WO2017169312A1 - 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム - Google Patents

放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム Download PDF

Info

Publication number
WO2017169312A1
WO2017169312A1 PCT/JP2017/006436 JP2017006436W WO2017169312A1 WO 2017169312 A1 WO2017169312 A1 WO 2017169312A1 JP 2017006436 W JP2017006436 W JP 2017006436W WO 2017169312 A1 WO2017169312 A1 WO 2017169312A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image
radiation detector
radiographic
pixels
Prior art date
Application number
PCT/JP2017/006436
Other languages
English (en)
French (fr)
Inventor
崇史 田島
健 桑原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780020058.4A priority Critical patent/CN108882900B/zh
Priority to JP2018508586A priority patent/JP6510729B2/ja
Publication of WO2017169312A1 publication Critical patent/WO2017169312A1/ja
Priority to US16/129,797 priority patent/US10765390B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise

Definitions

  • the technology of the present disclosure relates to a radiographic image capturing system, an image processing device, a radiographic image capturing device, an image processing method, and an image processing program.
  • a first radiation detector including a plurality of pixels that accumulates charges corresponding to the irradiated radiation, and the first radiation detector that is stacked and disposed on the side through which radiation is transmitted and emitted.
  • a radiation image capturing apparatus including a second radiation detector including a plurality of pixels that accumulate electric charges according to the received radiation is known.
  • a technique for deriving the bone density of a subject using the detection results of each radiation detector is known (see Japanese Patent Application Laid-Open No. 2011-056257).
  • the radiation transmitted through the radiation detector provided on the radiation incident side reaches the radiation detector provided on the radiation emission side. To do. Therefore, the dose of radiation reaching the radiation detector provided on the radiation output side is smaller than that of the radiation detector provided on the incident side, and the amount of radiation used for generating a radiation image is reduced.
  • the effect of noise is that the effect on the radiation image captured by the radiation detector provided on the radiation output side is more affected on the radiation image captured by the radiation detector provided on the radiation entrance side. Bigger than.
  • the technology of the present disclosure is a radiographic imaging system, an image processing apparatus, a radiographic imaging apparatus, and an image processing capable of obtaining a high-quality diagnostic image and at least one of a bone mineral quantitative value and bone density with high accuracy.
  • a method and an image processing program are provided.
  • a radiographic imaging system includes a first radiation detector including a plurality of pixels that accumulate electric charges according to irradiated radiation, and the radiation of the first radiation detector is transmitted and emitted.
  • a radiographic imaging device comprising: a second radiation detector including a plurality of pixels arranged in a stacked manner and storing charges corresponding to the irradiated radiation; and imaged by the second radiation detector.
  • First diagnostic processing for generating a diagnostic image is performed on the second radiographic image, and the second radiographic image subjected to the first correction processing and the first radiographic image captured by the first radiation detector are used.
  • a generation unit that generates a diagnostic image, a second correction process for deriving a quantitative value on the second radiation image captured by the second radiation detector, and a second radiation image on which the second correction process has been performed, Taken by the first radiation detector It comprises a deriving unit that derives at least one of bone mineral quantification and bone density, and using the first radiation image.
  • the radiation of the first radiation detector is transmitted through the first radiation detector that includes a plurality of pixels that accumulate charges corresponding to the irradiated radiation.
  • a radiographic imaging apparatus comprising: a second radiation detector including a plurality of pixels that are stacked on the emission side and store charges corresponding to the irradiated radiation, and generates a diagnostic image
  • a control unit for performing a second control including a control for performing a second correction process for deriving a quantitative value for image data obtained by the read and read charges, and a first radiation obtained by the first control
  • a generation unit that generates a diagnostic image using the image and the second radiographic image, and at least one of bone mineral content determination and bone density is derived using the first radiographic image and the second radiographic image obtained by the second control.
  • a derivation unit A derivation unit.
  • the second correction process is a noise whose noise amount to be removed is removed by the first correction process. It may be at least one of a correction process larger than the amount and a correction process in which the noise amount allowed for the process result is smaller than the noise amount allowed for the process result of the first correction process.
  • the radiographic image capturing system according to the fourth aspect of the present invention is the radiographic image capturing system according to any one of the first to third aspects, wherein the first correction process is visible in the diagnostic image. Correction processing for removing artifacts may be used.
  • the radiographic image capturing system is the radiographic image capturing system according to any one of the first to fourth aspects, wherein the second correction process is performed on the corrected second radiographic image. It may be a correction process that suppresses variation in each imaging with respect to the average value of the pixel values in each of the soft tissue region and the bone tissue region.
  • a radiographic imaging system is the radiographic imaging system according to any one of the first to fifth aspects, between the first radiation detector and the second radiation detector. Further, a radiation limiting member that limits the transmission of radiation may be further provided.
  • a radiographic imaging system is the radiographic imaging system according to any one of the first to sixth aspects, wherein each of the first radiation detector and the second radiation detector is: A light emitting layer that emits light when irradiated with radiation is provided, and each of the plurality of pixels of the first radiation detector and the second radiation detector generates and accumulates charges by receiving the light, The composition of the light emitting layer may be different between the light emitting layer of the radiation detector and the light emitting layer of the second radiation detector.
  • the radiographic imaging system is the radiographic imaging system according to any one of the first to sixth aspects, wherein each of the first radiation detector and the second radiation detector includes: A light emitting layer that emits light when irradiated with radiation, and a substrate provided with a plurality of pixels that generate and accumulate charges by receiving light, and the substrate is disposed on the radiation incident side of the light emitting layer. It may be laminated.
  • a radiographic imaging system is the radiographic imaging system according to any one of the first to eighth aspects, wherein the light emitting layer of the first radiation detector includes CsI.
  • the light emitting layer of the second radiation detector may be configured to include GOS.
  • An image processing apparatus includes a first radiation detector that includes a plurality of pixels that accumulate charges according to the irradiated radiation, and the radiation of the first radiation detector is transmitted and emitted.
  • a first radiation image and a second radiation image from a radiation image capturing apparatus comprising: a second radiation detector including a plurality of pixels that are stacked on the side and that store charges corresponding to the irradiated radiation.
  • the second correction process is performed Comprising a radiation image, a first radiation image captured by the first radiation detector, and a deriving unit that derives at least one of bone mineral quantification and bone density using the.
  • a radiographic imaging apparatus including a first radiation detector including a plurality of pixels for accumulating charges according to irradiated radiation, and radiation emitted from the first radiation detector being transmitted. And a second radiation detector that includes a plurality of pixels that are stacked on the side to accumulate charges corresponding to the irradiated radiation, and a plurality of pixels of the first radiation detector when generating a diagnostic image. And a control for reading charges from a plurality of pixels of the second radiation detector and performing a first correction process for generating diagnostic images on image data obtained by the read charges.
  • the charge is read from the plurality of pixels of the first radiation detector and the charge is read from the plurality of pixels of the second radiation detector and obtained by the read charge.
  • a control for performing the second correction processing for quantitative values derived for the image data, and a control unit that performs second control including.
  • the acquisition unit transmits the radiation of the first radiation detector including the first radiation detector including a plurality of pixels that accumulate charges corresponding to the irradiated radiation, and the first radiation detector. And a second radiation detector including a plurality of pixels that are stacked on the emission side and store a charge corresponding to the irradiated radiation.
  • a second radiation image obtained by acquiring a second radiation image, performing a first correction process for generating a diagnostic image on the second radiation image captured by the second radiation detector by the generation unit, and performing the first correction process.
  • a diagnostic image is generated using the image and the first radiation image captured by the first radiation detector, and a derivation unit derives a quantitative value from the second radiation image captured by the second radiation detector.
  • the second correction process of Deriving at least one of bone mineral quantification and bone density using a second radiation image correction process is performed, a first radiation image captured by the first radiation detector, and includes a process.
  • An image processing program is a first radiation detector including a plurality of pixels that accumulates charges according to irradiated radiation, and the radiation of the first radiation detector is transmitted and emitted.
  • a first radiation image and a second radiation image from a radiation image capturing apparatus comprising: a second radiation detector including a plurality of pixels that are stacked on the side and that store charges corresponding to the irradiated radiation.
  • a first correction process for generating a diagnostic image is performed on the second radiation image photographed by the second radiation detector, and the second radiation image subjected to the first correction process and the first radiation detector
  • a diagnostic image is generated using the first radiation image captured by the second radiation image
  • a second correction process for deriving a quantitative value is performed on the second radiation image captured by the second radiation detector
  • a second correction process is performed.
  • the second radiographic image A first radiation image captured by the first radiation detector, derives at least one of bone mineral quantification and bone density using, is for causing the computer to execute processing including the.
  • a radiographic image capturing system an image processing apparatus, and a radiographic image capable of obtaining a high-quality diagnostic image and a highly accurate bone mineral quantitative value and / or bone density value are provided.
  • An imaging device, an image processing method, and an image processing program can be provided.
  • the radiographic imaging system 10 includes a radiation irradiating device 12, a radiographic imaging device 16, and a console 18.
  • the console 18 of the present embodiment is an example of an image processing apparatus according to the technique of the present disclosure.
  • the radiation irradiation apparatus 12 of this embodiment includes a radiation source 14 that irradiates a subject W, which is an example of an imaging target, with a radiation R such as an X-ray (X-ray).
  • a radiation R such as an X-ray (X-ray).
  • An example of the radiation irradiation device 12 is a round-trip car.
  • indicating irradiation of the radiation R with respect to the radiation irradiation apparatus 12 is not specifically limited.
  • the radiation irradiation device 12 includes an irradiation button or the like, a user such as a doctor or a radiographer instructs the irradiation of the radiation R using the irradiation button, so that the radiation R is irradiated from the radiation irradiation device 12. Also good. Further, for example, the user may irradiate the radiation R from the radiation irradiating apparatus 12 by operating the console 18 and instructing the irradiation of the
  • the radiation irradiating device 12 irradiates the radiation R from the radiation source 14 according to the exposure conditions such as the tube voltage, the tube current, and the irradiation period when receiving the instruction to start the radiation R.
  • the radiographic imaging device 16 of the present embodiment includes a first radiation detector 20A and a second radiation detector 20B that respectively detect radiation R irradiated from the radiation irradiation device 12 and transmitted through the subject W.
  • the radiation image capturing apparatus 16 captures a radiation image of the subject W using the first radiation detector 20A and the second radiation detector 20B.
  • the first radiation detector 20A and the second radiation detector 20B are collectively referred to as “radiation detector 20” without being distinguished from each other.
  • the radiographic imaging device 16 includes a flat housing 21 that transmits the radiation R, and has a waterproof, antibacterial, and airtight structure.
  • a first radiation detector 20A, a second radiation detector 20B, a radiation limiting member 24, a control board 26A, a control board 26B, and a case 28 are provided.
  • the first radiation detector 20A is disposed on the radiation R incident side of the radiation imaging apparatus 16, and the second radiation detector 20B is stacked on the side through which the radiation R of the first radiation detector 20A is transmitted and emitted. Has been placed.
  • the first radiation detector 20A includes a TFT (ThinThTransistor) substrate 30A and a scintillator 22A as an example of a light emitting layer that emits light according to the dose of the irradiated radiation R when irradiated with the radiation R. It has. Further, the TFT substrate 30A and the scintillator 22A are stacked in the order of the TFT substrate 30A and the scintillator 22A from the radiation R incident side.
  • the second radiation detector 20B includes a TFT substrate 30B and a scintillator 22B as an example of the light emitting layer.
  • the TFT substrate 30B and the scintillator 22B are stacked in the order of the TFT substrate 30B and the scintillator 22B from the radiation R incident side.
  • the first radiation detector 20A and the second radiation detector 20B are radiation detectors of a surface reading method (so-called ISS (Irradiation Side Sampling) method) in which the radiation R is irradiated from the TFT substrates 30A and 30B side.
  • ISS Irradiation Side Sampling
  • the scintillator 22A of the first radiation detector 20A and the scintillator 22B of the second radiation detector 20B have different scintillator compositions.
  • the composition of the scintillator 22A includes CsI (Tl) (cesium iodide added with thallium) as a main component
  • the composition of the scintillator 22B is mainly GOS (gadolinium sulfate). Contains as an ingredient. GOS is more sensitive to radiation R on the higher energy side than CsI.
  • the combination of the composition of scintillator 22A and the composition of scintillator 22B is not limited to said example, The combination of another composition may be sufficient and the combination of the same composition may be sufficient.
  • a radiation limiting member 24 that limits transmission of the radiation R is provided between the first radiation detector 20A and the second radiation detector 20B.
  • An example of the radiation limiting member 24 is a metal plate such as copper or tin.
  • the radiation limiting member 24 preferably has a thickness variation of 1% or less in the incident direction of the radiation R in order to make the radiation limitation (transmittance) uniform.
  • the control board 26A is provided corresponding to the first radiation detector 20A, and electronic circuits such as an image memory 56A and a control unit 58A described later are formed on the board.
  • the control board 26B is provided corresponding to the second radiation detector 20B, and electronic circuits such as an image memory 56B and a control unit 58B described later are formed on the board. Further, the control board 26A and the control board 26B are disposed on the opposite side of the radiation R incidence side in the second radiation detector 20B.
  • the case 28 is disposed at a position that does not overlap the radiation detector 20 on one end side in the housing 21 (that is, outside the imaging region), and accommodates a power supply unit 70 and the like described later.
  • the installation position of the case 28 is not particularly limited.
  • the case 28 may be disposed at a position opposite to the radiation incident side of the second radiation detector 20 ⁇ / b> B and overlapping the radiation detector 20.
  • the pixel 32 includes a sensor unit 32A, a capacitor 32B, and a field effect thin film transistor (TFT, hereinafter simply referred to as “thin film transistor”) 32C.
  • TFT thin film transistor
  • the sensor unit 32A includes an upper electrode, a lower electrode, a photoelectric conversion film, and the like (not shown), and absorbs light emitted from the scintillator 22A to generate electric charges.
  • the capacitor 32B accumulates the charge generated by the sensor unit 32A.
  • the thin film transistor 32C reads and outputs the charge accumulated in the capacitor 32B in accordance with the control signal.
  • the TFT substrate 30A is provided with a plurality of gate wirings 34 arranged in the one direction and for turning on and off each thin film transistor 32C.
  • the TFT substrate 30A is provided with a plurality of data wirings 36 that are arranged in the crossing direction and that output charges read by the thin film transistor 32C in the on state.
  • Each gate wiring 34 of the TFT substrate 30A is connected to a gate wiring driver 52A, and each data wiring 36 of the TFT substrate 30A is connected to a signal processing unit 54A.
  • Each thin film transistor 32C of the TFT substrate 30A is turned on in turn for each gate wiring 34 (in this embodiment, in units of rows) in accordance with a control signal supplied from the gate wiring driver 52A via the gate wiring 34. Is done. Then, the electric charges read by the thin film transistor 32C that has been turned on are transmitted as an electric signal through the data wiring 36 and input to the signal processing unit 54A. As a result, the electric charges are sequentially read for each gate wiring 34 (in this embodiment, in units of rows shown in FIG. 3), and image data indicating a two-dimensional radiation image is acquired.
  • the signal processing unit 54A includes an amplification circuit and a sample-and-hold circuit (both not shown) for amplifying the input electric signal for each individual data wiring 36, and the electric signal transmitted through the individual data wiring 36. Is amplified by the amplifier circuit and then held in the sample hold circuit. Further, a multiplexer and an A / D (Analog / Digital) converter (both not shown) are sequentially connected to the output side of the sample hold circuit. The electric signals held in the individual sample and hold circuits are sequentially input to the multiplexer (serially), and the electric signals sequentially selected by the multiplexer are converted into digital image data by the A / D converter.
  • a / D Analog / Digital
  • the image memory 56A is connected to the signal processing unit 54A, and the image data output from the A / D converter of the signal processing unit 54A is sequentially output to the control unit 58A.
  • An image memory 56A is connected to the control unit 58A, and the image data sequentially output from the signal processing unit 54A is sequentially stored in the image memory 56A under the control of the control unit 58A.
  • the image memory 56A has a storage capacity capable of storing a predetermined number of image data, and each time a radiographic image is captured, the image data obtained by the imaging is sequentially stored in the image memory 56A. .
  • the image memory 56A is also connected to the control unit 58A.
  • the control unit 58A includes a CPU (Central Processing Unit) 60, a memory 62 including a ROM (Read Only Memory) and a RAM (Random Access Memory), and a non-volatile storage unit 64 such as a flash memory.
  • CPU Central Processing Unit
  • memory 62 including a ROM (Read Only Memory) and a RAM (Random Access Memory)
  • non-volatile storage unit 64 such as a flash memory.
  • a microcomputer etc. are mentioned as an example of 58 A of control parts.
  • the communication unit 66 is connected to the control unit 58A, and transmits / receives various information to / from external devices such as the radiation irradiation device 12 and the console 18 by at least one of wireless communication and wired communication.
  • the power supply unit 70 supplies power to the various circuits and elements described above (gate wiring driver 52A, signal processing unit 54A, image memory 56A, control unit 58A, communication unit 66, and the like). In FIG. 3, in order to avoid complications, the power supply unit 70, various circuits, and wirings that connect each element are not shown.
  • each corresponding component of 1st radiation detector 20A Since it is the same as that, description here is abbreviate
  • the control unit 58A and the control unit 58B are connected to be communicable.
  • the radiographic image capturing device 16 captures a radiographic image using each of the first radiation detector 20A and the second radiation detector 20B.
  • the console 18 includes a control unit 80.
  • the control unit 80 includes a CPU 80A that controls the overall operation of the console 18, a ROM 80B that stores various programs and various parameters, and a RAM 80C that is used as a work area when the CPU 80A executes various programs.
  • the console 18 includes a nonvolatile storage unit 86 such as an HDD (Hard Disk Drive).
  • the storage unit 86 stores and holds image data indicating a radiation image captured by the first radiation detector 20A, image data indicating a radiation image captured by the second radiation detector 20B, and other various data.
  • the radiation image captured by the first radiation detector 20A is referred to as “first radiation image”
  • the image data indicating the first radiation image is referred to as “first radiation image data”.
  • the radiation image captured by the second radiation detector 20B is referred to as “second radiation image”
  • the image data indicating the second radiation image is referred to as “second radiation image data”.
  • “first radiation image” and “second radiation image” are collectively referred to simply as “radiation image”.
