WO2017167154A1 - Method and device for configuring codebook oversampling factor - Google Patents

Method and device for configuring codebook oversampling factor Download PDF

Info

Publication number
WO2017167154A1
WO2017167154A1 PCT/CN2017/078318 CN2017078318W WO2017167154A1 WO 2017167154 A1 WO2017167154 A1 WO 2017167154A1 CN 2017078318 W CN2017078318 W CN 2017078318W WO 2017167154 A1 WO2017167154 A1 WO 2017167154A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimension
oversampling factor
port number
ports
combination
Prior art date
Application number
PCT/CN2017/078318
Other languages
French (fr)
Chinese (zh)
Inventor
蔡剑兴
肖华华
陈艺戬
吴昊
鲁照华
李永
王瑜新
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017167154A1 publication Critical patent/WO2017167154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for configuring a codebook oversampling factor.
  • the codebook of Long Time Evolution (LTE) is also evolving with the evolution of the standard version.
  • the 4-antenna codebook and 2-antenna are used.
  • N11 groups there are generally N11 groups, each group includes M1 candidate beams, and the user selects a group index of N11 groups to feed back to the base station.
  • N11 indicates that N11 is the number of said W1; W2 represents a short-term feedback codebook, and its function is to select one of the M1 candidate beams in the W1 codeword and be the same data layer.
  • the codewords before Rel-12 are for 1D antenna arrays and belong to 1D codewords.
  • the size of the codebook becomes larger due to the use of more antennas.
  • the topology of the antenna is also generally planar, that is, the antenna with two dimensions is designed with 2D code words.
  • each beam in codeword W1 has a form of 2-dimensional form
  • v m and u n are Discrete Fourier Transform (DFT) of the first dimension and the second dimension, respectively.
  • DFT Discrete Fourier Transform
  • the kronecker product representing v m and u n the number of ports in the first dimension is N1, and the number of ports in the second dimension is N2.
  • the DFT corresponding to the first dimension port is oversampled by O1, and the DFT corresponding to the port of the second dimension is performed.
  • each W2 code word is to select a 2-dimensional beam from W1.
  • the number of supported ports N has been increased from ⁇ 1, 2, 4, 8 ⁇ to ⁇ 1, 2, 4, 8 (1D), 8 (2D). ), 12, 16 ⁇ , that is, the addition of 2D 8-port, 12-port and 16-port.
  • the corresponding antenna topology is also defined for the newly added port type, that is, the value of (N1, N2) and the oversampling factor (O1, O2) are defined for each newly added port number. Values, Table 1 shows the combination of antenna topology (N1, N2) and oversampling factor (O1, O2) in Rel-13 as shown in Table 1:
  • the embodiment of the invention provides a method and a device for configuring a codebook oversampling factor, so as to at least solve the problem that the oversampling factor currently designed in the related art is difficult to match channel information when the number of ports increases.
  • a method for configuring a codebook oversampling factor including:
  • the communication node configures the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • the port number N1 of the first dimension and the port number N2 of the second dimension satisfy: 2*N1*N2>16.
  • the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1)
  • the set of O2) is ⁇ (N, 8), (N, 2) ⁇ , or ⁇ (N, 4), (N, 2) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8, N), (2, N) ⁇ , or ⁇ (4, N), (2, N) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,4), (4,2) ⁇ , or ⁇ (8,2),(4,2) ⁇ , or ⁇ (8,2),(4,4) ⁇ , or ⁇ (8,4),(8,2) ⁇ .
  • the first dimension The set of the combination of the sampling factor and the second dimension oversampling factor O2 is ⁇ (8,8), (8,2) ⁇ , or ⁇ (4,4),(4,2) ⁇ , or ⁇ (8,4),(2,2) ⁇ , or ⁇ (8,8),(4,2) ⁇ .
  • the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1)
  • the set of O2) is ⁇ (N, 8), (N, 2) ⁇ , or ⁇ (N, 4), (N, 2) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1)
  • the set of O2) is ⁇ (8, N), (2, N) ⁇ , or ⁇ (4, N), (2, N) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,4), (4,2) ⁇ , or ⁇ (8,2),(4,2) ⁇ , or ⁇ (8,2),(4,4) ⁇ , or ⁇ (8,4),(8,2) ⁇ .
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,8), (8,2) ⁇ , or ⁇ (4,4),(4,2) ⁇ , or ⁇ (8,4),(2,2) ⁇ , or ⁇ (8,8),(4,2) ⁇ .
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,4), (4,2) ⁇ , or ⁇ (8,2),(4,2) ⁇ , or ⁇ (8,2),(4,4) ⁇ , or ⁇ (8,4),(8,2) ⁇ .
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,8), (8,2) ⁇ , or ⁇ (4,4),(4,2) ⁇ , or ⁇ (8,4),(2,2) ⁇ , or ⁇ (8,8),(4,2) ⁇ .
  • the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1)
  • the set of O2) is ⁇ (N, 8), (N, 2) ⁇ , or ⁇ (N, 4), (N, 2) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8, N), (2, N) ⁇ , or ⁇ (4, N), (2, N) ⁇ ; wherein the N represents an arbitrary integer value or represents a default value.
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, a set of O2) or ⁇ (8,4),(4,2) ⁇ , or ⁇ (8,2),(4,2) ⁇ , or ⁇ (8,2),(4,4) ⁇ , or ⁇ (8,4),(8,2) ⁇ .
  • the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is ⁇ (8,8), (8,2) ⁇ , or ⁇ (4,4),(4,2) ⁇ , or ⁇ (8,4),(2,2) ⁇ , Or ⁇ (8,8),(4,2) ⁇ .
  • the first dimension The set of the combination of the sampling factor and the second dimension oversampling factor O2 is ⁇ (8,8), (8,2) ⁇ , or ⁇ (8,4),(8,2) ⁇ , or ⁇ (8,4),(4,2) ⁇ , or ⁇ (8,8),(4,2) ⁇ , or ⁇ (8,4),(8,2) ⁇ , or ⁇ (8) , 2), (4, 4) ⁇ .
  • a configuration apparatus for a codebook oversampling factor comprising: a configuration module configured to configure a port number N1 according to a first dimension and/or a port number N2 of a second dimension An oversampling factor O1 of the first dimension and/or an oversampling factor O2 of the second dimension.
  • the port number N1 of the first dimension and the port number N2 of the second dimension satisfy: 2*N1*N2>16.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • the communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension, so that
  • the combination of different oversampling factors, that is, the channel information can be more accurately matched when the number of ports increases, and the problem that the currently designed oversampling factor is difficult to match channel information when the number of ports increases is solved in the related art.
  • FIG. 1 is a flowchart of a method for configuring a codebook oversampling factor according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an apparatus for configuring a codebook oversampling factor according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for configuring a codebook oversampling factor according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps. :
  • Step S102 The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • the number of ports N1 in the first dimension and the number of ports N2 in the second dimension satisfy: 2*N1*N2>16.
  • the communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension, Therefore, different combinations of oversampling factors can be used, that is, the channel information can be more accurately matched when the number of ports is increased, which solves the problem that the oversampling factor currently designed is difficult to match channel information when the number of ports increases in the related art. The problem.
  • the number of ports N1 based on the first dimension and the number of ports N2 of the second dimension satisfy the condition of 2*N1*N2>16.
  • the number of ports N1 and the second dimension according to the first dimension The different values of the port number N2, the second dimension oversampling factor and the first dimension oversampling factor O1 also have corresponding different values, that is, a preferred oversampling factor combination in different antenna topologies; the combination is in the present embodiment
  • Selected implementations include:
  • the set of combinations (O1, O2) with the second dimension oversampling factor O2 is ⁇ (8, 4), (4, 2) ⁇ , or ⁇ (8, 2), (4, 2) ⁇ , or ⁇ ( 8,2), (4,4) ⁇ , or ⁇ (8,4),(8,2) ⁇ .
  • the NN involved in the above manners 1 to 15 represents an arbitrary integer value or represents a default value.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a configuration apparatus for a codebook oversampling factor is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the configuration includes: a configuration module 22 configured to configure an oversampling factor O1 of the first dimension and/or an oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • the number of ports N1 in the first dimension and the number of ports N2 in the second dimension satisfy: 2*N1*N2>16.
  • the number of ports supported by the base station is 20
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 2.
  • the number of ports supported by the base station is 20
  • the set value of the combination (O1, O2) of the corresponding first dimension oversampling factor O1 and second dimension oversampling factor O2 can be determined by Table 3.
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 4;
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 5;
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 6;
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 7;
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 8;
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 9;
  • the number of ports supported by the base station is 32
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 10;
  • the number of first dimension ports configured by the base station is 32
  • the set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 can be determined by Table 11;
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the communication node determines the oversampling factor O1 and/or the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  • the oversampling factor O2 of the dimension can be combined with different oversampling factors, that is, the channel information can be more accurately matched when the number of ports is increased, which solves the current design in the related art when the number of ports increases.
  • the oversampling factor is difficult to match the channel information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a method and device for configuring a codebook oversampling factor. The method comprises: a communication node configures, according to the number of ports in a first dimension N1 and/or the number of ports in a second dimension N2, an oversampling factor O1 in the first dimension and/or an oversampling factor O2 in the second dimension. The invention solves a problem in the prior art in which when the number of ports increases, it is difficult for existing oversampling factors to match channel information.

