WO2017169319A1 - Motorized valve and refrigeration cycle system - Google Patents

Motorized valve and refrigeration cycle system Download PDF

Info

Publication number
WO2017169319A1
WO2017169319A1 PCT/JP2017/006552 JP2017006552W WO2017169319A1 WO 2017169319 A1 WO2017169319 A1 WO 2017169319A1 JP 2017006552 W JP2017006552 W JP 2017006552W WO 2017169319 A1 WO2017169319 A1 WO 2017169319A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
motor
sectional area
passage formed
Prior art date
Application number
PCT/JP2017/006552
Other languages
French (fr)
Japanese (ja)
Inventor
元康 石黒
雄希 北見
大樹 中川
珠実 田邊
Original Assignee
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鷺宮製作所 filed Critical 株式会社鷺宮製作所
Priority to JP2018508588A priority Critical patent/JP6663981B2/en
Priority to CN201780014953.5A priority patent/CN108779869B/en
Publication of WO2017169319A1 publication Critical patent/WO2017169319A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/50Mechanical actuating means with screw-spindle or internally threaded actuating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an electric valve used in a refrigeration cycle and the like, and a refrigeration cycle system using the electric valve.
  • a flow control valve used for large packaged air conditioners and refrigerators is known (for example, see Patent Document 1).
  • This flow control valve has good operability even when a large diameter and high pressure difference occur because of the rationalization of control equipment such as combining multiple motorized valves used for flow control into one. Performance that can be demonstrated is desired, but the flow control with a relatively large diameter has a large load on the valve body caused by the pressure difference against the thrust of the screw generated by the torque of the magnet, and a large drive to operate the valve body Power is required.
  • a structure as described below is adopted.
  • the back pressure chambers communicate with each other through the conduction paths 201, 202, 203, and 204. For this reason, when the valve body 120 is opened, the rising pressure in the valve port 119 is introduced into the back pressure chamber 301 through the conduction paths 201 and 202. Subsequently, the pressure in the back pressure chamber 301 is introduced into the back pressure chamber 302 through the conduction path 203, and the pressure in the back pressure chamber 302 is introduced into the back pressure chamber 303 through the conduction path 204. .
  • An object of the present invention is to provide an electrically operated valve with good operability and a refrigeration cycle system using the electrically operated valve.
  • the motor-operated valve of the present invention is The rotational motion of the rotor is converted into a linear motion by screw connection between the male screw member and the female screw member, and the valve body accommodated in the valve body is axially guided by the valve body guide member based on this linear motion.
  • a motor-driven valve that moves and cancels the force due to the pressure difference in the plurality of internal spaces in the valve open state,
  • a valve seat for seating the valve body A plurality of communication channels communicating the internal spaces with each other;
  • the effective cross-sectional area of the communication channel positioned at a position far from the valve seat is formed so as not to be smaller than the effective cross-sectional area of the communication channel positioned at a position close to the valve seat.
  • the motor operated valve of the present invention is The communication channel located farther from the valve seat is formed such that the effective cross-sectional area becomes larger.
  • the motor-operated valve can be operated with a small driving force and low power.
  • the motor operated valve of the present invention is A valve shaft holder for suppressing the inclination of the valve shaft; A valve guide in which the valve shaft is inserted on the side opposite to the valve seat, and the valve body is mounted on the valve seat side,
  • the communication channel is A passage formed in the valve shaft holder, A passage formed in a gap between the valve shaft holder and the valve guide; It includes at least two of the passages formed in the valve body.
  • the motor operated valve of the present invention is
  • the passage formed in the valve body includes a passage formed in the longitudinal direction in the valve body and a passage formed in the transverse direction across the passage formed in the longitudinal direction.
  • the motor operated valve of the present invention is An effective cross-sectional area of the communication channel is formed in a passage formed in the longitudinal direction in the valve body, a passage formed in the lateral direction in the valve body, and a gap between the valve shaft holder and the valve guide. And the passage formed in the valve shaft holder increases in this order.
  • the refrigeration cycle system of the present invention A refrigeration cycle system including a compressor, a condenser, an expansion valve, an evaporator, and the like, wherein the above-described electric valve is used as the expansion valve.
  • FIG. 1 is a cross-sectional view of a conventional flow control valve disclosed in Japanese Patent Laid-Open No. 2013-130271.
  • FIG. 1 is a cross-sectional view showing an electric valve 2 according to an embodiment.
  • “upper” or “lower” is defined in the state of FIG. That is, the rotor 4 is positioned above the valve body 17.
  • the valve seat member 30 ⁇ / b> A is disposed at the lowest position of the motor-operated valve 2.
  • the valve body 17 is located near the valve seat member 30 ⁇ / b> A disposed below, and the valve shaft holder 6 is located farther from the valve seat member 30 ⁇ / b> A than the valve body 17.
  • the valve main body 30 is integrally connected by welding or the like below the opening side of a case 60 made of a non-magnetic material and having a cylindrical cup shape.
  • the valve main body 30 is a press-molded product manufactured by pressing a stainless steel plate, and has a valve chamber 11 therein.
  • the valve body 30 is fixedly mounted with a first pipe joint 12 made of stainless steel or copper that directly communicates with the valve chamber 11.
  • a valve seat member 30 ⁇ / b> A in which a valve port 16 having a circular cross section is formed is incorporated in the lower inside of the valve body 30.
  • a stainless steel or copper second pipe joint 15 communicating with the valve chamber 11 via the valve port 16 is fixedly attached to the valve seat member 30A.
  • Rotating rotor 4 is accommodated in the inner periphery of case 60, and valve shaft 41 is disposed on the shaft core portion of rotor 4 via bush member 33.
  • the valve shaft 41 and the rotor 4 coupled by the bush member 33 move integrally in the vertical direction while rotating.
  • a male screw 41 a is formed on the outer peripheral surface near the middle portion of the valve shaft 41.
  • the valve shaft 41 functions as a male screw member.
  • a stator including a yoke, a bobbin, and a coil (not shown) is arranged, and the rotor 4 and the stator constitute a stepping motor.
  • a guide support 52 is fixed to the ceiling surface of the case 60.
  • the guide support body 52 has a cylindrical portion 53 and an umbrella-shaped portion 54 formed on the upper end side of the cylindrical portion 53, and the whole is integrally formed by press working.
  • the umbrella-shaped portion 54 is molded in substantially the same shape as the inside of the top portion of the case 60.
  • a cylindrical member 65 that also serves as a guide for the valve shaft 41 is fitted in the cylindrical portion 53 of the guide support 52.
  • the cylindrical member 65 is made of a material containing a lubricant or a surface-treated member made of metal or synthetic resin, and rotatably holds the valve shaft 41.
  • valve shaft holder 6 that has a function of forming a screw coupling A with the valve shaft 41 and suppressing the inclination of the valve shaft 41 as will be described later. It is fixed to be relatively non-rotatable.
  • the valve shaft holder 6 includes an upper cylindrical small diameter portion 6a, a lower cylindrical large diameter portion 6b, a fitting portion 6c accommodated on the inner peripheral side of the valve body 30, and a ring-shaped flange portion 6f. Become.
  • the flange portion 6f of the valve shaft holder 6 is fixed to the upper surface of the flange portion 72c of the valve element guide member 72 by welding or the like.
  • a housing chamber 6h for housing a valve guide 18 (to be described later) is formed inside the valve shaft holder 6.
  • valve shaft holder 6 has a female screw 6d formed downward from the upper opening 6g of the cylindrical small diameter portion 6a to a predetermined depth.
  • the male screw 41a formed on the outer periphery of the valve shaft 41 and the female screw 6d formed on the inner periphery of the cylindrical small diameter portion 6a of the valve shaft holder 6 constitute a screw coupling A.
  • the valve shaft holder 6 functions as a female screw member.
  • the side surface of the cylindrical large-diameter portion 6b of the valve shaft holder 6 communicates between the valve shaft holder chamber 83 in the cylindrical large-diameter portion 6b and the rotor accommodating chamber 67 (second back pressure chamber).
  • a flow path 51 is formed as a pressure equalizing path.
  • a cylindrical valve guide 18 is disposed below the valve shaft 41 so as to be slidable with respect to the storage chamber 6 h of the valve shaft holder 6.
  • a substantially cylindrical communication flow that communicates between the back pressure chamber 28 and the valve shaft holder chamber 83.
  • a path 88 is formed as a pressure equalizing path.
  • the effective cross-sectional area S4 of the communication flow path 51 is formed to be larger than the effective cross-sectional area S3 of the annular cross section of the communication flow path 88 (hereinafter abbreviated as the effective cross-sectional area S3 of the communication flow path 88). (S4> S3).
