WO2017168861A1 - Magnetic cyclone device and treatment method for same - Google Patents

Magnetic cyclone device and treatment method for same Download PDF

Info

Publication number
WO2017168861A1
WO2017168861A1 PCT/JP2016/087113 JP2016087113W WO2017168861A1 WO 2017168861 A1 WO2017168861 A1 WO 2017168861A1 JP 2016087113 W JP2016087113 W JP 2016087113W WO 2017168861 A1 WO2017168861 A1 WO 2017168861A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
cyclone
cylindrical base
cylindrical
liquid
Prior art date
Application number
PCT/JP2016/087113
Other languages
French (fr)
Japanese (ja)
Inventor
望月 明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017168861A1 publication Critical patent/WO2017168861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C11/00Accessories, e.g. safety or control devices, not otherwise provided for, e.g. regulators, valves in inlet or overflow ducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/28Multiple arrangement thereof for parallel flow

Definitions

  • the present invention relates to a magnetic cyclone device and a processing method thereof.
  • Patent Document 1 discloses a solid-liquid separation device that improves the ability to separate impurities from raw water and prevents re-mixing of separated impurities into treated water.
  • Patent Document 2 discloses a magnetic fluid recovery device for efficiently separating and removing magnetic particles contained in a fluid.
  • Patent Document 3 discloses a magnetic separation apparatus that can separate a magnetic floc with little use of washing water to generate high-density sludge.
  • a fluid containing magnetic floc is allowed to flow into the inside from near the bottom of the conical container with the apex directed downward. Then, the inflowing fluid is rotated inside the conical container, and heavy impurities are slid down the conical wall surface using the difference in specific gravity to remove downward from the vicinity of the apex of the conical container. And it is the system which collect
  • the magnetic separation method is a method for obtaining treated water from which magnetic flocs in the fluid are attracted by the magnetic force of the magnets to remove the magnetic flocs from the fluid.
  • centrifugal force is used to separate magnetic flocs.
  • it is necessary to increase the fluid velocity for the purpose of increasing the centrifugal force.
  • the magnetic floc is broken by centrifugal force or the like.
  • Patent Document 2 in order to separate the magnetic floc from the fluid, the magnetic fine particles discharged from the cyclone are attracted to the wall surface by the magnetic force of the magnet, and the magnetic fine particles are separated from the fluid. Thereafter, the magnetic force applied to the magnetic fine particles is reduced or eliminated by physically separating the magnet from the wall surface. As a result, the magnetic particles are separated from the wall surface and dropped by gravity to collect the magnetic floc. In this case, since the centrifugal force and magnetic force of the fluid work separately, it is not necessary to dare to use one device.
  • the magnetic force works in both directions of the N pole and the S pole, but there is a problem that only one direction is utilized.
  • the centrifugal force there is a problem that the centrifugal force for separating the magnetic substance from the fluid does not work satisfactorily due to the small mass of the particles having a small particle size and the separation performance is poor.
  • an operation of opening / closing a valve near the outlet or reducing magnetic force by moving the magnetic field applying means is used for final separation. Therefore, there is a problem that it is not suitable for continuous operation.
  • Patent Document 3 magnetic force is used to separate magnetic flocs.
  • the magnetic floc is separated by the film.
  • the magnetic floc is separated by the magnetic force.
  • the flow rate cannot be increased because the magnetic flocs are separated without being destroyed.
  • the present invention has been devised in view of the above circumstances, and an object thereof is to provide a magnetic cyclone apparatus capable of reliably separating magnetic particles and magnetic floc from a fluid, and a treatment method thereof.
  • a magnetic cyclone device has a truncated cone shape with a vertex facing downward, a cylindrical cylindrical base portion having an inflow port on a side, and a lower portion of the cylindrical base portion.
  • the processing method of the magnetic cyclone device according to the second aspect of the present invention is a method for realizing the first aspect of the present invention.
  • the present invention it is possible to provide a magnetic cyclone apparatus that can reliably separate magnetic particles and magnetic flocs from a fluid and a processing method thereof.
  • FIG. 1 The figure which shows the structural example of the purification system of the magnetic cyclone apparatus of Embodiment 1.
  • FIG. The figure which shows the structure which looked at the magnetic cyclone apparatus which concerns on Embodiment 1 from the side.
  • the figure which shows the example of the control pattern of a magnetic cyclone apparatus The figure which shows the structural example which looked at the magnetic cyclone apparatus which concerns on the modification 1 from upper direction.
  • the magnetic cyclone apparatus 1S of the present invention (see FIG. 1) is a polluted water that enables high speed, high reliability, and high performance to treat polluted water by fusing the agglomeration magnetic separation and cyclone separation in the high speed water treatment apparatus. It is a processing device.
  • the magnetic cyclone device 1S uses a magnetic force in addition to a fluid force in order to separate the magnetic floc at a low speed (for example, 0.2 m / s or less) that does not destroy the magnetic floc. Make magnetic frock in polluted water. Then, by applying an attractive force by magnetic force to the magnetic floc, the magnetic floc is attracted to the vicinity of the side surface of the cyclone 1 where the flow velocity of the turning motion in the cyclone 1 becomes substantially zero. Thereby, since the specific gravity is heavier than water, a magnetic particle and a magnetic floc descend
  • the magnetic force of the electromagnet 5 is large at the N-pole and S-pole magnetic poles 5a and 5b. Therefore, by disposing any one of the magnetic poles 5a and 5b of the electromagnet 5 near the cyclone 1, the magnetic force of the electromagnet 5 can be effectively used, and the magnetic floc can be separated efficiently with a small current.
  • embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
  • Embodiment 1 In FIG. 1, the structural example of the purification system of the magnetic cyclone apparatus of Embodiment 1 is shown.
  • the purification system S of Embodiment 1 includes a magnetic substance supply device 30, a flocculant supply device 31, a rapid stirring device 32, a polymer supply device 36, a slow stirring device 34, and a magnetic cyclone device 1S.
  • the magnetic substance supply device 30, the flocculant supply device 31, the rapid stirring device 32, the slow stirring device 34, and the magnetic cyclone device 1S are connected via a pipe k (k1, k2, k3).
  • the polluted water of the fluid that is the liquid to be treated flows through the pipe k.
  • the polluted water is, for example, sewage, ballast water, oil, accompanying water containing heavy metals, water, water containing SS (Suspended Solid), and the like.
  • the magnetic body supply device 30 applies a magnetic body to the liquid to be processed flowing through the pipe k1 in order to create a magnetic floc.
  • the flocculant supply device 31 supplies the flocculant to the liquid to be processed flowing through the pipe k1 in order to collect the floating substances and foreign matters in the liquid to be processed to make micro flocs.
  • the micro floc is a mass having a diameter of 100 ⁇ m or less.
  • the rapid stirring device 32 rapidly stirs the contaminated water supplied with the magnetic substance and the flocculant to create micro flocs.
  • the polymer supply device 36 collects the micro flocs including the magnetic material and the micro flocs not including the magnetic material to supply the polymer 36s which is an inorganic flocculant in order to make the floc including the magnetic material.
  • a floc is a lump with a diameter of 1 mm or more.
  • the slow stirring device 34 collects the micro flocs containing the magnetic substance and the micro flocs not containing the magnetic substance with the polymer 36s of the inorganic flocculant to make the floc containing the magnetic substance, and the liquid to be treated flowing through the pipe k2 Is stirred at a slow speed.
  • the magnetic cyclone apparatus 1S is an apparatus that attracts a floc containing a magnetic material from a liquid to be processed by an electromagnet 5 and separates the floc into a processing liquid other than the floc. Processing liquids other than floc are acquired.
  • Magnetic material 30s and coagulant 31s are added to the fluid 100 in the pipe k1 from the magnetic material supply device 30 and the coagulant supply device 31, respectively, at arbitrary concentrations. The order of adding the magnetic body 30s and the flocculant 31s may be reversed.
  • the fluid 100 to which the magnetic body 30 s and the flocculant 31 s are added is stirred by the stirrer 33 of the rapid stirrer 32, and a micro floc having a particle size of about several tens of ⁇ m is formed.
  • the polymer 36s of the inorganic flocculant is added from the polymer supply device 36 to the fluid 100 flowing through the pipe k2.
  • the fluid 100 to which the polymer 36s has been added is stirred by the stirrer 35 of the slow stirring device 34, and a large magnetic floc having a particle size of 100 ⁇ m or more is created by the aggregation action of the polymer 36s.
  • a fluid 7 containing magnetic floc flows into the cyclone 1. Near the outer periphery of the cyclone 1, any one of the magnetic poles 5a and 5b of the electromagnet 5 is disposed.
  • the electromagnet 5 is controlled to be turned on / off by the controller 1C (see FIG. 2).
  • the magnetic floc in the fluid 7 flowing into the cyclone 1 is attracted to the magnetic pole 5 a of the electromagnet 5, separated from the fluid 7, falls downward by gravity, and is discharged from the downstream outlet 4.
  • the fluid from which the magnetic floc has been removed flows out from the upstream outlet 3 of the upper cylindrical portion 1e and is acquired.
  • the magnetic substance 30s is contained in all the micro flocs of about several tens of ⁇ m after being stirred by the stirrer 33 of the rapid stirring device 32, the polymer 36s as an inorganic flocculant is added and the stirring is performed slowly. There is no need to provide a step of stirring with the stirrer 35 of the apparatus 34 to produce a large magnetic floc having a particle size of 100 ⁇ m or more.
  • FIG. 2 is a diagram illustrating a configuration of the magnetic cyclone device according to the first embodiment when viewed from the side.
  • a magnetic cyclone device 1S according to the first embodiment includes a cyclone 1 and an electromagnet 5.
  • the cyclone 1 is made of a nonmagnetic material such as plastic or aluminum.
  • the cyclone 1 includes an inlet 2, an upstream outlet 3, and a downstream outlet 4.
  • the cyclone 1 has an inlet portion 1a, a cylindrical base portion 1b, an inverted conical portion 1c, a lower cylindrical portion 1d, and an upper cylindrical portion 1e.
  • the inlet portion 1a has a cylindrical shape whose inner surface is a horizontal axis.
  • One of the inlet portions 1a is the inflow port 2, and the other inner surface is communicated with a cylindrical base portion 1b having the following cylindrical shape.
  • the cylindrical base portion 1b and the reverse cone portion 1c form an inverted truncated cone portion whose apex is directed downward.
  • the inverted truncated cone part has an upper inner surface (side wall surface 1b1) having a cylindrical cylindrical part 1b, and a lower inner surface (conical sidewall 9) having an inverted conical inverted cone part 1c.
  • the inverted conical portion 1c has a shape in which the inner surface thereof is an inverted cone, and the bottom surface located above has a shape corresponding to the lower surface of the cylindrical base portion 1b, and is continuously formed below the cylindrical base portion 1b. .
  • the inner surface of the lower cylindrical portion 1d has a cylindrical shape.
  • the upper portion of the lower cylindrical portion 1d communicates with the inverted conical portion 1c, and the lower portion thereof is opened as the downstream outlet 4.
  • the upper cylindrical portion 1e has a cylindrical inner surface.
  • the upper cylindrical part 1e is provided in the center of the cylindrical base part 1b.
  • the upper cylindrical part 1e is opened at the lower part to the inside of the inverted conical part 1c or the cylindrical base part 1b, and the upper part is communicated with the treated water recovery part (not shown) as the upstream outlet 3.
  • one of the S poles and N poles 5a and 5b of the electromagnet 5 is disposed.
  • the S pole or N pole of the electromagnet 5 is provided on the other side (opposite side) with respect to the inlet 2 on one side of the cyclone 1.
  • the fluid 7 to be treated containing magnetic particles and magnetic flocs flows from the inlet 2 through the inlet 1a into the cyclone 1 (arrow ⁇ 0 in FIG. 2) by a pump (not shown).
  • the fluid 7 of the liquid to be treated which flows in is guided by the side wall surface 1b1 of the cylindrical base portion 1b and flows around (solid line arrow ⁇ 1 in FIG. 2).
  • the fluid 7a such as water other than the magnetic particles and the magnetic floc is a non-magnetic material, and is not affected by the magnetic force, that is, the magnetic stopping force does not work, and the specific gravity is lighter than that of the fluid 7. Therefore, it receives a centrifugal force and is guided by the side wall surface 1b1 of the cylindrical base portion 1b to rotate upward (arrow ⁇ 3 in FIG. 2). And it flows into the upper cylindrical part 1e of the cylindrical shape, flows up, and is discharged from the upstream outlet 3 (arrow ⁇ 4 in FIG. 2). Thereby, the fluid 7 containing the magnetic particles and the magnetic floc is separated into the magnetic particles and the magnetic floc and the fluid 7a other than the magnetic particles and the magnetic floc.
  • FIG. 3 shows a configuration example of the magnetic cyclone device according to the first embodiment viewed from above.
  • Magnetic particles or magnetic flocs 10, 11, 12 in the fluid 7 entering from the inlet 2 of the cyclone 1 are pulled by the fluid force and the magnetic force generated by the electromagnet 5 and travel in the direction of the thin solid arrow ⁇ 0,
  • the cyclone 1 moves near the side wall surface 1b1 of the inner peripheral surface. Since the flow velocity around the side wall surface 1b1 is close to zero due to friction, the magnetic particles or the magnetic flocs 20, 21, and 22 cannot get on the flow of other fluids 7 due to the magnetic stopping force. It adheres to 1b1 or exists in the vicinity thereof. Since the magnetic particles or the magnetic flocs 20, 21, 22 have a specific gravity larger than 1, they naturally fall from the fluid 7 along the conical side wall 9 of the inverted conical portion 1 c and are discharged from the downstream outlet 4.
  • the flow rate of the fluid 7 flowing in from the inflow port 2 is Q1
  • the flow rate of magnetic particles discharged from the downstream outlet 4 (see FIG. 2) and the magnetic floc containing magnetic particles is Q2
  • the product In the production of liquid substances using water such as petroleum, the product is produced in a mixed state with water, that is, in the form of accompanying water.
  • separation methods using specific gravity differences or centrifugal force such as when the product is a liquid, or when separating substances with small specific gravity differences from water, such as sewage treatment plants and algae culture plants, are effective separations. It is difficult.
  • high-performance separation is possible by aggregating magnetic particles and magnetic powder with petroleum and algae to form and separate flocs.
  • the magnetic poles 5a of the electromagnet 5 are arranged in the same direction as, or perpendicular to, the moving direction of the magnetic particles and the magnetic floc entering the cyclone 1.
  • the magnetic particles and the magnetic floc are attracted to the vicinity of the side wall surface 1b1 of the cyclone 1 by pulling with any one of the magnetic forces 5b.
  • the magnetic particles and the magnetic flocs are further reduced to zero by the magnetic force, so that the magnetic particles and the magnetic flocs become conical side walls 9 of the inverted conical portion 1c. Fall into. Since the conical side wall 9 has an oblique inclination with respect to the direction of gravity, the magnetic particles and the magnetic flocs descend along the conical side wall 9 due to gravity. As a result, the magnetic particles and the magnetic floc descend along the side surface of the cyclone 1 and are discharged from the downstream outlet 4.
  • FIG. 4 shows an internal configuration example of the magnetic cyclone device according to the second embodiment viewed from the side.