  • the console 18 includes a display unit 88, an operation unit 90, and a communication unit 92.
  • the display unit 88 displays information related to imaging, radiation images obtained by imaging, and the like.
  • the operation unit 90 is used for a user to input an instruction operation for capturing a radiographic image, an instruction regarding image processing of the captured radiographic image, and the like.
  • the operation unit 90 may have a keyboard form as an example, or may have a touch panel form integrated with the display unit 88.
  • the communication unit 92 performs various types of information with an external system such as PACS (Picture Archiving and Communication System) and RIS (Radiology Information System) by at least one of wireless communication and wired communication. Send and receive.
  • the communication unit 92 transmits and receives various types of information between the radiographic imaging device 16 and the radiation irradiation device 12 by at least one of wireless communication and wired communication.
  • the control unit 80, the storage unit 86, the display unit 88, the operation unit 90, and the communication unit 92 are connected to each other via a bus 94.
  • the radiation amount reaching the second radiation detector 20B is the first radiation detection. Less than the amount of radiation that reaches the container 20A.
  • the radiation R that has reached the first radiation detector 20A is absorbed by the first radiation detector 20A by about 50% and used for radiographic imaging. Further, the radiation R that has passed through the first radiation detector 20 ⁇ / b> A and reached the radiation limiting member 24 is absorbed by the radiation limiting member 24 by about 60%. Further, the radiation R that has passed through the first radiation detector 20A and the radiation limiting member 24 and has reached the second radiation detector 20B is absorbed by the second radiation detector 20B by about 50% and is used for radiographic imaging. .
  • the radiation dose (charge amount generated by the second radiation detector 20B) used for capturing a radiation image by the second radiation detector 20B is the radiation dose used for capturing the radiation image by the first radiation detector 20A.
  • the ratio of the radiation dose used for capturing a radiation image by the first radiation detector 20A and the radiation dose used for capturing a radiation image by the second radiation detector 20B is not limited to the above ratio.
  • the radiation dose used for capturing a radiation image by the second radiation detector 20B is 10% or more of the radiation dose used for capturing a radiation image by the first radiation detector 20A. .
  • radiation R is absorbed from low energy components.
  • the energy component of the radiation R reaching the second radiation detector 20B is excluded from the low energy component of the energy component of the radiation R reaching the first radiation detector 20A.
  • the vertical axis indicates the amount of absorption of the radiation R per unit area
  • the horizontal axis indicates the energy of the radiation R.
  • a solid line L1 in FIG. 5 indicates the relationship between the energy of the radiation R absorbed by the first radiation detector 20A and the amount of absorption per unit area.
  • the solid line L2 of FIG. 5 has shown the relationship between the energy about the radiation R which the 2nd radiation detector 20B absorbs, and the absorbed amount per unit area.
  • the radiation amount used for imaging differs between the first radiation detector 20A and the second radiation detector 20B, and the energy component of the radiation R that arrives differs.
  • the soft tissue has a higher absorption rate of components on the low energy side than the bone tissue.
  • the radiation R reaching the first radiation detector 20A includes a high energy component and a low energy component, and is thus captured by the first radiation detector 20A.
  • the first radiographic image is a radiographic image in which the soft tissue and the bone tissue can be visually recognized relatively easily, as in general imaging.
  • the second radiation image captured by the second radiation detector 20B is It becomes a radiographic image in which the bone tissue is emphasized.
  • the first radiation image captured by the first radiation detector 20A and the second radiation image captured by the second radiation detector 20B are images of the same subject W, they are visible. Is different.
  • the control unit 80 of the console 18 of the present embodiment uses so-called energy by using the first radiation image captured by the first radiation detector 20A and the second radiation image captured by the second radiation detector 20B.
  • Image data indicating a subtraction image is generated.
  • the energy subtraction image is referred to as “ES (Energy Subtraction) image”
  • the image data indicating the energy subtraction image is referred to as “ES image data”.
  • the control unit 80 of the console 18 of the present embodiment is obtained by multiplying the first radiation image data by a predetermined coefficient and multiplying the second radiation image data by a predetermined coefficient. It subtracts every corresponding pixel from the obtained image data. By performing the subtraction, the control unit 80 removes the soft tissue and generates ES image data indicating an ES image that is a kind of diagnostic image in which the bone tissue is emphasized.
  • the determination method of the corresponding pixel of 1st radiographic image data and 2nd radiographic image data is not specifically limited.
  • the first radiation image data and the first radiation image data are obtained from the difference in the marker positions between the first radiation image data and the second radiation image data obtained by photographing with the radiation image photographing device 16 in a state where the marker is reflected in advance. 2.
  • a positional deviation amount with respect to the radiation image data is calculated.
  • the pixel corresponding to 1st radiographic image data and 2nd radiographic image data should just be determined based on the calculated displacement amount.
  • the first radiographic image is obtained from the difference in the marker position between the first radiographic image data and the second radiographic image data obtained by imaging the marker together with the subject W.
  • the amount of positional deviation between the data and the second radiation image data may be calculated. Further, for example, based on the structure of the subject W in the first radiation image data and the second radiation image data obtained by imaging the subject W, the positions of the first radiation image data and the second radiation image data The amount of deviation may be calculated.
  • control unit 80 of the console 18 uses the first radiation image captured by the first radiation detector 20A and the second radiation image captured by the second radiation detector 20B as a quantitative value.
  • the bone density is derived by the DXA (Dual-energy X-ray Absorptiometry) method. Note that the present invention is not limited to this embodiment, and bone mineral content may be derived as a quantitative value.
  • the control unit 80 of the console 18 of the present embodiment uses a bone tissue region (hereinafter referred to as a “bone region”) in the DXA image indicated by the DXA image data. .)) And the average value of the pixel values of the soft tissue region (hereinafter referred to as “soft region”) are derived.
  • a bone tissue region hereinafter referred to as a “bone region”
  • soft region the average value of the pixel values of the soft tissue region
  • the ES image is a radiographic image used for diagnosis by a doctor, it is preferably an image suitable for interpretation.
  • it is preferably an image that is easy to see a tumor or calcification that is a ROI (Region Of Interest).
  • radiographic images include high-quality images such as sharp images with easy-to-see edges, images with good granularity (roughness of images), and images with good contrast.
  • the DXA image used for deriving the bone density has little error every time when the same subject W is imaged at the derived bone density regardless of the ROI visibility (specifically, 1% Is preferred.
  • a radiographic image include an image in which artifacts and image unevenness that cannot be visually recognized by a doctor are removed by removing more noise than an ES image. If the amount of noise removal is large, the human tissue of an image with unevenness such as the skin of the subject W may be removed. As shown in FIG. 6, when noise is removed from a radiation image including noise (see the graphs in FIGS. 6 and 2) in a radiographic image obtained by imaging human tissue, noise removal processing is performed. The radiographic image (see the graphs in FIGS.
  • the desired image quality differs between the ES image and the DXA image.
  • the second radiation image captured by the second radiation detector 20B is more susceptible to noise than the first radiation image captured by the first radiation detector 20A. Therefore, the control unit 80 of the console 18 of the present embodiment performs, as the correction process, a noise removal process suitable for each of the case where the ES image is generated and the bone density is derived for the second radiographic image. .
  • FIG. 7 is a flowchart illustrating an example of the flow of the entire photographing process executed by the control unit 80 of the console 18. Specifically, the whole photographing process shown in FIG. 7 is executed by the whole photographing process program being executed by the CPU 80A of the control unit 80. Note that the entire photographing processing program is an example of an image processing program according to the technique of the present disclosure.
  • the whole imaging process shown in FIG. 7 is performed by the control unit 80 of the console 18 by the user via the operation unit 90, such as the name of the subject W, the imaging region, and the radiation R exposure condition. This is executed when a shooting menu including is acquired.
  • the control unit 80 may acquire a shooting menu from an external system such as RIS, or may acquire a shooting menu input by the user via the operation unit 90.
  • step S100 of FIG. 7 the control unit 80 of the console 18 transmits information included in the imaging menu to the radiation image capturing device 16 via the communication unit 92 and communicates the radiation R exposure conditions to the radiation irradiation device 12. The data is transmitted via the unit 92. Then, the control unit 80 transmits an instruction to start exposure of the radiation R to the radiographic image capturing device 16 and the radiation irradiation device 12 via the communication unit 92.
  • the radiation irradiation apparatus 12 starts the exposure of the radiation R according to the received exposure condition.
  • the radiation irradiation device 12 When the radiation irradiation device 12 includes an irradiation button, the radiation irradiation device 12 receives an exposure condition and an instruction to start exposure transmitted from the console 18, and the irradiation button is pressed. In addition, the exposure of the radiation R is started according to the received exposure conditions.
  • the first radiation image is captured by the first radiation detector 20A and the second radiation image is captured by the second radiation detector 20B in accordance with the information included in the imaging menu transmitted from the console 18.
  • the control units 58A and 58B perform offset correction and gain correction on the first radiographic image data indicating the first radiographic image and the second radiographic image data indicating the second radiographic image, respectively.
  • the first radiation image data and the second radiation image data subjected to the various corrections are stored in the storage unit 64.
  • the control unit 80 determines whether or not the radiographic image capturing in the radiographic image capturing device 16 has been completed.
  • the method for determining whether or not the radiographic image capturing has ended is not particularly limited.
  • each of the control units 58A and 58B of the radiographic image capturing device 16 indicates that the image capturing has ended via the communication unit 66.
  • the control unit 80 of the console 18 determines that imaging in the radiographic imaging device 16 has ended when the end information is received.
  • the control unit 80 includes the first radiographic image.
  • the console 18 When the data and the second radiographic image data are received, it is determined that the radiographic imaging device 16 has finished imaging.
  • the console 18 receives the first radiation image data and the second radiation image data, the console 18 stores the received first radiation image data and second radiation image data in the storage unit 86.
  • the control unit 80 makes a negative determination until the radiographic imaging device 16 finishes imaging, and enters a standby state. On the other hand, when the radiographic imaging device 16 has finished imaging, the control unit 80 makes an affirmative determination and proceeds to step S104.
  • step S104 the control unit 80 executes the image generation process shown in FIG.
  • step S150 of FIG. 8 the control unit 80 of the console 18 acquires the user's diagnosis purpose.
  • the method by which the control unit 80 acquires the diagnostic purpose is not particularly limited.
  • the diagnostic menu includes the diagnostic purpose
  • the diagnostic purpose may be acquired from the imaging menu, or the diagnosis input by the user via the operation unit 90 The purpose may be acquired.
  • information indicating the correspondence relationship between the purpose of diagnosis and the required type of radiation image or derivation of bone density is stored in the storage unit 86 in advance. For example, when the purpose of diagnosis is “fracture”, derivation of bone density is associated.
  • ES images are also generated along with the derivation of bone density.
  • an ES image is associated as a type of radiation image.
  • a general image is associated as the type of radiation image.
  • the “general image” is a diagnostic image that is interpreted by a doctor other than the ES image, and is a radiographic image taken by so-called general imaging.
  • step S152 the control unit 80 determines whether or not to generate a general image.
  • the control unit 80 makes an affirmative determination and proceeds to step S154.
  • step S154 the control unit 80 acquires the first radiation image data from the storage unit 86.
  • step S156 the control unit 80 performs a correction process on the acquired first radiation image data to generate a general image, temporarily stores it in the storage unit 86, and then proceeds to step S166.
  • the correction process performed in this step is the same as the first correction process (details will be described later) performed when generating an ES image.
  • other image processing and noise correction processing may be performed.
  • image processing for example, image processing for adjusting the density and brightness of the image in accordance with a user instruction may be performed.
  • step S152 when derivation of bone density or ES image generation is associated with the diagnosis purpose, a negative determination is made in step S152, and the process proceeds to step S158.
  • step S158 the control unit 80 acquires the first radiation image data and the second radiation image data from the storage unit 86.
  • step S160 the control unit 80 executes the ES image generation process shown in FIG.
  • step S200 illustrated in FIG. 9 the control unit 80 performs a first correction process on each of the first radiation image data and the second radiation image data.
  • the “first correction process” is a process for enhancing the edge of the human tissue and removing unevenness in a state where the granularity of the corrected radiation image is good (fine). That is, the first correction process is a correction process for facilitating diagnosis by a doctor (for easy viewing of ROI and the like). Note that when the unevenness is strongly removed (the amount of noise to be removed is increased), the human tissue of the image with unevenness such as the skin of the subject W may be removed. For this reason, in the present embodiment, the amount of noise removed by the first correction process is at least smaller than the amount of noise removed by the second correction process described later in detail. It should be noted that specific parameters and the like necessary for performing the first correction process may be determined in advance according to the imaging region or the like through an experiment using the actual apparatus of the radiographic image capturing apparatus 16.
  • step S202 the control unit 80 generates ES image data by the above-described method using the first radiographic image data and the second radiographic image data that have been subjected to the first correction process in step S200, and stores the ES image data. Then, the ES image generation process is terminated, and the process proceeds to step S162 of the image generation process.
  • step S162 the control unit 80 determines whether derivation of bone density is associated with a diagnostic purpose. If derivation of bone density is not associated, a negative determination is made, and the process proceeds to step S166. On the other hand, when the derivation of bone density is associated, the determination in step S162 is affirmative, and the process proceeds to step S164.
  • step S164 the control unit 80 executes the bone density derivation process shown in FIG.
  • step S230 illustrated in FIG. 10 the control unit 80 determines a bone region in the ES image indicated by the ES image data generated by the ES image generation process (see FIG. 9).
  • the control unit 80 estimates the approximate range of the bone region based on the imaging region included in the imaging menu.
  • the control part 80 determines a bone part area
  • the control unit 80 detects the edge E of the bone region B by the process of step S230 and determines the region in the edge E as the bone region B.
  • FIG. 11 as an example, an ES image in a case where the spine portion of the upper half of the subject W is photographed is shown.
  • region B is not limited to said example.
  • the control unit 80 displays the ES image indicated by the ES image data on the display unit 88.
  • the user designates the edge E of the bone region B via the operation unit 90 with respect to the ES image displayed on the display unit 88.
  • the control unit 80 may determine the region within the edge E designated by the user as the bone region B.
  • control unit 80 may display an image obtained by superimposing the ES image and the edge E determined in step S230 on the display unit 88. In this case, if the user needs to correct the edge E displayed on the display unit 88, the user corrects the position of the edge E via the operation unit 90. Then, the control unit 80 may determine the region in the edge E corrected by the user as the bone region B.
  • the control unit 80 determines a soft part region in the ES image indicated by the ES image data.
  • the control unit 80 is a region having a predetermined area including pixels at a predetermined number of pixels from the edge E in a predetermined direction and excluding the bone region B. Determined as soft area.
  • the control unit 80 determines a plurality (six in the example illustrated in FIG. 11) of soft part regions S by the process of step S ⁇ b> 232.
  • the predetermined direction and the predetermined number of pixels may be determined in advance according to the imaging region or the like by an experiment using the actual apparatus of the radiographic image capturing device 16.
  • the predetermined area may be determined in advance or may be specified by the user.
  • the control unit 80 has a minimum pixel value in the ES image data (a pixel value corresponding to a position where the body thickness of the subject W excluding the bone region B is the thickest) as a lower limit value.
  • a pixel having a pixel value of may be determined as the soft part region S.
  • the number of soft part regions S determined in step S232 is not limited to the number of examples shown in FIG.
  • control unit 80 performs the first correction process described above on the first radiation image data acquired from the storage unit 86.
  • the control unit 80 performs a second correction process on the second radiation image data acquired from the storage unit 86.
  • the “second correction process” is a process for performing a correction so that variations in each image (second radiographic image in this step) are within an allowable range.
  • the control unit 80 performs correction for removing image unevenness on the entire frequency band of the second radiation image data.
  • the control unit 80 suppresses fluctuations with respect to the image average value by performing a moving average filter process, a median filter process, a low-pass filter process, and the like, so that variation for each shooting is within an allowable range.
  • specific parameters and the like necessary for performing the second correction process may be determined in advance through experiments using the actual apparatus of the radiographic image capturing device 16.
  • the control unit 80 uses the first radiation image data that has been subjected to the first correction process in step S234 and the second radiation image data that has been subjected to the second correction process in step S236.
  • a DXA image is generated.
  • the control unit 80 obtains image data obtained by multiplying the first radiation image data subjected to the first correction process in step S234 by a predetermined coefficient. Is subtracted for each corresponding pixel from the image data obtained by multiplying the second radiation image data subjected to the second correction processing in step S236 by a predetermined coefficient.
  • the control unit 80 By performing the subtraction, the control unit 80 removes the soft tissue and generates DXA image data indicating the DXA image in which the bone tissue is emphasized.
  • the predetermined coefficient used by the control unit 80 in generating the DXA image and the predetermined coefficient used in generating the ES image may be the same or different.
  • the predetermined coefficient used in the generation of each image may be determined in advance by an experiment using an actual machine of the radiographic image capturing device 16 or the like.
  • the control unit 80 calculates the pixel value of the bone region B in the DXA image data.
  • the control unit 80 detects the bone region B corresponding to the bone region B determined from the ES image data in step S230 from the DXA image data.
  • the control unit 80 calculates the detected average value A1 of the pixel values of the bone region B as the average value of the pixel values of the bone region B in the DXA image data.
  • the method for determining the bone region B of the DXA image data corresponding to the bone region B of the ES image data is not particularly limited. For example, it may be the same as the method for determining the corresponding pixels of the first radiation image data and the second radiation image data described above in the ES image generation method.
  • the controller 80 calculates the pixel values of all the soft areas S in the DXA image data.
  • the control unit 80 detects, from the DXA image data, the soft part regions S corresponding to all the soft part regions S determined from the ES image data in step S232.
  • the control part 80 calculates the average value A2 of the pixel value of all the soft part area
  • the control unit 80 calculates the average value A2 by weighting the pixel values so that the softer region S farther from the edge E becomes smaller.
  • the method for determining the soft part region S of the DXA image data corresponding to the soft part region of the ES image data is not particularly limited.
  • the DXA image data of the DXA image data corresponding to the bone part region B of the ES image data in step S240 is used.