Description

码本过采样因子的配置方法及装置Codebook oversampling factor configuration method and device 技术领域Technical field
本发明涉及通信领域,具体而言,涉及一种码本过采样因子的配置方法及装置。The present invention relates to the field of communications, and in particular to a method and apparatus for configuring a codebook oversampling factor.
背景技术Background technique
长期演进(Long Time Evolution,简称为LTE)的码本随着标准版本的演进,也在不断的演进,在版本Release 8(Rel-8)和Rel-9中4天线的码本和2天线的码本都是单码字的形式,只有一个PMI其值表示为i=1,…,N11,N11为码字的个数。在Rel-10的8天线码本和Rel-12的4天线码本时,就是双码本反馈的形式了,即码字可以写成W=W1*W2的形式,而W1是长期反馈的码本,一般有N11个组,每个组包括了M1个备选波束,用户选择N11个组的一个组索引反馈给基站,这个反馈一般用PMI1来量化和反馈,其值一般用i1==1,…,N11表示,N11为所所述W1的个数;W2表示一个短期反馈的码本,它的作用是在W1码字里选择M1个备选波束里的一个,并为同一个数据层的每个极化方向选择的波束选择极化相位Co-phasing,W2里的每个码字用PMI2量化和反馈,其值为i2==1,…,M1,M1为W2的个数,其中,每种rank下的N11和M1的取值不同,具体的可以参考LTE Rel-10协议。The codebook of Long Time Evolution (LTE) is also evolving with the evolution of the standard version. In the Release 8 (Rel-8) and Rel-9, the 4-antenna codebook and 2-antenna are used. The codebooks are all in the form of single codewords. Only one PMI has its value represented as i=1,..., N11, and N11 are the number of codewords. In the 8-antenna codebook of Rel-10 and the 4-antenna codebook of Rel-12, it is the form of double-codebook feedback, that is, the codeword can be written in the form of W=W1*W2, and W1 is the codebook of long-term feedback. There are generally N11 groups, each group includes M1 candidate beams, and the user selects a group index of N11 groups to feed back to the base station. This feedback is generally quantized and fed back by PMI1, and the value is generally i1==1. ..., N11 indicates that N11 is the number of said W1; W2 represents a short-term feedback codebook, and its function is to select one of the M1 candidate beams in the W1 codeword and be the same data layer. The beam selected by each polarization direction selects the polarization phase Co-phasing, and each codeword in W2 is quantized and fed back by PMI2, and its value is i2==1,..., M1, M1 is the number of W2, where The value of N11 and M1 in each rank is different. For details, refer to the LTE Rel-10 protocol.
在Rel-12以前的码字都是针对1D天线阵列的,属于1D的码字,在Rel-13的码本里设计里,由于使用了更多的天线,码本的维度变得更大了。天线的拓扑一般也是平面阵列的,即有两个维度方向的天线设计了2D的码字。从而码字W1里的每个波束具有形式2维的形式
Figure PCTCN2017078318-appb-000001
其中,vm和un分别为第一维度和第二维度的离散傅里叶矢量(Discrete Fourier Transform,简称为DFT),
Figure PCTCN2017078318-appb-000002
表示vm和un的kronecker乘积,第一维度端口数N1个,第二维度端口数N2个,第一维度端口对应的DFT进行了O1倍的过采样,第二维度的端口对应的DFT进行了O2倍的过采样,所述第一维度或者第二维度天线的离散傅里叶矢量的个数是端口数目的过采样因子的倍数,所以有N11=N1*O1,N12=N2*O2,O1为第一维度过采样因子,O2为第二维度过采样因子。W1中第一个维度的码本用PMI11表示,其值为i11=1,…,N11,第二个维度的码本用PMI12表示,其值为i12=1,…,N12。对于上述的每一个PMI11和PMI12的索引,都有M1个W2码字,每个W2码字就是为了从W1里选择2维波束
Figure PCTCN2017078318-appb-000003
以及不同极化方向的Co-phasing,对应的码字索引为PMI2,用i2==1,…,M1表示。另外,由于使用了双极化的天线,因此的端口数N=2*N1*N2。
The codewords before Rel-12 are for 1D antenna arrays and belong to 1D codewords. In the Rel-13 codebook design, the size of the codebook becomes larger due to the use of more antennas. . The topology of the antenna is also generally planar, that is, the antenna with two dimensions is designed with 2D code words. Thus each beam in codeword W1 has a form of 2-dimensional form
Figure PCTCN2017078318-appb-000001
Where v m and u n are Discrete Fourier Transform (DFT) of the first dimension and the second dimension, respectively.
Figure PCTCN2017078318-appb-000002
The kronecker product representing v m and u n , the number of ports in the first dimension is N1, and the number of ports in the second dimension is N2. The DFT corresponding to the first dimension port is oversampled by O1, and the DFT corresponding to the port of the second dimension is performed. O2 times oversampling, the number of discrete Fourier vectors of the first dimension or the second dimension antenna is a multiple of the oversampling factor of the number of ports, so there are N11=N1*O1, N12=N2*O2, O1 is the first dimension oversampling factor and O2 is the second dimension oversampling factor. The codebook of the first dimension in W1 is represented by PMI11, and its value is i11=1,...,N11, and the codebook of the second dimension is represented by PMI12, and its value is i12=1,...,N12. For each of the above PMI11 and PMI12 indexes, there are M1 W2 code words, and each W2 code word is to select a 2-dimensional beam from W1.
Figure PCTCN2017078318-appb-000003
And Co-phasing of different polarization directions, the corresponding codeword index is PMI2, which is represented by i2==1,...,M1. In addition, since a dual-polarized antenna is used, the number of ports is N=2*N1*N2.
在当前的最新的LTE/LTE-A版本Rel-13中,支持的端口数N从原来的{1,2,4,8}增加到了{1,2,4,8(1D),8(2D),12,16},也即新增了2D的8端口、12端口和16端口这三种情况。在协议中,对新增的端口类型也定义了其相应的天线拓扑结构,即针对每种新增的端口数定义了(N1,N2)的取值和过采样因子(O1,O2)的取值,表1为Rel-13中的天线拓扑(N1,N2)和过采样因子(O1,O2)组合如表1所示: In the current latest LTE/LTE-A version of Rel-13, the number of supported ports N has been increased from {1, 2, 4, 8} to {1, 2, 4, 8 (1D), 8 (2D). ), 12, 16}, that is, the addition of 2D 8-port, 12-port and 16-port. In the protocol, the corresponding antenna topology is also defined for the newly added port type, that is, the value of (N1, N2) and the oversampling factor (O1, O2) are defined for each newly added port number. Values, Table 1 shows the combination of antenna topology (N1, N2) and oversampling factor (O1, O2) in Rel-13 as shown in Table 1:
表1Table 1
Figure PCTCN2017078318-appb-000004
Figure PCTCN2017078318-appb-000004
随着LTE/LTE-A的进一步演进,在Rel-14的即将要支持更多的端口数,在Rel-13的基础上新增支持{20,24,28,32}端口。由于当端口数增大时,所形成的波束会变窄,因此目前设计的过采样因子不再适合,因此,需要重新设计过采样因子组合,以便能够更精确的匹配信道信息。针对相关技术中的上述问题,目前尚未存在有效的解决方案。With the further evolution of LTE/LTE-A, the number of ports in Rel-14 is about to be supported, and the {20, 24, 28, 32} ports are newly added on the basis of Rel-13. Since the formed beam is narrowed as the number of ports increases, the oversampling factor currently designed is no longer suitable. Therefore, the oversampling factor combination needs to be redesigned to more accurately match the channel information. In view of the above problems in the related art, there is currently no effective solution.
发明内容Summary of the invention
本发明实施例提供了一种码本过采样因子的配置方法及装置,以至少解决相关技术中在端口数增大时,当前设计的过采样因子难以匹配信道信息的问题。The embodiment of the invention provides a method and a device for configuring a codebook oversampling factor, so as to at least solve the problem that the oversampling factor currently designed in the related art is difficult to match channel information when the number of ports increases.
根据本发明实施例的的一个方面,提供了一种码本过采样因子的配置方法,其中,包括:According to an aspect of the embodiments of the present invention, a method for configuring a codebook oversampling factor is provided, including:
通信节点根据第一维度的端口数N1和/或第二维度的端口数N2配置所述第一维度的过采样因子O1和/或所述第二维度的过采样因子O2。The communication node configures the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
可选地,所述第一维度的端口数N1、所述第二维度的端口数N2满足:2*N1*N2>16。Optionally, the port number N1 of the first dimension and the port number N2 of the second dimension satisfy: 2*N1*N2>16.
可选地,在所述第一维度端口数N1=1,以及所述第二维度端口数N2=10时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=1, and the second dimension port number N2=10, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1) The set of O2) is {(N, 8), (N, 2)}, or {(N, 4), (N, 2)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=10,以及所述第二维度端口数N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=10, and the second dimension port number N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8, N), (2, N)}, or {(4, N), (2, N)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=5,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Optionally, when the first dimension port number N1=5, and the second dimension port number N2=2, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4),(8,2)}.
可选地,在所述第一维度端口数N1=2,以及所述第二维度端口数N2=5时,所述第一维 度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Optionally, when the first dimension port number N1=2, and the second dimension port number N2=5, the first dimension The set of the combination of the sampling factor and the second dimension oversampling factor O2 (O1, O2) is {(8,8), (8,2)}, or {(4,4),(4,2)} , or {(8,4),(2,2)}, or {(8,8),(4,2)}.
可选地,在所述第一维度端口数N1=1,以及所述第二维度端口数N2=12时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=1, and the second dimension port number N2=12, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1) The set of O2) is {(N, 8), (N, 2)}, or {(N, 4), (N, 2)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=12,以及所述第二维度端口数和N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=12, and the second dimension port number and N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1) The set of O2) is {(8, N), (2, N)}, or {(4, N), (2, N)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=6,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Optionally, when the first dimension port number N1=6, and the second dimension port number N2=2, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4),(8,2)}.
可选地,在所述第一维度端口数N1=2,以及所述第二维度端口数N2=6时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Optionally, when the first dimension port number N1=2, and the second dimension port number N2=6, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8),(4,2)}.
可选地,在所述第一维度端口数N1=4,以及所述第二维度端口数N2=3时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Optionally, when the first dimension port number N1=4, and the second dimension port number N2=3, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4),(8,2)}.
可选地,在所述第一维度端口数N1=3,以及所述第二维度端口数N2=4时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Optionally, when the first dimension port number N1=3, and the second dimension port number N2=4, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8),(4,2)}.
可选地,在所述第一维度端口数N1=1,以及所述第二维度端口数N2=16时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=1, and the second dimension port number N2=16, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1) The set of O2) is {(N, 8), (N, 2)}, or {(N, 4), (N, 2)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=16,以及所述第二维度端口数N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。Optionally, when the first dimension port number N1=16, and the second dimension port number N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8, N), (2, N)}, or {(4, N), (2, N)}; wherein the N represents an arbitrary integer value or represents a default value.
可选地,在所述第一维度端口数N1=8,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合或{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Optionally, when the first dimension port number N1=8, and the second dimension port number N2=2, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, a set of O2) or {(8,4),(4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4),(8,2)}.
可选地,在所述第一维度端口数N1=2,以及所述第二维度端口数N2=8时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或者是{(8,4),(2,2)},或{(8,8),(4,2)}。Optionally, when the first dimension port number N1=2, and the second dimension port number N2=8, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, The set of O2) is {(8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, Or {(8,8),(4,2)}.
可选地,在所述第一维度端口数N1=1,以及所述第二维度端口数N2=4时,所述第一维 度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(8,4),(8,2)},或{(8,4),(4,2)},或{(8,8),(4,2)},或{(8,4),(8,2)},或{(8,2),(4,4)}。Optionally, when the first dimension port number N1=1, and the second dimension port number N2=4, the first dimension The set of the combination of the sampling factor and the second dimension oversampling factor O2 (O1, O2) is {(8,8), (8,2)}, or {(8,4),(8,2)} , or {(8,4),(4,2)}, or {(8,8),(4,2)}, or {(8,4),(8,2)}, or {(8) , 2), (4, 4)}.
根据本发明实施例的另一个方面,提供了一种码本过采样因子的配置装置,包括:配置模块,设置为根据第一维度的端口数N1和/或第二维度的端口数N2配置所述第一维度的过采样因子O1和/或所述第二维度的过采样因子O2。According to another aspect of the embodiments of the present invention, there is provided a configuration apparatus for a codebook oversampling factor, comprising: a configuration module configured to configure a port number N1 according to a first dimension and/or a port number N2 of a second dimension An oversampling factor O1 of the first dimension and/or an oversampling factor O2 of the second dimension.
可选地,所述第一维度的端口数N1、所述第二维度的端口数N2满足:2*N1*N2>16。Optionally, the port number N1 of the first dimension and the port number N2 of the second dimension satisfy: 2*N1*N2>16.