  • valve guide 18 is bent at a substantially right angle on the ceiling 21 side by press molding, and a through hole 18a is formed in the ceiling 21. Further, a flange 41 b is formed below the valve shaft 41.
  • valve shaft 41 is inserted into the through hole 18a of the valve guide 18 so as to be rotatable with respect to the valve guide 18 and displaceable in the radial direction. It arrange
  • valve shaft 41 is inserted through the through hole 18 a and is arranged so that the upper surface of the flange portion 41 b faces the ceiling portion 21 of the valve guide 18.
  • the flange 41b is larger in diameter than the through hole 18a of the valve guide 18 so that the valve shaft 41 is prevented from coming off.
  • valve shaft 41 and the valve guide 18 are movable in the radial direction with respect to each other, the valve guide 18 and the valve guide 18 and the valve shaft 41 are not required to have a high degree of concentric mounting accuracy with respect to the arrangement positions of the valve shaft holder 6 and the valve shaft 41. Concentricity with the valve body 17 is obtained.
  • the washer 70 is preferably a metal washer having a highly slippery surface, a highly slippery resin washer such as a fluororesin, or a metal washer having a highly slippery resin coating.
  • valve guide 18 a compressed valve spring 27 and a spring receiver 35 are accommodated in the valve guide 18.
  • the lower end of the valve guide 18 is fixed to the base portion side outer peripheral surface of the valve body 17 by welding or the like.
  • a valve body guide member 72 that guides the movement of the valve body 17 in the axial direction is disposed inside the valve body 30, and a seal member 48 is interposed between the valve body 17 and the valve body guide member 72. It is intervened.
  • a longitudinal communication passage 17b is formed as a pressure equalizing passage in the valve body 17 from the lower end side to the upper end side of the valve body 17, and further, the lateral passage so as to cross the communication passage 17b.
  • a directional communication channel 17c is formed as a pressure equalizing channel.
  • the communication channel 17b and the communication channel 17c allow communication between the space below the valve element 17 and the back pressure chamber 28, and the pressure P1 and back pressure in the space below the valve element 17 (in the valve port 16).
  • the pressure P2 in the chamber 28 is equalized.
  • the pressure of the valve port 16 in the valve closed state is a low pressure that is the same as that of the second pipe joint 15, the pressure on the second pipe joint 15 side of the valve port 16 is the second pressure even in the valve open state. Is approximately equal to the pressure in the pipe joint 15.
  • the effective cross-sectional area S3 of the communication flow path 88 is formed larger than the effective cross-sectional area S2 of the communication flow path 17c, and the effective cross-sectional area S2 of the communication flow path 17c is the effective cross-sectional area S1 of the communication flow path 17b. (S3> S2> S1).
  • the motor-operated valve 2 has a communication area that is located above (position far from the valve seat member 30A) with the effective sectional area S1 of the communication path 17b positioned at the lowest position among the plurality of communication paths set as the minimum sectional area.
  • the effective cross-sectional area S2 of the communication channel 17c is the effective sectional area of the two communication channels 17c. It is a cross-sectional area obtained by summing (summing) S2.
  • the number of the communication channels 17c is one if the effective cross-sectional area S2 that is the sum of the cross-sectional areas of the communication channels 17c is designed to be larger than the effective cross-sectional area S1 of the communication channel 17b. However, it may be three or more.
  • the valve body guide member 72 is a cylindrical body through which the inside penetrates, and has a flange portion 72c located at the uppermost position, a large diameter portion 72a below the flange portion 72c, and a small diameter portion 72b below the press portion. Is formed by.
  • the diameter on the outer peripheral surface side of the large diameter portion 72 a of the valve body guide member 72 is slightly larger than the diameter on the inner peripheral surface side of the valve body 30. That is, by setting the dimensions in this way, when the valve body guide member 72 is combined with the valve body 30, the large-diameter portion 72 a of the valve body guide member 72 is closely locked to the inner peripheral surface of the valve body 30. Can be made.
  • the seal member 48 is an annular member formed by sandwiching an annular reinforcing plate 48b between an annular packing 48a having an L-shaped cross section.
  • leaf springs that constantly urge the annular packing 48a outward are respectively disposed above the annular packing 48a disposed above and below the annular packing 48a disposed below. Is preferred.
  • the motor-operated valve 2 when a drive pulse signal is given to the stepping motor, the rotor 4 rotates according to the number of pulses, and the valve shaft 41 rotates accordingly, and the male screw 41 a of the valve shaft 41 is fixedly arranged.
  • the valve shaft 41 moves in the axial direction while rotating by the screw coupling A formed by the female screw 6d of the valve shaft holder 6.
  • valve shaft 41 The downward movement (movement in the valve closing direction) of the valve shaft 41 is transmitted to the valve guide 18 by contact of the spring receiver 35, the flange 41 b, the washer 70, the ceiling 21, and the valve spring 27. Is done by moving down.
  • valve shaft 41 The upward movement (movement in the valve opening direction) of the valve shaft 41 is also transmitted to the valve guide 18 by the contact of the spring receiver 35, the flange 41b, the washer 70, and the ceiling part 21, and the valve guide 18 and the valve body 17 are moved upward. Is done.
  • the pressure in the motor-operated valve 2 increases as the opening degree of the valve body 17 increases.
  • the pressure of the valve port 16 that increases as the opening degree increases is led to the back pressure chamber 28 via the communication channel 17 b and the communication channel 17 c.
  • an intermediate pressure (described later) at the lower end of the valve body 17 is easily introduced into the back pressure chamber 28, and the pressure P2 in the back pressure chamber 28, which was low when the valve is closed, is easily increased.
  • the pressure P1 in the valve port 16 is a low pressure of the same pressure as that of the second pipe joint 15 in the valve closed state.
  • the high pressure fluid in the first pipe joint 12 flows.
  • the pressure is intermediate between the high pressure and the low pressure.
  • the fluid that has passed through the back pressure chamber 28 is guided to the valve shaft holder chamber 83 via the communication flow path 88, and further, the fluid in the valve shaft holder chamber 83 passes through the communication flow path 51. Led to 67. Thereby, the pressure P2 in the back pressure chamber 28, the pressure P3 in the valve shaft holder chamber 83, and the pressure P4 in the rotor accommodating chamber 67 are gradually equalized through the communication channels 17b, 17c, 88, 51. Go.
  • the pressure equalization speed when the pressure P2 in the back pressure chamber 28, the pressure P3 in the valve shaft holder chamber 83, and the pressure P4 in the rotor housing chamber 67 are equalized is positioned above the motor-operated valve 2.
  • the degree of decrease can be reduced as it goes upward in the back pressure chamber 28.
  • the communication passage located above the motor-operated valve 2 is formed so that the effective cross-sectional area becomes larger (S1 ⁇ S2 ⁇ S3 ⁇ S4), and the motor-operated valve in the valve-opened state
  • the operability of the motor-operated valve can be improved. For this reason, the motor-operated valve can be operated with a small driving force and low power.
  • the communication channel of the above-described embodiment is not necessarily limited to the above-described position and number as long as it has a function as a pressure equalizing channel.
  • the internal space communicated by the communication channel is not necessarily limited to the back pressure chamber 28, the valve shaft holder chamber 83, and the rotor housing chamber 67 as long as the pressure is equalized through the communication channel.
  • the fluid in the first pipe joint 12 flows into the second pipe joint 15.
  • the fluid in the second pipe joint 15 is It may flow into the first pipe joint 12.
  • the high pressure at the lower end of the valve element 17 can be easily introduced into the back pressure chamber 28, and the pressure in the back pressure chamber 28, which was high when the valve is closed, can be easily maintained.
  • the effective cross-sectional area is increased as the communication flow path is located above the motor-operated valve 2.
  • the motor-operated valve of the above-described embodiment is used as an expansion valve provided between the condenser and the evaporator, for example, in a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator. .
  • Valve shaft holder 6d Female thread 16 Valve port 17 Valve body 17b Communication flow path 17c Communication flow path 18 Valve guide 28 Back pressure chamber 30 Valve body 41 Valve shaft 41a Male thread 48 Seal member 51 Communication flow path 72 Valve body Guide member 83 Valve shaft holder chamber 88 Communication flow path P1 Pressure P2 in valve port 16 Pressure P3 in back pressure chamber 28 Pressure P4 in valve shaft holder chamber 83 Pressure S1 in rotor accommodating chamber 67 Effective communication path 17b Cross-sectional area S2 Effective cross-sectional area S3 of communication channel 17c Effective cross-sectional area S3 of communication channel 88 Effective cross-sectional area of communication channel 51