  • the method may be the same as the method for determining the bone region B.
  • the control unit 80 derives the bone density of the imaging region of the subject W, and then ends the bone density deriving process.
  • the control unit 80 calculates a difference between the average value A1 calculated in step S240 and the average value A2 calculated in step S242. Further, the control unit 80 calculates the bone mass by multiplying the calculated difference by a conversion coefficient for converting the pixel value into the bone mass [g]. Then, the control unit 80 calculates the bone density [g / cm 2 ] by dividing the calculated bone mass by the area [cm 2 ] of the bone region B.
  • the conversion coefficient may be determined in advance according to an imaging region or the like by an experiment using an actual machine of the radiographic imaging device 16 or the like.
  • the control unit 80 displays the processing result on the display unit 88 in the next step S166, and then ends the image generation process.
  • the control unit 80 obtains the ES image generated by the ES image generation process of step S160 and the bone density of step S164 as the processing result.
  • the bone density derived by the generation process is displayed on the display unit 88.
  • the control unit 80 causes the display unit 88 to display the generated ES image.
  • the control unit 80 causes the display unit 88 to display the generated general image.
  • the processing results displayed on the display unit 88 are not limited to these.
  • the control unit 80 may display only the derived bone density on the display unit 88.
  • the DXA image may be displayed on the display unit 88, or whether to display either the ES image or the DXA image may be determined according to the user's selection.
  • the radiographic imaging system 10 of the present exemplary embodiment includes the first radiation detector 20A including the plurality of pixels 32 that accumulate charges corresponding to the irradiated radiation R, and the radiation R of the first radiation detector 20A. And a second radiation detector 20 ⁇ / b> B including a plurality of pixels 32 that are stacked on the side where the light is transmitted and emitted and accumulates charges according to the irradiated radiation R. Is provided. Further, the control unit 80 of the console 18 of the radiographic image capturing system 10 performs a first correction process for generating a diagnostic image on the second radiographic image captured by the second radiation detector 20B, and the first correction process is performed.
  • a diagnostic image is generated using the broken second radiation image and the first radiation image captured by the first radiation detector 20A.
  • the control unit 80 performs a second correction process for deriving a quantitative value on the second radiographic image captured by the second radiation detector 20B, the second radiographic image subjected to the second correction process, and the first radiographic image The bone density is derived using the first radiographic image captured by the radiation detector 20A.
  • the 1st correction process and the 2nd correction process which the control part 80 performed are not limited to this embodiment.
  • so-called optical black correction may be performed.
  • an optical black region used for optical black correction is provided in the second radiation detector 20B.
  • the radiation shield 41 is placed in a region along one side of the second radiation detector 20B on the surface on which the radiation R of the second radiation detector 20B is incident.
  • An optical black region 40 may be provided.
  • the first radiation detector 20A and the second radiation detector 20B are stacked in a state where the region where the radiation shield 41 is provided is shifted.
  • the first radiation detector 20A and the second radiation detector 20B may be stacked without shifting the area where the radiation shield 41 is provided.
  • illustration of the radiation limiting member 24 is abbreviate
  • the scintillator 22 ⁇ / b> B is not provided in the region of the second radiation detector 20 ⁇ / b> B corresponding to the region in which the radiation shield 41 is provided in the example shown in FIG. 12.
  • a region where the scintillator 22 ⁇ / b> B is not provided functions as the optical black region 40. 12 and 12, the radiation R does not enter the TFT substrate 30B in the optical black region 40 of the second radiation detector 20B. Therefore, the image of the subject W is not captured in the optical black region 40 portion of the second radiation image captured by the second radiation detector 20B.
  • the control unit 80 of the console 18 stores the position of the optical black region 40 and the like in the storage unit 86 in advance, and when performing the second correction, the optical black of the second radiation image is applied to the second radiation image data. By using the image data in the region 40 to correct the image data in the region other than the optical black region 40, so-called unevenness is removed. Note that, when generating a general image, the control unit 80 generates a general image from the first radiation image captured by the first radiation detector 20A, as described above in the present embodiment. On the other hand, when generating the ES image and the DXA image, the control unit 80 corresponds to image data of a region other than the optical black region 40 of the second radiation image data and a region other than the optical black region 40 of the second radiation image. An ES image and a DXA image are generated using the image data of the region of the first radiation image data.
  • the method of performing the optical black correction is not limited to the method described above.
  • the position and size of the optical black region 40 are not limited to the examples shown in FIGS.
  • the optical black region 40 may be provided on the side adjacent to this side, or the second Optical black regions 40 may be provided on a plurality of sides of the radiation detector 20B.
  • the correction accuracy by the optical black correction improves as the position where the optical black region 40 is provided increases and the size of the entire optical black region 40 increases.
  • the subject W The area where the image is captured becomes smaller.
  • the position where the optical black region 40 is provided and the overall size may be determined according to the imaging region or the like by an experiment using the actual apparatus of the radiographic imaging device 16.
  • the case where the console 18 performs the first correction process and the second correction process has been described, but in the present embodiment, the case where the radiographic imaging device 16 performs the first correction process and the second correction process. explain.
  • the flow of the whole photographing process executed in the control unit 80 of the console 18 of the present embodiment is the same as the flow of the whole photographing process (see FIG. 7) executed in the first embodiment, and thus the description thereof is omitted. To do.
  • the operation of acquiring offset data used for offset correction in the first radiation detector 20A and the second radiation detector 20B of the radiation imaging apparatus 16 is different from that of the radiation imaging apparatus 16 of the first embodiment. .
  • offset data is acquired a plurality of times, for example, continuously, and offset correction is performed using an average value of the offset data for a plurality of times.
  • a general radiographic image capturing apparatus or the radiographic image capturing apparatus 16 of the first embodiment uses a radiographic image capturing apparatus, for example, in the first embodiment.
  • the offset data is acquired in advance at a predetermined timing before the radiographic image is captured in a state where the operation is stable. Also in the radiographic imaging device 16 of the present embodiment, offset data in the first radiation detector 20A and the second radiation detector 20B are acquired in advance a predetermined number of times (a plurality of times) in this way.
  • the offset data in the second radiation detector 20B when the console 18 receives the exposure start instruction transmitted by the process of step S100 of the entire imaging process (see FIG. 7), the offset data in the second radiation detector 20B. Get further. That is, the radiographic imaging device 16 acquires offset data in the second radiation detector 20B immediately before the radiographic image is captured in the second radiation detector 20B. In this case, since the period from when the radiation imaging apparatus 16 receives the exposure start instruction until the radiation R is irradiated onto the second radiation detector 20B is short, the offset data is once or at least in advance. Acquire less times than when acquiring. Note that the offset data acquisition timing in this case is preferably closer to the timing at which the radiation R is applied to the second radiation detector 20B.
  • control unit 58A performs the first correction process on the image data stored in the image memory 56A
  • control unit 58B performs the first correction on the image data stored in the image memory 56B. It differs from the radiographic image capturing apparatus 16 of the first embodiment in that the correction process and the second correction process are performed.
  • the process of correcting image data using the average value of offset data acquired in advance is referred to as a first correction process.
  • the process of correcting the image data using the offset data acquired immediately before capturing the radiographic image is referred to as a second correction process.
  • the first radiographic image and the second radiographic image A obtained by the first correction process are images with good (fine) granularity.
  • the radiographic image capturing apparatus can be used in accordance with a change in the environment, a change in the usage state of the radiographic image capturing apparatus 16 and the like due to the passage of time until the actual radiographic image is captured.
  • the temperature of 16 may change.
  • the signal may fluctuate due to the temperature change, and the offset data may not be appropriate.
  • the second correction process the image data is corrected using the offset data acquired immediately before shooting. Since the temperature at the time of actual radiographic image capturing and the temperature at the time of offset data acquisition are approximate, the second radiation image B obtained by the second correction process is the second radiation obtained by the first correction process. More noise is removed than image A (first radiation image).
  • the second radiation image B obtained by the second correction process is obtained by the first correction process.
  • the resulting image is worse (rougher) than the second radiographic image A (first radiographic image), as described above in the first embodiment, the influence on the derivation of the bone density can be ignored.
  • the controller 58A executes the first radiation image generation process shown in FIG. 14 after the image data read from the first radiation detector 20A is stored in the image memory 56A.
  • the first radiation image generation processing program shown in FIG. 14 is stored in the memory 62 in advance, and the CPU 60 executes the first radiation image generation processing program to generate the first radiation image generation program shown in FIG. Processing is executed.
  • step S300 the control unit 58A acquires image data from the image memory 56A.
  • control unit 58A performs a first correction process on the acquired image data, generates image data of the first radiation image and stores it in the control unit 58A, and then generates the first radiation image. The process ends.
  • the control unit 58B executes the second radiation image generation process shown in FIG.
  • the second radiation image generation processing program shown in FIG. 15 is stored in the memory 62 in advance, and the second radiation image generation shown in FIG. 15 is executed by the CPU 60 executing the first radiation image generation processing program. Processing is executed.
  • step S330 the control unit 58B acquires image data from the image memory 56B.
  • control unit 58B performs a first correction process on the acquired image data, generates image data of the second radiation image A, and stores it in the control unit 58B.
  • the control unit 58B performs a second correction process on the acquired image data, generates image data of the second radiation image B, and stores it in the control unit 58B.
  • the radiation image generation process is terminated.
  • the image data (hereinafter referred to as “second radiation image data A” and “second radiation image data B”) of two types of second radiation images (second radiation images A and B). ) Is generated.
  • the second radiographic images A and B are transmitted from the radiographic image capturing device 16 to the console 18 via the communication unit 66.
  • the flow of the image generation process in the control unit 80 of the console 18 is the second radiation image data A and B as the second radiation image data in step S158 of the image generation process (see FIG. 8) in the first embodiment. It is the same except that is acquired.
  • the second radiation image data A of the second radiation image A is used for generating a general image and an ES image.
  • the second radiographic image data B of the second radiographic image B is used for derivation of bone density (generation of a DXA image).
  • the ES image generation process executed by the control unit 80 of the console 18 of the present embodiment does not execute the process of step S200 of the ES image generation process (see FIG. 9) of the first embodiment as shown in FIG. Is different.
  • step S202 of the ES image generation process of the present embodiment the control unit 80 uses the first radiation image data acquired from the storage unit 86 and the second radiation image data A acquired from the storage unit 86 as described above.
  • ES image data is generated by the method described above.
  • the bone density deriving process executed by the control unit 80 of the console 18 of the present embodiment executes steps S234 and S236 of the bone density deriving process (see FIG. 10) of the first embodiment as shown in FIG. It is different in that it does not.
  • step S238 of the bone density deriving process the control unit 80 uses the first radiological image data acquired from the storage unit 86 and the second radiographic image data B acquired from the storage unit 86 to obtain a DXA image. Is generated.
  • the radiographic imaging system 10 of the present exemplary embodiment includes the first radiation detector 20A including the plurality of pixels 32 that accumulate charges corresponding to the irradiated radiation R, and the radiation R of the first radiation detector 20A. And a second radiation detector 20 ⁇ / b> B including a plurality of pixels 32 that are stacked on the side where the light is transmitted and emitted and accumulates charges according to the irradiated radiation R. Is provided.
  • the control unit 58A of the radiographic imaging device 16 performs control to read out charges from the plurality of pixels 32 of the first radiation detector 20A and the plurality of pixels 32 of the second radiation detector 20B.
  • the first control including the control of reading the charge from the image and performing the first correction process for generating the diagnostic image on the image data obtained by the read charge is performed.
  • the control unit 58A of the radiographic imaging device 16 performs control to read out charges from the plurality of pixels 32 of the first radiation detector 20A and the plurality of pixels 32 of the second radiation detector 20B.
  • the second control including the control of reading out the charge from the image and performing the second correction process for deriving the quantitative value on the image data obtained by the read-out charge is performed.
  • the control part 80 of the console 18 produces
  • the control unit 80 derives the bone density using the first radiographic image and the second radiographic image obtained by the second control.
  • control units 58A and 58B perform at least one of the first correction process and the second correction process has been described.
  • the control units 58A and 58B further perform other correction processes, image processing, and the like. You may go.
  • the radiographic imaging apparatus 16 performed the 1st correction process and the 2nd correction process which are offset processes, but these 1st correction processes and 2nd correction processes are performed to a console.
  • 18 control units 80 may be used.
  • the image data for generating the first radiographic image data and the second radiographic image data A and B that are not subjected to the offset processing from the radiographic imaging device 16 to the console 18 and Two types of offset data (an average value of offset data acquired in advance and offset data acquired immediately before photographing) are transmitted.
  • the control unit 80 that has received these image data and the two types of offset data performs processing similar to the above-described first radiation image generation processing (see FIG. 14) and second radiation image generation processing (see FIG. 15). What is necessary is just to produce
  • the present embodiment and the first embodiment may be combined. That is, even after the radiographic imaging device 16 performs the first correction process and the second correction process, which are offset processes, the console 18 performs the first correction process and the second correction process for removing unevenness and artifacts. Good.
  • the first correction process and the second correction process performed by the radiation image capturing apparatus 16 are not limited to the present embodiment.
  • processing in which the amplification factor of the amplification circuit of the signal processing unit 54B of the radiographic imaging device 16 may be different from the first correction processing and the second correction processing.
  • gain of the amplifier As the gain of the amplifier is increased, the dynamic range is reduced, but the influence of noise generated in the process after being converted by the A / D converter of the signal processing unit 54B is reduced.
  • the control unit 58B of the radiographic imaging device 16 when generating the diagnostic image (general image and ES image), performs the first correction process for amplifying the electric signal representing the image data with the gain of the amplifier as the first gain.
  • the second correction process for amplifying the electric signal representing the image data may be performed by setting the gain of the amplifier as the second gain larger than the first gain.
  • the control unit 58A may perform the first correction process both when generating the diagnostic image and when deriving the bone density.
  • the control unit 80 of the console 18 detects the bone region B and the soft region S from the DXA image in deriving the bone density.
  • the process of reading out charges for each pixel 32 is the first correction process
  • the process of reading out charges from the plurality of pixels 32 is the second correction. It is good also as processing.
  • the resolution of the image is reduced, but electrical noise superimposed on the image data is suppressed.
  • the control unit 58B of the radiographic imaging device 16 performs the first correction process for reading out the charge for each pixel 32 of the second radiation detector 20B, and the bone
  • a second correction process for reading out charges from the plurality of pixels 32 of the second radiation detector 20B may be performed.
  • a control signal for turning on the thin film transistor 32C is output to the two gate wirings 34 that are considered to be simultaneous, and an electric signal flowing through the two adjacent data wirings 36 may be added.
  • the control unit 80 of the console 18 includes image data of a first radiation image generated by reading out charges from each pixel 32, and image data of a second radiation image generated by reading out charges from a plurality of pixels 32 collectively.
  • An ES image may be generated using. However, since the resolution is reduced by reading the charges from the plurality of pixels 32 collectively, it is preferable not to read the charges from the plurality of pixels 32 collectively when a high-resolution ES image is desired.
  • the radiographic image capturing device 16 of the radiographic image capturing system 10 of each of the embodiments described above includes the first radiation detector 20A including the plurality of pixels 32 that accumulate charges according to the irradiated radiation R, A second radiation detector 20B that includes a plurality of pixels 32 that are stacked on the side where the radiation R of the first radiation detector 20A is transmitted and emitted and accumulates charges according to the irradiated radiation R; .
  • the first correction process for generating a diagnostic image is performed on the second radiographic image captured by the second radiation detector 20B, and the second correction process for deriving the bone density is performed.
  • the control unit 80 of the console 18 generates a diagnostic image using the first radiographic image and the second radiographic image subjected to the first correction process, and performs the first radiographic image and the second correction process.
  • the bone density is derived using the second radiographic image.
  • radiographic imaging system 10 of each of the embodiments described above it is possible to obtain a high-quality diagnostic image and at least one of a bone mineral quantitative value and a bone density with high accuracy.
  • the amount of noise to be removed when the amount of noise to be removed is different between the first correction process and the second correction process, more specifically, when the amount of noise to be removed is larger in the second correction process.
  • noise that does not affect the derivation of bone density for example, noise that does not change for each imaging and is uniformly superimposed on the image, may not be removed.
  • an indirect conversion type radiation detector that converts radiation once into light and converts the converted light into electric charge is applied to both the first radiation detector 20A and the second radiation detector 20B.
  • the present invention is not limited to this.
  • a direct conversion type radiation detector that directly converts radiation into electric charge may be applied to at least one of the first radiation detector 20A and the second radiation detector 20B.
  • a surface reading type radiation detector in which the radiation R is incident from the TFT substrate 30A, 30B side is applied to both the first radiation detector 20A and the second radiation detector 20B.
  • a radiation detector of a back side reading method in which the radiation R is incident on the scintillators 22A and 22B from at least one of the first radiation detector 20A and the second radiation detector 20B. It is good also as a form to apply.
  • control of the radiation image capturing apparatus 16 is realized by the two control units (the control units 58A and 58B) is not limited to this.
  • control units 58A and 58B it is good also as a form which implement
  • the whole photographing processing program is stored (installed) in the ROM 80B in advance.
  • the whole photographing processing program is provided in a form recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory. Also good. Further, the whole photographing processing program may be downloaded from an external device via a network.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), and a USB (Universal Serial Bus) memory.
  • the whole photographing processing program may be downloaded from an external device via a network.
  • the disclosure of Japanese Patent Application No. 2016-063952 filed on Mar. 28, 2016 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by

