WO2017168939A1 - Glass, method for producing glass, and optical element - Google Patents

Glass, method for producing glass, and optical element Download PDF

Info

Publication number
WO2017168939A1
WO2017168939A1 PCT/JP2017/000867 JP2017000867W WO2017168939A1 WO 2017168939 A1 WO2017168939 A1 WO 2017168939A1 JP 2017000867 W JP2017000867 W JP 2017000867W WO 2017168939 A1 WO2017168939 A1 WO 2017168939A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
group
temperature
composition
glass material
Prior art date
Application number
PCT/JP2017/000867
Other languages
French (fr)
Japanese (ja)
Inventor
元 山中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017168939A1 publication Critical patent/WO2017168939A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to glass, a method for producing glass, and an optical element.
  • Chalcogenide glass containing is known.
  • chalcogenide glasses contain elements other than chalcogen elements, and typically contain germanium belonging to Group 14 of the periodic table.
  • the chalcogenide glass described in Patent Document 1 does not contain germanium, but instead contains a halogen element selected from the group consisting of chlorine, bromine and iodine belonging to Group 17 of the periodic table.
  • the chalcogenide glass described in Patent Document 2 contains 45% to 85% chalcogen element in atomic percentage, and the ratio of sulfur in the chalcogen element is 50% or more. And gallium belonging to group 15 of the periodic table. In this chalcogenide glass, germanium is an optional component.
  • the synthesis temperature when a glass material containing multiple elements is heated and melted varies depending on the melting point of each element and the proportion of the element in the composition, and the greater the proportion of the refractory element in the composition, the higher the synthesis temperature. .
  • the melting point of germanium is 937.4 ° C., which is relatively high
  • the synthesis temperature of Ge 20 Sb 10 Se 70 as an example of a chalcogenide glass containing germanium is approximately 950 ° C., which is also relatively high. is there.
  • the melting points of halogen elements are extremely lower than the melting points of germanium, and patent documents containing halogen elements instead of germanium According to Patent Document 1, the chalcogenide glass described in 1 can be synthesized at a relatively low temperature of 700 ° C. to 750 ° C. Lowering the synthesis temperature contributes to a reduction in heat energy and time required for the glass material synthesis process.
  • an optical element made of glass is manufactured by, for example, heating and softening a glass material again, and re-molding the softened glass material with a mold.
  • the halogen element is rich in volatility, and when the chalcogenide glass described in Patent Document 1 containing the halogen element is remolded with a mold, most of the halogen element is lost due to heating during the remolding, and the characteristics of the glass. May change. For this reason, processing of chalcogenide glass described in Patent Document 1 is basically limited to cold processing such as polishing, but cold processing requires more labor than re-forming using a mold.
  • the chalcogenide glass described in Patent Document 2 contains gallium, and the melting point of gallium is 29.78 ° C., which is extremely lower than the melting point of germanium. Therefore, according to the chalcogenide glass described in Patent Document 2 containing gallium, the synthesis temperature can be lowered, and since it does not contain a halogen element, the characteristics of the glass when remolded by a mold. Can also be suppressed.
  • the chalcogenide glass described in Patent Document 2 contains 45% to 85% of the chalcogen element in atomic percentage and the ratio of sulfur to the chalcogen element is 50% or more, and the sulfur transmittance is 8 ⁇ m or more. Suddenly decreases in the wavelength region.
  • the glass for infrared optics when a use in a wavelength region called a far-infrared region is assumed, it is desirable to have a stable transmittance for infrared rays in a wavelength region of at least 14 ⁇ m.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a glass for infrared optics, a glass manufacturing method, and an optical element that can lower the synthesis temperature and have excellent remoldability.
  • the glass of one embodiment of the present invention includes at least one element selected from the group of aluminum, gallium, and indium, at least one element selected from the group of germanium, tin, and lead, sulfur, and selenium. And at least one element selected from the group of tellurium.
  • the sulfur content is 22% or less in terms of atomic percentage.
  • the glass manufacturing method of one embodiment of the present invention includes at least one element selected from the group of aluminum, gallium, and indium, and at least one element selected from the group of germanium, tin, and lead. And at least one element selected from the group consisting of sulfur, selenium, and tellurium, and when the composition contains sulfur, the sulfur content is 22 in atomic percent. % Of the glass material is heated to a synthesis temperature of 400 ° C. or higher and 750 ° C. or lower, a temperature raising step for holding the molten glass material at the synthesis temperature, and the synthesis temperature. A cooling step of cooling the glass material held to a temperature lower than the glass transition point to vitrify, the temperature raising step, the heat retaining step, and the cooling step It carried out under an oxygen environment.
  • the optical element of one embodiment of the present invention is made of the above glass.
  • the present invention it is possible to provide a glass for infrared optics, a glass manufacturing method, and an optical element that can reduce the synthesis temperature and are excellent in remoldability.
  • % indicating the content (content ratio) of each element means atomic percentage (at%) unless otherwise specified, and the content value of each element is X-ray fluorescence analysis. It is a value measured by the device.
  • the glass of the present invention contains (a) at least one chalcogen element selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te) belonging to group 16 of the periodic table, and (B) at least one element selected from the group of aluminum (Al), gallium (Ga), and indium (In) belonging to Group 13 of the periodic table; and (c) 14th of the periodic table.
  • It is a chalcogenide glass containing at least one element selected from the group of germanium (Ge), tin (Sn), and lead (Pb) belonging to the group.
  • FIG. 1 shows sulfur, selenium, and tellurium chalcogen elements contained in chalcogenide glass, and glass compositions of silicon dioxide (SiO 2 ) and ZBLAN (ZrF 4 —BaF 2 —LaF 3 —AlF 3 —NaF). An example of spectral transmittance is shown.
  • Figure 1 shows “Kousano Kohei,“ Optical Properties of Glass I. ”NEW GLASS Vol. 24 No. 1 P.59-63 (2009).
  • sulfur, selenium, and tellurium chalcogen elements are commonly used as optical glass for infrared rays in the wavelength range of 2 ⁇ m or more. It has better transmittance than ZBLAN, known as glass for silicon and infrared optics.
  • ZBLAN known as glass for silicon and infrared optics.
  • selenium and tellurium are glasses suitable for infrared optical applications because they have excellent transmittance with respect to far infrared rays having a wavelength region of 14 ⁇ m or less.
  • the chalcogen element is not vitrified by itself, and a non-chalcogen element is added to synthesize the chalcogenide glass.
  • the chalcogen element content in the composition of the chalcogenide glass of the present invention is preferably 55 to 84%, more preferably 59 to 79% from the viewpoint of stable vitrification.
  • the sulfur content is 22% or less. It is preferable. By setting the sulfur content to 22% or less, a chalcogenide glass having practical transmittance can be obtained even for infrared rays in a wavelength region of at least 14 ⁇ m.
  • the group 14 element (germanium, tin, and lead) added to the chalcogenide glass of the present invention is effective for expanding the vitrification range.
  • the vitrification range is the range of composition ratios that can be vitrified without precipitating crystals in the process of cooling from the synthesis temperature.
  • optical properties and other glass properties The value can be adjusted to a suitable balance, and even if there is an error in the composition ratio, it can be vitrified stably.
  • the synthesis temperature of a glass material containing multiple elements varies depending on the melting point of each element and the proportion of the element in the composition, and the greater the proportion of the high melting point element in the composition, the higher the synthesis temperature.
  • the melting point of germanium, which is frequently used as a group 14 element added to chalcogenide glass, is 937.4 ° C., which is a relatively high temperature.
  • the content of Group 14 elements (germanium, tin, and lead) in the composition of the chalcogenide glass of the present invention is preferably 0.1% or more and 20% or less from the viewpoint of reducing the synthesis temperature. Yes, more preferably from 1% to 15%.
  • the group 13 elements (aluminum, gallium, and indium) added to the chalcogenide glass of the present invention are effective for lowering the synthesis temperature.
  • the melting point of aluminum is 660.3 ° C.
  • the melting point of gallium is 29.76 ° C.
  • the melting point of indium is 156.6 ° C., both of which are lower than the melting point of germanium (937.4 ° C.).
  • the content of Group 13 elements (aluminum, gallium and indium) in the composition of the chalcogenide glass of the present invention is preferably 1% or more and 25% or less, more preferably from the viewpoint of lowering the synthesis temperature. Is 3% or more and 17% or less.
  • the synthesis temperature X / Y is preferably 1 or more, and more preferably X / Y is greater than 4 from the viewpoint of lowering the temperature.
  • the chalcogenide glass of the present invention may further contain at least one group 15 element selected from the group consisting of phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). .
  • group 15 element selected from the group consisting of phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
  • the total content of Group 15 elements (phosphorus, arsenic, antimony, and bismuth) in the composition of the chalcogenide glass of the present invention is preferably 7% to 27%, more preferably 9% to 21%. It is as follows.
  • the content is preferably less than 10%.
  • the total content of arsenic, antimony and germanium in the composition of the chalcogenide glass of the present invention is preferably from the viewpoint of lowering the synthesis temperature. Less than 15%.
  • the chalcogenide glass of the present invention may further contain at least one group 17 element selected from the group of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • group 17 element selected from the group of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • the group 17 elements are highly volatile, and when the chalcogenide glass containing the group 17 elements is remolded with a mold, most of the group 17 elements are lost due to heating during the remolding. There is a risk that the properties of the glass will change.
  • the total content of the group 17 element in the composition is preferably less than 5% from the viewpoint of improving remoldability. And more preferably less than 1%.
  • 2A to 2E show an example of a synthesis process of the chalcogenide glass of the present invention.
  • a glass material M adjusted according to the above-described composition ratio of the chalcogenide glass of the present invention is put into a heat-resistant container 1 such as a quartz tube. Then, the heat-resistant container 1 charged with the glass material M is evacuated and sealed. The glass material M accommodated in the sealed heat-resistant container 1 is placed in a deoxygenated environment.
