WO2017166319A1 - 上行数据传输的方法和设备 - Google Patents

上行数据传输的方法和设备 Download PDF

Info

Publication number
WO2017166319A1
WO2017166319A1 PCT/CN2016/078385 CN2016078385W WO2017166319A1 WO 2017166319 A1 WO2017166319 A1 WO 2017166319A1 CN 2016078385 W CN2016078385 W CN 2016078385W WO 2017166319 A1 WO2017166319 A1 WO 2017166319A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
time
time units
terminal device
subframe
Prior art date
Application number
PCT/CN2016/078385
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680083463.6A priority Critical patent/CN108781375B/zh
Priority to PCT/CN2016/078385 priority patent/WO2017166319A1/zh
Priority to EP16896098.7A priority patent/EP3425950B1/en
Publication of WO2017166319A1 publication Critical patent/WO2017166319A1/zh
Priority to US16/148,251 priority patent/US10506580B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for uplink data transmission.
  • the unlicense cell After the introduction of an unlicensed cell by the Long Term Evolution (LTE), the unlicense cell uses an unlicensed spectrum. This type of spectrum does not require authorization. Teen or any organization can use it freely. Therefore, the LTE system is available.
  • the network element Before sending the data, the network element needs to perform Listening Before Talk (LBT) to monitor whether the channel is occupied. If it is already occupied, it will continue to listen until it finds that the channel is idle, and then sends it.
  • LBT Listening Before Talk
  • For a base station as long as the channel is found to be idle, the data can be transmitted.
  • UE user equipment
  • two conditions must be met to transmit data. The first condition is to obtain the uplink resources required for the transmission data allocated by the base station, and the second condition is that the UE successfully performs the LBT.
  • the base station may allocate an uplink resource on the Cell (Assisted Assisted Access (LAA)) cell (Cell) to the UE on the subframe m.
  • LAA Assisted Assisted Access
  • Cell Cell
  • the LBT is performed before the subframe m+4. Whether the listening channel is occupied by someone, if the LBT fails, the uplink data is not sent on the subframe m+4; if no one is occupied, that is, the LBT is successful, the uplink data is sent through the LAA Cell in the subframe m+4.
  • the base station receives uplink data at a predetermined time-frequency resource location according to a format specified by itself.
  • a base station or a UE that uses a LAA cell needs to compete for a channel usage right with a Wireless Fidelity (“WiFi”) device, and the WiFi device does not need to know the subframe boundary of the LTE cell, if the UE of the LAA is only in the When the subframe boundary of the LAA cell starts to be LBT for a short period of time, the probability that the UE will grab the channel will be relatively low.
  • WiFi Wireless Fidelity
  • 3GPP determines the behavior of the base station/UE: continuous LBT.
  • the base station allocates uplink resources to the UE, it is allocated in the format of the entire subframe. That is to say, the base station defaults the UE to use the entire uplink subframe to transmit data in time. If the UE only grabs some resources on one subframe, the uplink data cannot be sent.
  • the present invention provides a method and a device for uplink data transmission. Even if the terminal device does not compete for the spectrum resource of the entire subframe, the uplink data can be efficiently transmitted, and the spectrum utilization rate of the authorized auxiliary access LAA cell is improved.
  • the first aspect provides a method for transmitting uplink data, including: receiving, by the terminal device, the first resource allocation indication information that is sent by the network device, where the first resource allocation indication information is used to indicate that the network device is the a first time-frequency resource allocated by the terminal device for uplink transmission, where the first time-frequency resource occupation grants access to a subframe m+n in the LAA cell, where the subframe m+n includes s time units, where m is The subframe index number, n, s is a positive integer, and the value of s is greater than or equal to 2; the terminal device starts listening to the channel of the LAA cell before the subframe m+n; if the terminal device is in the s time unit Listening to the channel in an idle state after the start time of the first time unit and before the start time of the tth time unit, to the network on the tth to sth time units in the s time units The device sends uplink data, where t is greater than 1 and less than or equal to s;
  • the terminal device starts listening to the channel of the LAA cell before the subframe m+n, and can be described as the terminal device continuously monitoring the channel of the LAA cell before the subframe m+n, wherein continuous monitoring can be understood as continuous Listening to the channel until the monitoring is successful, or it can be understood that the channel is monitored until the monitoring is successful before the start of each time unit of the s time units of the subframe m+n, or it can be understood as two times before and after the monitoring.
  • the time interval is less than a preset value, and the preset value may be any suitable value specified by the standard.
  • a time unit may be understood as a time unit including Orthogonal Frequency Division Multiplexing ("OFDM") symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • one time unit may include 7 OFDM symbols (corresponding to existing In the time slot of the LTE standard, the present invention does not limit the number of OFDM symbols included in one time unit.
  • the durations of the s time units may be the same, or the durations of the partial time units in the s time units are the same, or the durations of the s time units are different.
  • the value of n depends on the provisions of the communication protocol.
  • n 4; and/or the value of s is 2.
  • the resource allocation indication information indicates a location of a time-frequency resource on a part of the time units in the subframe m+n, and the terminal device estimates, according to a preset rule, all the time units of the subframe m+n.
  • the location of the time-frequency resource indicates the location of the resource on all the time units of the subframe m+n, and the terminal device can determine all the time-frequency resources allocated by the network device for the terminal device according to the indication of the resource allocation indication information.
  • the terminal device can transmit the uplink data on the time-frequency resource that competes for part of the time unit in one subframe. Therefore, efficient transmission of uplink data can be realized, and spectrum utilization of the LAA cell can be improved.
  • the method further includes: the terminal device according to the Generating, by the network device, the size of the transport block TB and the amount of data to be sent in the uplink buffer of the terminal device, generating a first TB and a second TB, where the size of the second TB is greater than the size of the first TB;
  • the network device sends the first TB;
  • the sending the uplink data to the network device on the s time units includes: sending the second TB to the network device on the s time units.
  • the terminal device can prepare two transport blocks of different sizes. If the terminal device monitors the channel of the LAA cell in the subframe m+n, the channel is in an idle state (that is, Listening Before Talk (referred to as "Listen Before Talk" If the LBT is successful, the terminal device can transmit a smaller transport block in a time unit after the LBT success time, thereby being able to transmit a transport block of a suitable size to achieve efficient transmission of uplink data.
  • Listen Before Talk referred to as "Listen Before Talk”
  • the size of the second TB is twice the size of the first TB.
  • the terminal device when the terminal device needs to send a Sounding Reference Signal (SRS), the terminal device preferentially performs SRS transmission, for example, if a time unit includes only one OFDM symbol, the subframe m+n The last symbol can be used to send SRS and not to send upstream data.
  • SRS Sounding Reference Signal
  • the data in the first TB is not included in the second TB.
  • the terminal device can use the cached result after deducting the first TB as the basis for determining the second TB, thereby simplifying the complexity when the terminal device prepares the TB.
  • the first TB includes a Media Access Control (MAC) unit (Control Element, referred to as “CE”)
  • the second TB includes a MAC CE. Therefore, the terminal device can inform the network device of some information through the MAC CE, including but not limited to: how much data the terminal device has to send to the network device, and how much power headroom the terminal device has (Power Headroom, referred to as “PH” ").
  • MAC Media Access Control
  • PH Power Headroom
  • the method further includes: the terminal device receiving the network device on the subframe m+k a second resource allocation indication information, where the second resource allocation indication information is used to indicate a second time-frequency resource allocated by the network device for the terminal device for uplink transmission, where the second time-frequency resource occupies the LAA cell
  • the subframe m+n+k is the first subframe occupied by the terminal device when receiving the resource allocation indication information sent by the network device after receiving the first resource allocation indication information, k a positive integer greater than or equal to 0;
  • the terminal device transmits the first TB to the network device on the tth to sth time unit of the s time units, in the subframe m+n+k Transmitting the second TB to the network device; if the terminal device sends a second TB to the network device on the s time units, sending a third TB to the network device on the subframe m+n
  • the terminal device can transmit the TB that was prepared before the current transmission but failed to be transmitted in the current transmission in the next uplink transmission, thereby achieving efficient transmission of the uplink data.
  • the value of k is 1.
  • the terminal device monitors that the channel of the LAA cell is in an idle state before the sth time unit of the subframe m+n, the terminal device may be in the subframe m+n+1.
  • the uplink data is sent to the network device on all time units. It can also be understood that if the network device performs the read and write scheduling of the terminal device, the terminal device only needs to prepare two TBs for the first transmission. Can simplify the implementation of the UE.
  • the tth of the s time units Sending the first TB to the network device to the sth time unit including: determining, according to the modulation and coding mode MCS indicated by the network device, sending the first to the network device on the tth to sth time unit
  • the first target MCS used in a TB, the first target MCS is used to send the first TB to the network device on the tth to the sth time unit;
  • the sending the second TB to the network device on the s time units includes: determining, according to the modulation and coding mode MCS indicated by the network device, the network on the s time units.
  • the second target MCS that is used when the device sends the second TB, and sends the second TB to the network device by using the second target MCS on the s time units.
  • the MCS indicated by the network device is that the terminal device sends an uplink to the network device on the s time units MCS used in the data;
  • the first target MCS used when the first TB is sent to the network device on the tth to the sth time unit including: according to the network device Determining, by the MCS, the MCS, the correspondence between the number of time units occupied by the terminal device and the terminal device, and determining the first target MCS;
  • determining, according to the modulation and coding mode MCS indicated by the network device, the second target MCS used when the second TB is sent to the network device in the s time slots including: determining, by the network device, the MCS as The second target MCS.
  • the terminal device may determine, according to the indication of the network device, the MCS used when actually transmitting the uplink data, according to the method, the terminal device may change the processing of the baseband by using the MCS. If the time-frequency resource corresponding to the MCS indicated by the network device is different in size, the data block of the size indicated by the network device may be sent to implement flexible transmission of the uplink data.
  • a terminal device for performing the method of the first aspect of the first aspect or any possible implementation of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device in a third aspect, includes: a processor, a memory, a receiver, and a transmitter, the processor, the memory, the receiver, and the transmitter are connected by a bus system, and the memory is configured to store an instruction, The processor is operative to execute instructions stored in the memory to control the receiver to receive information and to control the transmitter to transmit information, such that the terminal device performs the method of any of the first aspect or the first aspect of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for uplink data transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method of determining time-frequency resources for uplink transmission according to an embodiment of the present invention
  • FIGS. 4(a) and (b) are schematic diagrams showing a method of determining an uplink transport block according to an embodiment of the present invention
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is another schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
  • Licensed Spectrum and Unlicensed Spectrum The spectrum used by wireless communication systems is divided into licensed spectrum and unlicensed spectrum.
  • the licensed spectrum after the authorization is obtained, the corresponding authorized carrier can be used to carry out the related communication service, and there is no problem of resource competition.
  • LTE Long Term Evolution
  • the receiving end once the initial transmission time of the data frame is determined, each subsequent data frame is sequentially transmitted in sequence; accordingly, at the receiving end, once the initial transmission time of the data frame is acquired by the synchronization signal, the reception time of each subsequent data frame is Certainly, the receiving end does not need to adjust the receiving time of each receiving frame; for the unlicensed spectrum, anyone can legally use the corresponding unlicensed carrier for the communication service, but the data is transmitted by using the unlicensed carrier, and the time is adopted. In the way of competition, the competition begins to compete with the resources, and after the transmission is over, the transmission must be stopped and released. Channels so that other devices have almost occupied channels.
  • the licensed cell is a cell that uses the licensed spectrum.
  • the authorized cell can also be called a normal cell.
  • the LTE cell in the existing LTE can be an unlicensed cell.
  • the cell may be a Licensed Assisted Access (LAA) cell (LAA Cell), and/or a Standalone LAA cell.
  • LAA Licensed Assisted Access
  • Listening to Talk The station (such as a base station) that wants to transmit data first listens to the spectrum resources to be used to determine whether other stations are transmitting data. If the frequency resource used is idle, the site can transmit data; otherwise, the site will evade it for a while before trying.
  • the transmission mechanism of unlicensed spectrum usually adopts the LBT principle.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex LTE Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal equipment may also be referred to as a user equipment, a mobile station (Mobile Station, referred to as "MS”), a mobile terminal (Mobile Terminal), etc., and the user equipment may be wirelessly accessed.
