WO2017168671A1 - Simulation device, simulation method, and simulation program - Google Patents

Simulation device, simulation method, and simulation program Download PDF

Info

Publication number
WO2017168671A1
WO2017168671A1 PCT/JP2016/060626 JP2016060626W WO2017168671A1 WO 2017168671 A1 WO2017168671 A1 WO 2017168671A1 JP 2016060626 W JP2016060626 W JP 2016060626W WO 2017168671 A1 WO2017168671 A1 WO 2017168671A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
passage
traffic
predetermined area
models
Prior art date
Application number
PCT/JP2016/060626
Other languages
French (fr)
Japanese (ja)
Inventor
司 本田
雅美 池上
直子 木村
Original Assignee
株式会社ジオクリエイツ
株式会社駐車場綜合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオクリエイツ, 株式会社駐車場綜合研究所 filed Critical 株式会社ジオクリエイツ
Priority to PCT/JP2016/060626 priority Critical patent/WO2017168671A1/en
Publication of WO2017168671A1 publication Critical patent/WO2017168671A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count

Definitions

  • the present invention relates to a simulation apparatus, a simulation method, and a simulation program.
  • Patent Document 1 discloses a system in which a parking lot is modeled as a one-dimensional parking space, and a traffic simulation of a traveling state of a vehicle inside the parking lot is performed based on the model.
  • the designer causes the system to execute a traffic simulation based on the modeled travel route. Thereafter, the designer browses the moving image showing the simulation result, evaluates the travel route, and corrects the travel route as appropriate. Thereafter, the designer causes the system to execute a traffic simulation based on the corrected travel route. Thereafter, the designer repeats the correction of the travel route and the re-execution of the simulation until it is determined that the design is optimized.
  • the above-described method has a problem that it takes time until the route is optimized because the designer feeds back the examination results to the design while browsing the video repeatedly. Therefore, it is required to reduce the time required for optimization of the travel route.
  • the present invention has been made in view of these points, and an object thereof is to provide a simulation apparatus, a simulation method, and a simulation program that can reduce the time required for optimization of a travel route.
  • the simulation apparatus includes an acquisition unit that acquires passage information indicating a passage in a predetermined area, and a passage model for traffic simulation in which the priority route on which a vehicle travels preferentially differs in the passage.
  • an image generation unit that generates an image of the predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation for each of the generated plurality of passage models.
  • the acquisition unit acquires passage information indicating a passage in a parking lot and a road adjacent to the parking lot as passage information indicating the passage in a predetermined area, and the generation unit has different priority routes in the parking lot.
  • a plurality of the passage models may be generated.
  • the generation unit may set the priority route by defining a temporary stop position of the vehicle in the passage.
  • An evaluation unit that evaluates the passage model based on the congestion position and the congestion length is further provided, and the image generation unit is limited to a passage model that is relatively highly evaluated by the evaluation unit, and An image may be generated.
  • the simulation execution unit may calculate a travel time of one or more vehicles traveling in the predetermined area based on the simulation condition, and the evaluation unit may evaluate the passage model based on the travel time. .
  • the image generation unit may generate an image of the predetermined area that does not include an image showing a vehicle parked in a parking space in the predetermined area.
  • the simulation method includes a step of acquiring path information indicating a path in a predetermined area, and a path model for traffic simulation in which the priority path on which the vehicle travels preferentially differs in the path.
  • a simulation program provides a computer for obtaining a passage information indicating a passage in a predetermined area, and for a traffic simulation in which the priority route on which a vehicle travels preferentially differs in the passage.
  • a generation unit that generates a plurality of passage models, a condition acquisition unit that acquires simulation conditions for traffic simulation in the passage, and a simulation execution unit that executes a traffic simulation based on the acquired simulation conditions for each of the generated plurality of passage models
  • Each of the generated plurality of passage models is caused to function as an image generation unit that generates an image of the predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation.
  • FIG. 1 is a diagram illustrating an outline of a simulation apparatus 1 according to the first embodiment.
  • the simulation device 1 is a computer that executes a traffic simulation of a vehicle in a predetermined area where a passage where the vehicle travels is provided.
  • the simulation apparatus 1 acquires passage information indicating a passage in a predetermined area, and generates a passage model for traffic simulation by setting a priority route in which the vehicle travels with priority.
  • the simulation apparatus 1 generates a plurality of passage models by changing the priority route.
  • the simulation apparatus 1 acquires the simulation conditions for the traffic simulation, and executes the traffic simulation for each of the generated plurality of passage models based on the acquired simulation conditions.
  • the simulation apparatus 1 generates a traffic jam plot diagram indicating the traffic jam position and the traffic jam length of the traffic jam that has occurred in the passage of a predetermined area, based on the simulation results of each of the plurality of channel models.
  • FIG. 2 is a functional configuration diagram of the simulation apparatus 1 according to the first embodiment.
  • the simulation apparatus 1 includes an input unit 11, a display unit 12, a storage unit 13, and a control unit 14.
  • the input unit 11 is configured by, for example, a keyboard and a mouse.
  • the input unit 11 receives an operation input from a user of the simulation apparatus 1.
  • the display unit 12 includes, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display.
  • the display unit 12 displays, for example, drawing information acquired by the simulation apparatus 1 according to the control of the control unit 14.
  • the storage unit 13 includes, for example, a ROM and a RAM.
  • the storage unit 13 stores various programs for causing the simulation apparatus 1 to function.
  • the storage unit 13 stores a simulation program that causes the control unit 14 of the simulation apparatus 1 to function as an acquisition unit 141, a generation unit 142, a condition acquisition unit 143, a simulation execution unit 144, and an image generation unit 145 described later.
  • the storage unit 13 may read and store a program stored in a storage medium such as an external memory, or may store a program downloaded from an external device via a network such as the Internet.
  • the control unit 14 is constituted by a CPU, for example.
  • the control unit 14 comprehensively controls functions related to the simulation apparatus 1 by executing various programs stored in the storage unit 13.
  • the control unit 14 includes an acquisition unit 141, a generation unit 142, a condition acquisition unit 143, a simulation execution unit 144, and an image generation unit 145.
  • the function of the control unit 14 will be described with reference to a flowchart showing a processing flow of the simulation apparatus 1.
  • FIG. 3 is a flowchart showing the flow of processing of the simulation apparatus 1 according to the first embodiment.
  • the acquisition unit 141 acquires passage information indicating a passage in a predetermined area, for example, in response to an operation of the input unit 11 by a user of the simulation apparatus 1 (S10).
  • FIG. 4 is a diagram showing a passage in a predetermined area.
  • the predetermined area shown in FIG. 4 includes an area A1 indicating a parking lot provided with entrances E1 and E2 to stores and an area A2 indicating a road adjacent to the parking lot.
  • the passage information indicating the passage in the parking lot and the passage information indicating the road adjacent to the parking lot are acquired as the passage information in the predetermined area.
  • the passage may include a sidewalk through which pedestrians pass in addition to the passage where the vehicle travels.
  • the path information includes node information related to a node indicating an intersection in the path, link information indicating a path and a link connecting a plurality of nodes, and network information indicating a connection relation between the link and the node. ing.
  • FIG. 5 is a diagram showing the traveling direction of nodes, links and vehicles in the predetermined area shown in FIG. N1 to N10 shown in FIG. 5 indicate nodes, and L1 to L15 indicate links. Moreover, the arrow shown in the vicinity of a link has shown the advancing direction of the vehicle in the channel
  • the node is not limited to an intersection, and may indicate a vehicle entrance / exit of a parking lot or a gate installed at the entrance / exit.
  • nodes N9 and N10 indicate parking entrances
  • node N1 indicates a gate installed at the parking entrance
  • N8 indicates a gate installed at the parking exit.
  • the node indicates an intersection or the like where a passage where a vehicle travels intersects, but is not limited thereto, and may indicate an intersection where a passage where a vehicle travels and a sidewalk intersect.
  • the node may indicate an entrance to a store or the like in the parking lot (for example, entrances E1 and E2 shown in FIG. 4).
  • the link indicating the passage inside the parking lot and the link indicating the road adjacent to the entrance can be treated as different links. Different attributes can be applied to. Further, when the passage is composed of a plurality of curves, link information corresponding to each of the plurality of curves and node information indicating a position corresponding to the inflection point of the curve may be acquired.
  • the node information includes position information indicating the three-dimensional position of the node and node attribute information indicating the attribute of the node.
  • the node attribute information includes information indicating the temporary stop position of the vehicle, the standby position of the right turn lane and the left turn lane, and the information indicating the lamp merging position.
  • the node attribute information may include information indicating the pedestrian's temporary stop position and the position of the pedestrian crossing.
  • the link information includes link position information indicating a link position, link length information indicating a link length, and link attribute information indicating a link attribute.
  • the link attribute information includes lane information indicating the number of lanes, width (passage width), vehicle traveling direction, regulation speed, presence / absence of signs, presence / absence of a curved mirror, presence / absence of a monitoring camera, parking space location and parking space Information indicating an arrangement pattern or the like is included.
  • the link attribute information may include information indicating the width of the sidewalk and the position of the sidewalk as information about the sidewalk.
  • the generation unit 142 generates a plurality of traffic simulation path models having different priority routes on which the vehicle travels preferentially in a plurality of paths traveled by the vehicle (S20). Specifically, the generation unit 142 generates a plurality of passage models having different priority routes in the passages in the parking lot among roads constituting the passage and passages in the parking lot.
  • the priority route on the road is assumed to be fixed, for example, the change of the priority route on the road may be accepted by operating the input unit 11.
  • the generation unit 142 sets a priority route by defining a temporary stop position of the vehicle in the passage in the parking lot. That is, the generation unit 142 sets a plurality of priority routes by referring to the node information and changing the temporary stop position included in the node attribute information corresponding to the node where the vehicle joins. Here, the generation unit 142 may change the temporary stop position defined in advance in the node attribute information. For example, in the example shown in FIG. 5, the nodes N2, N4, N6, N9, and N10 are the meeting points of the vehicle. The generation unit 142 sets a priority route for each node by defining a temporary stop position in at least one of a plurality of links that allow the vehicle to flow into the node.
  • the generation unit 142 refers to node information indicating an intersection between a path where the vehicle travels and a sidewalk, and defines a temporary stop position with respect to the path where the vehicle travels, for example. And the priority order of the sidewalk may be set.
  • the generation unit 142 may accept designation of a node that does not change the priority route via the input unit 11.
  • the nodes N9 and N10 are nodes that indicate the entrances and exits of a parking lot, and priority is given to driving of vehicles on the road. Therefore, the designer selects the nodes N9 and N10 via the input unit 11 as the priority route. Specify a node that does not change. The generation unit 142 does not change the temporary stop position defined in the node attribute information corresponding to the designated nodes N9 and N10.
  • the generating unit 142 sets, for each of the plurality of nodes indicating the junction, one of the plurality of links that allow the vehicle to flow into the node as a link that gives priority to the traveling of the vehicle, and sets the pause position to the other links. Stipulate. Thereby, the generation unit 142 specifies a combination of temporary stop positions in each of the plurality of nodes. In the example illustrated in FIG. 5, the generation unit 142 defines the temporary stop positions for the three nodes N2, N4, and N6 that represent the merge points, excluding the nodes N9 and N10 that do not change the temporary stop position.
  • a link L2 and a link L12 are connected to the node N2 as links from which the vehicle flows.
  • a link L4 and a link L10 are connected to the node N4 as links from which the vehicle flows in.
  • a link L6 and a link L11 are connected to the node N6 as an inflow source link of the vehicle.
  • the generation unit 142 specifies eight combinations as combinations of the temporary stop positions for these six links as shown in FIG. 8, and generates a passage model to which each combination is applied.
  • the priority route set by the temporary stop positions defined for a plurality of nodes may not necessarily connect the entrance / exit of the parking lot, for example, a closed route or a branched route in the parking lot. May be.
  • the drawing information and the like acquired by the simulation apparatus 1 may not include definition information on at least a part of the entrance, exit, roadway, vehicle compartment, and circulation related to the setting of the priority route of the passage. .
  • the definition information is not included in the drawing information, and only the definition information for the important part is included in the drawing information at the early stage of the design. In the middle stage of the design, the definition is defined in the drawing information. Information is generally included, and in the final stage of design, all definition information is included in the drawing information. That is, the generation unit 142 fixes the priority route of the important passage based on the definition information included in the drawing information, or sets the priority route via the input unit 11 only for the non-important passage. May be accepted.
  • the generation unit 142 generates a plurality of passage models having different priority routes based on the temporary stop position by changing the temporary stop position of the vehicle in the passage in the parking lot, but the method is different from the generation method.
  • a passage model may be generated.
  • the generation unit 142 may generate a path model corresponding to the traveling direction of the node, the link, and the vehicle as illustrated in FIG. 6 based on the following procedure.