  • the synthesis temperature of Ge 20 Sb 10 Se 70 as one compositional example of the conventional chalcogenide glass is approximately 950 ° C.
  • the chalcogenide glass and the glass material of the present invention include group 13 elements (aluminum, gallium, And indium), and can be synthesized in a temperature range of 400 ° C. or higher and 750 ° C. or lower by containing a Group 17 element (fluorine, chlorine, bromine, and iodine) as necessary.
  • the chalcogenide glass of the present invention can be synthesized even at a synthesis temperature exceeding 750 ° C., there is a concern about an increase in thermal energy required to raise the temperature of the glass material to the synthesis temperature, and the low melting point contained in the glass material. As the material is vaporized, the internal pressure of the heat-resistant container 1 is increased, and there is a concern that the heat-resistant container 1 is damaged. When the synthesis temperature is lower than 400 ° C., the time required for melting the glass material becomes long, and there is a concern that the production efficiency is lowered.
  • the synthesis temperature of the chalcogenide glass of the present invention is preferably 450 ° C. or higher and 700 ° C. or lower from the viewpoint of suppressing energy consumption and improving production efficiency.
  • the time taken for the temperature rise of the glass material is preferably 6 hours or more and 10 hours or less. Even if the temperature rising time exceeds 10 hours, there is no problem in the synthesis of the glass, but there is a concern that the production efficiency is lowered. When the temperature rising time is shorter than 6 hours, there is a concern that the glass material is not sufficiently dissolved and vitrification is hindered.
  • the molten glass material is held at the synthesis temperature for a predetermined time.
  • the holding time can be set according to the weight of the glass material.
  • the required holding time T is set to the longer one of the time shown by the following conditional expression 1 and the time shown by the following conditional expression 2, and the holding time is set to The required holding time T or more can be set.
  • the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
  • Conditional expression 1: T 2
  • Conditional expression 2: T 0.0025W + 1.4
  • the holding time can be set as appropriate from the viewpoint of suppressing the energy consumption and improving the production efficiency by setting the holding time to the required holding time T or more.
  • the holding time is shorter than the required holding time T, there is a concern that the glass material is insufficiently melted and vitrification is hindered.
  • the necessary holding time T is changed to the longer one of the time represented by the conditional expression 1 and the time represented by the conditional expression 2, and the conditional expression 1 described above. It is preferable to set the longer one of the time indicated by the above and the time indicated by conditional expression 3 below.
  • Conditional expression 3: T 0.0033W + 1.2
  • the holding time may be set to the required holding time T or more until the weight W of the glass material is about 200 g. However, when the weight W of the glass material exceeds 200 g, the holding is performed from the viewpoint of sufficiently dissolving the glass material. It is preferable to set the time longer than the necessary holding time T. Further, from the viewpoint of speeding up the melting of the glass material and homogenizing the glass material, it is preferable to swing the heat-resistant container 1 during the melting of the glass material.
  • the glass material which passed through the heat retention process is cooled to a temperature lower than the glass transition point and vitrified.
  • the cooling step includes a rapid cooling step and a subsequent slow cooling step, and the rapid cooling switching temperature when switching from rapid cooling to slow cooling is preferably set in the range of Tg ⁇ 20 ° to Tg + 20 ° C. with the glass transition point as Tg. If the rapid cooling switching temperature is too high, vitrification may be hindered. If the rapid cooling switching temperature is too low, the glass may be distorted and easily broken.
  • an oxide such as germanium oxide having a thickness of 8 ⁇ m to 14 ⁇ m. It is possible to suppress the generation of an oxide that absorbs infrared rays in the wavelength range.
  • the glass ingot 2 produced through the cooling process is taken out from the heat-resistant container 1, both ends of the taken ingot 2 are removed, and the ingot 2 from which both ends are removed is
  • the preform 3 is produced by cutting into a predetermined size.
  • the preform 3 is reheated and softened, and is remolded into various optical elements by the mold 4.
  • the preform 3 made of the chalcogenide glass of the present invention does not contain a volatile group 17 element (fluorine, chlorine, bromine, and iodine) or contains a group 17 element. Since it is a trace amount, it has excellent remoldability. Therefore, the optical characteristics of the optical element formed from the preform 3 are stabilized even by remolding with the mold 4 accompanied by reheating.
  • the chalcogenide glass obtained according to the present invention can have an average transmittance of 40% or more for infrared rays in a wavelength region of 8 ⁇ m or more and 14 ⁇ m or less.
  • permeability is obtained by cut
  • the average transmittance is a value obtained by arithmetically averaging measured values obtained every 8 ⁇ m from 8 ⁇ m to 14 ⁇ m, and includes surface reflection.
  • the description regarding the transmittance of the present invention is a value obtained by the same method.
  • Table 1 shows the composition ratio of the glass material of the manufacturing example. 30 g of a glass material prepared according to the composition ratio shown in Table 1 was sealed in a quartz tube, and glass was synthesized through the synthesis process (temperature raising step, heat retention step, and cooling step) shown in FIG.
  • the composition 9 shown in Table 1 is a Ge 20 Sb 10 Se 70 is an exemplary composition of a conventional chalcogenide glasses.
  • Table 2 shows the respective conditions (synthesis temperature, heating time, holding time, rapid cooling switching temperature, rapid cooling time, slow cooling time) applied to the synthesis of the glass.
  • the conditions of the synthesis process 4 are typical conditions applied to the synthesis of Ge 20 Sb 10 Se 70 as an example of a composition of the conventional chalcogenide glass.
  • the conditions of the synthesis process 5 are based on the conditions of the synthesis process of chalcogenide glass containing a halogen element described in Patent Document 1 instead of germanium.
  • Glass was synthesized by applying synthesis process 1, synthesis process 2, synthesis process 3, and synthesis process 5 to the glass materials of composition 1 to composition 8. Further, a glass was synthesized by applying the synthesis process 4 to the glass material of composition 9.
  • the average transmittance of each synthesized glass with respect to infrared rays in the wavelength region of 8 ⁇ m or more and 14 ⁇ m or less was measured using a Fourier transform infrared spectrophotometer, and those having an average transmittance of 40% or more were evaluated as “A”.
  • a sample having a transmittance of less than 40% was evaluated as “B”.
  • the evaluation results are shown in Table 3.
  • the chalcogenide glass of the present invention can be synthesized at a temperature of 400 ° C. or higher and 750 ° C. or lower, and is suitably used for infrared optical applications in the average transmittance for infrared rays in the wavelength region of 8 ⁇ m or higher and 14 ⁇ m or lower. It was confirmed to have a transmittance capable of
  • the temperature raising time is preferably 6 hours or more.
  • Table 4 shows the conditions of each of the synthesis processes 6 to 12 applied to the glass material of composition 5 and the weight of the glass material in each synthesis process.
  • FIG. 3 is a graph showing the relationship between the weight of the glass material and the holding time based on the evaluation results shown in Table 4, and the holding time is preferably set according to the weight of the glass material.
  • the holding time T is preferably set to the longer one of the time represented by the following conditional expression 1 and the time represented by the following conditional expression 2, and the holding time is preferably equal to or longer than the necessary holding time T.
  • the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
  • Conditional expression 1: T 2
  • Conditional expression 2: T 0.0025W + 1.4
  • the glass disclosed in the present specification includes at least one element selected from the group of aluminum, gallium, and indium, and at least one selected from the group of germanium, tin, and lead. And at least one element selected from the group consisting of sulfur, selenium, and tellurium.
  • the sulfur content is 22% or less in terms of atomic percentage.
  • the glass disclosed in this specification has a total content of aluminum, gallium, and indium in the composition of 1% or more and 25% or less in atomic percentage.
  • the glass disclosed in the present specification is such that the total content of aluminum, gallium, and indium in the composition is X% in atomic percentage, and the total content of germanium, tin, and lead in the composition is X / Y is 1 or more as Y% in atomic percentage.
  • the glass disclosed in the present specification further contains at least one element selected from the group of phosphorus, arsenic, antimony, and bismuth.
  • the arsenic content is less than 10% in atomic percentage.
  • the glass disclosed in this specification has a total content of arsenic, antimony and germanium in the composition of less than 15% in atomic percentage.
  • the glass disclosed in the present specification further contains at least one element selected from the group of fluorine, chlorine, bromine, and iodine, and is a total of fluorine, chlorine, bromine, and iodine in the composition.
  • the content is less than 5% in atomic percentage.
  • the glass manufacturing method disclosed in the present specification includes at least one element selected from the group of aluminum, gallium, and indium, and at least one element selected from the group of germanium, tin, and lead.
  • a heat retaining step for holding the molten glass material at the synthesis temperature, and the synthesis temperature
  • a cooling step of cooling the glass material held in the glass to a temperature lower than the glass transition point to vitrify, the temperature raising step, the heat retaining step, and the cooling The extent carried out under an oxygen environment.
  • the temperature rise time from 20 ° C., which is normal temperature, to the synthesis temperature is 6 hours to 10 hours.
  • the required holding time T of the glass material in the heat retaining step is any of the time represented by the following conditional expression 1 and the time represented by the following conditional expression 2.
  • the longer time is used, and the glass material is kept warm for the required holding time T or longer in the warming step.
  • the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
  • Conditional expression 1: T 2
  • Conditional expression 2: T 0.0025W + 1.4
  • the optical element disclosed in this specification is made of the glass.
  • the optical element disclosed in this specification has an average transmittance of 40% or more for infrared rays in a wavelength region of 8 ⁇ m or more and 14 ⁇ m or less in a plate material having a thickness of 2.5 mm.
  • the present invention can be used for glass for infrared optics, a method for producing glass, and an optical element.