  • a network Radio Access Network, hereinafter referred to as "RAN" communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, It is a portable, pocket-sized, handheld, computer-built or in-vehicle mobile device, as well as terminal devices in future 5G networks or terminal devices in future evolved PLMN networks.
  • the network device may be a device for communicating with the user equipment, and the network device may be a base station (Base Transceiver Station, abbreviated as "BTS”) in the GSM system or CDMA, or may be a WCDMA system.
  • the base station (NodeB, abbreviated as “NB") may also be an evolved base station (Evolutional Node B, "eNB” or “eNodeB”) in the LTE system, or the network device may be a relay station or an access point.
  • eNB evolved base station
  • eNodeB evolved Node B
  • the network device may be a relay station or an access point.
  • in-vehicle devices, wearable devices, and network-side devices in future 5G networks or network devices in future evolved PLMN networks Wait.
  • FIG. 1 shows an application scenario of an embodiment of the present invention.
  • a base station eNB
  • UE1 User Equipment 1
  • UE2 User Equipment 2
  • the communication service is provided with UE2, and the cell on the eNB may work in the licensed spectrum or may operate in the unlicensed spectrum.
  • the two UEs shown in FIG. 1 are for example only, and are not intended to limit the scope of application of the present invention.
  • the eNB may be connected to only one UE or may be connected to multiple UEs, which is not limited by the present invention.
  • a time unit includes 7 OFDM symbols, that is, a time unit is a time slot as an example, which is merely for convenience of description, and is not for the present invention.
  • the scope of protection constitutes any limitation.
  • the method 100 includes:
  • the terminal device receives the first resource allocation indication information that is sent by the network device, where the first resource allocation indication information is used to indicate the first time-frequency resource allocated by the network device for the uplink transmission for the uplink transmission.
  • the first time-frequency resource occupation authorization accesses the subframe m+n in the LAA cell, the subframe m+n includes s time units, m is a subframe index number, and n and s are positive integers, s The value is greater than or equal to 2;
  • the network device may send the first resource allocation indication information to the terminal device by using the licensed cell, and the network device may also send the first resource allocation indication information to the terminal device by using the Unlicensed Cell, which is not limited by the disclosure.
  • the first resource allocation indication information sent by the network device indicates the time-frequency resource for uplink transmission is described by using one subframe including two slots, that is, the value of s is 2.
  • the first resource allocation indication information may indicate that the time-frequency resources allocated by the network device for the terminal device are specifically located on which physical resource blocks of the two time slots of the subframe, and may also be understood that the network device is the terminal according to the format of the entire subframe.
  • the device allocates time-frequency resources for uplink transmission. At this time, the terminal device may determine time-frequency resources in all time slots of the subframe according to the received indication of the first resource allocation information.
  • the first resource allocation indication information may only indicate part of time-frequency resources in the time-frequency resources allocated by the network device to the terminal device, for example, only the part of the time-frequency resources located in the first time slot may be specifically located.
  • the network device allocates time-frequency resources to the terminal device according to the format of half a subframe, and the terminal device according to the two time slots The deviation value between the resource blocks infers all the time-frequency resources allocated by the network device for the terminal device. For example, as shown in FIG. 3, it is assumed that the time-frequency resource indicated by the first resource allocation indication information is located in the physical resource block of the 0/1/2th slot of the second slot (slot 1) (FIG. 3).
  • the terminal device estimates that all the time-frequency resources allocated by the network device for the terminal device should be located in the first time slot.
  • (Slot 0) Physical resource block 7/8/9 + Physical block 0//2 of the second time slot (hatched padding in Fig. 3).
  • the offset value may also be 0.
  • the terminal device estimates that the uplink resource should be located in the physical resource block of the first time slot, the physical resource block of the 0/1/2 time slot, and the physical device of the second time slot.
  • the resource block the slash fill in Figure 3). The present invention does not limit the value of the deviation value.
  • the offset value may be configured by the network device to be configured by the radio resource control (Radio Resource Control, hereinafter referred to as "RRC") message to the terminal device.
  • RRC Radio Resource Control
  • the network device may carry the indication in the RRC connection setup message sent to the terminal device.
  • Information on the deviation value can also be implicitly inferred by the terminal device based on other parameters, for example, the offset value can be equal to one quarter of the system bandwidth.
  • the terminal device starts listening to a channel of the LAA cell before the subframe m+n.
  • the terminal device monitors that the channel is in an idle state after the start time of the first time unit in the s time units and before the start time of the tth time unit, in the s time units. Transmitting uplink data to the network device from t to s time units, where t is greater than 1 and less than or equal to s;
  • the terminal device sends uplink data to the network device on the s time units if the channel is in an idle state before the start time of the first time unit in the s time units.
  • the terminal device after acquiring the first resource allocation indication information, the terminal device performs LBT before the subframe m+n, and monitors whether the channel is occupied by someone. If the terminal device monitors that the channel is in an idle state before the first time unit of the s time units starts, the terminal device may send the uplink data to the network device on the s time units. It can also be understood that the terminal device grabs all time-frequency resources in the first time-frequency resource allocated by the network device for the subframe m+n, and the terminal device starts after the first time unit and at the t-th time. Before the unit starts, the channel is in the idle state, and the terminal device sends the uplink data to be sent to the network device on the tth to the sth time unit. It can also be understood that the terminal device only grabs the subframe allocated by the network device. Part of the time-frequency resource in the first time-frequency resource on m+n.
  • the method for uplink data transmission in the embodiment of the present invention can successfully perform uplink data transmission even if the terminal device only captures some resources in the subframe, and can improve the LAA cell. Spectrum utilization.
  • the terminal device after receiving the first resource allocation indication information, the terminal device needs to prepare an uplink data block (Transport Block, referred to as “TB”), that is, an uplink TB. Since the terminal device does not know the result of the LBT when preparing the uplink TB, it does not know which time-frequency resources are available. Therefore, the terminal device needs to prepare TBs of different sizes, and the terminal device can prepare different methods by using different methods.
  • the size of the TB which method is specifically used, can be configured by the network device. For example, the network device can implement configuration of the terminal device through the message of the RRC layer.
  • the terminal device generates the first TB and the second TB according to the transport block TB size indicated by the network device and the amount of data to be sent in the uplink buffer of the terminal device, where the size of the second TB is greater than the size of the first TB. .
  • the data in the first TB block is not included in the second TB block, that is, the terminal device may use the amount of data in the buffer after subtracting the data in the first TB block as the basis for generating the second TB block.
  • the implementation of the method in the terminal device when generating the TB block is relatively simple, and the implementation of the terminal device can be simplified.
  • the first resource allocation indication information received by the terminal device may include, in addition to the indication information used to indicate that the network device allocates the first time-frequency resource for the uplink transmission for the terminal device, Terminal device The indication information of the size of the TB block that the terminal device needs to transmit.
  • the terminal device prepares two TBs of different sizes, and the terminal device can determine the TB that needs to be sent according to the size of the time-frequency resource that is contending (or the time when the channel is monitored to be in an idle state). Specifically, if the terminal device monitors that the channel is in an idle state after the start of the first time unit of the s time units and before the start of the t-th time unit, the terminal device is on the tth to sth time units. Send the first TB. If the terminal device monitors that the channel is in an idle state before the start time of the first time unit, the terminal device transmits the second TB on the s time units.
  • a method for preparing a TB by a terminal device in the embodiment of the present invention will be described below by using a specific example.
  • Radio Bearer abbreviated as "RB”
  • RB1 and RB2 respectively, there are 500 bytes of data to be sent in the buffer corresponding to RB1, 400 bytes of data to be transmitted in the buffer corresponding to RB2, and guaranteed bit rate of RB1 and RB2 (Guaranteed) Bit Rate, referred to as "GBR" for short, is 100Bytes.
  • the terminal device may determine the data included in the TB according to the Link Control Protocol (LCP), and assume that the size of the first TB configured by the network device is 300 Bytes, and the terminal device takes 200 Bytes from the cache corresponding to the RB1.
  • the first TB is assembled from the buffer corresponding to the RB2, and the first TB is assembled.
  • the terminal device has triggered the Buffer State Report (BSR).
  • BSR Buffer State Report
  • the amount of data is 600 Bytes.
  • the terminal device prepares the second TB, there are still 500 Bytes of data to be transmitted in the buffer corresponding to RB1, and 400 Bytes of data to be sent in the buffer corresponding to RB2 is prepared.
  • the terminal device takes the buffer corresponding to the RB1.
  • 500 Bytes, 100 Bytes from the RB2 corresponding cache is assembled into a second TB, and the amount of data remaining after the BSR reports the second TB assembly is 300 Bytes.
  • the terminal device may prepare the second TB after preparing the first TB, or prepare the first TB after preparing the second TB.
  • the terminal device may wait for the next transmission opportunity, and send the TB that has not been transmitted this time in the next transmission.
  • the terminal device when the terminal device prepares the second TB, it may be based on the cached result after subtracting the data in the first TB. After deducting the data in the first TB, the amount of data in the buffer corresponding to RB1 is 300 Bytes, and the amount of data in the buffer corresponding to RB2 is 300 Bytes, and the terminal device puts all 600 Bytes into the second TB. At this time, RB1 and RB2 correspond to each other. There is no data in the cache, so the BSR is not sent.
  • the terminal device when the terminal device prepares the second TB based on the cached result after deducting the data in the first TB, the terminal device prepares different TBs in a sequential order, and the sequence is reflected in the value of the BSR.
  • the data of another TB needs to be put back into the cache, for example, put back into the radio link control (Radio Link Control, referred to as "RLC") layer cache, waiting for the next Secondary transmission opportunities.
  • RLC Radio Link Control
  • the BSR carried in the TB may be inaccurate.
  • the network device if the second TB is transmitted, the network device considers that there is no data in the cache of the terminal device, but in fact, the terminal device There are still 300 bytes of pending data in the cache. Therefore, if the network device instructs the terminal device to prepare the TB according to the method shown in FIG. 4(b), after receiving the TB sent by the terminal device, the network device may allocate more than the receiving when allocating resources for the next uplink transmission of the terminal device. The time-frequency resource of the time-frequency resource required by the terminal device indicated in the BSR carried by the TB to the terminal device. And even the network The BSR is not carried in the TB received by the device. The network device also allocates time-frequency resources for the next uplink transmission of the terminal device.
  • the TB includes MAC CE to ensure that the MAC CE can be transmitted normally.
  • a plurality of TBs of different sizes need to be prepared, and with time units of several lengths, TBs of several sizes are prepared.
  • the method of preparing TB can be carried out in accordance with the methods shown in Figs. 4(a) and 4(b).
  • the terminal device receives the second resource allocation indication information that is sent by the network device, where the second resource allocation indication information is used to indicate that the network device is the terminal device.
  • a second time-frequency resource for uplink transmission where the second time-frequency resource occupies a subframe m+n+k in the LAA cell, where the subframe m+k is that the terminal device receives the first resource
  • the terminal device sends the first TB to the network device on the tth to sth time units of the s time units, sending the second to the network device on the subframe m+n+k TB;
  • the terminal device sends the second TB to the network device on the s time unit, the third TB is sent to the network device in the subframe m+n+k, where the third TB includes the first TB. All data in TB.
  • the terminal device when the terminal device receives the second resource allocation indication information on the subframe m, the second resource allocation indication information and the first resource allocation indication information in the foregoing may be different by the network device in the subframe m. Transmitted on the carrier, but the invention is not limited thereto.
  • the terminal device monitors the channel of the LAA cell before the start of the subframe m+n+k, and determines the subframe m+n+k according to the time when the channel is in the idle state. Time-frequency resources for uplink transmission. And if the terminal device transmits the first TB on the subframe m+n, the terminal device sends the second TB to the network device on the subframe m+n+k. If the terminal device transmits the second TB on the subframe m+n, the terminal device transmits the first TB on the subframe m+n+k or transmits the first data including all the data in the first TB and other data. Three TB.
  • the terminal device only needs to prepare two TBs for the first transmission, which can simplify the end.