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

[Problem] To provide a motorized valve with good operability and a refrigeration cycle system using said motorized valve. [Solution] A motorized valve of a type that uses threaded coupling of a male threaded member and a female threaded member to convert a rotational motion of a rotor into a linear motion, and causes a valve body that is housed within a valve main body to move in an axial direction with the guidance a valve body guiding member on the basis of this linear motion, while also canceling out a force that is due to a pressure difference between a plurality of interior spaces when the valve is in an open state, said motorized valve comprising a valve seat on which the valve body is seated, and a plurality of communication passages by which the interior spaces are in communication with one another, wherein the effective cross-sectional area of a communication passage that is located in a location far from the valve seat is formed so as not to be smaller than the effective cross-sectional area of a communication passage that is located in a location close to the valve seat.

Description

電動弁および冷凍サイクルシステムElectric valve and refrigeration cycle system
 本発明は、冷凍サイクルなどに使用される電動弁、および該電動弁を用いた冷凍サイクルシステムに関する。 The present invention relates to an electric valve used in a refrigeration cycle and the like, and a refrigeration cycle system using the electric valve.
 従来より、大型のパッケージエアコンや冷凍機に用いられる流量制御弁が知られている(たとえば、特許文献1参照)。この流量制御弁においては、流量制御用として複数使用されていた電動弁を1つにまとめるなどの制御機器合理化等の背景から、大口径かつ高圧力差が生じた際にも良好な作動性を発揮できる性能が望まれるが、比較的大口径の流量制御は、マグネットのトルクにより発生するねじの推力に対し圧力差によって発生する弁体への負荷が大きく、弁体を作動させるために大きな駆動力が必要となる。 Conventionally, a flow control valve used for large packaged air conditioners and refrigerators is known (for example, see Patent Document 1). This flow control valve has good operability even when a large diameter and high pressure difference occur because of the rationalization of control equipment such as combining multiple motorized valves used for flow control into one. Performance that can be demonstrated is desired, but the flow control with a relatively large diameter has a large load on the valve body caused by the pressure difference against the thrust of the screw generated by the torque of the magnet, and a large drive to operate the valve body Power is required.
 そこで、かかる弁体の作動性を向上させるべく、以下に説明するような構造が採用される。たとえば、図3に示す流量制御弁101では、筒状保持部材114の内周面に摺接する弁体120にシール部材137を装着して弁室107の上方側に背圧室301、302、303を画成するとともに、導通路201、202、203、204によって各背圧室間を連通している。このため、弁体120が開かれると、上昇する弁ポート119内の圧力が導通路201、202を介して背圧室301内に導入される。続けて背圧室301内の圧力が導通路203を介して背圧室302内に導入され、そして、背圧室302内の圧力が導通路204を介して背圧室303内に導入される。このように、各背圧室内の圧力(背圧)を利用することで、閉弁状態における弁体120に作用する押し下げ力(閉弁方向に作用する力)と押し上げ力(開弁方向に作用する力)との圧力差による力をキャンセルし、弁体120に対する負荷を小さくしている。 Therefore, in order to improve the operability of the valve body, a structure as described below is adopted. For example, in the flow rate control valve 101 shown in FIG. And the back pressure chambers communicate with each other through the conduction paths 201, 202, 203, and 204. For this reason, when the valve body 120 is opened, the rising pressure in the valve port 119 is introduced into the back pressure chamber 301 through the conduction paths 201 and 202. Subsequently, the pressure in the back pressure chamber 301 is introduced into the back pressure chamber 302 through the conduction path 203, and the pressure in the back pressure chamber 302 is introduced into the back pressure chamber 303 through the conduction path 204. . As described above, by using the pressure (back pressure) in each back pressure chamber, the push-down force (force acting in the valve closing direction) and the push-up force (acting in the valve opening direction) acting on the valve body 120 in the valve closing state. The force due to the pressure difference with respect to the force) is canceled, and the load on the valve body 120 is reduced.
特開2013-130271号公報JP 2013-130271 A
 しかしながら、上述の流量制御弁において、各背圧室内の圧力が均圧される際の均圧速度は、導通路の断面積によって異なるため、開弁状態において流量制御弁内の圧力分布に偏りが生じるおそれがある。圧力分布に偏りが生じた場合、作動ねじ134に圧力差が加わり、作動ねじ134が回転し難くなるなどの作動不具合が発生する可能性がある。
 本発明の目的は、作動性の良い電動弁、および該電動弁を用いた冷凍サイクルシステムを提供することである。
However, in the above-described flow control valve, the pressure equalization speed when the pressure in each back pressure chamber is equalized varies depending on the cross-sectional area of the conduction path, so that the pressure distribution in the flow control valve is biased in the open state. May occur. When the pressure distribution is uneven, a pressure difference is applied to the operating screw 134, which may cause an operation failure such as the operating screw 134 being difficult to rotate.
An object of the present invention is to provide an electrically operated valve with good operability and a refrigeration cycle system using the electrically operated valve.
 上記目的を達成するための本発明の電動弁は、
 ロータの回転運動を、雄ネジ部材と雌ネジ部材とのネジ結合により直線運動に変換し、この直線運動に基づいて弁本体内に収容された弁体を弁体案内部材の案内によって軸方向に移動させるとともに、弁開状態における複数の内部空間の圧力差による力をキャンセルする方式の電動弁であって、
 前記弁体を着座させる弁座と、
 前記内部空間同士を連通する複数の連通流路とを備え、
 前記弁座から遠い位置に位置する前記連通流路の有効断面積が前記弁座に近い位置に位置する前記連通流路の有効断面積よりも小さくならないように形成されていることを特徴とする。
To achieve the above object, the motor-operated valve of the present invention is
The rotational motion of the rotor is converted into a linear motion by screw connection between the male screw member and the female screw member, and the valve body accommodated in the valve body is axially guided by the valve body guide member based on this linear motion. A motor-driven valve that moves and cancels the force due to the pressure difference in the plurality of internal spaces in the valve open state,
A valve seat for seating the valve body;
A plurality of communication channels communicating the internal spaces with each other;
The effective cross-sectional area of the communication channel positioned at a position far from the valve seat is formed so as not to be smaller than the effective cross-sectional area of the communication channel positioned at a position close to the valve seat. .
 これにより、電動弁内の圧力分布に偏りが生じることを抑制し、圧力差によって作動ねじが回転し難くなる事態などを防止することができるため、電動弁の作動性を向上させることができる。 This can suppress the occurrence of bias in the pressure distribution in the motor-operated valve and prevent a situation in which the operating screw is difficult to rotate due to a pressure difference, thereby improving the operability of the motor-operated valve.
 また、本発明の電動弁は、
 前記弁座から遠い位置に位置する前記連通流路ほど有効断面積が大きくなるように形成されていることを特徴とする。
Moreover, the motor operated valve of the present invention is
The communication channel located farther from the valve seat is formed such that the effective cross-sectional area becomes larger.
 これにより、電動弁内の圧力分布に偏りが生じることをさらに的確に抑制することができるため、作動性の良い電動弁を提供することができる。したがって、小さな駆動力かつ低電力で電動弁を作動させることができる。 This makes it possible to more accurately suppress the occurrence of bias in the pressure distribution in the motor-operated valve, and thus provide a motor-operated valve with good operability. Therefore, the motor-operated valve can be operated with a small driving force and low power.
 また、本発明の電動弁は、
 前記弁軸の傾斜を抑制する弁軸ホルダと、
 前記弁座と反対側に前記弁軸が挿入され、前記弁座側に前記弁体が装着された弁ガイドと、を備え、
 前記連通流路が、
 前記弁軸ホルダに形成された通路、
 前記弁軸ホルダと前記弁ガイドとの間の隙間に形成された通路、
 前記弁体内に形成された通路の中の少なくとも二つを含むことを特徴とする。
Moreover, the motor operated valve of the present invention is
A valve shaft holder for suppressing the inclination of the valve shaft;
A valve guide in which the valve shaft is inserted on the side opposite to the valve seat, and the valve body is mounted on the valve seat side,
The communication channel is
A passage formed in the valve shaft holder,
A passage formed in a gap between the valve shaft holder and the valve guide;
It includes at least two of the passages formed in the valve body.
 また、本発明の電動弁は、
 前記弁体内に形成された通路が、前記弁体内において縦方向に形成された通路と、前記縦方向に形成された通路を横断して横方向に形成された通路を含むことを特徴とする。
Moreover, the motor operated valve of the present invention is
The passage formed in the valve body includes a passage formed in the longitudinal direction in the valve body and a passage formed in the transverse direction across the passage formed in the longitudinal direction.
 また、本発明の電動弁は、
 前記連通流路の有効断面積が、前記弁体内において縦方向に形成された通路、前記弁体内において横方向に形成された通路、前記弁軸ホルダと前記弁ガイドとの間の隙間に形成された通路、前記弁軸ホルダに形成された通路の順に大きくなることを特徴とする。
 また、本発明の冷凍サイクルシステムは、
 圧縮機、凝縮器、膨張弁、および蒸発器等を含む冷凍サイクルシステムであって、上述の電動弁を前記膨張弁として用いることを特徴とする。
Moreover, the motor operated valve of the present invention is
An effective cross-sectional area of the communication channel is formed in a passage formed in the longitudinal direction in the valve body, a passage formed in the lateral direction in the valve body, and a gap between the valve shaft holder and the valve guide. And the passage formed in the valve shaft holder increases in this order.