Abstract

A glass containing at least one element selected from the group consisting of aluminum, gallium, and indium, at least one element selected from the group consisting of germanium, tin, and lead, and at least one element selected from the group consisting of sulfur, selenium, and tellurium, wherein when the composition contains sulfur, the glass having a sulfur content of 22 atomic percent or less is produced by melting a glass material by heating the glass material to a synthesis temperature of 400-750°C, maintaining the glass material at the synthesis temperature, and cooling the glass material to a temperature lower than the glass transition temperature to vitrify the glass material, and the steps for increasing the temperature, maintaining, and cooling are each performed in an oxygen-free environment.

Description

ガラス及びガラスの製造方法並びに光学素子Glass, glass manufacturing method and optical element
 本発明は、ガラス及びガラスの製造方法並びに光学素子に関する。 The present invention relates to glass, a method for producing glass, and an optical element.
 2μm以上の波長域の赤外線に対して石英ガラスよりも優れた透過率を有する赤外光学用ガラスとして、周期律表第16族に属する硫黄、セレン、及びテルルからなる群から選ばれるカルコゲン元素を含有するカルコゲナイドガラスが知られている。 A chalcogen element selected from the group consisting of sulfur, selenium, and tellurium belonging to group 16 of the periodic table as an infrared optical glass having a transmissivity superior to quartz glass for infrared rays in a wavelength region of 2 μm or more. Chalcogenide glass containing is known.
 カルコゲン元素は単独でのガラス化が困難であることから、カルコゲナイドガラスには、カルコゲン元素以外の元素も含有されており、典型的には周期律表第14族に属するゲルマニウムが含有されている。 Since chalcogen elements are difficult to vitrify alone, chalcogenide glasses contain elements other than chalcogen elements, and typically contain germanium belonging to Group 14 of the periodic table.
 一方、特許文献1に記載されたカルコゲナイドガラスは、ゲルマニウムを含有せず、替わりに周期律表第17族に属する塩素、臭素、及び沃素からなる群から選ばれるハロゲン元素を含有するものである。 On the other hand, the chalcogenide glass described in Patent Document 1 does not contain germanium, but instead contains a halogen element selected from the group consisting of chlorine, bromine and iodine belonging to Group 17 of the periodic table.
 また、特許文献2に記載されたカルコゲナイドガラスは、原子百分率で45%~85%のカルコゲン元素を含有し且つカルコゲン元素に占める硫黄の割合が50%以上であり、さらに、周期律表第13族に属するガリウムと、周期律表第15族に属するリンとを含有するものである。このカルコゲナイドガラスでは、ゲルマニウムは任意成分とされている。 The chalcogenide glass described in Patent Document 2 contains 45% to 85% chalcogen element in atomic percentage, and the ratio of sulfur in the chalcogen element is 50% or more. And gallium belonging to group 15 of the periodic table. In this chalcogenide glass, germanium is an optional component.
日本国特開昭59-69444号公報Japanese Unexamined Patent Publication No. 59-69444 日本国特表2011-518758号公報Japanese National Table 2011-518758
 多元素を含有するガラス材料を加熱して溶融させる際の合成温度は、各元素の融点及び組成中に占める割合によって変化し、高融点元素の組成中に占める割合が大きいほど合成温度も高くなる。ゲルマニウムの融点は937.4℃であって比較的高温であり、ゲルマニウムを含有するカルコゲナイドガラスの一組成例としてのGe20Sb10Se70の合成温度は概ね950℃であり、やはり比較的高温である。 The synthesis temperature when a glass material containing multiple elements is heated and melted varies depending on the melting point of each element and the proportion of the element in the composition, and the greater the proportion of the refractory element in the composition, the higher the synthesis temperature. . The melting point of germanium is 937.4 ° C., which is relatively high, and the synthesis temperature of Ge 20 Sb 10 Se 70 as an example of a chalcogenide glass containing germanium is approximately 950 ° C., which is also relatively high. is there.
 一方、ハロゲン元素の融点(塩素:-101℃、臭素:-7.2℃、沃素:113.6℃)は、ゲルマニウムの融点に比べて極めて低く、ゲルマニウムに替えてハロゲン元素を含有する特許文献1に記載されたカルコゲナイドガラスは、特許文献1によれば700℃~750℃の比較的低温で合成可能である。合成温度の低温化は、ガラス材料の合成プロセスに要する熱エネルギーの削減及び時間の短縮に寄与する。 On the other hand, the melting points of halogen elements (chlorine: −101 ° C., bromine: −7.2 ° C., iodine: 113.6 ° C.) are extremely lower than the melting points of germanium, and patent documents containing halogen elements instead of germanium According to Patent Document 1, the chalcogenide glass described in 1 can be synthesized at a relatively low temperature of 700 ° C. to 750 ° C. Lowering the synthesis temperature contributes to a reduction in heat energy and time required for the glass material synthesis process.
 しかし、ガラスからなる光学素子は、例えばガラス素材を再度加熱して軟化させ、軟化したガラス素材を金型によって再成形して製造される。ハロゲン元素は揮発性に富み、ハロゲン元素を含有する特許文献1に記載されたカルコゲナイドガラスを金型によって再成形した場合に、再成形の際の加熱によってハロゲン元素の多くが失われてガラスの特性が変化する虞がある。このため、特許文献1に記載されたカルコゲナイドガラスの加工は、基本的に研磨などの冷間加工に限られるが、冷間加工は金型を用いた再成形に比べて手間を要する。 However, an optical element made of glass is manufactured by, for example, heating and softening a glass material again, and re-molding the softened glass material with a mold. The halogen element is rich in volatility, and when the chalcogenide glass described in Patent Document 1 containing the halogen element is remolded with a mold, most of the halogen element is lost due to heating during the remolding, and the characteristics of the glass. May change. For this reason, processing of chalcogenide glass described in Patent Document 1 is basically limited to cold processing such as polishing, but cold processing requires more labor than re-forming using a mold.
 特許文献2に記載されたカルコゲナイドガラスはガリウムを含有し、ガリウムの融点は29.78℃であってゲルマニウムの融点に比べて極めて低い。したがって、ガリウムを含有する特許文献2に記載されたカルコゲナイドガラスによれば、合成温度の低温化が可能であり、ハロゲン元素を含有していないため、金型によって再成形される場合のガラスの特性の変化も抑制できる。 The chalcogenide glass described in Patent Document 2 contains gallium, and the melting point of gallium is 29.78 ° C., which is extremely lower than the melting point of germanium. Therefore, according to the chalcogenide glass described in Patent Document 2 containing gallium, the synthesis temperature can be lowered, and since it does not contain a halogen element, the characteristics of the glass when remolded by a mold. Can also be suppressed.
 しかし、特許文献2に記載されたカルコゲナイドガラスは、原子百分率で45%~85%のカルコゲン元素を含有し且つカルコゲン元素に占める硫黄の割合が50%以上であるところ、硫黄の透過率は8μm以上の波長域で急激に低下する。赤外光学用ガラスとして、特に遠赤外領域と呼ばれる波長域での用途を想定した場合、少なくとも14μmまでの波長域の赤外線に対して安定した透過率を有することが望まれる。 However, the chalcogenide glass described in Patent Document 2 contains 45% to 85% of the chalcogen element in atomic percentage and the ratio of sulfur to the chalcogen element is 50% or more, and the sulfur transmittance is 8 μm or more. Suddenly decreases in the wavelength region. As the glass for infrared optics, when a use in a wavelength region called a far-infrared region is assumed, it is desirable to have a stable transmittance for infrared rays in a wavelength region of at least 14 μm.
 本発明は、上述した事情に鑑みなされたものであり、合成温度を下げることができ、再成形性にも優れた赤外光学用のガラス及びガラスの製造方法並びに光学素子を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a glass for infrared optics, a glass manufacturing method, and an optical element that can lower the synthesis temperature and have excellent remoldability. And
 本発明の一態様のガラスは、アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、を含有する。但し、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下である。 The glass of one embodiment of the present invention includes at least one element selected from the group of aluminum, gallium, and indium, at least one element selected from the group of germanium, tin, and lead, sulfur, and selenium. And at least one element selected from the group of tellurium. However, when sulfur is contained in the composition, the sulfur content is 22% or less in terms of atomic percentage.
 また、本発明の一態様のガラスの製造方法は、アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、を含有するガラス材料であって、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下であるガラス材料を、400℃以上且つ750℃以下の合成温度まで昇温して溶融する昇温工程と、溶融した上記ガラス材料を上記合成温度に保持する保温工程と、上記合成温度に保持された上記ガラス材料をガラス転移点未満の温度まで冷却してガラス化する冷却工程と、を備え、上記昇温工程、上記保温工程、及び上記冷却工程を脱酸素環境下で行う。 The glass manufacturing method of one embodiment of the present invention includes at least one element selected from the group of aluminum, gallium, and indium, and at least one element selected from the group of germanium, tin, and lead. And at least one element selected from the group consisting of sulfur, selenium, and tellurium, and when the composition contains sulfur, the sulfur content is 22 in atomic percent. % Of the glass material is heated to a synthesis temperature of 400 ° C. or higher and 750 ° C. or lower, a temperature raising step for holding the molten glass material at the synthesis temperature, and the synthesis temperature. A cooling step of cooling the glass material held to a temperature lower than the glass transition point to vitrify, the temperature raising step, the heat retaining step, and the cooling step It carried out under an oxygen environment.
 また、本発明の一態様の光学素子は、上記ガラスからなる。 The optical element of one embodiment of the present invention is made of the above glass.
 本発明によれば、合成温度を下げることができ、再成形性にも優れた赤外光学用のガラス及びガラスの製造方法並びに光学素子を提供することができる。 According to the present invention, it is possible to provide a glass for infrared optics, a glass manufacturing method, and an optical element that can reduce the synthesis temperature and are excellent in remoldability.
各種元素及びガラス組成物の分光透過率を示すグラフである。It is a graph which shows the spectral transmittance of various elements and a glass composition. 本発明のガラスの合成プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the synthetic | combination process of the glass of this invention. 本発明のガラスの合成プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the synthetic | combination process of the glass of this invention. 本発明のガラスの合成プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the synthetic | combination process of the glass of this invention. 本発明のガラスの合成プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the synthetic | combination process of the glass of this invention. 本発明のガラスの合成プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the synthetic | combination process of the glass of this invention. ガラス化におけるガラス材料の重量と合成温度での保持時間との関係を示すグラフである。It is a graph which shows the relationship between the weight of the glass material in vitrification, and the retention time at a synthesis temperature.
 以下、本発明のガラスの実施形態について説明する。なお、以下の説明において、各元素の含有量(含有率)を示す%は、別段の記載がない限り、原子百分率(at%)を意味し、各元素の含有量の値は蛍光X線分析装置によって測定される値である。 Hereinafter, embodiments of the glass of the present invention will be described. In the following description,% indicating the content (content ratio) of each element means atomic percentage (at%) unless otherwise specified, and the content value of each element is X-ray fluorescence analysis. It is a value measured by the device.