  • the implementation of the end device is not limited to.
  • the terminal device needs to determine a data transmission format used when transmitting the first TB or the second TB, that is, a Modulation and Coding Scheme ("MCS").
  • MCS Modulation and Coding Scheme
  • the terminal device determines, according to the MCS indicated by the network device, the first target MCS when the first TB is sent, and determines the second target MCS when the second TB is sent according to the MCS indicated by the network device.
  • the terminal device may determine, according to the correspondence between the MCS and the MCS indicated by the network device and the number of time units used by the terminal device to send uplink data, to determine the target MCS used when actually transmitting the uplink data.
  • the terminal device may pre-store the correspondence between the number of occupied time units and the adopted MCS.
  • the terminal device may pre-save a table, and the corresponding relationship is stored in the table.
  • the table may be as shown in Table 1 (in the table).
  • the numbers are just examples.
  • the values in Table 1 are MCS index values, and different values correspond to different coding rates and modulation orders. This form can be specified by the agreement or by a network device.
  • the MCS indicated by the network device is the MCS used by the terminal device to send uplink data on 2 time units
  • the MCS is the MCS16.
  • the device monitors that the channel is in an idle state before the start of the first time unit, that is, the terminal device occupies two time units to transmit uplink data, and the terminal device uses the MCS 16 indicated by the network device to transmit the prepared TB in the air interface. If the terminal device monitors that the channel is in an idle state before the start of the second time unit after the start of the first time unit, the terminal device may check Table 1 to determine that the uplink data corresponding to the MCS 16 should be used when transmitting uplink data. The MCS is the MCS 22, and the terminal device uses the MCS 22 to transmit the prepared TB in the air interface.
  • the terminal device listens to the channel before the start of the second time unit after the start of the first time unit In the idle state, the terminal device transmits the prepared TB in the air interface by using the MCS 24 indicated by the network device, if the terminal device is in the first time unit. Before the start, the channel is in the idle state, and the terminal device can check that the MCS that should be used when the uplink data is sent by the two time units corresponding to the MCS 24 is MCS, and the terminal device uses the MCS 17 to prepare for the air interface transmission. TB.
  • the network device can correctly decode the received uplink data.
  • the terminal device can implement flexible transmission of uplink data by changing the processing of the baseband, and reduce the complexity of the terminal device.
  • the method for uplink data transmission according to an embodiment of the present invention is described in detail above with reference to FIG. 2 to FIG. 4.
  • the terminal device according to the embodiment of the present invention will be described in detail below with reference to FIG. 5 and FIG.
  • FIG. 5 shows a terminal device 10 according to an embodiment of the present invention. As shown in FIG. 5, the terminal device 10 includes:
  • the receiving unit 11 is configured to receive the first resource allocation indication information that is sent by the network device on the subframe m, where the first resource allocation indication information is used to indicate the first time that the network device allocates for the terminal device for uplink transmission.
  • the frequency resource, the first time-frequency resource occupation authorization accesses the subframe m+n in the LAA cell, the subframe m+n includes s time units, m is a subframe index number, and n and s are positive integers.
  • the value of s is greater than or equal to 2;
  • the channel monitoring unit 12 is configured to start listening to the channel of the LAA cell before the subframe m+n;
  • the sending unit 13 is configured to: if the channel listening unit listens to the channel in an idle state after the start time of the first time unit of the s time units and before the start time of the tth time unit, in the s Sending uplink data to the network device on the tth to sth time unit in the time unit, where t is greater than 1 and less than or equal to s;
  • the sending unit 13 is further configured to: if the channel listening unit monitors that the channel is in an idle state before a start time of the first time unit of the s time units, send the channel to the network device on the s time units. Upstream data.
  • the terminal device can transmit uplink data on time-frequency resources on a part of time units in one subframe that is contending. Thereby, efficient transmission of uplink data can be realized, and spectrum utilization of the LAA cell can be improved.
  • the terminal device further includes: a transport block generating unit 14;
  • the transport block TB generating unit 14 is configured to: according to the size of the transport block TB indicated by the network device and the uplink of the terminal device, before the channel listening unit monitors that the channel is in an idle state The first TB and the second TB are generated, wherein the size of the second TB is greater than the size of the first TB;
  • the sending unit 13 is specifically configured to: send the first TB to the network device on the tth to the sth time unit of the s time units;
  • the sending unit 13 is further configured to: send the second TB to the network device on the s time units.
  • the data in the first TB is not included in the second TB.
  • the receiving unit 11 is further configured to: receive the second resource allocation indication information sent by the network device, where the second resource allocation indication information is used to indicate the a second time-frequency resource allocated by the network device for the uplink transmission for the terminal device, where the second time-frequency resource occupies a subframe m+n+k in the LAA cell, where the subframe m+k is the terminal device a first subframe occupied when receiving the resource allocation indication information sent by the network device after receiving the first resource allocation indication information, where k is a positive integer greater than or equal to 0;
  • the sending unit 13 is further configured to:
  • the sending unit 13 sends the first TB to the network device on the tth to sth time units of the s time units, send the first to the network device on the subframe m+n+k Two TB;
  • the sending unit 13 sends the second TB to the network device on the s time units, send a third TB to the network device on the subframe m+n+k, where the third TB includes the first TB All data in one TB.
  • the sending unit 13 is specifically configured to: according to the modulation and coding mode MCS indicated by the network device, determine, to send the first to the network device on the tth to sth time units.
  • the first target MCS used in a TB the first target MCS is used to send the first TB to the network device on the tth to the sth time unit;
  • the sending unit 13 is further configured to: determine, according to the modulation and coding mode MCS indicated by the network device, a second target MCS used when the second TB is sent to the network device on the s time units, where the s The second target PDCCH is sent to the network device by using the second target MCS.
  • the MCS indicated by the network device is an MCS used by the terminal device to send uplink data to the network device on the s time units;
  • the sending unit 13 is specifically configured to: occupy, according to the MCS, the MCS indicated by the network device, and the terminal device, when the uplink data is sent Corresponding relationship of the number of time units, determining the first target MCS;
  • the transmitting unit 13 is specifically configured to: determine, according to the modulation and coding mode MCS indicated by the network device, the second target MCS that is used when the second TB is sent to the network device on the s time units.
  • the MCS indicated by the network device is determined to be the second target MCS.
  • terminal device 10 may correspond to the terminal device in the method 100 in the embodiment of the present invention, and the above and other operations and/or functions of the respective units in the terminal device 10 are respectively implemented for The corresponding process corresponding to the terminal device in the method in 2 is not described here for brevity.
  • the terminal device can transmit uplink data on time-frequency resources on a part of time units in one subframe that is contending. Thereby, efficient transmission of uplink data can be realized, and spectrum utilization of the LAA cell can be improved.
  • an embodiment of the present invention further provides a terminal device 100.
  • the terminal device 100 includes a processor 101, a receiver 102, a transmitter 103, and a memory 104.
  • the processor 101, the memory 104, the receiver 102 and the transmitter 103 are connected by a bus system 105 for storing instructions for executing instructions stored by the memory 104 to control the receiver 102 to receive.
  • the signal and control transmitter 103 sends a signal.
  • the receiver 102 is configured to: receive the first resource allocation indication information that is sent by the network device on the subframe m, where the first resource allocation indication information is used to indicate that the network device allocates the uplink resource for the terminal device.
  • the first time-frequency resource occupies a sub-frame m+n in the LAA cell, and the sub-frame m+n includes s time units, where m is a sub-frame index number, n.
  • s is a positive integer, and the value of s is greater than or equal to 2;
  • the processor 101 is configured to: start listening to the channel of the LAA cell before the subframe m+n;
  • the transmitter 103 is configured to: if the channel is monitored The unit monitors that the channel is in an idle state after the start time of the first time unit of the s time units and before the start time of the tth time unit, and the tth to the sth in the s time units Sending uplink data to the network device, t is greater than 1 and less than or equal to s;
  • the transmitter 103 is further configured to: if the channel listening unit is before the start time of the first time unit of the s time units Listening that the channel is idle, The uplink data is sent to the network device on the s time units.
  • the uplink data is sent on the time-frequency resource on the time unit. Therefore, efficient transmission of uplink data can be realized, and spectrum utilization of the LAA cell can be improved.
  • the processor 101 may be a central processing unit (“CPU"), and the processor 101 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 104 can include read only memory and random access memory and provides instructions and data to the processor 410. A portion of the memory 104 may also include a non-volatile random access memory. For example, the memory 104 can also store information of the device type.
  • the bus system 105 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 105 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 101 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 104, and the processor 101 reads the information in the memory 104 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the durations of the s time units are equal, and the processor 101 is further configured to: according to the size of the transport block TB indicated by the network device, before the channel listening unit monitors that the channel is in an idle state. And generating, by the amount of data to be sent in the uplink buffer of the terminal device, a first TB and a second TB, where a size of the second TB is greater than a size of the first TB;
  • the transmitter 103 is specifically configured to: send the first TB to the network device on the tth to sth time units of the s time units;
  • the transmitter 103 is further configured to: send the second TB to the network device on the s time units.
  • the data in the first TB is not included in the second TB.
  • the receiver 102 is further configured to receive, by using the network device, the second resource allocation indication information that is sent by the network device, where the second resource allocation indication information is used to refer to a second time-frequency resource allocated by the network device for the uplink transmission for the terminal device, where the second time-frequency resource occupies a subframe m+n+k in the LAA cell, where the subframe m+k is the terminal The first subframe occupied by the device when receiving the resource allocation indication information sent by the network device after receiving the first resource allocation indication information, where k is a positive integer greater than or equal to 0;
  • the transmitter 103 is further configured to:
  • the transmitter 103 transmits the first TB to the network device on the tth to sth time units of the s time units, transmitting the first PDCCH to the network device on the subframe m+n+k Two TB;
  • the transmitter 103 sends the second TB to the network device on the s time units, send a third TB to the network device on the subframe m+n+k, where the third TB includes the first TB All data in one TB.
  • the transmitter 103 is specifically configured to: according to the modulation and coding mode MCS indicated by the network device, determine, to send the first TB to the network device on the tth to sth time units.
  • the first target MCS that is used by the first target MCS to send the first TB to the network device on the tth to the sth time unit;
  • the transmitter 103 is further configured to: determine, according to the modulation and coding mode MCS indicated by the network device, a second target MCS used when sending the second TB to the network device on the s time units, where the s The second target PDCCH is sent to the network device by using the second target MCS.
  • the MCS indicated by the network device is an MCS used by the terminal device to send uplink data to the network device on the s time units;
  • the transmitter 103 is specifically configured to determine, according to the modulation and coding mode MCS indicated by the network device, the first target MCS used when the first TB is sent to the network device on the tth to sth time units. For determining, according to the correspondence between the MCS and the MCS indicated by the network device and the number of time units occupied by the terminal device when transmitting the uplink data, determining the first target MCS;
  • the MCS indicated by the network device is determined to be the second target MCS.
  • the terminal device 100 may correspond to the terminal device 10 in the embodiment of the present invention, and may correspond to the terminal device in the method 100 according to the embodiment of the present invention.
  • the foregoing and other operations and/or functions of the respective modules in the terminal device 100 are respectively omitted in order to implement the corresponding processes corresponding to the terminal devices in the method of FIG. 2, and are not described herein again for brevity.
  • the terminal device can transmit uplink data on time-frequency resources on a part of time units in one subframe that is contending. Thereby, efficient transmission of uplink data can be realized, and spectrum utilization of the LAA cell can be improved.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种上行数据传输的方法和设备,该方法包括:终端设备在子帧m上接收网络设备发送的第一资源分配指示信息,第一资源分配指示信息用于指示为终端设备分配的占用LAA小区中的子帧m+n的第一时频资源,子帧m+n包括s个时间单元;终端设备在子帧m+n之前开始监听LAA小区的信道;如果在第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到信道处于空闲状态,在第t个至第s个时间单元上发送上行数据,t大于1且小于等于s;如果在第一个时间单元的开始时刻之前监听到信道处于空闲状态,在s个时间单元上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。