In addition, the refrigeration cycle system of the present invention,
A refrigeration cycle system including a compressor, a condenser, an expansion valve, an evaporator, and the like, wherein the above-described electric valve is used as the expansion valve.
 本発明に係る発明によれば、作動性の良い電動弁、および該電動弁を用いた冷凍サイクルシステムを提供することができる。 According to the invention of the present invention, it is possible to provide an electrically operated valve with good operability and a refrigeration cycle system using the electrically operated valve.
実施の形態に係る電動弁の断面図である。It is sectional drawing of the motor operated valve which concerns on embodiment. 他の実施の形態に係る電動弁の断面図である。It is sectional drawing of the motor operated valve which concerns on other embodiment. 特開2013-130271号公報に開示されている従来の流量制御弁の断面図である。1 is a cross-sectional view of a conventional flow control valve disclosed in Japanese Patent Laid-Open No. 2013-130271.
 以下、図面を参照して、本発明の実施の形態に係る電動弁について説明する。図1は、実施の形態に係る電動弁2を示した断面図である。なお、本明細書において、「上」あるいは「下」とは図1の状態で規定したものである。すなわち、ロータ4は弁体17より上方に位置している。また、本明細書において、弁座部材30Aは電動弁2の最も下方に配置されている。そして、弁体17は、下方に配置された弁座部材30Aの近くに位置し、弁軸ホルダ6は、弁体17よりも弁座部材30Aから遠い位置に位置している。 Hereinafter, the motor-operated valve according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an electric valve 2 according to an embodiment. In the present specification, “upper” or “lower” is defined in the state of FIG. That is, the rotor 4 is positioned above the valve body 17. In the present specification, the valve seat member 30 </ b> A is disposed at the lowest position of the motor-operated valve 2. The valve body 17 is located near the valve seat member 30 </ b> A disposed below, and the valve shaft holder 6 is located farther from the valve seat member 30 </ b> A than the valve body 17.
 この電動弁2では、非磁性体製で筒状のカップ形状をなすケース60の開口側の下方に、弁本体30が溶接などにより一体的に接続されている。
 ここで、弁本体30は、ステンレス鋼板のプレス加工により製作されたプレス成型品であり、内部に弁室11を有している。また、弁本体30には、弁室11に直接連通するステンレス製や銅製の第1の管継手12が固定装着されている。さらに、弁本体30の下方内側には、断面円形の弁ポート16が形成された弁座部材30Aが組み込まれている。弁座部材30Aには、弁ポート16を介して弁室11に連通するステンレス製や銅製の第2の管継手15が固定装着されている。
In the motor-operated valve 2, the valve main body 30 is integrally connected by welding or the like below the opening side of a case 60 made of a non-magnetic material and having a cylindrical cup shape.
Here, the valve main body 30 is a press-molded product manufactured by pressing a stainless steel plate, and has a valve chamber 11 therein. The valve body 30 is fixedly mounted with a first pipe joint 12 made of stainless steel or copper that directly communicates with the valve chamber 11. Further, a valve seat member 30 </ b> A in which a valve port 16 having a circular cross section is formed is incorporated in the lower inside of the valve body 30. A stainless steel or copper second pipe joint 15 communicating with the valve chamber 11 via the valve port 16 is fixedly attached to the valve seat member 30A.
 ケース60の内周には、回転可能なロータ4が収容され、ロータ4の軸芯部分には、ブッシュ部材33を介して弁軸41が配置されている。ブッシュ部材33で結合されたこの弁軸41とロータ4とは、回転しながら上下方向に一体的に移動する。なお、この弁軸41の中間部付近の外周面には雄ネジ41aが形成されている。本実施の形態では、弁軸41が雄ネジ部材として機能している。 Rotating rotor 4 is accommodated in the inner periphery of case 60, and valve shaft 41 is disposed on the shaft core portion of rotor 4 via bush member 33. The valve shaft 41 and the rotor 4 coupled by the bush member 33 move integrally in the vertical direction while rotating. A male screw 41 a is formed on the outer peripheral surface near the middle portion of the valve shaft 41. In the present embodiment, the valve shaft 41 functions as a male screw member.
 ケース60の外周には、図示しないヨーク、ボビン、およびコイルなどからなるステータが配置され、ロータ4とステータとでステッピングモータが構成されている。
 ケース60の天井面にはガイド支持体52が固定されている。ガイド支持体52は、円筒部53と、円筒部53の上端側に形成された傘状部54とを有し、全体をプレス加工により一体成型されている。傘状部54はケース60の頂部内側と略同形状に成型されている。
On the outer periphery of the case 60, a stator including a yoke, a bobbin, and a coil (not shown) is arranged, and the rotor 4 and the stator constitute a stepping motor.
A guide support 52 is fixed to the ceiling surface of the case 60. The guide support body 52 has a cylindrical portion 53 and an umbrella-shaped portion 54 formed on the upper end side of the cylindrical portion 53, and the whole is integrally formed by press working. The umbrella-shaped portion 54 is molded in substantially the same shape as the inside of the top portion of the case 60.
 ガイド支持体52の円筒部53内には、弁軸41のガイドを兼ねる筒部材65が嵌合されている。筒部材65は、金属あるいは合成樹脂による潤滑材入り素材あるいは表面処理を施された部材により構成され、弁軸41を回転可能に保持している。 A cylindrical member 65 that also serves as a guide for the valve shaft 41 is fitted in the cylindrical portion 53 of the guide support 52. The cylindrical member 65 is made of a material containing a lubricant or a surface-treated member made of metal or synthetic resin, and rotatably holds the valve shaft 41.
 弁軸41のブッシュ部材33より下方には、後述するように弁軸41との間でネジ結合Aを構成するとともに弁軸41の傾きを抑制する機能を有する弁軸ホルダ6が、弁本体30に対して相対的に回転不能に固定されている。 Below the bush member 33 of the valve shaft 41, a valve shaft holder 6 that has a function of forming a screw coupling A with the valve shaft 41 and suppressing the inclination of the valve shaft 41 as will be described later. It is fixed to be relatively non-rotatable.
 弁軸ホルダ6は、上部側の筒状小径部6aと下部側の筒状大径部6bと弁本体30の内周部側に収容される嵌合部6cとリング状のフランジ部6fとからなる。そして、弁軸ホルダ6のフランジ部6fは、弁体案内部材72のフランジ部72cの上面に溶接などで固定されている。また、弁軸ホルダ6の内部には、後述する弁ガイド18を収容する収容室6hが形成されている。 The valve shaft holder 6 includes an upper cylindrical small diameter portion 6a, a lower cylindrical large diameter portion 6b, a fitting portion 6c accommodated on the inner peripheral side of the valve body 30, and a ring-shaped flange portion 6f. Become. The flange portion 6f of the valve shaft holder 6 is fixed to the upper surface of the flange portion 72c of the valve element guide member 72 by welding or the like. A housing chamber 6h for housing a valve guide 18 (to be described later) is formed inside the valve shaft holder 6.
 さらに弁軸ホルダ6には、筒状小径部6aの上部開口部6gから所定の深さまで下方に向かって雌ネジ6dが形成されている。そして、弁軸41の外周に形成された雄ネジ41aと、弁軸ホルダ6の筒状小径部6aの内周に形成された雌ネジ6dとにより、ネジ結合Aが構成されている。このため、本実施の形態では、弁軸ホルダ6が雌ネジ部材として機能している。 Further, the valve shaft holder 6 has a female screw 6d formed downward from the upper opening 6g of the cylindrical small diameter portion 6a to a predetermined depth. The male screw 41a formed on the outer periphery of the valve shaft 41 and the female screw 6d formed on the inner periphery of the cylindrical small diameter portion 6a of the valve shaft holder 6 constitute a screw coupling A. For this reason, in this embodiment, the valve shaft holder 6 functions as a female screw member.
 弁軸ホルダ6の筒状大径部6bの側面には、筒状大径部6b内の弁軸ホルダ室83と、ロータ収容室67(第2の背圧室)との間を連通する連通流路51が均圧路として穿設されている。このように、弁軸ホルダ6に連通流路51を穿設することにより、弁軸ホルダ室83内の圧力P3とロータ収容室67内の圧力P4が均圧され、弁軸ホルダ6の移動動作をスムーズに行うことができる。なお、弁軸ホルダ室83とロータ収容室67との間の均圧速度は、連通流路51の有効断面積S4によって支配される。 The side surface of the cylindrical large-diameter portion 6b of the valve shaft holder 6 communicates between the valve shaft holder chamber 83 in the cylindrical large-diameter portion 6b and the rotor accommodating chamber 67 (second back pressure chamber). A flow path 51 is formed as a pressure equalizing path. Thus, by providing the communication channel 51 in the valve shaft holder 6, the pressure P3 in the valve shaft holder chamber 83 and the pressure P4 in the rotor accommodating chamber 67 are equalized, and the movement operation of the valve shaft holder 6 is performed. Can be done smoothly. The pressure equalization speed between the valve shaft holder chamber 83 and the rotor accommodating chamber 67 is governed by the effective cross-sectional area S4 of the communication flow path 51.
 また、弁軸41の下方には、筒状の弁ガイド18が弁軸ホルダ6の収容室6hに対して摺動可能に配置されている。ここで、弁ガイド18と弁軸ホルダ6の筒状大径部6bの内周面との隙間には、背圧室28と弁軸ホルダ室83との間を連通する略円筒状の連通流路88が均圧路として形成されている。この連通流路88により、背圧室28内の圧力P2と弁軸ホルダ室83内の圧力P3が均圧される。なお、連通流路51の有効断面積S4は、連通流路88の円環状の断面の有効断面積S3(以下、連通流路88の有効断面積S3と略す。)よりも大きくなるように形成されている(S4>S3)。 Further, a cylindrical valve guide 18 is disposed below the valve shaft 41 so as to be slidable with respect to the storage chamber 6 h of the valve shaft holder 6. Here, in the gap between the valve guide 18 and the inner peripheral surface of the cylindrical large diameter portion 6 b of the valve shaft holder 6, a substantially cylindrical communication flow that communicates between the back pressure chamber 28 and the valve shaft holder chamber 83. A path 88 is formed as a pressure equalizing path. By this communication flow path 88, the pressure P2 in the back pressure chamber 28 and the pressure P3 in the valve shaft holder chamber 83 are equalized. The effective cross-sectional area S4 of the communication flow path 51 is formed to be larger than the effective cross-sectional area S3 of the annular cross section of the communication flow path 88 (hereinafter abbreviated as the effective cross-sectional area S3 of the communication flow path 88). (S4> S3).