 本発明のガラスは、(a)周期律表の第16族に属する硫黄(S)、セレン(Se)、及びテルル(Te)の群から選択される少なくとも一種以上のカルコゲン元素を含有し、さらに、(b)周期律表の第13族に属するアルミニウム(Al)、ガリウム(Ga)、及びインジウム(In)の群から選択される少なくとも一種以上の元素と、(c)周期律表の第14族に属するゲルマニウム(Ge)、スズ(Sn)、及び鉛(Pb)の群から選択される少なくとも一種以上の元素と、を含有してなるカルコゲナイドガラスである。 The glass of the present invention contains (a) at least one chalcogen element selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te) belonging to group 16 of the periodic table, and (B) at least one element selected from the group of aluminum (Al), gallium (Ga), and indium (In) belonging to Group 13 of the periodic table; and (c) 14th of the periodic table. It is a chalcogenide glass containing at least one element selected from the group of germanium (Ge), tin (Sn), and lead (Pb) belonging to the group.
 図1は、カルコゲナイドガラスに含有される硫黄、セレン、及びテルルのカルコゲン元素、並びにガラス組成物である二酸化ケイ素(SiO)及びZBLAN(ZrF-BaF-LaF-AlF-NaF)の分光透過率の一例を示す。 FIG. 1 shows sulfur, selenium, and tellurium chalcogen elements contained in chalcogenide glass, and glass compositions of silicon dioxide (SiO 2 ) and ZBLAN (ZrF 4 —BaF 2 —LaF 3 —AlF 3 —NaF). An example of spectral transmittance is shown.
 図1は、『角野広平著「ガラスの光学的性質 I.」NEW GLASS Vol.24 No.1 P.59-63(2009)』より引用したものであり、この文献によると、硫黄、セレン、及びテルルのカルコゲン元素は、2μm以上の波長域の赤外線に対し、光学ガラスとして一般的な二酸化ケイ素、及び赤外光学用のガラスとして知られるZBLANよりも優れた透過率を有する。特に、セレン、及びテルルは、14μm以下の波長域の遠赤外線に対しても優れた透過率を有することから、赤外光学用途に好適なガラスである。 Figure 1 shows “Kousano Kohei,“ Optical Properties of Glass I. ”NEW GLASS Vol. 24 No. 1 P.59-63 (2009). According to this document, sulfur, selenium, and tellurium chalcogen elements are commonly used as optical glass for infrared rays in the wavelength range of 2 μm or more. It has better transmittance than ZBLAN, known as glass for silicon and infrared optics. In particular, selenium and tellurium are glasses suitable for infrared optical applications because they have excellent transmittance with respect to far infrared rays having a wavelength region of 14 μm or less.
 カルコゲン元素は単独ではガラス化せず、カルコゲナイドガラスを合成するためには非カルゴゲン元素が添加される。本発明のカルコゲナイドガラスの組成中に占めるカルコゲン元素の含有量は、安定してガラス化させる観点から、好ましくは55~84%であり、より好ましい範囲は59~79%である。 The chalcogen element is not vitrified by itself, and a non-chalcogen element is added to synthesize the chalcogenide glass. The chalcogen element content in the composition of the chalcogenide glass of the present invention is preferably 55 to 84%, more preferably 59 to 79% from the viewpoint of stable vitrification.
 但し、硫黄は、12μm以上の波長域の遠赤外線に対する透過率がセレン及びテルルよりも劣ることから、本発明のカルコゲナイドガラスに硫黄を含有する場合には、硫黄の含有量を22%以下とすることが好ましい。硫黄の含有量を22%以下とすることにより、少なくとも14μmまでの波長域の赤外線に対しても、実用となる透過率を有するカルコゲナイドガラスを得ることができる。 However, since sulfur is inferior to selenium and tellurium in the far-infrared transmittance in the wavelength region of 12 μm or more, when sulfur is contained in the chalcogenide glass of the present invention, the sulfur content is 22% or less. It is preferable. By setting the sulfur content to 22% or less, a chalcogenide glass having practical transmittance can be obtained even for infrared rays in a wavelength region of at least 14 μm.
 本発明のカルコゲナイドガラスにおいて添加される第14族元素(ゲルマニウム、スズ、及び鉛)は、ガラス化範囲の拡大に有効である。ガラス化範囲とは、合成温度から冷却される過程で結晶を析出させずにガラス化させることができる組成比率の範囲であって、ガラス化範囲が拡大されることにより、光学特性その他のガラス物性値を好適なバランスに調整することが可能となり、また、組成比率に誤差があったとしても安定してガラス化させることができる。 The group 14 element (germanium, tin, and lead) added to the chalcogenide glass of the present invention is effective for expanding the vitrification range. The vitrification range is the range of composition ratios that can be vitrified without precipitating crystals in the process of cooling from the synthesis temperature. By expanding the vitrification range, optical properties and other glass properties The value can be adjusted to a suitable balance, and even if there is an error in the composition ratio, it can be vitrified stably.
 ただし、多元素を含有するガラス材料の合成温度は、各元素の融点及び組成中に占める割合によって変化し、高融点元素の組成中に占める割合が大きいほど合成温度も高くなる。カルコゲナイドガラスに添加される第14族元素として多用されているゲルマニウムの融点は937.4℃であって比較的高温である。 However, the synthesis temperature of a glass material containing multiple elements varies depending on the melting point of each element and the proportion of the element in the composition, and the greater the proportion of the high melting point element in the composition, the higher the synthesis temperature. The melting point of germanium, which is frequently used as a group 14 element added to chalcogenide glass, is 937.4 ° C., which is a relatively high temperature.
 そこで、本発明のカルコゲナイドガラスの組成中に占める第14族元素(ゲルマニウム、スズ、及び鉛)の含有量は、合成温度の低温化を図る観点から、好ましくは0.1%以上20%以下であり、より好ましくは1%以上15%以下である。 Therefore, the content of Group 14 elements (germanium, tin, and lead) in the composition of the chalcogenide glass of the present invention is preferably 0.1% or more and 20% or less from the viewpoint of reducing the synthesis temperature. Yes, more preferably from 1% to 15%.
 本発明のカルコゲナイドガラスにおいて添加される第13族元素(アルミニウム、ガリウム、及びインジウム)は、合成温度の低温化に有効である。アルミニウムの融点は660.3℃であり、ガリウムの融点は29.76℃であり、インジウムの融点は156.6℃であって、いずれもゲルマニウムの融点(937.4℃)より低い。 The group 13 elements (aluminum, gallium, and indium) added to the chalcogenide glass of the present invention are effective for lowering the synthesis temperature. The melting point of aluminum is 660.3 ° C., the melting point of gallium is 29.76 ° C., the melting point of indium is 156.6 ° C., both of which are lower than the melting point of germanium (937.4 ° C.).
 本発明のカルコゲナイドガラスの組成中に占める第13族元素(アルミニウム、ガリウム、及びインジウム)の含有量は、合成温度の低温化を図る観点から、好ましくは1%以上25%以下であり、より好ましくは3%以上17%以下である。 The content of Group 13 elements (aluminum, gallium and indium) in the composition of the chalcogenide glass of the present invention is preferably 1% or more and 25% or less, more preferably from the viewpoint of lowering the synthesis temperature. Is 3% or more and 17% or less.
 また、本発明のカルコゲナイドガラスの組成中のアルミニウムとガリウムとインジウムとの合計の含有量をX%とし、組成中のゲルマニウムとスズと鉛との合計の含有量をY%としたとき、合成温度の低温化を図る観点から、好ましくはX/Yは1以上であり、より好ましくはX/Yは4より大きい。 Further, when the total content of aluminum, gallium and indium in the composition of the chalcogenide glass of the present invention is X%, and the total content of germanium, tin and lead in the composition is Y%, the synthesis temperature X / Y is preferably 1 or more, and more preferably X / Y is greater than 4 from the viewpoint of lowering the temperature.
 また、本発明のカルコゲナイドガラスは、リン(P)、ヒ素(As)、アンチモン(Sb)、及びビスマス(Bi)の群から選択される少なくとも一種以上の第15族元素をさらに含有してもよい。これらの第15族元素を含有した場合、ガラス化の範囲の拡大に有効である。 The chalcogenide glass of the present invention may further contain at least one group 15 element selected from the group consisting of phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). . When these Group 15 elements are contained, it is effective for expanding the range of vitrification.
 本発明のカルコゲナイドガラスの組成中に占める第15族元素(リン、ヒ素、アンチモン、及びビスマス)の合計の含有量は、好ましくは7%以上27%以下であり、より好ましくは9%以上21%以下である。 The total content of Group 15 elements (phosphorus, arsenic, antimony, and bismuth) in the composition of the chalcogenide glass of the present invention is preferably 7% to 27%, more preferably 9% to 21%. It is as follows.
 但し、ヒ素は生体に対して強い毒性を有することから、本発明のカルコゲナイドガラスの組成中にヒ素を含有する場合は、その含有量を10%未満とすることが好ましい。 However, since arsenic has strong toxicity to living bodies, when arsenic is contained in the composition of the chalcogenide glass of the present invention, the content is preferably less than 10%.
 また、上記第15族元素それぞれの融点を考慮すれば、本発明のカルコゲナイドガラスの組成中に占めるヒ素とアンチモンとゲルマニウムとの合計の含有量は、合成温度の低温化を図る観点から、好ましくは15%未満である。 In consideration of the melting point of each of the above group 15 elements, the total content of arsenic, antimony and germanium in the composition of the chalcogenide glass of the present invention is preferably from the viewpoint of lowering the synthesis temperature. Less than 15%.
 本発明のカルコゲナイドガラスにおいては、フッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)の群から選択される少なくとも一種以上の第17族元素をさらに含有してもよい。これらの第17族元素を含有した場合、ガラス化の範囲の拡大及び合成温度の低温化に有効である。 The chalcogenide glass of the present invention may further contain at least one group 17 element selected from the group of fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). When these group 17 elements are contained, it is effective for expanding the vitrification range and lowering the synthesis temperature.
 但し、上記第17族元素は揮発性に富み、第17族元素を含有するカルコゲナイドガラスを金型によって再成形する場合に、再成形の際の加熱によってこれらの上記第17族元素の多くが失われ、ガラスの特性が変化する虞がある。 However, the group 17 elements are highly volatile, and when the chalcogenide glass containing the group 17 elements is remolded with a mold, most of the group 17 elements are lost due to heating during the remolding. There is a risk that the properties of the glass will change.
 したがって、本発明のカルコゲナイドガラスの組成中に第17族元素を含有する場合に、組成中に占める上記第17族元素の合計の含有量は、再成形性を高める観点から、好ましくは5%未満であり、より好ましくは1%未満である。 Therefore, when the group 17 element is contained in the composition of the chalcogenide glass of the present invention, the total content of the group 17 element in the composition is preferably less than 5% from the viewpoint of improving remoldability. And more preferably less than 1%.
 図2Aから図2Eは、本発明のカルコゲナイドガラスの合成プロセスの一例を示す。 2A to 2E show an example of a synthesis process of the chalcogenide glass of the present invention.
 まず図2Aに示すように、本発明のカルコゲナイドガラスの上述した組成比率に従って調整されたガラス材料Mを石英管などの耐熱容器1に投入する。そして、ガラス材料Mが投入された耐熱容器1を真空引きして封止する。封止された耐熱容器1に収納されているガラス材料Mは脱酸素環境下におかれる。 First, as shown in FIG. 2A, a glass material M adjusted according to the above-described composition ratio of the chalcogenide glass of the present invention is put into a heat-resistant container 1 such as a quartz tube. Then, the heat-resistant container 1 charged with the glass material M is evacuated and sealed. The glass material M accommodated in the sealed heat-resistant container 1 is placed in a deoxygenated environment.
<昇温工程>
 次に、耐熱容器1に封入されたガラス材料Mを合成温度まで昇温して溶融させる。従来のカルコゲナイドガラスの一組成例としてのGe20Sb10Se70の合成温度が概ね950℃であるのに対して、本発明のカルコゲナイドガラス及びそのガラス材料は、第13族元素(アルミニウム、ガリウム、及びインジウム)を含有しており、必要に応じて第17族元素(フッ素、塩素、臭素、及びヨウ素)を含有することによって400℃以上750℃以下の温度範囲で合成することができる。
<Temperature raising process>