Abstract

コンソールの制御部は、第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成する。制御部は、第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて骨密度を導出する。

Description

放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム
 本開示の技術は、放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラムに関する。
 従来、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器、及び第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器を備えた放射線画像撮影装置が知られている。また、この種の放射線画像撮影装置において、各放射線検出器の検出結果を用いて被検体の骨密度を導出する技術が知られている(特開2011-056257号公報参照)。
 ところで、前述した2つの放射線検出器を用いて放射線画像の撮影を行う場合、放射線の入射側に設けられた放射線検出器を透過した放射線が、放射線の出射側に設けられた放射線検出器に到達する。従って、放射線の出射側に設けられた放射線検出器に到達する放射線の線量は、入射側に設けられた放射線検出器と比較して少なくなり、放射線画像の生成に用いられる放射線量が少なくなる。
 そのため、ノイズが与える影響は、放射線の出射側に設けられた放射線検出器により撮影された放射線画像に対する影響の方が、放射線の入射側に設けられた放射線検出器により撮影された放射線画像に対する影響よりも大きくなる。
 本開示の技術は、高画質の診断用画像と、高精度な骨塩定量値及び骨密度の少なくとも一方と、を得ることができる放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラムを提供する。
 本発明の第1の態様の放射線画像撮影システムは、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置と、第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成する生成部と、第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、を備える。
 また、本発明の第2の態様の放射線画像撮影システムは、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置と、診断用画像を生成する場合、第1放射線検出器の複数の画素から電荷を読み出す制御と、第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して診断用画像生成用の第1補正処理を行わせる制御と、を含む第1制御を行い、定量値の導出を行う場合、第1放射線検出器の複数の画素から電荷を読み出す制御と、第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して定量値導出用の第2補正処理を行わせる制御と、を含む第2制御を行う制御部と、第1制御により得られた第1放射線画像及び第2放射線画像を用いて診断用画像を生成する生成部と、第2制御により得られた第1放射線画像及び第2放射線画像を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、を備える。
 本発明の第3の態様の放射線画像撮影システムは、第1の態様または第2の態様の放射線画像撮影システムにおいて、第2補正処理は、除去するノイズ量が第1補正処理により除去されるノイズ量よりも多い補正処理、及び処理結果に許容されるノイズ量が第1補正処理の処理結果に許容されるノイズ量よりも少ない補正処理の少なくとも一方であってもよい。
 本発明の第4の態様の放射線画像撮影システムは、第1の態様から第3の態様のいずれか1態様の放射線画像撮影システムにおいて、の第1補正処理は、診断用画像において、視認可能なアーチファクトを除去する補正処理であってもよい。
 本発明の第5の態様の放射線画像撮影システムは、第1の態様から第4の態様のいずれか1態様の放射線画像撮影システムにおいて、の第2補正処理は、補正後の第2放射線画像における軟部組織の領域及び骨部組織の領域の各々において画素値の平均値に対する撮影毎のばらつきを抑制する補正処理であってもよい。
 本発明の第6の態様の放射線画像撮影システムは、第1の態様から第5の態様のいずれか1態様の放射線画像撮影システムにおいて、第1放射線検出器と第2放射線検出器との間に、放射線の透過を制限する放射線制限部材をさらに備えてもよい。
 本発明の第7の態様の放射線画像撮影システムは、第1の態様から第6の態様のいずれか1態様の放射線画像撮影システムにおいて、第1放射線検出器及び第2放射線検出器の各々は、放射線が照射されることにより光を発する発光層を備え、第1放射線検出器及び第2放射線検出器の各々の複数の画素は、光を受光することにより電荷が発生して蓄積され、第1放射線検出器の発光層と、第2放射線検出器の発光層とは、発光層の組成が異なってもよい。
 本発明の第8の態様の放射線画像撮影システムは、第1の態様から第6の態様のいずれか1態様の放射線画像撮影システムにおいて、第1放射線検出器及び第2放射線検出器の各々は、放射線が照射されることにより光を発する発光層、及び光を受光することにより電荷が発生して蓄積される複数の画素が設けられた基板を備え、基板は、発光層の放射線の入射側に積層されていてもよい。
 本発明の第9の態様の放射線画像撮影システムは、第1の態様から第8の態様のいずれか1態様の放射線画像撮影システムにおいて、第1放射線検出器の発光層は、CsIを含んで構成され、第2放射線検出器の発光層は、GOSを含んで構成されていてもよい。
 本発明の第10の態様の画像処理装置は、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得する取得部と、第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成する生成部と、第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、を備える。
 本発明の第11の態様の放射線画像撮影装置は、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、診断用画像を生成する場合、第1放射線検出器の複数の画素から電荷を読み出す制御と、第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して診断用画像生成用の第1補正処理を行わせる制御と、を含む第1制御を行い、定量値の導出を行う場合、第1放射線検出器の複数の画素から電荷を読み出す制御と、第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して定量値導出用の第2補正処理を行わせる制御と、を含む第2制御を行う制御部と、を備える。
 本発明の第12の態様の画像処理方法は、取得部により、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得し、生成部により、第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成し、導出部により、第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する、処理を含む。
 本発明の第13の態様の画像処理プログラムは、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、第1放射線検出器の放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得し、第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成し、第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する、ことを含む処理をコンピュータに実行させるためのものである。
 本発明の一実施形態によれば、高画質の診断用画像と、高精度な骨塩定量値及び骨密度の値少なくとも一方と、を得ることができる射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラムを提供することができる。
第1実施形態の放射線画像撮影システムの構成の一例を示すブロック図である。 第1実施形態の放射線画像撮影装置の構成の一例を示す平面断面図である。 第1実施形態の放射線画像撮影装置の電気系の要部構成の一例を示すブロック図である。 第1実施形態のコンソールの電気系の要部構成の一例を示すブロック図である。 第1実施形態の第1放射線検出器及び第2放射線検出器の各々に到達する放射線量の説明に供するグラフである。 放射線画像に対するノイズ除去の一例について説明するためのグラフである。 第1実施形態の全体撮影処理の流れの一例を示すフローチャートである。 第1実施形態の全体撮影処理における画像生成処理の流れの一例を示すフローチャートである。 第1実施形態の画像生成処理におけるES画像生成処理の流れの一例を示すフローチャートである。 第1実施形態の画像生成処理における骨密度導出処理の流れの一例を示すフローチャートである。 第1実施形態の骨部組織の領域及び軟部組織の領域の説明に供する概略正面図である。 オプティカルブラック補正を説明するための模式図の一例である。 オプティカルブラック補正を説明するための模式図のその他の例である。 第2実施形態の第1放射線画像生成処理の流れの一例を示すフローチャートである。 第2実施形態の第2放射線画像生成処理の流れの一例を示すフローチャートである。 第2実施形態の画像生成処理におけるES画像生成処理の流れの一例を示すフローチャートである。 第2実施形態の画像生成処理における骨密度導出処理の流れの一例を示すフローチャートである。
 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。
[第1実施形態]
 まず、図1を参照して、本実施形態の放射線画像撮影システム10の構成について説明する。図1に示すように、放射線画像撮影システム10は、放射線照射装置12、放射線画像撮影装置16、及びコンソール18を備えている。なお、本実施形態のコンソール18が、本開示の技術の画像処理装置の一例である。
 本実施形態の放射線照射装置12は、例えばエックス線(X線)等の放射線Rを撮影対象の一例である被検体Wに照射する放射線源14を備えている。放射線照射装置12の一例としては、回診車等が挙げられる。なお、放射線照射装置12に対して放射線Rの照射を指示する方法は、特に限定されない。例えば、放射線照射装置12が照射ボタン等を備えている場合は、医師や放射線技師等のユーザが照射ボタンにより放射線Rの照射の指示を行うことで、放射線照射装置12から放射線Rを照射してもよい。また、例えば、ユーザが、コンソール18を操作して放射線Rの照射の指示を行うことで、放射線照射装置12から放射線Rを照射してもよい。
 放射線照射装置12は、放射線Rの曝射開始の指示を受信すると、管電圧、管電流、及び照射期間等の曝射条件に従って、放射線源14から放射線Rを照射する。
 本実施形態の放射線画像撮影装置16は、放射線照射装置12から照射され、被検体Wを透過した放射線Rを各々検出する第1放射線検出器20A及び第2放射線検出器20Bを備えている。放射線画像撮影装置16は、第1放射線検出器20A及び第2放射線検出器20Bを用いて、被検体Wの放射線画像を撮影する。なお、以下では、第1放射線検出器20A及び第2放射線検出器20Bを区別せずに総称する場合は、「放射線検出器20」という。
 次に、図2を参照して、本実施形態の放射線画像撮影装置16の構成について説明する。図2に示すように、放射線画像撮影装置16は、放射線Rを透過する平板状の筐体21を備え、防水性、抗菌性、及び密閉性を有する構造とされている。筐体21内には、第1放射線検出器20A、第2放射線検出器20B、放射線制限部材24、制御基板26A、制御基板26B、及びケース28が設けられている。
 第1放射線検出器20Aは、放射線画像撮影装置16における放射線Rの入射側に配置され、第2放射線検出器20Bは、第1放射線検出器20Aの放射線Rが透過されて出射される側に積層されて配置されている。また、第1放射線検出器20Aは、TFT(Thin Film Transistor)基板30A、及び放射線Rが照射されることにより、照射された放射線Rの線量に応じた光を発する発光層の一例としてのシンチレータ22Aを備えている。また、TFT基板30A及びシンチレータ22Aは、放射線Rの入射側からTFT基板30A及びシンチレータ22Aの順番で積層されている。
 また、第2放射線検出器20Bは、TFT基板30B、及び上記発光層の一例としてのシンチレータ22Bを備えている。また、TFT基板30B及びシンチレータ22Bは、放射線Rの入射側からTFT基板30B及びシンチレータ22Bの順番で積層されている。
 すなわち、第1放射線検出器20A及び第2放射線検出器20Bは、TFT基板30A、30B側から放射線Rが照射される表面読取方式(所謂ISS(Irradiation Side Sampling)方式)の放射線検出器である。
 本実施形態の放射線画像撮影装置16では、第1放射線検出器20Aのシンチレータ22Aと、第2放射線検出器20Bのシンチレータ22Bとでは、シンチレータの組成が異なる。具体的には、一例として、シンチレータ22Aの組成は、CsI(Tl)(タリウムが添加されたヨウ化セシウム)を主成分として含んでおり、シンチレータ22Bの組成は、GOS(ガドリニウム硫酸化物)を主成分として含んでいる。GOSは、CsIよりも高エネルギー側の放射線Rに対する感度が高い。なお、シンチレータ22Aの組成及びシンチレータ22Bの組成の組み合わせは、上記の例に限定されず、他の組成の組み合わせでもよいし、同じ組成の組み合わせでもよい。
 また、第1放射線検出器20Aと第2放射線検出器20Bとの間には、放射線Rの透過を制限する放射線制限部材24が設けられている。放射線制限部材24の一例としては、銅や錫等の金属板が挙げられる。また、放射線制限部材24は、放射線の制限(透過率)を均一とするため、放射線Rの入射方向における厚みのばらつきが1%以下であることが好ましい。
 制御基板26Aは、第1放射線検出器20Aに対応して設けられ、後述する画像メモリ56A及び制御部58A等の電子回路が基板上に形成されている。また、制御基板26Bは、第2放射線検出器20Bに対応して設けられ、後述する画像メモリ56B及び制御部58B等の電子回路が基板上に形成されている。また、制御基板26A及び制御基板26Bは、第2放射線検出器20Bにおける放射線Rの入射側の反対側に配置されている。
 ケース28は、図2に示すように、筐体21内の一端側の放射線検出器20とは重ならない位置(すなわち、撮影領域の範囲外)に配置され、後述する電源部70等が収容される。なお、ケース28の設置位置は特に限定されず、例えば、第2放射線検出器20Bの放射線の入射側の反対側の位置であって、放射線検出器20と重なる位置に配置されてもよい。
 次に、図3を参照して、本実施形態の放射線画像撮影装置16の電気系の要部構成について説明する。
 図3に示すように、TFT基板30Aには、画素32が一方向(図3の行方向)及び一方向に交差する交差方向(図3の列方向)に2次元状に複数設けられている。画素32は、センサ部32A、コンデンサ32B、及び電界効果型薄膜トランジスタ(TFT、以下、単に「薄膜トランジスタ」という。)32Cを含む。
 センサ部32Aは、図示しない上部電極、下部電極、及び光電変換膜等を含み、シンチレータ22Aが発する光を吸収して電荷を発生させる。コンデンサ32Bは、センサ部32Aにより発生した電荷を蓄積する。薄膜トランジスタ32Cは、コンデンサ32Bに蓄積された電荷を制御信号に応じて読み出して出力する。
 また、TFT基板30Aには、上記一方向に配設され、各薄膜トランジスタ32Cをオン及びオフさせるための複数本のゲート配線34が設けられている。また、TFT基板30Aには、上記交差方向に配設され、オン状態の薄膜トランジスタ32Cにより読み出された電荷が出力される複数本のデータ配線36が設けられている。
 TFT基板30Aの個々のゲート配線34はゲート配線ドライバ52Aに接続され、TFT基板30Aの個々のデータ配線36は信号処理部54Aに接続されている。
 TFT基板30Aの各薄膜トランジスタ32Cは、ゲート配線ドライバ52Aからゲート配線34を介して供給される制御信号により各ゲート配線34毎(本実施形態では、図3に示した行単位)で順にオン状態とされる。そして、オン状態とされた薄膜トランジスタ32Cによって読み出された電荷は、電気信号としてデータ配線36を伝送されて信号処理部54Aに入力される。これにより、電荷が各ゲート配線34毎(本実施形態では、図3に示した行単位)で順に読み出され、二次元状の放射線画像を示す画像データが取得される。