Description

上行数据传输的方法和设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及上行数据传输的方法和设备。
背景技术
长期演进(Long Term Evolution,简称为“LTE”)引入非授权(unlicense)小区之后,由于unlicense小区使用的是非授权频谱,这类频谱无需授权,任何人、任何组织都可以自由使用,所以LTE***内的网元在发送数据之前,需要先做对话前监听(Listen Before Talk,简称为“LBT”),监听信道是否被占用,如果已经被占用就继续监听,直到发现信道空闲,再进行发送。对于基站来说,只要发现信道空闲,就可以开始传输数据;对于用户设备(User Equipment,简称为“UE”,也可称为终端设备)来说,需要满足两个条件,才能传输数据。第一个条件是获得基站分配的传输数据所需的上行资源,第二个条件是UE做LBT成功。
基站可以在子帧m上为UE分配位于授权辅助接入(License Assisted Access,简称为“LAA”)小区(Cell)上的上行资源,UE获得资源分配后,在子帧m+4前做LBT,监听信道是否有人占用,如果有人占用,即LBT失败,就不在子帧m+4上发送上行数据;如果没有人占用,即LBT成功,就在子帧m+4上通过LAA Cell发送上行数据。基站根据自己指定的格式,在预定的时频资源位置接收上行数据。
通常,使用LAA小区的基站或者UE需要与无线保真(Wireless Fidelity,简称为“WiFi”)设备争抢信道使用权,而WiFi设备不需要知道LTE小区的子帧边界,如果LAA的UE只在LAA小区的子帧边界前一小段时间开始做LBT,则容易造成冲突导致UE抢到信道的概率就会比较低。为此,第三代合作伙伴计划(3rd Generation Partnership Project,简称为“3GPP”)确定了基站/UE的行为:持续做LBT。
但是,目前基站为UE分配上行资源时,是按整个子帧的格式来分配的。也就是说,基站默认UE在时间上会使用整个上行子帧发送数据,如果UE只抢到一个子帧上的部分资源,则无法发送上行数据。
发明内容
本发明提供一种上行数据传输的方法和设备,即使终端设备争抢到的不是整个子帧的频谱资源,也能够实现上行数据的高效发送,提高授权辅助接入LAA小区的频谱利用率。
第一方面,提供了一种上行数据传输的方法,包括:终端设备在子帧m上接收网络设备发送的第一资源分配指示信息,该第一资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第一时频资源,该第一时频资源占用授权辅助接入LAA小区中的子帧m+n,该子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;该终端设备在该子帧m+n之前开始监听该LAA小区的信道;该终端设备如果在该s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送上行数据,t大于1且小于等于s;该终端设备如果在该s个时间单元中的第一个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元上向该网络设备发送上行数据。
应理解,终端设备在子帧m+n之前开始监听该LAA小区的信道,可以描述为终端设备在子帧m+n之前开始持续监听LAA小区的信道,其中持续监听可以理解为连续不断的一直对该信道进行监听直至监听成功,或者可以理解为,在子帧m+n的s个时间单元的每个时间单元开始之前对信道进行监听直至监听成功,或者还可以理解为,前后两次监听的时间间隔小于预设值,该预设值可以是标准规定的任意合适的数值。
在本发明实施例中,时间单元可以理解为包括正交频分复用(Orthogonal Frequency Division Multiplexing,简称为“OFDM”)符号的时间单位,例如一个时间单元可以包括7个OFDM符号(对应现有LTE标准中的一个时隙),本发明对一个时间单元中包括的OFDM符号的个数不作限定。
可选地,s个时间单元的时长可以相同,或者,s个时间单元中部分时间单元的时长相同,或者s个时间单元的时长两两不同。并且,n的取值取决于通信协议的规定。
一般地,n的值为4;和/或,s的值为2。
可选地,资源分配指示信息指示子帧m+n中的部分时间单元上的时频资源的位置,终端设备根据预设规则,推测出子帧m+n的所有时间单元上 的时频资源的位置。或者资源分配指示信息指示子帧m+n的所有时间单元上的资源的位置,终端设备根据资源分配指示信息的指示就可以确定网络设备为终端设备分配的全部时频资源。
因此,根据本发明实施例的上行数据传输的方法,终端设备能够在争抢到一个子帧中的部分时间单元上的时频资源上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。
结合第一方面,在第一方面的第一种可能的实现方式中,该s个时间单元的时长相等,该终端设备在监听到该信道处于空闲状态之前,该方法还包括:该终端设备根据该网络设备指示的传输块TB大小和该终端设备的上行缓存中的待发送数据量,生成第一TB和第二TB,其中,该第二TB的大小大于该第一TB的大小;
其中,该在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送上行数据,包括:在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB;
其中,该在该s个时间单元上向该网络设备发送上行数据,包括:在该s个时间单元上向该网络设备发送该第二TB。
也就是说,终端设备可以准备大小不同的两个传输块,如果终端设备在子帧m+n内监听到LAA小区的信道处于空闲状态(也即先听后说(Listen Before Talk,简称为“LBT”)成功),则终端设备可以在LBT成功时刻之后的时间单元中发送较小的传输块,由此能够发送合适大小的传输块,实现上行数据的高效传输。
并且,可选地,当s的值为2时,即一个子帧包括2个时间单元时,第二TB的大小为第一TB的大小的两倍。
应理解,在终端设备需要发送探测参考信号(Sounding Reference Signal,简称为“SRS”)时,终端设备优先进行SRS的发送,例如,如果一个时间单元仅包括一个OFDM符号,子帧m+n中的最后一个符号可以用来进行SRS的发送,而不用于发送上行数据。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第二TB中不包括所述第一TB中的数据。
换句话说,终端设备可以将扣除第一TB后的缓存结果作为确定第二TB的基础,由此可以简化终端设备准备TB时的复杂度。
可选地,该第一TB包括介质接入控制控制(Media Access Control,简称为“MAC”)单元(Control Element,简称为“CE”),该第二TB包括MAC CE。由此,终端设备可以通过MAC CE告知网络设备一些信息,这些信息包括但不限于:终端设备还有多少数据要发送给网络设备、终端设备还有多少功率余量(Power Headroom,简称为“PH”)。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该方法还包括:该终端设备在子帧m+k上接收该网络设备发送的第二资源分配指示信息,该第二资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第二时频资源,该第二时频资源占用该LAA小区中的子帧m+n+k,该子帧m+k为该终端设备在接收到该第一资源分配指示信息之后接收该网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;该终端设备如果在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB,在该子帧m+n+k上向该网络设备发送该第二TB;该终端设备如果在该s个时间单元上向该网络设备发送第二TB,在该子帧m+n+k上向该网络设备发送第三TB,其中,该第三TB中包括该第一TB中的全部数据。
由此,终端设备可以在下一次上行传输时发送本次传输之前准备好的但是在本次传输中未能发送的TB,从而实现上行数据的高效发送。
可选地,k的值为1,此时如果终端设备在子帧m+n的第s个时间单元之前监听到LAA小区的信道处于空闲状态,终端设备就可以在子帧m+n+1的全部时间单元上向网络设备发送上行数据。也可以理解为如果网络设备对终端设备进行连读调度,终端设备只需要为第一次传输准备两份TB。能够简化UE的实现。
结合第一方面的第一种至第三种可能的实现方式中任一可能的实现方式,在第一方面的第四种可能的实现方式中,该在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB,包括:根据该网络设备指示的调制编码方式MCS,确定在该第t个至第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS,在该第t个至第s个时间单元上采用该第一目标MCS向该网络设备发送该第一TB;
其中,该在该s个时间单元上向该网络设备发送该第二TB,包括:根据该网络设备指示的调制编码方式MCS,确定在该s个时间单元上向该网络 设备发送该第二TB时采用的第二目标MCS,在该s个时间单元上采用该第二目标MCS向该网络设备发送该第二TB。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,该网络设备指示的MCS为该终端设备在该s个时间单元上向该网络设备发送上行数据时采用的MCS;
其中,该根据该网络设备指示的调制编码方式MCS,确定在该第t个至第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS,包括:根据该网络设备指示的MCS、MCS与终端设备发送上行数据时占用的时间单元的个数的对应关系,确定该第一目标MCS;
其中,该根据该网络设备指示的调制编码方式MCS,确定在该s个时隙上向该网络设备发送该第二TB时采用的第二目标MCS,包括:将该网络设备指示的MCS确定为该第二目标MCS。
本发明实施例的方法,不管网络设备指示终端设备采用哪一种MCS,终端设备均可以根据网络设备的指示确定出实际发送上行数据时采用的MCS,由此,终端设备可以通过改动基带的处理,实现即使在抢到的时频资源与网络设备指示的MCS对应的时频资源大小不同时,仍可以发送网络设备指示的大小的数据块,实现上行数据的灵活发送。
第二方面,提供了一种终端设备,该终端设备用于执行上述第一方面的第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,包括:处理器、存储器、接收器和发送器,该处理器、该存储器、该接收器和该发送器通过总线***相连,该存储器用于存储指令,该处理器用于执行该存储器中存储的指令,以控制该接收器接收信息和控制发送器发送信息,使得该终端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景的示意图;
图2是根据本发明实施例的上行数据传输的方法的示意性流程图;
图3是根据本发明实施例的确定用于上行传输的时频资源的方法的示意图;
图4(a)和(b)是根据本发明实施例的确定上行传输块的方法的示意图;
图5是根据本发明实施例的终端设备的示意性框图;
图6是根据本发明实施例的终端设备的另一示意性框图;
图7是根据本发明另一实施例的终端设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
为了方便理解本发明实施例,首先在此介绍本发明实施例描述中会引入的几个要素。
授权频谱(Licensed Spectrum)与非授权频谱(Unlicensed Spectrum):无线通信***使用的频谱分为授权频谱和非授权频谱。对于授权频谱,一般在获得授权后,可以使用相应的授权载波开展相关通信业务,不存在资源竞争的问题,例如在长期演进(Long Term Evolution,简称为“LTE”)***中,在发送端,一旦数据帧的初始发送时间确定,后续的每个数据帧都按顺序依次发送;相应地,在接收端,一旦通过同步信号获取数据帧的初始发送时间,后续每个数据帧的接收时间都是确定的,接收端无需对每个接收帧的接收时间进行调整;对于非授权频谱,任何人都可以合法的使用相应的非授权载波进行通信业务,但是,利用非授权载波传输数据,采用在时间上竞争的方式,竞争到资源才开始传输数据,并且在传输一段时间后,必须停止发送,释放 信道,以使其他设备有几乎占用信道。
授权小区(Licensed Cell)为使用授权频谱的小区,授权小区也可以称为正常小区(Normal Cell),例如可以为现有LTE中的LTE小区,非授权小区为使用非授权频谱的小区,非授权小区可以为授权辅助接入小区(Licensed Assisted Access,简称为“LAA”)小区(LAA Cell),和/或Standalone LAA小区。