  • the generation unit 142 defines the entrance and exit positions of the parking lot. Subsequently, the generation unit 142 defines the traveling direction of the outer peripheral portion of the passage in the parking lot in the clockwise direction. In addition, when designing the parking lot in the country where the vehicle travels on the right side, the generation unit 142 defines the traveling direction of the outer peripheral portion of the passage in the parking lot counterclockwise.
  • the generation unit 142 makes the traveling direction of each node in the outer peripheral portion one-way toward the exit.
  • generation part 142 performs evaluation based on the kind of node shown in FIG. 7 about the set node, link, and the advancing direction of a vehicle.
  • the generation unit 142 classifies the set node types into a cross illustrated in FIG. 7A, a three-way merge illustrated in (b), a quasi-cross illustrated in (c), and a face-to-face merge illustrated in (d). .
  • the generation unit 142 determines whether or not the link is a non-returnable link that is a link that cannot be returned once the vehicle has passed based on the position of the node, the link, the traveling direction of the vehicle, and the entrance / exit of the parking lot. judge. Then, the generation unit 142 prescribes the scores so as to increase in the order of (e), (d), (c), (b), and (a), totals the scores of the classified nodes, and returns The number of impossible links is counted, and the set nodes, links, and the traveling direction of the vehicle are evaluated based on the counting results. The generation unit 142 sets a plurality of passage models corresponding to combinations of nodes, links, and traveling directions of the vehicles whose evaluation points are lower than a predetermined threshold as passage models to be simulated.
  • the drawing information acquired by the simulation apparatus 1 does not include definition information on at least a part of the entrance, exit, vehicle passage, vehicle compartment, and circulation related to the setting of the priority route of the passage.
  • these definition information is not included in the drawing information, only the important part definition information is included in the drawing information at the early stage of the design, and defined in the drawing information at the middle stage of the design.
  • Information is generally included, and in the final stage of design, all definition information is included in the drawing information. Therefore, the generation unit 142 fixes the priority route of the important passage based on the definition information included in the drawing information, or sets the priority route via the input unit 11 only for the non-important passage. May be accepted.
  • the condition acquisition unit 143 acquires the simulation conditions of the traffic simulation in the passage (S30). Specifically, the condition acquisition unit 143 uses, for example, the input unit 11 as information on vehicles flowing into a passage in a predetermined area, the number of vehicles flowing in by time, the type of traveling vehicle (VIP vehicle, emergency vehicle) , Vehicles for disabled people, buses, taxis, motorcycles, bicycles, garbage trucks, etc. and size, handling conditions, information on pedestrian walkways (eg number of pedestrians, type of pedestrians (men and women, adults, children, elderly people) , Handicapped persons, etc.)), information indicating the vehicle transit time in the gate bar of the parking lot and the position where the vehicle flows into the predetermined area.
  • VIP vehicle traveling vehicle
  • emergency vehicle Vehicles for disabled people, buses, taxis, motorcycles, bicycles, garbage trucks, etc. and size
  • handling conditions information on pedestrian walkways (eg number of pedestrians, type of pedestrians (men and women, adults, children, elderly people) , Handicapped persons, etc.)
  • condition acquisition unit 143 acquires, via the input unit 11, information indicating a time zone for performing the traffic simulation, a time for performing a pre-simulation for reproducing the traffic situation at the start of the traffic simulation, and the like.
  • condition acquisition unit 143 may acquire a simulation condition based on actual data.
  • the condition acquisition unit 143 collects data related to actual traffic volume, parking volume, signal display, etc. using VICS (Vehicle Information and Communication System) (registered trademark), probe traffic information, vehicle number recognition system, and tracking tool. Simulation conditions may be acquired based on the obtained data.
  • VICS Vehicle Information and Communication System
  • the simulation execution unit 144 executes a traffic simulation for each of the generated plurality of models based on the acquired simulation conditions (S40). For example, the simulation execution unit 144 outputs, as a simulation result, traffic conditions such as a traffic jam position and a traffic jam length that occur in a time zone in which the traffic simulation acquired by the condition acquisition unit 143 is performed. In addition, the simulation execution unit 144 calculates and outputs the travel time of one or more vehicles traveling in a predetermined area. For example, the simulation execution unit 144 may have a time from when one or more vehicles enter the parking lot to when the entry into the parking space is completed, and from when the vehicle leaves the parking space until the vehicle leaves the parking lot. The sum of time and travel time is calculated.
  • the image generation unit 145 generates a traffic congestion plot diagram as an image of a predetermined area indicating the traffic congestion position and the traffic congestion length in the passage for each of the generated models based on the traffic simulation result (S50). Specifically, the image generation unit 145 refers to the state of the vehicle at a predetermined time included in the time zone in which the traffic simulation is performed, and identifies the position of the vehicle at a predetermined speed or less as the congestion position. And the image generation part 145 produces
  • FIG. 9 is a diagram illustrating an example of a traffic congestion plot diagram in a predetermined area.
  • the position of the parking space where the vehicle is parked is also regarded as the traffic jam position, and an image showing the vehicle parked in the parking space is displayed.
  • the image generation part 145 produces
  • the image generation unit 145 acquires image data indicating the position of the parking space in a predetermined area in advance, and refers to the image data when generating the traffic congestion plot diagram shown in FIG. A traffic jam plot diagram that does not include an image showing a vehicle parked in the space is generated.
  • FIG. 10 is a diagram showing an example in which an image showing a vehicle parked in a parking space is excluded from the traffic jam plot diagram shown in FIG. In the image of the predetermined area shown in FIG. 10, it can be confirmed that only the vehicle image indicating the traffic jam position and the traffic jam length is displayed.
  • the image generation unit 145 when the simulation execution unit 144 has a function of generating a moving image indicating the state of the vehicle in the predetermined area, the image of the predetermined area at the predetermined time included in the simulation time zone. And images in frames before and after the image, and by displaying images corresponding to the vehicles displayed in duplicate in these images, an image of a predetermined area indicating the congestion position and congestion length in the passage May be generated.
  • the image generation unit 145 may further synthesize an image of a predetermined area that is created in each frame and indicates the congestion position and the congestion length in the passage. At this time, when the images showing the vehicles overlap, they may be displayed in a coordinated manner. Further, the image generation unit 145 may change the degree of cooperation based on the number of overlapping times. For example, the pixel value of an image of a predetermined area indicating the congestion position and the congestion length corresponding to each of a plurality of frames is divided by, for example, the number of frames to be combined, and the maximum pixel value per image is adjusted to be low. . Then, the pixel values of the plurality of images after division are totaled.
  • the pixel value is higher for a portion where the vehicles overlap due to traffic congestion or the like, and the pixel value is lower for a portion where the vehicles do not overlap. Therefore, the designer can easily check the degree of traffic jam based on the image created in each frame and further synthesized with the image of the predetermined area indicating the traffic jam position and traffic jam length in the passage. The evaluation time can be greatly reduced compared to the case of confirmation.
  • the simulation apparatus 1 is configured as an image of a predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation for each of a plurality of passage models having different priority routes. Generate a traffic jam plot. In this way, the designer can easily check a traffic jam plot diagram corresponding to a plurality of path models with different priority routes, and easily select a priority route with relatively little traffic jam. The designer can fine-tune the selected priority route to optimize the priority route. Therefore, the simulation apparatus 1 can reduce the burden of designing the priority route by the designer, and can reduce the time required for optimization of the travel route.
  • the simulation apparatus 1 generates a traffic jam plot diagram for each of a plurality of passage models.
  • the simulation apparatus 1 evaluates each of the plurality of passage models based on the congestion position, the congestion length, and the like, and generates a congestion plot diagram limited to only the highly evaluated passage models. .
  • FIG. 11 is a diagram showing an outline of the simulation apparatus 1 according to the second embodiment. Similar to the simulation apparatus 1 according to the first embodiment, the simulation apparatus 1 according to the second embodiment creates a plurality of passage models by setting a plurality of priority routes, and performs traffic simulation for these passage models. Execute. Thereafter, the simulation apparatus 1 evaluates the passage model based on the result of the traffic simulation, and selects a passage model having a relatively high evaluation. Thereafter, the simulation apparatus 1 generates and outputs a traffic jam plot diagram corresponding to the selected passage model.
  • FIG. 12 is a functional configuration diagram of the simulation apparatus 1 according to the second embodiment.
  • FIG. 13 is a flowchart showing the flow of processing of the simulation apparatus 1 according to the second embodiment.
  • the simulation apparatus 1 further includes an evaluation unit 146.
  • the evaluation unit 146 evaluates the passage model based on the congestion position and the congestion length (S41). .
  • the evaluation unit 146 may evaluate the passage model based on the travel time calculated by the simulation execution unit 144.
  • the evaluation unit 146 evaluates the passage model by calculating an evaluation value of the passage model.
  • the evaluation value may be a value indicating a difference with respect to a predetermined reference or a value indicating a deviation rate from the reference.
  • the evaluation unit 146 may evaluate the passage model based on the number of locations where traffic congestion has occurred or the number of dangerous locations on the priority route.
  • the dangerous part is a pedestrian's crossing part in a passage where the vehicle travels, which is set in a predetermined area in advance.
  • the evaluation unit 146 counts, for example, links where no pause is set, that is, pedestrians' crossing points included in the paths constituting the priority route, as dangerous points.
  • the simulation execution unit 144 calculates the carbon dioxide emission amount of the vehicle traveling in the predetermined area, and the evaluation unit 146 determines the passage model based on the total amount of carbon dioxide generated by the vehicle in the simulation time zone. You may evaluate.
  • the image generation unit 145 selects a passage model having a relatively high evaluation by the evaluation unit 146 from among a plurality of passage models (S42), and is limited to a passage model having a relatively high evaluation by the evaluation unit 146.
  • a traffic jam plot diagram as an image of the area is generated (S50).
  • the simulation apparatus 1 according to the second embodiment generates a congestion length plot diagram by limiting to a relatively highly evaluated path model. Therefore, the designer can limit a priority path to a preselected path model. The travel route can be optimized. As a result, the designer can more efficiently design the priority route. Moreover, since the simulation apparatus 1 of the second embodiment generates a traffic jam length plot diagram only for a relatively highly evaluated passage model, it is possible to shorten the processing time related to the generation of the traffic jam length plot diagram. .
  • a third embodiment will be described.
  • a sign such as a sign
  • the sign greatly affects the traffic of the vehicle.
  • the length of the traffic jam varies depending on the position where the sign is installed, it is desired to perform a simulation by changing the position where the sign is installed.
  • the contents of these signs change according to the direction of travel of the link and the direction of travel of the vehicle at the node, there is a problem that the work is complicated when manually setting the contents of the sign. It was. Therefore, the third embodiment is different from the first embodiment in that a sign indicating a sign or the like is defined for the passage model, and a passage model including information on the sign can be easily generated.
  • the generation unit 142 uses the node information and the link information (for example, the traveling direction of the vehicle, the position of the node, and the length of the link) as a sign that affects the traffic on the road. Is generated. For example, for the link L2 illustrated in FIG. 6, the generation unit 142 generates a sign of straight ahead or merging attention at a position before the first distance from the position of the node N2 where the link L2 and the link L12 merge. Further, the generation unit 142 generates a sign of merging at a position that is a second distance before the position of the node N2 with respect to the link L12.
  • the link information for example, the traveling direction of the vehicle, the position of the node, and the length of the link
  • a branch sign is generated for the link L12 at a position before the third distance from the node N3 that branches to the link L4 and the link L11.
  • the sign may be displayed that can be changed.
  • the influence on the traffic of the vehicle may be changed depending on whether the displayed content is fixed and the displayed content can be changed (for example, digital signage, projector, etc.).
  • the generation unit 142 generates a traffic simulation path model including the generated sign.
  • the generation unit 142 may change the content of the generated sign in accordance with the change of the examination element when designing the parking lot.
  • the generation unit 142 has a waiting time at a node (for example, a node corresponding to a ticketing machine or a clearing machine) to which a certain waiting time is given for the passage and the number of entrances and exits, and the number of entrances / exits.
  • a node for example, a node corresponding to a ticketing machine or a clearing machine
  • the path model for traffic simulation may be reevaluated and the direction of travel at each link and node may be changed.
  • the simulation apparatus 1 efficiently generates a path model for traffic simulation including a sign for generating a sign as information that affects traffic on a road based on node information and link information. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a simulation device 1, comprising: an acquisition unit 141 which acquires path information which indicates a path in a prescribed area; a generating unit 142 which generates a plurality of path models for traffic simulation in which a priority route in which a vehicle travels with priority in the path varies in each of said path models; a condition acquisition unit 143 which acquires a simulation condition of the traffic simulation in the path; a simulation execution unit 144 which, for each of the generated plurality of path models, executes the traffic simulation on the basis of the acquired simulation condition; and an image generating unit 145 which, for each of the generated plurality of path models, generates, on the basis of the result of the simulation, an image of a prescribed area which indicates a traffic jam position and a traffic jam length in the path.

Description

シミュレーション装置、シミュレーション方法、及びシミュレーションプログラムSimulation device, simulation method, and simulation program
 本発明は、シミュレーション装置、シミュレーション方法、及びシミュレーションプログラムに関する。 The present invention relates to a simulation apparatus, a simulation method, and a simulation program.
 従来、駐車場等の設計段階において、渋滞長や旅行時間等の交通状況に関する交通シミュレーションを行うことにより、駐車場の性能を評価し、設計を最適化することが行われている。例えば、特許文献1には、駐車場を1次元の駐車空間にモデル化し、当該モデルに基づいて、駐車場内部における車両の走行状況の交通シミュレーションを行うシステムが開示されている。 Conventionally, in the design stage of a parking lot or the like, the performance of the parking lot is evaluated and the design is optimized by performing a traffic simulation on the traffic situation such as a traffic jam length or travel time. For example, Patent Document 1 discloses a system in which a parking lot is modeled as a one-dimensional parking space, and a traffic simulation of a traveling state of a vehicle inside the parking lot is performed based on the model.
特開平7-325998号公報JP 7-325998 A
 駐車場の設計を最適化する際の重要な要素として、駐車場内部における走行経路の最適化が挙げられる。従来、走行経路の最適化は、設計と、当該設計に対応するシミュレーションの実行とを繰り返すことで行われていた。 An important factor in optimizing the design of the parking lot is the optimization of the driving route inside the parking lot. Conventionally, optimization of a travel route has been performed by repeating design and execution of a simulation corresponding to the design.
 すなわち、まず、設計者は、モデル化した走行経路に基づいてシステムに交通シミュレーションを実行させる。その後、設計者は、シミュレーション結果を示す動画を閲覧して走行経路を評価し、走行経路を適宜修正する。その後、設計者は、修正された走行経路に基づいて、システムに交通シミュレーションを実行させる。以降、設計者は、設計が最適化されたと判断されるまで、走行経路の修正及びシミュレーションの再実行を繰り返す。 That is, first, the designer causes the system to execute a traffic simulation based on the modeled travel route. Thereafter, the designer browses the moving image showing the simulation result, evaluates the travel route, and corrects the travel route as appropriate. Thereafter, the designer causes the system to execute a traffic simulation based on the corrected travel route. Thereafter, the designer repeats the correction of the travel route and the re-execution of the simulation until it is determined that the design is optimized.
 しかしながら、上述した手法は、設計者が動画を繰り返し閲覧しながら検討結果を設計にフィードバックしていくため、走行経路の最適化が行われるまでに時間がかかるという問題があった。そこで、走行経路の最適化に係る時間を削減することが求められている。 However, the above-described method has a problem that it takes time until the route is optimized because the designer feeds back the examination results to the design while browsing the video repeatedly. Therefore, it is required to reduce the time required for optimization of the travel route.
 そこで、本発明はこれらの点に鑑みてなされたものであり、走行経路の最適化に係る時間を削減することができるシミュレーション装置、シミュレーション方法、及びシミュレーションプログラムを提供することを目的とする。 Therefore, the present invention has been made in view of these points, and an object thereof is to provide a simulation apparatus, a simulation method, and a simulation program that can reduce the time required for optimization of a travel route.
 本発明の第1の態様に係るシミュレーション装置は、所定エリアにおける通路を示す通路情報を取得する取得部と、前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成する生成部と、前記通路における交通シミュレーションのシミュレーション条件を取得する条件取得部と、生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するシミュレーション実行部と、生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成する画像生成部と、を備える。 The simulation apparatus according to the first aspect of the present invention includes an acquisition unit that acquires passage information indicating a passage in a predetermined area, and a passage model for traffic simulation in which the priority route on which a vehicle travels preferentially differs in the passage. A plurality of generation units, a condition acquisition unit for acquiring simulation conditions for traffic simulation in the passage, and a simulation execution unit for executing traffic simulation based on the acquired simulation conditions for each of the generated plurality of passage models And an image generation unit that generates an image of the predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation for each of the generated plurality of passage models.
 前記取得部は、所定エリアにおける前記通路を示す通路情報として、駐車場における通路及び駐車場と隣接する道路を示す通路情報を取得し、前記生成部は、前記駐車場における前記優先経路がそれぞれ異なる前記通路モデルを複数生成してもよい。
 前記生成部は、前記通路における車両の一時停止位置を規定することにより、前記優先経路を設定してもよい。
The acquisition unit acquires passage information indicating a passage in a parking lot and a road adjacent to the parking lot as passage information indicating the passage in a predetermined area, and the generation unit has different priority routes in the parking lot. A plurality of the passage models may be generated.
The generation unit may set the priority route by defining a temporary stop position of the vehicle in the passage.
 前記渋滞位置及び前記渋滞長に基づいて、前記通路モデルを評価する評価部をさらに備え、前記画像生成部は、前記評価部による評価が相対的に高い通路モデルに限定して、前記所定エリアの画像を生成してもよい。 An evaluation unit that evaluates the passage model based on the congestion position and the congestion length is further provided, and the image generation unit is limited to a passage model that is relatively highly evaluated by the evaluation unit, and An image may be generated.
 前記シミュレーション実行部は、前記シミュレーション条件に基づいて、前記所定エリアを走行する1以上の車両の旅行時間を算出し、前記評価部は、前記旅行時間に基づいて前記通路モデルを評価してもよい。
 前記画像生成部は、前記所定エリアにおける駐車スペースに駐車している車両を示す画像を含まない前記所定エリアの画像を生成してもよい。
The simulation execution unit may calculate a travel time of one or more vehicles traveling in the predetermined area based on the simulation condition, and the evaluation unit may evaluate the passage model based on the travel time. .
The image generation unit may generate an image of the predetermined area that does not include an image showing a vehicle parked in a parking space in the predetermined area.
 本発明の第2の態様に係るシミュレーション方法は、所定エリアにおける通路を示す通路情報を取得するステップと、前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成するステップと、前記通路における交通シミュレーションのシミュレーション条件を取得するステップと、生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するステップと、生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成するステップと、を備える。 The simulation method according to the second aspect of the present invention includes a step of acquiring path information indicating a path in a predetermined area, and a path model for traffic simulation in which the priority path on which the vehicle travels preferentially differs in the path. A step of generating a plurality of steps, a step of acquiring simulation conditions for traffic simulation in the passage, a step of executing a traffic simulation based on the acquired simulation conditions for each of the generated plurality of passage models, For each of the passage models, a step of generating an image of the predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation is provided.
 本発明の第3の態様に係るシミュレーションプログラムは、コンピュータを、所定エリアにおける通路を示す通路情報を取得する取得部、前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成する生成部、前記通路における交通シミュレーションのシミュレーション条件を取得する条件取得部、生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するシミュレーション実行部、及び生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成する画像生成部、として機能させる。 A simulation program according to a third aspect of the present invention provides a computer for obtaining a passage information indicating a passage in a predetermined area, and for a traffic simulation in which the priority route on which a vehicle travels preferentially differs in the passage. A generation unit that generates a plurality of passage models, a condition acquisition unit that acquires simulation conditions for traffic simulation in the passage, and a simulation execution unit that executes a traffic simulation based on the acquired simulation conditions for each of the generated plurality of passage models Each of the generated plurality of passage models is caused to function as an image generation unit that generates an image of the predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation.
 本発明によれば、走行経路の最適化に係る時間を削減することができるという効果を奏する。 According to the present invention, it is possible to reduce the time required for optimizing the travel route.
第1の実施形態に係るシミュレーション装置の概要を示す図である。It is a figure which shows the outline | summary of the simulation apparatus which concerns on 1st Embodiment. 第1の実施形態に係るシミュレーション装置の機能構成図である。It is a functional lineblock diagram of the simulation device concerning a 1st embodiment. 第1の実施形態に係るシミュレーション装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the simulation apparatus which concerns on 1st Embodiment. 所定エリアにおける通路を示す図である。It is a figure which shows the channel | path in a predetermined area. 所定エリアにおけるノード、リンク及び車両の進行方向を示す図である。It is a figure which shows the advancing direction of the node in a predetermined area, a link, and a vehicle. ノード、リンク及び車両の進行方向の他の例を示す図である。It is a figure which shows the other example of the advancing direction of a node, a link, and a vehicle. ノードの種類を示す図である。It is a figure which shows the kind of node. 生成部が特定した一時停止の組み合わせを示す図である。It is a figure which shows the combination of the pause which the production | generation part specified. 所定エリアにおける渋滞プロット図の例を示す図である。It is a figure which shows the example of the traffic congestion plot figure in a predetermined area. 図9に示す画像から、駐車スペースに駐車している車両を示す画像を除外した例を示す図である。It is a figure which shows the example which excluded the image which shows the vehicle parked in the parking space from the image shown in FIG. 第2の実施形態に係るシミュレーション装置の概要を示す図である。It is a figure which shows the outline | summary of the simulation apparatus which concerns on 2nd Embodiment. 第2の実施形態に係るシミュレーション装置の機能構成図である。It is a functional block diagram of the simulation apparatus which concerns on 2nd Embodiment. 第2の実施形態に係るシミュレーション装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the simulation apparatus which concerns on 2nd Embodiment.
 以下、本発明の実施形態について説明する。
<第1の実施形態>
[シミュレーション装置1の概要]
 図1は、第1の実施形態に係るシミュレーション装置1の概要を示す図である。シミュレーション装置1は、車両が走行する通路が設けられている所定エリアにおける車両の交通シミュレーションを実行するコンピュータである。
Hereinafter, embodiments of the present invention will be described.
<First Embodiment>
[Outline of the simulation apparatus 1]
FIG. 1 is a diagram illustrating an outline of a simulation apparatus 1 according to the first embodiment. The simulation device 1 is a computer that executes a traffic simulation of a vehicle in a predetermined area where a passage where the vehicle travels is provided.
 シミュレーション装置1は、所定エリアにおける通路を示す通路情報を取得し、当該通路において、車両が優先して走行する優先経路を設定することにより、交通シミュレーション用の通路モデルを生成する。シミュレーション装置1は、優先経路を変化させて、通路モデルを複数生成する。続いて、シミュレーション装置1は、交通シミュレーションのシミュレーション条件を取得し、生成した複数の通路モデルのそれぞれについて、取得したシミュレーション条件に基づいて交通シミュレーションを実行する。続いて、シミュレーション装置1は、複数の通路モデルのそれぞれのシミュレーション結果に基づいて、所定エリアの通路内で発生した渋滞の渋滞位置及び渋滞長を示す渋滞プロット図を生成する。 The simulation apparatus 1 acquires passage information indicating a passage in a predetermined area, and generates a passage model for traffic simulation by setting a priority route in which the vehicle travels with priority. The simulation apparatus 1 generates a plurality of passage models by changing the priority route. Subsequently, the simulation apparatus 1 acquires the simulation conditions for the traffic simulation, and executes the traffic simulation for each of the generated plurality of passage models based on the acquired simulation conditions. Subsequently, the simulation apparatus 1 generates a traffic jam plot diagram indicating the traffic jam position and the traffic jam length of the traffic jam that has occurred in the passage of a predetermined area, based on the simulation results of each of the plurality of channel models.
[シミュレーション装置1の構成例]
 続いて、シミュレーション装置1の機能構成について説明する。図2は、第1の実施形態に係るシミュレーション装置1の機能構成図である。
 シミュレーション装置1は、入力部11と、表示部12と、記憶部13と、制御部14とを備える。
[Configuration Example of Simulation Device 1]
Next, the functional configuration of the simulation apparatus 1 will be described. FIG. 2 is a functional configuration diagram of the simulation apparatus 1 according to the first embodiment.
The simulation apparatus 1 includes an input unit 11, a display unit 12, a storage unit 13, and a control unit 14.
 入力部11は、例えば、キーボードやマウス等によって構成される。入力部11は、シミュレーション装置1の利用者から操作入力を受け付ける。
 表示部12は、例えば、液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイ等により構成される。表示部12は、制御部14の制御に応じて、例えば、シミュレーション装置1が取得した図面情報等を表示する。
The input unit 11 is configured by, for example, a keyboard and a mouse. The input unit 11 receives an operation input from a user of the simulation apparatus 1.
The display unit 12 includes, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display. The display unit 12 displays, for example, drawing information acquired by the simulation apparatus 1 according to the control of the control unit 14.
 記憶部13は、例えば、ROM及びRAM等により構成される。記憶部13は、シミュレーション装置1を機能させるための各種プログラムを記憶する。例えば、記憶部13は、シミュレーション装置1の制御部14を、後述する取得部141、生成部142、条件取得部143、シミュレーション実行部144、及び画像生成部145として機能させるシミュレーションプログラムを記憶する。記憶部13は、外部メモリ等の記憶媒体に記憶されたプログラムを読み取って記憶してもよく、インターネット等のネットワークを介して外部機器からダウンロードされたプログラムを記憶してもよい。 The storage unit 13 includes, for example, a ROM and a RAM. The storage unit 13 stores various programs for causing the simulation apparatus 1 to function. For example, the storage unit 13 stores a simulation program that causes the control unit 14 of the simulation apparatus 1 to function as an acquisition unit 141, a generation unit 142, a condition acquisition unit 143, a simulation execution unit 144, and an image generation unit 145 described later. The storage unit 13 may read and store a program stored in a storage medium such as an external memory, or may store a program downloaded from an external device via a network such as the Internet.