 また、弁ガイド18は天井部21側がプレス成型により略直角に折り曲げられ、天井部21には貫通孔18aが形成されている。さらに、弁軸41の下方には、鍔部41bが形成されている。 Further, the valve guide 18 is bent at a substantially right angle on the ceiling 21 side by press molding, and a through hole 18a is formed in the ceiling 21. Further, a flange 41 b is formed below the valve shaft 41.
 ここで、弁軸41は、弁ガイド18に対して回転可能、かつ径方向に変位可能となるように弁ガイド18の貫通孔18aに遊貫状態で挿入されており、鍔部41bは、弁ガイド18に対して回転可能、かつ、径方向に変位可能となるように弁ガイド18内に配置されている。また、弁軸41は貫通孔18aを挿通し、鍔部41bの上面が、弁ガイド18の天井部21に対向するように配置されている。なお、鍔部41bが弁ガイド18の貫通孔18aより大径であることにより、弁軸41の抜け止めがなされている。 Here, the valve shaft 41 is inserted into the through hole 18a of the valve guide 18 so as to be rotatable with respect to the valve guide 18 and displaceable in the radial direction. It arrange | positions in the valve guide 18 so that it can rotate with respect to the guide 18 and it can displace to radial direction. In addition, the valve shaft 41 is inserted through the through hole 18 a and is arranged so that the upper surface of the flange portion 41 b faces the ceiling portion 21 of the valve guide 18. The flange 41b is larger in diameter than the through hole 18a of the valve guide 18 so that the valve shaft 41 is prevented from coming off.
 弁軸41と弁ガイド18とが互いに径方向に移動可能であることにより、弁軸ホルダ6および弁軸41の配置位置に関して、さほど高度な同芯取付精度を求められることなく、弁ガイド18および弁体17との同芯性が得られる。 Since the valve shaft 41 and the valve guide 18 are movable in the radial direction with respect to each other, the valve guide 18 and the valve guide 18 and the valve shaft 41 are not required to have a high degree of concentric mounting accuracy with respect to the arrangement positions of the valve shaft holder 6 and the valve shaft 41. Concentricity with the valve body 17 is obtained.
 弁ガイド18の天井部21と弁軸41の鍔部41bとの間には、中央部には貫通孔が形成されたワッシャ70が設置されている。ワッシャ70は、高滑性表面の金属製ワッシャ、フッ素樹脂等の高滑性樹脂ワッシャあるいは高滑性樹脂コーティングの金属製ワッシャなどであることが好ましい。 Between the ceiling part 21 of the valve guide 18 and the flange part 41b of the valve shaft 41, a washer 70 having a through-hole formed at the center is installed. The washer 70 is preferably a metal washer having a highly slippery surface, a highly slippery resin washer such as a fluororesin, or a metal washer having a highly slippery resin coating.
 さらに、弁ガイド18内には、圧縮された弁バネ27とバネ受け35とが収容されている。そして、弁ガイド18の下端は、弁体17の基部側外周面に溶接などにより固着されている。
 また、弁本体30の内側には、弁体17の軸方向への移動を案内する弁体案内部材72が配置され、弁体17と弁体案内部材72との間には、シール部材48が介装されている。
Further, a compressed valve spring 27 and a spring receiver 35 are accommodated in the valve guide 18. The lower end of the valve guide 18 is fixed to the base portion side outer peripheral surface of the valve body 17 by welding or the like.
Further, a valve body guide member 72 that guides the movement of the valve body 17 in the axial direction is disposed inside the valve body 30, and a seal member 48 is interposed between the valve body 17 and the valve body guide member 72. It is intervened.
 ここで、弁体17内には、弁体17の下端側から上端側に向かって縦方向の連通流路17bが均圧路として形成され、さらに、この連通流路17bを横断するように横方向の連通流路17cが均圧路として形成されている。この連通流路17bと連通流路17cによって弁体17の下部の空間と背圧室28との間が連通され、弁体17の下部の空間内(弁ポート16内)の圧力P1と背圧室28内の圧力P2が均圧される。なお、弁閉状態における弁ポート16の圧力は第2の管継手15と同じ圧力の低圧であるが、弁開状態にしても、弁ポート16の第2の管継手15側の圧力は第2の管継手15内の圧力と概ね等しい。 Here, a longitudinal communication passage 17b is formed as a pressure equalizing passage in the valve body 17 from the lower end side to the upper end side of the valve body 17, and further, the lateral passage so as to cross the communication passage 17b. A directional communication channel 17c is formed as a pressure equalizing channel. The communication channel 17b and the communication channel 17c allow communication between the space below the valve element 17 and the back pressure chamber 28, and the pressure P1 and back pressure in the space below the valve element 17 (in the valve port 16). The pressure P2 in the chamber 28 is equalized. In addition, although the pressure of the valve port 16 in the valve closed state is a low pressure that is the same as that of the second pipe joint 15, the pressure on the second pipe joint 15 side of the valve port 16 is the second pressure even in the valve open state. Is approximately equal to the pressure in the pipe joint 15.
 また、連通流路88の有効断面積S3は、連通流路17cの有効断面積S2よりも大きく形成され、そして、連通流路17cの有効断面積S2は、連通流路17bの有効断面積S1よりも大きく形成されている(S3>S2>S1)。すなわち、電動弁2は、複数の連通流路の中で最も下方に位置する連通流路17bの有効断面積S1を最小断面積とし、上方(弁座部材30Aから遠い位置)に位置する連通流路ほど有効断面積が大きくなるように、S1<S2<S3<S4の順に有効断面積が大きくなるように設計されている。ここで、連通流路17cは連通流路17bを挟んで二つ設けられているが、本実施の形態において連通流路17cの有効断面積S2とは、二つの連通流路17cの有効断面積S2を合計(和)した断面積である。 The effective cross-sectional area S3 of the communication flow path 88 is formed larger than the effective cross-sectional area S2 of the communication flow path 17c, and the effective cross-sectional area S2 of the communication flow path 17c is the effective cross-sectional area S1 of the communication flow path 17b. (S3> S2> S1). In other words, the motor-operated valve 2 has a communication area that is located above (position far from the valve seat member 30A) with the effective sectional area S1 of the communication path 17b positioned at the lowest position among the plurality of communication paths set as the minimum sectional area. It is designed so that the effective cross-sectional area increases in the order of S1 <S2 <S3 <S4 so that the effective cross-sectional area becomes larger toward the road. Here, the two communication channels 17c are provided across the communication channel 17b. In the present embodiment, the effective sectional area S2 of the communication channel 17c is the effective sectional area of the two communication channels 17c. It is a cross-sectional area obtained by summing (summing) S2.
 なお、連通流路17cの数は、連通流路17cの断面積の合計である有効断面積S2が、連通流路17bの有効断面積S1よりも大きくなるように設計されていれば、一つでもよく、また、三つ以上でもよい。 The number of the communication channels 17c is one if the effective cross-sectional area S2 that is the sum of the cross-sectional areas of the communication channels 17c is designed to be larger than the effective cross-sectional area S1 of the communication channel 17b. However, it may be three or more.
 弁体案内部材72は、内部が貫通した筒体であり、最上位に位置するフランジ部72cと、その下方の大径部72aと、その下方の小径部72bとを有したもので、プレス成形によって形成されている。また、弁体案内部材72の大径部72aの外周面側の直径は、弁本体30の内周面側の直径より若干大きく形成されている。すなわち、このように寸法を設定することにより、弁体案内部材72を弁本体30に組み合わせた場合に、弁体案内部材72の大径部72aを弁本体30の内周面に密に係止させることができる。 The valve body guide member 72 is a cylindrical body through which the inside penetrates, and has a flange portion 72c located at the uppermost position, a large diameter portion 72a below the flange portion 72c, and a small diameter portion 72b below the press portion. Is formed by. The diameter on the outer peripheral surface side of the large diameter portion 72 a of the valve body guide member 72 is slightly larger than the diameter on the inner peripheral surface side of the valve body 30. That is, by setting the dimensions in this way, when the valve body guide member 72 is combined with the valve body 30, the large-diameter portion 72 a of the valve body guide member 72 is closely locked to the inner peripheral surface of the valve body 30. Can be made.
 シール部材48は、断面L字状の環状パッキン48aの間に環状の補強板48bを挟んで形成された環状の部材である。なお、シール部材48においては、上方に配置された環状パッキン48aの上側、および下方に配置された環状パッキン48aの下側に、それぞれ環状パッキン48aを常に外側に付勢する板バネが配置されるのが好ましい。 The seal member 48 is an annular member formed by sandwiching an annular reinforcing plate 48b between an annular packing 48a having an L-shaped cross section. In the seal member 48, leaf springs that constantly urge the annular packing 48a outward are respectively disposed above the annular packing 48a disposed above and below the annular packing 48a disposed below. Is preferred.
 以上、本発明に係る電動弁2の構成について説明したが、以下に、電動弁2の動作について説明する。電動弁2は、ステッピングモータに駆動パルス信号が与えられることにより、パルス数に応じてロータ4が回転し、これに伴い弁軸41が回転し、弁軸41の雄ネジ41aと、固定配置の弁軸ホルダ6の雌ネジ6dからなるネジ結合Aにより、弁軸41が回転しつつ軸方向に移動する。 Although the configuration of the motor-operated valve 2 according to the present invention has been described above, the operation of the motor-operated valve 2 will be described below. In the motor-operated valve 2, when a drive pulse signal is given to the stepping motor, the rotor 4 rotates according to the number of pulses, and the valve shaft 41 rotates accordingly, and the male screw 41 a of the valve shaft 41 is fixedly arranged. The valve shaft 41 moves in the axial direction while rotating by the screw coupling A formed by the female screw 6d of the valve shaft holder 6.
 弁軸41の降下移動(弁閉方向移動)は、バネ受け35、鍔部41b、ワッシャ70、天井部21、弁バネ27の当接によって弁ガイド18に伝達され、弁ガイド18および弁体17が降下移動することにより行われる。 The downward movement (movement in the valve closing direction) of the valve shaft 41 is transmitted to the valve guide 18 by contact of the spring receiver 35, the flange 41 b, the washer 70, the ceiling 21, and the valve spring 27. Is done by moving down.