先听后说(Listen Before Talk,简称为“LBT”):要传输数据的站点(如基站等)首先对要使用的频谱资源进行监听,以确定是否有别的站点在传输数据。假如使用的频率资源空闲,该站点便可传输数据;否则,该站点将避让一段时间后再做尝试。非授权频谱的传输机制通常采用LBT原则。
本发明实施例的技术方案,可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)***、码分多址(Code Division Multiple Access,简称为“CDMA”)***、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)***、长期演进(Long Term Evolution,简称为“LTE”)***、LTE频分双工(Frequency Division Duplex,简称为“FDD”)***、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信***(Universal Mobile Telecommunication System,简称为“UMTS”)、以及未来的5G通信***等。
在本发明实施例中,终端设备(Terminal Equipment)也可称之为用户设备、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,以及未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
在本发明实施例中,网络设备可以是用于与用户设备进行通信的设备,该网络设备可以是GSM***或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA***中的基站(NodeB,简称为“NB”),还可以是LTE***中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备 等。
图1示出了本发明实施例的一个应用场景,如图1所示,基站(eNB)与两个用户设备(用户设备1(UE1)和用户设备2(UE2))相连接,eNB为UE1和UE2提供通信服务,并且eNB上的小区可能工作在授权频谱,也可能工作在非授权频谱。
应理解,图1中示出2个UE仅仅是为了实例,而不是限定本发明的应用范围。eNB可以只与一个UE相连接,也可以与多个UE相连接,本发明对此不作限定。
需要说明的是,以下在描述本发明的具体实施例时,以一个时间单元包括7个OFDM符号,即一个时间单元为一个时隙为例进行说明,其仅仅是为了描述方便,而不对本发明的保护范围构成任何限定。
图2是根据本发明实施例的上行数据传输的方法的示意性流程图。如图2所示,该方法100包括:
S110,终端设备在子帧m上接收网络设备发送的第一资源分配指示信息,该第一资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第一时频资源,该第一时频资源占用授权辅助接入LAA小区中的子帧m+n,该子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;
可选地,网络设备可以通过Licensed Cell将第一资源分配指示信息发送给终端设备,网络设备还可以通过Unlicensed Cell将第一资源分配指示信息发送给终端设备,本发明对此不作限定。
下面将以一个子帧包括2个时隙,也即s的取值为2,描述网络设备发送的第一资源分配指示信息指示用于上行传输的时频资源的方法。第一资源分配指示信息可以指示网络设备为终端设备分配的时频资源具***于子帧的2个时隙中的哪些物理资源块上,也可以理解成网络设备按照整个子帧的格式来为终端设备分配用于上行传输的时频资源,此时,终端设备可以根据接收到的第一资源分配信息的指示确定子帧的所有时隙中的时频资源。
可选地,第一资源分配指示信息可以仅指示网络设备为终端设备分配的时频资源中的部分时频资源,例如,可以仅指示位于第一个时隙中的那部分时频资源具***于第一个时隙的哪些物理资源块上,可以理解为网络设备按照半个子帧的格式来为终端设备分配时频资源,终端设备根据2个时隙的物 理资源块之间的偏差值推断出网络设备为终端设备分配的全部时频资源。举例来说,如图3所示,假设第一资源分配指示信息指示的时频资源位于第二个时隙(slot)(时隙1)的0/1/2号物理资源块(图3中的斜线填充部分)上,假设2个时隙的物理资源块的编号之间的偏差值为7,则终端设备推测出网络设备为终端设备分配的全部时频资源应该位于第一个时隙(时隙0)的7/8/9号物理资源块+第二个时隙的0/1/2号物理资源块上(图3中的斜线填充部分)。可选地,偏差值也可以取0,此时终端设备推测出上行资源应该位于第一个时隙的0/1/2号物理资源块+第二个时隙的0/1/2号物理资源块上(图3中的斜线填充部分)。本发明对偏差值的取值不作限定。
进一步地,偏差值可以由网络设备通过无线资源控制(Radio Resource Control,简称为“RRC”)消息显示配置给终端设备,例如,网络设备可以在向终端设备发送的RRC连接建立消息中携带指示该偏差值的信息。该偏差值也可以由终端设备根据其他参数隐式推断出来,例如,偏差值可以等于***带宽的四分之一。
S120,该终端设备在该子帧m+n之前开始监听该LAA小区的信道;
S130,该终端设备如果在该s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送上行数据,t大于1且小于等于s;
S140,该终端设备如果在该s个时间单元中的第一个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元上向该网络设备发送上行数据。
具体地,终端设备在获取到第一资源分配指示信息后,在子帧m+n之前做LBT,监听信道是否有人占用。终端设备如果在s个时间单元中的第一个时间单元开始之前监听到信道处于空闲状态,终端设备可以在s个时间单元上向网络设备发送上行数据。也可以理解为终端设备抢到了网络设备为其分配的在子帧m+n上的第一时频资源中的全部时频资源,终端设备如果在第一个时间单元开始之后且第t个时间单元开始之前监听到信道处于空闲状态,终端设备在第t个至第s个时间单元上向网络设备发送待发送上行数据,也可以理解为终端设备只抢到了网络设备为其分配的在子帧m+n上的第一时频资源中的部分时频资源。
由此,与现有技术不同的是,本发明实施例的上行数据传输的方法,即使终端设备抢到的只是子帧中的部分资源,也可以成功进行上行数据的传输,能够提高LAA小区的频谱利用率。
应理解,终端设备在接收到第一资源分配指示信息后,需要准备上行传输的数据块(Transport Block,简称为“TB”),即上行TB。由于终端设备在准备上行TB时,还不知道LBT的结果,也就不知道哪些时频资源可用,所以可选地,终端设备需要准备不同大小的TB,并且终端设备可以采用不同的方法准备不同大小的TB,具体采用哪一种方法,可以由网络设备进行配置,例如,网络设备可以通过RRC层的消息实现对终端设备的配置。
可选地,终端设备根据网络设备指示的传输块TB大小和终端设备的上行缓存中的待发送数据量,生成第一TB和第二TB,其中,第二TB的大小大于第一TB的大小。
进一步地,第二TB块中不包括第一TB块中的数据,也就是说,终端设备可以以扣除第一TB块中的数据后的缓存中的数据量作为生成第二TB块的基础,这种方法终端设备在生成TB块时的实现相对比较简单,能够简化终端设备的实现。
可以理解的是,终端设备接收到的第一资源分配指示信息中除了包括用于指示网络设备为终端设备分配的用于上行传输的第一时频资源的指示信息外,还可以包括用于指示终端设备该终端设备需要传输的TB块的大小的指示信息。
由此,终端设备准备两个大小不同的TB,终端设备可以根据争抢到的时频资源的大小(或者理解成监听到信道处于空闲状态的时刻),确定实际需要发送的TB。具体来说,如果终端设备在s个时间单元中的第一个时间单元开始之后且第t个时间单元开始之前监听到该信道处于空闲状态,终端设备在第t个至第s个时间单元上发送第一TB。如果终端设备在第一个时间单元开始时刻之前监听到信道处于空闲状态,终端设备在s个时间单元上发送第二TB。
下面将以具体的例子描述本发明实施例中,终端设备准备TB的方法,如图4(a)和(b)中所示,假设有两个无线承载(Radio Bearer,简称为“RB”)分别为RB1和RB2,RB1对应的缓存中有500Bytes待发送数据,RB2对应的缓存中有400Bytes待发送数据,RB1和RB2的保证比特速率(Guaranteed  Bit Rate,简称为“GBR”)均为100Bytes。终端设备可以根据链路控制协议(Link Control Protocol,简称为“LCP”)确定TB中包括的数据,假设网络设备配置的第一TB的大小为300Bytes,终端设备从RB1对应的缓存中取200Bytes,从RB2对应的缓存中取100Bytes组装成第一TB,图4(a)中假定终端设备已经触发了缓存状态报告(Buffer State Report,简称为“BSR”),所以BSR上报第一TB组装后剩余的数据量为600Bytes。随后,终端设备准备第二TB时,仍按照RB1对应的缓存中有500Bytes待发送数据,RB2对应的缓存中有400Bytes待发送数据来准备,根据LCP法则,终端设备从RB1对应的缓存中的取500Bytes,从RB2对应的缓存中取100Bytes组装成第二TB,BSR上报第二TB组装后剩余的数据量为300Bytes。
需要说明的是,终端设备可以先准备第一TB后准备第二TB,也可以先准备第二TB后准备第一TB。
可选地,如果终端设备需要发送第一TB则将第二TB丢弃,如果需要发送第二TB则将第一TB丢弃。或者终端设备也可以等待下次传输机会,将本次传输未发送的TB在下一次传输中发送。
进一步地,如图4(b)所示,终端设备在准备第二TB时,可以以扣除第一TB中的数据之后的缓存结果作为基础。扣除第一TB中的数据后,RB1对应的缓存中的数据量是300Bytes,RB2对应的缓存中的数据量是300Bytes,终端设备把600Bytes全部放入第二TB内,此时,RB1和RB2对应的缓存中没有数据了,所以不发送BSR。
需要说明的是,在终端设备以扣除第一TB中的数据之后的缓存结果作为基础准备第二TB时,终端设备准备不同的TB是有先后顺序的,这个顺序体现在BSR的取值上,采用这种方法,无论哪个TB被发送了,都需要将另一个TB的数据重新放回缓存中,比如放回无线链路控制(Radio Link Control,简称为“RLC”)层缓存中,等待下次传输机会。并且某些情况下,TB中携带的BSR可能不准确,比如图4(b)中,如果传输的是第二TB,则网络设备会认为终端设备的缓存中没有数据了,但其实终端设备的缓存中还有300Bytes的待发数据。因此,如果网络设备指示终端设备根据图4(b)所示的方法准备TB,网络设备在接收到终端设备发送的TB后,在为终端设备的下次上行传输分配资源时,可以分配大于接收到的TB携带的BSR中指示的终端设备所需要的时频资源的时频资源给终端设备。并且,即使网络 设备接收到的TB中没有携带BSR,网络设备也会为终端设备的下一次上行传输分配时频资源。
应理解,不管终端设备采用哪有方法准备TB,如果有介质接入控制控制(Media Access Control,简称为“MAC”)单元(Control Element,简称为“CE”)需要发送,终端设备需要在所有的TB中包括MAC CE,确保MAC CE可以正常传输。
还应理解,在s个时间单元的时长不全部相等时,需要准备多个不同大小的TB,并且有几种长度的时间单元,就准备几种大小的TB。准备TB的方法可以按照图4(a)和图4(b)所示的方法进行。
在本发明实施例中,可选地,终端设备在子帧m+k上接收该网络设备发送的第二资源分配指示信息,该第二资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第二时频资源,该第二时频资源占用该LAA小区中的子帧m+n+k,该子帧m+k为该终端设备在接收到该第一资源分配指示信息之后接收该网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;
该终端设备如果在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB,在该子帧m+n+k上向该网络设备发送该第二TB;
该终端设备如果在该s个时间单元上向该网络设备发送第二TB,在该子帧m+n+k上向该网络设备发送第三TB,其中,该第三TB中包括该第一TB中的全部数据。
需要说明的是,当终端设备在子帧m上接收到第二资源分配指示信息时,该第二资源分配指示信息与上文中的第一资源分配指示信息可以是网络设备在子帧m的不同载波上发送的,但本发明并不限于此。
可以理解的是,本发明实施例中,终端设备在子帧m+n+k开始之前对LAA小区的信道进行监听,根据监听到信道处于空闲状态的时刻,确定子帧m+n+k上用于进行上行传输的时频资源。并且如果终端设备在子帧m+n上发送的是第一TB,终端设备会在子帧m+n+k上向网络设备发送第二TB。如果终端设备在子帧m+n上发送的是第二TB,终端设备在子帧m+n+k上发送第一TB或者是发送包括第一TB中的所有数据和其他数据组合成的第三TB。