Next, the glass material M sealed in the heat-resistant container 1 is heated to the synthesis temperature and melted. The synthesis temperature of Ge 20 Sb 10 Se 70 as one compositional example of the conventional chalcogenide glass is approximately 950 ° C., whereas the chalcogenide glass and the glass material of the present invention include group 13 elements (aluminum, gallium, And indium), and can be synthesized in a temperature range of 400 ° C. or higher and 750 ° C. or lower by containing a Group 17 element (fluorine, chlorine, bromine, and iodine) as necessary.
 本発明のカルコゲナイドガラスは、750℃を超える合成温度でも合成可能であるが、ガラス材料を合成温度まで昇温させるのに要する熱エネルギーの増加が懸念され、また、ガラス材料に含有される低融点材料の気化に伴って耐熱容器1の内圧が上昇し、耐熱容器1の破損が懸念される。合成温度が400℃よりも低い場合は、ガラス材料の溶解に要する時間が長くなって生産効率の低下が懸念される。本発明のカルコゲナイドガラスの合成温度は、エネルギー消費の抑制及び生産効率の向上といった観点から、好ましくは450℃以上700℃以下である。 Although the chalcogenide glass of the present invention can be synthesized even at a synthesis temperature exceeding 750 ° C., there is a concern about an increase in thermal energy required to raise the temperature of the glass material to the synthesis temperature, and the low melting point contained in the glass material. As the material is vaporized, the internal pressure of the heat-resistant container 1 is increased, and there is a concern that the heat-resistant container 1 is damaged. When the synthesis temperature is lower than 400 ° C., the time required for melting the glass material becomes long, and there is a concern that the production efficiency is lowered. The synthesis temperature of the chalcogenide glass of the present invention is preferably 450 ° C. or higher and 700 ° C. or lower from the viewpoint of suppressing energy consumption and improving production efficiency.
 また、ガラス材料の昇温にかける時間は、好ましくは6時間以上10時間以下である。昇温時間が10時間を超えてもガラスの合成に支障はないが、生産効率の低下が懸念される。昇温時間が6時間よりも短い場合は、ガラス材料の溶解が不十分となってガラス化に支障が生じる懸念がある。 Moreover, the time taken for the temperature rise of the glass material is preferably 6 hours or more and 10 hours or less. Even if the temperature rising time exceeds 10 hours, there is no problem in the synthesis of the glass, but there is a concern that the production efficiency is lowered. When the temperature rising time is shorter than 6 hours, there is a concern that the glass material is not sufficiently dissolved and vitrification is hindered.
<保温工程>
 次に、溶融したガラス材料を合成温度に所定時間保持する。保持時間はガラス材料の重量に応じて設定でき、例えば必要保持時間Tを下記条件式1で示される時間と下記条件式2で示される時間とのうちいずれか長い方の時間とし、保持時間を必要保持時間T以上とすることができる。但し、必要保持時間Tの単位は時間であり、下記条件式2でWはガラス材料の重量であって単位はグラムである。
条件式1:T=2
条件式2:T=0.0025W+1.4
<Insulation process>
Next, the molten glass material is held at the synthesis temperature for a predetermined time. The holding time can be set according to the weight of the glass material. For example, the required holding time T is set to the longer one of the time shown by the following conditional expression 1 and the time shown by the following conditional expression 2, and the holding time is set to The required holding time T or more can be set. However, the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
Conditional expression 1: T = 2
Conditional expression 2: T = 0.0025W + 1.4
 そして、保持時間を必要保持時間T以上として、エネルギー消費の抑制及び生産効率の向上といった観点から、保持時間を適宜設定することができる。保持時間が必要保持時間Tより短い場合は、ガラス材料の溶解が不十分となってガラス化に支障が生じる懸念がある。 Then, the holding time can be set as appropriate from the viewpoint of suppressing the energy consumption and improving the production efficiency by setting the holding time to the required holding time T or more. When the holding time is shorter than the required holding time T, there is a concern that the glass material is insufficiently melted and vitrification is hindered.
 ガラス材料を十分に溶解させる観点から、必要保持時間Tを、上記条件式1で示される時間と上記条件式2で示される時間とのうちいずれか長い方の時間に替えて、上記条件式1で示される時間と下記条件式3で示される時間とのうちいずれか長い方の時間とすることが好ましい。
条件式3:T=0.0033W+1.2
From the viewpoint of sufficiently dissolving the glass material, the necessary holding time T is changed to the longer one of the time represented by the conditional expression 1 and the time represented by the conditional expression 2, and the conditional expression 1 described above. It is preferable to set the longer one of the time indicated by the above and the time indicated by conditional expression 3 below.
Conditional expression 3: T = 0.0033W + 1.2
 なお、ガラス材料の重量Wが200g程度までは、保持時間を必要保持時間T以上とすればよいが、ガラス材料の重量Wが200gを超える場合は、ガラス材料を十分に溶解させる観点から、保持時間を必要保持時間Tに対して長めに設定することが好ましい。また、ガラス材料の溶解を速めてガラス材料を均質化させる観点から、ガラス材料の溶解中に耐熱容器1を揺動させることが好ましい。 The holding time may be set to the required holding time T or more until the weight W of the glass material is about 200 g. However, when the weight W of the glass material exceeds 200 g, the holding is performed from the viewpoint of sufficiently dissolving the glass material. It is preferable to set the time longer than the necessary holding time T. Further, from the viewpoint of speeding up the melting of the glass material and homogenizing the glass material, it is preferable to swing the heat-resistant container 1 during the melting of the glass material.
<冷却工程>
 保温工程を経たガラス材料をガラス転移点未満の温度まで冷却してガラス化させる。冷却工程は、急冷工程とその後の徐冷工程とを含み、急冷から徐冷に切り替える際の急冷切替温度はガラス転移点をTgとしてTg-20°以上Tg+20℃の範囲に設定するのが好ましい。急冷切替温度が高過ぎるとガラス化に支障が生じる虞があり、急冷切替温度が低過ぎるとガラスに歪みが生じて割れ易くなる虞がある。
<Cooling process>
The glass material which passed through the heat retention process is cooled to a temperature lower than the glass transition point and vitrified. The cooling step includes a rapid cooling step and a subsequent slow cooling step, and the rapid cooling switching temperature when switching from rapid cooling to slow cooling is preferably set in the range of Tg−20 ° to Tg + 20 ° C. with the glass transition point as Tg. If the rapid cooling switching temperature is too high, vitrification may be hindered. If the rapid cooling switching temperature is too low, the glass may be distorted and easily broken.
 以上のガラス材料の昇温工程、保温工程、及び冷却工程を封止された耐熱容器1の内部の脱酸素環境下で行うことにより、例えば酸化ゲルマニウムなどの酸化物であって8μm以上14μm以下の波長域の赤外線に対して吸収性を示す酸化物の生成を抑制することができる。 By performing the temperature raising step, the heat retaining step, and the cooling step of the glass material in a deoxygenated environment inside the sealed heat-resistant container 1, for example, an oxide such as germanium oxide having a thickness of 8 μm to 14 μm. It is possible to suppress the generation of an oxide that absorbs infrared rays in the wavelength range.
 図2Bから図2Dに示すように、冷却工程を経て作製されたガラスのインゴット2が耐熱容器1から取り出され、取り出されたインゴット2の両端部が除去され、両端部が除去されたインゴット2が所定のサイズに切断されてプリフォーム3が作製される。 As shown in FIG. 2B to FIG. 2D, the glass ingot 2 produced through the cooling process is taken out from the heat-resistant container 1, both ends of the taken ingot 2 are removed, and the ingot 2 from which both ends are removed is The preform 3 is produced by cutting into a predetermined size.
 そして、図2Eに示すように、プリフォーム3は、再加熱されて軟化され、金型4によって各種の光学素子に再成形される。本発明のカルコゲナイドガラスからなるプリフォーム3は、揮発性に富む第17族元素(フッ素、塩素、臭素、及びヨウ素)を含有せず、又は第17族元素を含有する場合にもその含有量は微量であることから、再成形性に優れる。したがって、再加熱を伴う金型4による再成形によっても、プリフォーム3から形成される光学素子の光学特性が安定する。本発明よって得たカルコゲナイドガラスは8μm以上14μm以下の波長域の赤外線に対する平均透過率を40%以上とすることができる。なお、透過率の測定値は、本発明によって作製されたガラスのインゴットを厚み2.5mmに切断して研磨加工し、フーリエ変換赤外分光光度計を用いることにより得られる。また、平均透過率とは、8μmから14μmまで1μmおきに得た測定値を算術平均した値であり、表面反射を含む。以下、本発明の透過率に関する記述は、同様の方法によって得られた値である。 Then, as shown in FIG. 2E, the preform 3 is reheated and softened, and is remolded into various optical elements by the mold 4. The preform 3 made of the chalcogenide glass of the present invention does not contain a volatile group 17 element (fluorine, chlorine, bromine, and iodine) or contains a group 17 element. Since it is a trace amount, it has excellent remoldability. Therefore, the optical characteristics of the optical element formed from the preform 3 are stabilized even by remolding with the mold 4 accompanied by reheating. The chalcogenide glass obtained according to the present invention can have an average transmittance of 40% or more for infrared rays in a wavelength region of 8 μm or more and 14 μm or less. In addition, the measured value of the transmittance | permeability is obtained by cut | disconnecting and grinding | polishing the glass ingot produced by this invention in thickness 2.5mm, and using a Fourier-transform infrared spectrophotometer. The average transmittance is a value obtained by arithmetically averaging measured values obtained every 8 μm from 8 μm to 14 μm, and includes surface reflection. Hereinafter, the description regarding the transmittance of the present invention is a value obtained by the same method.
 以下、ガラスの作製例について説明する。 Hereinafter, an example of glass production will be described.
 作製例のガラス材料の組成比率を表1に示す。表1に示す組成比率にしたがって調製されたガラス材料30gを石英管に封入し、図2に示した合成プロセス(昇温工程、保温工程、及び冷却工程)を経てガラスを合成した。なお、表1に示す組成9は、従来のカルコゲナイドガラスの一組成例であるGe20Sb10Se70である。 Table 1 shows the composition ratio of the glass material of the manufacturing example. 30 g of a glass material prepared according to the composition ratio shown in Table 1 was sealed in a quartz tube, and glass was synthesized through the synthesis process (temperature raising step, heat retention step, and cooling step) shown in FIG. The composition 9 shown in Table 1 is a Ge 20 Sb 10 Se 70 is an exemplary composition of a conventional chalcogenide glasses.