 信号処理部54Aは、個々のデータ配線36毎に、入力される電気信号を増幅する増幅回路及びサンプルホールド回路(何れも図示省略)を備えており、個々のデータ配線36を伝送された電気信号は増幅回路で増幅された後にサンプルホールド回路に保持される。また、サンプルホールド回路の出力側にはマルチプレクサ、及びA/D(Analog/Digital)変換器(何れも図示省略)が順に接続されている。そして、個々のサンプルホールド回路に保持された電気信号はマルチプレクサに順に(シリアルに)入力され、マルチプレクサにより順次選択された電気信号がA/D変換器によってデジタルの画像データへ変換される。
 信号処理部54Aには画像メモリ56Aが接続されており、信号処理部54AのA/D変換器から出力された画像データは制御部58Aに順次出力される。制御部58Aには画像メモリ56Aが接続されており、信号処理部54Aから順次出力された画像データは、制御部58Aによる制御によって画像メモリ56Aに順次記憶される。画像メモリ56Aは所定の枚数分の画像データの記憶が可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ56Aに順次記憶される。また、画像メモリ56Aは制御部58Aにも接続されている。
 制御部58Aは、CPU(Central Processing Unit)60、ROM(Read Only Memory)とRAM(Random Access Memory)等を含むメモリ62、及びフラッシュメモリ等の不揮発性の記憶部64を備えている。制御部58Aの一例としては、マイクロコンピュータ等が挙げられる。
 通信部66は、制御部58Aに接続され、無線通信及び有線通信の少なくとも一方により、放射線照射装置12及びコンソール18等の外部の装置との間で各種情報の送受信を行う。電源部70は、前述した各種回路や各素子(ゲート配線ドライバ52A、信号処理部54A、画像メモリ56A、制御部58A、及び通信部66等)に電力を供給する。なお、図3では、錯綜を回避するために、電源部70と各種回路や各素子を接続する配線の図示を省略している。
 なお、第2放射線検出器20BのTFT基板30B、ゲート配線ドライバ52B、信号処理部54B、画像メモリ56B、及び制御部58Bの各構成部品については、各々第1放射線検出器20Aの対応する構成部品と同様であるため、ここでの説明を省略する。なお、制御部58A及び制御部58Bは、通信可能に接続されている。
 以上の構成により、本実施形態の放射線画像撮影装置16は、第1放射線検出器20A及び第2放射線検出器20Bの各々を用いて、放射線画像の撮影を行う。
 次に、図4を参照して、本実施形態のコンソール18の構成について説明する。図4に示すように、コンソール18は、制御部80を備える。制御部80は、コンソール18の全体的な動作を司るCPU80A、各種プログラムや各種パラメータ等が予め記憶されたROM80B、及びCPU80Aによる各種プログラムの実行時のワークエリア等として用いられるRAM80Cを備える。
 また、コンソール18は、HDD(Hard Disk Drive)等の不揮発性の記憶部86を備える。記憶部86は、第1放射線検出器20Aにより撮影された放射線画像を示す画像データ、第2放射線検出器20Bにより撮影された放射線画像を示す画像データ、及びその他の各種データを記憶して保持する。なお、以下では、第1放射線検出器20Aにより撮影された放射線画像を「第1放射線画像」といい、第1放射線画像を示す画像データを「第1放射線画像データ」という。また、以下では、第2放射線検出器20Bにより撮影された放射線画像を「第2放射線画像」といい、第2放射線画像を示す画像データを「第2放射線画像データ」という。また、「第1放射線画像」及び「第2放射線画像」を総称する場合は、単に「放射線画像」という。
 また、コンソール18は、表示部88、操作部90、及び通信部92を備えている。表示部88は、撮影に関する情報等や撮影により得られた放射線画像等を表示する。操作部90は、放射線画像の撮影の指示操作や撮影された放射線画像の画像処理に関する指示等を、ユーザが入力するために用いられる。操作部90は、一例としてキーボードの形態を有するものであってもよいし、表示部88と一体化されたタッチパネルの形態を有するものであってもよい。通信部92は、無線通信及び有線通信の少なくとも一方により、PACS(Picture Archiving and Communication System:画像保存通信システム)及びRIS(Radiology Information System:放射線情報システム)等の外部のシステムとの間で各種情報の送受信を行う。また、通信部92は、無線通信及び有線通信の少なくとも一方により、放射線画像撮影装置16及び放射線照射装置12との間で各種情報の送受信を行う。
 制御部80、記憶部86、表示部88、操作部90、及び通信部92の各部が、バス94を介して互いに接続されている。
 ところで、本実施形態の放射線画像撮影装置16では、第1放射線検出器20A及び放射線制限部材24により放射線Rが吸収されるため、第2放射線検出器20Bに到達する放射線量は、第1放射線検出器20Aに到達する放射線量よりも少なくなる。
 本実施形態では、一例として、第1放射線検出器20Aに到達した放射線Rは、第1放射線検出器20Aにより約50%吸収されて放射線画像の撮影に用いられる。また、第1放射線検出器20Aを透過して放射線制限部材24に到達した放射線Rは、放射線制限部材24により約60%吸収される。また、第1放射線検出器20A及び放射線制限部材24を透過して第2放射線検出器20Bに到達した放射線Rは、第2放射線検出器20Bにより約50%吸収されて放射線画像の撮影に用いられる。
 すなわち、第2放射線検出器20Bによる放射線画像の撮影に用いられる放射線量(第2放射線検出器20Bで発生する電荷量)は、第1放射線検出器20Aによる放射線画像の撮影に用いられる放射線量の約20%となる。なお、第1放射線検出器20Aによる放射線画像の撮影に用いられる放射線量と、第2放射線検出器20Bによる放射線画像の撮影に用いられる放射線量との比は、上記の比に限らない。但し、第2放射線検出器20Bによる放射線画像の撮影に用いられる放射線量は、診断の観点から、第1放射線検出器20Aによる放射線画像の撮影に用いられる放射線量の10%以上であることが好ましい。
 また、放射線Rは低エネルギーの成分から吸収される。このため、一例として図5に示すように、第2放射線検出器20Bに到達する放射線Rのエネルギー成分は、第1放射線検出器20Aに到達する放射線Rのエネルギー成分の低エネルギー成分が除かれたものとなる。なお、図5は、放射線源14の管電圧を80kVとした場合において、縦軸は放射線Rの単位面積当たりの吸収量を示し、横軸は放射線Rのエネルギーを示している。また、図5の実線L1は、第1放射線検出器20Aが吸収する放射線Rについてのエネルギーと単位面積当たりの吸収量との関係を示している。また、図5の実線L2は、第2放射線検出器20Bが吸収する放射線Rについてのエネルギーと単位面積当たりの吸収量との関係を示している。
 このように、第1放射線検出器20Aと第2放射線検出器20Bとでは、撮影に用いられる放射線量が異なり、また、到達する放射線Rのエネルギー成分が異なっている。
 一方、骨部組織と軟部組織とでは、放射線Rの吸収に差があり、撮影に用いた放射線Rのエネルギーが低いほど、放射線画像における骨部組織と軟部組織との画素値の比が大きくなる。また、軟部組織は骨部組織に比べて、低エネルギー側の成分の吸収率が高い。
 これに対して、図5に示したように、第1放射線検出器20Aに到達する放射線Rは、高エネルギーの成分と低エネルギーの成分とが含まれるため、第1放射線検出器20Aにより撮影された第1放射線画像は、一般撮影と同様に、軟部組織及び骨部組織が比較的容易に視認可能な放射線画像となる。一方、図5に示したように、第2放射線検出器20Bに到達する放射線Rは、低エネルギーの成分が低下されているため、第2放射線検出器20Bにより撮影された第2放射線画像は、骨部組織が強調された放射線画像となる。
 そのため、第1放射線検出器20Aにより撮影された第1放射線画像と、第2放射線検出器20Bにより撮影された第2放射線画像とは、同一の被検体Wの画像であるにもかかわらず、見え方が異なっている。
 そこで、本実施形態のコンソール18の制御部80は、第1放射線検出器20Aにより撮影された第1放射線画像及び第2放射線検出器20Bにより撮影された第2放射線画像を用いて、いわゆる、エネルギーサブトラクション画像を示す画像データを生成する。なお、以下では、エネルギーサブトラクション画像を「ES(Energy Subtraction)画像」といい、エネルギーサブトラクション画像を示す画像データを「ES画像データ」という。
 一例として、本実施形態のコンソール18の制御部80は、第1放射線画像データに所定の係数を乗算して得られた画像データを、第2放射線画像データに所定の係数を乗算して得られた画像データから対応する画素毎に減算する。減算を行うことにより、制御部80は、軟部組織を除去し、骨部組織を強調した診断用画像の一種であるES画像を示すES画像データを生成する。なお、第1放射線画像データと第2放射線画像データとの対応する画素の決定方法は特に限定されない。例えば、事前にマーカーが写り込む状態で放射線画像撮影装置16により撮影を行って得られた第1放射線画像データと第2放射線画像データとにおけるマーカーの位置の差異から、第1放射線画像データと第2放射線画像データとの位置ずれ量を算出する。そして、算出した位置ずれ量に基づいて、第1放射線画像データと第2放射線画像データとの対応する画素を決定すればよい。
 この場合、例えば、被検体Wの撮影時に、被検体Wと一緒にマーカーも撮影して得られた第1放射線画像データと第2放射線画像データとにおけるマーカーの位置の差異から、第1放射線画像データと第2放射線画像データとの位置ずれ量を算出してもよい。また、例えば、被検体Wを撮影して得られた第1放射線画像データと第2放射線画像データとにおける被検体Wの構造に基づいて、第1放射線画像データと第2放射線画像データとの位置ずれ量を算出してもよい。
 また、本実施形態のコンソール18の制御部80は、第1放射線検出器20Aにより撮影された第1放射線画像及び第2放射線検出器20Bにより撮影された第2放射線画像を用いて、定量値として骨密度をDXA(Dual-energy X-ray Absorptiometry)法により導出する。なお、本実施形態に限らず、定量値として骨塩定量を導出してもよい。
 詳細は後述するが、DXA法による導出手法の一例として、本実施形態のコンソール18の制御部80は、DXA画像データにより示されるDXA画像における骨部組織の領域(以下、「骨部領域」という。)の画素値の平均値及び軟部組織の領域(以下、「軟部領域」という。)の画素値の平均値を用いて骨密度を導出する。
 ES画像は、医師の診断に用いる放射線画像であるため、読影に適した画像であることが好ましく、例えば、ROI(Region Of Interest)である腫瘤や石灰化等が見易い画像であることが好ましい。このような放射線画像としては、例えば、シャープでエッジが見易い画像、粒状性(画像のざらつき)が良い(細かい)画像、及びコントラストが良い画像等、高画質な画像が挙げられる。
 一方、骨密度の導出に用いるDXA画像は、ROIの見易さにかかわらず、導出した骨密度において、同一の被検体Wを撮影した場合に撮影毎に生じる誤差が少ない(具体例として1%以内)ことが好ましい。このような放射線画像としては、例えば、ES画像よりも多くのノイズを除去することにより、医師による視認が不可能なアーチファクトや画像ムラまでが除去された画像等が挙げられる。ノイズの除去量が多いと、被検体Wの皮膚等、ムラがある画像の人体組織まで除去してしまう場合がある。図6に示すように、人体組織が撮影された放射線画像において、ノイズを含む放射線画像(図6、(2)のグラフ参照)から、ノイズ除去処理によりノイズを除去した場合、ノイズの除去後の放射線画像(図6、(3)のグラフ参照)は、ノイズの影響を元々受けていない放射線画像(図6、(1)のグラフ参照)と比べて、人体のエッジ部分が広がって(グラフの変化が緩やかになって)いる。そのため、ノイズの除去量が多いと、粒状性が悪く(粗く)、ROI等の人体組織がぼけた画像となることがある。なお、DXA画像が、粒状性が悪い(粗い)場合や、ROI等の人体組織の画像がぼけている場合でも、骨密度の導出に与える影響は無視できる。
 このように、ES画像とDXA画像とでは、望まれる画像の画質(本実施形態では、ノイズ量)が異なる。また、上述したように、第2放射線検出器20Bにより撮影された第2放射線画像は、第1放射線検出器20Aにより撮影された第1放射線画像よりもノイズの影響を受けやすい。そのため、本実施形態のコンソール18の制御部80は、第2放射線画像に対して、ES画像の生成を行う場合及び骨密度の導出を行う場合の各々に適したノイズ除去処理を補正処理として行う。
 次に、本実施形態の放射線画像撮影システム10の作用を説明する。なお、図7は、コンソール18の制御部80により実行される全体撮影処理の流れの一例を示すフローチャートである。具体的には、制御部80のCPU80Aによって全体撮影処理プログラムが実行されることにより、図7に示した全体撮影処理が実行される。なお全体撮影処理プログラムが本開示の技術の画像処理プログラムの一例である。
 なお、本実施形態では、図7に示した全体撮影処理は、コンソール18の制御部80が、ユーザにより操作部90を介して被検体Wの氏名、撮影部位、及び放射線Rの曝射条件等を含む撮影メニューを取得した場合に実行される。制御部80は、RIS等の外部のシステムから撮影メニューを取得してもよいし、操作部90を介してユーザが入力した撮影メニューを取得してもよい。
 図7のステップS100でコンソール18の制御部80は、撮影メニューに含まれる情報を放射線画像撮影装置16に通信部92を介して送信し、かつ放射線Rの曝射条件を放射線照射装置12に通信部92を介して送信する。そして、制御部80は、放射線Rの曝射開始の指示を放射線画像撮影装置16及び放射線照射装置12に通信部92を介して送信する。放射線照射装置12は、コンソール18から送信された曝射条件及び曝射開始の指示を受信すると、受信した曝射条件に従って放射線Rの曝射を開始する。なお、放射線照射装置12が照射ボタンを備えている場合は、放射線照射装置12は、コンソール18から送信された曝射条件及び曝射開始の指示を受信し、かつ照射ボタンが押圧操作された場合に、受信した曝射条件に従って放射線Rの曝射を開始する。
 放射線画像撮影装置16では、コンソール18から送信された撮影メニューに含まれる情報に従って、第1放射線検出器20Aにより第1放射線画像を撮影し、第2放射線検出器20Bにより第2放射線画像を撮影する。放射線画像撮影装置16では、制御部58A、58Bが、各々撮影された第1放射線画像を示す第1放射線画像データ及び第2放射線画像を示す第2放射線画像データに対して、オフセット補正及びゲイン補正等の各種補正を行い、各種補正が行われた第1放射線画像データ及び第2放射線画像データを記憶部64に記憶させる。
 次のステップS102で制御部80は、放射線画像撮影装置16における放射線画像の撮影が終了したか否かを判定する。放射線画像の撮影が終了したか否かの判定方法は特に限定されず、例えば、放射線画像撮影装置16の制御部58A、58Bの各々が、通信部66を介して撮影が終了したことを表す終了情報をコンソール18に送信する場合、コンソール18の制御部80は、終了情報を受信した場合に、放射線画像撮影装置16における撮影が終了したと判定する。また、例えば、制御部58A、58Bの各々が、通信部66を介して撮影終了後に第1放射線画像データ及び第2放射線画像データをコンソール18に送信する場合、制御部80は、第1放射線画像データ及び第2放射線画像データを受信した場合に、放射線画像撮影装置16における撮影が終了したと判定する。なお、コンソール18は、第1放射線画像データ及び第2放射線画像データを受信した場合、受信した第1放射線画像データ及び第2放射線画像データを記憶部86に記憶させる。
 制御部80は、放射線画像撮影装置16における撮影が終了するまで否定判定となり待機状態となる。一方、放射線画像撮影装置16における撮影が終了した場合、制御部80は、肯定判定となりステップS104へ移行する。
 ステップS104で制御部80は、図8に示す画像生成処理を実行した後、本全体撮影処理を終了する。
 次に、全体撮影処理(図7参照)のステップS104の処理によって実行される画像生成処理について、図8を参照して説明する。