这种情况下,终端设备只需要为第一次传输准备两份TB,可以简化终 端设备的实现。
进一步地,终端设备需要确定发送第一TB或第二TB时采用的数据传输格式,也即调制编码方式(Modulation and Coding Scheme,简称为“MCS”)。
具体来说,终端设备根据网络设备指示的MCS,确定发送第一TB时的第一目标MCS,根据网络设备指示的MCS,确定发送第二TB时的第二目标MCS。
可选地,终端设备可以根据网络设备指示的MCS、MCS与终端设备发送上行数据占用的时间单元的个数的对应关系,确定实际发送上行数据时采用的目标MCS。例如终端设备可以预先保存占用的时间单元的个数与采用的MCS之间的对应关系,例如终端设备可以预先保存一张表格,表格中存储上述对应关系,表格可以为表格1所示(表中的数字只是举例)的形式,表1中的数值为MCS索引值,不同的数值对应不同的编码速率和调制阶数。这张表格可以由协议规定好,也可以由网络设备配置。
表1
Figure PCTCN2016078385-appb-000001
举例来说,假设子帧m+n包括2个时间单元,即s的值为2,如果网络设备指示的MCS是终端设备在2个时间单元上发送上行数据时采用的MCS为MCS16,如果终端设备在第1个时间单元开始之前监听到信道处于空闲状态,也就是说,终端设备占用2个时间单元发送上行数据,则终端设备采用网络设备指示的MCS 16在空口传输准备的TB。如果终端设备在第1个时间单元开始之后第2个时间单元开始之前监听到信道处于空闲状态,终端设备可以查表1确定出与MCS16相对应的占用1个时间单元发送上行数据时应该采用的MCS为MCS 22,终端设备采用MCS 22在空口传输准备的TB。
相类似的,如果网络设备指示的MCS是终端设备在1个时间单元上发送上行数据时的MCS为MCS 24,如果终端设备在第1个时间单元开始之后第2个时间单元开始之前监听到信道处于空闲状态,终端设备就采用网络设备指示的MCS 24在空口传输准备的TB,如果终端设备在第1个时间单元 开始之前监听到信道处于空闲状态,终端设备可以查表1确定出与MCS 24相对应的占用2个时间单元发送上行数据时应该采用的MCS为MCS 17,终端设备采用MCS 17在空口传输准备的TB。
由于终端设备和网络设备都保存有上述表格,所以网络设备可以正确解码接收到的上行数据。
由此,终端设备可以通过改变基带的处理,实现上行数据的灵活发送,降低终端设备的复杂度。
以上结合图2至图4详细描述了根据本发明实施例的上行数据传输的方法,下面将结合图5和图6详细描述根据本发明实施例的终端设备。
图5示出了根据本发明实施例的终端设备10,如图5所示,终端设备10包括:
接收单元11,用于在子帧m上接收网络设备发送的第一资源分配指示信息,该第一资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第一时频资源,该第一时频资源占用授权辅助接入LAA小区中的子帧m+n,该子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;
信道监听单元12,用于在该子帧m+n之前开始监听该LAA小区的信道;
发送单元13,用于如果该信道监听单元在该s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送上行数据,t大于1且小于等于s;
该发送单元13,还用于如果该信道监听单元在该s个时间单元中的第一个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元上向该网络设备发送上行数据。
因此,根据本发明实施例的终端设备能够在争抢到的一个子帧中的部分时间单元上的时频资源上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。
在本发明实施例中,可选地,该s个时间单元的时长相等,如图6所示,该终端设备还包括:传输块生成单元14;
该传输块TB生成单元14,用于在该信道监听单元监听到该信道处于空闲状态之前,根据该网络设备指示的传输块TB大小和该终端设备的上行缓 存中的待发送数据量,生成第一TB和第二TB,其中,该第二TB的大小大于该第一TB的大小;
其中,该发送单元13具体用于:在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB;
其中,该发送单元13还具体用于:在该s个时间单元上向该网络设备发送该第二TB。
在本发明实施例中,可选地,该第二TB中不包括该第一TB中的数据。
在本发明实施例中,可选地,该接收单元11还用于:在子帧m+k上接收该网络设备发送的第二资源分配指示信息,该第二资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第二时频资源,该第二时频资源占用该LAA小区中的子帧m+n+k,该子帧m+k为该终端设备在接收到该第一资源分配指示信息之后接收该网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;
该发送单元13,还用于:
如果该发送单元13在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB,在该子帧m+n+k上向该网络设备发送该第二TB;
如果该发送单元13在该s个时间单元上向该网络设备发送第二TB,在该子帧m+n+k上向该网络设备发送第三TB,其中,该第三TB中包括该第一TB中的全部数据。
在本发明实施例中,可选地,该发送单元13具体用于:根据该网络设备指示的调制编码方式MCS,确定在该第t个至第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS,在该第t个至第s个时间单元上采用该第一目标MCS向该网络设备发送该第一TB;
其中,该发送单元13还具体用于:根据该网络设备指示的调制编码方式MCS,确定在该s个时间单元上向该网络设备发送该第二TB时采用的第二目标MCS,在该s个时间单元上采用该第二目标MCS向该网络设备发送该第二TB。
在本发明实施例中,可选地,该网络设备指示的MCS为该终端设备在该s个时间单元上向该网络设备发送上行数据时采用的MCS;
其中,在根据该网络设备指示的调制编码方式MCS,确定在该第t个至 第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS方面,该发送单元13具体用于:根据该网络设备指示的MCS、MCS与终端设备发送上行数据时占用的时间单元的个数的对应关系,确定该第一目标MCS;
其中,在根据该网络设备指示的调制编码方式MCS,确定在该s个时间单元上向该网络设备发送该第二TB时采用的第二目标MCS方面,该发送单元13具体用于:将该网络设备指示的MCS确定为该第二目标MCS。
应理解,根据本发明实施例的终端设备10可对应于执行本发明实施例中的方法100中的终端设备,并且终端设备10中的各个单元的上述和其它操作和/或功能分别为了实现图2中的方法中终端设备对应的相应流程,为了简洁,在此不再赘述。
因此,根据本发明实施例的终端设备能够在争抢到的一个子帧中的部分时间单元上的时频资源上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。
如图7所示,本发明实施例还提供了一种终端设备100。该终端设备100包括处理器101、接收器102、发送器103和存储器104。其中,处理器101、存储器104、接收器102和发送器103通过总线***105相连,该存储器104用于存储指令,该处理器101用于执行该存储器104存储的指令,以控制接收器102接收信号和控制发送器103发送信号。其中,该接收器102用于:用于在子帧m上接收网络设备发送的第一资源分配指示信息,该第一资源分配指示信息用于指示该网络设备为该终端设备分配的用于上行传输的第一时频资源,该第一时频资源占用授权辅助接入LAA小区中的子帧m+n,该子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;该处理器101用于:在该子帧m+n之前开始监听该LAA小区的信道;该发送器103用于:用于如果该信道监听单元在该s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送上行数据,t大于1且小于等于s;该发送器103还用于:如果该信道监听单元在该s个时间单元中的第一个时间单元的开始时刻之前监听到该信道处于空闲状态,在该s个时间单元上向该网络设备发送上行数据。
因此,根据本发明实施例的终端设备能够在争抢到的一个子帧中的部分 时间单元上的时频资源上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。
应理解,在本发明实施例中,该处理器101可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器101还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器104可以包括只读存储器和随机存取存储器,并向处理器410提供指令和数据。存储器104的一部分还可以包括非易失性随机存取存储器。例如,存储器104还可以存储设备类型的信息。
该总线***105除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***105。
在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器104,处理器101读取存储器104中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该s个时间单元的时长相等,该处理器101,还用于在该信道监听单元监听到该信道处于空闲状态之前,根据该网络设备指示的传输块TB大小和该终端设备的上行缓存中的待发送数据量,生成第一TB和第二TB,其中,该第二TB的大小大于该第一TB的大小;
其中,该发送器103具体用于:在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB;
其中,该发送器103还具体用于:在该s个时间单元上向该网络设备发送该第二TB。
可选地,作为一个实施例,该第二TB中不包括该第一TB中的数据。
可选地,作为一个实施例,该接收器102还用于:在子帧m+k上接收该网络设备发送的第二资源分配指示信息,该第二资源分配指示信息用于指 示该网络设备为该终端设备分配的用于上行传输的第二时频资源,该第二时频资源占用该LAA小区中的子帧m+n+k,该子帧m+k为该终端设备在接收到该第一资源分配指示信息之后接收该网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;
该发送器103,还用于:
如果该发送器103在该s个时间单元中的第t个至第s个时间单元上向该网络设备发送该第一TB,在该子帧m+n+k上向该网络设备发送该第二TB;
如果该发送器103在该s个时间单元上向该网络设备发送第二TB,在该子帧m+n+k上向该网络设备发送第三TB,其中,该第三TB中包括该第一TB中的全部数据。
可选地,作为一个实施例,该发送器103具体用于:根据该网络设备指示的调制编码方式MCS,确定在该第t个至第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS,在该第t个至第s个时间单元上采用该第一目标MCS向该网络设备发送该第一TB;
其中,该发送器103还具体用于:根据该网络设备指示的调制编码方式MCS,确定在该s个时间单元上向该网络设备发送该第二TB时采用的第二目标MCS,在该s个时间单元上采用该第二目标MCS向该网络设备发送该第二TB。
可选地,作为一个实施例,该网络设备指示的MCS为该终端设备在该s个时间单元上向该网络设备发送上行数据时采用的MCS;
其中,在根据该网络设备指示的调制编码方式MCS,确定在该第t个至第s个时间单元上向该网络设备发送该第一TB时采用的第一目标MCS方面,该发送器103具体用于:根据该网络设备指示的MCS、MCS与终端设备发送上行数据时占用的时间单元的个数的对应关系,确定该第一目标MCS;
其中,在根据该网络设备指示的调制编码方式MCS,确定在该s个时间单元上向该网络设备发送该第二TB时采用的第二目标MCS方面,该发送器103具体用于:将该网络设备指示的MCS确定为该第二目标MCS。
应理解,根据本发明实施例的终端设备100可对应于本发明实施例中的终端设备10,并可以对应于执行根据本发明实施例的方法100中的终端设 备,并且终端设备100中的各个模块的上述和其它操作和/或功能分别为了实现图2方法中的终端设备对应的相应流程,为了简洁,在此不再赘述。
因此,根据本发明实施例的终端设备能够在争抢到的一个子帧中的部分时间单元上的时频资源上发送上行数据。由此,能够实现上行数据的高效发送,提高LAA小区的频谱利用率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (12)