 ガラスの合成に適用した合成プロセス1~合成プロセス5それぞれの条件(合成温度、昇温時間、保持時間、急冷切替温度、急冷時間、徐冷時間)を表2に示す。なお、合成プロセス4の条件は、従来のカルコゲナイドガラスの一組成例としてのGe20Sb10Se70の合成に適用される典型的な条件である。また、合成プロセス5の条件は、特許文献1に記載された、ゲルマニウムに替えてハロゲン元素を含有するカルコゲナイドガラスの合成プロセスの条件に基づくものである。 Table 2 shows the respective conditions (synthesis temperature, heating time, holding time, rapid cooling switching temperature, rapid cooling time, slow cooling time) applied to the synthesis of the glass. The conditions of the synthesis process 4 are typical conditions applied to the synthesis of Ge 20 Sb 10 Se 70 as an example of a composition of the conventional chalcogenide glass. Moreover, the conditions of the synthesis process 5 are based on the conditions of the synthesis process of chalcogenide glass containing a halogen element described in Patent Document 1 instead of germanium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 組成1~組成8それぞれのガラス材料に対し、合成プロセス1、合成プロセス2、合成プロセス3、及び合成プロセス5を適用してガラスを合成した。また、組成9のガラス材料に対し、合成プロセス4を適用してガラスを合成した。合成されたガラスそれぞれの8μm以上14μm以下の波長域の赤外線に対する平均透過率を、フーリエ変換赤外分光光度計を用いて測定し、平均透過率40%以上のものを「A」評価とし、平均透過率が40%未満のものを「B」評価とした。評価結果を表3に示す。 Glass was synthesized by applying synthesis process 1, synthesis process 2, synthesis process 3, and synthesis process 5 to the glass materials of composition 1 to composition 8. Further, a glass was synthesized by applying the synthesis process 4 to the glass material of composition 9. The average transmittance of each synthesized glass with respect to infrared rays in the wavelength region of 8 μm or more and 14 μm or less was measured using a Fourier transform infrared spectrophotometer, and those having an average transmittance of 40% or more were evaluated as “A”. A sample having a transmittance of less than 40% was evaluated as “B”. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す評価結果から、本発明のカルコゲナイドガラスは、400℃以上750℃以下の温度で合成でき、8μm以上14μm以下の波長域の赤外線に対する平均透過率において赤外光学用途に好適に用いることができる透過率を有することが確認された。 From the evaluation results shown in Table 3, the chalcogenide glass of the present invention can be synthesized at a temperature of 400 ° C. or higher and 750 ° C. or lower, and is suitably used for infrared optical applications in the average transmittance for infrared rays in the wavelength region of 8 μm or higher and 14 μm or lower. It was confirmed to have a transmittance capable of
 また、組成1~組成8それぞれのガラス材料に対して合成プロセス1を適用して合成された作成例のガラスの評価結果と、組成1~組成8それぞれのガラス材料に対して合成プロセス5を適用して合成された作成例のガラスの評価結果とから、昇温時間は好ましくは6時間以上であることが確認された。 In addition, the evaluation result of the glass of the preparation example synthesized by applying the synthesis process 1 to the glass materials of each of the compositions 1 to 8, and the synthesis process 5 to the glass materials of the compositions 1 to 8 From the evaluation result of the glass of the preparation example synthesized as described above, it was confirmed that the temperature raising time is preferably 6 hours or more.
 次に、組成5のガラス材料を用い、ガラス化におけるガラス材料の重量と保持時間との関係について検証した。組成5のガラス材料に適用した合成プロセス6~合成プロセス12それぞれの条件、及び各合成プロセスにおけるガラス材料の重量を表4に示す。 Next, using a glass material of composition 5, the relationship between the weight of glass material in vitrification and the holding time was verified. Table 4 shows the conditions of each of the synthesis processes 6 to 12 applied to the glass material of composition 5 and the weight of the glass material in each synthesis process.
 そして、X線回析装置を用いて、各合成プロセスを経て得られた合成物の結晶構造を分析し、ガラス化しているもの、即ち結晶化が認められなかったものを「A」評価とし、ガラス化しなかったもの、即ち結晶化が認められたものを「B」評価とした。評価結果を表4に併せて示す。 Then, using an X-ray diffraction apparatus, the crystal structure of the synthesized product obtained through each synthesis process is analyzed, and those that are vitrified, that is, those that are not crystallized, are evaluated as “A”, Those that were not vitrified, that is, those that were observed to be crystallized were evaluated as “B”. The evaluation results are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、表4に示した評価結果に基づき、ガラス材料の重量と保持時間との関係をグラフ化したものであり、保持時間はガラス材料の重量に応じて設定されることが好ましく、必要保持時間Tを下記条件式1で示される時間と下記条件式2で示される時間とのうちいずれか長い方の時間とし、保持時間を必要保持時間T以上とすることが好ましいことがわかる。但し、必要保持時間Tの単位は時間であり、下記条件式2でWはガラス材料の重量であって単位はグラムである。
条件式1:T=2
条件式2:T=0.0025W+1.4
FIG. 3 is a graph showing the relationship between the weight of the glass material and the holding time based on the evaluation results shown in Table 4, and the holding time is preferably set according to the weight of the glass material. It can be seen that the holding time T is preferably set to the longer one of the time represented by the following conditional expression 1 and the time represented by the following conditional expression 2, and the holding time is preferably equal to or longer than the necessary holding time T. However, the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
Conditional expression 1: T = 2
Conditional expression 2: T = 0.0025W + 1.4
 そして、ガラス材料を十分に溶解させる観点から、必要保持時間Tを、上記条件式1で示される時間と上記条件式2で示される時間とのうちいずれか長い方の時間に替えて、上記条件式1で示される時間と下記条件式3で示される時間とのうちいずれか長い方の時間とすることがさらに好ましい。
条件式3:T=0.0033W+1.2
Then, from the viewpoint of sufficiently dissolving the glass material, the necessary holding time T is changed to the longer one of the time represented by the conditional expression 1 and the time represented by the conditional expression 2, and the above condition is satisfied. It is more preferable to set the longer one of the time represented by Expression 1 and the time represented by Conditional Expression 3 below.
Conditional expression 3: T = 0.0033W + 1.2
 以上説明したように、本明細書に開示されたガラスは、アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、を含有する。但し、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下である。 As described above, the glass disclosed in the present specification includes at least one element selected from the group of aluminum, gallium, and indium, and at least one selected from the group of germanium, tin, and lead. And at least one element selected from the group consisting of sulfur, selenium, and tellurium. However, when sulfur is contained in the composition, the sulfur content is 22% or less in terms of atomic percentage.
 また、本明細書に開示されたガラスは、組成中のアルミニウムとガリウムとインジウムとの合計の含有量が、原子百分率で1%以上25%以下である。 Further, the glass disclosed in this specification has a total content of aluminum, gallium, and indium in the composition of 1% or more and 25% or less in atomic percentage.
 また、本明細書に開示されたガラスは、組成中のアルミニウムとガリウムとインジウムとの合計の含有量を、原子百分率でX%とし、組成中のゲルマニウムとスズと鉛との合計の含有量を、原子百分率でY%として、X/Yは1以上である。 Further, the glass disclosed in the present specification is such that the total content of aluminum, gallium, and indium in the composition is X% in atomic percentage, and the total content of germanium, tin, and lead in the composition is X / Y is 1 or more as Y% in atomic percentage.
 また、本明細書に開示されたガラスは、リン、ヒ素、アンチモン、及びビスマスの群から選択される少なくとも一種以上の元素をさらに含有する。但し、組成中にヒ素を含有する場合に、ヒ素の含有量は、原子百分率で10%未満である。 The glass disclosed in the present specification further contains at least one element selected from the group of phosphorus, arsenic, antimony, and bismuth. However, when arsenic is contained in the composition, the arsenic content is less than 10% in atomic percentage.
 また、本明細書に開示されたガラスは、組成中のヒ素とアンチモンとゲルマニウムとの合計の含有量が、原子百分率で15%未満である。 In addition, the glass disclosed in this specification has a total content of arsenic, antimony and germanium in the composition of less than 15% in atomic percentage.
 また、本明細書に開示されたガラスは、フッ素、塩素、臭素、及びヨウ素の群から選択される少なくとも一種以上の元素をさらに含有し、組成中のフッ素と塩素と臭素とヨウ素との合計の含有量が、原子百分率で5%未満である。 Further, the glass disclosed in the present specification further contains at least one element selected from the group of fluorine, chlorine, bromine, and iodine, and is a total of fluorine, chlorine, bromine, and iodine in the composition. The content is less than 5% in atomic percentage.
 また、本明細書に開示されたガラスの製造方法は、アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、を含有するガラス材料であって、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下であるガラス材料を、400℃以上且つ750℃以下の合成温度まで昇温して溶融する昇温工程と、溶融した上記ガラス材料を上記合成温度に保持する保温工程と、上記合成温度に保持された上記ガラス材料をガラス転移点未満の温度まで冷却してガラス化する冷却工程と、を備え、上記昇温工程、上記保温工程、及び上記冷却工程を脱酸素環境下で行う。 Further, the glass manufacturing method disclosed in the present specification includes at least one element selected from the group of aluminum, gallium, and indium, and at least one element selected from the group of germanium, tin, and lead. A glass material containing an element and at least one element selected from the group consisting of sulfur, selenium, and tellurium, and when the composition contains sulfur, the sulfur content is in atomic percentage A temperature rising step for heating and melting a glass material that is 22% or less to a synthesis temperature of 400 ° C. or higher and 750 ° C. or lower, a heat retaining step for holding the molten glass material at the synthesis temperature, and the synthesis temperature A cooling step of cooling the glass material held in the glass to a temperature lower than the glass transition point to vitrify, the temperature raising step, the heat retaining step, and the cooling The extent carried out under an oxygen environment.
 また、本明細書に開示されたガラスの製造方法は、上記昇温工程は、常温である20℃から合成温度までの昇温時間が6時間以上10時間以下の時間で昇温する。 Further, in the glass manufacturing method disclosed in the present specification, in the temperature raising step, the temperature rise time from 20 ° C., which is normal temperature, to the synthesis temperature is 6 hours to 10 hours.
 また、本明細書に開示されたガラスの製造方法は、上記保温工程における上記ガラス材料の必要保持時間Tを、下記条件式1で示される時間と下記条件式2で示される時間とのうちいずれか長い方の時間とし、上記保温工程において上記ガラス材料を上記必要保持時間T以上の時間保温する。但し、上記必要保持時間Tの単位は時間であり、下記条件式2でWは前記ガラス材料の重量であって単位はグラムである。
条件式1:T=2
条件式2:T=0.0025W+1.4
Further, in the glass manufacturing method disclosed in the present specification, the required holding time T of the glass material in the heat retaining step is any of the time represented by the following conditional expression 1 and the time represented by the following conditional expression 2. The longer time is used, and the glass material is kept warm for the required holding time T or longer in the warming step. However, the unit of the necessary holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
Conditional expression 1: T = 2
Conditional expression 2: T = 0.0025W + 1.4
 また、本明細書に開示された光学素子は、上記ガラスからなる。 The optical element disclosed in this specification is made of the glass.
 また、本明細書に開示された光学素子は、厚み2.5mmの板材における8μm以上14μm以下の波長域の赤外線に対する平均透過率が40%以上である。 Further, the optical element disclosed in this specification has an average transmittance of 40% or more for infrared rays in a wavelength region of 8 μm or more and 14 μm or less in a plate material having a thickness of 2.5 mm.
 本発明は、赤外光学用のガラス及びガラスの製造方法並びに光学素子に用いることができる。 The present invention can be used for glass for infrared optics, a method for producing glass, and an optical element.
 以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。本出願は、2016年3月31日出願の日本特許出願(特願2016-070730)に基づくものであり、その内容はここに参照として取り込まれる。 Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in various modifications without departing from the spirit of the present invention. This application is based on a Japanese patent application filed on March 31, 2016 (Japanese Patent Application No. 2016-070730), the contents of which are incorporated herein by reference.
1   耐熱容器
2   ガラスインゴット
3   プリフォーム
4   金型
M   ガラス材料
1 Heat-resistant container 2 Glass ingot 3 Preform 4 Mold M Glass material

Claims (11)

  1.  アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、
     ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、
     硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、
     を含有するガラス。
     但し、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下である。
    At least one element selected from the group of aluminum, gallium, and indium;
    At least one element selected from the group of germanium, tin, and lead;
    At least one element selected from the group of sulfur, selenium, and tellurium;
    Containing glass.
    However, when sulfur is contained in the composition, the sulfur content is 22% or less in terms of atomic percentage.
  2.  請求項1記載のガラスであって、
     組成中のアルミニウムとガリウムとインジウムとの合計の含有量が、原子百分率で1%以上且つ25%以下であるガラス。
    The glass according to claim 1,
    Glass whose total content of aluminum, gallium and indium in the composition is 1% or more and 25% or less in atomic percentage.
  3.  請求項1又は2記載のガラスであって、
     組成中のアルミニウムとガリウムとインジウムとの合計の含有量を、原子百分率でX%とし、組成中のゲルマニウムとスズと鉛との合計の含有量を、原子百分率でY%として、X/Yは1以上であるガラス。
    The glass according to claim 1 or 2,
    The total content of aluminum, gallium and indium in the composition is X% in atomic percentage, and the total content of germanium, tin and lead in the composition is Y% in atomic percentage, X / Y is A glass that is one or more.
  4.  請求項1から3のいずれか一項記載のガラスであって、
     リン、ヒ素、アンチモン、及びビスマスの群から選択される少なくとも一種以上の元素をさらに含有するガラス。
     但し、組成中にヒ素を含有する場合に、ヒ素の含有量は、原子百分率で10%未満である。
    The glass according to any one of claims 1 to 3,
    Glass further containing at least one element selected from the group of phosphorus, arsenic, antimony, and bismuth.
    However, when arsenic is contained in the composition, the arsenic content is less than 10% in atomic percentage.
  5.  請求項4記載のガラスであって、
     組成中のヒ素とアンチモンとゲルマニウムとの合計の含有量が、原子百分率で15%未満であるガラス。
    The glass according to claim 4,
    Glass whose total content of arsenic, antimony and germanium in the composition is less than 15% by atomic percentage.
  6.  請求項1から5のいずれか一項記載のガラスであって、
     フッ素、塩素、臭素、及びヨウ素の群から選択される少なくとも一種以上の元素をさらに含有し、
     組成中のフッ素と塩素と臭素とヨウ素との合計の含有量が、原子百分率で5%未満であるガラス。
    A glass according to any one of claims 1 to 5,
    Further containing at least one element selected from the group of fluorine, chlorine, bromine, and iodine,
    Glass whose total content of fluorine, chlorine, bromine and iodine in the composition is less than 5% by atomic percentage.
  7.  アルミニウム、ガリウム、及びインジウムの群から選択される少なくとも一種以上の元素と、ゲルマニウム、スズ、及び鉛の群から選択される少なくとも一種以上の元素と、硫黄、セレン、及びテルルの群から選択される少なくとも一種以上の元素と、を含有するガラス材料であって、組成中に硫黄を含有する場合に、硫黄の含有量は、原子百分率で22%以下であるガラス材料を、400℃以上且つ750℃以下の合成温度まで昇温して溶融する昇温工程と、
     溶融した前記ガラス材料を前記合成温度に保持する保温工程と、
     前記合成温度に保持された前記ガラス材料をガラス転移点未満の温度まで冷却してガラス化する冷却工程と、
     を備え、
     前記昇温工程、前記保温工程、及び前記冷却工程を脱酸素環境下で行うガラスの製造方法。
    At least one element selected from the group of aluminum, gallium, and indium, at least one element selected from the group of germanium, tin, and lead, and selected from the group of sulfur, selenium, and tellurium A glass material containing at least one element, and when sulfur is contained in the composition, the sulfur content is at least 400 ° C. and 750 ° C. for a glass material having an atomic percentage of 22% or less. A temperature raising step in which the temperature is raised to the following synthesis temperature and melted;
    A heat retention step of maintaining the molten glass material at the synthesis temperature;
    A cooling step of cooling the glass material held at the synthesis temperature to a temperature lower than the glass transition point to vitrify;
    With
    A method for producing glass, wherein the temperature raising step, the heat retaining step, and the cooling step are performed in a deoxygenated environment.
  8.  請求項7記載のガラスの製造方法であって、
     前記昇温工程は、常温である20℃から合成温度までの昇温時間が6時間以上10時間以下の時間で昇温するガラスの製造方法。
    It is a manufacturing method of the glass of Claim 7, Comprising:
    The temperature raising step is a glass manufacturing method in which the temperature rise time from 20 ° C., which is normal temperature, to the synthesis temperature is raised in a time period of 6 hours to 10 hours.
  9.  請求項7又は8記載のガラスの製造方法であって、
     前記保温工程における前記ガラス材料の必要保持時間Tを、下記条件式1で示される時間と下記条件式2で示される時間とのうちいずれか長い方の時間とし、
     前記保温工程において前記ガラス材料を前記必要保持時間T以上の時間保温するガラスの製造方法。
     但し、前記必要保持時間Tの単位は時間であり、下記条件式2でWは前記ガラス材料の重量であって単位はグラムである。
    条件式1:T=2
    条件式2:T=0.0025W+1.4
    It is a manufacturing method of the glass of Claim 7 or 8, Comprising:
    The required holding time T of the glass material in the heat retaining step is set to the longer one of the time represented by the following conditional expression 1 and the time represented by the following conditional expression 2,
    A method for producing glass, wherein the glass material is kept warm for the required holding time T or more in the heat-holding step.
    However, the unit of the required holding time T is time, and in the following conditional expression 2, W is the weight of the glass material and the unit is gram.
    Conditional expression 1: T = 2
    Conditional expression 2: T = 0.0025W + 1.4
  10.  請求項1から6のいずれか一項記載のガラスからなる光学素子。 An optical element made of the glass according to any one of claims 1 to 6.
  11.  請求項10記載の光学素子であって、
     厚み2.5mmの板材における8μm以上14μm以下の波長域の赤外線に対する平均透過率が40%以上である光学素子。
    The optical element according to claim 10,
    An optical element having an average transmittance of 40% or more with respect to infrared rays in a wavelength region of 8 μm or more and 14 μm or less in a 2.5 mm thick plate material.
PCT/JP2017/000867 2016-03-31 2017-01-12 Glass, method for producing glass, and optical element WO2017168939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070730 2016-03-31
JP2016-070730 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017168939A1 true WO2017168939A1 (en) 2017-10-05

Family

ID=59962903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000867 WO2017168939A1 (en) 2016-03-31 2017-01-12 Glass, method for producing glass, and optical element

Country Status (1)

Country Link
WO (1) WO2017168939A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188025A1 (en) * 2018-03-28 2019-10-03 日本電気硝子株式会社 Chalcogenide glass material
JP2019172560A (en) * 2018-03-28 2019-10-10 日本電気硝子株式会社 Chalcogenide glass material
JP2020045265A (en) * 2018-09-21 2020-03-26 国立大学法人京都工芸繊維大学 Infrared transmitting glass
WO2020175402A1 (en) * 2019-02-28 2020-09-03 日本電気硝子株式会社 Infrared-transmitting glass
WO2020175403A1 (en) * 2019-02-28 2020-09-03 日本電気硝子株式会社 Infrared-transmitting glass
CN114599618A (en) * 2020-09-16 2022-06-07 韩国光技术院 Composition for environment-friendly infrared light transmitting glass and method for manufacturing optical glass by using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169954A (en) * 1983-03-18 1984-09-26 Hitachi Ltd Material for infrared optical fiber
JPS62143841A (en) * 1985-12-16 1987-06-27 Nippon Sheet Glass Co Ltd Chalcogenide glass
JPS62222444A (en) * 1986-03-24 1987-09-30 Nippon Sheet Glass Co Ltd Optical memory material
JPH06183779A (en) * 1992-12-16 1994-07-05 Matsushita Electric Ind Co Ltd Production of infrared-transmissible glass
US5846889A (en) * 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
EP1642870A1 (en) * 2004-09-09 2006-04-05 Umicore Chalcogenide glasses based on tellurium for transmitting infrared in the middle and far regions
WO2012075108A2 (en) * 2010-11-30 2012-06-07 Corning Incorporated Pergallous alkaline earth selenogermanate glasses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169954A (en) * 1983-03-18 1984-09-26 Hitachi Ltd Material for infrared optical fiber
JPS62143841A (en) * 1985-12-16 1987-06-27 Nippon Sheet Glass Co Ltd Chalcogenide glass
JPS62222444A (en) * 1986-03-24 1987-09-30 Nippon Sheet Glass Co Ltd Optical memory material
JPH06183779A (en) * 1992-12-16 1994-07-05 Matsushita Electric Ind Co Ltd Production of infrared-transmissible glass
US5846889A (en) * 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
EP1642870A1 (en) * 2004-09-09 2006-04-05 Umicore Chalcogenide glasses based on tellurium for transmitting infrared in the middle and far regions
WO2012075108A2 (en) * 2010-11-30 2012-06-07 Corning Incorporated Pergallous alkaline earth selenogermanate glasses

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188025A1 (en) * 2018-03-28 2019-10-03 日本電気硝子株式会社 Chalcogenide glass material
JP2019172560A (en) * 2018-03-28 2019-10-10 日本電気硝子株式会社 Chalcogenide glass material
JP7290022B2 (en) 2018-03-28 2023-06-13 日本電気硝子株式会社 Chalcogenide glass material
JP2020045265A (en) * 2018-09-21 2020-03-26 国立大学法人京都工芸繊維大学 Infrared transmitting glass
JP7083466B2 (en) 2018-09-21 2022-06-13 国立大学法人京都工芸繊維大学 Infrared transmissive glass
WO2020175402A1 (en) * 2019-02-28 2020-09-03 日本電気硝子株式会社 Infrared-transmitting glass
WO2020175403A1 (en) * 2019-02-28 2020-09-03 日本電気硝子株式会社 Infrared-transmitting glass
CN113302164A (en) * 2019-02-28 2021-08-24 日本电气硝子株式会社 Infrared ray transmission glass
CN113302165A (en) * 2019-02-28 2021-08-24 日本电气硝子株式会社 Infrared ray transmission glass
EP3932882A4 (en) * 2019-02-28 2022-12-07 Nippon Electric Glass Co., Ltd. Infrared-transmitting glass
CN113302165B (en) * 2019-02-28 2023-08-01 日本电气硝子株式会社 Infrared ray transmitting glass
CN114599618A (en) * 2020-09-16 2022-06-07 韩国光技术院 Composition for environment-friendly infrared light transmitting glass and method for manufacturing optical glass by using same

Similar Documents

Publication Publication Date Title
WO2017168939A1 (en) Glass, method for producing glass, and optical element
JP6256857B2 (en) Near infrared absorbing glass
JP5744492B2 (en) High refractive and highly transparent optical glass
JP6241653B2 (en) Optical glass
WO2016159289A1 (en) Infrared-transmitting glass suitable for mold forming
CN109320093B (en) Transparent glass-ceramic material and preparation method thereof
JP6366122B2 (en) Method for producing fluorophosphate glass
JP6376337B2 (en) Optical glass
Ye et al. Influence of the selenium content on thermo-mechanical and optical properties of Ge–Ga–Sb–S chalcogenide glasses
Zhang et al. Optical fibers and molded optics in infrared transparent glass-ceramic
TWI704117B (en) Near infrared absorption glass
TWI791483B (en) Optical glass
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
JP6808555B2 (en) Glass, press-molded glass materials, optic blanks, and optics
EP3380441B1 (en) Doped ultra-low expansion glass and methods for annealing the same
WO2018155105A1 (en) Optical glass
EP3321237B1 (en) Optical glass, glass preform and optical component
JP5660846B2 (en) Production methods of fluorophosphate glass, glass material for press molding, and optical elements.
JP2005504711A (en) Infrared glass polarizer and method for producing the same
CN108892375B (en) Silicon silicate glass and preparation method thereof
WO2019044324A1 (en) Near infrared ray absorbing glass
JP2018049250A (en) Method and device for manufacturing near infrared absorbing glass
WO2016098554A1 (en) Glass for near infrared absorption filter
JP2017165641A (en) Near-infrared absorption filter glass
JP2016060671A (en) Glass for near-infrared absorption filter

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773489

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP