of martensite.
  • Al is an element added as a deoxidizer in the steel making process. In order to obtain such an effect, the Al content needs to be 0.001% or more.
  • the Al content if the Al content exceeds 1.000%, the inclusions in the steel sheet increase and the ductility deteriorates. Therefore, the Al content is 0.001% or more and 1.000% or less.
  • a preferable Al content for the lower limit is 0.030% or more.
  • the preferable Al content for the upper limit is 0.500% or less.
  • N 0.0005% or more and 0.0100% or less N combines with Al to form AlN. Further, when B is added, BN is formed. If the N content is large, a large amount of nitride is generated to inhibit the growth of ferrite grains, resulting in fine ferrite grains and deterioration in workability. Therefore, in the present invention, the N content is 0.0100% or less. However, the N content needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N content is set to 0.0005% or more and 0.0100% or less. A preferable N content is 0.0005% or more and 0.0070% or less.
  • the thin steel sheet of the present invention is further, in mass%, Mo: 0.01% or more and 0.50% or less, Ti: 0.001% or more and 0.100% or less, Nb: 0. 0.001% to 0.100%, V: 0.001% to 0.100%, B: 0.0001% to 0.0050%, Cr: 0.01% to 1.00%, Cu : 0.01% to 1.00%, Ni: 0.01% to 1.00%, As: 0.001% to 0.500%, Sb: 0.001% to 0.200% Sn: 0.001% to 0.200%, Ta: 0.001% to 0.100%, Ca: 0.0001% to 0.0200%, Mg: 0.0001% to 0.0200 % Or less, Zn: 0.001% or more and 0.020% or less, Co: 0.0 1% or more and 0.020% or less, Zr: 0.001% or more and 0.020% or less, and REM: 0.0001% or more and 0.0200% or less, and at least one arbitrary element selected from Or it
  • Mo is effective in obtaining martensite without impairing chemical conversion properties and plating properties, it may be added as necessary. This effect can be obtained by setting the Mo content to 0.01% or more. However, even if the content exceeds 0.50%, it is difficult to obtain further effects, and the inclusions and the like are increased to cause defects on the surface and inside, and the ductility is greatly reduced. Therefore, the Mo content is within a range of Mo: 0.01% to 0.50%. A preferable Mo content for the lower limit is 0.02% or more. The upper Mo content is preferably 0.35% or less, more preferably 0.25% or less.
  • Ti is an element effective for fixing N causing aging deterioration as TiN, it may be added as necessary. This effect is obtained by making the Ti content 0.001% or more. On the other hand, when the Ti content exceeds 0.100%, TiC is excessively generated, and the yield ratio YR increases remarkably. Therefore, when Ti is added, its content is in the range of 0.001% or more and 0.100% or less, and the preferable content for the lower limit is 0.005% or more. A preferable content of the upper limit is 0.050% or less.
  • Nb may be added as necessary in order to form fine precipitates during hot rolling or annealing to increase the strength. Moreover, the grain size at the time of hot rolling is refined, and at the time of cold rolling and subsequent annealing, recrystallization of ferrite that contributes to reduction of in-plane anisotropy of YP is promoted. In order to obtain such an effect, the Nb content needs to be 0.001% or more. On the other hand, when the Nb content exceeds 0.100%, composite precipitates such as Nb- (C, N) are excessively generated, the ferrite grain size is refined, and the yield ratio YR is remarkably increased. To do. Therefore, when Nb is added, its content is in the range of 0.001% to 0.100%. A preferable Nb content for the lower limit is 0.005% or more. A preferable Nb content for the upper limit is 0.050% or less.
  • V may be added as necessary to increase the strength of the steel by forming carbide, nitride or carbonitride. In order to obtain such effects, the V content needs to be 0.001% or more. On the other hand, if the V content exceeds 0.100%, V precipitates as a large amount of carbide, nitride, or carbonitride in the substructure of the ferrite or martensite or the prior austenite grain boundaries as the parent phase, and the workability Deteriorates significantly. Therefore, when V is added, the content is within the range of 0.001% to 0.100%.
  • a preferable V content for the lower limit is 0.005% or more, and more preferably 0.010% or more.
  • a preferable V content for the upper limit is 0.080% or less, and more preferably 0.070% or less.
  • B is an element effective for strengthening steel, it may be added as necessary.
  • the addition effect can be obtained by making the B content 0.0001% or more.
  • the B content is set to 0.0001% or more and 0.0050% or less.
  • a preferable B content for the lower limit is 0.0005% or more.
  • the preferable B content for the upper limit is 0.0030% or less.
  • Cr and Cu not only serve as solid solution strengthening elements, but also stabilize austenite in the cooling process during annealing (heating and cooling treatment for cold-rolled steel sheet or hot-rolled steel sheet (when not cold-rolled)). In order to facilitate complex organization, it may be added as necessary. In order to obtain such effects, the Cr content and the Cu content must each be 0.01% or more. On the other hand, if both the Cr content and the Cu content exceed 1.00%, surface cracks may occur during hot rolling, and the inclusions and the like increase to cause defects on the surface and inside, Ductility is greatly reduced. Therefore, when adding Cr and Cu, the content shall be 0.01% or more and 1.00% or less, respectively.
  • Ni contributes to high strength by solid solution strengthening and transformation strengthening, and may be added as necessary. In order to acquire this effect, 0.01% or more of content is required. On the other hand, if Ni is added in excess of 1.00%, surface cracks may occur during hot rolling, and inclusions and the like increase to cause defects on the surface and inside, resulting in large ductility. descend. Therefore, when adding Ni, the content is made 0.01% or more and 1.00% or less. The Ni content is preferably 0.50% or less.
  • As is an element effective for improving corrosion resistance, it may be added as necessary. In order to acquire this effect, 0.001% or more needs to be contained. On the other hand, when As is added excessively, red hot brittleness is promoted, and inclusions and the like are increased to cause defects on the surface and inside, resulting in a significant decrease in ductility. Therefore, when As is added, the content is in the range of 0.001% to 0.500%.
  • Sb and Sn are added as necessary from the viewpoint of suppressing decarburization in the region of several tens of ⁇ m from the steel plate surface to the plate thickness direction caused by nitriding or oxidation of the steel plate surface. This is because suppressing such nitriding and oxidation prevents the martensite generation amount on the steel sheet surface from decreasing and is effective in ensuring the strength and material stability of the steel sheet.
  • the content needs to be 0.001% or more.
  • the toughness is reduced. Therefore, when adding Sb and Sn, the content shall be in the range of 0.001% or more and 0.200% or less, respectively.
  • Ta like Ti and Nb, generates alloy carbides and alloy carbonitrides and contributes to increasing the strength. Therefore, Ta may be added as necessary. In addition, Ta partially dissolves in Nb carbides and Nb carbonitrides to form composite precipitates such as (Nb, Ta) (C, N), thereby significantly suppressing the coarsening of the precipitates. Therefore, it is considered that there is an effect of stabilizing the contribution rate to the strength improvement of the steel sheet by precipitation strengthening. Therefore, it is preferable to contain Ta.
  • the effect of stabilizing the precipitate described above can be obtained by setting the content of Ta to 0.001% or more. On the other hand, even if Ta is added excessively, the effect of stabilizing the precipitate is saturated. In addition, the inclusions and the like increase, causing defects on the surface and inside, and the ductility is greatly reduced. Therefore, when Ta is added, the content is within the range of 0.001% to 0.100%.
  • Ca and Mg are elements used for deoxidation, and are effective elements for spheroidizing the shape of sulfides and improving the adverse effects of sulfides on ductility, particularly local ductility. May be.
  • it is necessary to contain 0.0001% or more of at least one element.
  • the content of at least one element of Ca and Mg exceeds 0.0200%, inclusions and the like increase, causing defects on the surface and inside, and ductility is greatly reduced. Therefore, when adding Ca and Mg, the content is made 0.0001% or more and 0.0200% or less, respectively.
  • Zn, Co, and Zr are effective elements for spheroidizing the shape of sulfides and improving the adverse effects of sulfides on local ductility and stretch flangeability, and may be added as necessary. .
  • it is necessary to contain 0.001% or more of at least one element.
  • the content of at least one element of Zn, Co, and Zr exceeds 0.020%, inclusions and the like increase, causing defects on the surface and inside, and the ductility decreases. Therefore, when adding Zn, Co, and Zr, the content is 0.001% or more and 0.020% or less, respectively.
  • REM is an element effective for improving corrosion resistance, and may be added as necessary. In order to acquire this effect, 0.0001% or more of content is required. However, when the content of REM exceeds 0.0200%, inclusions and the like increase, causing defects and the like on the surface and inside, and thus ductility is lowered. Therefore, when adding REM, the content is made 0.0001% or more and 0.0200% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • the said arbitrary component when content is less than a lower limit, since the effect of this invention is not impaired, when these arbitrary elements are contained less than a lower limit, these arbitrary elements shall be included as an unavoidable impurity.
  • the steel structure of the thin steel sheet or the like of the present invention includes a ferrite and a second phase.
  • the ferrite has an area ratio of 50% or more
  • the second phase has an area ratio of 1 with respect to the entire area (the entire steel structure).
  • 0.03% or more and 25.0% or less of martensite the average crystal grain size of ferrite is 3 ⁇ m or more
  • the hardness difference between ferrite and martensite is 1.0 GPa or more and 8.0 GPa or less
  • the area ratio of ferrite with respect to the entire steel structure is a very important invention constituent in the present invention.
  • the thin steel sheet or the like of the present invention is composed of a steel structure containing soft ferrite rich in ductility and a second phase mainly responsible for strength.
  • the area ratio of ferrite needs to be 50% or more.
  • the upper limit of the area ratio of ferrite is not particularly limited, but is preferably 95% or less, more preferably 90% or less for securing the area ratio of the second phase, that is, ensuring the strength.
  • the second phase is a phase other than ferrite, such as martensite, non-recrystallized ferrite, tempered martensite, bainite, tempered bainite, pearlite, cementite (including alloy carbide), residual austenite, and the like. means.
  • Martensite area ratio 1.0% or more and 25.0% or less
  • the area ratio of martensite meaning martensite as quenched
  • the local ductility decreases.
  • Total elongation (El) decreases.
  • the area ratio of martensite needs to be 1.0% or more, preferably 3.0% or more, more preferably 5.0% or more, Preferably it is 7.0% or more.
  • the area ratio of ferrite and martensite is 1 vol.
  • ferrite has a gray structure (base structure)
  • martensite has a white structure.
  • Average crystal grain size of ferrite 3 ⁇ m or more
  • the average crystal grain size of ferrite is 3 ⁇ m or more.
  • the upper limit of the average crystal grain size of ferrite is not particularly limited, but if it exceeds 30 ⁇ m, the formation of the second phase advantageous for increasing the strength is remarkably suppressed, so the average crystal grain size of ferrite is 30 ⁇ m or less. It is preferable.
  • the average crystal grain size of ferrite was calculated as follows. That is, similarly to the observation of the above-mentioned phase, the position of the plate thickness 1/4 is set as the observation position, and the obtained steel plate is observed at a magnification of about 1000 times using an SEM (scanning electron microscope), and the above-mentioned Adobe Photoshop is used.
  • the average area of the ferrite was calculated by dividing the total area of the ferrite in the observation field by the number of ferrites. A value obtained by multiplying the calculated average area by a power of 2 was defined as an average crystal grain size of ferrite.
  • the total area ratio of the above ferrite and martensite is preferably 85% or more.
  • known phases in steel sheets such as unrecrystallized ferrite, tempered martensite, bainite, tempered bainite, pearlite, cementite (including alloy carbide), retained austenite, etc. Even if it is included in an area ratio of 20% or less, the effect of the present invention is not impaired.
  • the amount of pearlite and retained austenite is small. It is preferable that the pearlite has an area ratio of 8% or less and the retained austenite has an area ratio of 3% or less.
  • the total of ferrite and martensite may be 100%, and other structures may be 0%.
  • Hardness difference between ferrite and martensite 1.0 GPa or more and 8.0 GPa or less
  • the hardness difference between ferrite and martensite is a very important invention constituent for controlling YR and ductility. If the hardness difference between ferrite and martensite is less than 1.0 GPa, the yield ratio YR increases. On the other hand, if the hardness difference between ferrite and martensite exceeds 8.0 GPa, the local elongation decreases and the total elongation (El) decreases. Therefore, the hardness difference between ferrite and martensite is 1.0 GPa or more and 8.0 GPa or less, and preferably 1.5 GPa or more and 7.5 GPa or less.
  • the hardness difference between ferrite and martensite is 1 vol.
  • Corrosion with% Nital using a micro hardness tester (Shimadzu DUH-W201S) at a thickness of 1/4 position (position corresponding to 1/4 of the thickness in the depth direction from the steel sheet surface), load 0.5 gf Under these conditions, the hardness of each phase of ferrite and martensite was measured at five points, and the average hardness of each phase was determined. The difference in hardness was calculated from this average hardness.
  • Inverse strength ratio of ⁇ -fiber to ⁇ -fiber of ferrite texture 0.8 to 7.0
  • ⁇ -fiber is a fiber texture whose ⁇ 110> axis is parallel to the rolling direction, and ⁇ - The fiber is a fiber texture in which the ⁇ 111> axis is parallel to the normal direction of the rolling surface.
  • the body-centered cubic metal is characterized in that ⁇ -fiber and ⁇ -fiber are strongly developed by rolling deformation, and a texture belonging to them is formed even if recrystallization annealing is performed.
  • the texture when the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the ferrite texture exceeds 7.0, the texture is oriented in a specific direction of the steel sheet, and in-plane anisotropy of mechanical properties, particularly The in-plane anisotropy of YP increases.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the ferrite texture is less than 0.8, the in-plane anisotropy of the mechanical characteristics, particularly the in-plane anisotropy of YP is increased. Accordingly, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the ferrite texture is 0.8 or more and 7.0 or less, and the above-described strength ratio preferable for the upper limit is 6.5 or less.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the ferrite texture is determined by wet polishing and buffing using a colloidal silica solution on the plate thickness section (L section) parallel to the rolling direction of the steel sheet. After smoothing, 0.1 vol. Corrosion with% nital reduces the unevenness of the sample surface as much as possible and completely removes the work-affected layer, and then the plate thickness 1/4 position (1/4 of the plate thickness in the depth direction from the steel plate surface) The crystal orientation was measured using the SEM-EBSD (Electron Back-Scatter Diffraction; electron beam backscatter diffraction) method, and the obtained data was transferred to the CI using OIM Analysis of AMETEK EDAX.
  • Average size of martensite 1.0 ⁇ m or more and 15.0 ⁇ m or less
  • the average size of martensite is less than 1.0 ⁇ m, the increase in YR tends to increase.
  • the average size of the martensite exceeds 15.0 ⁇ m, the local elongation may decrease, and the total elongation (El) may decrease. Therefore, the average martensite size is preferably 1.0 ⁇ m or more and 15.0 ⁇ m or less.
  • the average size more preferable for the lower limit is 2.0 ⁇ m or more, and the average size more preferable for the upper limit is 10.0 ⁇ m or less.
  • Actual average martensite size was calculated as follows. Similar to the observation of the above-mentioned phase, the position of the plate thickness 1 ⁇ 4 is taken as the observation position, and the obtained steel plate is observed at a magnification of about 1000 times using the SEM, and the marten within the observation field is observed using the above-mentioned Adobe Photoshop. The average area of martensite was calculated by dividing the total area of the sites by the number of martensites. A value obtained by multiplying the calculated average area by a power of 2 was defined as the average martensite size.
  • ⁇ Thin steel plate> The component composition and steel structure of the thin steel sheet are as described above. Moreover, although the thickness of a thin steel plate is not specifically limited, Usually, it is 0.3 mm or more and 2.8 mm or less.
  • the plated steel sheet of the present invention is a plated steel sheet provided with a plating layer on the thin steel sheet of the present invention.
  • the kind of plating layer is not specifically limited, For example, either a hot dipping layer and an electroplating layer may be sufficient.
  • the plating layer may be an alloyed plating layer.
  • the plated layer is preferably a galvanized layer.
  • the galvanized layer may contain Al or Mg. Further, hot dip zinc-aluminum-magnesium alloy plating (Zn—Al—Mg plating layer) is also preferable.
  • the Al content is 1% by mass or more and 22% by mass or less
  • the Mg content is 0.1% by mass or more and 10% by mass or less
  • the balance is Zn.
  • the Zn—Al—Mg plating layer in addition to Zn, Al, and Mg, one or more selected from Si, Ni, Ce, and La may be contained in a total amount of 1% by mass or less.
  • a plating metal is not specifically limited, Al plating etc. may be sufficient besides the above Zn plating.
  • Al plating etc. may be sufficient besides the above Zn plating.
  • the composition of the plating layer is not particularly limited and may be a general one.
  • a hot-dip galvanized layer or an alloyed hot-dip galvanized layer generally, Fe: 20% by mass or less, Al: 0.001% by mass to 1.0% by mass, and further, Pb, One or more selected from Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in total 0 to 3.5% by mass It is contained below, and the balance is composed of Zn and inevitable impurities.
  • a hot dip galvanized layer having a plating adhesion amount of 20 to 80 g / m 2 per side, and an alloyed hot dip galvanized layer obtained by alloying this.
  • the Fe content in the plated layer is less than 7% by mass.
  • the Fe content in the plated layer is 7 to 20% by mass. %.
  • ⁇ Method for producing hot-rolled steel sheet> In the method for producing a hot-rolled steel sheet of the present invention, a steel slab having the above composition is heated and subjected to rough rolling, and in the subsequent finish rolling, the rolling reduction of the final pass of finish rolling is 5% or more and 15% or less, Hot rolling under conditions where the rolling reduction before the final pass is 15% or more and 25% or less, the finish rolling entry temperature is 1020 ° C. or more and 1180 ° C. or less, and the finish rolling exit temperature is 800 ° C. or more and 1000 ° C.
  • the temperature is the steel sheet surface temperature unless otherwise specified.
  • the steel sheet surface temperature can be measured using a radiation thermometer or the like.
  • the melting method of the steel material is not particularly limited, and any known melting method such as a converter or an electric furnace is suitable.
  • a casting method is not particularly limited, but a continuous casting method is preferable.
  • the steel slab (slab) is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method.