 制御部14は、例えば、CPUにより構成される。制御部14は、記憶部13に記憶されている各種プログラムを実行することにより、シミュレーション装置1に係る機能を統括的に制御する。制御部14は、取得部141と、生成部142と、条件取得部143と、シミュレーション実行部144と、画像生成部145とを備える。以下、シミュレーション装置1の処理の流れを示すフローチャートを参照しながら、制御部14の機能について説明を行う。図3は、第1の実施形態に係るシミュレーション装置1の処理の流れを示すフローチャートである。 The control unit 14 is constituted by a CPU, for example. The control unit 14 comprehensively controls functions related to the simulation apparatus 1 by executing various programs stored in the storage unit 13. The control unit 14 includes an acquisition unit 141, a generation unit 142, a condition acquisition unit 143, a simulation execution unit 144, and an image generation unit 145. Hereinafter, the function of the control unit 14 will be described with reference to a flowchart showing a processing flow of the simulation apparatus 1. FIG. 3 is a flowchart showing the flow of processing of the simulation apparatus 1 according to the first embodiment.
 取得部141は、例えば、シミュレーション装置1の利用者による入力部11の操作に応じて、所定エリアにおける通路を示す通路情報を取得する(S10)。図4は、所定エリアにおける通路を示す図である。図4が示す所定エリアには、店舗等への出入口E1、E2が設けられた駐車場を示すエリアA1と、当該駐車場に隣接する道路を示すエリアA2が含まれており、取得部141は、所定エリアにおける通路情報として、駐車場における通路を示す通路情報及び当該駐車場と隣接する道路を示す通路情報を取得する。このようにすることで、駐車場に流入する車両及び駐車場から流出する車両が道路に及ぼす影響をシミュレーション結果として得ることができるので、設計者は、当該影響を考慮して優先経路を設計することができる。なお、通路には、車両が走行する通路の他に、歩行者が通行する歩道が含まれていてもよい。このようにすることで、歩行者の歩行状況も考慮して、駐車場に流入する車両及び駐車場から流出する車両が道路に及ぼす影響をシミュレーション結果として得ることができる。 The acquisition unit 141 acquires passage information indicating a passage in a predetermined area, for example, in response to an operation of the input unit 11 by a user of the simulation apparatus 1 (S10). FIG. 4 is a diagram showing a passage in a predetermined area. The predetermined area shown in FIG. 4 includes an area A1 indicating a parking lot provided with entrances E1 and E2 to stores and an area A2 indicating a road adjacent to the parking lot. The passage information indicating the passage in the parking lot and the passage information indicating the road adjacent to the parking lot are acquired as the passage information in the predetermined area. By doing in this way, since the influence which the vehicle which flows into a parking lot and the vehicle which flows out from a parking lot exerts on a road can be obtained as a simulation result, a designer designs a priority route in consideration of the influence. be able to. The passage may include a sidewalk through which pedestrians pass in addition to the passage where the vehicle travels. By doing in this way, the influence which the vehicle which flows into a parking lot and the vehicle which flows out from a parking lot exerts on a road can be obtained as a simulation result in consideration of the walking situation of a pedestrian.
 通路情報には、通路における交差点を示すノードに係るノード情報と、通路を示し、複数のノードの間を接続するリンクに係るリンク情報と、リンク及びノードの接続関係を示すネットワーク情報とが含まれている。 The path information includes node information related to a node indicating an intersection in the path, link information indicating a path and a link connecting a plurality of nodes, and network information indicating a connection relation between the link and the node. ing.
 図5は、図4に示される所定エリアにおけるノード、リンク及び車両の進行方向を示す図である。図5に示されるN1~N10はノードを示し、L1~L15はリンクを示している。また、リンクの近傍に示されている矢印は、当該リンクが示す通路における車両の進行方向を示している。 FIG. 5 is a diagram showing the traveling direction of nodes, links and vehicles in the predetermined area shown in FIG. N1 to N10 shown in FIG. 5 indicate nodes, and L1 to L15 indicate links. Moreover, the arrow shown in the vicinity of a link has shown the advancing direction of the vehicle in the channel | path which the said link shows.
 なお、ノードは、交差点に限らず、駐車場の車両の出入口や、当該出入口に設置されるゲートを示すものであってもよい。例えば、図5において、ノードN9及びN10は、駐車場の出入口を示し、ノードN1は、駐車場の入口に設置されるゲートを示し、及びN8は、駐車場の出口に設置されるゲートを示している。また、ノードは、車両が走行する通路が交差する交差点等を示すこととしたが、これに限らず、車両が走行する通路と歩道とが交差する交差点を示すものであってもよい。また、ノードは、駐車場における店舗等への出入口(例えば、図4に示す出入口E1、E2)を示すものであってもよい。 It should be noted that the node is not limited to an intersection, and may indicate a vehicle entrance / exit of a parking lot or a gate installed at the entrance / exit. For example, in FIG. 5, nodes N9 and N10 indicate parking entrances, node N1 indicates a gate installed at the parking entrance, and N8 indicates a gate installed at the parking exit. ing. Further, the node indicates an intersection or the like where a passage where a vehicle travels intersects, but is not limited thereto, and may indicate an intersection where a passage where a vehicle travels and a sidewalk intersect. Further, the node may indicate an entrance to a store or the like in the parking lot (for example, entrances E1 and E2 shown in FIG. 4).
 このように、駐車場の出入口及びゲートをノードとすることで、駐車場内部の通路を示すリンクと、出入口に隣接する道路を示すリンクとを異なるリンクとして扱うことができ、これらのリンクのそれぞれに対して異なる属性を適用することができる。また、通路が複数の曲線から構成されている場合、複数の曲線のそれぞれに対応するリンク情報と、当該曲線の変曲点に対応する位置を示すノード情報とを取得してもよい。 In this way, by using the entrance and gate of the parking lot as a node, the link indicating the passage inside the parking lot and the link indicating the road adjacent to the entrance can be treated as different links. Different attributes can be applied to. Further, when the passage is composed of a plurality of curves, link information corresponding to each of the plurality of curves and node information indicating a position corresponding to the inflection point of the curve may be acquired.
 ノード情報には、ノードの3次元の位置を示す位置情報と、ノードの属性を示すノード属性情報が含まれている。ノード属性情報には、車両の一時停止位置や、右折車線及び左折車線の待機位置を示す情報、ランプ合流位置を示す情報が含まれている。また、ノード属性情報には、歩行者の一時停止位置、横断歩道の位置を示す情報が含まれていてもよい。 The node information includes position information indicating the three-dimensional position of the node and node attribute information indicating the attribute of the node. The node attribute information includes information indicating the temporary stop position of the vehicle, the standby position of the right turn lane and the left turn lane, and the information indicating the lamp merging position. The node attribute information may include information indicating the pedestrian's temporary stop position and the position of the pedestrian crossing.
 リンク情報には、リンクの位置を示すリンク位置情報と、リンクの長さを示すリンク長情報と、リンクの属性を示すリンク属性情報が含まれている。リンク属性情報には、車線数を示す車線情報、幅員(通路幅)、車両の進行方向、規制速度、標識の有無、カーブミラーの有無、監視カメラの有無、駐車スペースの配置位置及び駐車スペースの配置パターン等を示す情報が含まれている。また、リンク属性情報には、歩道に関する情報として、歩道の幅、歩道の位置を示す情報が含まれていてもよい。 The link information includes link position information indicating a link position, link length information indicating a link length, and link attribute information indicating a link attribute. The link attribute information includes lane information indicating the number of lanes, width (passage width), vehicle traveling direction, regulation speed, presence / absence of signs, presence / absence of a curved mirror, presence / absence of a monitoring camera, parking space location and parking space Information indicating an arrangement pattern or the like is included. The link attribute information may include information indicating the width of the sidewalk and the position of the sidewalk as information about the sidewalk.
 生成部142は、車両が走行する複数の通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成する(S20)。具体的には、生成部142は、通路を構成する道路及び駐車場内の通路のうち、駐車場内の通路における優先経路がそれぞれ異なる通路モデルを複数生成する。ここで、道路における優先経路は固定であるものとするが、例えば、入力部11を操作することにより、道路における優先経路の変更を受け付けてもよい。 The generation unit 142 generates a plurality of traffic simulation path models having different priority routes on which the vehicle travels preferentially in a plurality of paths traveled by the vehicle (S20). Specifically, the generation unit 142 generates a plurality of passage models having different priority routes in the passages in the parking lot among roads constituting the passage and passages in the parking lot. Here, although the priority route on the road is assumed to be fixed, for example, the change of the priority route on the road may be accepted by operating the input unit 11.
 生成部142は、駐車場内の通路における車両の一時停止位置を規定することにより、優先経路を設定する。すなわち、生成部142は、ノード情報を参照し、車両が合流するノードに対応するノード属性情報に含まれる一時停止位置を変更することにより、複数の優先経路を設定する。ここで、生成部142は、予めノード属性情報において規定されている一時停止位置を変更してもよい。例えば、図5に示す例では、ノードN2、N4、N6、N9及びN10が車両の合流点となる。生成部142は、各ノードについて、ノードに対して車両を流入させる複数のリンクの少なくともいずれかに一時停止位置を規定することにより、優先経路を設定する。また、生成部142は、車両が走行する通路と、歩道との交差点を示すノード情報を参照し、例えば、車両が走行する通路に対して一時停止位置を規定することにより、車両が走行する通路と歩道との優先順位を設定してもよい。 The generation unit 142 sets a priority route by defining a temporary stop position of the vehicle in the passage in the parking lot. That is, the generation unit 142 sets a plurality of priority routes by referring to the node information and changing the temporary stop position included in the node attribute information corresponding to the node where the vehicle joins. Here, the generation unit 142 may change the temporary stop position defined in advance in the node attribute information. For example, in the example shown in FIG. 5, the nodes N2, N4, N6, N9, and N10 are the meeting points of the vehicle. The generation unit 142 sets a priority route for each node by defining a temporary stop position in at least one of a plurality of links that allow the vehicle to flow into the node. In addition, the generation unit 142 refers to node information indicating an intersection between a path where the vehicle travels and a sidewalk, and defines a temporary stop position with respect to the path where the vehicle travels, for example. And the priority order of the sidewalk may be set.
 ここで、生成部142は、入力部11を介して、優先経路の変更を行わないノードの指定を受け付けてもよい。例えば、ノードN9及びN10は、駐車場の出入口を示すノードであり、道路上の車両の走行が優先されることから、設計者は、入力部11を介してノードN9及びN10を、優先経路の変更を行わないノードに指定する。生成部142は、指定されたノードN9及びN10に対応するノード属性情報において規定されている一時停止位置の変更を行わない。 Here, the generation unit 142 may accept designation of a node that does not change the priority route via the input unit 11. For example, the nodes N9 and N10 are nodes that indicate the entrances and exits of a parking lot, and priority is given to driving of vehicles on the road. Therefore, the designer selects the nodes N9 and N10 via the input unit 11 as the priority route. Specify a node that does not change. The generation unit 142 does not change the temporary stop position defined in the node attribute information corresponding to the designated nodes N9 and N10.
 生成部142は、合流点を示す複数のノードのそれぞれについて、ノードに対して車両を流入させる複数のリンクのいずれかを車両の走行を優先するリンクに設定し、他のリンクに一時停止位置を規定する。これにより、生成部142は、複数のノードのそれぞれにおける一時停止位置の組み合わせを特定する。図5に示す例では、生成部142は、一時停止位置の変更を行わないノードN9及びN10を除いた、合流点を示す3つのノードN2、N4及びN6について一時停止位置を規定する。 The generating unit 142 sets, for each of the plurality of nodes indicating the junction, one of the plurality of links that allow the vehicle to flow into the node as a link that gives priority to the traveling of the vehicle, and sets the pause position to the other links. Stipulate. Thereby, the generation unit 142 specifies a combination of temporary stop positions in each of the plurality of nodes. In the example illustrated in FIG. 5, the generation unit 142 defines the temporary stop positions for the three nodes N2, N4, and N6 that represent the merge points, excluding the nodes N9 and N10 that do not change the temporary stop position.
 例えば、ノードN2には、車両の流入元のリンクとして、リンクL2及びリンクL12が接続されている。ノードN4には、車両の流入元のリンクとして、リンクL4及びリンクL10が接続されている。ノードN6には、車両の流入元のリンクとして、リンクL6及びリンクL11が接続されている。生成部142は、これら6つのリンクに対する一時停止位置の組み合わせとして、図8に示すように8つの組み合わせを特定し、それぞれの組み合わせを適用した通路モデルを生成する。ここで、複数のノードに対して規定される一時停止位置によって設定される優先経路は、必ずしも駐車場の出入口を結ぶものでなくともよく、例えば、駐車場内における閉じた経路、枝分かれした経路であってもよい。 For example, a link L2 and a link L12 are connected to the node N2 as links from which the vehicle flows. A link L4 and a link L10 are connected to the node N4 as links from which the vehicle flows in. A link L6 and a link L11 are connected to the node N6 as an inflow source link of the vehicle. The generation unit 142 specifies eight combinations as combinations of the temporary stop positions for these six links as shown in FIG. 8, and generates a passage model to which each combination is applied. Here, the priority route set by the temporary stop positions defined for a plurality of nodes may not necessarily connect the entrance / exit of the parking lot, for example, a closed route or a branched route in the parking lot. May be.