  • a first cyclone 21A and a second cyclone 21B are arranged with an electromagnet 25 interposed therebetween.
  • the first and second cyclones 21A and 21B are made of a nonmagnetic material such as plastic or aluminum.
  • the electromagnet 25 has S poles and N poles 25a and 25b. Therefore, one of the magnetic poles 25a and 25b of the electromagnet 25 is disposed to face the first cyclone 21A, and the other magnetic pole is disposed to face the second cyclone 21B.
  • the other configuration is the same as that of the first embodiment, and therefore, the same components are denoted by reference numerals in the 20th order, and detailed description thereof is omitted.
  • the first cyclone 21A includes a first inlet portion 21a1, a first cylindrical base portion 21b1, a first inverted conical portion 21c1, a first lower cylindrical portion 21d1, and a first upper cylindrical portion 21e1.
  • a first downstream outlet 24a is provided in the first lower cylindrical portion 21d1.
  • the inner surface of the first upper cylindrical portion 21e1 has a cylindrical shape.
  • the first upper cylindrical portion 21e1 is formed at the center of the first cylindrical base portion 21b1.
  • the lower part of the first upper cylindrical part 21e1 is opened inside the first inverted conical part 21c1 or the first cylindrical base part 21b1, and the upper part is communicated with a treated water recovery part (not shown) as a first upstream outlet 23a. Yes.
  • the second cyclone 21B includes a second inlet portion 21a2, a second cylindrical base portion 21b3, a second inverted conical portion 21c2, a second lower cylindrical portion 21d2, and a second upper cylindrical portion 21e2.
  • a second downstream outlet 24b is provided in the second lower cylindrical portion 21d2.
  • the inner surface of the second upper cylindrical portion 21e2 has a cylindrical shape.
  • the second upper cylindrical portion 21e2 is formed at the center of the second cylindrical base portion 21b3.
  • the lower part of the second upper cylindrical part 21e2 is opened inside the second inverted conical part 21c2 or the second cylindrical base part 21b3, and the upper part is communicated with a treated water recovery part (not shown) as a second upstream outlet 23b. Yes.
  • the fluids 103 and 104 containing magnetic particles and magnetic flocs are respectively supplied from the first inlet 22a of the first cyclone 21A and the first inlet 22b of the second cyclone 21B from the first cylindrical base 21b1 and the second cylindrical base. 21b3 from the opposite direction.
  • the direction in which the fluid 103 flowing into the first cyclone 21A and the fluid 104 flowing into the second cyclone 21B travel is the direction toward the magnetic poles 25a and 25b of the electromagnet 25.
  • the electromagnet 25 is controlled in current by the control unit 2C.
  • the magnetic particles and magnetic floc of the fluid 103 in the first cyclone 21A are attracted to the first side wall surface 21b2 of the first cylindrical base portion 21b1 by the magnetic force generated in one magnetic pole 25a of the electromagnet 25, and the flow velocity is greatly increased. descend.
  • the first reverse cone portion 21c1 is rotated while rotating as indicated by an arrow ⁇ 22a. To do. Finally, the magnetic particles and the magnetic floc are discharged from the downstream outlet 24a of the first cyclone 21A (arrow ⁇ 25a in FIG. 4).
  • the fluid 103a from which magnetic particles and magnetic flocs have been removed has a specific gravity lighter than that of the fluid 103, so that it is pushed by the inflowing fluid 103 and rises in a spiral flow as indicated by the arrow ⁇ 23a.
  • the gas is discharged from the first upstream outlet 23a of the portion 21e1 (arrow ⁇ 24a in FIG. 4).
  • the magnetic particles and magnetic floc of the fluid 104 in the second cyclone 21B are attracted to the second side wall surface 21b4 of the second cyclone 21B by the magnetic force generated in the other magnetic pole 25b of the electromagnet 25, and the flow velocity is greatly increased. To drop. A speed difference occurs between the magnetic particles and magnetic floc and the fluid 104a.
  • the inverted cone portion 21c2 falls while rotating as indicated by an arrow ⁇ 22b. Finally, the magnetic particles and the magnetic floc are discharged from the second downstream outlet 24b of the second cyclone 21B (arrow ⁇ 25b in FIG. 4).
  • the fluid 104a from which the magnetic particles and magnetic flocs have been removed has a specific gravity lighter than that of the fluid 104, so that it is pushed by the inflowing fluid 104 and rises in a spiral flow as indicated by the arrow ⁇ 23b.
  • the gas is discharged from the second upstream outlet 23b of the portion 21e2 (arrow ⁇ 24b in FIG. 4).
  • FIG. 5 shows an example of a control pattern of the magnetic cyclone device.
  • the horizontal axis of FIG. 5 shows (elapsed) time (T), and the vertical axis shows the magnitude of current (I).
  • T time
  • I magnitude of current
  • the current pattern 200 for applying a constant current value is easy to control, but the magnetic particles in the fluid and the like on the first side wall surface 21b2 of the first cyclone 21A and the second side wall surface 21b4 of the second cyclone 21B shown in FIG. There is a risk that magnetic flocs will continue to adhere. Therefore, the pulse current pattern 201 is optimal as the control pattern.
  • the heating times 202, 203, 204, 205, 206, and 207 for applying the current are basically the same time, but can be changed to different times.
  • the non-heating times 210, 211, 212, 213, and 214 in which no current is applied are basically the same time, but can be changed. Assuming that the concentration of magnetic flocs and the like in the liquid to be processed is the same, the magnetic particles in the fluids 103 and 104 flowing into the first cyclone 21A and the second cyclone 21B when the flow rates of the fluids 103 and 104 of the liquid to be processed are low While the magnetic flocs (amount to be processed) are reduced, the magnetic particles and magnetic flocs in the fluids 103 and 104 flowing into the first cyclone 21A and the second cyclone 21B when the flow rates of the fluids 103 and 104 of the liquid to be processed are low. (Amount to be processed) increases.
  • the charging times 202, 203, 204, 205, 206, and 207 are changed depending on the flow velocity of the flowing fluid. It is desirable that the time is substantially the same as the time for making a round in the first cyclone 21A and the second cyclone 21B depending on the flow velocity.
  • control pattern intermittently applies current to the electromagnet 25, the magnetic particles and the magnetic floc continue to adhere to the first side wall surface 21b2 of the first cyclone 21A and the second side wall surface 21b4 of the second cyclone 21B. There is no. Therefore, the magnetic particles and magnetic floc in the fluids 103 and 104 can be effectively and reliably removed from the fluids 103 and 104.
  • the control pattern described above may be applied to the magnetic cyclone device 1S of the first embodiment.
  • the electromagnet 25 is provided with the magnetic poles 25a and 25b facing between the first cylindrical base portion 21b1 of the first cyclone 21A and the second cylindrical base portion 21b3 of the second cyclone 21B. Therefore, only one electromagnet 25 is required. Since one electromagnet 25 is sufficient for the two first cyclones 21A and the second cyclone 21B, the configuration is simple, and the cost of the magnetic cyclone device 2S can be reduced.
  • the magnetic cyclone device 2S can be made compact because it can be constituted by the two first cyclones 21A, the second cyclone 21B, and one electromagnet 25.
  • the magnetic particles and the magnetic floc that flowed in are first and second sides of the first and second cylindrical base portions 21b1 and 21b3 of the first and second cyclones 21A.
  • the adhesion to the wall surfaces 21b2 and 21b4 is suppressed. Therefore, it is possible to realize a magnetic cyclone device 2S that is low in cost, small in size, and highly reliable.
  • FIG. 6 shows a configuration example of the magnetic cyclone device according to the first modification viewed from above.
  • the magnetic cyclone device 3S of Modification 1 is arranged with an electromagnet 35 sandwiched between a first cyclone 31A and a second cyclone 31B.
  • the inflow direction of the inlet portion 31a1 of the first cyclone 31A and the inflow direction of the inlet portion 31a2 of the second cyclone 31B are arranged in opposite directions.
  • the first and second cyclones 31A and 31B are made of a nonmagnetic material such as plastic or aluminum.
  • the electromagnet 35 is sandwiched between the inflow direction of the first inlet portion 31a1 of each first cyclone 31A (arrow ⁇ 31 in FIG. 6) and the inflow direction of the inlet portion 31a2 of the second cyclone 31B (arrow ⁇ 32 in FIG. 6). Placed in.
  • one magnetic pole 35a of the electromagnet 35 is disposed in the vicinity of the outer periphery of the first cylindrical base portion 31b1 so as to face the inflow direction of the first inlet portion 31a1 of the first cyclone 31A. Further, the other magnetic pole 35b of the electromagnet 35 is disposed in the vicinity of the outer periphery of the second cylindrical base portion 31b3 so as to face the inflow direction of the inlet portion 31a2 of the second cyclone 31B. Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted.
  • the magnetic particles and the magnetic floc in the fluid of the liquid to be processed flowing into the first inlet portion 31a1 of the first cyclone 31A are added to the fluid flow force (arrow ⁇ 31 in FIG. 6), and the magnetic pole 35a of the electromagnet 35. It is attracted by the magnetic force.
  • the magnetic particles and the magnetic floc in the fluid of the liquid to be processed flowing into the second inlet 31a2 of the second cyclone 31B are added to the magnetic force 35b of the electromagnet 35 in addition to the fluid flow force (arrow ⁇ 32 in FIG. 6). Attracted by magnetic force.
  • the magnetic particles and magnetic floc in the fluid flowing in from the first inlet portion 31a1 of the first cyclone 31A are moved toward the first side wall surface 31b2 of the first cylindrical base portion 31b1 by the magnetic force of the magnetic pole 35a of the electromagnet 35.
  • the magnetic particles and magnetic floc in the fluid flowing from the second inlet portion 31a2 of the second cyclone 31B are moved to the second side wall surface 31b4 side of the second cylindrical base portion 31b3 by the magnetic force of the magnetic pole 35b of the electromagnet 35. And attached to the second side wall surface 31b4 or in the vicinity of the second side wall surface 31b4.
  • the magnetic particles and the magnetic flocs adhering to the first side wall surface 31b2 of the first cyclone 31A or existing in the vicinity of the first side wall surface 31b2 slide down on the conical side wall of the first inverted conical portion (not shown) due to gravity. 1 is discharged from the downstream outlet 34a.
  • the fluid from which the magnetic particles and the magnetic floc have been removed is taken from the first upstream outlet 33a.
  • magnetic particles and magnetic flocks attached to the second side wall surface 31b4 of the second cyclone 31B or present in the vicinity of the second side wall surface 31b4 slide down the conical side wall of the second inverted conical portion (not shown) due to gravity, It is discharged from the second downstream outlet 34b.
  • the fluid from which the magnetic particles and magnetic floc have been removed is taken from the second upstream outlet 33b.
  • the inflow direction of the first inlet portion 31a1 of the first cyclone 31A is opposite to the inflow direction of the second inlet portion 31a2 of the second cyclone 31B.
  • the magnetic pole 35a and the magnetic pole 35b of the electromagnet 35 are arrange
  • the magnetic poles 35 and 35b of the electromagnet 35 are attracted to each other. Therefore, magnetic particles and magnetic flocs in the fluid can be effectively separated from the fluid.
  • FIG. 7 shows a configuration example of the magnetic cyclone device according to the second modification viewed from above.
  • the first cyclone 41 ⁇ / b> A and the second cyclone 41 ⁇ / b> B of the magnetic cyclone device 4 ⁇ / b> S of Modification 2 are arranged symmetrically with the electromagnet 45 interposed therebetween.
  • the first and second cyclones 41A and 41B are made of a nonmagnetic material such as plastic or aluminum.
  • the electromagnet 45 is disposed at a position orthogonal to each inflow direction (arrows ⁇ 41 and ⁇ 42 in FIG. 7) of the first inlet 41a1 and the second inlet 41a2 of the first cyclone 41A and the second cyclone 41B.
  • the magnetic force is perpendicular to the fluid flow, and attracts the magnetic particles and magnetic flocs toward the channels on the outermost surfaces of the first inlet portion 41a1 and the second inlet portion 41a2.
  • the electromagnet 45 may be a permanent magnet because there is a low possibility that the magnetic particles and the magnetic floc in the flow path are fixed to the first side wall surface 41b2 and the second side wall surface 41b4 by magnetic force. Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted.
  • the electromagnet 45 is disposed between the first cylindrical base part 41b1 of the first cyclone 41A and the second cylindrical base part 41b3 of the second cyclone 41B.
  • the first cylindrical base is substantially perpendicular to the direction in which one of the N and S poles of the electromagnet 45 intersects the inflow direction from the first inlet 41a1 of the first cyclone 41A. It arrange
  • the second cylindrical base is substantially perpendicular to the direction in which the other magnetic pole 45b of the N pole and S pole of the electromagnet 45 intersects with the inflow direction from the second inlet portion 41a2 of the second cyclone 41B. It arrange
  • the fluid containing the magnetic floc of the liquid to be processed flows into the first cylindrical base 41b1 from the first inlet 41a1 (arrow ⁇ 41 in FIG. 7).
  • Either one of the N pole and the S pole of the electromagnet 45 is arranged in a substantially vertical direction intersecting the inflow direction of the fluid containing the magnetic floc of the liquid to be processed from the first inlet portion 41a1, and is in the fluid.
  • the magnetic floc is attracted toward the first side wall surface 41b2 of the first cylindrical base portion 41b1.
  • the magnetic floc in the fluid adheres to the first side wall surface 41b2 or exists in the vicinity of the first side wall surface 41b2.
  • the magnetic flock slides down on the conical side wall of the first inverted conical portion (not shown) due to gravity and is discharged downward from the first downstream outlet 44a.
  • the fluid from which the magnetic particles and magnetic floc have been removed is taken from the first upstream outlet 43a.
  • the fluid containing the magnetic floc of the liquid to be processed flows into the second cylindrical base 41b3 from the second inlet 41a2 (arrow ⁇ 42 in FIG. 7).
  • the other magnetic pole 45b of the N pole and the S pole of the electromagnet 45 is disposed in a direction substantially perpendicular to the inflow direction of the fluid containing the magnetic floc of the liquid to be processed from the second inlet portion 41a2, and the fluid The inside magnetic floc is attracted toward the second side wall surface 41b4 of the second cylindrical base portion 41b3.
  • the magnetic floc in the fluid adheres to the second side wall surface 41b4 or exists in the vicinity of the second side wall surface 41b4.
  • the magnetic flock slides down the conical side wall of the second reverse conical portion (not shown) due to gravity and is discharged downward from the second downstream outlet 44b.
  • the fluid from which the magnetic particles and magnetic floc have been removed is taken from the second upstream outlet 43b.
  • Polar poles 45a and 45b are arranged. Therefore, the magnetic particles and the magnetic floc in the fluid are effectively attracted by the magnetic force to the first side wall surface 41b2 of the first cylindrical base part 41b1 and the second side wall surface 41b4 of the second cylindrical base part 41b3, respectively. Therefore, magnetic particles and magnetic flocs in the fluid can be effectively separated from the fluid.
  • the magnetic poles 45a and 45b of the electromagnet 45 are substantially perpendicular to the inflow direction from the first inlet portion 41a1 of the first cyclone 41A and the inflow direction from the second inlet portion 41a2 of the second cyclone 41B. However, as long as they are arranged so as to cross each other, they are not necessarily vertical.
  • the electromagnets 5, 25, 35, and 45 are described as examples. However, permanent magnets may be used instead of the electromagnets 5, 25, 35, and 45. .
  • Embodiments 1 and 2 and Modifications 1 and 2 may be combined as appropriate.
  • the first and second embodiments and the first and second modified examples 1 and 2 show examples of the present invention, and the present invention can have various specific forms and modified forms within the scope of the claims.
  • high-performance separation is possible by agglomerating the magnetic particles and magnetic powder with the petroleum and algae to form and separate flocs.