 図8のステップS150でコンソール18の制御部80は、ユーザの診断目的を取得する。制御部80が診断目的を取得する方法は特に限定されず、撮影メニューに診断目的が含まれる場合は撮影メニューから診断目的を取得してもよいし、操作部90を介してユーザが入力した診断目的を取得してもよい。なお、本実施形態のコンソール18では、診断目的と、必要とされる放射線画像の種類または骨密度の導出との対応関係を表す情報が、予め記憶部86に記憶されている。例えば、診断目的が「骨折」の場合、骨密度の導出が対応付けられている。なお、本実施形態の放射線画像撮影システム10では、骨密度の導出に付随してES画像の生成も行う。また例えば、診断目的が「骨に関する腫瘤」の場合、放射線画像の種類としてES画像が対応付けられている。また例えば、診断目的が、「腹部の腫瘤」等の場合、放射線画像の種類として一般画像が対応付けられている。なお、本実施形態において「一般画像」とは、ES画像以外の医師が読影を行う診断用画像であり、いわゆる一般撮影により撮影された放射線画像である。
 次のステップS152で制御部80は、一般画像を生成するか否かを判定する。制御部80は、ステップS150で取得した診断目的に一般画像の生成が対応付けられている場合、肯定判定となりステップS154へ移行する。ステップS154で制御部80は、第1放射線画像データを記憶部86から取得する。
 次のステップS156で制御部80は、取得した第1放射線画像データに対して補正処理を行って一般画像を生成し、一旦、記憶部86に記憶させた後、ステップS166へ移行する。なお、本ステップにおいて行う補正処理は、ES画像を生成する場合に行う第1補正処理(詳細後述)と同一である。なお、上記補正処理(第1補正処理)に加えて、その他の画像処理及びノイズ等の補正処理を行ってもよい。画像処理としては、例えば、ユーザの指示に応じて画像の濃度及び輝度等を調整する画像処理を行ってもよい。
 一方、診断目的に骨密度の導出またはES画像の生成が対応付けられて言う場合、ステップS152で否定判定となり、ステップS158へ移行する。ステップS158で制御部80は、第1放射線画像データ及び第2放射線画像データを記憶部86から取得する。
 ステップS160で制御部80は、図9に示したES画像生成処理を実行する。図9に示したステップS200で制御部80は、第1放射線画像データ及び第2放射線画像データの各々に対して第1補正処理を行う。
 本実施形態において「第1補正処理」とは、補正後の放射線画像の粒状性が良い(細かい)状態で、人体組織のエッジを強調し、また、ムラを除去する補正を行う処理である。すなわち、第1補正処理は、医師の診断を行い易く(ROI等を見易く)するための補正処理である。なお、ムラの除去を強く行う(除去するノイズ量を多くする)場合、被検体Wの皮膚等、ムラがある画像の人体組織まで除去してしまう場合がある。そのため、本実施形態では、第1補正処理により除去されるノイズ量は、少なくとも、詳細を後述する第2補正処理により除去されるノイズ量よりも少ない。なお、第1補正処理を行う上で必要となる具体的なパラメータ等は、放射線画像撮影装置16の実機を用いた実験等により、撮影部位等に応じて予め定めておけばよい。
 次のステップS202で制御部80は、上記ステップS200で第1補正処理が行われた第1放射線画像データ及び第2放射線画像データを用いて、上述した方法によりES画像データを生成して記憶部86に記憶させた後、本ES画像生成処理を終了し、画像生成処理のステップS162へ移行する。
 ステップS162で制御部80は、診断目的に骨密度の導出が対応付けられているか否かを判定する。骨密度の導出が対応付けられていない場合、否定判定となり、ステップS166へ移行する。一方、骨密度の導出が対応付けられている場合、ステップS162の判定が肯定判定となりステップS164へ移行する。
 ステップS164で制御部80は、図10に示した骨密度導出処理を実行する。図10に示したステップS230で制御部80は、ES画像生成処理(図9参照)により生成されたES画像データにより示されるES画像における骨部領域を決定する。本実施形態では、例えば、制御部80は、撮影メニューに含まれる撮影部位に基づいて、おおよその骨部領域の範囲を推定する。そして、制御部80は、推定した範囲内において、周辺画素の微分値が所定値以上の画素を、骨部領域のエッジ(端部)を構成する画素として検出することで、骨部領域を決定する。
 一例として図11に示すように、本ステップS230の処理により、制御部80は、骨部領域BのエッジEを検出し、エッジE内の領域を骨部領域Bと決定する。図11では、一例として、被検体Wの上半身の背骨部分を撮影した場合のES画像を示している。
 なお、骨部領域Bの決定方法は上記の例に限定されない。例えば、制御部80は、ES画像データにより示されるES画像を表示部88に表示する。ユーザは表示部88に表示されたES画像に対して、操作部90を介して骨部領域BのエッジEを指定する。そして、制御部80は、ユーザにより指定されたエッジE内の領域を骨部領域Bと決定してもよい。
 また、制御部80は、ES画像と、ステップS230で決定されたエッジEとを重畳させた画像を表示部88に表示してもよい。この場合、ユーザは、表示部88に表示されたエッジEを修正する必要がある場合は、操作部90を介してエッジEの位置を修正する。そして、制御部80は、ユーザにより修正されたエッジE内の領域を骨部領域Bと決定してもよい。
 次のステップS232で、制御部80は、ES画像データにより示されるES画像における軟部領域を決定する。本実施形態では、例えば、制御部80は、エッジEから所定の方向に対して所定の画素数を空けた位置の画素を含む所定の面積の領域であって、骨部領域Bを除く領域を軟部領域と決定する。一例として図11に示すように、本ステップS232の処理により、制御部80は、複数(図11に示す例では6つ)の軟部領域Sを決定する。
 なお、上記所定の方向及び所定の画素数は、放射線画像撮影装置16の実機を用いた実験等により、撮影部位等に応じて予め定めておけばよい。また、上記所定の面積は、予め定めておいてもよいし、ユーザに指定させてもよい。また、例えば、制御部80は、ES画像データにおける最小の画素値(骨部領域Bを除いた被検体Wの体厚が最も厚い位置に対応する画素値)を下限値とした所定の範囲内の画素値の画素を軟部領域Sと決定してもよい。また、ステップS232で決定する軟部領域Sの数は、図11に示した例の数に限定されないことは言うまでもない。
 次のステップS234で制御部80は、記憶部86から取得した第1放射線画像データに対して上述した第1補正処理を行う。
 次のステップS236で制御部80は、記憶部86から取得した第2放射線画像データに対して、第2補正処理を行う。本実施形態において「第2補正処理」とは、画像(本ステップでは第2放射線画像)の撮影毎のばらつきを許容範囲内とする補正を行う処理である。本実施形態では、一例として、制御部80は、第2放射線画像データの全周波数帯域に対し、画像のムラを除去する補正を行う。具体的には、制御部80は、移動平均フィルタ処理、メディアンフィルタ処理、及びローパスフィルタ処理等を行うことで、画像平均値に対するゆらぎを抑制することにより、撮影毎のばらつきを許容範囲内とする。なお、第2補正処理を行う上で必要となる具体的なパラメータ等は、放射線画像撮影装置16の実機を用いた実験等により、予め定めておけばよい。
 次のステップS238で制御部80は、上記ステップS234で第1補正処理が行われた第1放射線画像データと、上記ステップS236で第2補正処理が行われた第2放射線画像データとを用いて、DXA画像を生成する。本実施形態では、制御部80は、上述したES画像の生成と同様に、上記ステップS234で第1補正処理が行われた第1放射線画像データに所定の係数を乗算して得られた画像データを、上記ステップS236で第2補正処理が行われた第2放射線画像データに所定の係数を乗算して得られた画像データから対応する画素毎に減算する。減算を行うことにより、制御部80は、軟部組織を除去し、骨部組織を強調したDXA画像を示すDXA画像データを生成する。なお、制御部80がDXA画像の生成において用いる所定の係数と、ES画像の生成において用いる所定の係数は、同じである場合もあれば異なる場合もある。各画像の生成において用いる所定の係数は、放射線画像撮影装置16の実機を用いた実験等により、予め定めておけばよい。
 次のステップS240で制御部80は、DXA画像データにおける骨部領域Bの画素値を算出する。制御部80は、まず、上記ステップS230においてES画像データから決定した骨部領域Bに対応する、骨部領域BをDXA画像データから検出する。そして制御部80は、検出した骨部領域Bの画素値の平均値A1をDXA画像データにおける骨部領域Bの画素値の平均値として算出する。ここで、ES画像データの骨部領域Bに対応するDXA画像データの骨部領域Bの決定方法は、特に限定されない。例えば、ES画像の生成方法において上述した、第1放射線画像データと第2放射線画像データとの対応する画素の決定方法と同様にしてもよい。
 次のステップS242で制御部80は、DXA画像データにおける全ての軟部領域Sの画素値を算出する。制御部80は、まず、上記ステップS232においてES画像データから決定した全ての軟部領域Sに対応する、軟部領域SをDXA画像データから検出する。そして、制御部80は、検出した全ての軟部領域Sの画素値の平均値A2をDXA画像データにおける全ての軟部領域Sの画素値の平均値として算出する。ここで、本実施形態では、一例として、制御部80は、エッジEから遠い軟部領域Sほど画素値が小さくなる重み付けを行って、平均値A2を算出する。なお、ES画像データの軟部領域に対応するDXA画像データの軟部領域Sの決定方法は、特に限定されず、例えば、上記ステップS240における、ES画像データの骨部領域Bに対応するDXA画像データの骨部領域Bの決定方法と同様にしてもよい。
 次のステップS244で、制御部80は、被検体Wの撮影部位の骨密度を導出した後、本骨密度導出処理を終了する。本実施形態では、一例として、制御部80は、ステップS240で算出された平均値A1とステップS242で算出された平均値A2との差分を算出する。また、制御部80は、算出した差分に対し、画素値を骨量[g]に変換する変換係数を乗算することにより、骨量を算出する。そして、制御部80は、算出した骨量を、骨部領域Bの面積[cm]で除算することにより、骨密度[g/cm]を算出する。なお、上記変換係数は、放射線画像撮影装置16の実機を用いた実験等により、撮影部位等に応じて予め定めておけばよい。
 このようにして画像生成処理のステップS164の骨密度導出処理が終了すると、次のステップS166で制御部80は、処理結果を表示部88に表示させた後、本画像生成処理を終了する。本実施形態の放射線画像撮影システム10では、例えば、骨密度導出処理を行った場合、制御部80は、処理結果として、ステップS160のES画像生成処理により生成したES画像と、ステップS164の骨密度生成処理により導出した骨密度とを、表示部88に表示させる。また、ステップS160のES画像生成処理のみを行った場合、制御部80は、生成したES画像を表示部88に表示させる。また、ステップS156の一般画像生成処理を行った場合、制御部80は、生成した一般画像を表示部88に表示させる。なお、表示部88に表示させる処理結果はこれらに限らず、例えば、ステップS164の骨密度導出処理を行った場合、制御部80は、導出した骨密度のみを表示部88に表示させてもよいし、DXA画像を表示部88に表示させてもよいし、ES画像及びDXA画像の何れかを表示させるか否かをユーザの選択に応じて決定してもよい。
 このように、本実施形態の放射線画像撮影システム10は、照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第1放射線検出器20Aと、第1放射線検出器20Aの放射線Rが透過されて出射される側に積層されて配置され、かつ照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第2放射線検出器20Bと、を備えた放射線画像撮影装置16を備える。また、放射線画像撮影システム10のコンソール18の制御部80は、第2放射線検出器20Bにより撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、第1補正処理が行われた第2放射線画像と、第1放射線検出器20Aにより撮影された第1放射線画像と、を用いて診断用画像を生成する。また、制御部80は、第2放射線検出器20Bにより撮影された第2放射線画像に定量値導出用の第2補正処理を行い、第2補正処理が行われた第2放射線画像と、第1放射線検出器20Aにより撮影された第1放射線画像と、を用いて骨密度を導出する。
 なお、制御部80が行った第1補正処理及び第2補正処理は、本実施形態に限定されない。例えば、第2補正処理としては、いわゆる、オプティカルブラック補正を行ってもよい。オプティカルブラック補正を行う場合、第2放射線検出器20Bに、オプティカルブラック補正に用いるオプティカルブラック領域を設ける。例えば、図12に示した一例では、平面図に示すように、第2放射線検出器20Bの放射線Rが入射される面に放射線遮蔽物41を第2放射線検出器20Bの一辺に沿った領域にオプティカルブラック領域40を設けてもよい。図12に示した一例では、側面図に示すように、放射線遮蔽物41が設けられた領域をずらした状態で第1放射線検出器20Aと第2放射線検出器20Bとが積層されているが、放射線遮蔽物41が設けられた領域をずらすことなく第1放射線検出器20Aと第2放射線検出器20Bとを積層してもよい。なお、図12に示した側面図では、図示を簡略化するため放射線制限部材24の図示を省略している。
 また、例えば、図13に示した一例では、図12に示した一例で放射線遮蔽物41を設けた領域に対応する第2放射線検出器20Bの領域には、シンチレータ22Bが設けられていない状態を示している。図13に示した一例では、シンチレータ22Bが設けられていない領域がオプティカルブラック領域40として機能する。図12、12のいずれの場合においても、第2放射線検出器20Bのオプティカルブラック領域40においては、放射線RがTFT基板30Bに入射しない。そのため、第2放射線検出器20Bにより撮影された第2放射線画像のオプティカルブラック領域40部分には、被検体Wの画像が撮像されていない状態となる。
 コンソール18の制御部80は、予めオプティカルブラック領域40の位置等を記憶部86に記憶しておき、第2補正を行う場合に、第2放射線画像データに対して、第2放射線画像のオプティカルブラック領域40の画像データを用いて、オプティカルブラック領域40以外の領域の画像データの補正を行うことにより、いわゆるスジムラを除去する。なお、制御部80は、一般画像を生成する場合、本実施形態において上述したのと同様に、第1放射線検出器20Aにより撮影された第1放射線画像から一般画像を生成する。一方、制御部80は、ES画像及びDXA画像を生成する場合、第2放射線画像データのオプティカルブラック領域40以外の領域の画像データと、第2放射線画像におけるオプティカルブラック領域40以外の領域に対応する第1放射線画像データの領域の画像データと、を用いてES画像及びDXA画像を生成する。
 なお、オプティカルブラック補正を行う方法は、上述の方法に限定されない。また、オプティカルブラック領域40を設ける位置及び大きさも図12、13に示した例に限定されない。例えば、図12、13で示したオプティカルブラック領域40が設けられている第2放射線検出器20Bの辺に代えて、この辺と隣接する辺に、オプティカルブラック領域40を設けてもよいし、第2放射線検出器20Bの複数の辺にオプティカルブラック領域40を設けてもよい。なお、オプティカルブラック領域40を設ける位置が多くなるほど、また、オプティカルブラック領域40全体の大きさが大きくなるほど、オプティカルブラック補正による補正精度は向上するが、第2放射線検出器20Bにおいて、被検体Wの画像が撮像される領域が小さくなる。そのため、オプティカルブラック領域40を設ける位置及び全体の大きさは、放射線画像撮影装置16の実機を用いた実験等により、撮影部位等に応じて定めておけばよい。
[第2実施形態]
 第1実施形態では、コンソール18が第1補正処理及び第2補正処理を行う場合について説明したが、本実施形態では、放射線画像撮影装置16が第1補正処理及び第2補正処理を行う場合について説明する。
 放射線画像撮影システム10、放射線画像撮影装置16、及びコンソール18の構成は第1実施形態(図1~4参照)と同様であるため、説明を省略する。
 また、本実施形態のコンソール18の制御部80において実行される全体撮影処理の流れも、第1実施形態において実行される全体撮影処理(図7参照)の流れと同様であるため、説明を省略する。
 本実施形態では、放射線画像撮影装置16の第1放射線検出器20A及び第2放射線検出器20Bにおけるオフセット補正に用いるオフセットデータを取得する動作が第1実施形態の放射線画像撮影装置16と異なっている。