 なお、シミュレーション装置1が取得した図面情報等には、通路の優先経路の設定に関係する入口、出口、車路、車室、サーキュレーションの少なくとも一部の定義情報が含まれていない場合がある。例えば、設計開始時では、図面情報にこれらの定義情報が含まれておらず、設計の序盤段階では図面情報に重要箇所の定義情報のみ含まれており、設計の中盤段階では、図面情報に定義情報が概ね含まれており、設計の終盤段階では、図面情報に全ての定義情報が含まれている。すなわち、生成部142は、図面情報に含まれている定義情報に基づいて重要となる通路の優先経路を固定したり、重要ではない通路に限定して、入力部11を介して優先経路の設定を受け付けたりしてもよい。 Note that the drawing information and the like acquired by the simulation apparatus 1 may not include definition information on at least a part of the entrance, exit, roadway, vehicle compartment, and circulation related to the setting of the priority route of the passage. . For example, at the start of design, the definition information is not included in the drawing information, and only the definition information for the important part is included in the drawing information at the early stage of the design. In the middle stage of the design, the definition is defined in the drawing information. Information is generally included, and in the final stage of design, all definition information is included in the drawing information. That is, the generation unit 142 fixes the priority route of the important passage based on the definition information included in the drawing information, or sets the priority route via the input unit 11 only for the non-important passage. May be accepted.
 また、生成部142は、駐車場内の通路における車両の一時停止位置を変更することにより、当該一時停止位置に基づく優先経路がそれぞれ異なる通路モデルを複数生成したが、当該生成方法とは異なる方法により通路モデルを生成してもよい。例えば、生成部142は、以下の手順に基づいて、図6に示すようなノード、リンク及び車両の進行方向に対応する通路モデルを生成してもよい。 In addition, the generation unit 142 generates a plurality of passage models having different priority routes based on the temporary stop position by changing the temporary stop position of the vehicle in the passage in the parking lot, but the method is different from the generation method. A passage model may be generated. For example, the generation unit 142 may generate a path model corresponding to the traveling direction of the node, the link, and the vehicle as illustrated in FIG. 6 based on the following procedure.
 まず、生成部142は、駐車場の入口と出口位置とを規定する。続いて、生成部142は、駐車場における通路の外周部の進行方向を時計回りに規定する。なお、車両が右側を走行する国における駐車場を設計する場合には、生成部142は、駐車場における通路の外周部の進行方向を反時計回りに規定する。 First, the generation unit 142 defines the entrance and exit positions of the parking lot. Subsequently, the generation unit 142 defines the traveling direction of the outer peripheral portion of the passage in the parking lot in the clockwise direction. In addition, when designing the parking lot in the country where the vehicle travels on the right side, the generation unit 142 defines the traveling direction of the outer peripheral portion of the passage in the parking lot counterclockwise.
 続いて、生成部142は、外周部の各ノードにおける進行方向を、出口に向けて一方通行にする。ここで、生成部142は、設定したノード、リンク及び車両の進行方向について、図7に示すノードの種類に基づいての評価を行う。例えば、生成部142は、設定したノードの種別を、図7(a)に示すクロス、(b)に示す3方合流、(c)に示す準クロス、(d)に示す対面合流に分類する。また、生成部142は、ノード、リンク及び車両の進行方向、駐車場の出入口の位置に基づいて、リンクが、一度車両が通過したら戻ることができないリンクである回帰不可リンクであるか否かを判定する。そして、生成部142は、(e)、(d)、(c)、(b)、(a)の順に点数を高くなるように規定しておき、分類したノードの点数を集計するとともに、回帰不可リンクの数を集計し、当該集計結果に基づいて、設定したノード、リンク及び車両の進行方向の評価を行う。生成部142は、評価点が所定の閾値よりも低くなるノード、リンク及び車両の進行方向の組み合わせに対応する複数の通路モデルを、シミュレーションの対象となる通路モデルとする。 Subsequently, the generation unit 142 makes the traveling direction of each node in the outer peripheral portion one-way toward the exit. Here, the production | generation part 142 performs evaluation based on the kind of node shown in FIG. 7 about the set node, link, and the advancing direction of a vehicle. For example, the generation unit 142 classifies the set node types into a cross illustrated in FIG. 7A, a three-way merge illustrated in (b), a quasi-cross illustrated in (c), and a face-to-face merge illustrated in (d). . Further, the generation unit 142 determines whether or not the link is a non-returnable link that is a link that cannot be returned once the vehicle has passed based on the position of the node, the link, the traveling direction of the vehicle, and the entrance / exit of the parking lot. judge. Then, the generation unit 142 prescribes the scores so as to increase in the order of (e), (d), (c), (b), and (a), totals the scores of the classified nodes, and returns The number of impossible links is counted, and the set nodes, links, and the traveling direction of the vehicle are evaluated based on the counting results. The generation unit 142 sets a plurality of passage models corresponding to combinations of nodes, links, and traveling directions of the vehicles whose evaluation points are lower than a predetermined threshold as passage models to be simulated.
 なお、シミュレーション装置1が取得した図面情報等には、通路の優先経路の設定に関係する入口、出口、車両用の通路、車室、サーキュレーションの少なくとも一部の定義情報が含まれていない場合がある。例えば、駐車場の設計開始時には、図面情報にこれらの定義情報が含まれておらず、設計の序盤段階では図面情報に重要箇所の定義情報のみ含まれ、設計の中盤段階では、図面情報に定義情報が概ね含まれており、設計の終盤段階では、図面情報に全ての定義情報が含まれている。そこで、生成部142は、図面情報に含まれている定義情報に基づいて重要となる通路の優先経路を固定したり、重要ではない通路に限定して、入力部11を介して優先経路の設定を受け付けたりしてもよい。 The drawing information acquired by the simulation apparatus 1 does not include definition information on at least a part of the entrance, exit, vehicle passage, vehicle compartment, and circulation related to the setting of the priority route of the passage. There is. For example, at the start of parking lot design, these definition information is not included in the drawing information, only the important part definition information is included in the drawing information at the early stage of the design, and defined in the drawing information at the middle stage of the design. Information is generally included, and in the final stage of design, all definition information is included in the drawing information. Therefore, the generation unit 142 fixes the priority route of the important passage based on the definition information included in the drawing information, or sets the priority route via the input unit 11 only for the non-important passage. May be accepted.
 条件取得部143は、通路における交通シミュレーションのシミュレーション条件を取得する(S30)。具体的には、条件取得部143は、例えば入力部11を介して、所定エリア内の通路に流入する車両の情報として、時間別に流入する車両の台数、走行車両の車種(VIP車両、緊急車両、身障者用車両、バス、タクシー、オートバイ、自転車、ごみ処理車等)及びサイズ、荷捌き条件、歩行者通路に関する情報(例えば、歩行者の数、歩行者の種類(男女、大人、子供、老人、身障者等))、駐車場のゲートバーにおける車両の通過時間、及び車両が所定エリアに流入する位置を示す情報を取得する。 The condition acquisition unit 143 acquires the simulation conditions of the traffic simulation in the passage (S30). Specifically, the condition acquisition unit 143 uses, for example, the input unit 11 as information on vehicles flowing into a passage in a predetermined area, the number of vehicles flowing in by time, the type of traveling vehicle (VIP vehicle, emergency vehicle) , Vehicles for disabled people, buses, taxis, motorcycles, bicycles, garbage trucks, etc. and size, handling conditions, information on pedestrian walkways (eg number of pedestrians, type of pedestrians (men and women, adults, children, elderly people) , Handicapped persons, etc.)), information indicating the vehicle transit time in the gate bar of the parking lot and the position where the vehicle flows into the predetermined area.
 また、条件取得部143は、入力部11を介して、交通シミュレーションを行う時間帯を示す情報、交通シミュレーションの開始時における交通状況を再現するためのプレシミュレーションを行う時間等を取得する。ここで、条件取得部143は、実データに基づくシミュレーションの条件を取得してもよい。例えば、条件取得部143は、実際の交通量、駐車量、信号現示等に関するデータとして、VICS(Vehicle Information and Communication System)(登録商標)やプローブ交通情報、車番認識システム、トラッキングツールによって収集されたデータに基づいて、シミュレーションの条件を取得してもよい。 Further, the condition acquisition unit 143 acquires, via the input unit 11, information indicating a time zone for performing the traffic simulation, a time for performing a pre-simulation for reproducing the traffic situation at the start of the traffic simulation, and the like. Here, the condition acquisition unit 143 may acquire a simulation condition based on actual data. For example, the condition acquisition unit 143 collects data related to actual traffic volume, parking volume, signal display, etc. using VICS (Vehicle Information and Communication System) (registered trademark), probe traffic information, vehicle number recognition system, and tracking tool. Simulation conditions may be acquired based on the obtained data.
 シミュレーション実行部144は、生成した複数のモデルのそれぞれについて、取得したシミュレーション条件に基づいて交通シミュレーションを実行する(S40)。例えば、シミュレーション実行部144は、シミュレーション結果として、条件取得部143が取得した交通シミュレーションを行う時間帯において発生する渋滞位置、渋滞長等の交通状況を出力する。また、シミュレーション実行部144は、所定エリアを走行する1以上の車両の旅行時間を算出して出力する。例えば、シミュレーション実行部144は、1以上の車両が駐車場に入場してから駐車スペースへの入庫が完了するまでの時間と、当該車両が駐車スペースから出庫してから駐車場を退場するまでの時間との和を旅行時間として算出する。 The simulation execution unit 144 executes a traffic simulation for each of the generated plurality of models based on the acquired simulation conditions (S40). For example, the simulation execution unit 144 outputs, as a simulation result, traffic conditions such as a traffic jam position and a traffic jam length that occur in a time zone in which the traffic simulation acquired by the condition acquisition unit 143 is performed. In addition, the simulation execution unit 144 calculates and outputs the travel time of one or more vehicles traveling in a predetermined area. For example, the simulation execution unit 144 may have a time from when one or more vehicles enter the parking lot to when the entry into the parking space is completed, and from when the vehicle leaves the parking space until the vehicle leaves the parking lot. The sum of time and travel time is calculated.
 画像生成部145は、生成した複数のモデルのそれぞれについて、交通シミュレーションの結果に基づいて、通路における渋滞位置及び渋滞長を示す所定エリアの画像として、渋滞プロット図を生成する(S50)。具体的には、画像生成部145は、交通シミュレーションを行った時間帯に含まれる所定時刻における車両の状態を参照し、所定速度以下の車両の位置を渋滞位置と特定する。そして、画像生成部145は、所定エリアを示す画像に対して、渋滞位置に対して車両を示す画像を表示させることにより、渋滞位置及び渋滞長を示す渋滞プロット図を生成する。図9は、所定エリアにおける渋滞プロット図の例を示す図である。 The image generation unit 145 generates a traffic congestion plot diagram as an image of a predetermined area indicating the traffic congestion position and the traffic congestion length in the passage for each of the generated models based on the traffic simulation result (S50). Specifically, the image generation unit 145 refers to the state of the vehicle at a predetermined time included in the time zone in which the traffic simulation is performed, and identifies the position of the vehicle at a predetermined speed or less as the congestion position. And the image generation part 145 produces | generates the traffic jam plot figure which shows a traffic jam position and the traffic jam length by displaying the image which shows a vehicle with respect to the traffic jam position with respect to the image which shows a predetermined area. FIG. 9 is a diagram illustrating an example of a traffic congestion plot diagram in a predetermined area.
 しかしながら、図9に示す渋滞プロット図では、車両が駐車中の駐車スペースの位置も渋滞位置とみなされ、駐車スペースに駐車中の車両を示す画像が表示されている。このため、画像生成部145は、所定エリアにおける駐車スペースに駐車している車両を示す画像を含まない渋滞プロット図を生成する。例えば、画像生成部145は、予め所定エリアにおける駐車スペースの位置を示す画像データを取得しておき、図9に示す渋滞プロット図を生成する際に、当該画像データを参照し、所定エリアにおける駐車スペースに駐車している車両を示す画像を含まない渋滞プロット図を生成する。 However, in the traffic jam plot diagram shown in FIG. 9, the position of the parking space where the vehicle is parked is also regarded as the traffic jam position, and an image showing the vehicle parked in the parking space is displayed. For this reason, the image generation part 145 produces | generates the traffic congestion plot figure which does not contain the image which shows the vehicle parked in the parking space in a predetermined area. For example, the image generation unit 145 acquires image data indicating the position of the parking space in a predetermined area in advance, and refers to the image data when generating the traffic congestion plot diagram shown in FIG. A traffic jam plot diagram that does not include an image showing a vehicle parked in the space is generated.
 図10は、図9に示す渋滞プロット図から、駐車スペースに駐車している車両を示す画像を除外した例を示す図である。図10に示される所定エリアの画像では、渋滞位置及び渋滞長を示す車両の画像のみが表示されていることが確認できる。 FIG. 10 is a diagram showing an example in which an image showing a vehicle parked in a parking space is excluded from the traffic jam plot diagram shown in FIG. In the image of the predetermined area shown in FIG. 10, it can be confirmed that only the vehicle image indicating the traffic jam position and the traffic jam length is displayed.
 なお、画像生成部145は、シミュレーション実行部144が、所定エリアにおける車両の状況を示す動画を生成する機能を有している場合、シミュレーションを行った時間帯に含まれる所定時刻における所定エリアの画像と、当該画像の前後のフレームにおける画像とを抽出し、これらの画像において重複して表示されている車両に対応する画像を表示させることにより、通路における渋滞位置及び渋滞長を示す所定エリアの画像を生成してもよい。 In addition, the image generation unit 145, when the simulation execution unit 144 has a function of generating a moving image indicating the state of the vehicle in the predetermined area, the image of the predetermined area at the predetermined time included in the simulation time zone. And images in frames before and after the image, and by displaying images corresponding to the vehicles displayed in duplicate in these images, an image of a predetermined area indicating the congestion position and congestion length in the passage May be generated.