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:Embodiments of the present invention also provide a storage medium. Optionally, in the embodiment, the foregoing storage medium may be configured to store program code for performing the following steps:
步骤S1:通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2。Step S1: The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
通过本发明实施例,通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2,从而可以采用不同的过采样因子组合,也就是说,在端口数增大时能够更加精确的匹配信道信息,解决了相关技术中在端口数增大时,当前设计的过采样因子难以匹配信道信息的问题。With the embodiment of the present invention, the communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension, so that The combination of different oversampling factors, that is, the channel information can be more accurately matched when the number of ports increases, and the problem that the currently designed oversampling factor is difficult to match channel information when the number of ports increases is solved in the related art.
附图说明DRAWINGS
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings described herein are intended to provide a further understanding of the invention, and are intended to be a part of the invention. In the drawing:
图1是根据本发明实施例的码本过采样因子的配置方法的流程图;1 is a flowchart of a method for configuring a codebook oversampling factor according to an embodiment of the present invention;
图2是根据本发明实施例的码本过采样因子的配置装置的结构框图。2 is a structural block diagram of an apparatus for configuring a codebook oversampling factor according to an embodiment of the present invention.
具体实施方式detailed description
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。It is to be understood that the terms "first", "second" and the like in the specification and claims of the present invention are used to distinguish similar objects, and are not necessarily used to describe a particular order or order.
在本实施例中提供了一种码本过采样因子的配置方法,图1是根据本发明实施例的码本过采样因子的配置方法的流程图,如图1所示,该流程包括如下步骤:In this embodiment, a method for configuring a codebook oversampling factor is provided. FIG. 1 is a flowchart of a method for configuring a codebook oversampling factor according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps. :
步骤S102:通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2。Step S102: The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
其中,上述第一维度的端口数N1、第二维度的端口数N2满足:2*N1*N2>16。 The number of ports N1 in the first dimension and the number of ports N2 in the second dimension satisfy: 2*N1*N2>16.
由上述本实施例的方式可知,通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2,从而可以采用不同的过采样因子组合,也就是说,在端口数增大时能够更加精确的匹配信道信息,解决了相关技术中在端口数增大时,当前设计的过采样因子难以匹配信道信息的问题。It can be seen from the foregoing manner in this embodiment that the communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension, Therefore, different combinations of oversampling factors can be used, that is, the channel information can be more accurately matched when the number of ports is increased, which solves the problem that the oversampling factor currently designed is difficult to match channel information when the number of ports increases in the related art. The problem.
基于上述第一维度的端口数N1、第二维度的端口数N2满足:2*N1*N2>16的条件,在实施例的可选实施方式,根据第一维度的端口数N1、第二维度的端口数N2的不同取值,第二维度过采样因子和第一维度过采样因子O1也有相应的不同取值,即不同天线拓扑下优选的过采样因子组合;该组合在本实施例的可选实施方式中包括:The number of ports N1 based on the first dimension and the number of ports N2 of the second dimension satisfy the condition of 2*N1*N2>16. In an optional implementation manner of the embodiment, the number of ports N1 and the second dimension according to the first dimension The different values of the port number N2, the second dimension oversampling factor and the first dimension oversampling factor O1 also have corresponding different values, that is, a preferred oversampling factor combination in different antenna topologies; the combination is in the present embodiment Selected implementations include:
方式一:在第一维度端口数N1=1,以及第二维度端口数N2=10时,第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)}。Manner 1: When the number of ports in the first dimension is N1=1, and the number of ports in the second dimension is N2=10, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) is { (N,8), (N,2)}, or {(N,4),(N,2)}.
方式二:在第一维度端口数N1=10,以及第二维度端口数N2=1时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)}。Manner 2: When the number of ports in the first dimension is N1=10, and the number of ports in the second dimension is N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8, N), (2, N)}, or {(4, N), (2, N)}.
方式三:在第一维度端口数N1=5,以及第二维度端口数N2=2时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Manner 3: When the first dimension port number N1=5 and the second dimension port number N2=2, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4), (8,2)}.
方式四:在第一维度端口数N1=2,以及第二维度端口数N2=5时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Manner 4: When the number of ports in the first dimension is N1=2, and the number of ports in the second dimension is N2=5, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8), (4,2)}.
方式五:在第一维度端口数N1=1,以及第二维度端口数N2=12时,第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)}。Manner 5: When the number of ports in the first dimension is N1=1, and the number of ports in the second dimension is N2=12, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) is { (N,8), (N,2)}, or {(N,4),(N,2)}.
方式六:在第一维度端口数N1=12,以及第二维度端口数和N2=1时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)}。Mode 6: When the number of ports in the first dimension is N1=12, and the number of ports in the second dimension and N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is { (8,N), (2,N)}, or {(4,N),(2,N)}.
方式七:在第一维度端口数N1=6,以及第二维度端口数N2=2时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Manner 7: When the number of ports in the first dimension is N1=6, and the number of ports in the second dimension is N2=2, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4), (8,2)}.
方式八:在第一维度端口数N1=2,以及第二维度端口数N2=6时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Mode 8: When the number of ports in the first dimension is N1=2, and the number of ports in the second dimension is N2=6, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8), (4,2)}.