  1. 一种上行数据传输的方法,其特征在于,包括:
    终端设备在子帧m上接收网络设备发送的第一资源分配指示信息,所述第一资源分配指示信息用于指示所述网络设备为所述终端设备分配的用于上行传输的第一时频资源,所述第一时频资源占用授权辅助接入LAA小区中的子帧m+n,所述子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;
    所述终端设备在所述子帧m+n之前开始监听所述LAA小区的信道;
    所述终端设备如果在所述s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到所述信道处于空闲状态,在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送上行数据,t大于1且小于等于s;
    所述终端设备如果在所述s个时间单元中的第一个时间单元的开始时刻之前监听到所述信道处于空闲状态,在所述s个时间单元上向所述网络设备发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述s个时间单元的时长相等,所述终端设备在监听到所述信道处于空闲状态之前,所述方法还包括:
    所述终端设备根据所述网络设备指示的传输块TB大小和所述终端设备的上行缓存中的待发送数据量,生成第一TB和第二TB,其中,所述第二TB的大小大于所述第一TB的大小;
    其中,所述在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送上行数据,包括:
    在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送所述第一TB;
    其中,所述在所述s个时间单元上向所述网络设备发送上行数据,包括:
    在所述s个时间单元上向所述网络设备发送所述第二TB。
  3. 根据权利要求2所述的方法,其特征在于,所述第二TB中不包括所述第一TB中的数据。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端设备在子帧m+k上接收所述网络设备发送的第二资源分配指 示信息,所述第二资源分配指示信息用于指示所述网络设备为所述终端设备分配的用于上行传输的第二时频资源,所述第二时频资源占用所述LAA小区中的子帧m+n+k,所述子帧m+k为所述终端设备在接收到所述第一资源分配指示信息之后接收所述网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;
    所述终端设备如果在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送所述第一TB,在所述子帧m+n+k上向所述网络设备发送所述第二TB;
    所述终端设备如果在所述s个时间单元上向所述网络设备发送第二TB,在所述子帧m+n+k上向所述网络设备发送第三TB,其中,所述第三TB中包括所述第一TB中的全部数据。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送所述第一TB,包括:
    根据所述网络设备指示的调制编码方式MCS,确定在所述第t个至第s个时间单元上向所述网络设备发送所述第一TB时采用的第一目标MCS,在所述第t个至第s个时间单元上采用所述第一目标MCS向所述网络设备发送所述第一TB;
    其中,所述在所述s个时间单元上向所述网络设备发送所述第二TB,包括:
    根据所述网络设备指示的调制编码方式MCS,确定在所述s个时间单元上向所述网络设备发送所述第二TB时采用的第二目标MCS,在所述s个时间单元上采用所述第二目标MCS向所述网络设备发送所述第二TB。
  6. 根据权利要求5所述的方法,其特征在于,所述网络设备指示的MCS为所述终端设备在所述s个时间单元上向所述网络设备发送上行数据时采用的MCS;
    其中,所述根据所述网络设备指示的调制编码方式MCS,确定在所述第t个至第s个时间单元上向所述网络设备发送所述第一TB时采用的第一目标MCS,包括:
    根据所述网络设备指示的MCS、MCS与终端设备发送上行数据时占用的时间单元的个数的对应关系,确定所述第一目标MCS;
    其中,所述根据所述网络设备指示的调制编码方式MCS,确定在所述s个时间单元上向所述网络设备发送所述第二TB时采用的第二目标MCS,包括:
    将所述网络设备指示的MCS确定为所述第二目标MCS。
  7. 一种终端设备,其特征在于,包括:
    接收单元,用于在子帧m上接收网络设备发送的第一资源分配指示信息,所述第一资源分配指示信息用于指示所述网络设备为所述终端设备分配的用于上行传输的第一时频资源,所述第一时频资源占用授权辅助接入LAA小区中的子帧m+n,所述子帧m+n包括s个时间单元,m为子帧索引号,n、s为正整数,s的取值大于或等于2;
    信道监听单元,用于在所述子帧m+n之前开始监听所述LAA小区的信道;
    发送单元,用于如果所述信道监听单元在所述s个时间单元中的第一个时间单元的开始时刻之后且第t个时间单元的开始时刻之前监听到所述信道处于空闲状态,在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送上行数据,t大于1且小于等于s;
    所述发送单元,还用于如果所述信道监听单元在所述s个时间单元中的第一个时间单元的开始时刻之前监听到所述信道处于空闲状态,在所述s个时间单元上向所述网络设备发送上行数据。
  8. 根据权利要求7所述的终端设备,其特征在于,所述s个时间单元的时长相等,所述终端设备还包括:传输块生成单元;
    所述传输块TB生成单元,用于在所述信道监听单元监听到所述信道处于空闲状态之前,根据所述网络设备指示的传输块TB大小和所述终端设备的上行缓存中的待发送数据量,生成第一TB和第二TB,其中,所述第二TB的大小大于所述第一TB的大小;
    其中,所述发送单元具体用于:
    在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送所述第一TB;
    其中,所述发送单元还具体用于:
    在所述s个时间单元上向所述网络设备发送所述第二TB。
  9. 根据权利要求8所述的终端设备,其特征在于,所述第二TB中不包 括所述第一TB中的数据。
  10. 根据权利要求8或9所述的终端设备,其特征在于,所述接收单元还用于:在子帧m+k上接收所述网络设备发送的第二资源分配指示信息,所述第二资源分配指示信息用于指示所述网络设备为所述终端设备分配的用于上行传输的第二时频资源,所述第二时频资源占用所述LAA小区中的子帧m+n+k,所述子帧m+k为所述终端设备在接收到所述第一资源分配指示信息之后接收所述网络设备发送的资源分配指示信息时占用的第一个子帧,k为大于或等于0的正整数;
    所述发送单元,还用于:
    如果所述发送单元在所述s个时间单元中的第t个至第s个时间单元上向所述网络设备发送所述第一TB,在所述子帧m+n+k上向所述网络设备发送所述第二TB;
    如果所述发送单元在所述s个时间单元上向所述网络设备发送第二TB,在所述子帧m+n+k上向所述网络设备发送第三TB,其中,所述第三TB中包括所述第一TB中的全部数据。
  11. 根据权利要求8至10中任一项所述的终端设备,其特征在于,所述发送单元具体用于:
    根据所述网络设备指示的调制编码方式MCS,确定在所述第t个至第s个时间单元上向所述网络设备发送所述第一TB时采用的第一目标MCS,在所述第t个至第s个时间单元上采用所述第一目标MCS向所述网络设备发送所述第一TB;
    其中,所述发送单元还具体用于:
    根据所述网络设备指示的调制编码方式MCS,确定在所述s个时间单元上向所述网络设备发送所述第二TB时采用的第二目标MCS,在所述s个时间单元上采用所述第二目标MCS向所述网络设备发送所述第二TB。
  12. 根据权利要求11所述的终端设备,其特征在于,所述网络设备指示的MCS为所述终端设备在所述s个时间单元上向所述网络设备发送上行数据时采用的MCS;
    其中,在根据所述网络设备指示的调制编码方式MCS,确定在所述第t个至第s个时间单元上向所述网络设备发送所述第一TB时采用的第一目标MCS方面,所述发送单元具体用于:
    根据所述网络设备指示的MCS、MCS与终端设备发送上行数据时占用的时间单元的个数的对应关系,确定所述第一目标MCS;
    其中,在根据所述网络设备指示的调制编码方式MCS,确定在所述s个时间单元上向所述网络设备发送所述第二TB时采用的第二目标MCS方面,所述发送单元具体用于:将所述网络设备指示的MCS确定为所述第二目标MCS。
PCT/CN2016/078385 2016-04-01 2016-04-01 上行数据传输的方法和设备 WO2017166319A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680083463.6A CN108781375B (zh) 2016-04-01 2016-04-01 上行数据传输的方法和设备
PCT/CN2016/078385 WO2017166319A1 (zh) 2016-04-01 2016-04-01 上行数据传输的方法和设备
EP16896098.7A EP3425950B1 (en) 2016-04-01 2016-04-01 Uplink data transmission method and apparatus
US16/148,251 US10506580B2 (en) 2016-04-01 2018-10-01 Uplink data transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078385 WO2017166319A1 (zh) 2016-04-01 2016-04-01 上行数据传输的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/148,251 Continuation US10506580B2 (en) 2016-04-01 2018-10-01 Uplink data transmission method and device

Publications (1)

Publication Number Publication Date
WO2017166319A1 true WO2017166319A1 (zh) 2017-10-05

Family

ID=59963207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078385 WO2017166319A1 (zh) 2016-04-01 2016-04-01 上行数据传输的方法和设备

Country Status (4)

Country Link
US (1) US10506580B2 (zh)
EP (1) EP3425950B1 (zh)
CN (1) CN108781375B (zh)
WO (1) WO2017166319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803388A (zh) * 2017-11-17 2019-05-24 上海诺基亚贝尔股份有限公司 用于非授权频带通信的方法、设备和计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149996A1 (ja) * 2016-02-29 2017-09-08 日本電信電話株式会社 端局装置及び帯域割当方法
CN108966355B (zh) * 2017-05-24 2021-06-08 华为技术有限公司 信道侦听方法、网络侧设备及终端
CN109041067B (zh) * 2017-06-12 2021-03-23 维沃移动通信有限公司 一种通信方法、移动终端、基站及计算机可读存储介质
CN113302870B (zh) * 2019-02-01 2022-10-11 华为技术有限公司 上报信道状态信息的方法和装置
WO2021007787A1 (zh) * 2019-07-16 2021-01-21 北京小米移动软件有限公司 资源分配方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置
WO2015149294A1 (zh) * 2014-04-02 2015-10-08 华为技术有限公司 一种非授权频谱的使用方法和基站及终端
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和***
CN105338531A (zh) * 2014-05-27 2016-02-17 索尼公司 基站控制方法、基站控制装置、无线通信***及电子设备
CN105392144A (zh) * 2015-12-10 2016-03-09 北京邮电大学 一种未授权频段的信道复用方法及装置
CN105451237A (zh) * 2014-09-26 2016-03-30 上海贝尔股份有限公司 一种无线资源分配方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073895A1 (ja) * 2008-12-26 2010-07-01 シャープ株式会社 通信システム、基地局装置および移動局装置
CN104396296B (zh) * 2013-06-04 2018-03-16 华为技术有限公司 数据传输方法、装置和用户设备
WO2016048212A1 (en) * 2014-09-26 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) First communication device, second communication device and methods therein, for sending and receiving, respectively, an indication of a subframe type
US10383154B2 (en) * 2015-01-20 2019-08-13 Huawei Technologies Co., Ltd. Signal sending method and device
EP3806378A1 (en) * 2015-08-14 2021-04-14 Sun Patent Trust Modulation order adaptation for partial subframes
CN106254047B (zh) * 2015-08-31 2019-12-06 北京智谷技术服务有限公司 探测参考信号调度方法、发送方法、及其装置
US10827525B2 (en) * 2015-09-24 2020-11-03 Apple Inc. Systems, methods and devices for sharing a wireless medium using listen before talk
WO2017116132A1 (ko) * 2015-12-31 2017-07-06 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
US9967902B2 (en) * 2016-02-04 2018-05-08 Sharp Laboratories Of America, Inc. Systems and methods for contention access region in a licensed-assisted access(LAA)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149294A1 (zh) * 2014-04-02 2015-10-08 华为技术有限公司 一种非授权频谱的使用方法和基站及终端
CN105338531A (zh) * 2014-05-27 2016-02-17 索尼公司 基站控制方法、基站控制装置、无线通信***及电子设备
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和***
CN105451237A (zh) * 2014-09-26 2016-03-30 上海贝尔股份有限公司 一种无线资源分配方法
CN104581908A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 非连续接收模式的参数配置方法和装置
CN105392144A (zh) * 2015-12-10 2016-03-09 北京邮电大学 一种未授权频段的信道复用方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Discussion on Uplink Transmission in LAA", R2-151383, 3GPP TSG RAN WG2 MEETING #89BIS, 24 April 2015 (2015-04-24), XP050953065 *
See also references of EP3425950A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803388A (zh) * 2017-11-17 2019-05-24 上海诺基亚贝尔股份有限公司 用于非授权频带通信的方法、设备和计算机可读存储介质
CN109803388B (zh) * 2017-11-17 2023-07-25 上海诺基亚贝尔股份有限公司 用于非授权频带通信的方法、设备和计算机可读存储介质

Also Published As

Publication number Publication date
US20190037546A1 (en) 2019-01-31
EP3425950A4 (en) 2019-01-09
CN108781375A (zh) 2018-11-09
EP3425950A1 (en) 2019-01-09
CN108781375B (zh) 2020-10-09
US10506580B2 (en) 2019-12-10
EP3425950B1 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2017166319A1 (zh) 上行数据传输的方法和设备
EP3614776A1 (en) Uplink transmission resource scheduling method and device
EP3614777A1 (en) Method and device for transmitting data
US11589384B2 (en) Data transmission method, terminal device, and network device
CN111585730B (zh) 传输方法和通信装置
US11134507B2 (en) Method and apparatus for processing scheduling request
EP3592065A1 (en) Method for transmitting data, terminal device and network device
EP3565303B1 (en) Data packet transmission method and terminal
WO2018126363A1 (zh) 上行传输方法、终端与网络设备
WO2014067487A1 (zh) 避免d2d传输干扰的处理方法、用户设备和基站
JP2022092003A (ja) アンライセンススペクトル上のアップリンク割り当て
US20190281618A1 (en) Scheduling method, user equipment and base station
TW201906476A (zh) 處理排程請求的裝置及方法
EP3509369A1 (en) Signal sending method and device
JP2019502278A (ja) 無線通信の方法、ネットワーク装置及び端末機器
CN110730513B (zh) 一种通信方法及装置
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及***
CN112088507B (zh) 一种信息传输方法和通信设备以及网络设备
CN110291825B (zh) 一种传输数据的方法、设备和计算机存储介质
CN111277371B (zh) 数据传输方法及设备
EP3958628B1 (en) Transmission method and device for uplink control information
WO2018076361A1 (zh) 上行传输方法、终端设备和接入网设备
WO2018058584A1 (zh) 发送或接收信道状态信息的方法和设备
JP7080904B2 (ja) 無線通信方法及びデバイス
WO2022078283A1 (zh) 信息传输、资源指示方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896098

Country of ref document: EP

Effective date: 20181005

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896098

Country of ref document: EP

Kind code of ref document: A1