 また、画像生成部145は、各フレームにおいて作成された、通路における渋滞位置及び渋滞長を示す所定エリアの画像をさらに合成してもよい。この際、車両を示す画像が重なる場合には、協調して表示させてもよい。また、画像生成部145は、重なった回数に基づいて、協調度合いを変更してもよい。例えば、複数のフレームのそれぞれに対応する、渋滞位置及び渋滞長を示す所定エリアの画像の画素値を、例えば合成するフレームの数で除算し、1画像あたりにおける画素値の最大値を低く調整する。そして、除算した後の複数の画像の画素値を集計する。これにより、渋滞等で車両が重なった部分については、画素値がより高くなり、車両が重ならない部分については、画素値が低くなる。よって、各フレームにおいて作成された、通路における渋滞位置及び渋滞長を示す所定エリアの画像をさらに合成した画像に基づいて、設計者は、渋滞の度合いを容易に確認することができ、シミュレーション動画によって確認する場合に比べて評価時間を大幅に削減することができる。 In addition, the image generation unit 145 may further synthesize an image of a predetermined area that is created in each frame and indicates the congestion position and the congestion length in the passage. At this time, when the images showing the vehicles overlap, they may be displayed in a coordinated manner. Further, the image generation unit 145 may change the degree of cooperation based on the number of overlapping times. For example, the pixel value of an image of a predetermined area indicating the congestion position and the congestion length corresponding to each of a plurality of frames is divided by, for example, the number of frames to be combined, and the maximum pixel value per image is adjusted to be low. . Then, the pixel values of the plurality of images after division are totaled. As a result, the pixel value is higher for a portion where the vehicles overlap due to traffic congestion or the like, and the pixel value is lower for a portion where the vehicles do not overlap. Therefore, the designer can easily check the degree of traffic jam based on the image created in each frame and further synthesized with the image of the predetermined area indicating the traffic jam position and traffic jam length in the passage. The evaluation time can be greatly reduced compared to the case of confirmation.
[第1の実施形態における効果]
 以上のとおり、第1の実施形態に係るシミュレーション装置1は、優先経路が異なる複数の通路モデルのそれぞれについて、交通シミュレーションの結果に基づいて、通路における渋滞位置及び渋滞長を示す所定エリアの画像としての渋滞プロット図を生成する。このようにすることで、設計者は、優先経路が異なる複数の通路モデルに対応する渋滞プロット図を確認して、相対的に渋滞が少ない優先経路を容易に選択することができる。そして、設計者は、選択された優先経路を微調整して優先経路を最適化することができる。よって、シミュレーション装置1は、設計者による優先経路の設計の負担を軽減し、走行経路の最適化に係る時間を削減することができる。
[Effect in the first embodiment]
As described above, the simulation apparatus 1 according to the first embodiment is configured as an image of a predetermined area indicating the congestion position and the congestion length in the passage based on the result of the traffic simulation for each of a plurality of passage models having different priority routes. Generate a traffic jam plot. In this way, the designer can easily check a traffic jam plot diagram corresponding to a plurality of path models with different priority routes, and easily select a priority route with relatively little traffic jam. The designer can fine-tune the selected priority route to optimize the priority route. Therefore, the simulation apparatus 1 can reduce the burden of designing the priority route by the designer, and can reduce the time required for optimization of the travel route.
<第2の実施形態>
[評価が高いモデルの画像を生成する]
 続いて、第2の実施形態について説明する。第1の実施形態では、シミュレーション装置1が、複数の通路モデルのそれぞれについて渋滞プロット図を生成した。しかしながら、複数の通路モデルの中には、著しい渋滞を発生させ、選択に適さない通路モデルも存在する。そこで、第2の実施形態では、シミュレーション装置1が、渋滞位置及び渋滞長等に基づいて、複数の通路モデルのそれぞれについて評価を行い、評価が高い通路モデルに限定して渋滞プロット図を生成する。
<Second Embodiment>
[Generate highly rated model images]
Next, the second embodiment will be described. In the first embodiment, the simulation apparatus 1 generates a traffic jam plot diagram for each of a plurality of passage models. However, among the plurality of passage models, there are passage models that generate significant traffic congestion and are not suitable for selection. Therefore, in the second embodiment, the simulation apparatus 1 evaluates each of the plurality of passage models based on the congestion position, the congestion length, and the like, and generates a congestion plot diagram limited to only the highly evaluated passage models. .
 図11は、第2の実施形態に係るシミュレーション装置1の概要を示す図である。第2の実施形態に係るシミュレーション装置1は、第1の実施形態に係るシミュレーション装置1と同様に複数の優先経路を設定することにより複数の通路モデルを作成し、これらの通路モデルについて交通シミュレーションを実行する。その後、シミュレーション装置1は、交通シミュレーションの結果に基づいて通路モデルの評価を行い、相対的に評価が高い通路モデルを選択する。その後、シミュレーション装置1は、選択した通路モデルに対応した渋滞プロット図を生成して出力する。 FIG. 11 is a diagram showing an outline of the simulation apparatus 1 according to the second embodiment. Similar to the simulation apparatus 1 according to the first embodiment, the simulation apparatus 1 according to the second embodiment creates a plurality of passage models by setting a plurality of priority routes, and performs traffic simulation for these passage models. Execute. Thereafter, the simulation apparatus 1 evaluates the passage model based on the result of the traffic simulation, and selects a passage model having a relatively high evaluation. Thereafter, the simulation apparatus 1 generates and outputs a traffic jam plot diagram corresponding to the selected passage model.
 以下、シミュレーション装置1の機能構成についてフローチャートを用いながら説明を進める。なお、第1実施形態と同一の構成については同一の符号を付し、詳細な説明を省略する。 Hereinafter, the functional configuration of the simulation apparatus 1 will be described using a flowchart. In addition, about the structure same as 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 図12は、第2の実施形態に係るシミュレーション装置1の機能構成図である。図13は、第2の実施形態に係るシミュレーション装置1の処理の流れを示すフローチャートである。シミュレーション装置1は、評価部146をさらに備える。 FIG. 12 is a functional configuration diagram of the simulation apparatus 1 according to the second embodiment. FIG. 13 is a flowchart showing the flow of processing of the simulation apparatus 1 according to the second embodiment. The simulation apparatus 1 further includes an evaluation unit 146.
 第2の実施形態において、シミュレーション実行部144が複数の通路モデルのそれぞれについて交通シミュレーションを実行すると(S40)、評価部146は、渋滞位置及び渋滞長に基づいて、通路モデルを評価する(S41)。ここで、評価部146は、シミュレーション実行部144が算出した旅行時間に基づいて通路モデルを評価してもよい。評価部146は、例えば、通路モデルの評価値を算出することにより通路モデルを評価する。評価値は、予め定められた基準に対する差を示す値や、基準からの乖離率を示す値であってもよい。 In the second embodiment, when the simulation execution unit 144 executes a traffic simulation for each of the plurality of passage models (S40), the evaluation unit 146 evaluates the passage model based on the congestion position and the congestion length (S41). . Here, the evaluation unit 146 may evaluate the passage model based on the travel time calculated by the simulation execution unit 144. For example, the evaluation unit 146 evaluates the passage model by calculating an evaluation value of the passage model. The evaluation value may be a value indicating a difference with respect to a predetermined reference or a value indicating a deviation rate from the reference.
 また、評価部146は、渋滞が発生した個所の数や、優先経路における危険個所の個数に基づいて通路モデルを評価してもよい。ここで、危険個所とは、予め所定エリアに設定されている、車両が走行する通路における歩行者の横断個所である。評価部146は、例えば、一時停止が設定されないリンク、すなわち、優先経路を構成する通路に含まれている歩行者の横断個所を危険個所として計数する。 Also, the evaluation unit 146 may evaluate the passage model based on the number of locations where traffic congestion has occurred or the number of dangerous locations on the priority route. Here, the dangerous part is a pedestrian's crossing part in a passage where the vehicle travels, which is set in a predetermined area in advance. The evaluation unit 146 counts, for example, links where no pause is set, that is, pedestrians' crossing points included in the paths constituting the priority route, as dangerous points.
 なお、シミュレーション実行部144に、所定エリアを走行する車両の二酸化炭素排出量を算出させ、評価部146が、シミュレーションを行った時間帯において車両が発生させた二酸化炭素の総量に基づいて通路モデルを評価してもよい。 In addition, the simulation execution unit 144 calculates the carbon dioxide emission amount of the vehicle traveling in the predetermined area, and the evaluation unit 146 determines the passage model based on the total amount of carbon dioxide generated by the vehicle in the simulation time zone. You may evaluate.
 画像生成部145は、複数の通路モデルのうち、評価部146による評価が相対的に高い通路モデルを選択し(S42)、評価部146による評価が相対的に高い通路モデルに限定して、所定エリアの画像としての渋滞プロット図を生成する(S50)。 The image generation unit 145 selects a passage model having a relatively high evaluation by the evaluation unit 146 from among a plurality of passage models (S42), and is limited to a passage model having a relatively high evaluation by the evaluation unit 146. A traffic jam plot diagram as an image of the area is generated (S50).
[第2の実施形態における効果]
 以上、第2の実施形態のシミュレーション装置1は、相対的に評価が高い通路モデルに限定して渋滞長プロット図を生成するので、設計者は、予め選択された通路モデルに限定して優先経路の確認を行い、走行経路を最適化することができる。これにより、設計者は、優先経路の設計をより効率的に行うことができる。また、第2の実施形態のシミュレーション装置1は、相対的に評価が高い通路モデルに限定して渋滞長プロット図を生成するので、渋滞長プロット図の生成に係る処理時間を短縮することができる。
[Effects of Second Embodiment]
As described above, the simulation apparatus 1 according to the second embodiment generates a congestion length plot diagram by limiting to a relatively highly evaluated path model. Therefore, the designer can limit a priority path to a preselected path model. The travel route can be optimized. As a result, the designer can more efficiently design the priority route. Moreover, since the simulation apparatus 1 of the second embodiment generates a traffic jam length plot diagram only for a relatively highly evaluated passage model, it is possible to shorten the processing time related to the generation of the traffic jam length plot diagram. .
<第3の実施形態>
[評価が高いモデルの画像を生成する]
 続いて、第3の実施形態について説明する。実際の駐車場内では、標識等のサインが設けられており、当該サインが車両の通行に対して大きく影響を与えている。さらに、サインを設置する位置によって、渋滞長も変化することから、サインの設置位置を変更してシミュレーションを行うことが望まれている。さらに、これらのサインの内容は、リンクの進行方向や、ノードにおける車両の進行方向に応じて変化するため、手動でサインの内容の設定を行う場合には、作業が煩雑になるという問題があった。そこで、第3の実施形態では、通路モデルに対して、標識等を示すサインを規定し、当該サインに関する情報を含む通路モデルを容易に生成できるようにする点で第1の実施形態と異なる。
<Third Embodiment>
[Generate highly rated model images]
Subsequently, a third embodiment will be described. In an actual parking lot, a sign such as a sign is provided, and the sign greatly affects the traffic of the vehicle. Furthermore, since the length of the traffic jam varies depending on the position where the sign is installed, it is desired to perform a simulation by changing the position where the sign is installed. Furthermore, since the contents of these signs change according to the direction of travel of the link and the direction of travel of the vehicle at the node, there is a problem that the work is complicated when manually setting the contents of the sign. It was. Therefore, the third embodiment is different from the first embodiment in that a sign indicating a sign or the like is defined for the passage model, and a passage model including information on the sign can be easily generated.
 第3の実施形態において、生成部142は、ノード情報及びリンク情報(例えば、車両の進行方向や、ノードの位置及びリンクの長さ)に基づいて、道路における交通に影響を与える情報としてのサインを生成する。例えば、生成部142は、図6に示すリンクL2に対して、リンクL2とリンクL12とが合流するノードN2の位置よりも、第1距離手前の位置に直進や合流注意のサインを生成する。また、生成部142は、リンクL12に対して、ノードN2の位置よりも第2距離手前の位置に、合流のサインを生成する。また、リンクL12に対して、リンクL4とリンクL11とに分岐するノードN3よりも第3距離手前の位置に、分岐のサインを生成する。ここで、サインは、表示される内容が固定のものに加えて、表示される内容が変更できるものであってもよい。この場合において、表示される内容が固定のものと、表示される内容が変更できるもの(例えば、デジタルサイネージや、プロジェクタ等、)とで、車両の通行に与える影響を変化させるようにしてもよい。
 生成部142は、生成されたサインを含む交通シミュレーション用の通路モデルを生成する。
In the third embodiment, the generation unit 142 uses the node information and the link information (for example, the traveling direction of the vehicle, the position of the node, and the length of the link) as a sign that affects the traffic on the road. Is generated. For example, for the link L2 illustrated in FIG. 6, the generation unit 142 generates a sign of straight ahead or merging attention at a position before the first distance from the position of the node N2 where the link L2 and the link L12 merge. Further, the generation unit 142 generates a sign of merging at a position that is a second distance before the position of the node N2 with respect to the link L12. Further, a branch sign is generated for the link L12 at a position before the third distance from the node N3 that branches to the link L4 and the link L11. Here, in addition to the sign displayed being fixed, the sign may be displayed that can be changed. In this case, the influence on the traffic of the vehicle may be changed depending on whether the displayed content is fixed and the displayed content can be changed (for example, digital signage, projector, etc.). .
The generation unit 142 generates a traffic simulation path model including the generated sign.
 また、生成部142は、駐車場の設計の際の検討要素を変更したことに応じて、生成したサインの内容を変更してもよい。また、生成部142は、出入口の場所、数、及び入出場台数や、車両が通過するのに一定の待ち時間が付与されるノード(例えば、発券機や清算機に対応するノード)における待ち時間の変更に伴い、交通シミュレーション用の通路モデルを再評価し、各リンク及びノードにおける進行方向の変更を行ってもよい。 Further, the generation unit 142 may change the content of the generated sign in accordance with the change of the examination element when designing the parking lot. In addition, the generation unit 142 has a waiting time at a node (for example, a node corresponding to a ticketing machine or a clearing machine) to which a certain waiting time is given for the passage and the number of entrances and exits, and the number of entrances / exits. As a result of this change, the path model for traffic simulation may be reevaluated and the direction of travel at each link and node may be changed.
[第3の実施形態における効果]
 以上、第3の実施形態のシミュレーション装置1は、ノード情報及びリンク情報に基づいて、道路における交通に影響を与える情報としてのサインを生成するサインを含む交通シミュレーション用の通路モデルを効率的に生成することができる。
[Effect in the third embodiment]
As described above, the simulation apparatus 1 according to the third embodiment efficiently generates a path model for traffic simulation including a sign for generating a sign as information that affects traffic on a road based on node information and link information. can do.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
1・・・シミュレーション装置、11・・・入力部、12・・・表示部、13・・・記憶部、14・・・制御部、141・・・取得部、142・・・生成部、143・・・条件取得部、144・・・シミュレーション実行部、145・・・画像生成部、146・・・評価部 DESCRIPTION OF SYMBOLS 1 ... Simulation apparatus, 11 ... Input part, 12 ... Display part, 13 ... Memory | storage part, 14 ... Control part, 141 ... Acquisition part, 142 ... Generation part, 143 ... condition acquisition unit, 144 ... simulation execution unit, 145 ... image generation unit, 146 ... evaluation unit