方式九:在第一维度端口数N1=4,以及第二维度端口数N2=3时,第一维度过采样因子 和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Mode 9: The first dimension oversampling factor when the first dimension port number N1=4 and the second dimension port number N2=3 The set of combinations (O1, O2) with the second dimension oversampling factor O2 is {(8, 4), (4, 2)}, or {(8, 2), (4, 2)}, or {( 8,2), (4,4)}, or {(8,4),(8,2)}.
方式十:在第一维度端口数N1=3,以及第二维度端口数N2=4时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。Manner 10: When the number of ports in the first dimension is N1=3, and the number of ports in the second dimension is N2=4, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is {( 8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8), (4,2)}.
方式十一:在第一维度端口数N1=1,以及第二维度端口数N2=16时,第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)}。Mode 11: When the number of ports in the first dimension is N1=1, and the number of ports in the second dimension is N2=16, the combination of the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) is {(N,8), (N,2)}, or {(N,4),(N,2)}.
方式十二:在第一维度端口数N1=16,以及第二维度端口数N2=1时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)}。Mode 12: When the number of ports in the first dimension is N1=16, and the number of ports in the second dimension is N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is { (8,N), (2,N)}, or {(4,N),(2,N)}.
方式十三:在第一维度端口数N1=8,以及第二维度端口数N2=2时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合或{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。Mode 13: a combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) or {in the first dimension port number N1=8, and the second dimension port number N2=2 (8,4), (4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8,4) , (8, 2)}.
方式十四:在第一维度端口数N1=2,以及第二维度端口数N2=8时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或者是{(8,4),(2,2)},或{(8,8),(4,2)}。Mode 14: When the first dimension port number N1=2 and the second dimension port number N2=8, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is { (8,8), (8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8,8) ), (4, 2)}.
方式十五:在第一维度端口数N1=1,以及第二维度端口数N2=4时,第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(8,4),(8,2)},或{(8,4),(4,2)},或{(8,8),(4,2)},或{(8,4),(8,2)},或{(8,2),(4,4)}。Mode 15: When the number of ports in the first dimension is N1=1, and the number of ports in the second dimension is N2=4, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) is { (8,8), (8,2)}, or {(8,4),(8,2)}, or {(8,4),(4,2)}, or {(8,8) , (4, 2)}, or {(8, 4), (8, 2)}, or {(8, 2), (4, 4)}.
需要说明的是,上述方式一至方式十五涉及到的NN代表任意整数值或者表示缺省值.It should be noted that the NN involved in the above manners 1 to 15 represents an arbitrary integer value or represents a default value.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, The optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
在本实施例中还提供了一种码本过采样因子的配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。In this embodiment, a configuration apparatus for a codebook oversampling factor is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein. As used below, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
图2是根据本发明实施例的码本过采样因子的配置装置的结构框图,如图2所示,该装 置包括:配置模块22,设置为根据第一维度的端口数N1和/或第二维度的端口数N2配置第一维度的过采样因子O1和/或第二维度的过采样因子O2。其中,第一维度的端口数N1、第二维度的端口数N2满足:2*N1*N2>16。2 is a structural block diagram of a device for configuring a codebook oversampling factor according to an embodiment of the present invention, as shown in FIG. The configuration includes: a configuration module 22 configured to configure an oversampling factor O1 of the first dimension and/or an oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension. The number of ports N1 in the first dimension and the number of ports N2 in the second dimension satisfy: 2*N1*N2>16.
需要说明的是,该装置实施例中不同的过采样因子组合在上述方法实施例中已举例说过了,如上述方式一至方式十五,在此不再赘述。It should be noted that the different oversampling factor combinations in the device embodiment have been exemplified in the foregoing method embodiments, as described in the foregoing manners 1 through 15 and will not be further described herein.
下面结合本发明的可选实施例对本发明进行举例说明;The invention is exemplified below in conjunction with an alternative embodiment of the invention;
可选实施例1Alternative embodiment 1
当基站支持的端口数为20时,基站端配置的第一维度端口个数N1=1,第二维度端口个数N2=10,或者配置的第一维度端口个数N1=10,第二维度端口个数N2=1。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表2确定。When the number of ports supported by the base station is 20, the number of ports of the first dimension configured by the base station is N1=1, the number of ports of the second dimension is N2=10, or the number of configured first dimension ports is N1=10, and the second dimension The number of ports is N2=1. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 2.
表2Table 2
Figure PCTCN2017078318-appb-000005
Figure PCTCN2017078318-appb-000005
可选实施例2Alternative embodiment 2
当基站支持的端口数为20时,基站端配置的第一维度端口个数N1=5,第二维度端口个数N2=2,或者配置的第一维度端口个数N1=2,第二维度端口个数N2=5。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表3确定。When the number of ports supported by the base station is 20, the number of ports of the first dimension configured by the base station is N1=5, the number of ports of the second dimension is N2=2, or the number of configured first dimension ports is N1=2, and the second dimension The number of ports is N2=5. The set value of the combination (O1, O2) of the corresponding first dimension oversampling factor O1 and second dimension oversampling factor O2 can be determined by Table 3.
表3table 3
Figure PCTCN2017078318-appb-000006
Figure PCTCN2017078318-appb-000006
Figure PCTCN2017078318-appb-000007
Figure PCTCN2017078318-appb-000007
可选实施例3Alternative embodiment 3
当基站支持的端口数为24时,基站端配置的第一维度端口个数N1=6,第二维度端口个数N2=2,或者配置的第一维度端口个数N1=2,第二维度端口个数N2=6。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表4确定;When the number of ports supported by the base station is 24, the number of ports of the first dimension configured by the base station is N1=6, the number of ports of the second dimension is N2=2, or the number of configured first dimension ports is N1=2, and the second dimension The number of ports is N2=6. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 4;