Abstract

This magnetic cyclone device (1S) comprises: a cyclone (1) that is a truncated cone with the vertex facing down and that has a cylindrical base (1b) having an inlet (2) on a side and a conical section (1c) formed continuous with the bottom of the cylindrical base (1b) and provided with a lower outlet (4) near the vertex; a cylindrical section (1e) that is disposed in the center of the cylindrical base (1b) and that is provided with an upper outlet (3); and a magnet (5) that is provided near the outer circumference of the cylindrical base (1b). Magnetic floc contained in a liquid to be treated (7) flowing into the cylindrical base (1b) from the inlet (2) is discharged from the lower outlet (4) after being attracted by the magnet (5) to the vicinity of an inner face (1b1) of the cylindrical base (1b), and the liquid to be treated from which the magnetic floc has been removed flows out from the upper outlet (3) of the cylindrical section (1e).

Description

磁気サイクロン装置およびその処理方法Magnetic cyclone apparatus and processing method thereof
 本発明は、磁気サイクロン装置およびその処理方法に関する。 The present invention relates to a magnetic cyclone device and a processing method thereof.
 従来、汚濁水から透明な処理水を得る汚濁水処理装置については、下記の先行技術文献がある。
 特許文献1には、原水からの不純物の分離能力を向上させ、分離した不純物の処理水への再混入を防止する固液分離装置が開示されている。
Conventionally, there are the following prior art documents regarding a polluted water treatment apparatus for obtaining transparent treated water from polluted water.
Patent Document 1 discloses a solid-liquid separation device that improves the ability to separate impurities from raw water and prevents re-mixing of separated impurities into treated water.
 特許文献2には、流体中に含まれる磁性粒子を効率よく分離・除去するための磁性流体回収装置が開示されている。 Patent Document 2 discloses a magnetic fluid recovery device for efficiently separating and removing magnetic particles contained in a fluid.
 特許文献3には、磁性フロックを洗浄水をほとんど使用せずに分離し高密度スラッジを生成できる磁性分離装置が開示されている。 Patent Document 3 discloses a magnetic separation apparatus that can separate a magnetic floc with little use of washing water to generate high-density sludge.
特開2011-83696号公報JP 2011-83696 JP 特開2005-21835号公報Japanese Unexamined Patent Publication No. 2005-21835 特開2002-66375号公報JP 2002-66375 A
 ところで、磁性フロックを含む流体から磁性フロックを分離する方法として、遠心力を利用するハイドロサイクロン方式と磁気力を利用する磁気分離方式が存在する。 By the way, as a method for separating the magnetic floc from the fluid containing the magnetic floc, there are a hydrocyclone method using centrifugal force and a magnetic separation method using magnetic force.
 ハイドロサイクロン方式とは、磁性フロックを含む流体を、頂点を下方に向けた円錐形状容器の底面近くから内部に流入させる。そして、流入した流体を円錐形状の容器の内部で回転させ、比重差を利用して重い不純物を、円錐壁面を滑落させ円錐形状容器の頂点近傍から下方に除去する。そして、重い不純物を含まない処理水を上方から回収する方式である。
 磁気分離方式は、流体中の磁性フロックを磁石の磁気力により引きつけ、流体から磁性フロックを除去した処理水を得る方式である。
In the hydrocyclone system, a fluid containing magnetic floc is allowed to flow into the inside from near the bottom of the conical container with the apex directed downward. Then, the inflowing fluid is rotated inside the conical container, and heavy impurities are slid down the conical wall surface using the difference in specific gravity to remove downward from the vicinity of the apex of the conical container. And it is the system which collect | recovers the treated water which does not contain a heavy impurity from upper direction.
The magnetic separation method is a method for obtaining treated water from which magnetic flocs in the fluid are attracted by the magnetic force of the magnets to remove the magnetic flocs from the fluid.
 特許文献1では、磁性フロックを分離させるために、遠心力を利用する。しかし、当該分離性能を高めるには、遠心力を高めることを目的に流体の速度を上げる必要がある。しかし、それに伴い、磁気フロックが遠心力等により破壊される問題があった。 In Patent Document 1, centrifugal force is used to separate magnetic flocs. However, in order to improve the separation performance, it is necessary to increase the fluid velocity for the purpose of increasing the centrifugal force. However, along with this, there is a problem that the magnetic floc is broken by centrifugal force or the like.
 特許文献2では、磁性フロックを流体から分離させるために、サイクロンから排出された磁性微粒子を磁石の磁気力で壁面に吸着させ、流体から磁性微粒子を分離させる。その後、磁石を壁面から物理的に離すことで磁性微粒子に加わる磁気力を低減または解消する。これにより、壁面から磁性微粒子を離脱させて重力で落下させ、磁性フロックを回収している。この場合は、流体の遠心力と磁気力は、別々に働くため、敢えて一つの装置で行う必要がない。 In Patent Document 2, in order to separate the magnetic floc from the fluid, the magnetic fine particles discharged from the cyclone are attracted to the wall surface by the magnetic force of the magnet, and the magnetic fine particles are separated from the fluid. Thereafter, the magnetic force applied to the magnetic fine particles is reduced or eliminated by physically separating the magnet from the wall surface. As a result, the magnetic particles are separated from the wall surface and dropped by gravity to collect the magnetic floc. In this case, since the centrifugal force and magnetic force of the fluid work separately, it is not necessary to dare to use one device.
 また、磁気力はN極とS極の両方向に働くのに、一方向しか活用していないという問題がある。また、遠心力のみでは、磁性体を流体から分離するための遠心力が、粒径の小さい粒子は質量が小さいために充分働かず、分離性能が悪いという問題がある。
 また、磁性粒子はサイクロンの側面に付着させることで分離するため、最終的な分離を行うために出口付近のバルブの開閉や、磁場印加手段の移動による磁気力の低減という動作を用いる。そのため、連続的な動作には、不向きであるという問題もある。
In addition, the magnetic force works in both directions of the N pole and the S pole, but there is a problem that only one direction is utilized. In addition, with only the centrifugal force, there is a problem that the centrifugal force for separating the magnetic substance from the fluid does not work satisfactorily due to the small mass of the particles having a small particle size and the separation performance is poor.
Further, since the magnetic particles are separated by adhering to the side surface of the cyclone, an operation of opening / closing a valve near the outlet or reducing magnetic force by moving the magnetic field applying means is used for final separation. Therefore, there is a problem that it is not suitable for continuous operation.
 特許文献3では、磁性フロックを分離させるために、磁気力を利用している。しかし、膜で磁性フロックを分離した後、磁気力で磁性フロックを分離する。磁性フロックを破壊することなく、膜で分離するために、流速を高めることはできないという問題がある。  In Patent Document 3, magnetic force is used to separate magnetic flocs. However, after the magnetic floc is separated by the film, the magnetic floc is separated by the magnetic force. There is a problem that the flow rate cannot be increased because the magnetic flocs are separated without being destroyed.
 上述したように、磁性粒子や磁性フロックを含む流体から、磁性粒子や磁性フロックを分離するニーズは高い。しかし、磁性流体の大きさが小さく遠心力が十分働かない場合や、磁性フロックと流体との比重差が小さく、かつ、フロックの強度が低いため、高速で処理することができない等、磁性粒子や磁性フロックを流体から分離する場合、比重差分離やサイクロン等の遠心力分離が困難となっている。 As described above, there is a great need for separating magnetic particles and magnetic flocs from fluids containing magnetic particles and magnetic flocs. However, when the size of the magnetic fluid is small and centrifugal force does not work sufficiently, or because the difference in specific gravity between the magnetic floc and the fluid is small and the strength of the floc is low, it cannot be processed at high speed. When separating a magnetic floc from a fluid, it is difficult to separate a specific gravity difference or a centrifugal force such as a cyclone.
 本発明は上記実状に鑑み創案されたものであり、磁性粒子や磁性フロックを流体から確実に分離できる磁気サイクロン装置およびその処理方法の提供を目的とする。 The present invention has been devised in view of the above circumstances, and an object thereof is to provide a magnetic cyclone apparatus capable of reliably separating magnetic particles and magnetic floc from a fluid, and a treatment method thereof.
 前記課題を解決するため、第1の本発明の磁気サイクロン装置は、下方に頂点を向けた円錐台形状であり、側方に流入口を有する円筒形状の円筒台部と当該円筒台部の下方に連続して形成され、前記頂点近傍に下流出口が設けられる円錐形状の円錐部とを有するサイクロンと、前記円筒台部の中央部に配置され上流出口が設けられる円筒部と、前記円筒台部の外周近くに設けられる磁石とを備え、前記流入口から前記円筒台部内に流入する被処理液体に含有される磁性フロックを、前記円筒台部の内側面近傍に前記磁石で引き付けた後、前記下流出口から排出し、磁性フロックが除去された被処理液体を前記円筒部の上流出口から流出させている。
 第2の本発明の磁気サイクロン装置の処理方法は、第1の本発明を実現する方法である。
In order to solve the above-described problem, a magnetic cyclone device according to the first aspect of the present invention has a truncated cone shape with a vertex facing downward, a cylindrical cylindrical base portion having an inflow port on a side, and a lower portion of the cylindrical base portion. A cyclone having a conical conical portion formed downstream of the apex and provided with a downstream outlet in the vicinity of the apex, a cylindrical portion disposed in the center of the cylindrical base portion and provided with an upstream outlet, and the cylindrical base portion A magnetic floc contained in the liquid to be treated flowing into the cylindrical base portion from the inflow port and attracted by the magnet near the inner side surface of the cylindrical base portion, The liquid to be treated, which is discharged from the downstream outlet and from which the magnetic floc has been removed, flows out from the upstream outlet of the cylindrical portion.
The processing method of the magnetic cyclone device according to the second aspect of the present invention is a method for realizing the first aspect of the present invention.
 本発明によれば、磁性粒子や磁性フロックを流体から確実に分離できる磁気サイクロン装置およびその処理方法を提供できる。 According to the present invention, it is possible to provide a magnetic cyclone apparatus that can reliably separate magnetic particles and magnetic flocs from a fluid and a processing method thereof.
実施形態1の磁気サイクロン装置の浄化システムの構成例を示す図。The figure which shows the structural example of the purification system of the magnetic cyclone apparatus of Embodiment 1. FIG. 実施形態1に係る磁気サイクロン装置を側方から見た構成を示す図。The figure which shows the structure which looked at the magnetic cyclone apparatus which concerns on Embodiment 1 from the side. 実施形態1の磁気サイクロン装置を上面から見た構成例を示す図。The figure which shows the structural example which looked at the magnetic cyclone apparatus of Embodiment 1 from the upper surface. 実施形態2に係る磁気サイクロン装置を側方から見た内部構成例を示す図。The figure which shows the internal structural example which looked at the magnetic cyclone apparatus which concerns on Embodiment 2 from the side. 磁気サイクロン装置の制御パターンの例を示す図。The figure which shows the example of the control pattern of a magnetic cyclone apparatus. 変形例1に係る磁気サイクロン装置を上方から見た構成例を示す図。The figure which shows the structural example which looked at the magnetic cyclone apparatus which concerns on the modification 1 from upper direction. 変形例2に係る磁気サイクロン装置を上方から見た構成例を示す図。The figure which shows the structural example which looked at the magnetic cyclone apparatus which concerns on the modification 2 from upper direction.
 本発明の磁気サイクロン装置1S(図1参照)は、高速水処理装置における凝集磁気分離とサイクロン分離とを融合することにより、汚濁水を処理する高速、高信頼、高性能を可能とする汚濁水処理装置である。 The magnetic cyclone apparatus 1S of the present invention (see FIG. 1) is a polluted water that enables high speed, high reliability, and high performance to treat polluted water by fusing the agglomeration magnetic separation and cyclone separation in the high speed water treatment apparatus. It is a processing device.
 そのため、磁気サイクロン装置1Sは、磁性フロックを破壊することがない低速(例えば、0.2m/s以下)で磁性フロックを分離するために、流体力に加えて磁気力を利用する。汚濁水中に磁性フロックを作る。そして、磁性フロックに磁気力による吸引力を加えることで、サイクロン1内での旋回運動の流速がほぼゼロとなるサイクロン1の側面近傍に、磁性フロックが引きつけられる。これにより、磁性粒子や磁性フロックは、比重が水より重いため自重でサイクロン1の側面の下方が縮径した円錐面に沿って下降し、排出される。 Therefore, the magnetic cyclone device 1S uses a magnetic force in addition to a fluid force in order to separate the magnetic floc at a low speed (for example, 0.2 m / s or less) that does not destroy the magnetic floc. Make magnetic frock in polluted water. Then, by applying an attractive force by magnetic force to the magnetic floc, the magnetic floc is attracted to the vicinity of the side surface of the cyclone 1 where the flow velocity of the turning motion in the cyclone 1 becomes substantially zero. Thereby, since the specific gravity is heavier than water, a magnetic particle and a magnetic floc descend | fall along the conical surface where the lower part of the side surface of the cyclone 1 was reduced in diameter, and are discharged | emitted.
 さらに、電磁石5の磁気力はN極とS極の磁極5a、5bで大きい。そこで、サイクロン1近くに電磁石5の磁極5a、5bの何れかを配置することにより、電磁石5の磁気力を有効に利用し、少ない電流で効率の良い、磁性フロックの分離処置が可能となる。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
Further, the magnetic force of the electromagnet 5 is large at the N-pole and S-pole magnetic poles 5a and 5b. Therefore, by disposing any one of the magnetic poles 5a and 5b of the electromagnet 5 near the cyclone 1, the magnetic force of the electromagnet 5 can be effectively used, and the magnetic floc can be separated efficiently with a small current.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
<<実施形態1>>
 図1に、実施形態1の磁気サイクロン装置の浄化システムの構成例を示す。
 実施形態1の浄化システムSは、磁性体供給装置30、凝集剤供給装置31、急速攪拌装置32、ポリマー供給装置36、緩速攪拌装置34、および磁気サイクロン装置1Sを具備している。
<< Embodiment 1 >>
In FIG. 1, the structural example of the purification system of the magnetic cyclone apparatus of Embodiment 1 is shown.
The purification system S of Embodiment 1 includes a magnetic substance supply device 30, a flocculant supply device 31, a rapid stirring device 32, a polymer supply device 36, a slow stirring device 34, and a magnetic cyclone device 1S.
 磁性体供給装置30、凝集剤供給装置31、急速攪拌装置32、緩速攪拌装置34、および磁気サイクロン装置1Sは、配管k(k1、k2、k3)を介して接続される。配管kを被処理液である流体の汚濁水が流れる。汚濁水とは、例えば下水、バラスト水、油、重金属を含む随伴水、アオコ、SS(Suspended Solid)を含む水等である。 The magnetic substance supply device 30, the flocculant supply device 31, the rapid stirring device 32, the slow stirring device 34, and the magnetic cyclone device 1S are connected via a pipe k (k1, k2, k3). The polluted water of the fluid that is the liquid to be treated flows through the pipe k. The polluted water is, for example, sewage, ballast water, oil, accompanying water containing heavy metals, water, water containing SS (Suspended Solid), and the like.
 磁性体供給装置30は、配管k1を流れる被処理液に磁性フロックを作成するために磁性体を付与する。
 凝集剤供給装置31は、配管k1を流れる被処理液に、被処理液中の浮遊物質、異物を集めてマイクロフロックを作るために凝集剤を供給する。マイクロフロックとは、径が100μm以下のかたまりである。
 急速攪拌装置32は、磁性体、凝集剤が供給された汚濁水を急速に攪拌し、マイクロフロックを作る。
The magnetic body supply device 30 applies a magnetic body to the liquid to be processed flowing through the pipe k1 in order to create a magnetic floc.
The flocculant supply device 31 supplies the flocculant to the liquid to be processed flowing through the pipe k1 in order to collect the floating substances and foreign matters in the liquid to be processed to make micro flocs. The micro floc is a mass having a diameter of 100 μm or less.
The rapid stirring device 32 rapidly stirs the contaminated water supplied with the magnetic substance and the flocculant to create micro flocs.
 ポリマー供給装置36は、磁性体を含むマイクロフロック、磁性体を含まないマイクロフロックを集めて磁性体を含むフロックを作るために無機凝集剤であるポリマー36sを供給する。フロックとは、径が1mm以上のかたまりである。
 緩速攪拌装置34は、無機凝集剤のポリマー36sで磁性体を含むマイクロフロックと磁性体を含まないマイクロフロックとを集めて磁性体を含有するフロックを作るために、配管k2を流れる被処理液を緩速で攪拌する。