Claims (8)

  1.  所定エリアにおける通路を示す通路情報を取得する取得部と、
     前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成する生成部と、
     前記通路における交通シミュレーションのシミュレーション条件を取得する条件取得部と、
     生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するシミュレーション実行部と、
     生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成する画像生成部と、
     を備えるシミュレーション装置。
    An acquisition unit that acquires passage information indicating a passage in a predetermined area;
    In the passage, a generation unit that generates a plurality of passage models for traffic simulation, each of which has a different priority route on which the vehicle runs with priority,
    A condition acquisition unit for acquiring simulation conditions of traffic simulation in the passage;
    For each of the generated plurality of passage models, a simulation execution unit that executes a traffic simulation based on the acquired simulation conditions;
    For each of the generated plurality of passage models, an image generation unit that generates an image of the predetermined area indicating a congestion position and a congestion length in the passage based on the result of the traffic simulation;
    A simulation apparatus comprising:
  2.  前記取得部は、所定エリアにおける前記通路を示す通路情報として、駐車場における通路及び駐車場と隣接する道路を示す通路情報を取得し、
     前記生成部は、前記駐車場における前記優先経路がそれぞれ異なる前記通路モデルを複数生成する、
     請求項1に記載のシミュレーション装置。
    The acquisition unit acquires passage information indicating a passage in a parking lot and a road adjacent to the parking lot as passage information indicating the passage in a predetermined area,
    The generation unit generates a plurality of the passage models having different priority routes in the parking lot,
    The simulation apparatus according to claim 1.
  3.  前記生成部は、前記通路における車両の一時停止位置を規定することにより、前記優先経路を設定する、
     請求項1又は2に記載のシミュレーション装置。
    The generation unit sets the priority route by defining a temporary stop position of the vehicle in the passage.
    The simulation apparatus according to claim 1 or 2.
  4.  前記渋滞位置及び前記渋滞長に基づいて、前記通路モデルを評価する評価部をさらに備え、
     前記画像生成部は、前記評価部による評価が相対的に高い通路モデルに限定して、前記所定エリアの画像を生成する、
     請求項1から3のいずれか1項に記載のシミュレーション装置。
    An evaluation unit that evaluates the passage model based on the traffic jam position and the traffic jam length;
    The image generation unit generates an image of the predetermined area, limited to a passage model that is evaluated relatively high by the evaluation unit.
    The simulation apparatus according to any one of claims 1 to 3.
  5.  前記シミュレーション実行部は、前記シミュレーション条件に基づいて、前記所定エリアを走行する1以上の車両の旅行時間を算出し、
     前記評価部は、前記旅行時間に基づいて前記通路モデルを評価する、
     請求項4に記載のシミュレーション装置。
    The simulation execution unit calculates travel time of one or more vehicles traveling in the predetermined area based on the simulation condition,
    The evaluation unit evaluates the passage model based on the travel time;
    The simulation apparatus according to claim 4.
  6.  前記画像生成部は、前記所定エリアにおける駐車スペースに駐車している車両を示す画像を含まない前記所定エリアの画像を生成する、
     請求項1から5のいずれか1項に記載のシミュレーション装置。
    The image generation unit generates an image of the predetermined area that does not include an image indicating a vehicle parked in a parking space in the predetermined area.
    The simulation apparatus according to any one of claims 1 to 5.
  7.  所定エリアにおける通路を示す通路情報を取得するステップと、
     前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成するステップと、
     前記通路における交通シミュレーションのシミュレーション条件を取得するステップと、
     生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するステップと、
     生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成するステップと、
     を備えるシミュレーション方法。
    Obtaining passage information indicating passages in a predetermined area;
    Generating a plurality of traffic simulation path models in which different priority routes are preferentially traveled by the vehicle in the path;
    Obtaining a simulation condition of a traffic simulation in the passage;
    For each of the plurality of generated passage models, executing a traffic simulation based on the acquired simulation conditions;
    For each of the generated plurality of passage models, based on the result of the traffic simulation, generating an image of the predetermined area indicating a congestion position and a congestion length in the passage;
    A simulation method comprising:
  8.  コンピュータを、
     所定エリアにおける通路を示す通路情報を取得する取得部、
     前記通路において、車両が優先して走行する優先経路がそれぞれ異なる交通シミュレーション用の通路モデルを複数生成する生成部、
     前記通路における交通シミュレーションのシミュレーション条件を取得する条件取得部、
     生成した複数の通路モデルのそれぞれについて、取得した前記シミュレーション条件に基づいて交通シミュレーションを実行するシミュレーション実行部、及び
     生成した複数の通路モデルのそれぞれについて、前記交通シミュレーションの結果に基づいて、前記通路における渋滞位置及び渋滞長を示す前記所定エリアの画像を生成する画像生成部、
     として機能させるためのシミュレーションプログラム。
    Computer
    An acquisition unit for acquiring passage information indicating a passage in a predetermined area;
    In the passage, a generation unit that generates a plurality of passage models for traffic simulation in which the priority routes on which the vehicle runs with priority are different,
    A condition acquisition unit for acquiring simulation conditions of traffic simulation in the passage,
    For each of the generated plurality of passage models, a simulation execution unit that executes a traffic simulation based on the acquired simulation conditions, and for each of the plurality of generated passage models, based on the result of the traffic simulation, An image generating unit for generating an image of the predetermined area indicating a traffic jam position and a traffic jam length;
    Simulation program to function as
PCT/JP2016/060626 2016-03-31 2016-03-31 Simulation device, simulation method, and simulation program WO2017168671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060626 WO2017168671A1 (en) 2016-03-31 2016-03-31 Simulation device, simulation method, and simulation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060626 WO2017168671A1 (en) 2016-03-31 2016-03-31 Simulation device, simulation method, and simulation program