 弁軸41の上昇移動(弁開方向移動)もまた、バネ受け35、鍔部41b、ワッシャ70、天井部21の当接によって弁ガイド18に伝達され、弁ガイド18および弁体17が上昇移動することにより行われる。 The upward movement (movement in the valve opening direction) of the valve shaft 41 is also transmitted to the valve guide 18 by the contact of the spring receiver 35, the flange 41b, the washer 70, and the ceiling part 21, and the valve guide 18 and the valve body 17 are moved upward. Is done.
 弁閉状態から弁開状態に移行した場合、電動弁2内の圧力は、弁体17の開度が大きくなるにつれて上昇する。電動弁2内の圧力が上昇する過程においては、まず、開度が大きくなるにつれて上昇する弁ポート16の圧力が、連通流路17b、連通流路17cを介して背圧室28に導かれる。このため、弁開直後において弁体17下端の中間圧力(後述)を背圧室28に導入しやすくなり、弁閉状態時に低圧だった背圧室28内の圧力P2を高くしやすくなる。なお、弁ポート16内の圧力P1は、弁閉状態においては第2の管継手15と同じ圧力の低圧であるが、弁開状態になると、第1の管継手12内の高圧の流体が流れ込むことにより、高圧と低圧の中間程度の圧力になる。 When shifting from the valve closed state to the valve open state, the pressure in the motor-operated valve 2 increases as the opening degree of the valve body 17 increases. In the process of increasing the pressure in the motor-operated valve 2, first, the pressure of the valve port 16 that increases as the opening degree increases is led to the back pressure chamber 28 via the communication channel 17 b and the communication channel 17 c. For this reason, immediately after the valve is opened, an intermediate pressure (described later) at the lower end of the valve body 17 is easily introduced into the back pressure chamber 28, and the pressure P2 in the back pressure chamber 28, which was low when the valve is closed, is easily increased. The pressure P1 in the valve port 16 is a low pressure of the same pressure as that of the second pipe joint 15 in the valve closed state. However, when the valve is opened, the high pressure fluid in the first pipe joint 12 flows. As a result, the pressure is intermediate between the high pressure and the low pressure.
 次に、背圧室28を通過した流体が、連通流路88を介して弁軸ホルダ室83に導かれ、さらに弁軸ホルダ室83内の流体が、連通流路51を介してロータ収容室67に導かれる。これにより、連通流路17b、17c、88、51を介して、背圧室28内の圧力P2、弁軸ホルダ室83内の圧力P3、ロータ収容室67内の圧力P4が徐々に均圧されてゆく。 Next, the fluid that has passed through the back pressure chamber 28 is guided to the valve shaft holder chamber 83 via the communication flow path 88, and further, the fluid in the valve shaft holder chamber 83 passes through the communication flow path 51. Led to 67. Thereby, the pressure P2 in the back pressure chamber 28, the pressure P3 in the valve shaft holder chamber 83, and the pressure P4 in the rotor accommodating chamber 67 are gradually equalized through the communication channels 17b, 17c, 88, 51. Go.
 なお、背圧室28内の圧力P2、弁軸ホルダ室83内の圧力P3、及びロータ収容室67内の圧力P4が均圧される際の均圧速度は、電動弁2内の上方に位置する連通流路ほど有効断面積が大きくなるようにすることにより(S1<S2<S3<S4)、背圧室28内の上方に進むほど低下の度合を小さくできる。 The pressure equalization speed when the pressure P2 in the back pressure chamber 28, the pressure P3 in the valve shaft holder chamber 83, and the pressure P4 in the rotor housing chamber 67 are equalized is positioned above the motor-operated valve 2. By making the effective cross-sectional area larger for the communication flow path (S1 <S2 <S3 <S4), the degree of decrease can be reduced as it goes upward in the back pressure chamber 28.
 これにより、開弁状態における電動弁2内の圧力分布に偏りが生じることが抑制される。したがって、雄ネジ41aに圧力差が加わって回転し難くなるなどの作動不具合を解消することができる。 This suppresses the occurrence of bias in the pressure distribution in the motor-operated valve 2 in the opened state. Therefore, it is possible to eliminate operational troubles such as a pressure difference applied to the male screw 41a and difficulty in rotation.
 この実施の形態に係る発明によれば、電動弁2内の上方に位置する連通流路ほど有効断面積が大きくなるように形成し(S1<S2<S3<S4)、開弁状態における電動弁2内の圧力分布に偏りが生じることが抑制することにより、電動弁の作動性を向上させることができる。このため、小さな駆動力かつ低電力で電動弁を作動させることができる。 According to the invention according to this embodiment, the communication passage located above the motor-operated valve 2 is formed so that the effective cross-sectional area becomes larger (S1 <S2 <S3 <S4), and the motor-operated valve in the valve-opened state By suppressing the occurrence of a bias in the pressure distribution in 2, the operability of the motor-operated valve can be improved. For this reason, the motor-operated valve can be operated with a small driving force and low power.
 なお、上述の実施の形態においては、電動弁2内の上方に位置する連通流路ほど有効断面積が大きくなるように形成する場合を例に説明しているが(S1<S2<S3<S4)、中には有効断面積が同等になる複数の連通流路が存在してもよい(S1≦S2≦S3≦S4)。すなわち、上方に位置する均圧路の有効断面積が下方に位置する均圧路の有効断面積よりも小さくならないように形成してもよい。 In the above-described embodiment, the case where the effective cross-sectional area is formed so as to increase as the communication flow path located above the motor-operated valve 2 has been described as an example (S1 <S2 <S3 <S4). ), There may be a plurality of communication passages having the same effective cross-sectional area (S1 ≦ S2 ≦ S3 ≦ S4). That is, you may form so that the effective cross-sectional area of the pressure equalization path located above may not become smaller than the effective cross-sectional area of the pressure equalization path located below.
 また、上述の実施の形態の連通流路は、均圧路としての機能を有していれば、必ずしも上述した位置や個数に限定されない。同様に、連通流路によって連通される内部空間も連通流路を介して均圧される空間であれば必ずしも背圧室28、弁軸ホルダ室83、ロータ収容室67に限定されない。 Further, the communication channel of the above-described embodiment is not necessarily limited to the above-described position and number as long as it has a function as a pressure equalizing channel. Similarly, the internal space communicated by the communication channel is not necessarily limited to the back pressure chamber 28, the valve shaft holder chamber 83, and the rotor housing chamber 67 as long as the pressure is equalized through the communication channel.
 また、上述の実施の形態においては、第1の管継手12内の流体が第2の管継手15に流れ込むことを前提としているが、これと反対に、第2の管継手15内の流体が第1の管継手12に流れ込むようにしてもよい。この場合、弁開直後に、弁体17下端の高圧を背圧室28に導入しやすくなり、弁閉状態時に高圧だった背圧室28内の圧力を維持しやすくなる。このように、第2の管継手15内の流体が第1の管継手12に流れ込むようにした場合においても、電動弁2内の上方に位置する連通流路ほど有効断面積が大きくなるように形成し(S1<S2<S3<S4)、開弁状態における電動弁2内の圧力分布に偏りが生じることを抑制することにより、電動弁の作動性を向上させることができる。
 また、上述の実施の形態においては、断面L字状の環状パッキン48aの間に環状の補強板48bを挟んで形成された環状の部材をシール部材48として用いる場合を例に説明しているが、シール部材48の構成は必ずしもこれに限定されない。たとえば、図2に示すように、シール部材48としてOリング48dとPTFE等の高滑性樹脂材料からなる断面C字状を有する環状パッキン48fを組み合わせた複合シール材を採用してもよい。
 なお、上述の実施の形態の電動弁は、たとえば、圧縮機、凝縮器、膨張弁、および蒸発器等から成る冷凍サイクルシステムにおいて、凝縮器と蒸発器との間に設けられる膨張弁として用いられる。
In the above-described embodiment, it is assumed that the fluid in the first pipe joint 12 flows into the second pipe joint 15. On the contrary, the fluid in the second pipe joint 15 is It may flow into the first pipe joint 12. In this case, immediately after the valve is opened, the high pressure at the lower end of the valve element 17 can be easily introduced into the back pressure chamber 28, and the pressure in the back pressure chamber 28, which was high when the valve is closed, can be easily maintained. As described above, even when the fluid in the second pipe joint 15 flows into the first pipe joint 12, the effective cross-sectional area is increased as the communication flow path is located above the motor-operated valve 2. By forming (S1 <S2 <S3 <S4) and suppressing the occurrence of bias in the pressure distribution in the motor-operated valve 2 in the valve-opened state, the operability of the motor-operated valve can be improved.
In the above-described embodiment, the case where an annular member formed by sandwiching the annular reinforcing plate 48b between the annular packings 48a having an L-shaped cross section is used as the seal member 48 is described as an example. The configuration of the seal member 48 is not necessarily limited to this. For example, as shown in FIG. 2, a composite sealing material in which an O-ring 48 d and an annular packing 48 f having a C-shaped cross section made of a highly slipping resin material such as PTFE may be used as the sealing member 48.
Note that the motor-operated valve of the above-described embodiment is used as an expansion valve provided between the condenser and the evaporator, for example, in a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator. .
2     電動弁
6     弁軸ホルダ
6d   雌ネジ
16   弁ポート
17   弁体
17b 連通流路
17c 連通流路
18   弁ガイド
28   背圧室
30   弁本体
41   弁軸
41a 雄ネジ
48   シール部材
51   連通流路
72   弁体案内部材
83   弁軸ホルダ室
88   連通流路
P1   弁ポート16内の圧力
P2   背圧室28内の圧力
P3   弁軸ホルダ室83内の圧力
P4   ロータ収容室67内の圧力
S1   連通流路17bの有効断面積
S2   連通流路17cの有効断面積
S3   連通流路88の有効断面積
S4   連通流路51の有効断面積
2 Motorized valve 6 Valve shaft holder 6d Female thread 16 Valve port 17 Valve body 17b Communication flow path 17c Communication flow path 18 Valve guide 28 Back pressure chamber 30 Valve body 41 Valve shaft 41a Male thread 48 Seal member 51 Communication flow path 72 Valve body Guide member 83 Valve shaft holder chamber 88 Communication flow path P1 Pressure P2 in valve port 16 Pressure P3 in back pressure chamber 28 Pressure P4 in valve shaft holder chamber 83 Pressure S1 in rotor accommodating chamber 67 Effective communication path 17b Cross-sectional area S2 Effective cross-sectional area S3 of communication channel 17c Effective cross-sectional area S3 of communication channel 88 Effective cross-sectional area of communication channel 51