 本実施形態の放射線画像撮影装置16の第1放射線検出器20A及び第2放射線検出器20Bにおけるオフセットデータを取得する動作について説明する。一般的に、オフセットデータには、ランダムノイズが重畳される場合があるため、オフセットデータを複数回、例えば、連続して取得し、複数回分のオフセットデータの平均値を用いてオフセット補正が行われる。複数回取得することにより、オフセットデータの取得に時間を要するため、一般的な放射線画像撮影装置や、第1実施形態の放射線画像撮影装置16では、放射線画像撮影装置、例えば、第1実施形態では、第1放射線検出器20A及び第2放射線検出器20Bに電源投入後、動作が安定した状態等において、放射線画像の撮影前に、事前に所定のタイミングでオフセットデータの取得が行われる。本実施形態の放射線画像撮影装置16においても、第1放射線検出器20A及び第2放射線検出器20Bにおけるオフセットデータを、このように、事前に所定回数(複数回)取得する。
 また、本実施形態の放射線画像撮影装置16では、コンソール18が全体撮影処理(図7参照)のステップS100の処理により送信した曝射開始指示を受信した場合、第2放射線検出器20Bにおけるオフセットデータをさらに、取得する。すなわち、放射線画像撮影装置16は、第2放射線検出器20Bにおける放射線画像の撮影直前に、第2放射線検出器20Bにおけるオフセットデータを取得する。この場合、放射線画像撮影装置16が曝射開始指示を受信してから放射線Rが第2放射線検出器20Bに照射されるまでの期間が短いため、オフセットデータは、1回または、少なくとも、事前に取得する場合よりも少ない回数取得する。なお、この場合のオフセットデータの取得タイミングは、第2放射線検出器20Bに放射線Rが照射されるタイミングに、近いほど好ましい。
 また、本実施形態では、制御部58Aが画像メモリ56Aに記憶されている画像データに対して第1補正処理を行い、制御部58Bが画像メモリ56Bに記憶されている画像データに対して第1補正処理及び第2補正処理を行う点で第1実施形態の放射線画像撮影装置16と異なっている。
 本実施形態の放射線画像撮影システム10では、上述したように、事前に取得されたオフセットデータの平均値を用いて、画像データを補正する処理を第1補正処理という。また、本実施形態の放射線画像撮影システム10では、上述したように、放射線画像の撮影直前に取得されたオフセットデータを用いて、画像データを補正する処理を第2補正処理という。
 第1補正処理では、事前に取得した複数のオフセットデータの平均値であるため、ランダムノイズの影響が低減されたオフセットデータ(平均値)を用いて画像データの補正を行う。そのため、第1補正処理により得られた第1放射線画像及び第2放射線画像Aは、粒状性が良い(細かい)画像となる。
 しかしながら事前にオフセットデータを取得した場合、実際に放射線画像を撮影するまでに時間が経過することにより、環境の変化、及び放射線画像撮影装置16の使用状況の変化等に応じて、放射線画像撮影装置16の温度等が変化する場合がある。この場合、温度変化の影響により信号が変動し、オフセットデータが適切でなくなる場合がある。これに対して、第2補正処理では、撮影直前に取得したオフセットデータを用いて画像データの補正を行う。実際の放射線画像の撮影時の温度とオフセットデータ取得時の温度とが近似しているため、第2補正処理により得られた第2放射線画像Bは、第1補正処理により得られた第2放射線画像A(第1放射線画像)よりも多くのノイズが除去される。なお、取得するオフセットデータの数は、上述したように第2補正処理の方が第1補正処理よりも少ないため、第2補正処理により得られた第2放射線画像Bは、第1補正処理により得られた第2放射線画像A(第1放射線画像)よりも、粒状性が悪い(粗い)画像となるが、第1実施形態において上述したように、骨密度の導出に与える影響は無視できる。
 制御部58Aは、第1放射線検出器20Aから読み出された画像データが画像メモリ56Aに記憶された後、図14に示した第1放射線画像生成処理を実行する。なお、図14に示した第1放射線画像生成処理プログラムが、予めメモリ62に記憶されており、CPU60が第1放射線画像生成処理プログラムを実行することにより、図14に示した第1放射線画像生成処理が実行される。
 図14に示したように、ステップS300で制御部58Aは、画像メモリ56Aから画像データを取得する。
 次のステップS302で制御部58Aは、取得した画像データに対して第1補正処理を行い、第1放射線画像の画像データを生成して制御部58Aに記憶させた後、本第1放射線画像生成処理を終了する。
 一方、制御部58Bは、第2放射線検出器20Bから読み出された画像データが画像メモリ56Bに記憶された後、図15に示した第2放射線画像生成処理を実行する。なお、図15に示した第2放射線画像生成処理プログラムが、予めメモリ62に記憶されており、CPU60が第1放射線画像生成処理プログラムを実行することにより、図15に示した第2放射線画像生成処理が実行される。
 図15に示したように、ステップS330で制御部58Bは、画像メモリ56Bから画像データを取得する。
 次のステップS332で制御部58Bは、取得した画像データに対して第1補正処理を行い、第2放射線画像Aの画像データを生成して制御部58Bに記憶させる。
 さらに、次のステップS234で制御部58Bは、取得した画像データに対して第2補正処理を行い、第2放射線画像Bの画像データを生成して制御部58Bに記憶させた後、本第2放射線画像生成処理を終了する。このように、本実施形態では、2種類の第2放射線画像(第2放射線画像A、B)の画像データ(以下、「第2放射線画像データA」及び「第2放射線画像データB」という。)が生成される。第2放射線画像A、Bは、通信部66を介して放射線画像撮影装置16からコンソール18へ送信される。
 コンソール18の制御部80における、画像生成処理の流れは、第1実施形態における画像生成処理(図8参照)のステップS158において、第2放射線画像の画像データとして、第2放射線画像データA、Bを取得する以外は同様である。
 第2放射線画像Aの第2放射線画像データAは、一般画像の生成及びES画像の生成に用いられる。第2放射線画像Bの第2放射線画像データBは、骨密度の導出(DXA画像の生成)に用いられる。
 本実施形態のコンソール18の制御部80で実行されるES画像生成処理は、図16に示すように、第1実施形態のES画像生成処理(図9参照)のステップS200の処理を実行しない点で異なっている。
 なお、本実施形態のES画像生成処理のステップS202では、制御部80は、記憶部86から取得した第1放射線画像データ、及び記憶部86から取得した第2放射線画像データAを用いて、上述した方法によりES画像データを生成する。
 一方、本実施形態のコンソール18の制御部80で実行される骨密度導出処理は、図17に示すように、第1実施形態の骨密度導出処理(図10参照)のステップS234、S236を実行しない点で異なっている。
 なお、本実施形態の骨密度導出処理のステップS238で制御部80は、記憶部86から取得した第1放射線画像データ、及び記憶部86から取得した第2放射線画像データBを用いて、DXA画像を生成する。
 このように、本実施形態の放射線画像撮影システム10は、照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第1放射線検出器20Aと、第1放射線検出器20Aの放射線Rが透過されて出射される側に積層されて配置され、かつ照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第2放射線検出器20Bと、を備えた放射線画像撮影装置16を備える。また、放射線画像撮影装置16の制御部58Aは、診断用画像を生成する場合、第1放射線検出器20Aの複数の画素32から電荷を読み出す制御と、第2放射線検出器20Bの複数の画素32から電荷を読み出し、読み出した電荷により得られる画像データに対して診断用画像生成用の第1補正処理を行わせる制御と、を含む第1制御を行う。また、放射線画像撮影装置16の制御部58Aは、骨密度の導出を行う場合、第1放射線検出器20Aの複数の画素32から電荷を読み出す制御と、第2放射線検出器20Bの複数の画素32から電荷を読み出し、読み出した電荷により得られる画像データに対して定量値導出用の第2補正処理を行わせる制御と、を含む第2制御を行う。そして、コンソール18の制御部80は、第1制御により得られた第1放射線画像及び第2放射線画像を用いて診断用画像を生成する。また、制御部80は、第2制御により得られた第1放射線画像及び第2放射線画像を用いて骨密度を導出する。
 なお、本実施形態では、制御部58A、58Bが第1補正処理及び第2補正処理の少なくとも一方を行う場合について説明したが、制御部58A、58Bは、その他の補正処理及び画像処理等をさらに行ってもよい。
 また、本実施形態の放射線画像撮影システム10では、放射線画像撮影装置16が、オフセット処理である第1補正処理及び第2補正処理を行ったが、これら第1補正処理及び第2補正処理をコンソール18の制御部80で行ってもよい。この場合、放射線画像撮影装置16からコンソール18へ、オフセット処理が行われていない、第1放射線画像データを生成するための画像データ及び第2放射線画像データA、Bを生成するための画像データと、2種類のオフセットデータ(事前に取得したオフセットデータの平均値、及び撮影直前に取得したオフセットデータ)と、を送信する。これらの画像データ及び2種類のオフセットデータを受信した制御部80は、上述した第1放射線画像生成処理(図14参照)及び第2放射線画像生成処理(図15参照)と同様の処理を行い、第1放射線画像及び第2放射線画像A、Bを生成すればよい。
 また、本実施形態と第1実施形態とを組み合わせてもよい。すなわち、放射線画像撮影装置16が、オフセット処理である第1補正処理及び第2補正処理を行った後、コンソール18が、ムラやアーチファクトを除去する第1補正処理及び第2補正処理を行ってもよい。
 なお、放射線画像撮影装置16が行う第1補正処理及び第2補正処理は、本実施形態に限定されない。例えば、放射線画像撮影装置16の信号処理部54Bの増幅回路の増幅率、(例えば、増幅回路がアンプを含む場合、アンプのゲイン)が異なる処理を第1補正処理及び第2補正処理としてもよい。アンプのゲインを大きくするほど、ダイナミックレンジが小さくなるが、信号処理部54BのA/D変換器により変換された後の工程で発生するノイズが与える影響が小さくなる。そのため、放射線画像撮影装置16の制御部58Bは、診断用画像(一般画像及びES画像)を生成する場合、アンプのゲインを第1ゲインとして画像データを表す電気信号を増幅する第1補正処理を行い、骨密度の導出を行う場合、アンプのゲインを第1ゲインよりも大きい第2ゲインとして画像データを表す電気信号を増幅する第2補正処理を行えばよい。この場合、制御部58Aは、診断用画像を生成する場合、及び骨密度の導出を行う場合、共に、第1補正処理を行えばよい。なお、この場合、コンソール18の制御部80は、骨密度の導出において、骨部領域B及び軟部領域Sを、DXA画像から検出する。
 また、例えば、第2放射線検出器20Bの画素32から電荷を読み出す処理において、画素32毎に電荷を読み出す処理を第1補正処理とし、複数の画素32からまとめて電荷を読み出す処理を第2補正処理としてもよい。複数の画素32から電荷をまとめて読み出す場合、画像の解像度が低下することになるが、画像データに重畳される電気的ノイズが抑制される。そのため、放射線画像撮影装置16の制御部58Bは、診断用画像(一般画像及びES画像)を生成する場合、第2放射線検出器20Bの画素32毎に電荷を読み出す第1補正処理を行い、骨密度の導出を行う場合、第2放射線検出器20Bの複数の画素32からまとめて電荷を読み出す第2補正処理を行えばよい。なお、複数の画素32から電荷をまとめて読み出す方法としては、2×2=4個の画素32からまとめて電荷を読み出す場合を具体例とすると、制御部58Bは、ゲート配線ドライバ52Bにより、隣接する2本のゲート配線34に同時とみなすタイイングで薄膜トランジスタ32Cをオン状態にさせる制御信号を出力させ、隣接する2本のデータ配線36を流れる電気信号を加算すればよい。
 なお、コンソール18の制御部80は、各画素32から電荷を読み出して生成した第1放射線画像の画像データと、複数の画素32からまとめて電荷を読み出して生成した第2放射線画像の画像データとを用いてES画像を生成してもよい。しかしながら、複数の画素32からまとめて電荷を読み出したことにより解像度が低下するため、高解像度のES画像を所望の場合は、複数の画素32からまとめて電荷を読み出さないことが好ましい。
 以上説明したように、上記各実施形態の放射線画像撮影システム10の放射線画像撮影装置16は、照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第1放射線検出器20Aと、第1放射線検出器20Aの放射線Rが透過されて出射される側に積層されて配置され、かつ照射された放射線Rに応じた電荷を蓄積する複数の画素32を含む第2放射線検出器20Bと、を備える。
 また、放射線画像撮影システム10では、第2放射線検出器20Bにより撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、また、骨密度の導出用の第2補正処理を行う。コンソール18の制御部80は、第1放射線画像、及び第1補正処理が行われた第2放射線画像を用いて診断用画像を生成し、また、第1放射線画像、及び第2補正処理が行われた第2放射線画像を用いて骨密度を導出する。
 従って、上記各実施形態の放射線画像撮影システム10によれば、高画質の診断用画像と、高精度な骨塩定量値及び骨密度の少なくとも一方と、を得ることができる。
 なお、上記各実施形態では、第1補正処理と第2補正処理とで除去するノイズの量が異なる場合、より具体的には、第2補正処理の方が除去するノイズの量が多い場合について説明したが、これに限らず、例えば、第1補正処理と第2補正処理とで除去するノイズの種類を異ならせても良い。第2補正処理では、骨密度の導出に影響を与えないノイズ、例えば、撮影毎に変化せず、画像に一様に重畳するノイズならば除去しなくてもよい。
 なお、上記各実施形態では、第1放射線検出器20A及び第2放射線検出器20Bの双方に、放射線を一旦光に変換し、変換した光を電荷に変換する間接変換型の放射線検出器を適用した場合について説明したが、これに限定されない。例えば、第1放射線検出器20A及び第2放射線検出器20Bの少なくとも一方に、放射線を電荷へ直接変換する直接変換型の放射線検出器を適用する形態としてもよい。
 また、上記各実施形態では、第1放射線検出器20A及び第2放射線検出器20Bの双方に、TFT基板30A、30B側から放射線Rが入射される表面読取方式の放射線検出器を適用した場合について説明したが、これに限定されない。例えば、第1放射線検出器20A及び第2放射線検出器20Bの少なくとも一方に、シンチレータ22A、22B側から放射線Rが入射される裏面読取方式(所謂PSS(Penetration Side Sampling)方式)の放射線検出器を適用する形態としてもよい。
 また、上記実施の形態では、2つの制御部(制御部58A、58B)により放射線画像撮影装置16の制御を実現する場合について説明したが、これに限定されない。例えば1つの制御部により放射線画像撮影装置16の制御を実現する形態としてもよい。
 また、上記各実施形態では、全体撮影処理プログラムがROM80Bに予め記憶(インストール)されている態様を説明したが、これに限定されない。全体撮影処理プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、全体撮影処理プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 2016年3月28日出願の日本国特許出願2016-063952号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 放射線画像撮影システム
12 放射線照射装置
14 放射線源
16 放射線画像撮影装置
18 コンソール
20A 第1放射線検出器
20B 第2放射線検出器
21 筐体
22A、22B シンチレータ
24 放射線制限部材
26A、26B 制御基板
28 ケース
30A、30B TFT基板
32 画素
32A センサ部
32B コンデンサ
32C 薄膜トランジスタ
34 ゲート配線
36 データ配線
40 オプティカルブラック領域
41 放射線遮蔽物
52A、52B ゲート配線ドライバ
54A、54B 信号処理部
56A、56B 画像メモリ
58A、58B、80 制御部
60、80A CPU
62 メモリ
64、86 記憶部
66、92 通信部
70 電源部
80B ROM
80C RAM
88 表示部
90 操作部
94 バス
B 骨部領域
E エッジ
L1 実線
L2 実線
R 放射線
S 軟部領域
W 被検体