  • the steel slab is not cooled to room temperature. Energy-saving processes such as direct feed rolling and direct rolling that are rolled immediately after application can also be applied without problems.
  • the slab is made into a sheet bar by rough rolling under normal conditions.
  • the sheet is heated using a bar heater before finishing rolling in order to prevent problems during hot rolling. It is preferred to heat the bar.
  • hot-rolling the slab it may be hot-rolled after reheating the slab in a heating furnace, or may be subjected to hot-rolling after being heated in a heating furnace at 1250 ° C. or higher for a short time.
  • Hot rolling is performed on the steel material (slab) obtained as described above.
  • This hot rolling may be rough rolling and finish rolling, or only rolling with rough rolling omitted, but in any case, the final rolling reduction ratio and the final rolling reduction ratio
  • the finish rolling entry temperature and the finish rolling exit temperature are important.
  • the rolling reduction of the final pass of finish rolling is 5% or more and 15% or less.
  • the rolling reduction of the pass before the final pass is 15% or more and 25% or less.
  • the reduction rate of the pass before the final pass is determined by the reduction of the final pass.
  • the average crystal grain size of ferrite, the average size of martensite, and the texture can be appropriately controlled. For this reason, the condition of the rolling reduction is very important.
  • the rolling reduction in the final pass of the finish rolling is less than 5%, the crystal grain size of ferrite during hot rolling becomes coarse. As a result, the crystal grain size during cold rolling and subsequent annealing becomes coarse and the strength decreases.
  • the rolling reduction ratio before the final pass is less than 15%, even if very coarse austenite grains are rolled in the final pass, the so-called mixed grains in which the grain sizes of ferrite grains generated during cooling after the final pass are not uniform. As a result, grains having a specific orientation grow during recrystallization annealing, so that the in-plane anisotropy of YP increases.
  • the rolling reduction ratio of the pass before the final pass exceeds 25%, the crystal grain size of the ferrite at the time of hot rolling becomes finer, and the crystal grain size at the time of cold rolling and subsequent annealing becomes finer. rises. Further, the nucleation site of austenite during annealing increases, and fine martensite is generated, resulting in an increase in YR. Therefore, the rolling reduction of the pass before the final pass of finish rolling is 15% or more and 25% or less.
  • Finishing rolling entry temperature is 1020 ° C or higher and 1180 ° C
  • the heated steel slab is hot-rolled by rough rolling and finish rolling to form a hot-rolled steel sheet.
  • the finish rolling entry temperature exceeds 1180 ° C.
  • the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and scale peeling occurs during descaling or pickling.
  • the surface quality after annealing deteriorates.
  • the ductility is adversely affected.
  • the finish rolling entry temperature is less than 1020 ° C.
  • the finish rolling temperature after finish rolling decreases, the rolling load during hot rolling increases and the rolling load increases, and the austenite is in an unrecrystallized state.
  • the rolling reduction at the time becomes high the control of the texture after recrystallization annealing becomes difficult, and the in-plane anisotropy in the final product becomes remarkable, so that the material uniformity and material stability are impaired.
  • the ductility itself decreases. Therefore, it is necessary to set the finish rolling entry temperature of hot rolling to 1020 ° C. or higher and 1180 ° C. or lower. Preferably, it is set to 1020 ° C. or higher and 1160 ° C. or lower.
  • Finishing rolling delivery temperature 800 ° C. or higher and 1000 ° C. or lower
  • the heated steel slab is hot rolled by rough rolling and finish rolling to become a hot rolled steel plate.
  • the finish rolling exit temperature exceeds 1000 ° C.
  • the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and the surface quality after pickling and cold rolling is high. to degrade.
  • the ductility is adversely affected.
  • the crystal grain size becomes excessively coarse, and the surface of the pressed product may be roughened during processing.
  • the finish rolling outlet temperature is less than 800 ° C.
  • the rolling load increases, the rolling load increases, the reduction rate of the austenite in the non-recrystallized state increases, an abnormal texture develops, and the final product As the in-plane anisotropy becomes remarkable, the material uniformity and material stability are impaired. In addition, the ductility itself decreases.
  • the finish rolling exit temperature is less than 800 ° C., the workability is lowered. Therefore, it is necessary to set the finish rolling outlet temperature of hot rolling to 800 ° C. or higher and 1000 ° C. or lower.
  • the preferred finish rolling exit temperature for the lower limit is 820 ° C. or higher.
  • a preferable finish rolling temperature on the upper limit is 950 ° C. or lower.
  • this hot rolling is good also as rolling only by finish rolling which abbreviate
  • Average cooling rate from finish rolling to coiling temperature 5 ° C / s or more and 90 ° C / s or less Phase grains in hot-rolled steel sheet by appropriately controlling the average cooling rate from finish rolling to coiling temperature
  • the diameter can be refined, and the texture after the subsequent cold rolling and annealing can be increased in the ⁇ 111 ⁇ // ND orientation (ie, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber) Can be adjusted.)
  • the average cooling rate from finish rolling to winding exceeds 90 ° C./s, the plate shape is remarkably deteriorated, and subsequent cold rolling or annealing (heating after cold rolling, cooling treatment) Cause trouble.
  • the average cooling rate from the finish rolling to the coiling temperature is 5 ° C./s or more and 90 ° C./s or less
  • the preferable average cooling rate for the lower limit is 7 ° C./s or more, more preferably 9 ° C./s or more. is there.
  • a preferable average cooling rate for the upper limit is 60 ° C./s or less, more preferably 50 ° C./s or less.
  • Winding temperature 300 ° C. or more and 700 ° C. or less
  • the ferrite crystal grain size of the steel structure of the hot-rolled sheet increases, and the desired temperature after annealing Ensuring strength is difficult.
  • the coiling temperature after hot rolling is less than 300 ° C., the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity decreases.
  • the coiling temperature after hot rolling needs to be 300 ° C. or higher and 700 ° C. or lower.
  • a preferable coiling temperature for the lower limit is 400 ° C. or higher.
  • a preferable coiling temperature for the upper limit is 650 ° C. or less.
  • rough rolling sheets may be joined together during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once. Moreover, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient at the time of lubrication rolling into the range of 0.10 or more and 0.25 or less.
  • the manufacturing method of the cold-rolled full hard steel plate of the present invention is a method in which the hot-rolled steel plate is pickled and cold-rolled at a rolling reduction of 35% or more.
  • pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion treatment and plating quality in the final thin steel sheet and plated steel sheet. Moreover, pickling may be performed once or may be divided into a plurality of times.
  • Reduction ratio (rolling ratio) in the cold rolling process 35% or more
  • the rolling reduction during cold rolling is preferably 40% or more, more preferably 45% or more, and further preferably 49% or more.
  • count of a rolling pass and the rolling reduction for every pass the effect of this invention can be acquired, without being specifically limited.
  • it is about 80% industrially.
  • the manufacturing method of a thin steel plate includes a method of heating and cooling a hot-rolled steel plate or a cold-rolled full hard steel plate (one-time annealing) to manufacture a thin steel plate (one-time method), a hot-rolled steel plate or a cold-rolled full hard steel.
  • a method of manufacturing a thin steel plate (twice method) by heating and cooling the steel plate (first annealing) to form a heat treatment plate and heating and cooling the heat treatment plate (second annealing).
  • 1 time annealing (1 time method) first.
  • Maximum attainment temperature T1 temperature or more and T2 temperature or less
  • T1 temperature since this annealing is a heat treatment in the ferrite single phase region, the second phase containing martensite is not generated after annealing, and the desired temperature is reached. Strength cannot be obtained, and YR also increases.
  • the highest temperature exceeds the T2 temperature, the second phase containing martensite generated after annealing increases, the strength increases, and the ductility decreases. Therefore, the highest temperature reached is not less than T1 temperature and not more than T2 temperature.
  • T1 temperature (° C.) 745 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • T2 temperature (° C.) 960 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr] +350 ⁇ [% Ti] + 104 ⁇ [% V] It is.
  • [% X] is the content (mass%) of the component element X of the steel sheet.
  • the holding time at the time of holding at the maximum temperature is not particularly limited, but is preferably in the range of 10 s to 40000 s.
  • Residence time in the temperature range from [Maximum temperature -50 ° C] to the maximum temperature is 500 s or less. If the residence time in the temperature range from [Maximum temperature -50 ° C] to the maximum temperature is over 500 s, desired The characteristics cannot be obtained.
  • the lower limit of the residence time in the temperature range from the [maximum reached temperature ⁇ 50 ° C.] to the maximum achieved temperature is not particularly limited, but if it is less than 30 seconds, the recrystallization of the ferrite becomes insufficient and the YP is in-plane. Since anisotropy may increase, it is preferably 30 seconds or longer, and more preferably 50 seconds or longer.
  • the average cooling rate in the temperature range from [T1 temperature ⁇ 10 ° C.] to 550 ° C. is 3 ° C. If it is less than / s, ferrite and pearlite are excessively generated during cooling, and the desired amount of martensite cannot be obtained. Therefore, the average cooling rate is set to 3 ° C./s or more in the temperature range from [T1 temperature ⁇ 10 ° C.] to 550 ° C.
  • Dew point in the temperature range of 600 ° C or higher: -40 ° C or lower During annealing, if the dew point becomes higher in the temperature range of 600 ° C or higher, decarburization proceeds through moisture in the air, and the ferrite grains on the steel sheet surface layer become coarse In addition, since the hardness is reduced, a stable excellent tensile strength cannot be obtained, and the bending fatigue characteristics are reduced. Moreover, when plating, Si, Mn, etc. which are elements which inhibit plating concentrate on a steel plate surface during annealing, and plateability is inhibited. Therefore, the dew point in the temperature range of 600 ° C. or higher during annealing needs to be ⁇ 40 ° C. or lower.
  • the dew point is ⁇ 45 ° C. or lower.
  • the dew point needs to be ⁇ 40 ° C. or lower in the temperature range of 600 ° C. or higher in the whole process.
  • the lower limit of the dew point of the atmosphere is not particularly specified, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
  • the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
  • the cooling stop temperature in the cooling is not particularly limited, but is usually 120 to 550 ° C.
  • a hot-rolled steel plate or a cold-rolled full hard steel plate is heated to obtain a heat-treated plate.
  • the manufacturing method for obtaining the heat treated plate is the method for producing the heat treated plate of the present invention.
  • the specific method for obtaining the heat-treated plate is as follows: hot rolled steel sheet or cold-rolled full hard steel sheet, the maximum temperature reached from T1 temperature to T2 temperature, the temperature from [maximum temperature -50 ° C] to the maximum temperature. This is a method in which the residence time in the zone is heated under conditions of 500 s or less, then cooled and pickled.
  • the cooling rate in the cooling is not particularly limited, but is usually 5 to 350 ° C./s.
  • the elements that inhibit the plating properties such as Si and Mn are excessively concentrated during reheating of the heat treatment plate described later, the plating properties become inferior, so it is necessary to remove the surface concentrated layer by pickling or the like. There is. However, regarding descaling by pickling performed after winding after hot rolling, the presence or absence of the implementation does not affect the effect of the present invention.
  • the heat-treated plate may be subjected to temper rolling in order to improve the plate-passability before the pickling.
  • the reheating temperature may be T1 temperature or higher.
  • the reheating temperature is set to the T1 temperature or higher.
  • the upper limit of the reheating temperature is not particularly specified, but if it exceeds 850 ° C., elements such as Si and Mn may re-concentrate on the surface and lower the plating property. More preferably, it is 840 degrees C or less.
  • the average cooling rate is set to 3 ° C./s or more in the temperature range from [T1 temperature ⁇ 10 ° C.] to 550 ° C.
  • T1 temperature ⁇ 10 ° C. is not particularly limited, but if it exceeds 100 ° C./s, the plate shape deteriorates due to rapid thermal shrinkage, and the meandering or the like Since it may become a problem on operation, it is preferable to set it as 100 degrees C / s or less.
  • Dew point in the temperature range of 600 ° C or higher: -40 ° C or lower During annealing, if the dew point becomes higher in the temperature range of 600 ° C or higher, decarburization proceeds through moisture in the air, and the ferrite grains on the steel sheet surface layer become coarse In addition, since the hardness is reduced, a stable excellent tensile strength cannot be obtained, and the bending fatigue characteristics are reduced. Moreover, when plating, Si, Mn, etc. which are elements which inhibit plating concentrate on a steel plate surface during annealing, and plateability is inhibited. Therefore, the dew point in the temperature range of 600 ° C. or higher during annealing needs to be ⁇ 40 ° C. or lower.
  • the dew point is ⁇ 45 ° C. or lower.
  • the dew point needs to be ⁇ 40 ° C. or lower in the temperature range of 600 ° C. or higher in the whole process.
  • the lower limit of the dew point of the atmosphere is not particularly specified, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
  • the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
  • the thin steel plate obtained by the above-described one-time method or two-time method may be subjected to temper rolling. If the temper rolling ratio is less than 0.1%, the yield point elongation does not disappear, and if it exceeds 1.5%, the yield stress of the steel increases and the YR increases, so 0.1% or more It is more preferable to set it to 1.5% or less.
  • the method for producing a plated steel sheet according to the present invention is a method for plating a thin steel sheet.
  • the plating process include a hot dip galvanizing process and a process of alloying after hot dip galvanizing.
  • a plating layer may be formed by electroplating such as Zn—Ni electroalloy plating, or hot dip zinc-aluminum-magnesium alloy plating may be performed.
  • the kind of metal plating such as Zn plating and Al plating, is not specifically limited.
  • the amount of plating adhesion is adjusted by gas wiping or the like.
  • a galvanizing bath having an Al content of 0.10 mass% or more and 0.23 mass% or less.
  • the alloying treatment of galvanization is performed in a temperature range of 470 ° C. or more and 600 ° C. or less after hot dip galvanization.
  • the plating adhesion amount is preferably 20 to 80 g / m 2 per side (double-sided plating), and the alloyed hot-dip galvanized steel sheet (GA) is subjected to the following alloying treatment so that the Fe concentration in the plating layer is 7 to It is preferable to set it as 15 mass%.
  • the reduction ratio of the skin pass rolling after the plating treatment is preferably in the range of 0.1% to 2.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 2.0%, this is made the upper limit of a favorable range.
  • Skin pass rolling may be performed online or offline. In addition, a skin pass with a desired reduction rate may be performed at once, or may be performed in several steps.
  • the conditions of other production methods are not particularly limited, but from the viewpoint of productivity, the series of treatments such as annealing, hot dip galvanization, galvanizing alloying treatment, etc. are performed by CGL (Continuous Galvanizing), which is a hot dip galvanizing line. Line). After hot dip galvanization, wiping is possible to adjust the amount of plating.
  • conditions, such as plating other than the above-mentioned conditions can depend on the conventional method of hot dip galvanization.
  • a steel having the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method.
  • the obtained slab was heated, and after hot rolling under the conditions shown in Table 2, the pickling treatment was performed. 1-18, 20-25, 27, 28, 30-35 were cold rolled.
  • GI hot dip galvanized steel sheets
  • GA alloyed hot dip galvanized steel sheets
  • EG electrogalvanized steel sheets
  • ZAM hot dip zinc-aluminum-magnesium alloy plated steel sheets
  • Etc As the hot dip galvanizing bath, a zinc bath containing Al: 0.14 to 0.19 mass% is used in GI, and a zinc bath containing Al: 0.14 mass% is used in GA, and the bath temperature is 470.
  • C Coating weight, the GI, a 45 ⁇ 72g / m 2 (two-sided plating) degree per side, also, the GA, and the degree per side 45 g / m 2 (two-sided plating).
  • GA made Fe density
  • the Ni content in the plating layer is 9% by mass or more and 25% by mass or less.
  • the Al content in the plating layer is 3% by mass or more and 22% by mass or less, and the Mg content is 1% by mass or more and 10% by mass or less.
  • T1 temperature (degreeC) was calculated
  • T1 temperature (° C.) 745 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • [% X] is mass% of the component element X of the steel sheet.
  • the length of the tensile test piece is 3 in the rolling direction of the steel plate (L direction), 45 ° direction (D direction) with respect to the rolling direction of the steel plate, and 3 ° direction (C direction) perpendicular to the rolling direction of the steel plate.
  • JIS No. 2241 (2011) was used, and YP (yield stress), TS (tensile strength), and El (total elongation) were measured using a JIS No. 5 test piece from which a sample was collected so as to be oriented. .
  • “excellent ductility, ie, El (total elongation)” was judged to be good when the value of TS ⁇ El was 15000 MPa ⁇ % or more.
  • the area ratios of ferrite and martensite, the average crystal grain size of ferrite, the hardness difference between ferrite and martensite, and the average size of martensite were obtained by the above-described methods. Further, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber of the ferrite texture at the 1 ⁇ 4 thickness position of the steel plate was determined by the above method. The remaining structure was also confirmed by a general method and shown in Table 3.
  • the plating property was judged to be good when the length occurrence rate of non-plating defects per 100 coils was 0.8% or less.
  • the length occurrence rate of non-plating defects is obtained by the following formula (2), and the evaluation of surface properties is “excellent” when the length occurrence rate of scale defects per 100 coils is 0.2% or less. In the case of more than 0.2% and not more than 0.8%, it was judged as “good”, and in the case of more than 0.8%, “poor” was judged.
  • TS is 540 MPa or more, excellent ductility, low yield ratio (YR), and excellent in-plane anisotropy of YP and plating property.
  • YR low yield ratio
  • any one or more of strength, YR, balance between strength and ductility, in-plane anisotropy of YP, and plating property is inferior.
  • the present invention it is possible to produce a high-strength steel sheet having a TS of 540 MPa or more, excellent ductility, low YR, and excellent YP in-plane anisotropy. Further, by applying the high-strength steel plate obtained according to the manufacturing method of the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