Claims (6)

  1.  ロータの回転運動を、雄ネジ部材と雌ネジ部材とのネジ結合により直線運動に変換し、この直線運動に基づいて弁本体内に収容された弁体を弁体案内部材の案内によって軸方向に移動させるとともに、弁開状態における複数の内部空間の圧力差による力をキャンセルする方式の電動弁であって、
     前記弁体を着座させる弁座と、
     前記内部空間同士を連通する複数の連通流路とを備え、
     前記弁座から遠い位置に位置する前記連通流路の有効断面積が前記弁座に近い位置に位置する前記連通流路の有効断面積よりも小さくならないように形成されていることを特徴とする電動弁。
    The rotational motion of the rotor is converted into a linear motion by screw connection between the male screw member and the female screw member, and the valve body accommodated in the valve body is axially guided by the valve body guide member based on this linear motion. A motor-driven valve that moves and cancels the force due to the pressure difference in the plurality of internal spaces in the valve open state,
    A valve seat for seating the valve body;
    A plurality of communication channels communicating the internal spaces with each other;
    The effective cross-sectional area of the communication channel positioned at a position far from the valve seat is formed so as not to be smaller than the effective cross-sectional area of the communication channel positioned at a position close to the valve seat. Motorized valve.
  2.  前記弁座から遠い位置に位置する前記連通流路ほど有効断面積が大きくなるように形成されていることを特徴とする請求項1記載の電動弁。 The motor-operated valve according to claim 1, wherein an effective cross-sectional area is formed so as to increase as the communication flow channel is located farther from the valve seat.
  3.  該電動弁は、
     前記弁軸の傾斜を抑制する弁軸ホルダと、
     前記弁座と反対側に前記弁軸が挿入され、前記弁座側に前記弁体が装着された弁ガイドと、を備え、
     前記連通流路は、
     前記弁軸ホルダに形成された通路、
     前記弁軸ホルダと前記弁ガイドとの間の隙間に形成された通路、
     前記弁体内に形成された通路、の中の少なくとも二つを含むことを特徴とする請求項1または2記載の電動弁。
    The motorized valve
    A valve shaft holder for suppressing the inclination of the valve shaft;
    A valve guide in which the valve shaft is inserted on the side opposite to the valve seat, and the valve body is mounted on the valve seat side,
    The communication channel is
    A passage formed in the valve shaft holder,
    A passage formed in a gap between the valve shaft holder and the valve guide;
    The motor-operated valve according to claim 1, comprising at least two of passages formed in the valve body.
  4.  前記弁体内に形成された通路は、前記弁体内において縦方向に形成された通路と、前記縦方向に形成された通路を横断して横方向に形成された通路を含むことを特徴とする請求項3記載の電動弁。 The passage formed in the valve body includes a passage formed in a vertical direction in the valve body, and a passage formed in a transverse direction across the passage formed in the vertical direction. Item 4. The motor-operated valve according to Item 3.
  5.  前記連通流路の有効断面積は、前記弁体内において縦方向に形成された通路、前記弁体内において横方向に形成された通路、前記弁軸ホルダと前記弁ガイドとの間の隙間に形成された通路、前記弁軸ホルダに形成された通路の順に大きくなることを特徴とする請求項4記載の電動弁。 The effective cross-sectional area of the communication channel is formed in a passage formed in the longitudinal direction in the valve body, a passage formed in the lateral direction in the valve body, and a gap between the valve shaft holder and the valve guide. 5. The motor-operated valve according to claim 4, wherein the passage becomes larger in the order of a passage formed in the valve shaft holder.
  6.  圧縮機、凝縮器、膨張弁、および蒸発器を含む冷凍サイクルシステムであって、請求項1~5の何れか一項に記載の電動弁を前記膨張弁として用いることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the motor-operated valve according to any one of claims 1 to 5 is used as the expansion valve. .
PCT/JP2017/006552 2016-03-29 2017-02-22 Motorized valve and refrigeration cycle system WO2017169319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018508588A JP6663981B2 (en) 2016-03-29 2017-02-22 Motorized valve and refrigeration cycle system
CN201780014953.5A CN108779869B (en) 2016-03-29 2017-02-22 Electric valve and refrigeration cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-065703 2016-03-29
JP2016065703 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169319A1 true WO2017169319A1 (en) 2017-10-05