表4Table 4
Figure PCTCN2017078318-appb-000008
Figure PCTCN2017078318-appb-000008
可选实施例4Alternative embodiment 4
当基站支持的端口数为24时,基站端配置的第一维度端口个数N1=12,第二维度端口个数N2=1,或者配置的第一维度端口个数N1=1,第二维度端口个数N2=12。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表5确定;When the number of ports supported by the base station is 24, the number of ports of the first dimension configured by the base station is N1=12, the number of ports of the second dimension is N2=1, or the number of configured first dimension ports is N1=1, and the second dimension The number of ports is N2=12. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 5;
表5table 5
Figure PCTCN2017078318-appb-000009
Figure PCTCN2017078318-appb-000009
Figure PCTCN2017078318-appb-000010
Figure PCTCN2017078318-appb-000010
可选实施例5Alternative embodiment 5
当基站支持的端口数为24时,基站端配置的第一维度端口个数N1=3,第二维度端口个数N2=4,或者配置的第一维度端口个数N1=4,第二维度端口个数N2=3。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表6确定;When the number of ports supported by the base station is 24, the number of ports of the first dimension configured by the base station is N1=3, the number of ports of the second dimension is N2=4, or the number of configured first dimension ports is N1=4, and the second dimension The number of ports is N2=3. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 6;
表6Table 6
Figure PCTCN2017078318-appb-000011
Figure PCTCN2017078318-appb-000011
可选实施例6Alternative embodiment 6
当基站支持的端口数为28时,基站端配置的第一维度端口个数N1=14,第二维度端口个数N2=1,或者配置的第一维度端口个数N1=1,第二维度端口个数N2=14。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表7确定;When the number of ports supported by the base station is 28, the number of the first dimension ports configured by the base station is N1=14, the number of ports of the second dimension is N2=1, or the number of configured first dimension ports is N1=1, and the second dimension The number of ports is N2=14. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 7;
表7Table 7
Figure PCTCN2017078318-appb-000012
Figure PCTCN2017078318-appb-000012
可选实施例7Alternative embodiment 7
当基站支持的端口数为28时,基站端配置的第一维度端口个数N1=7,第二维度端口个数N2=2,或者配置的第一维度端口个数N1=2,第二维度端口个数N2=7。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表8确定;When the number of ports supported by the base station is 28, the number of the first dimension ports configured by the base station is N1=7, the number of ports of the second dimension is N2=2, or the number of configured first dimension ports is N1=2, and the second dimension The number of ports is N2=7. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 8;
表8Table 8
Figure PCTCN2017078318-appb-000013
Figure PCTCN2017078318-appb-000013
可选实施例8Alternative embodiment 8
当基站支持的端口数为32时,基站端配置的第一维度端口个数N1=16,第二维度端口个数N2=1,或者配置的第一维度端口个数N1=1,第二维度端口个数N2=16。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表9确定;When the number of ports supported by the base station is 32, the number of the first dimension ports configured by the base station is N1=16, the number of ports of the second dimension is N2=1, or the number of configured first dimension ports is N1=1, and the second dimension The number of ports is N2=16. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 9;
表9Table 9
Figure PCTCN2017078318-appb-000014
Figure PCTCN2017078318-appb-000014
可选实施例9 Alternative embodiment 9
当基站支持的端口数为32时,基站端配置的第一维度端口个数N1=8,第二维度端口个数N2=2,或者配置的第一维度端口个数N1=2,第二维度端口个数N2=8。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表10确定;When the number of ports supported by the base station is 32, the number of ports of the first dimension configured by the base station is N1=8, the number of ports of the second dimension is N2=2, or the number of configured first dimension ports is N1=2, and the second dimension The number of ports is N2=8. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 10;
表10Table 10
Figure PCTCN2017078318-appb-000015
Figure PCTCN2017078318-appb-000015
可选实施例10Alternative embodiment 10
当基站支持的端口数为32时,基站端配置的第一维度端口个数N1=4,第二维度端口个数N2=4。对应的第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合取值可以由表11确定;When the number of ports supported by the base station is 32, the number of first dimension ports configured by the base station is N1=4, and the number of ports of the second dimension is N2=4. The set value of the combination of the corresponding first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) can be determined by Table 11;
表11Table 11
Figure PCTCN2017078318-appb-000016
Figure PCTCN2017078318-appb-000016
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:Embodiments of the present invention also provide a storage medium. Optionally, in the embodiment, the foregoing storage medium may be configured to store program code for performing the following steps:
步骤S1:通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2。Step S1: The communication node determines the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。For example, the specific examples in this embodiment may refer to the examples described in the foregoing embodiments and the optional embodiments, and details are not described herein again.
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。It will be apparent to those skilled in the art that the various modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
工业实用性Industrial applicability
在本发明实施例的码本过采样因子的配置过程中,通信节点根据第一维度的端口数N1和/或第二维度的端口数N2确定第一维度的过采样因子O1和/或第二维度的过采样因子O2,从而可以采用不同的过采样因子组合,也就是说,在端口数增大时能够更加精确的匹配信道信息,解决了相关技术中在端口数增大时,当前设计的过采样因子难以匹配信道信息的问题。 In the configuration process of the codebook oversampling factor in the embodiment of the present invention, the communication node determines the oversampling factor O1 and/or the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension. The oversampling factor O2 of the dimension can be combined with different oversampling factors, that is, the channel information can be more accurately matched when the number of ports is increased, which solves the current design in the related art when the number of ports increases. The oversampling factor is difficult to match the channel information.