Claims (13)

  1.  照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置と、
     前記第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、前記第1補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成する生成部と、
     前記第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、前記第2補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、
     を備えた放射線画像撮影システム。
  2.  照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置と、
     診断用画像を生成する場合、前記第1放射線検出器の複数の画素から電荷を読み出す制御と、前記第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して診断用画像生成用の第1補正処理を行わせる制御と、を含む第1制御を行い、定量値の導出を行う場合、前記第1放射線検出器の複数の画素から電荷を読み出す制御と、前記第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して定量値導出用の第2補正処理を行わせる制御と、を含む第2制御を行う制御部と、
     前記第1制御により得られた第1放射線画像及び第2放射線画像を用いて診断用画像を生成する生成部と、
     前記第2制御により得られた第1放射線画像及び第2放射線画像を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、
     を備えた放射線画像撮影システム。
  3.  前記第2補正処理は、除去するノイズ量が前記第1補正処理により除去されるノイズ量よりも多い補正処理、及び処理結果に許容されるノイズ量が前記第1補正処理の処理結果に許容されるノイズ量よりも少ない補正処理の少なくとも一方である、
     請求項1または請求項2に記載の放射線画像撮影システム。
  4.  前記第1補正処理は、前記診断用画像において、視認可能なアーチファクトを除去する補正処理である、
     請求項1から請求項3のいずれか1項に記載の放射線画像撮影システム。
  5.  前記第2補正処理は、補正後の前記第2放射線画像における軟部組織の領域及び骨部組織の領域の各々において画素値の平均値に対する撮影毎のばらつきを抑制する補正処理である、
     請求項1から請求項4のいずれか1項に記載の放射線画像撮影システム。
  6.  前記第1放射線検出器と前記第2放射線検出器との間に、放射線の透過を制限する放射線制限部材をさらに備えた、
     請求項1から請求項5の何れか1項に記載の放射線画像撮影システム。
  7.  前記第1放射線検出器及び前記第2放射線検出器の各々は、放射線が照射されることにより光を発する発光層を備え、
     前記第1放射線検出器及び前記第2放射線検出器の各々の前記複数の画素は、前記光を受光することにより電荷が発生して蓄積され、
     前記第1放射線検出器の発光層と、前記第2放射線検出器の発光層とは、発光層の組成が異なる、
     請求項1から請求項6の何れか1項に記載の放射線画像撮影システム。
  8.  前記第1放射線検出器及び前記第2放射線検出器の各々は、放射線が照射されることにより光を発する発光層、及び前記光を受光することにより電荷が発生して蓄積される前記複数の画素が設けられた基板を備え、
     前記基板は、前記発光層の放射線の入射側に積層されている、
     請求項1から請求項6の何れか1項に記載の放射線画像撮影システム。
  9.  前記第1放射線検出器の発光層は、CsIを含んで構成され、
     前記第2放射線検出器の発光層は、GOSを含んで構成されている、
     請求項7または請求項8に記載の放射線画像撮影システム。
  10.  照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得する取得部と、
     前記第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、前記第1補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成する生成部と、
     前記第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、前記第2補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する導出部と、
     を備えた画像処理装置。
  11.  照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、
     前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、
     診断用画像を生成する場合、前記第1放射線検出器の複数の画素から電荷を読み出す制御と、前記第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して診断用画像生成用の第1補正処理を行わせる制御と、を含む第1制御を行い、定量値の導出を行う場合、前記第1放射線検出器の複数の画素から電荷を読み出す制御と、前記第2放射線検出器の複数の画素から電荷を読み出し、読み出した電荷により得られる画像データに対して定量値導出用の第2補正処理を行わせる制御と、を含む第2制御を行う制御部と、
     を備えた放射線画像撮影装置。
  12.  取得部により、照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得し、
     生成部により、前記第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、前記第1補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成し、
     導出部により、前記第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、前記第2補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する、
     処理を含む画像処理方法。
  13.  照射された放射線に応じた電荷を蓄積する複数の画素を含む第1放射線検出器と、前記第1放射線検出器の前記放射線が透過されて出射される側に積層されて配置され、かつ照射された放射線に応じた電荷を蓄積する複数の画素を含む第2放射線検出器と、を備えた放射線画像撮影装置から、第1放射線画像及び第2放射線画像を取得し、
     前記第2放射線検出器により撮影された第2放射線画像に診断用画像生成用の第1補正処理を行い、前記第1補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて診断用画像を生成し、
     前記第2放射線検出器により撮影された第2放射線画像に定量値導出用の第2補正処理を行い、前記第2補正処理が行われた第2放射線画像と、前記第1放射線検出器により撮影された第1放射線画像と、を用いて骨塩定量及び骨密度の少なくとも一方を導出する、
     ことを含む処理をコンピュータに実行させるための画像処理プログラム。
PCT/JP2017/006436 2016-03-28 2017-02-21 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム WO2017169312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780020058.4A CN108882900B (zh) 2016-03-28 2017-02-21 放射线图像摄影装置及***、图像处理装置及方法
JP2018508586A JP6510729B2 (ja) 2016-03-28 2017-02-21 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム
US16/129,797 US10765390B2 (en) 2016-03-28 2018-09-13 Radiography system, image processing apparatus, radiography apparatus, image processing method, and image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063952 2016-03-28
JP2016-063952 2016-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/129,797 Continuation US10765390B2 (en) 2016-03-28 2018-09-13 Radiography system, image processing apparatus, radiography apparatus, image processing method, and image processing program

Publications (1)

Publication Number Publication Date
WO2017169312A1 true WO2017169312A1 (ja) 2017-10-05

Family

ID=59963105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006436 WO2017169312A1 (ja) 2016-03-28 2017-02-21 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム

Country Status (4)

Country Link
US (1) US10765390B2 (ja)
JP (1) JP6510729B2 (ja)
CN (1) CN108882900B (ja)
WO (1) WO2017169312A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774376B2 (en) * 2019-12-26 2023-10-03 Canon Kabushiki Kaisha Power supply unit and radiation imaging apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189951A (ja) * 1992-12-25 1994-07-12 Hitachi Medical Corp 骨塩量測定装置
JPH10155115A (ja) * 1996-09-25 1998-06-09 Fuji Photo Film Co Ltd 骨部画像処理方法および装置
WO2013187150A1 (ja) * 2012-06-11 2013-12-19 コニカミノルタ株式会社 医用画像システム及び医用画像処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150394A (en) * 1989-12-05 1992-09-22 University Of Massachusetts Medical School Dual-energy system for quantitative radiographic imaging
US5910972A (en) 1996-09-25 1999-06-08 Fuji Photo Film Co., Ltd. Bone image processing method and apparatus
JP4585064B2 (ja) * 1999-11-01 2010-11-24 株式会社東芝 放射線診断装置
US8488736B2 (en) * 2006-09-19 2013-07-16 General Electric Company Stacked flat panel x-ray detector assembly and method of making same
US7724875B2 (en) * 2007-10-19 2010-05-25 General Electric Company Image guided acquisition of quantitative dual energy data
WO2010070554A1 (en) * 2008-12-17 2010-06-24 Koninklijke Philips Electronics N.V. X-ray examination apparatus and method
JP2010201157A (ja) * 2009-02-06 2010-09-16 Toshiba Corp 放射線診断装置、x線コンピュータ断層撮影装置および画像処理方法
CA2766485C (en) * 2009-07-16 2017-07-25 Karim S. Karim Multi-layer flat panel x-ray detector
US8165266B2 (en) 2009-09-10 2012-04-24 General Electric Company Transverse scanning bone densitometer and detector used in same
JP5844545B2 (ja) * 2010-05-31 2016-01-20 富士フイルム株式会社 放射線撮影装置
JP2012032645A (ja) * 2010-07-30 2012-02-16 Fujifilm Corp 放射線撮影装置及び放射線撮影システム
CN103892856B (zh) * 2012-12-31 2017-10-20 深圳先进技术研究院 一种获取人体骨密度值的方法及***
WO2017168849A1 (ja) * 2016-03-28 2017-10-05 富士フイルム株式会社 放射線画像撮影装置及び放射線画像撮影方法
JP6549535B2 (ja) * 2016-07-29 2019-07-24 富士フイルム株式会社 放射線画像撮影システム、画像処理方法、及び画像処理プログラム
JP6639353B2 (ja) * 2016-07-29 2020-02-05 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189951A (ja) * 1992-12-25 1994-07-12 Hitachi Medical Corp 骨塩量測定装置
JPH10155115A (ja) * 1996-09-25 1998-06-09 Fuji Photo Film Co Ltd 骨部画像処理方法および装置
WO2013187150A1 (ja) * 2012-06-11 2013-12-19 コニカミノルタ株式会社 医用画像システム及び医用画像処理装置

Also Published As

Publication number Publication date
US20190008472A1 (en) 2019-01-10
JP6510729B2 (ja) 2019-05-08
CN108882900A (zh) 2018-11-23
CN108882900B (zh) 2021-11-12
JPWO2017169312A1 (ja) 2018-08-09
US10765390B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
US10512440B2 (en) Radiography system, image processing method, and image processing program
US9753158B2 (en) Radiographic imaging apparatus, radiographic imaging system, and radiographic imaging method
JP5816316B2 (ja) 放射線画像検出装置およびその作動方法、並びに放射線撮影装置
JP6695232B2 (ja) 放射線画像撮影システム
US20180031715A1 (en) Radiography system, radiography method, and radiography program
US10345459B2 (en) Radiography apparatus and radiography method
JP6644027B2 (ja) 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
US10634799B2 (en) Radiography system, radiography method, and radiography program storage medium
JP6745755B2 (ja) 放射線画像撮影システム、放射線画像撮影方法、放射線画像撮影プログラム、及び体厚推定装置
WO2017169312A1 (ja) 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム
US10772596B2 (en) Image processing apparatus, radiography system, image processing method, and image processing program
US10653382B2 (en) Image processing apparatus, radiography system, image processing method, and image processing program
JP6893491B2 (ja) 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
US10987078B2 (en) Image processing apparatus, radiography system, image processing method, and image processing program
US11185303B2 (en) Image processing apparatus, radiography system, image processing method, and image processing program
US10709402B2 (en) Radiography system, radiography method, radiography program, and derivation apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773860

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773860

Country of ref document: EP

Kind code of ref document: A1