Family

ID=59963070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006552 WO2017169319A1 (en) 2016-03-29 2017-02-22 Motorized valve and refrigeration cycle system

Country Status (3)

Country Link
JP (1) JP6663981B2 (en)
CN (1) CN108779869B (en)
WO (1) WO2017169319A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296267A (en) * 2018-03-23 2019-10-01 浙江三花智能控制股份有限公司 Electric expansion valve
CN110617336A (en) * 2018-06-19 2019-12-27 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN110735935A (en) * 2018-07-19 2020-01-31 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2022532973A (en) * 2019-05-20 2022-07-21 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027367B2 (en) * 2019-03-25 2022-03-01 株式会社鷺宮製作所 Thermal expansion valve and refrigeration cycle system equipped with it
JP7055768B2 (en) * 2019-04-12 2022-04-18 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
JP7453091B2 (en) * 2020-08-18 2024-03-19 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320712A (en) * 1999-05-12 2000-11-24 Daikin Ind Ltd Electric needle valve for refrigerating circuit and refrigerating device provided with the same
JP2013130271A (en) * 2011-12-22 2013-07-04 Fuji Koki Corp Electrically-operated valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165314B1 (en) * 2004-09-17 2012-07-18 가부시기가이샤 후지고오키 Electronically operated valve
JP2008232290A (en) * 2007-03-20 2008-10-02 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the same
JP5130339B2 (en) * 2010-10-05 2013-01-30 株式会社鷺宮製作所 Motorized valve
CN102287536B (en) * 2011-07-27 2013-03-20 浙江盾安禾田金属有限公司 Electronic expansion valve
JP6091903B2 (en) * 2013-01-18 2017-03-08 株式会社不二工機 Motorized valve
JP5860429B2 (en) * 2013-03-29 2016-02-16 株式会社鷺宮製作所 Flow control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320712A (en) * 1999-05-12 2000-11-24 Daikin Ind Ltd Electric needle valve for refrigerating circuit and refrigerating device provided with the same
JP2013130271A (en) * 2011-12-22 2013-07-04 Fuji Koki Corp Electrically-operated valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296267A (en) * 2018-03-23 2019-10-01 浙江三花智能控制股份有限公司 Electric expansion valve
CN110296267B (en) * 2018-03-23 2021-02-26 浙江三花智能控制股份有限公司 Electronic expansion valve
CN110617336A (en) * 2018-06-19 2019-12-27 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN110617336B (en) * 2018-06-19 2021-05-25 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN110735935A (en) * 2018-07-19 2020-01-31 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
JP2022532973A (en) * 2019-05-20 2022-07-21 浙江盾安人工環境股▲ふん▼有限公司 Electronic expansion valve
JP7214883B2 (en) 2019-05-20 2023-01-30 浙江盾安人工環境股▲ふん▼有限公司 electronic expansion valve

Also Published As

Publication number Publication date
JP6663981B2 (en) 2020-03-13
CN108779869A (en) 2018-11-09
JPWO2017169319A1 (en) 2018-08-23
CN108779869B (en) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2017169319A1 (en) Motorized valve and refrigeration cycle system
JP6860988B2 (en) Electric valve
US10352467B2 (en) Direct-action-type electrically-operated valve and assembly method therefor
JP6392685B2 (en) Motorized valve
WO2017168942A1 (en) Motor-operated valve
WO2017154347A1 (en) Electric valve
CN111417807B (en) Electric valve and manufacturing method thereof
WO2017154346A1 (en) Motor operated valve
JP7113505B2 (en) electric valve
US10330214B2 (en) Control valve
CN216742869U (en) Electronic expansion valve
JP6392686B2 (en) Motorized valve
CN110094525B (en) Electrically operated valve and manufacturing method thereof
WO2017169320A1 (en) Motorized valve and refrigeration cycle system
JP2019219007A (en) Motor valve and refrigeration cycle system
WO2017168943A1 (en) Motor-operated valve
JP6952015B2 (en) Electric valve and refrigeration cycle system
JP7141484B2 (en) Electric valve and refrigeration cycle system
JP6715879B2 (en) 3-way switching valve
JP7113537B2 (en) electric valve
JP6680578B2 (en) Motorized valve
US20060124182A1 (en) Angled fluid control valve seal
EP4296552A1 (en) Solenoid valve
JP6945504B2 (en) Electric valve and refrigeration cycle system
JP2024071877A (en) Motor-operated valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773866

Country of ref document: EP

Kind code of ref document: A1