The polymer supply device 36 collects the micro flocs including the magnetic material and the micro flocs not including the magnetic material to supply the polymer 36s which is an inorganic flocculant in order to make the floc including the magnetic material. A floc is a lump with a diameter of 1 mm or more.
The slow stirring device 34 collects the micro flocs containing the magnetic substance and the micro flocs not containing the magnetic substance with the polymer 36s of the inorganic flocculant to make the floc containing the magnetic substance, and the liquid to be treated flowing through the pipe k2 Is stirred at a slow speed.
 磁気サイクロン装置1Sは、被処理液から磁性体を含有するフロックを電磁石5で引きつけ、フロックとフロック以外の処理液とに分離する装置である。フロック以外の処理液は取得される。
 浮遊物質、アオコ、油、重金属、プランクトン等を含む被処理液の流体100が配管k1内を任意の速度で流れてくる。配管k1内の流体100に磁性体供給装置30、凝集剤供給装置31からそれぞれ磁性体30s、凝集剤31sを任意の濃度で添加する。なお、磁性体30s、凝集剤31sの添加順序は逆でも構わない。
The magnetic cyclone apparatus 1S is an apparatus that attracts a floc containing a magnetic material from a liquid to be processed by an electromagnet 5 and separates the floc into a processing liquid other than the floc. Processing liquids other than floc are acquired.
A fluid 100 of the liquid to be treated including suspended matter, aquatic oil, oil, heavy metal, plankton, etc. flows through the pipe k1 at an arbitrary speed. Magnetic material 30s and coagulant 31s are added to the fluid 100 in the pipe k1 from the magnetic material supply device 30 and the coagulant supply device 31, respectively, at arbitrary concentrations. The order of adding the magnetic body 30s and the flocculant 31s may be reversed.
 磁性体30s、凝集剤31sが添加された流体100は、急速攪拌装置32の攪拌器33で攪拌され、粒径数十μm程度のマイクロフロックが作られる。
 その後、配管k2を流れる流体100に、ポリマー供給装置36から無機凝集剤のポリマー36sが添加される。そして、ポリマー36sが添加された流体100は緩速攪拌装置34の攪拌器35で攪拌され、ポリマー36sの凝集作用により粒径100μm以上の大きな磁性フロックが作られる。
The fluid 100 to which the magnetic body 30 s and the flocculant 31 s are added is stirred by the stirrer 33 of the rapid stirrer 32, and a micro floc having a particle size of about several tens of μm is formed.
Thereafter, the polymer 36s of the inorganic flocculant is added from the polymer supply device 36 to the fluid 100 flowing through the pipe k2. The fluid 100 to which the polymer 36s has been added is stirred by the stirrer 35 of the slow stirring device 34, and a large magnetic floc having a particle size of 100 μm or more is created by the aggregation action of the polymer 36s.
 磁性フロックを含む流体7は、サイクロン1に流入する。サイクロン1の外周近くには、電磁石5の磁極5a、5bの何れかが配置されている。電磁石5は、制御部1C(図2参照)により電流の入/切の制御が行われる。
 サイクロン1に流入した流体7中の磁性フロックは電磁石5の磁極5aに引き付けられ、流体7中から分離され、重力により下方に落下して下流出口4から排出される。一方、磁性フロックが除去された流体は上円筒部1eの上流出口3から流出され取得される。
A fluid 7 containing magnetic floc flows into the cyclone 1. Near the outer periphery of the cyclone 1, any one of the magnetic poles 5a and 5b of the electromagnet 5 is disposed. The electromagnet 5 is controlled to be turned on / off by the controller 1C (see FIG. 2).
The magnetic floc in the fluid 7 flowing into the cyclone 1 is attracted to the magnetic pole 5 a of the electromagnet 5, separated from the fluid 7, falls downward by gravity, and is discharged from the downstream outlet 4. On the other hand, the fluid from which the magnetic floc has been removed flows out from the upstream outlet 3 of the upper cylindrical portion 1e and is acquired.
 なお、急速攪拌装置32の攪拌器33で攪拌され、全ての数十μm程度のマイクロフロックに、磁性体30sが含有されている場合は、無機凝集剤であるポリマー36sを添加し、緩速攪拌装置34の攪拌器35で攪拌し、粒径100μm以上の大きな磁性フロックを作る工程は設けなくともよい。 In addition, when the magnetic substance 30s is contained in all the micro flocs of about several tens of μm after being stirred by the stirrer 33 of the rapid stirring device 32, the polymer 36s as an inorganic flocculant is added and the stirring is performed slowly. There is no need to provide a step of stirring with the stirrer 35 of the apparatus 34 to produce a large magnetic floc having a particle size of 100 μm or more.
<磁気サイクロン装置1S>
 図2は、実施形態1に係る磁気サイクロン装置を側方から見た構成を示す図である。
 実施形態1の磁気サイクロン装置1Sは、サイクロン1と電磁石5とを具備している
 サイクロン1は、プラスチック、アルミニウムなどの非磁性体で構成されている。
 サイクロン1は、流入口2と上流出口3と下流出口4を備えている。そして、サイクロン1は、入口部1aと円筒台部1b、逆円錐部1cと下円筒部1dと上円筒部1eとを有する。
<Magnetic cyclone device 1S>
FIG. 2 is a diagram illustrating a configuration of the magnetic cyclone device according to the first embodiment when viewed from the side.
A magnetic cyclone device 1S according to the first embodiment includes a cyclone 1 and an electromagnet 5. The cyclone 1 is made of a nonmagnetic material such as plastic or aluminum.
The cyclone 1 includes an inlet 2, an upstream outlet 3, and a downstream outlet 4. The cyclone 1 has an inlet portion 1a, a cylindrical base portion 1b, an inverted conical portion 1c, a lower cylindrical portion 1d, and an upper cylindrical portion 1e.
 入口部1aは内面が横軸の筒形状をもつ。入口部1aの一方が流入口2であり、他方の内面が下記の円筒形状の円筒台部1bに連通されている。
 円筒台部1bと逆円錐部1cとで、頂点が下方に向いた逆円錐台部が形成される。
 逆円錐台部は、上部の内面(側壁面1b1)が円柱形状の円筒台部1bと、下部の内面(円錐側壁9)が逆円錐形の逆円錐部1cとをもつ。
The inlet portion 1a has a cylindrical shape whose inner surface is a horizontal axis. One of the inlet portions 1a is the inflow port 2, and the other inner surface is communicated with a cylindrical base portion 1b having the following cylindrical shape.
The cylindrical base portion 1b and the reverse cone portion 1c form an inverted truncated cone portion whose apex is directed downward.
The inverted truncated cone part has an upper inner surface (side wall surface 1b1) having a cylindrical cylindrical part 1b, and a lower inner surface (conical sidewall 9) having an inverted conical inverted cone part 1c.
 逆円錐部1cは、その内面が円錐を逆さにした形状を有し、上方に位置する底面が円筒台部1bの下面に相当する形状をもって、円筒台部1bの下部に連続して形成される。
 下円筒部1dは、内面が円筒形状をもつ。下円筒部1dは、その上方が逆円錐部1cに連通しており、その下方が下流出口4として開口されている。
 上円筒部1eは、内面が円筒形状をもつ。上円筒部1eは、円筒台部1bの中央に設けられる。上円筒部1eは、下方が逆円錐部1cの内部または円筒台部1bの内部に開口され、上方が上流出口3として処理水回収部(図示せず)に連通されている。
The inverted conical portion 1c has a shape in which the inner surface thereof is an inverted cone, and the bottom surface located above has a shape corresponding to the lower surface of the cylindrical base portion 1b, and is continuously formed below the cylindrical base portion 1b. .
The inner surface of the lower cylindrical portion 1d has a cylindrical shape. The upper portion of the lower cylindrical portion 1d communicates with the inverted conical portion 1c, and the lower portion thereof is opened as the downstream outlet 4.
The upper cylindrical portion 1e has a cylindrical inner surface. The upper cylindrical part 1e is provided in the center of the cylindrical base part 1b. The upper cylindrical part 1e is opened at the lower part to the inside of the inverted conical part 1c or the cylindrical base part 1b, and the upper part is communicated with the treated water recovery part (not shown) as the upstream outlet 3.
 サイクロン1の円筒台部1bの外周近くに電磁石5のS極、N極の磁極5a、5bのうち一方の磁極5aが配置されている。具体的には、電磁石5のS極またはN極がサイクロン1の一方側の流入口2に対して、他方側(反対側)に位置するように設けられている。
 電磁石5に電流が流されることにより、磁場5、6が生じ、強い磁気力がS極とN極の両磁極5a、5bに発生する。
Near the outer periphery of the cylindrical base portion 1b of the cyclone 1, one of the S poles and N poles 5a and 5b of the electromagnet 5 is disposed. Specifically, the S pole or N pole of the electromagnet 5 is provided on the other side (opposite side) with respect to the inlet 2 on one side of the cyclone 1.
When a current is passed through the electromagnet 5, magnetic fields 5 and 6 are generated, and a strong magnetic force is generated in both the S pole and the N pole 5a and 5b.
 磁性粒子や磁性フロックを含む被処理液の流体7が、不図示のポンプによって、流入口2から、入口部1aを通過してサイクロン1の内部に流入する(図2の矢印α0)。流入した被処理液の流体7は、円筒台部1bの側壁面1b1に案内されて、回って流れる(図2の実線矢印α1)。 The fluid 7 to be treated containing magnetic particles and magnetic flocs flows from the inlet 2 through the inlet 1a into the cyclone 1 (arrow α0 in FIG. 2) by a pump (not shown). The fluid 7 of the liquid to be treated which flows in is guided by the side wall surface 1b1 of the cylindrical base portion 1b and flows around (solid line arrow α1 in FIG. 2).
 この際、電磁石5の磁極5a、5bの磁気力によって、流体7に含まれる磁性粒子や磁性フロックは円筒台部1bの側壁面1b1に向けて引き付けられる。つまり、磁気による停止力が働く。
 そして、磁性粒子や磁性フロックは磁性粒子、磁性フロック以外の流体7より比重が重いので、破線矢印α2のように、磁気サイクロン1の円錐側壁9に沿って下降し、下流出口4を通過して排出される(図2の矢印α5)。
At this time, magnetic particles and magnetic flocs contained in the fluid 7 are attracted toward the side wall surface 1b1 of the cylindrical base portion 1b by the magnetic force of the magnetic poles 5a and 5b of the electromagnet 5. That is, the magnetic stopping force works.
Since the specific gravity of the magnetic particles and magnetic flocs is heavier than that of the fluid 7 other than the magnetic particles and magnetic flocs, the magnetic particles and magnetic flocs descend along the conical side wall 9 of the magnetic cyclone 1 and pass through the downstream outlet 4 as indicated by the broken arrow α2. It is discharged (arrow α5 in FIG. 2).
 一方、磁性粒子や磁性フロック以外の水等の流体7aは非磁性体であり、磁気力の影響を受けず、つまり磁気による停止力は働かず、しかも流体7より比重が軽い。そのため、遠心力を受けて円筒台部1bの側壁面1b1に案内されて上向きに回転する流れとなる(図2の矢印α3)。そして、円筒形状の上円筒部1eに流入して廻って流れ上昇し、上流出口3より排出される(図2の矢印α4)。これにより、磁性粒子や磁性フロックを含む流体7は、磁性粒子や磁性フロックと、磁性粒子、磁性フロック以外の流体7aとに分離される。 On the other hand, the fluid 7a such as water other than the magnetic particles and the magnetic floc is a non-magnetic material, and is not affected by the magnetic force, that is, the magnetic stopping force does not work, and the specific gravity is lighter than that of the fluid 7. Therefore, it receives a centrifugal force and is guided by the side wall surface 1b1 of the cylindrical base portion 1b to rotate upward (arrow α3 in FIG. 2). And it flows into the upper cylindrical part 1e of the cylindrical shape, flows up, and is discharged from the upstream outlet 3 (arrow α4 in FIG. 2). Thereby, the fluid 7 containing the magnetic particles and the magnetic floc is separated into the magnetic particles and the magnetic floc and the fluid 7a other than the magnetic particles and the magnetic floc.
 図3は、実施形態1の磁気サイクロン装置を上方から見た構成例を示す。
 サイクロン1の流入口2から侵入した流体7中の磁性粒子または磁性フロック10、11、12は、流体力および電磁石5によって発生した磁気力によって、引っ張られ実線の細い矢印α0の方向に進行し、磁性粒子または磁性フロック20、21、22のように、サイクロン1の内周面の側壁面1b1近くに移動する。側壁面1b1周辺は摩擦により流速がゼロに近い低速のため、さらには磁気による停止力により磁性粒子または磁性フロック20、21、22は、他の流体7の流れに乗ることはできず、側壁面1b1に付着するかその近傍に存在する。
 磁性粒子または磁性フロック20、21、22は、比重が1より大きいので、流体7中から逆円錐部1cの円錐側壁9に沿って自然落下し、下流出口4から排出される。
FIG. 3 shows a configuration example of the magnetic cyclone device according to the first embodiment viewed from above.
Magnetic particles or magnetic flocs 10, 11, 12 in the fluid 7 entering from the inlet 2 of the cyclone 1 are pulled by the fluid force and the magnetic force generated by the electromagnet 5 and travel in the direction of the thin solid arrow α 0, Like the magnetic particles or the magnetic flocs 20, 21, 22, the cyclone 1 moves near the side wall surface 1b1 of the inner peripheral surface. Since the flow velocity around the side wall surface 1b1 is close to zero due to friction, the magnetic particles or the magnetic flocs 20, 21, and 22 cannot get on the flow of other fluids 7 due to the magnetic stopping force. It adheres to 1b1 or exists in the vicinity thereof.
Since the magnetic particles or the magnetic flocs 20, 21, 22 have a specific gravity larger than 1, they naturally fall from the fluid 7 along the conical side wall 9 of the inverted conical portion 1 c and are discharged from the downstream outlet 4.
 以上のことから、流入口2から流入する流体7の流量をQ1とし、下流出口4(図2参照)から排出される磁性粒子や磁性粒子が含まれる磁性フロックの流量をQ2とし、上流出口3(図2参照)から排出される処理水(磁性粒子や磁性フロック以外の水等の流体7a)の流量をQ3とすると、
   Q1=Q2+Q3
 と表される。
From the above, the flow rate of the fluid 7 flowing in from the inflow port 2 is Q1, the flow rate of magnetic particles discharged from the downstream outlet 4 (see FIG. 2) and the magnetic floc containing magnetic particles is Q2, and the upstream outlet 3 When the flow rate of treated water (fluid 7a such as water other than magnetic particles and magnetic floc) discharged from (see FIG. 2) is Q3,
Q1 = Q2 + Q3
It is expressed.
 石油等の水を利用した液状物質の生産において、生産物は、水と混合した状態、つまり、随伴水という形で生産される。さらに、生産物が液体の場合や、下水処理場や藻類培養場等でも水との比重差が少ない物質を水から分離する場合等、比重差や遠心力を利用した分離方法では、効率よい分離は困難である。
 そこで、実施形態1では、磁性粒子や磁性粉を石油や藻類と凝集させて、フロックを作り、分離することで、高性能な分離を可能としている。
In the production of liquid substances using water such as petroleum, the product is produced in a mixed state with water, that is, in the form of accompanying water. In addition, separation methods using specific gravity differences or centrifugal force, such as when the product is a liquid, or when separating substances with small specific gravity differences from water, such as sewage treatment plants and algae culture plants, are effective separations. It is difficult.
Thus, in the first embodiment, high-performance separation is possible by aggregating magnetic particles and magnetic powder with petroleum and algae to form and separate flocs.
 上記構成によれば、磁性粒子や磁性フロックを連続的にサイクロン1で分離するため、サイクロン1に入ってくる磁性粒子や磁性フロックの移動方向と同じ方向、または直交方向に電磁石5の磁極5a、5bの何れかの磁気力で引っ張ることで、磁性粒子や磁性フロックをサイクロン1の側壁面1b1近傍に引き付ける。 According to the above configuration, since the magnetic particles and the magnetic floc are continuously separated by the cyclone 1, the magnetic poles 5a of the electromagnet 5 are arranged in the same direction as, or perpendicular to, the moving direction of the magnetic particles and the magnetic floc entering the cyclone 1. The magnetic particles and the magnetic floc are attracted to the vicinity of the side wall surface 1b1 of the cyclone 1 by pulling with any one of the magnetic forces 5b.
 サイクロン1の側壁面1b1近傍の流速はゼロに近いため、さらには磁気力により磁性粒子や磁性フロックの速度をほぼゼロに落とすことで、磁性粒子や磁性フロックは、逆円錐部1cの円錐側壁9に落下する。円錐側壁9は、重力方向に対して、斜めの傾斜があるため、磁性粒子や磁性フロックは、重力によって、円錐側壁9に沿って下降する。その結果、磁性粒子や磁性フロックは、サイクロン1の側面に沿って下降して下流出口4から排出される。 Since the flow velocity in the vicinity of the side wall surface 1b1 of the cyclone 1 is close to zero, the magnetic particles and the magnetic flocs are further reduced to zero by the magnetic force, so that the magnetic particles and the magnetic flocs become conical side walls 9 of the inverted conical portion 1c. Fall into. Since the conical side wall 9 has an oblique inclination with respect to the direction of gravity, the magnetic particles and the magnetic flocs descend along the conical side wall 9 due to gravity. As a result, the magnetic particles and the magnetic floc descend along the side surface of the cyclone 1 and are discharged from the downstream outlet 4.
 よって、フィルタを用いることなく汚濁水中の異物、浮遊物質を除去し、浄化水を取り出すことができる。そのため、フィルタ(膜)を必要とせず取扱い性に優れ、フィルタ(膜)やフィルタ交換の作業がなく、ランニングコストが低い。
 従って、低コスト、取り扱い容易に汚濁水から浄化水を取り出すことが可能である。
 以上のことから、取扱い性に優れ低コストの磁気サイクロン装置1Sを実現することができる。
Therefore, it is possible to remove foreign substances and suspended substances in the polluted water without using a filter, and to take out purified water. Therefore, the filter (membrane) is not required and the handling is excellent, the filter (membrane) and the filter are not replaced, and the running cost is low.
Therefore, it is possible to take out purified water from the polluted water with low cost and easy handling.
From the above, it is possible to realize a magnetic cyclone device 1S that is excellent in handleability and low in cost.
<<実施形態2>>
 図4に、実施形態2に係る磁気サイクロン装置を側方から見た内部構成例を示す。
 実施形態2の磁気サイクロン装置2Sは、第1サイクロン21Aと第2サイクロン21Bとが、電磁石25を挟んで配置される。第1・第2サイクロン21A、21Bは、プラスチック、アルミニウムなどの非磁性体で構成されている。
<< Embodiment 2 >>
FIG. 4 shows an internal configuration example of the magnetic cyclone device according to the second embodiment viewed from the side.
In the magnetic cyclone device 2S of the second embodiment, a first cyclone 21A and a second cyclone 21B are arranged with an electromagnet 25 interposed therebetween. The first and second cyclones 21A and 21B are made of a nonmagnetic material such as plastic or aluminum.
 電磁石25はS極とN極の磁極25a、25bをもつ。そこで、電磁石25の磁極25a、25bの何れか一方の磁極を第1サイクロン21Aに対向して配置し、何れか他方の磁極を第2サイクロン21Bに対向して配置している。
 磁気サイクロン装置2Sにおいて、その他の構成は、実施形態1と同様であるから、同様な構成要素には20番台の符号を付して示し、詳細な説明は省略する。
The electromagnet 25 has S poles and N poles 25a and 25b. Therefore, one of the magnetic poles 25a and 25b of the electromagnet 25 is disposed to face the first cyclone 21A, and the other magnetic pole is disposed to face the second cyclone 21B.
In the magnetic cyclone device 2S, the other configuration is the same as that of the first embodiment, and therefore, the same components are denoted by reference numerals in the 20th order, and detailed description thereof is omitted.
 第1サイクロン21Aは、第1入口部21a1と第1円筒台部21b1、第1逆円錐部21c1と、第1下円筒部21d1と第1上円筒部21e1とを有する。
 第1下円筒部21d1には、第1下流出口24aが設けられる。
The first cyclone 21A includes a first inlet portion 21a1, a first cylindrical base portion 21b1, a first inverted conical portion 21c1, a first lower cylindrical portion 21d1, and a first upper cylindrical portion 21e1.
A first downstream outlet 24a is provided in the first lower cylindrical portion 21d1.
 第1上円筒部21e1は、内面が円筒形状をもつ。第1上円筒部21e1は、第1円筒台部21b1の中央に形成される。第1上円筒部21e1は、下方が第1逆円錐部21c1または第1円筒台部21b1の内部に開口され、上方が第1上流出口23aとして処理水回収部(図示せず)に連通されている。 The inner surface of the first upper cylindrical portion 21e1 has a cylindrical shape. The first upper cylindrical portion 21e1 is formed at the center of the first cylindrical base portion 21b1. The lower part of the first upper cylindrical part 21e1 is opened inside the first inverted conical part 21c1 or the first cylindrical base part 21b1, and the upper part is communicated with a treated water recovery part (not shown) as a first upstream outlet 23a. Yes.
 同様に、第2サイクロン21Bは、第2入口部21a2と第2円筒台部21b3、第2逆円錐部21c2と、第2下円筒部21d2と第2上円筒部21e2とを有する。第2下円筒部21d2には、第2下流出口24bが設けられる。第2上円筒部21e2は、内面が円筒形状をもつ。第2上円筒部21e2は、第2円筒台部21b3の中央に形成される。第2上円筒部21e2は、下方が第2逆円錐部21c2または第2円筒台部21b3の内部に開口され、上方が第2上流出口23bとして処理水回収部(図示せず)に連通されている。 Similarly, the second cyclone 21B includes a second inlet portion 21a2, a second cylindrical base portion 21b3, a second inverted conical portion 21c2, a second lower cylindrical portion 21d2, and a second upper cylindrical portion 21e2. A second downstream outlet 24b is provided in the second lower cylindrical portion 21d2. The inner surface of the second upper cylindrical portion 21e2 has a cylindrical shape. The second upper cylindrical portion 21e2 is formed at the center of the second cylindrical base portion 21b3. The lower part of the second upper cylindrical part 21e2 is opened inside the second inverted conical part 21c2 or the second cylindrical base part 21b3, and the upper part is communicated with a treated water recovery part (not shown) as a second upstream outlet 23b. Yes.
 磁性粒子や磁性フロックを含む流体103、104は、それぞれ、第1サイクロン21Aの第1流入口22aと第2サイクロン21Bの第1流入口22bから、第1円筒台部21b1と第2円筒台部21b3とに反対方向から流入する。
 第1サイクロン21Aに流入した流体103および第2サイクロン21Bに流入した流体104が進む方向は、電磁石25の磁極25a、25bに向かう方向である。電磁石25は、制御部2Cにより電流の制御が行われる。
The fluids 103 and 104 containing magnetic particles and magnetic flocs are respectively supplied from the first inlet 22a of the first cyclone 21A and the first inlet 22b of the second cyclone 21B from the first cylindrical base 21b1 and the second cylindrical base. 21b3 from the opposite direction.
The direction in which the fluid 103 flowing into the first cyclone 21A and the fluid 104 flowing into the second cyclone 21B travel is the direction toward the magnetic poles 25a and 25b of the electromagnet 25. The electromagnet 25 is controlled in current by the control unit 2C.
 第1サイクロン21A内の流体103の磁性粒子や磁性フロックは、電磁石25の一方の磁極25aに発生する磁気力で、第1円筒台部21b1の第1側壁面21b2に引き付けられ、流速が大幅に低下する。 The magnetic particles and magnetic floc of the fluid 103 in the first cyclone 21A are attracted to the first side wall surface 21b2 of the first cylindrical base portion 21b1 by the magnetic force generated in one magnetic pole 25a of the electromagnet 25, and the flow velocity is greatly increased. descend.
 そして、第1サイクロン21Aの第1側壁面21b2に引き付けられた磁性粒子や磁性フロックは、水等の流体より比重が大きいので、第1逆円錐部21c1を矢印α22aに示すように回転しながら落下する。
 最終的に、磁性粒子や磁性フロックは、第1サイクロン21Aの下流出口24aから排出される(図4の矢印α25a)。
Since the magnetic particles and magnetic floc attracted to the first side wall surface 21b2 of the first cyclone 21A have a specific gravity greater than that of fluid such as water, the first reverse cone portion 21c1 is rotated while rotating as indicated by an arrow α22a. To do.
Finally, the magnetic particles and the magnetic floc are discharged from the downstream outlet 24a of the first cyclone 21A (arrow α25a in FIG. 4).
 一方、磁性粒子や磁性フロックが除去された流体103aは比重が流体103より軽いので、流入する流体103に押され、矢印α23aのように、らせん状の流れとなって上昇し、第1上円筒部21e1の第1上流出口23aから排出される(図4の矢印α24a)。 On the other hand, the fluid 103a from which magnetic particles and magnetic flocs have been removed has a specific gravity lighter than that of the fluid 103, so that it is pushed by the inflowing fluid 103 and rises in a spiral flow as indicated by the arrow α23a. The gas is discharged from the first upstream outlet 23a of the portion 21e1 (arrow α24a in FIG. 4).
 同様に、第2サイクロン21B内の流体104の磁性粒子や磁性フロックは、電磁石25の他方の磁極25bに発生する磁気力で、第2サイクロン21Bの第2側壁面21b4に引き付けられ、流速が大幅に低下する。磁性粒子や磁性フロックと流体104aとの速度差が生じる。 Similarly, the magnetic particles and magnetic floc of the fluid 104 in the second cyclone 21B are attracted to the second side wall surface 21b4 of the second cyclone 21B by the magnetic force generated in the other magnetic pole 25b of the electromagnet 25, and the flow velocity is greatly increased. To drop. A speed difference occurs between the magnetic particles and magnetic floc and the fluid 104a.
 そして、第2サイクロン21Bの第2側壁面21b4に引き付けられた磁性粒子や磁性フロックは、水等の流体より比重が大きいので、逆円錐部21c2を矢印α22bに示すように回転しながら落下する。
 最終的に、磁性粒子や磁性フロックは、第2サイクロン21Bの第2下流出口24bから排出される(図4の矢印α25b)。
Since the magnetic particles and magnetic floc attracted to the second side wall surface 21b4 of the second cyclone 21B have a specific gravity greater than that of fluid such as water, the inverted cone portion 21c2 falls while rotating as indicated by an arrow α22b.
Finally, the magnetic particles and the magnetic floc are discharged from the second downstream outlet 24b of the second cyclone 21B (arrow α25b in FIG. 4).
 一方、磁性粒子や磁性フロックが除去された流体104aは比重が流体104より軽いので、流入する流体104に押され、矢印α23bのように、らせん状の流れとなって上昇し、第2上円筒部21e2の第2上流出口23bから排出される(図4の矢印α24b)。 On the other hand, the fluid 104a from which the magnetic particles and magnetic flocs have been removed has a specific gravity lighter than that of the fluid 104, so that it is pushed by the inflowing fluid 104 and rises in a spiral flow as indicated by the arrow α23b. The gas is discharged from the second upstream outlet 23b of the portion 21e2 (arrow α24b in FIG. 4).
<磁気サイクロン装置2Sの制御パターン>
 図5は、磁気サイクロン装置の制御パターンの例を示す。図5の横軸に(経過)時間(T)を示し、縦軸に電流(I)の大きさを示す。
 電磁石25に磁気力を発生させるために、電磁石25に加える電流のパターンの例を図5に示す。
<Control pattern of magnetic cyclone device 2S>
FIG. 5 shows an example of a control pattern of the magnetic cyclone device. The horizontal axis of FIG. 5 shows (elapsed) time (T), and the vertical axis shows the magnitude of current (I).
An example of a pattern of current applied to the electromagnet 25 in order to generate a magnetic force in the electromagnet 25 is shown in FIG.
 一定の電流値を加える電流パターン200は制御が簡単であるが、図4に示す第1サイクロン21Aの第1側壁面21b2と第2サイクロン21Bの第2側壁面21b4とに流体中の磁性粒子や磁性フロックが付着し続けるおそれがある。そこで、制御パターンとしてはパルス的な電流パターン201が最適である。電流を印加する加電時間202、203、204、205、206、207は、基本的には同じ時間とするが、異なる時間に変化させることも可能ある。 The current pattern 200 for applying a constant current value is easy to control, but the magnetic particles in the fluid and the like on the first side wall surface 21b2 of the first cyclone 21A and the second side wall surface 21b4 of the second cyclone 21B shown in FIG. There is a risk that magnetic flocs will continue to adhere. Therefore, the pulse current pattern 201 is optimal as the control pattern. The heating times 202, 203, 204, 205, 206, and 207 for applying the current are basically the same time, but can be changed to different times.
 一方、電流を印加しない非加電時間210、211、212、213、214も基本的には同じ時間であるが、変化させることも可能である。
 被被処理液体中の磁性フロック等の濃度が同じとして、被処理液体の流体103、104の流速が遅いと第1サイクロン21Aと第2サイクロン21Bとに流入する流体103、104中の磁性粒子や磁性フロック(処理すべき量)が少なくなる一方、被処理液体の流体103、104の流速が遅いと第1サイクロン21Aと第2サイクロン21Bとに流入する流体103、104中の磁性粒子や磁性フロック(処理すべき量)が多くなる。
On the other hand, the non-heating times 210, 211, 212, 213, and 214 in which no current is applied are basically the same time, but can be changed.
Assuming that the concentration of magnetic flocs and the like in the liquid to be processed is the same, the magnetic particles in the fluids 103 and 104 flowing into the first cyclone 21A and the second cyclone 21B when the flow rates of the fluids 103 and 104 of the liquid to be processed are low While the magnetic flocs (amount to be processed) are reduced, the magnetic particles and magnetic flocs in the fluids 103 and 104 flowing into the first cyclone 21A and the second cyclone 21B when the flow rates of the fluids 103 and 104 of the liquid to be processed are low. (Amount to be processed) increases.
 そこで、加電時間202、203、204、205、206、207は、流入する流体の流速によって変化させる。流速に応じて、第1サイクロン21A内と第2サイクロン21B内とを一周する時間とほぼ同じ時間であることが望ましい。 Therefore, the charging times 202, 203, 204, 205, 206, and 207 are changed depending on the flow velocity of the flowing fluid. It is desirable that the time is substantially the same as the time for making a round in the first cyclone 21A and the second cyclone 21B depending on the flow velocity.
 上記制御パターンは、間欠的に電磁石25に電流を加えるので、磁性粒子や磁性フロックが第1サイクロン21Aの第1側壁面21b2と第2サイクロン21Bの第2側壁面21b4とに、付着し続けることがない。そのため、流体103、104中の磁性粒子や磁性フロックを効果的にかつ確実に流体103、104中から除去できる。
 なお、以上説明した制御パターンは、実施形態1の磁気サイクロン装置1Sに適用してもよい。
Since the control pattern intermittently applies current to the electromagnet 25, the magnetic particles and the magnetic floc continue to adhere to the first side wall surface 21b2 of the first cyclone 21A and the second side wall surface 21b4 of the second cyclone 21B. There is no. Therefore, the magnetic particles and magnetic floc in the fluids 103 and 104 can be effectively and reliably removed from the fluids 103 and 104.
The control pattern described above may be applied to the magnetic cyclone device 1S of the first embodiment.
 実施形態2の構成によれば、電磁石25は、第1サイクロン21Aの第1円筒台部21b1と第2サイクロン21Bの第2円筒台部21b3との間に磁極25a、25bとを向けて設けられるので、電磁石25が一つで済む。
 2つの第1サイクロン21A、第2サイクロン21Bに対して一つの電磁石25で済むので構成が簡素であり、磁気サイクロン装置2Sの低コスト化が可能である。
According to the configuration of the second embodiment, the electromagnet 25 is provided with the magnetic poles 25a and 25b facing between the first cylindrical base portion 21b1 of the first cyclone 21A and the second cylindrical base portion 21b3 of the second cyclone 21B. Therefore, only one electromagnet 25 is required.
Since one electromagnet 25 is sufficient for the two first cyclones 21A and the second cyclone 21B, the configuration is simple, and the cost of the magnetic cyclone device 2S can be reduced.
 また、磁気サイクロン装置2Sは、2つの第1サイクロン21A、第2サイクロン21Bと一つの電磁石25で構成できるので小型にできる。
 加えて、電磁石25に間欠的に電流を流すことで、流入した磁性粒子や磁性フロックが第1・第2サイクロン21Aの第1・第2円筒台部21b1、21b3の各第1・第2側壁面21b2、21b4に付着し続けることが抑制される。
 従って、低コスト、小型であり、信頼性が高い磁気サイクロン装置2Sを実現できる。
Further, the magnetic cyclone device 2S can be made compact because it can be constituted by the two first cyclones 21A, the second cyclone 21B, and one electromagnet 25.
In addition, by passing an electric current intermittently through the electromagnet 25, the magnetic particles and the magnetic floc that flowed in are first and second sides of the first and second cylindrical base portions 21b1 and 21b3 of the first and second cyclones 21A. The adhesion to the wall surfaces 21b2 and 21b4 is suppressed.
Therefore, it is possible to realize a magnetic cyclone device 2S that is low in cost, small in size, and highly reliable.
<<変形例1>>
 図6は、変形例1に係る磁気サイクロン装置を上方から見た構成例を示す。
 変形例1の磁気サイクロン装置3Sは、第1サイクロン31Aと第2サイクロン31Bとで電磁石35を挟んで配置される。そして、磁気サイクロン装置3Sは、第1サイクロン31Aの入口部31a1の流入方向と第2サイクロン31Bの入口部31a2の流入方向とが逆方向に配置される。第1・第2サイクロン31A、31Bは、プラスチック、アルミニウムなどの非磁性体で構成されている。
<< Modification 1 >>
FIG. 6 shows a configuration example of the magnetic cyclone device according to the first modification viewed from above.
The magnetic cyclone device 3S of Modification 1 is arranged with an electromagnet 35 sandwiched between a first cyclone 31A and a second cyclone 31B. In the magnetic cyclone device 3S, the inflow direction of the inlet portion 31a1 of the first cyclone 31A and the inflow direction of the inlet portion 31a2 of the second cyclone 31B are arranged in opposite directions. The first and second cyclones 31A and 31B are made of a nonmagnetic material such as plastic or aluminum.
 電磁石35は、それぞれの第1サイクロン31Aの第1入口部31a1の流入方向(図6の矢印α31)と第2サイクロン31Bの入口部31a2の流入方向(図6の矢印α32)とに挟まれる位置に配置される。 The electromagnet 35 is sandwiched between the inflow direction of the first inlet portion 31a1 of each first cyclone 31A (arrow α31 in FIG. 6) and the inflow direction of the inlet portion 31a2 of the second cyclone 31B (arrow α32 in FIG. 6). Placed in.
 詳細には、電磁石35の一方の磁極35aを第1サイクロン31Aの第1入口部31a1の流入方向に対向させて第1円筒台部31b1の外周近傍に配置している。また、電磁石35の他方の磁極35bを第2サイクロン31Bの入口部31a2の流入方向に対向させて第2円筒台部31b3の外周近傍に配置している。
 その他の構成は、実施形態2の構成と同様であるので詳細な説明は省略する。
Specifically, one magnetic pole 35a of the electromagnet 35 is disposed in the vicinity of the outer periphery of the first cylindrical base portion 31b1 so as to face the inflow direction of the first inlet portion 31a1 of the first cyclone 31A. Further, the other magnetic pole 35b of the electromagnet 35 is disposed in the vicinity of the outer periphery of the second cylindrical base portion 31b3 so as to face the inflow direction of the inlet portion 31a2 of the second cyclone 31B.
Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted.
 これにより、第1サイクロン31Aの第1入口部31a1に流入する被処理液体の流体中の磁性粒子や磁性フロックが、流体の流れの力(図6の矢印α31)に加えて電磁石35の磁極35aの磁気力により引き付けられる。
 また、第2サイクロン31Bの第2入口部31a2に流入する被処理液体の流体中の磁性粒子や磁性フロックが、流体の流れの力(図6の矢印α32)に加えて電磁石35の磁極35bの磁気力により引き付けられる。
As a result, the magnetic particles and the magnetic floc in the fluid of the liquid to be processed flowing into the first inlet portion 31a1 of the first cyclone 31A are added to the fluid flow force (arrow α31 in FIG. 6), and the magnetic pole 35a of the electromagnet 35. It is attracted by the magnetic force.
Further, the magnetic particles and the magnetic floc in the fluid of the liquid to be processed flowing into the second inlet 31a2 of the second cyclone 31B are added to the magnetic force 35b of the electromagnet 35 in addition to the fluid flow force (arrow α32 in FIG. 6). Attracted by magnetic force.
 そのため、第1サイクロン31Aの第1入口部31a1から流入する流体中の磁性粒子や磁性フロックが、電磁石35の磁極35aの磁気力により、第1円筒台部31b1の第1側壁面31b2の側に引き付けられ、第1側壁面31b2に付着または第1側壁面31b2近傍に存在する。 Therefore, the magnetic particles and magnetic floc in the fluid flowing in from the first inlet portion 31a1 of the first cyclone 31A are moved toward the first side wall surface 31b2 of the first cylindrical base portion 31b1 by the magnetic force of the magnetic pole 35a of the electromagnet 35. The attracted and attached to the first side wall surface 31b2 or the vicinity of the first side wall surface 31b2.
 同様に、第2サイクロン31Bの第2入口部31a2から流入する流体中の磁性粒子や磁性フロックが、電磁石35の磁極35bの磁気力により、第2円筒台部31b3の第2側壁面31b4の側に引き付けられ、第2側壁面31b4に付着または第2側壁面31b4近傍に存在する。 Similarly, the magnetic particles and magnetic floc in the fluid flowing from the second inlet portion 31a2 of the second cyclone 31B are moved to the second side wall surface 31b4 side of the second cylindrical base portion 31b3 by the magnetic force of the magnetic pole 35b of the electromagnet 35. And attached to the second side wall surface 31b4 or in the vicinity of the second side wall surface 31b4.
 その後、第1サイクロン31Aの第1側壁面31b2に付着または第1側壁面31b2近傍に存在する磁性粒子や磁性フロックは、重力により不図示の第1逆円錐部の円錐側壁を滑落して、第1下流出口34aから排出される。一方、磁性粒子や磁性フロックが除去された流体は、第1上流出口33aから取水される。 Thereafter, the magnetic particles and the magnetic flocs adhering to the first side wall surface 31b2 of the first cyclone 31A or existing in the vicinity of the first side wall surface 31b2 slide down on the conical side wall of the first inverted conical portion (not shown) due to gravity. 1 is discharged from the downstream outlet 34a. On the other hand, the fluid from which the magnetic particles and the magnetic floc have been removed is taken from the first upstream outlet 33a.
 同様に、第2サイクロン31Bの第2側壁面31b4に付着または第2側壁面31b4近傍に存在する磁性粒子や磁性フロックは、重力により不図示の第2逆円錐部の円錐側壁を滑落して、第2下流出口34bから排出される。一方、磁性粒子や磁性フロックが除去された流体は、第2上流出口33bから取水される。 Similarly, magnetic particles and magnetic flocks attached to the second side wall surface 31b4 of the second cyclone 31B or present in the vicinity of the second side wall surface 31b4 slide down the conical side wall of the second inverted conical portion (not shown) due to gravity, It is discharged from the second downstream outlet 34b. On the other hand, the fluid from which the magnetic particles and magnetic floc have been removed is taken from the second upstream outlet 33b.
 上記構成によれば、第1サイクロン31Aの第1入口部31a1の流入方向と第2サイクロン31Bの第2入口部31a2の流入方向とが逆方向である。
 そして、電磁石35の磁極35aと磁極35bを第1サイクロン31Aの第1入口部31a1の流入方向と第2サイクロン31Bの第2入口部31a2の流入方向とに向かい合う位置に配置する。
 そのため、流体中の磁性粒子や磁性フロックがそれぞれ第1円筒台部31b1の第1側壁面31b2と第2円筒台部31b3の第2側壁面31b4とに、流体の流れの力(図6の矢印α31、α32)に加えて電磁石35の磁極35、35bの各引力により引き寄せられる。
 従って、効果的に流体中の磁性粒子や磁性フロックを流体から分離することができる。
According to the above configuration, the inflow direction of the first inlet portion 31a1 of the first cyclone 31A is opposite to the inflow direction of the second inlet portion 31a2 of the second cyclone 31B.
And the magnetic pole 35a and the magnetic pole 35b of the electromagnet 35 are arrange | positioned in the position facing the inflow direction of the 1st entrance part 31a1 of 1st cyclone 31A, and the inflow direction of the 2nd entrance part 31a2 of 2nd cyclone 31B.
Therefore, the magnetic particles and the magnetic flocs in the fluid flow on the first side wall surface 31b2 of the first cylindrical base part 31b1 and the second side wall surface 31b4 of the second cylindrical base part 31b3 (arrows in FIG. 6). In addition to [alpha] 31 and [alpha] 32), the magnetic poles 35 and 35b of the electromagnet 35 are attracted to each other.
Therefore, magnetic particles and magnetic flocs in the fluid can be effectively separated from the fluid.
<<変形例2>>
 図7は、変形例2に係る磁気サイクロン装置を上方から見た構成例を示す。
 変形例2の磁気サイクロン装置4Sの第1サイクロン41Aと第2サイクロン41Bは、図7に示すように、電磁石45を挟んで対称に配置されている。第1・第2サイクロン41A、41Bは、プラスチック、アルミニウムなどの非磁性体で構成されている。
<< Modification 2 >>
FIG. 7 shows a configuration example of the magnetic cyclone device according to the second modification viewed from above.
As shown in FIG. 7, the first cyclone 41 </ b> A and the second cyclone 41 </ b> B of the magnetic cyclone device 4 </ b> S of Modification 2 are arranged symmetrically with the electromagnet 45 interposed therebetween. The first and second cyclones 41A and 41B are made of a nonmagnetic material such as plastic or aluminum.
 電磁石45は、第1サイクロン41Aと第2サイクロン41Bのそれぞれの第1入口部41a1と第2入口部41a2の各流入方向(図7の矢印α41、α42)に直交した位置に配置されている。変形例2では、磁気力は流体の流れに直交して、第1入口部41a1および第2入口部41a2の各最外面の流路に向かって該磁性粒子や磁性フロックを吸引する。この場合、流路の磁性粒子や磁性フロックが磁気力で第1側壁面41b2、第2側壁面41b4に固着する可能性は低いため、電磁石45は永久磁石でも構わない。その他の構成は、実施形態2の構成と同様であるので詳細な説明は省略する。 The electromagnet 45 is disposed at a position orthogonal to each inflow direction (arrows α41 and α42 in FIG. 7) of the first inlet 41a1 and the second inlet 41a2 of the first cyclone 41A and the second cyclone 41B. In the second modification, the magnetic force is perpendicular to the fluid flow, and attracts the magnetic particles and magnetic flocs toward the channels on the outermost surfaces of the first inlet portion 41a1 and the second inlet portion 41a2. In this case, the electromagnet 45 may be a permanent magnet because there is a low possibility that the magnetic particles and the magnetic floc in the flow path are fixed to the first side wall surface 41b2 and the second side wall surface 41b4 by magnetic force. Since other configurations are the same as those of the second embodiment, detailed description thereof is omitted.
 磁気サイクロン装置4Sでは、電磁石45が第1サイクロン41Aの第1円筒台部41b1と第2サイクロン41Bの第2円筒台部41b3とに挟まれて配置される。
 そして、第1サイクロン41Aの第1入口部41a1からの流入方向に対して、電磁石45のN極とS極の何れか一方の磁極45aが交差する方向の略垂直方向であって第1円筒台部41b1の近傍に配置されている。
In the magnetic cyclone device 4S, the electromagnet 45 is disposed between the first cylindrical base part 41b1 of the first cyclone 41A and the second cylindrical base part 41b3 of the second cyclone 41B.
The first cylindrical base is substantially perpendicular to the direction in which one of the N and S poles of the electromagnet 45 intersects the inflow direction from the first inlet 41a1 of the first cyclone 41A. It arrange | positions in the vicinity of the part 41b1.
 また、第2サイクロン41Bの第2入口部41a2からの流入方向に対して、電磁石45のN極とS極の何れか他方の磁極45bが交差する方向の略垂直方向であって第2円筒台部41b3の近傍に配置されている。 Further, the second cylindrical base is substantially perpendicular to the direction in which the other magnetic pole 45b of the N pole and S pole of the electromagnet 45 intersects with the inflow direction from the second inlet portion 41a2 of the second cyclone 41B. It arrange | positions in the vicinity of the part 41b3.
 第1サイクロン41Aには、第1入口部41a1から、被処理液体の磁性フロックを含有する流体が第1円筒台部41b1に流入する(図7の矢印α41)。電磁石45のN極とS極の何れか一方の磁極45aが、第1入口部41a1からの被処理液体の磁性フロックを含有する流体の流入方向に交差する略垂直方向に配置され、流体中の磁性フロックを第1円筒台部41b1の第1側壁面41b2に向けて引き付ける。 In the first cyclone 41A, the fluid containing the magnetic floc of the liquid to be processed flows into the first cylindrical base 41b1 from the first inlet 41a1 (arrow α41 in FIG. 7). Either one of the N pole and the S pole of the electromagnet 45 is arranged in a substantially vertical direction intersecting the inflow direction of the fluid containing the magnetic floc of the liquid to be processed from the first inlet portion 41a1, and is in the fluid. The magnetic floc is attracted toward the first side wall surface 41b2 of the first cylindrical base portion 41b1.
 これにより、流体中の磁性フロックを第1側壁面41b2に付着または第1側壁面41b2近傍に存在させる。そして、磁性フロックは、重力により不図示の第1逆円錐部の円錐側壁を滑落して、第1下流出口44aから下方に排出される。
 一方、磁性粒子や磁性フロックが除去された流体は、第1上流出口43aから取水される。
As a result, the magnetic floc in the fluid adheres to the first side wall surface 41b2 or exists in the vicinity of the first side wall surface 41b2. The magnetic flock slides down on the conical side wall of the first inverted conical portion (not shown) due to gravity and is discharged downward from the first downstream outlet 44a.
On the other hand, the fluid from which the magnetic particles and magnetic floc have been removed is taken from the first upstream outlet 43a.
 第2サイクロン41Bには、第2入口部41a2から、被処理液体の磁性フロックを含有する流体が第2円筒台部41b3に流入する(図7の矢印α42)。電磁石45のN極とS極の何れか他方の磁極45bが、第2入口部41a2からの被処理液体の磁性フロックを含有する流体の流入方向に交差する略垂直方向に方向に配置され、流体中の磁性フロックを第2円筒台部41b3の第2側壁面41b4に向けて引き付ける。 In the second cyclone 41B, the fluid containing the magnetic floc of the liquid to be processed flows into the second cylindrical base 41b3 from the second inlet 41a2 (arrow α42 in FIG. 7). The other magnetic pole 45b of the N pole and the S pole of the electromagnet 45 is disposed in a direction substantially perpendicular to the inflow direction of the fluid containing the magnetic floc of the liquid to be processed from the second inlet portion 41a2, and the fluid The inside magnetic floc is attracted toward the second side wall surface 41b4 of the second cylindrical base portion 41b3.
 これにより、流体中の磁性フロックを第2側壁面41b4に付着または第2側壁面41b4近傍に存在させる。そして、磁性フロックは、重力により不図示の第2逆円錐部の円錐側壁を滑落して、第2下流出口44bから下方に排出される。
 一方、磁性粒子や磁性フロックが除去された流体は、第2上流出口43bから取水される。
As a result, the magnetic floc in the fluid adheres to the second side wall surface 41b4 or exists in the vicinity of the second side wall surface 41b4. The magnetic flock slides down the conical side wall of the second reverse conical portion (not shown) due to gravity and is discharged downward from the second downstream outlet 44b.
On the other hand, the fluid from which the magnetic particles and magnetic floc have been removed is taken from the second upstream outlet 43b.
 上記構成によれば、電磁石45を第1サイクロン41Aの第1入口部41a1の流入方向と第2サイクロン41Bの第2入口部41a2の流入方向とに略垂直な方向に電磁石45のN極とS極の磁極45a、45bを配置する。そのため、流体中の磁性粒子や磁性フロックが、それぞれ第1円筒台部41b1の第1側壁面41b2と第2円筒台部41b3の第2側壁面41b4とに磁力により効果的に引き寄せられる。
 従って、流体中の磁性粒子や磁性フロックを流体から効果的に分離することができる。
According to the above configuration, the N pole of the electromagnet 45 and the S in the direction substantially perpendicular to the inflow direction of the first inlet portion 41a1 of the first cyclone 41A and the inflow direction of the second inlet portion 41a2 of the second cyclone 41B. Polar poles 45a and 45b are arranged. Therefore, the magnetic particles and the magnetic floc in the fluid are effectively attracted by the magnetic force to the first side wall surface 41b2 of the first cylindrical base part 41b1 and the second side wall surface 41b4 of the second cylindrical base part 41b3, respectively.
Therefore, magnetic particles and magnetic flocs in the fluid can be effectively separated from the fluid.
 なお、図7では、電磁石45の磁極45a、45bが、第1サイクロン41Aの第1入口部41a1からの流入方向と第2サイクロン41Bの第2入口部41a2からの流入方向とに略垂直の場合を説明したが、交差するように配置すれば必ずしも垂直でなくてもよい。 In FIG. 7, the magnetic poles 45a and 45b of the electromagnet 45 are substantially perpendicular to the inflow direction from the first inlet portion 41a1 of the first cyclone 41A and the inflow direction from the second inlet portion 41a2 of the second cyclone 41B. However, as long as they are arranged so as to cross each other, they are not necessarily vertical.
 なお、前記実施形態1、2、変形例1、2では、電磁石5、25、35、45を例示して説明したが、電磁石5、25、35、45に代えて永久磁石を用いてもよい。 In the first and second embodiments and the first and second modifications, the electromagnets 5, 25, 35, and 45 are described as examples. However, permanent magnets may be used instead of the electromagnets 5, 25, 35, and 45. .
 また、前記実施形態1、2、変形例1、2で説明した各構成を適宜組み合わせて構成してもよい。 Further, the configurations described in Embodiments 1 and 2 and Modifications 1 and 2 may be combined as appropriate.
 また、前記実施形態1、2、変形例1、2は、本発明の例を示したものであり、本発明は特許請求の範囲内で様々な具体的形態、変形形態が可能である。 The first and second embodiments and the first and second modified examples 1 and 2 show examples of the present invention, and the present invention can have various specific forms and modified forms within the scope of the claims.
 本発明では、磁性粒子や磁性粉を上記石油や藻類と凝集させて、フロックを作り、分離することで、高性能な分離が可能となる。従来、高効率な処理が困難であった石油生産現場や下水処理場、藻類等の培養施設での利用の可能性は高い。
 また、バラスト水の浄化装置にも活用が可能である。
In the present invention, high-performance separation is possible by agglomerating the magnetic particles and magnetic powder with the petroleum and algae to form and separate flocs. There is a high possibility of use in oil production sites, sewage treatment plants, and culture facilities such as algae, which have been difficult to achieve with high efficiency.
It can also be used in ballast water purifiers.
 1   磁気サイクロン(サイクロン)
 1b  円筒台部
 1b1 側壁面(内面)
 1c  逆円錐部(円錐部)
 1e  上円筒部(円筒部)
 2   流入口
 3   上流出口
 4   下流出口
 5、25  電磁石(磁石)
 6  磁場
 7  流体(被処理液体)
 21A、31A、41A 第1サイクロン
 21B、31B、41B 第2サイクロン
 22a 第1流入口
 22b 第2流入口
 21b1 第1円筒台部
 21b2 第1側壁面(内面)
 21b3 第2円筒台部
 21b4 第2側壁面(内面)
 21c1 第1逆円錐部(第1円錐部)
 21c2 第2逆円錐部(第2円錐部)
 21e1 第1上円筒部(第1円筒部)
 21e2 第2上円筒部(第2円筒部)
 24a 第1下流出口
 24b 第2下流出口
 31b2 第1側壁面(内面)
 31b4 第2側壁面(内面)
 41b2 第1側壁面(内面)
 41b4 第2側壁面(内面)
 103 流体(第1被処理液体)
 104 流体(第2被処理液体)
 1C、2C 制御部
1 Magnetic Cyclone (Cyclone)
1b Cylindrical base 1b1 Side wall surface (inner surface)
1c Reverse cone part (cone part)
1e Upper cylindrical part (cylindrical part)
2 Inlet 3 Upstream outlet 4 Downstream outlet 5, 25 Electromagnet
6 Magnetic field 7 Fluid (liquid to be treated)
21A, 31A, 41A 1st cyclone 21B, 31B, 41B 2nd cyclone 22a 1st inlet 22b 2nd inlet 21b1 1st cylindrical base part 21b2 1st side wall surface (inner surface)
21b3 2nd cylindrical base part 21b4 2nd side wall surface (inner surface)
21c1 1st inverted cone part (1st cone part)
21c2 2nd inverted cone part (2nd cone part)
21e1 first upper cylindrical portion (first cylindrical portion)
21e2 Second upper cylindrical portion (second cylindrical portion)
24a First downstream outlet 24b Second downstream outlet 31b2 First side wall surface (inner surface)
31b4 Second side wall surface (inner surface)
41b2 first side wall surface (inner surface)
41b4 Second side wall surface (inner surface)
103 fluid (first liquid to be treated)
104 Fluid (second treated liquid)
1C, 2C control unit

Claims (8)

  1.  下方に頂点を向けた円錐台形状であり、側方に流入口を有する円筒形状の円筒台部と当該円筒台部の下方に連続して形成され、前記頂点近傍に下流出口が設けられる円錐形状の円錐部とを有するサイクロンと、
     前記円筒台部の中央部に配置され上流出口が設けられる円筒部と、
     前記円筒台部の外周近くに設けられる磁石とを備え、
     前記流入口から前記円筒台部内に流入する被処理液体に含有される磁性フロックを、前記円筒台部の内面近傍に前記電磁石で引き付けた後、前記下流出口から排出し、磁性フロックが除去された被処理液体を前記円筒部の上流出口から流出させる
     ことを特徴とする磁気サイクロン装置。
    A conical shape having a truncated cone shape with the apex facing downward, a cylindrical cylindrical portion having an inflow port on the side, and continuously formed below the cylindrical mount portion, and a downstream outlet provided in the vicinity of the apex A cyclone having a conical portion of
    A cylindrical portion disposed in the central portion of the cylindrical base portion and provided with an upstream outlet;
    A magnet provided near the outer periphery of the cylindrical base part,
    After attracting the magnetic floc contained in the liquid to be processed flowing into the cylindrical pedestal from the inlet through the electromagnet in the vicinity of the inner surface of the cylindrical pedestal, the magnetic floc was removed from the downstream outlet. A magnetic cyclone device characterized in that a liquid to be treated is allowed to flow out from an upstream outlet of the cylindrical portion.
  2.  請求項1に記載の磁気サイクロン装置において、
     前記磁石の磁極は、
     前記被処理液体の前記流入口から流入する被処理液体の流入方向に対向して配置され、前記磁性フロックを前記流入方向に引き付ける
     ことを特徴とする磁気サイクロン装置。
    The magnetic cyclone device according to claim 1,
    The magnetic pole of the magnet is
    A magnetic cyclone device, wherein the magnetic cyclone device is arranged to face the inflow direction of the liquid to be processed flowing from the inflow port of the liquid to be processed, and attracts the magnetic floc in the inflow direction.
  3.  請求項1に記載の磁気サイクロン装置において、
     前記サイクロンは、第1サイクロンと第2サイクロンとであり、
     前記第1サイクロンは、前記円筒台部の第1円筒台部を有し、
     前記第2サイクロンは、前記円筒台部の第2円筒台部を有し、
     前記磁石は、前記第1円筒台部と前記第2円筒台部との間に設けられる
     ことを特徴とする磁気サイクロン装置。
    The magnetic cyclone device according to claim 1,
    The cyclones are a first cyclone and a second cyclone,
    The first cyclone has a first cylindrical base part of the cylindrical base part,
    The second cyclone has a second cylindrical base part of the cylindrical base part,
    The magnet is provided between the first cylindrical base part and the second cylindrical base part.
  4.  請求項1に記載の磁気サイクロン装置において、
     前記サイクロンは、第1サイクロンと第2サイクロンとであり、
     前記第1サイクロンは、前記円筒台部の第1流入口をもつ第1円筒台部を有し、
     前記第2サイクロンは、前記円筒台部の第2流入口をもつ第2円筒台部を有し、
     前記第1サイクロンの前記第1流入口から第1磁性フロックが含有される第1の被処理液体が前記第1円筒台部内に流入するとともに、前記第2サイクロンの前記第2流入口から第2磁性フロックが含有される第2の被処理液体が前記第2円筒台部内に流入し、
     前記第1の被処理液体の前記第1流入口からの流入方向の第1流入方向と、前記第2の被処理液体の前記第2流入口からの流入方向の第2流入方向とが同方向であって互いに逆向きであり、
     前記磁石は、前記第1流入方向と前記第2流入方向とに挟まれた位置に配置され、その両極でそれぞれ前記第1磁性フロックと前記第2磁性フロックとを引き付ける
     ことを特徴とする磁気サイクロン装置。
    The magnetic cyclone device according to claim 1,
    The cyclones are a first cyclone and a second cyclone,
    The first cyclone has a first cylindrical base portion having a first inlet of the cylindrical base portion,
    The second cyclone has a second cylindrical base portion having a second inlet of the cylindrical base portion,
    A first liquid to be treated containing a first magnetic floc flows from the first inlet of the first cyclone into the first cylindrical base and is second from the second inlet of the second cyclone. A second liquid to be treated containing magnetic flocks flows into the second cylindrical base,
    The first inflow direction of the inflow direction of the first liquid to be treated from the first inflow port and the second inflow direction of the inflow direction of the second liquid to be treated from the second inflow port are the same direction. And they are opposite to each other,
    The magnet is disposed at a position sandwiched between the first inflow direction and the second inflow direction, and attracts the first magnetic floc and the second magnetic floc at both poles thereof, respectively. apparatus.
  5.  請求項1に記載の磁気サイクロン装置において、
     前記サイクロンは、第1サイクロンと第2サイクロンとであり、
     前記第1サイクロンは、前記円筒台部の第1流入口をもつ第1円筒台部を有し、
     前記第2サイクロンは、前記円筒台部の第2流入口をもつ第2円筒台部を有し、
     前記第1サイクロンの前記第1流入口から磁性フロックが含有される第1の被処理液体が前記第1円筒台部に流入するとともに、前記第2サイクロンの前記第2流入口から磁性フロックが含有される第2の被処理液体が前記第2円筒台部に流入し。
     前記第1の被処理液体の前記第1流入口から流入する第1流入方向と、前記第2の被処理液体の前記第2流入口から流入する第2流入方向とに交差する方向に前記磁石の両磁極が配置される
     ことを特徴とする磁気サイクロン装置。
    The magnetic cyclone device according to claim 1,
    The cyclones are a first cyclone and a second cyclone,
    The first cyclone has a first cylindrical base portion having a first inlet of the cylindrical base portion,
    The second cyclone has a second cylindrical base portion having a second inlet of the cylindrical base portion,
    A first liquid to be treated containing magnetic flocs flows from the first inlet of the first cyclone into the first cylindrical base, and magnetic flocs from the second inlet of the second cyclone. The second liquid to be processed flows into the second cylindrical base part.
    The magnet in a direction that intersects a first inflow direction of the first liquid to be processed flowing from the first inlet and a second inflow direction of the second liquid to be processed flowing from the second inlet. A magnetic cyclone device characterized in that both magnetic poles are arranged.
  6.  請求項1に記載の磁気サイクロン装置において、
     前記磁石は、電磁石であり、
     前記電磁石を制御する制御部を備え、
     前記制御部は、前記電磁石の電源の入切を繰り返して行う
     ことを特徴とする磁気サイクロン装置。
    The magnetic cyclone device according to claim 1,
    The magnet is an electromagnet;
    A control unit for controlling the electromagnet;
    The said control part repeats on / off of the power supply of the said electromagnet. The magnetic cyclone apparatus characterized by the above-mentioned.
  7.  下方に頂点を向けた円錐台形状であり、側方に流入口を有する円筒形状の円筒台部と当該円筒台部の下方に連続して形成され、前記頂点近傍に下流出口が設けられる円錐形状の円錐部とを有するサイクロンと、前記円筒台部の中央部に設けられ上流出口が設けられる円筒部と、前記円筒台部の外周近くに設けられる磁石とを備える磁気サイクロン装置の処理方法であって、
     前記流入口から前記円筒台部内に被処理液体を流入させ、
     前記磁石により、前記被処理液体に含有される磁性フロックを、前記円筒台部の内面近傍に引き付け、
     前記磁性フロックを前記下流出口から排出させ、
     前記磁性フロックが除去された被前記処理液体を前記上流出口から流出させる
     ことを特徴とする磁気サイクロン装置の処理方法。
    A conical shape having a truncated cone shape with the apex facing downward, a cylindrical cylindrical portion having an inflow port on the side, and continuously formed below the cylindrical mount portion, and a downstream outlet provided in the vicinity of the apex A cyclone having a conical portion, a cylindrical portion provided in the central portion of the cylindrical base portion and provided with an upstream outlet, and a magnet provided near the outer periphery of the cylindrical base portion. And
    Inject the liquid to be processed from the inlet into the cylindrical base part,
    The magnet attracts the magnetic floc contained in the liquid to be treated to the vicinity of the inner surface of the cylindrical base part,
    Discharging the magnetic floc from the downstream outlet;
    The processing liquid of the magnetic cyclone apparatus, wherein the processing liquid from which the magnetic floc has been removed flows out from the upstream outlet.
  8.  請求項7に記載の磁気サイクロン装置の処理方法において、
     前記サイクロンは、第1サイクロンと第2サイクロンとであり、
     前記第1サイクロンは、第1流入口を有する第1円筒台部と第1下流出口が設けられる第1円錐部と第1上流出口が設けられる第1円筒部とを有し、
     前記第2サイクロンは、第2流入口を有する第2円筒台部と第2下流出口が設けられる第2円錐部と第2上流出口が設けられる第2円筒部とを有し、前記磁石は、前記第1円筒台部と前記第2円筒台部とに挟まれた位置に配置され、
     前記第1サイクロンの第1流入口から第1磁性フロックが含有される第1被処理液体が前記第1円筒台部に流入するとともに、前記第2サイクロンの第2流入口から第2磁性フロックが含有される第2被処理液体が前記第2円筒台部に流入し、
     前記磁石の両極は、それぞれ前記第1磁性フロックと前記第2磁性フロックとをそれぞれ前記第1円筒部の内面近傍と前記第2円筒部の内面近傍とに引き付け、
     前記第1磁性フロックを前記第1下流出口から排出させるとともに、前記第2磁性フロックを前記第2下流出口から排出させ、
     前記第1磁性フロックが除去された第1被前記処理液体を前記第1上流出口から流出させるとともに、前記第2磁性フロックが除去された第2被前記処理液体を前記第2上流出口から流出させる
     ことを特徴とする磁気サイクロン装置の処理方法。
    In the processing method of the magnetic cyclone device according to claim 7,
    The cyclones are a first cyclone and a second cyclone,
    The first cyclone has a first cylindrical base portion having a first inlet, a first conical portion provided with a first downstream outlet, and a first cylindrical portion provided with a first upstream outlet,
    The second cyclone has a second cylindrical base portion having a second inlet, a second conical portion provided with a second downstream outlet, and a second cylindrical portion provided with a second upstream outlet, and the magnet is Arranged at a position sandwiched between the first cylindrical base and the second cylindrical base,
    The first liquid to be treated containing the first magnetic floc flows from the first inlet of the first cyclone into the first cylindrical base, and the second magnetic floc flows from the second inlet of the second cyclone. The contained second liquid to be treated flows into the second cylindrical base part,
    The poles of the magnet attract the first magnetic floc and the second magnetic floc to the vicinity of the inner surface of the first cylindrical portion and the vicinity of the inner surface of the second cylindrical portion, respectively.
    Discharging the first magnetic floc from the first downstream outlet and discharging the second magnetic floc from the second downstream outlet;
    The first processing liquid from which the first magnetic floc has been removed flows out from the first upstream outlet, and the second processing liquid from which the second magnetic floc has been removed flows out from the second upstream outlet. A processing method of a magnetic cyclone device characterized by the above.
PCT/JP2016/087113 2016-03-28 2016-12-13 Magnetic cyclone device and treatment method for same WO2017168861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-063387 2016-03-28
JP2016063387A JP2017176906A (en) 2016-03-28 2016-03-28 Magnetic cyclone device and processing method of the same

Publications (1)

Publication Number Publication Date
WO2017168861A1 true WO2017168861A1 (en) 2017-10-05

Family

ID=59962914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087113 WO2017168861A1 (en) 2016-03-28 2016-12-13 Magnetic cyclone device and treatment method for same

Country Status (2)

Country Link
JP (1) JP2017176906A (en)
WO (1) WO2017168861A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577316A (en) * 2019-10-17 2019-12-17 辽阳博仕流体设备有限公司 super-magnetic separation system for adding and coagulating magnetic powder for treating black and odorous water
JP6948742B1 (en) * 2021-05-13 2021-10-13 株式会社Ambitious Technologies Aggregate cyclone device, marine plastic removal system using it, ship equipped with the system, and operation method of the ship

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3419994Y1 (en) * 1957-10-19 1959-12-05
US4343707A (en) * 1980-03-10 1982-08-10 Electric Power Research Institute, Inc. Method and apparatus for separating out solids suspended in flowing, pure water systems
JPH1147632A (en) * 1997-07-30 1999-02-23 Toshiba Corp Magnetic separation device for suspension liquid
US20010013491A1 (en) * 2000-02-12 2001-08-16 Egon Kaske Magnetic separator
JP2005021835A (en) * 2003-07-04 2005-01-27 Takahashi:Kk Magnetic particle recovery apparatus
JP2009056426A (en) * 2007-09-03 2009-03-19 Toshiba Corp Solid/liquid separator
JP2011083696A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid-liquid separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3419994Y1 (en) * 1957-10-19 1959-12-05
US4343707A (en) * 1980-03-10 1982-08-10 Electric Power Research Institute, Inc. Method and apparatus for separating out solids suspended in flowing, pure water systems
JPH1147632A (en) * 1997-07-30 1999-02-23 Toshiba Corp Magnetic separation device for suspension liquid
US20010013491A1 (en) * 2000-02-12 2001-08-16 Egon Kaske Magnetic separator
JP2005021835A (en) * 2003-07-04 2005-01-27 Takahashi:Kk Magnetic particle recovery apparatus
JP2009056426A (en) * 2007-09-03 2009-03-19 Toshiba Corp Solid/liquid separator
JP2011083696A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid-liquid separator

Also Published As

Publication number Publication date
JP2017176906A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4455631B2 (en) Solid-liquid separator
Hirschbein et al. Magnetic separations in chemistry and biochemistry
US20070039894A1 (en) Water treatment using magnetic and other field separation technologies
US8012357B2 (en) Magnetic field and field gradient enhanced centrifugation solid-liquid separations
JP2011143330A (en) Method and apparatus for treating wastewater
JP5704618B2 (en) Method and apparatus for separating mixture
WO2017168861A1 (en) Magnetic cyclone device and treatment method for same
WO2016002110A1 (en) Water treatment system and water treatment method
KR20160054982A (en) High-rate coagulative precipitation method for coagulated sludge using magnetism
JP2006000718A (en) Magnetic separation and cleaning apparatus
Lindner et al. Parameters influencing magnetically enhanced centrifugation for protein separation
Wang et al. Industry applications of magnetic separation based on nanoparticles: A review
NO346022B1 (en) A method and a system for purifying a fluid
JP2012232253A (en) Multistage seawater purification system
Baek et al. Magnetic separation for contaminants in wastewater using magnetic micro bead
JP2005199163A (en) Collection by filtration apparatus and method utilizing magnetic bead
SG190934A1 (en) Method and apparatus for the separation of oil and water using hydrophobic and hydrophilic functional solid particles
US20170355623A1 (en) Acoustophoretic Enhanced System for Use in Bioreactors
CN117222458A (en) bidirectional filter
Gómez-Pastora et al. Magnetic separation of micro-and nanoparticles for water treatment processes
JP6845538B2 (en) Magnetite Ferromagnetic material Suspension fine particle removal equipment
JP4369705B2 (en) Wastewater magnetic treatment equipment
JPS6348563B2 (en)
JPH0499473A (en) Apparatus for magnetic sterilization
KR102339096B1 (en) Hydro Cyclone and Wastewater Treatment System Using the Same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897077

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897077

Country of ref document: EP

Kind code of ref document: A1