540MPa以上のTSを有し、延性に優れ、さらに、降伏比(YR)が低く、かつ、YPの面内異方性に優れ、めっき性に優れる薄鋼板等を提供することを目的とする。 特定の成分組成と、フェライトと第2相とを含み、前記フェライトは、面積率が50%以上であり、前記第2相は、面積率が全体に対して1.0%以上25.0%以下のマルテンサイトを含有し、前記フェライトの平均結晶粒径が3μm以上であり、前記フェライトと前記マルテンサイトの硬度差が1.0GPa以上8.0GPa以下であり、かつ、前記フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、0.8以上7.0以下である鋼組織と、を有し、引張強度が540MPa以上である薄鋼板とする。

Description

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法に関するものである。本発明の薄鋼板等は、自動車用部品等の構造部材として好適に用いることができる。
 近年、地球環境の保護意識の高まりから、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、車体材料を高強度化して薄肉化を図り、車体を軽量化しようとする動きが活発となってきている。しかしながら、鋼板の高強度化により、延性の低下が懸念される。このため、高強度高延性鋼板の開発が望まれている。また、鋼板の高強度化、薄肉化により形状凍結性は著しく低下する。これに対応するため、プレス成形時に、離型後の形状変化を予め予測し、形状変化量を見込んで型を設計することが広く行われている。しかし、鋼板の降伏応力(YP)が変化すると、これらを一定とした見込み量からのズレが大きくなり、形状不良が発生し、プレス成形後に一個一個形状を板金加工する等の手直しが不可欠となり、量産効率を著しく低下させる。従って、鋼板のYPのバラツキは可能な限り小さくすることが要求されている。
 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板の延性向上に対しては、これまでにフェライト-マルテンサイト二相鋼(Dual-Phase鋼)や残留オーステナイトの変態誘起塑性(Transformation Induced Plasticity)を利用したTRIP鋼など、種々の複合組織型高強度鋼板が開発されてきた。
 例えば、高強度冷延鋼板および高強度溶融亜鉛めっき鋼板においては、特許文献1では、成分組成を規定し、フェライトとベイニティックフェライトと残留オーステナイトの体積率を規定することにより、延性に優れた鋼板が提案されている。
 特許文献2では、板幅方向における伸びのバラツキが改善された高強度冷延鋼板の製造方法が提案されている。
特開2007-182625号公報 特開2000-212684号公報
 しかしながら、特許文献1および2に記載の高強度鋼板では、加工性のなかでも、とりわけ延性に優れるとしているが、いずれもYPの面内異方性について考慮されていない。
 本発明は、かかる事情に鑑み開発されたもので、540MPa以上のTSを有し、延性に優れ、さらに、降伏比(YR)が低く、かつ、YPの面内異方性に優れ、めっき性に優れる薄鋼板及びめっき鋼板並びにこれらの製造方法を提供することを目的とするとともに、上記薄鋼板やめっき鋼板を得るために必要な熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法を提供することも目的とする。
 なお、本発明において、延性すなわちEl(全伸び)に優れるとは、TS×Elの値が15000MPa・%以上を意味する。また、YRが低いとは、YR=(YP/TS)×100の値が75%以下を意味する。また、YPの面内異方性に優れるとは、YPの面内異方性の指標である│ΔYP│の値が50MPa以下を意味する。なお、│ΔYP│は次式(1)で求められる。
│ΔYP│=(YPL-2×YPD+YPC)/2・・・・(1)
ただし、YPL、YPDおよびYPCとは、それぞれ鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向から採取したJIS5号試験片を用いて、JIS Z 2241(2011年)の規定に準拠して、クロスヘッド速度10mm/分で引張試験を行って測定したYPの値である。
 発明者らは、540MPa以上のTSを有し、延性に優れ、さらに、YRが低く、YPの面内異方性に優れ、めっきをした場合のめっき性にも優れる薄鋼板等を得るべく鋭意検討を重ねたところ、以下のことを見出した。
 焼鈍時の昇温中にフェライトの再結晶を促進し、かつ、第2相(フェライト以外の相を意味する。具体的にはマルテンサイト、未再結晶フェライト、焼戻しマルテンサイト、ベイナイト、焼戻しベイナイト、パーライト、セメンタイト(合金炭化物含む)、残留オーステナイト等を意味する)の1つであるマルテンサイトの面積率等を適正に調整することで、延性の向上、YRの低下、さらには、YPの面内異方性の低減を同時に実現し、めっきをしたときのめっき性も高められることを見出した。
 その結果、540MPa以上のTSを有し、延性に優れ、さらに、降伏比(YR)が低く、かつ、YPの面内異方性に優れ、めっきをしたときのめっき性にも優れる薄鋼板等を得ることが可能となった。
 本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は次のとおりである。
 [1]質量%で、C:0.03%以上0.20%以下、Si:0.70%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、Al:0.001%以上1.000%以下、N:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、フェライトと第2相とを含み、前記フェライトは、面積率が50%以上であり、前記第2相は、面積率が全体に対して1.0%以上25.0%以下のマルテンサイトを含有し、前記フェライトの平均結晶粒径が3μm以上であり、前記フェライトと前記マルテンサイトの硬度差が1.0GPa以上8.0GPa以下であり、かつ、前記フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、0.8以上7.0以下である鋼組織と、を有し、引張強度が540MPa以上である薄鋼板。
 [2]前記マルテンサイトの平均サイズが1.0μm以上15.0μm以下である[1]に記載の薄鋼板。
 [3]前記成分組成は、さらに、質量%で、Mo:0.01%以上0.50%以下、Ti:0.001%以上0.100%以下、Nb:0.001%以上0.100%以下、V:0.001%以上0.100%以下、B:0.0001%以上0.0050%以下、Cr:0.01%以上1.00%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、As:0.001%以上0.500%以下、Sb:0.001%以上0.200%以下、Sn:0.001%以上0.200%以下、Ta:0.001%以上0.100%以下、Ca:0.0001%以上0.0200%以下、Mg:0.0001%以上0.0200%以下、Zn:0.001%以上0.020%以下、Co:0.001%以上0.020%以下、Zr:0.001%以上0.020%以下およびREM:0.0001%以上0.0200%以下のうちから選ばれる少なくとも1種の元素を含有する[1]又は[2]に記載の薄鋼板。
 [4][1]~[3]のいずれかに記載の薄鋼板の表面にめっき層を備えるめっき鋼板。
 [5][1]又は[3]に記載の成分組成を有する鋼スラブを加熱し、粗圧延を行い、その後の仕上げ圧延において、仕上げ圧延入り側温度が1020℃以上1180℃以下、仕上げ圧延の最終パスの圧下率が5%以上15%以下、該最終パスの前のパスの圧下率が15%以上25%以下、仕上げ圧延出側温度が800℃以上1000℃以下の条件で熱間圧延し、平均冷却速度5℃/s以上90℃/s以下で冷却して、巻取温度が300℃以上700℃以下の条件で巻き取る熱延鋼板の製造方法。
 [6][5]に記載の製造方法で得られた熱延鋼板を酸洗し、35%以上の圧下率で冷間圧延する冷延フルハード鋼板の製造方法。
 [7][5]に記載の製造方法で得られた熱延鋼板又は[6]に記載の製造方法で得られた冷延フルハード鋼板を、最高到達温度がT1温度以上T2温度以下、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下の条件で加熱し、[T1温度-10℃]から550℃の温度域の平均冷却速度が3℃/s以上の条件で冷却し、かつ、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
ただし、
T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
である。なお、上記式において[%X]は鋼板の成分元素Xの含有量(質量%)とする。
 [8][5]に記載の製造方法で得られた熱延鋼板又は[6]に記載の製造方法で得られた冷延フルハード鋼板を、最高到達温度がT1温度以上T2温度以下、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下の条件で加熱し、その後、冷却し、酸洗する熱処理板の製造方法。
ただし、
T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
である。なお、上記式において[%X]は鋼板の成分元素Xの含有量(質量%)とする。
 [9][8]に記載の製造方法で得られた熱処理板を、T1温度以上に再度加熱し、次いで[T1温度-10℃]から550℃の温度域の平均冷却速度が3℃/s以上の条件で冷却し、かつ、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
 [10][7]又は[9]に記載の製造方法で得られた薄鋼板にめっきを施すめっき鋼板の製造方法。
 本発明により得られる薄鋼板及びめっき鋼板は、540MPa以上のTSを有し、延性に優れ、さらに、降伏比(YR)が低く、かつ、YPの面内異方性に優れ、めっきをしたときのめっき性にも優れる。また、本発明により得られた薄鋼板およびめっき鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。なお、TSは590MPa以上であることが好ましい。
 また、本発明の熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法は、上記の優れた薄鋼板やめっき鋼板を得るための中間製品の製造方法として、薄鋼板やめっき鋼板の上記の特性改善に寄与する。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法である。先ず、これらの関係について説明する。
 本発明の薄鋼板は、本発明のめっき鋼板を得るための中間製品でもある。1回法の場合には、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、薄鋼板となる製造過程を経てめっき鋼板になる(ただし、冷間圧延を行わない場合には冷延フルハード鋼板を経由しない)。2回法の場合には、スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板となる製造過程を経てめっき鋼板になる(ただし、冷間圧延を行わない場合には冷延フルハード鋼板を経由しない)。本発明の薄鋼板は上記過程の薄鋼板である。なお、薄鋼板が最終製品の場合もある。
 また、本発明の熱延鋼板の製造方法は、上記過程の熱延鋼板を得るまでの製造方法である。
 本発明の冷延フルハード鋼板の製造方法は、上記過程において熱延鋼板から冷延フルハード鋼板を得るまでの製造方法である。
 本発明の熱処理板の製造方法は、上記過程において、2回法の場合に、熱延鋼板又は冷延フルハード鋼板から熱処理板を得るまでの製造方法である。
 本発明の薄鋼板の製造方法は、上記過程において、1回法の場合は熱延鋼板又は冷延フルハード鋼板から薄鋼板を得るまでの製造方法、2回法の場合は熱処理板から薄鋼板を得るまでの製造方法である。
 本発明のめっき鋼板の製造方法は、上記過程において、薄鋼板からめっき鋼板を得るまでの製造方法である。
 上記関係があることから、熱延鋼板、冷延フルハード鋼板、熱処理板、薄鋼板、めっき鋼板の成分組成は共通し、薄鋼板、めっき鋼板の鋼組織が共通する。以下、共通事項、薄鋼板、めっき鋼板、製造方法の順で説明する。
 <成分組成>
 本発明の薄鋼板等は、質量%で、C:0.03%以上0.20%以下、Si:0.70%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、Al:0.001%以上1.000%以下、N:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。
 上記成分組成は、さらに、質量%で、Mo:0.01%以上0.50%以下、Ti:0.001%以上0.100%以下、Nb:0.001%以上0.100%以下、V:0.001%以上0.100%以下、B:0.0001%以上0.0050%以下、Cr:0.01%以上1.00%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、As:0.001%以上0.500%以下、Sb:0.001%以上0.200%以下、Sn:0.001%以上0.200%以下、Ta:0.001%以上0.100%以下、Ca:0.0001%以上0.0200%以下、Mg:0.0001%以上0.0200%以下、Zn:0.001%以上0.020%以下、Co:0.001%以上0.020%以下、Zr:0.001%以上0.020%以下およびREM:0.0001%以上0.0200%以下のうちから選ばれる少なくとも1種の元素を含有してもよい。
 以下、各成分について説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。
 C:0.03%以上0.20%以下
 Cは、鋼の重要な基本成分の1つであり、特に、本発明では、2相域に加熱したときのオーステナイトの面積率、ひいては変態後のマルテンサイトの面積率に影響するため、重要な元素である。そして、得られる鋼板の強度等の機械的特性は、このマルテンサイトの分率(面積率)と硬度および平均サイズによって大きく左右される。ここで、Cの含有量が0.03%未満ではマルテンサイトの分率を確保できず、鋼板の強度を確保することが難しい。一方で、Cの含有量が0.20%を超えるとマルテンサイトの硬度が増大し、フェライトとマルテンサイトの硬度差が増大するため、局部伸びが低下し、結果として全伸びが低下する。また、マルテンサイトの平均サイズが増大するため、局部伸びが低下し、全伸びが低下する。したがって、C含有量は、0.03%以上0.20%以下の範囲内とした。下限について好ましいC含有量は0.04%以上とする。上限について好ましいC含有量は0.15%以下、より好ましくは0.12%以下とする。
 
 Si:0.70%以下
 Siは、α相中の固溶C量を減少させることによって伸び等の加工性を向上させる元素である。しかし、0.70%を超える量のSiを含有すると、焼鈍時の冷却中にフェライト変態が促進される効果、また、炭化物生成が抑制される効果があるため、マルテンサイトの硬度が上昇し、フェライトとマルテンサイトの硬度差が増大する結果、局部伸びが低下し、全伸びが低下する。また、赤スケール等の発生による表面性状の劣化や、溶融めっきを施す場合には、めっき付着性および密着性の劣化を引き起こす。したがって、Si含有量は0.70%以下とし、好ましくは0.60%以下、より好ましくは0.50%以下とする。
 また、溶融亜鉛めっきを施す場合には、Si量が0.40%以下であれば、焼鈍中にSiの表面濃化量が増大することをより抑えられ、焼鈍板表面のぬれ性の低下をより抑えられるため、めっき付着性および密着性がより高くなる。したがって、Si含有量は0.40%以下とし、好ましくは0.35%以下とする。なお、本発明では通常Si含有量は0.01%以上である。
 Mn:1.50%以上3.00%以下
 Mnは、鋼板の強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、冷却過程でのパーライトやベイナイトの生成を抑制する作用があり、オーステナイトからマルテンサイトへの変態を容易にする。こうした効果を得るには、Mn含有量を1.50%以上にする必要がある。一方、Mn含有量が3.00%を超えると、マルテンサイトの平均サイズが増大するため、局部伸びが低下し、全伸びが低下する。また、スポット溶接性およびめっき性を損なう。また、鋳造性の劣化などを引き起こす。さらに、板厚方向のMn偏析が顕著となり、結果としてYRが上昇し、TS×Elの値が低下する。したがって、Mn含有量は1.50%以上3.00%以下とする。下限について好ましいMn含有量は1.60%以上とする。上限について好ましいMn含有量は2.70%以下、より好ましくは2.40%以下とする。
 P:0.001%以上0.100%以下
 Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するため、複合組織化にも有効な元素である。こうした効果を得るためには、P含有量を0.001%以上にする必要がある。一方、P含有量が0.100%を超えると、フェライト粒界またはフェライトとマルテンサイトの異相界面に偏析して、粒界を脆化させるため、局部伸びが低下し、全伸びが低下する。また、溶接性の劣化を招くとともに、溶融亜鉛めっきを合金化処理する場合には、合金化速度を大幅に遅延させてめっきの品質を損なう。また、P含有量が0.100%を超えると、粒界偏析により脆化することによって耐衝撃性が劣化する。従って、P含有量は0.001%以上0.100%以下とする。下限について好ましいP含有量は0.005%以上とする。上限について好ましいP含有量は0.050%以下とする。
 S:0.0001%以上0.0200%以下
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させ、延性を低下させる。そのため、S含有量は0.0200%以下とする必要がある。一方、生産技術上の制約からは、S含有量を0.0001%以上にする必要がある。従って、S含有量は0.0001%以上0.0200%以下とする。下限について好ましいS含有量は0.0001%以上とする。上限について好ましいS含有量は0.0050%以下とする。
 Al:0.001%以上1.000%以下
 Alは、炭化物の生成を抑制し、マルテンサイトの生成を促進するのに有効な元素である。また、Alは製鋼工程で脱酸剤として添加される元素である。こうした効果を得るには、Al含有量を0.001%以上にする必要がある。一方、Al含有量が1.000%を超えると、鋼板中の介在物が多くなり延性が劣化する。従って、Al含有量は0.001%以上1.000%以下とする。下限について好ましいAl含有量は0.030%以上とする。上限について好ましいAl含有量は0.500%以下とする。
 N:0.0005%以上0.0100%以下
 Nは、Alと結合してAlNを形成する。また、Bが添加された場合にはBNを形成する。N含有量が多いと窒化物が多量に生じてフェライト粒の粒成長を阻害し、結果としてフェライト粒を微細化してしまい、加工性が劣化する。従って、本発明では、N含有量は0.0100%以下とする。しかし、生産技術上の制約から、N含有量は0.0005%以上にする必要がある。従って、N含有量は0.0005%以上0.0100%以下とする。好ましいN含有量は0.0005%以上0.0070%以下とする。
 本発明の薄鋼板は、上記の成分組成に加えて、さらに、質量%で、Mo:0.01%以上0.50%以下、Ti:0.001%以上0.100%以下、Nb:0.001%以上0.100%以下、V:0.001%以上0.100%以下、B:0.0001%以上0.0050%以下、Cr:0.01%以上1.00%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、As:0.001%以上0.500%以下、Sb:0.001%以上0.200%以下、Sn:0.001%以上0.200%以下、Ta:0.001%以上0.100%以下、Ca:0.0001%以上0.0200%以下、Mg:0.0001%以上0.0200%以下、Zn:0.001%以上0.020%以下、Co:0.001%以上0.020%以下、Zr:0.001%以上0.020%以下およびREM:0.0001%以上0.0200%以下のうちから選ばれる少なくとも1種の任意元素が、単独で、あるいは組み合わせて含有されることが好ましい。なお、鋼板の成分組成の残部は、Feおよび不可避的不純物である。
 Moは、化成処理性およびめっき性を損なうことなくマルテンサイトを得るのに有効であるため、必要に応じて添加してもよい。この効果は、Moの含有量を0.01%以上とすることで得られる。ただし、0.50%を超えて含有してもさらなる効果は得難い上、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。したがって、Mo含有量は、Mo:0.01%以上0.50%以下の範囲内とする。下限について好ましいMo含有量は0.02%以上とする。上限について好ましいMo含有量は0.35%以下、より好ましくは0.25%以下とする。
 Tiは、時効劣化を引き起こすNをTiNとして固定するのに有効な元素であるため、必要に応じて添加してもよい。この効果は、Ti含有量を0.001%以上とすることで得られる。一方で、Ti含有量が0.100%を超えると、TiCが過剰に生成して、降伏比YRが顕著に増加する。したがって、Tiを添加する場合には、その含有量は、0.001%以上0.100%以下の範囲とし、下限について好ましい含有量は0.005%以上である。上限について好ましい含有量は0.050%以下である。
 Nbは、熱間圧延時あるいは焼鈍時に微細な析出物を形成して強度を上昇させるため、必要に応じて添加してもよい。また、熱延時の粒径を微細化し、冷間圧延およびその後の焼鈍時に、YPの面内異方性低減に寄与するフェライトの再結晶を促進させる。こうした効果を得るためには、Nb含有量は0.001%以上にする必要がある。一方、Nb含有量が0.100%を超えると、Nb-(C,N)のような複合析出物が過剰に生成し、また、フェライトの粒径が微細化し、降伏比YRが顕著に増加する。したがって、Nbを添加する場合には、その含有量は、0.001%以上0.100%以下の範囲とする。下限について好ましいNb含有量は0.005%以上である。上限について好ましいNb含有量は0.050%以下である。
 Vは、炭化物、窒化物もしくは炭窒化物を形成することによって鋼を高強度化するため、必要に応じて添加してもよい。こうした効果を得るには、Vの含有量を0.001%以上とする必要がある。一方、V含有量が0.100%を超えると、母相であるフェライトやマルテンサイトの下部組織もしくは旧オーステナイト粒界に、Vが多量の炭化物、窒化物もしくは炭窒化物として析出し、加工性が著しく劣化する。したがって、Vを添加する場合には、その含有量は、0.001%以上0.100%以下の範囲内とする。下限について好ましいV含有量は0.005%以上であり、より好ましくは0.010%以上である。上限について好ましいV含有量は0.080%以下であり、より好ましくは0.070%以下である。
 Bは、鋼の強化に有効な元素であるため、必要に応じて添加してもよい。その添加効果は、B含有量を0.0001%以上にすることで得られる。一方、B含有量が0.0050%を超えると、マルテンサイトの面積率が過大となって、著しい強度上昇による延性の低下の懸念が生じる。従って、B含有量は0.0001%以上0.0050%以下とする。下限について好ましいB含有量は0.0005%以上とする。上限について好ましいB含有量は0.0030%以下とする。
 CrおよびCuは、固溶強化元素としての役割のみならず、焼鈍(冷延鋼板又は熱延鋼板(冷間圧延を行わない場合)に対する加熱および冷却処理)時の冷却過程において、オーステナイトを安定化し、複合組織化を容易にするため、必要に応じて添加してもよい。こうした効果を得るには、Cr含有量およびCu含有量は、それぞれ0.01%以上にする必要がある。一方、Cr含有量も、Cu含有量も1.00%を超えると、熱間圧延中に表層割れを起こす恐れがある上、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。したがって、CrおよびCuを添加する場合、その含有量はそれぞれ0.01%以上1.00%以下とする。
 Niは、固溶強化及び変態強化により高強度化に寄与するため、必要に応じて添加してもよい。この効果を得るためには、0.01%以上の含有が必要である。一方、Niを1.00%を超えて過剰に添加すると、熱間圧延中に表層割れを起こす恐れがある上、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。従って、Niを添加する場合、その含有量は、0.01%以上1.00%以下の範囲とする。Ni含有量は好ましくは0.50%以下である。
 Asは、耐食性向上に有効な元素であるため、必要に応じて添加してもよい。この効果を得るためには、0.001%以上の含有が必要である。一方、Asを過剰に添加した場合、赤熱脆性が促進する上に、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。従って、Asを添加する場合、その含有量は、0.001%以上0.500%以下の範囲とする。
 SbおよびSnは、鋼板表面の窒化や酸化によって生じる、鋼板表面から板厚方向に数十μm程度の領域の脱炭を抑制する観点から、必要に応じて添加する。このような窒化や酸化を抑制すると、鋼板表面におけるマルテンサイトの生成量が減少するのを防止して、鋼板の強度や材質安定性の確保に有効だからである。この効果を得るにはSbの場合、Snの場合のいずれも含有量を0.001%以上にする必要がある。一方で、これらいずれの元素についても、0.200%を超えて過剰に添加すると靭性の低下を招く。従って、SbおよびSnを添加する場合、その含有量は、それぞれ0.001%以上0.200%以下の範囲内とする。
 Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与するため、必要に応じて添加してもよい。加えて、Taには、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成して、析出物の粗大化を著しく抑制し、析出強化による鋼板の強度向上への寄与率を安定化させる効果があると考えられる。そのため、Taを含有することが好ましい。ここで、前述の析出物安定化の効果は、Taの含有量を0.001%以上とすることで得られる一方で、Taを過剰に添加しても、析出物安定化効果が飽和する上に、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。従って、Taを添加する場合、その含有量は、0.001%以上0.100%以下の範囲内とする。
 CaおよびMgは、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、延性、特に局部延性への硫化物の悪影響を改善するために有効な元素であるため、必要に応じて添加してもよい。これらの効果を得るためには、少なくとも1元素について0.0001%以上の含有が必要である。しかしながら、CaおよびMgの少なくとも1元素の含有量が、0.0200%を超えると、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こし、延性が大きく低下する。従って、CaおよびMgを添加する場合、その含有量はそれぞれ0.0001%以上0.0200%以下とする。
 Zn、CoおよびZrは、いずれも硫化物の形状を球状化し、局部延性および伸びフランジ性への硫化物の悪影響を改善するために有効な元素であるため、必要に応じて添加してもよい。この効果を得るためには、少なくとも1元素について0.001%以上の含有が必要である。しかしながら、Zn、CoおよびZrの少なくとも1元素の含有量が、0.020%を超えると、介在物等が増加し、表面や内部に欠陥などを引き起こすため、延性が低下する。従って、Zn、CoおよびZrを添加する場合、その含有量はそれぞれ0.001%以上0.020%以下とする。
 REMは、耐食性の向上に有効な元素であるため、必要に応じて添加してもよい。この効果を得るためには、0.0001%以上の含有が必要である。しかしながら、REMの含有量が、0.0200%を超えると、介在物等が増加し、表面や内部に欠陥などを引き起こすため、延性が低下する。従って、REMを添加する場合、その含有量は0.0001%以上0.0200%以下とする。
 上記成分以外の残部はFe及び不可避的不純物である。なお、上記任意成分について、含有量が下限値未満の場合には本発明の効果を害さないため、これら任意元素を下限値未満含む場合は、これらの任意元素を不可避的不純物として含むものとする。
 <鋼組織>
 本発明の薄鋼板等の鋼組織は、フェライトと第2相とを含み、フェライトは、面積率が50%以上であり、第2相は、面積率が全体(鋼組織全体)に対して1.0%以上25.0%以下のマルテンサイトを含有し、フェライトの平均結晶粒径が3μm以上であり、フェライトとマルテンサイトの硬度差が1.0GPa以上8.0GPa以下であり、かつ、フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、0.8以上7.0以下である。
 フェライトの面積率:50%以上
 鋼組織全体に対するフェライトの面積率は、本発明において、極めて重要な発明構成要件である。本発明の薄鋼板等は、延性に富む軟質なフェライトと、主として強度を担う第2相とを含む鋼組織からなる。十分な延性および強度と延性のバランスの確保するためには、フェライトの面積率を50%以上にする必要がある。なお、フェライトの面積率の上限は、特に限定しないが、第2相の面積率確保、すなわち、強度確保のために95%以下が好ましく、より好ましくは90%以下とする。
 ここで、第2相とは、上記の通り、フェライト以外の相であり、マルテンサイト、未再結晶フェライト、焼戻しマルテンサイト、ベイナイト、焼戻しベイナイト、パーライト、セメンタイト(合金炭化物含む)、残留オーステナイト等を意味する。
 マルテンサイトの面積率:1.0%以上25.0%以下
 鋼組織全体に対するマルテンサイト(焼入れままマルテンサイトを意味する)の面積率が25.0%を超えると、局部延性が低下するために全伸び(El)が低下する。なお、鋼板の強度確保およびYRの低下のためには、マルテンサイトの面積率は1.0%以上にする必要があり、好ましくは3.0%以上、より好ましくは5.0%以上、さらに好ましくは7.0%以上とする。
 なお、フェライトおよびマルテンサイトの面積率は、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、1vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて1000倍の倍率で3視野観察し、得られた組織画像を、Adobe Systems社のAdobe Photoshopを用いて、構成相(フェライトおよびマルテンサイト)の面積率を3視野分算出し、それらの値を平均して求めることが出来る。また、上記の組織画像において、フェライトは灰色の組織(基地組織)、また、マルテンサイトは白色の組織を呈している。
 フェライトの平均結晶粒径:3μm以上
 フェライトの平均結晶粒径が3μm未満では、延性が低下し、また、YRが顕著に上昇する。したがって、フェライトの平均結晶粒径は3μm以上とする。なお、フェライトの平均結晶粒径の上限は、特に限定しないが、30μmを超えると強度上昇に有利な第2相の生成が顕著に抑制されるため、フェライトの平均結晶粒径は30μm以下であることが好ましい。
 なお、フェライトの平均結晶粒径は、次のようにして算出した。すなわち、上記相の観察と同様に板厚1/4位置を観察位置とし、得られた鋼板をSEM(走査型電子顕微鏡)を用いて1000倍程度の倍率で観察し、上述のAdobe Photoshopを用いて、観察視野内のフェライトの面積の合計をフェライトの個数で除算することでフェライトの平均面積を算出した。そして、算出した平均面積を1/2乗した値をフェライトの平均結晶粒径とした。
 また、本発明の鋼組織では、上記したフェライトおよびマルテンサイトの合計の面積率を85%以上とすることが好ましい。鋼組織には、フェライトおよびマルテンサイト以外に、未再結晶フェライト、焼戻しマルテンサイト、ベイナイト、焼戻しベイナイト、パーライト、セメンタイト(合金炭化物含む)、残留オーステナイト等の鋼板に公知の相が、鋼組織全体に対する面積率で20%以下の範囲で含まれても、本発明の効果が損なわれることはない。ただし、降伏比の観点からは、パーライトおよび残留オーステナイトは少ない方が好ましく、パーライトは面積率で8%以下、残留オーステナイトは面積率で3%以下であることが好ましい。なお、フェライトおよびマルテンサイトの合計が100%、その他の組織が0%でもよい。
 フェライトとマルテンサイトの硬度差:1.0GPa以上8.0GPa以下
 フェライトとマルテンサイトの硬度差は、YRおよび延性を制御する上で、極めて重要な発明構成要件である。フェライトとマルテンサイトの硬度差が1.0GPa未満では、降伏比YRが上昇する。一方、フェライトとマルテンサイトの硬度差が8.0GPaを超えると、局部延性が低下するために全伸び(El)が低下する。従って、フェライトとマルテンサイトの硬度差は1.0GPa以上8.0GPa以下とし、好ましくは、1.5GPa以上7.5GPa以下とする。
 なお、フェライトとマルテンサイトの硬度差は、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、1vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、微小硬度計(島津製作所 DUH-W201S)を用い、荷重0.5gfの条件で、フェライトおよびマルテンサイトそれぞれの相の硬度を5点測定し、それぞれの相の平均硬度を求めた。この平均硬度から硬度差を算出した。
 フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比:0.8以上7.0以下
 α-fiberとは<110>軸が圧延方向に平行な繊維集合組織であり、また、γ-fiberとは<111>軸が圧延面の法線方向に平行な繊維集合組織である。体心立方金属では、圧延変形によりα-fiberおよびγ-fiberが強く発達し、再結晶焼鈍をしてもそれらに属する集合組織が形成するという特徴がある。
 本発明において、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比が7.0を超えると、鋼板の特定方向に集合組織が配向し、機械的特性の面内異方性、特にYPの面内異方性が大きくなる。一方、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比が0.8未満でも同様に、機械的特性の面内異方性、特にYPの面内異方性が大きくなる。したがって、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比は0.8以上7.0以下とし、上限について好ましい上記強度比は6.5以下である。
 本発明で、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比は、鋼板の圧延方向に平行な板厚断面(L断面)を湿式研磨およびコロイダルシリカ溶液を用いたバフ研磨により表面を平滑化した後、0.1vol.%ナイタールで腐食することで、試料表面の凹凸を極力低減し、かつ、加工変質層を完全に除去し、次いで、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM-EBSD(Electron Back-Scatter Diffraction;電子線後方散乱回折)法を用いて結晶方位を測定し、得られたデータを、AMETEK EDAX社のOIM Analysisを用いて、CI(Confidence Index)およびIQ(Image Quality)でマルテンサイトを含む第2相を排除し、フェライトのみの集合組織を抽出することができる。結果として、フェライトのα-fiberおよびγ-fiberのインバース強度比を求めることにより、算出することができる。
 マルテンサイトの平均サイズ:1.0μm以上15.0μm以下
 マルテンサイトの平均サイズが1.0μm未満では、YRの上昇が高くなる傾向にある。一方で、マルテンサイトの平均サイズが15.0μmを超えると、局部延性が低下するために全伸び(El)が低下する場合がある。したがって、マルテンサイトの平均サイズは、1.0μm以上15.0μm以下が好ましい。下限についてより好ましい上記平均サイズは2.0μm以上であり、上限についてより好ましい上記平均サイズは10.0μm以下とする。
 実際のマルテンサイトの平均サイズは、次のようにして算出した。上記相の観察と同様に板厚1/4位置を観察位置とし、得られた鋼板を、SEMを用いて1000倍程度の倍率で観察し、上述のAdobe Photoshopを用いて、観察視野内のマルテンサイトの面積の合計をマルテンサイトの個数で除算することでマルテンサイトの平均面積を算出した。そして、算出した平均面積を1/2乗した値をマルテンサイトの平均サイズとした。
 <薄鋼板>
 薄鋼板の成分組成および鋼組織は上記の通りである。また、薄鋼板の厚みは特に限定されないが、通常、0.3mm以上2.8mm以下である。
 <めっき鋼板>
 本発明のめっき鋼板は、本発明の薄鋼板上にめっき層を備えるめっき鋼板である。めっき層の種類は特に限定されず、例えば、溶融めっき層、電気めっき層のいずれでもよい。また、めっき層は合金化されためっき層でもよい。めっき層は亜鉛めっき層が好ましい。亜鉛めっき層はAlやMgを含有してもよい。また、溶融亜鉛-アルミニウム-マグネシウム合金めっき(Zn-Al-Mgめっき層)も好ましい。この場合、Al含有量を1質量%以上22質量%以下、Mg含有量を0.1質量%以上10質量%以下とし残部はZnとすることが好ましい。また、Zn-Al-Mgめっき層の場合、Zn、Al、Mg以外に、Si、Ni、Ce及びLaから選ばれる一種以上を合計で1質量%以下含有してもよい。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。
 また、めっき層の組成も特に限定されず、一般的なものであればよい。例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層の場合、一般的には、Fe:20質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避的不純物からなる組成である。本発明では、片面あたりのめっき付着量が20~80g/mの溶融亜鉛めっき層、これがさらに合金化された合金化溶融亜鉛めっき層を有することが好ましい。また、めっき層が溶融亜鉛めっき層の場合にはめっき層中のFe含有量が7質量%未満であり、合金化溶融亜鉛めっき層の場合にはめっき層中のFe含有量は7~20質量%である。
 <熱延鋼板の製造方法>
 本発明の熱延鋼板の製造方法は、上記成分組成を有する鋼スラブを加熱し、粗圧延を行い、その後の仕上げ圧延において、仕上げ圧延の最終パスの圧下率が5%以上15%以下、該最終パスの前のパスの圧下率が15%以上25%以下、仕上げ圧延入側温度が1020℃以上1180℃以下、仕上げ圧延出側温度が800℃以上1000℃以下の条件で熱間圧延し、平均冷却速度5℃/s以上90℃/s以下で冷却して、巻取温度が300℃以上700℃以下の条件で巻き取る方法である。なお、以下の説明において、温度は特に断らない限り鋼板表面温度とする。鋼板表面温度は放射温度計等を用いて測定し得る。
 本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉や電気炉等、公知の溶製方法いずれもが適合する。鋳造方法も特に限定はされないが、連続鋳造方法が好適である。また、鋼スラブ(スラブ)は、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。また、スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低めにした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。また、スラブを熱間圧延するに際しては、加熱炉でスラブを再加熱した後に熱間圧延してもよいし、1250℃以上の加熱炉で短時間加熱した後に熱間圧延に供してもよい。
 上記のようにして得られた鋼素材(スラブ)に、熱間圧延を施す。この熱間圧延は、粗圧延と仕上げ圧延による圧延でも、粗圧延を省略した仕上げ圧延だけの圧延としてもよいが、いずれにしても、仕上げ圧延の最終パスの圧下率、最終直前パスの圧下率、仕上げ圧延入側温度、仕上げ圧延出側温度が重要である。
 仕上げ圧延の最終パスの圧下率が5%以上15%以下
 最終パスの前のパスの圧下率が15%以上25%以下
 本発明では、最終パスの前のパスの圧下率を、最終パスの圧下率以上とすることで、フェライトの平均結晶粒径、マルテンサイトの平均サイズおよび集合組織を適正に制御することができる。このため、上記圧下率の条件は非常に重要である。仕上げ圧延の最終パスの圧下率が5%未満では、熱延時のフェライトの結晶粒径が粗大化した結果、冷間圧延およびその後の焼鈍時の結晶粒径が粗大となり、強度が低下する。また、非常に粗大なオーステナイト粒からフェライトが核生成、成長するため、生成するフェライト粒の粒径が不揃いとなるいわゆる混粒組織となってしまい、その結果、再結晶焼鈍時に特定方位の粒が成長するため、YPの面内異方性が大きくなる。一方、最終パスの圧下率が15%を超えると、熱延時のフェライトの結晶粒径が微細化し、冷間圧延およびその後の焼鈍時のフェライトの結晶粒径が微細となった結果、強度が上昇する。また、焼鈍時のオーステナイトの核生成サイトが増大し、微細なマルテンサイトが生成する結果、YRが上昇する。したがって、仕上げ圧延の最終パスの圧下率が5%以上15%以下とする。
 最終パスの前のパスの圧下率が15%未満では、非常に粗大なオーステナイト粒を最終パスで圧延したとしても、最終パス後の冷却中に生成するフェライト粒の粒径が不揃いとなるいわゆる混粒組織となってしまい、その結果、再結晶焼鈍時に特定方位の粒が成長するため、YPの面内異方性が大きくなる。一方、最終パスの前のパスの圧下率が25%を超えると、熱延時のフェライトの結晶粒径が微細化し、冷間圧延およびその後の焼鈍時の結晶粒径が微細となった結果、強度が上昇する。また、焼鈍時のオーステナイトの核生成サイトが増大し、微細なマルテンサイトが生成する結果、YRが上昇する。したがって、仕上げ圧延の最終パスの前のパスの圧下率は15%以上25%以下とする。
 仕上げ圧延入側温度が1020℃以上1180℃
 加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延入側温度が1180℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、デスケーリング時や、酸洗時のスケール剥離性が低下し、焼鈍後の表面品質が劣化する。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性に悪影響を及ぼす。一方、仕上げ圧延入側温度が1020℃未満では、仕上げ圧延後の仕上げ圧延温度が低下してしまい、熱間圧延中の圧延荷重が増大し圧延負荷が大きくなることや、オーステナイトが未再結晶状態での圧下率が高くなり、再結晶焼鈍後の集合組織の制御が困難となり、最終製品における面内異方性が顕著となることで、材質の均一性や材質安定性が損なわれる。また、延性そのものも低下する。したがって、熱間圧延の仕上げ圧延入側温度を1020℃以上1180℃以下にする必要がある。好ましくは1020℃以上1160℃以下とする。
 仕上げ圧延出側温度:800℃以上1000℃以下
 加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。一方、仕上げ圧延出側温度が800℃未満では圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶状態での圧下率が高くなり、異常な集合組織が発達し、最終製品における面内異方性が顕著となることで、材質の均一性や材質安定性が損なわれる。また、延性そのものも低下する。また、仕上げ圧延出側温度が800℃未満では、加工性の低下を招く。したがって、熱間圧延の仕上げ圧延出側温度を800℃以上1000℃以下にする必要がある。下限について好ましい仕上げ圧延出側温度は820℃以上である。上限について好ましい仕上げ圧延出側温度は950℃以下である。
 なお、上記の通り、この熱間圧延は、粗圧延と仕上げ圧延による圧延でも、粗圧延を省略した仕上げ圧延だけの圧延としてもよい。
 仕上げ圧延後から巻取温度までの平均冷却速度:5℃/s以上90℃/s以下
 仕上げ圧延後から巻取温度までの平均冷却速度を適正に制御することで熱延鋼板における相の結晶粒径を微細化でき、その後の冷間圧延および焼鈍後の集合組織を{111}//ND方位への集積を高めることが可能である(即ち、α-fiberに対するγ-fiberのインバース強度比に調整することを可能とする。)。ここで、仕上げ圧延後から巻取りまでの平均冷却速度が90℃/sを超えると、板形状が顕著に悪化し、その後の冷間圧延あるいは焼鈍(冷間圧延後の加熱、冷却処理)の際にトラブルの原因となる。一方、5℃/s未満になると、熱延板の組織において結晶粒径が増大し、その後の冷間圧延および焼鈍後の集合組織においてγ-fiberへの集積を高めることができない。また、熱延時に粗大炭化物が形成し、これが焼鈍後にも残存することで加工性の低下を招く。したがって、仕上げ圧延後から巻取温度までの平均冷却速度は、5℃/s以上90℃/s以下とし、下限について好ましい平均冷却速度は7℃/s以上、より好ましくは9℃/s以上である。上限について好ましい平均冷却速度は60℃/s以下、より好ましくは50℃/s以下とする。
 巻取温度:300℃以上700℃以下
 熱間圧延後の巻取温度が700℃を超えると、熱延板(熱延鋼板)の鋼組織のフェライトの結晶粒径が大きくなり、焼鈍後に所望の強度の確保が困難となる。一方、熱間圧延後の巻取温度が300℃未満では、熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する。また、マルテンサイトを主体とする硬質な熱延鋼板に冷間圧延を施すと、マルテンサイトの旧オーステナイト粒界に沿った微小な内部割れ(脆性割れ)が生じやすく、最終焼鈍板の延性および伸びフランジ性が低下する。従って、熱間圧延後の巻取温度を300℃以上700℃以下にする必要がある。下限について好ましい巻取温度は400℃以上とする。上限について好ましい巻取温度は650℃以下とする。
 なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行ってもよい。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
 <冷延フルハード鋼板の製造方法>
 本発明の冷延フルハード鋼板の製造方法は、上記熱延鋼板を酸洗し、35%以上の圧下率で冷間圧延する方法である。
 酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の薄鋼板やめっき鋼板における良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回でも良いし、複数回に分けても良い。
 冷間圧延工程における圧下率(圧延率):35%以上
 熱間圧延後の冷間圧延により、α-fiberおよびγ-fiberを発達させることによって、焼鈍後の組織でもα-fiberおよびγ-fiber、特にγ-fiberを持つフェライトを増やし、YPの面内異方性を低減することが可能である。このような効果を得るには、冷間圧延の圧下率の下限は35%とする。さらに、YPの面内異方性を低減する観点からは、冷間圧延時の圧下率を40%以上とすることが好ましく、より好ましくは45%以上、さらに好ましくは49%以上とする。なお、圧延パスの回数、各パス毎の圧下率については、とくに限定されることなく本発明の効果を得ることができる。また、上記圧下率の上限に特に限定はないが、工業上80%程度である。
 <薄鋼板の製造方法>
 薄鋼板の製造方法には、熱延鋼板又は冷延フルハード鋼板を加熱し冷却して(1回の焼鈍)薄鋼板を製造する方法(1回法)と、熱延鋼板又は冷延フルハード鋼板を加熱し冷却して(1回目の焼鈍)、熱処理板とし該熱処理板を加熱し冷却して(2回目の焼鈍)、薄鋼板を製造する方法(2回法)とがある。以下では、まず、1回の焼鈍(1回法)の場合について示す。
 最高到達温度:T1温度以上T2温度以下
 最高到達温度がT1温度未満の場合、この焼鈍はフェライト単相域での熱処理になるため、焼鈍後にマルテンサイトを含む第2相が生成せず、所望の強度を得ることができず、またYRも上昇する。一方、最高到達温度がT2温度を超えると、焼鈍後に生成するマルテンサイトを含む第2相が増大し、強度が上昇する一方、延性が低下する。したがって、最高到達温度はT1温度以上T2温度以下とする。
T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
である。なお、上記式において[%X]は鋼板の成分元素Xの含有量(質量%)とする。
 なお、上記最高到達温度での保持の際の保持時間は、特に限定はしないが10s以上40000s以下の範囲が好ましい。
 [最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下
 [最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500sを超えると、所望の特性が得られない。なお、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間の下限は、特に限定はしないが、30秒未満では、フェライトの再結晶が不十分となり、YPの面内異方性が大きくなる場合があるため、30秒以上であることが好ましく、より好ましくは50秒以上とする。
 [T1温度-10℃]から550℃の温度域で平均冷却速度:3℃/s以上
 保持後の冷却において、[T1温度-10℃]から550℃の温度域での平均冷却速度が3℃/s未満の場合、冷却中にフェライトおよびパーライトが過度に生成して、所望のマルテンサイト量が得られなくなる。したがって、[T1温度-10℃]から550℃の温度域で平均冷却速度は3℃/s以上とする。
 600℃以上の温度域の露点:-40℃以下
 焼鈍時、600℃以上の温度域において露点が高くなると、空気中の水分を介して脱炭が進行し、鋼板表層部のフェライト粒が粗大化するうえ硬さが低下するために、安定的に優れた引張強度が得られなかったり、曲げ疲労特性が低下したりする。また、めっきを施す場合、めっきを阻害する元素であるSi、Mn等が焼鈍中に鋼板表面に濃化し、めっき性を阻害する。そのため、焼鈍時に600℃以上の温度域の露点は-40℃以下とする必要がある。好ましくは、-45℃以下である。なお、通常の加熱、均熱保持、冷却の過程を経る焼鈍の場合は、全過程において600℃以上の温度域について露点を-40℃以下とする必要がある。雰囲気の露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。
 なお、上記冷却における冷却停止温度は特に限定されないが、通常120~550℃である。
 次いで、2回の焼鈍(2回法)について説明する。2回法では先ず熱延鋼板又は冷延フルハード鋼板を加熱し熱処理板とする。この熱処理板を得る製造方法が、本発明の熱処理板の製造方法である。
 上記熱処理板を得るための具体的な方法は、熱延鋼板または冷延フルハード鋼板を、最高到達温度がT1温度以上T2温度以下、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下の条件で加熱し、その後、冷却し、酸洗する方法である。
 上記最高到達温度、滞留時間の技術的意義は1回法と同様であるため説明を省略する。熱処理板を得るには、上記滞留時間での保持後、冷却し、酸洗する。
 上記冷却における冷却速度は、特に限定されないが、通常5~350℃/sである。
 なお、後述する熱処理板の再加熱時にSi、Mn等のめっき性を阻害する元素が過度に表面濃化してしまい、めっき性が劣位になるため、酸洗等によって表面濃化層を除去する必要がある。ただし、熱間圧延後の巻取りの後に行う酸洗による脱スケールについては、その実施の有無は何ら本発明の効果には影響しない。また、上記酸洗までの間に、通板性をよくするために熱処理板に調質圧延を行ってもよい。
 再加熱温度:T1温度以上
 2回法の場合には、1回目の加熱時にフェライトの再結晶が完了しているため、再加熱温度はT1温度以上で構わない。ただし、T1温度未満になるとオーステナイトの形成が不十分となり、所望のマルテンサイト量を得ることが困難となる。したがって、再加熱温度は、T1温度以上とする。再加熱温度の上限は特に規定しないが、850℃を超えるとSi、Mn等の元素が表面に再濃化し、めっき性を低下させる場合があるため、850℃以下とすることが好ましい。より好ましくは840℃以下である。
 [T1温度-10℃]から550℃の温度域で平均冷却速度:3℃/s以上
 再加熱後の冷却中において、[T1温度-10℃]から550℃の温度域での平均冷却速度が3℃/s未満の場合、冷却中にフェライトおよびパーライトが過度に生成して、所望のマルテンサイト量が得られなくなり、YRが上昇する。したがって、[T1温度-10℃]から550℃の温度域で平均冷却速度は3℃/s以上とする。なお、450℃から[T1温度-10℃]の温度域での平均冷却速度の上限は、特に限定しないが、100℃/sを超えると急激な熱収縮により板形状が悪くなり、蛇行等の操業上の問題となる場合があるため、100℃/s以下とすることが好ましい。
 600℃以上の温度域の露点:-40℃以下
 焼鈍時、600℃以上の温度域において露点が高くなると、空気中の水分を介して脱炭が進行し、鋼板表層部のフェライト粒が粗大化するうえ硬さが低下するために、安定的に優れた引張強度が得られなかったり、曲げ疲労特性が低下したりする。また、めっきを施す場合、めっきを阻害する元素であるSi、Mn等が焼鈍中に鋼板表面に濃化し、めっき性を阻害する。そのため、焼鈍時に600℃以上の温度域の露点は-40℃以下とする必要がある。好ましくは、-45℃以下である。なお、通常の加熱、均熱保持、冷却の過程を経る焼鈍の場合は、全過程において600℃以上の温度域について露点を-40℃以下とする必要がある。雰囲気の露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。
 また、上記1回法又は2回法で得られた薄鋼板に調質圧延を施してもよい。調質圧延率は、0.1%未満の場合、降伏点伸びが消失せず、1.5%を超えると、鋼の降伏応力が上昇し、YRが上昇することから、0.1%以上1.5%以下とすることがより好適である。
 なお、薄鋼板が取引対象となる場合には、通常、室温まで冷却された後、取引対象となる。
 <めっき鋼板の製造方法>
 本発明のめっき鋼板の製造方法は、薄鋼板にめっきを施す方法である。例えば、めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍と亜鉛めっきを1ラインで連続して行ってもよい。その他、Zn-Ni電気合金めっき等の電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。なお、亜鉛めっきの場合を中心に説明したが、Znめっき、Alめっき等のめっき金属の種類は特に限定されない。
 なお、溶融亜鉛めっき処理を施すときは、薄鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施した後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10質量%以上0.23質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、TSが低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。また、めっき付着量は片面あたり20~80g/m(両面めっき)が好ましく、合金化溶融亜鉛めっき鋼板(GA)は、下記の合金化処理を施すことによりめっき層中のFe濃度を7~15質量%とすることが好ましい。
 めっき処理後のスキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが良好範囲の下限となる。また、2.0%を超えると、生産性が著しく低下するので、これを良好範囲の上限とする。スキンパス圧延は、オンラインで行ってもよいし、オフラインで行ってもよい。また、一度に目的の圧下率のスキンパスを行ってもよいし、数回に分けて行っても構わない。
 その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。溶融亜鉛めっき後は、めっきの目付け量を調整するために、ワイピングが可能である。なお、上記した条件以外のめっき等の条件は、溶融亜鉛めっきの常法に依ることができる。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを加熱して、表2に示した条件で熱間圧延後、酸洗処理を施し、表2に示したNo.1~18、20~25、27、28、30~35は冷間圧延を施した。
 次いで、表2に示した条件で焼鈍処理を施し(予備焼鈍の欄に記載があるものは2回法を意味する)、薄鋼板を得た。
 さらに、一部の薄鋼板にめっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)、溶融亜鉛-アルミニウム-マグネシウム合金めっき鋼板(ZAM)などを得た。溶融亜鉛めっき浴は、GIでは、Al:0.14~0.19質量%含有亜鉛浴を使用し、また、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は470℃とした。めっき付着量は、GIでは、片面あたり45~72g/m2(両面めっき)程度とし、また、GAでは、片面あたり45g/m2(両面めっき)程度とする。また、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。めっき層をZn―Niめっき層とするEGでは、めっき層中のNi含有量を9質量%以上25質量%以下とした。さらに、めっき層をZn-Al-Mgめっき層とするZAMでは、めっき層中のAl含有量を3質量%以上22質量%以下、Mg含有量を1質量%以上10質量%以下とした。
 なお、T1温度(℃)は、以下の式を用いて求めた。
T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
 また、T2温度(℃)は、
T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
によって算出することができる。なお、[%X]は鋼板の成分元素Xの質量%とする。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 以上のようにして得られた薄鋼板および高強度めっき鋼板を供試鋼として、機械的特性を評価した。機械的特性は、以下のように引張試験を行い評価した。その結果を表3に示す。また、供試鋼である各鋼板の板厚も表3に示す。
 引張試験は、引張試験片の長手が、鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、YP(降伏応力)、TS(引張強度)およびEl(全伸び)を測定した。なお、本発明で、延性すなわちEl(全伸び)に優れるとは、TS×Elの値が15000MPa・%以上の場合を良好と判断した。また、YRが低いとは、YR=(YP/TS)×100の値が75%以下の場合を良好と判断した。さらに、YPの面内異方性に優れるとは、YPの面内異方性の指標である│ΔYP│の値が50MPa以下の場合を良好と判断した。また、表3に示すYP、TSおよびElはC方向の試験片の測定結果を示した。│ΔYP│は上述の計算方法で算出した。
 また、前述した方法にしたがって、フェライトおよびマルテンサイトそれぞれの面積率、フェライトの平均結晶粒径、フェライトとマルテンサイトの硬度差およびマルテンサイトの平均サイズを上述の方法で求めた。また、鋼板の板厚1/4位置におけるフェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比を上述の方法で求めた。また、残部組織についても一般的な方法で確認し、表3に示した。
 また、めっき性は、100コイル当たりの不めっき欠陥の長さ発生率が0.8%以下の場合を良好と判断した。なお、不めっき欠陥の長さ発生率とは次式(2)で求められ、表面性状の評価は、100コイル当たりのスケール欠陥の長さ発生率が0.2%以下の場合を「優」、0.2%超0.8%以下の場合を「良」、0.8%超の場合を「劣」とし、表面検査装置で判断した。
(不めっき欠陥の長さ発生率)=(不めっき欠陥と判断された欠陥のL方向の総長さ)/(出側コイル長)×100・・・・(2)
 表3に示すように、本発明例では、TSが540MPa以上であり、延性に優れ、さらに、降伏比(YR)が低く、かつ、YPの面内異方性、および、めっき性にも優れている。一方、比較例では、強度、YR、強度と延性のバランス、YPの面内異方性、および、めっき性のいずれか一つ以上が劣っている。
 以上、本発明の実施の形態について説明したが、本発明は、本実施の形態による本発明の開示の一部をなす記述により限定されるものではない。すなわち、本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。例えば、上記した製造方法における一連の熱処理においては、熱履歴条件さえ満足すれば、鋼板に熱処理を施す設備等は特に限定されるものではない。
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、540MPa以上のTSを有し、延性に優れ、さらに、YRが低く、YPの面内異方性に優れる高強度鋼板の製造が可能になる。また、本発明の製造方法に従って得られた高強度鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。
 

Claims (10)

  1.  質量%で、
    C:0.03%以上0.20%以下、
    Si:0.70%以下、
    Mn:1.50%以上3.00%以下、
    P:0.001%以上0.100%以下、
    S:0.0001%以上0.0200%以下、
    Al:0.001%以上1.000%以下、
    N:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、フェライトと第2相とを含み、前記フェライトは、面積率が50%以上であり、前記第2相は、面積率が全体に対して1.0%以上25.0%以下のマルテンサイトを含有し、前記フェライトの平均結晶粒径が3μm以上であり、前記フェライトと前記マルテンサイトの硬度差が1.0GPa以上8.0GPa以下であり、かつ、前記フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、0.8以上7.0以下である鋼組織と、を有し、引張強度が540MPa以上である薄鋼板。
  2.  前記マルテンサイトの平均サイズが1.0μm以上15.0μm以下である請求項1に記載の薄鋼板。
  3.  前記成分組成は、さらに、質量%で、
    Mo:0.01%以上0.50%以下、
    Ti:0.001%以上0.100%以下、
    Nb:0.001%以上0.100%以下、
    V:0.001%以上0.100%以下、
    B:0.0001%以上0.0050%以下、
    Cr:0.01%以上1.00%以下、
    Cu:0.01%以上1.00%以下、
    Ni:0.01%以上1.00%以下、
    As:0.001%以上0.500%以下、
    Sb:0.001%以上0.200%以下、
    Sn:0.001%以上0.200%以下、
    Ta:0.001%以上0.100%以下、
    Ca:0.0001%以上0.0200%以下、
    Mg:0.0001%以上0.0200%以下、
    Zn:0.001%以上0.020%以下、
    Co:0.001%以上0.020%以下、
    Zr:0.001%以上0.020%以下
    およびREM:0.0001%以上0.0200%以下のうちから選ばれる少なくとも1種の元素を含有する請求項1又は2に記載の薄鋼板。
  4.  請求項1~3のいずれかに記載の薄鋼板の表面にめっき層を備えるめっき鋼板。
  5.  請求項1又は3に記載の成分組成を有する鋼スラブを加熱し、粗圧延を行い、その後の仕上げ圧延において、仕上げ圧延入り側温度が1020℃以上1180℃以下、仕上げ圧延の最終パスの圧下率が5%以上15%以下、該最終パスの前のパスの圧下率が15%以上25%以下、仕上げ圧延出側温度が800℃以上1000℃以下の条件で熱間圧延し、平均冷却速度5℃/s以上90℃/s以下で冷却して、巻取温度が300℃以上700℃以下の条件で巻き取る熱延鋼板の製造方法。
  6.  請求項5に記載の製造方法で得られた熱延鋼板を酸洗し、35%以上の圧下率で冷間圧延する冷延フルハード鋼板の製造方法。
  7.  請求項5に記載の製造方法で得られた熱延鋼板又は請求項6に記載の製造方法で得られた冷延フルハード鋼板を、最高到達温度がT1温度以上T2温度以下、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下の条件で加熱し、[T1温度-10℃]から550℃の温度域の平均冷却速度が3℃/s以上の条件で冷却し、かつ、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
    ただし、
    T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
    T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
    である。なお、上記式において[%X]は鋼板の成分元素Xの含有量(質量%)とする。
  8.  請求項5に記載の製造方法で得られた熱延鋼板又は請求項6に記載の製造方法で得られた冷延フルハード鋼板を、最高到達温度がT1温度以上T2温度以下、[最高到達温度-50℃]から最高到達温度までの温度域での滞留時間が500s以下の条件で加熱し、その後、冷却し、酸洗する熱処理板の製造方法。
    ただし、
    T1温度(℃)=745+29×[%Si]-21×[%Mn]+17×[%Cr]
    T2温度(℃)=960-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
    である。なお、上記式において[%X]は鋼板の成分元素Xの含有量(質量%)とする。
  9.  請求項8に記載の製造方法で得られた熱処理板を、T1温度以上に再度加熱し、次いで[T1温度-10℃]から550℃の温度域の平均冷却速度が3℃/s以上の条件で冷却し、かつ、600℃以上の温度域の露点が-40℃以下である薄鋼板の製造方法。
  10.  請求項7又は9に記載の製造方法で得られた薄鋼板にめっきを施すめっき鋼板の製造方法。
PCT/JP2017/008957 2016-03-31 2017-03-07 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 WO2017169561A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2018011861A MX2018011861A (es) 2016-03-31 2017-03-07 Lamina de acero, lamina de acero recubierta, metodo para producir lamina de acero laminada en caliente, metodo para producir lamina de acero de dureza completa laminada en frio, metodo para producir lamina tratada termicamente, metodo para producir lamina de acero, y metodo para producir lamina de acero recubierta.
JP2017535939A JP6304455B2 (ja) 2016-03-31 2017-03-07 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US16/086,431 US11008632B2 (en) 2016-03-31 2017-03-07 Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016070749 2016-03-31
JP2016-070749 2016-03-31
JP2016232543 2016-11-30
JP2016-232543 2016-11-30

Publications (1)

Publication Number Publication Date
WO2017169561A1 true WO2017169561A1 (ja) 2017-10-05

Family

ID=59963020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008957 WO2017169561A1 (ja) 2016-03-31 2017-03-07 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Country Status (4)

Country Link
US (1) US11008632B2 (ja)
JP (2) JP6304455B2 (ja)
MX (1) MX2018011861A (ja)
WO (1) WO2017169561A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152993A (ja) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 溶融Zn−Al−Mg系めっき鋼板およびその製造方法
KR20230041243A (ko) * 2021-09-17 2023-03-24 현대제철 주식회사 냉연 강판 및 그 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032299B2 (ja) * 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032300B2 (ja) * 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN109642292B (zh) 2016-08-31 2021-11-12 杰富意钢铁株式会社 高强度钢板及其制造方法
JP6315044B2 (ja) 2016-08-31 2018-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN109355583A (zh) * 2018-11-09 2019-02-19 唐山钢铁集团有限责任公司 一种低各向异性低合金高强冷轧退火钢带及其生产方法
KR102606157B1 (ko) * 2019-05-31 2023-11-29 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판
CN112430787B (zh) * 2019-08-26 2022-04-15 上海梅山钢铁股份有限公司 一种低屈强比高强度冷轧热镀锌钢板及其制造方法
CN115427601B (zh) * 2020-09-17 2024-04-02 日本制铁株式会社 热压用钢板以及热压成型体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013700A (ja) * 2008-07-03 2010-01-21 Jfe Steel Corp 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255100A (ja) * 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013015428A1 (ja) * 2011-07-27 2013-01-31 新日鐵住金株式会社 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法
JP2013177673A (ja) * 2012-01-31 2013-09-09 Jfe Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
WO2015015739A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
JP5884210B1 (ja) * 2014-07-25 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192859A (ja) 1988-01-19 1989-08-02 Toray Ind Inc 不織布の製造方法および製造装置
JP3583306B2 (ja) 1999-01-20 2004-11-04 株式会社神戸製鋼所 板幅方向における伸びのバラツキが改善された高強度高延性冷延鋼板の製造方法
JP4003401B2 (ja) 2001-02-13 2007-11-07 住友金属工業株式会社 降伏強さと破断伸びの変動が小さく高成形性と低降伏比とを有する鋼板およびその製造方法
EP1731627B1 (en) 2004-03-31 2013-08-21 JFE Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
JP4221023B2 (ja) 2005-12-06 2009-02-12 株式会社神戸製鋼所 耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5315954B2 (ja) 2008-11-26 2013-10-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4623233B2 (ja) * 2009-02-02 2011-02-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR100981856B1 (ko) * 2010-02-26 2010-09-13 현대하이스코 주식회사 도금성이 우수한 고강도 강판 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013700A (ja) * 2008-07-03 2010-01-21 Jfe Steel Corp 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255100A (ja) * 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013015428A1 (ja) * 2011-07-27 2013-01-31 新日鐵住金株式会社 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法
JP2013177673A (ja) * 2012-01-31 2013-09-09 Jfe Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
WO2015015739A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
JP5884210B1 (ja) * 2014-07-25 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152993A (ja) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 溶融Zn−Al−Mg系めっき鋼板およびその製造方法
WO2020196149A1 (ja) * 2019-03-22 2020-10-01 日本製鉄株式会社 溶融Zn-Al-Mg系めっき鋼板およびその製造方法
JP7288184B2 (ja) 2019-03-22 2023-06-07 日本製鉄株式会社 溶融Zn-Al-Mg系めっき鋼板の製造方法
KR20230041243A (ko) * 2021-09-17 2023-03-24 현대제철 주식회사 냉연 강판 및 그 제조 방법
KR102638873B1 (ko) * 2021-09-17 2024-02-22 현대제철 주식회사 냉연 강판 및 그 제조 방법

Also Published As

Publication number Publication date
JP6304455B2 (ja) 2018-04-04
JP2018090895A (ja) 2018-06-14
US11008632B2 (en) 2021-05-18
US20190100819A1 (en) 2019-04-04
JP6458833B2 (ja) 2019-01-30
MX2018011861A (es) 2018-12-17
JPWO2017169561A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6458833B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP6458834B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP6179676B2 (ja) 高強度鋼板およびその製造方法
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
JP5821260B2 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP6315044B2 (ja) 高強度鋼板およびその製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
WO2014020640A1 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JPWO2016021194A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5967318B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6311843B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018092817A1 (ja) 高強度鋼板およびその製造方法
JP2015113504A (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2020162562A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP6372632B1 (ja) 高強度鋼板およびその製造方法
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
JP2012219328A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
WO2016194342A1 (ja) 高強度鋼板及びその製造方法
JP6780804B1 (ja) 高強度鋼板およびその製造方法
JP6210184B1 (ja) 鋼板、めっき鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017535939

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011861

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774106

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774106

Country of ref document: EP

Kind code of ref document: A1