Claims (19)

  1. 一种码本过采样因子的配置方法,包括:A method for configuring a codebook oversampling factor, comprising:
    通信节点根据第一维度的端口数N1和/或第二维度的端口数N2配置所述第一维度的过采样因子O1和/或所述第二维度的过采样因子O2。The communication node configures the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  2. 根据权利要求1所述的方法,其中,The method of claim 1 wherein
    所述第一维度的端口数N1、所述第二维度的端口数N2满足:2*N1*N2>16。The port number N1 of the first dimension and the port number N2 of the second dimension satisfy: 2*N1*N2>16.
  3. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=1,以及所述第二维度端口数N2=10时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。When the first dimension port number N1=1, and the second dimension port number N2=10, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) The set is {(N,8), (N,2)}, or {(N,4),(N,2)}; wherein the N represents an arbitrary integer value or represents a default value.
  4. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=10,以及所述第二维度端口数N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=10 and the second dimension port number N2=1 Is {(8, N), (2, N)}, or {(4, N), (2, N)}; where N represents an arbitrary integer value or represents a default value.
  5. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=5,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=5 and the second dimension port number N2=2 Is {(8,4),(4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8, 4), (8, 2)}.
  6. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=2,以及所述第二维度端口数N2=5时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=2 and the second dimension port number N2=5 Is {(8,8),(8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8, 8), (4, 2)}.
  7. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=1,以及所述第二维度端口数N2=12时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。When the first dimension port number N1=1, and the second dimension port number N2=12, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) The set is {(N,8), (N,2)}, or {(N,4),(N,2)}; wherein the N represents an arbitrary integer value or represents a default value.
  8. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=12,以及所述第二维度端口数和N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。When the first dimension port number N1=12, and the second dimension port number and N2=1, the combination of the first dimension oversampling factor and the second dimension oversampling factor O2 (O1, O2) The set is {(8, N), (2, N)}, or {(4, N), (2, N)}; wherein the N represents an arbitrary integer value or represents a default value.
  9. 根据权利要求2所述的方法,其中, The method of claim 2, wherein
    在所述第一维度端口数N1=6,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=6 and the second dimension port number N2=2 Is {(8,4),(4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8, 4), (8, 2)}.
  10. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=2,以及所述第二维度端口数N2=6时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=2 and the second dimension port number N2=6 Is {(8,8),(8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8, 8), (4, 2)}.
  11. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=4,以及所述第二维度端口数N2=3时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=4 and the second dimension port number N2=3 Is {(8,4),(4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8, 4), (8, 2)}.
  12. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=3,以及所述第二维度端口数N2=4时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或{(8,4),(2,2)},或{(8,8),(4,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=3 and the second dimension port number N2=4 Is {(8,8),(8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8, 8), (4, 2)}.
  13. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=1,以及所述第二维度端口数N2=16时,所述第一维度过采样因子O1和第二维度过采样因子O2的组合(O1,O2)的集合是{(N,8),(N,2)},或{(N,4),(N,2)};其中,所述N代表任意整数值或者表示缺省值。When the first dimension port number N1=1, and the second dimension port number N2=16, the combination of the first dimension oversampling factor O1 and the second dimension oversampling factor O2 (O1, O2) The set is {(N,8), (N,2)}, or {(N,4),(N,2)}; wherein the N represents an arbitrary integer value or represents a default value.
  14. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=16,以及所述第二维度端口数N2=1时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,N),(2,N)},或{(4,N),(2,N)};其中,所述N代表任意整数值或者表示缺省值。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=16 and the second dimension port number N2=1 Is {(8, N), (2, N)}, or {(4, N), (2, N)}; where N represents an arbitrary integer value or represents a default value.
  15. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=8,以及所述第二维度端口数N2=2时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合或{(8,4),(4,2)},或{(8,2),(4,2)},或{(8,2),(4,4)},或{(8,4),(8,2)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=8 and the second dimension port number N2=2 Or {(8,4),(4,2)}, or {(8,2),(4,2)}, or {(8,2),(4,4)}, or {(8, 4), (8, 2)}.
  16. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=2,以及所述第二维度端口数N2=8时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(4,4),(4,2)},或者是{(8,4),(2,2)},或{(8,8),(4,2)}。 a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=2 and the second dimension port number N2=8 Is {(8,8),(8,2)}, or {(4,4),(4,2)}, or {(8,4),(2,2)}, or {(8) , 8), (4, 2)}.
  17. 根据权利要求2所述的方法,其中,The method of claim 2, wherein
    在所述第一维度端口数N1=1,以及所述第二维度端口数N2=4时,所述第一维度过采样因子和第二维度过采样因子O2的组合(O1,O2)的集合是{(8,8),(8,2)},或{(8,4),(8,2)},或{(8,4),(4,2)},或{(8,8),(4,2)},或{(8,4),(8,2)},或{(8,2),(4,4)}。a set of combinations (O1, O2) of the first dimension oversampling factor and the second dimension oversampling factor O2 when the first dimension port number N1=1, and the second dimension port number N2=4 Is {(8,8),(8,2)}, or {(8,4),(8,2)}, or {(8,4),(4,2)}, or {(8, 8), (4, 2)}, or {(8, 4), (8, 2)}, or {(8, 2), (4, 4)}.
  18. 一种码本过采样因子的配置装置,包括:A configuration device for a codebook oversampling factor, comprising:
    配置模块,设置为根据第一维度的端口数N1和/或第二维度的端口数N2配置所述第一维度的过采样因子O1和/或所述第二维度的过采样因子O2。The configuration module is configured to configure the oversampling factor O1 of the first dimension and/or the oversampling factor O2 of the second dimension according to the port number N1 of the first dimension and/or the port number N2 of the second dimension.
  19. 根据权利要求18所述的装置,其中,所述第一维度的端口数N1、所述第二维度的端口数N2满足:2*N1*N2>16。 The apparatus according to claim 18, wherein the number of ports N1 of the first dimension and the number of ports N2 of the second dimension satisfy: 2*N1*N2>16.
PCT/CN2017/078318 2016-03-31 2017-03-27 Method and device for configuring codebook oversampling factor WO2017167154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610200819.1A CN107294576A (en) 2016-03-31 2016-03-31 The collocation method and device of code book oversample factor
CN201610200819.1 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017167154A1 true WO2017167154A1 (en) 2017-10-05

Family

ID=59962606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078318 WO2017167154A1 (en) 2016-03-31 2017-03-27 Method and device for configuring codebook oversampling factor

Country Status (2)

Country Link
CN (1) CN107294576A (en)
WO (1) WO2017167154A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436871B (en) * 2020-11-19 2022-05-31 Oppo广东移动通信有限公司 Method, device, terminal, chip and storage medium for determining oversampling factor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111411A1 (en) * 2007-10-24 2009-04-30 The Trustees Of Princeton University System and Method for Blind Estimation of Multiple Carrier Frequency Offsets and Separation of User Signals in Wireless Communications Systems
CN102158315A (en) * 2010-02-10 2011-08-17 马维尔国际贸易有限公司 Codebook adaptation in mimo communication systems using multilevel codebooks
US20150055724A1 (en) * 2010-04-30 2015-02-26 Texas Instruments Incorporated Transmission modes and signaling for uplink mimo support or single tb dual-layer transmission in lte uplink
CN105406911A (en) * 2014-09-10 2016-03-16 三星电子株式会社 Channel state information reporting with basis expansion for advanced wireless communications systems
CN105432024A (en) * 2013-03-08 2016-03-23 三星电子株式会社 Precoding matrix codebook design for advanced wireless communications systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111411A1 (en) * 2007-10-24 2009-04-30 The Trustees Of Princeton University System and Method for Blind Estimation of Multiple Carrier Frequency Offsets and Separation of User Signals in Wireless Communications Systems
CN102158315A (en) * 2010-02-10 2011-08-17 马维尔国际贸易有限公司 Codebook adaptation in mimo communication systems using multilevel codebooks
US20150055724A1 (en) * 2010-04-30 2015-02-26 Texas Instruments Incorporated Transmission modes and signaling for uplink mimo support or single tb dual-layer transmission in lte uplink
CN105432024A (en) * 2013-03-08 2016-03-23 三星电子株式会社 Precoding matrix codebook design for advanced wireless communications systems
CN105406911A (en) * 2014-09-10 2016-03-16 三星电子株式会社 Channel state information reporting with basis expansion for advanced wireless communications systems

Also Published As

Publication number Publication date
CN107294576A (en) 2017-10-24

Similar Documents

Publication Publication Date Title
EP3528394B1 (en) Communication method, terminal and base station
JP7450625B2 (en) Method and apparatus for feedback reporting in a wireless communication network
CN107733476B (en) Feedback method and device of channel state information
WO2015192777A1 (en) Data transmission method and apparatus
JP6553809B2 (en) Method and apparatus for transmission of coding indication information and precoding matrix determination
WO2017118443A1 (en) Method for channel information feedback in multi-antenna system, and terminal
JP6556244B2 (en) Codebook determination method and apparatus
WO2017193878A1 (en) Instruction sending and receiving method and device, and storage medium
JP2013545343A (en) Method and apparatus for sub-sampling a codebook in an LTE-A system
TW201817181A (en) Apparatus and method for precoder selection in multiple-input multiple-output (MIMO) systems, manufacturing method of apparatus for precoder selection and method for constructing integrated circuit method having apparatus for precoder selection
JP2014513482A (en) Method and apparatus for generating codebooks and associated data in a network device
WO2019047754A1 (en) Channel feedback method and related device
WO2016065557A1 (en) Codebook determination method and apparatus, and communication system
WO2016154923A1 (en) Method, device and communication system for obtaining beam information
WO2017076330A1 (en) Method and device for use in transmission of codebook restriction signals and quantized feedback of channel information
WO2017152750A1 (en) Method and device for transmitting feedback information
WO2017167154A1 (en) Method and device for configuring codebook oversampling factor
WO2017107671A1 (en) Method for transmitting and receiving channel information and apparatus, terminal and base station therefor
CN108462519A (en) A kind of channel state information feedback method, UE and access network entity
CN110224731B (en) Notification method of field, user equipment and computer readable storage medium
TWI523549B (en) Method and device for quantifying channel status information
WO2018059567A1 (en) Codebook-based channel status information feedback method and device
WO2017069110A1 (en) Base station, mobile station and wireless communication method
WO2024065443A1 (en) Codebook-based uplink channel sending method and apparatus
WO2014153681A1 (en) Multi-antenna channel codebook feedback method and apparatus in mimo system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773184

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773184

Country of ref document: EP

Kind code of ref document: A1