Publications (1)

Publication Number Publication Date
WO2017168671A1 true WO2017168671A1 (en) 2017-10-05

Family

ID=59963700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060626 WO2017168671A1 (en) 2016-03-31 2016-03-31 Simulation device, simulation method, and simulation program

Country Status (1)

Country Link
WO (1) WO2017168671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184209A (en) * 1994-12-28 1996-07-16 Fuji Car Mfg Co Ltd Simulation device for parking space using traffic line
JPH11161703A (en) * 1997-11-26 1999-06-18 Shimizu Corp Parking lot simulation system
JP2005332313A (en) * 2004-05-21 2005-12-02 Hitachi Engineering & Services Co Ltd Simulation method for traffic operations evaluation
WO2015114592A1 (en) * 2014-01-30 2015-08-06 Universidade Do Porto Device and method for self-automated parking lot for autonomous vehicles based on vehicular networking
JP2016085548A (en) * 2014-10-24 2016-05-19 株式会社ジオクリエイツ Simulation device, simulation method, and simulation program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184209A (en) * 1994-12-28 1996-07-16 Fuji Car Mfg Co Ltd Simulation device for parking space using traffic line
JPH11161703A (en) * 1997-11-26 1999-06-18 Shimizu Corp Parking lot simulation system
JP2005332313A (en) * 2004-05-21 2005-12-02 Hitachi Engineering & Services Co Ltd Simulation method for traffic operations evaluation
WO2015114592A1 (en) * 2014-01-30 2015-08-06 Universidade Do Porto Device and method for self-automated parking lot for autonomous vehicles based on vehicular networking
JP2016085548A (en) * 2014-10-24 2016-05-19 株式会社ジオクリエイツ Simulation device, simulation method, and simulation program

Similar Documents

Publication Publication Date Title
US11555706B1 (en) Processing graph representations of tactical maps using neural networks
US20200103247A1 (en) Augmented reality navigation systems and methods
US9672739B2 (en) Map data update device
Maierhofer et al. Formalization of intersection traffic rules in temporal logic
CN110389585A (en) The speed planning device based on study for automatic driving vehicle
CN107944375A (en) Automatic Pilot processing method and processing device based on scene cut, computing device
US11448518B2 (en) Augmented reality navigational overlay
JPH07192193A (en) Guiding device for travel path of vehicle
Verma Review of studies on mixed traffic flow: perspective of developing economies
Almodfer et al. Pedestrian crossing speed patterns and running frequency analysis at a non-signalized marked crosswalk: quantitative and qualitative approaches
JP2016085548A (en) Simulation device, simulation method, and simulation program
JP6871784B2 (en) Lane information generator, lane information generation method, and lane information generation program
Trinh et al. Two-player Game-theory-based Analysis of Motorcycle Driver's Behavior at a Signalized Intersection
CN113654568B (en) Navigation method, device, medium and equipment based on vehicle braking times
TWI803963B (en) System for modality selection monitoring and system for route selection monitoring
Huang et al. Multi-modal policy fusion for end-to-end autonomous driving
Trinh et al. Modelling and simulating head-on conflict-solving behaviour of motorcycles under heterogeneous traffic condition in developing countries
Dong et al. Lateral movement decision model for powered two-wheelers in Taiwan
Ilievski Wisebench: A motion planning benchmarking framework for autonomous vehicles
CN114495060A (en) Road traffic marking identification method and device
JP2008129874A (en) Traffic flow simulation device, traffic flow simulation method, and traffic flow simulation program
WO2017168671A1 (en) Simulation device, simulation method, and simulation program
Tran et al. Universal detection-based driving assistance using a mono camera with Jetson devices
Jamil et al. Pedestrian crossing patterns preference at a non-signalized crosswalk
US20230326219A1 (en) Method and device for determining lane of traveling vehicle by using artificial neural network, and navigation device including same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896889

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP