WO2017164688A1 - 무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017164688A1
WO2017164688A1 PCT/KR2017/003187 KR2017003187W WO2017164688A1 WO 2017164688 A1 WO2017164688 A1 WO 2017164688A1 KR 2017003187 W KR2017003187 W KR 2017003187W WO 2017164688 A1 WO2017164688 A1 WO 2017164688A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
port
configuration
pattern
cdm
Prior art date
Application number
PCT/KR2017/003187
Other languages
English (en)
French (fr)
Inventor
박해욱
박종현
김기준
채혁진
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/088,050 priority Critical patent/US11870717B2/en
Publication of WO2017164688A1 publication Critical patent/WO2017164688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0006Combination with other multiplexing techniques with CDM/CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting and receiving a channel state information-reference signal and an apparatus for performing / supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to propose a method for transmitting and receiving channel state information (CSI).
  • CSI channel state information
  • an object of the present invention is to propose a CDM application scheme for achieving the maximum power transmission of the CSI-RS.
  • CSI-RS channel state information-reference signal
  • the CSI-RS configuration is a 32-port CSI-RS configuration in which four 8-port CSI-RS configurations are aggregated
  • a weight vector orthogonal to the 32-port CSI-RS configuration A code division multiplexing (CDM) -8 pattern having a number of weight vectors of 8 is applied, and the CDM-8 is applied to resource element (RE) -pairs selected for each of the merged 8-port CSI-RS configurations.
  • the pattern can be applied.
  • the 32-port CSI-RS configuration may consist of a merge of first to fourth 8-port CSI-RS configurations selected from five 8-port CSI-RS configurations located in a resource block (RB) -pair. Can be.
  • an 8-port CSI-RS configuration '0' including REs located at orthogonal frequency division multiplexing (OFDM) symbol indexes 5-6, subcarrier indexes 8-9, and 2-3, and the OFDM symbol index 9 8, the 8-port CSI-RS configuration '1' located at the subcarrier indexes 10-11 and 4-5, the OFDM symbol index 9-10, and the subcarrier indexes 8-9 and 2-3 8-port CSI-RS configuration '2' located at port 8, 8-port CSI-RS configuration '3' located at OFDM symbol index 9-10, subcarrier indexes 6-7 and 0-1, And an 8-port CSI-RS configuration '4' located at the OFDM symbol index 12-13 and the subcarrier indexes 8-9 and 2-3.
  • OFDM orthogonal frequency division multiplexing
  • the first 8-port CSI-RS configuration corresponds to the 8-port CSI-RS configuration '0'
  • the fourth 8-port CSI-RS configuration corresponds to the 8-port CSI-RS configuration '4'.
  • the second and third 8-port CSI-RS configurations may be selected from the 8-port CSI-RS configurations '1' to '3'.
  • the second 8-port CSI-RS configuration corresponds to the 8-port CSI-RS configuration '2'
  • the third 8-port CSI-RS configuration corresponds to the 8-port CSI-RS configuration '3'. Can be.
  • a first group consisting of merging of RE-pairs having the highest subcarrier index for each merged 8-port CSI-RS configuration, and a RE having a second highest subcarrier index for the merged 8-port CSI-RS configuration A third group consisting of merging pairs, a second group consisting of merging RE-pairs having a third highest subcarrier index per merged 8-port CSI-RS configuration, and the merged 8-port CSI-RS
  • the same CDM-8 pattern may be applied to each of the first to fourth groups.
  • the coordinates (k ', l') of the RE-pairs included in the first group are (9, 5) and (9, 6), (9, 9) and (9, 10), (7, 9) and (7, 10), (9, 12) and (9, 13)
  • the coordinates of the RE-pairs included in the third group are (8, 5) and (8, 6), (8 , 9) and (8, 10), (6, 9) and (6, 10), (8, 12) and (8, 13)
  • the coordinates of the RE-pairs included in the second group are ( 3, 5) and (3, 6), (3, 9) and (3, 10), (1, 9) and (1, 10), (3, 12) and (3, 13)
  • the fourth The coordinates of the RE-pairs included in the group are (2, 5) and (2, 6), (2, 9) and (2, 10), (0, 9) and (0, 10), (2 , 12) and (2, 13), respectively, wherein k 'may indicate the subcarrier index in one subframe and l' may indicate an OFDM
  • 32 CSI-RS antenna ports transmitting the 32-port CSI-RS configuration may be numbered in units of 8-ports.
  • 32 CSI-RS antenna ports transmitting the 32-port CSI-RS configuration may be numbered according to Equation (1).
  • n is the final CSI-RS port number determined according to Equation 1
  • N is the number of antenna ports per the merged CSI-RS configuration
  • k is the merged CSI-RS configuration number.
  • the antenna port number corresponding to the first group is ⁇ 15, 16, 23, 24, 31, 32, 39, 40 ⁇
  • the antenna port number corresponding to the second group is ⁇ 17, 18, 25, 26 , 33, 34, 41, 42 ⁇
  • the antenna port number corresponding to the third group is ⁇ 19, 20, 27, 28, 35, 36, 43, 44 ⁇
  • the antenna port number corresponding to the fourth group is ⁇ 21, 22, 29, 30, 37, 38, 45, 46 ⁇ .
  • the weight vector of the CDM-8 pattern may be determined based on Equation 2.
  • the CDM-8 pattern of [1 1 1 1 1 1 1 1 1] according to Equation 2 is included in the CSI-RS transmitted through the antenna ports numbered 15, 17, 19, and 21 according to Equation 1. Is applied to the CSI-RS transmitted through the antenna ports numbered 16, 18, 20 and 22 according to Equation 1 [1 -1 1 -1 1 -1] according to Equation 2 CDM-8 pattern is applied, the CSI-RS transmitted through the antenna ports numbered 23, 25, 27 and 29 according to the equation (1) [1 1 -1 -1 1 1 according to the equation (2) CDM-8 pattern of -1 -1] is applied, and CSI-RS transmitted through antenna ports numbered 24, 26, 28 and 30 according to Equation 1 is [1 -1] according to Equation 2 above.
  • CDM-8 pattern of -1 1 1 -1 -1 1] is applied, and CSI-RS transmitted through antenna ports numbered 31, 33, 35, and 37 according to Equation 1
  • CDM-8 L A turn is applied and CSI-RS transmitted through antenna ports numbered 32, 34, 36, and 38 according to Equation 1 is [1 -1 1 -1 -1 1 according to Equation 2].
  • CDM-8 pattern is applied, CSI-RS transmitted through the antenna ports numbered 39, 41, 43 and 45 according to the equation (1) [1 1 -1 -1- 1 -1 1] CDM-8 pattern is applied, CSI-RS transmitted through the antenna ports numbered 40, 42, 44 and 46 according to the equation (1) according to the equation [2] 1 -1 1 -1 1 1 -1] CDM-8 pattern may be applied.
  • the CSI-RS configuration includes the 32-port CSI-RS configuration in which the four 8-port CSI-RS configurations are merged and the 20-port CSI-RS configuration in which the five 4-port CSI-RS configurations are merged. It may be set to any one of a 24-port CSI-RS configuration in which the three 8-port CSI-RS configurations are merged and a 28-port CSI-RS configuration in which the seven 4-port CSI-RS configurations are merged.
  • a terminal for receiving a channel state information-reference signal (CSI-RS) in a wireless communication system comprising: a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor controlling the RF unit; Wherein the processor receives CSI-RS configuration information about a CSI-RS configuration to which the CSI-RS is mapped from a base station,
  • CSI-RS channel state information-reference signal
  • CSI-RS configuration aggregates four 8-port CSI-RS configurations
  • a Code Division Multiplexing (CDM) -8 pattern having a number of orthogonal weight vectors of 8 is applied to the 32-port CSI-RS configuration.
  • the CDM-8 pattern may be applied to resource element (RE) -pairs selected one by one for each 8-port CSI-RS configuration.
  • the 32-port CSI-RS configuration may consist of a merge of first to fourth 8-port CSI-RS configurations selected from five 8-port CSI-RS configurations located in a resource block (RB) -pair. Can be.
  • the terminal may smoothly derive and feed back the CSI to the base station.
  • the CSI-RS pattern of the legacy system is reused, it is possible to derive / use a new and efficient CSI-RS pattern without significantly changing the legacy system. Has This also has the effect that compatibility with new systems and legacy systems can be maintained.
  • the maximum power transmission in the CSI-RS transmission is possible.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • MIMO 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • FIG. 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • FIG. 7 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 10 illustrates a two-dimensional active antenna system having 64 antenna elements in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates a system in which a base station or a terminal has a plurality of transmit / receive antennas capable of forming 3D (3-Dimension) beams based on AAS in a wireless communication system to which the present invention can be applied.
  • FIG. 12 illustrates a two-dimensional antenna system having cross polarization in a wireless communication system to which the present invention can be applied.
  • FIG. 13 illustrates a transceiver unit model in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates a 32-port CSI-RS resource / pattern in which two 16-port CSI-RS resources / patterns are merged according to an embodiment of the present invention.
  • FIG. 15 illustrates a 32-port CSI-RS resource / pattern in which two 16-port CSI-RS resources / patterns are merged according to an embodiment of the present invention.
  • FIG. 16 illustrates an embodiment of a CSI-RS resource / pattern design using an FDM scheme according to an embodiment of the present invention.
  • FIG. 17 illustrates an embodiment of a CSI-RS resource / pattern design using an FDM scheme according to an embodiment of the present invention.
  • FIG. 20 is a diagram illustrating an embodiment where CDM-6 is applied on a time axis according to an embodiment of the present invention.
  • 21 is a diagram illustrating five legacy CSI-RS configurations available for CSI-RS transmission by eight CSI-RS antenna ports.
  • 22 through 24 are diagrams illustrating an 8-port CSI-RS resource / pattern design to which a CDM-8 is applied according to an embodiment of the present invention.
  • 25 is a flowchart illustrating a CSI reporting method of a terminal according to an embodiment of the present invention.
  • 26 and 27 illustrate a merged 32-port CSI-RS resource / pattern / configuration design to which CDM-8 is applied in accordance with an embodiment of the present invention.
  • FIG. 28 illustrates a CDM-8 pattern design applied to a 24-port CSI-RS resource / pattern / configuration according to an embodiment of the present invention.
  • 29 illustrates a CDM-8 pattern design applied to a 24-port CSI-RS resource / pattern / configuration according to an embodiment of the present invention.
  • FIG. 30 is a diagram illustrating CDM-8 patterns according to an embodiment of the present invention.
  • FIG. 31 is a diagram illustrating CDM-8 patterns according to an embodiment of the present invention.
  • 32 is a diagram illustrating port numbering according to an embodiment of the present invention.
  • 34 is a flowchart illustrating a CSI-RS reception method of a terminal according to an embodiment of the present invention.
  • 35 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is called a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • MIMO technology generally uses multiple transmit (Tx) antennas and multiple receive (Rx) antennas away from the ones that generally use one transmit antenna and one receive antenna.
  • the MIMO technology is a technique for increasing capacity or individualizing performance by using multiple input / output antennas at a transmitting end or a receiving end of a wireless communication system.
  • 'MIMO' will be referred to as a 'multi-input / output antenna'.
  • the multi-input / output antenna technology does not rely on one antenna path to receive one total message, but collects a plurality of pieces of data received through several antennas to complete complete data.
  • multiple input / output antenna technology can increase the data rate within a specific system range, and can also increase the system range through a specific data rate.
  • MIMO communication technology is the next generation mobile communication technology that can be widely used in mobile communication terminals and repeaters, and attracts attention as a technology that can overcome the transmission limit of other mobile communication depending on the limit situation due to the expansion of data communication. have.
  • MIMO multiple input / output antenna
  • MIMO 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • the theoretical channel transmission capacity is proportional to the number of antennas unlike the case where a plurality of antennas are used only in a transmitter or a receiver.
  • the transmission rate according to the increase in the channel transmission capacity may theoretically increase as the maximum rate R_o multiplied by the following rate increase rate R_i when using one antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained.
  • the technique of the multiple input / output antennas improves transmission rate by simultaneously transmitting a plurality of data symbols by using a spatial diversity scheme that improves transmission reliability by using symbols passing through various channel paths and by using a plurality of transmit antennas. It can be divided into spatial multiplexing method. In addition, researches on how to appropriately combine these two methods to obtain the advantages of each are being studied in recent years.
  • the spatial diversity scheme there is a space-time block code sequence and a space-time trellis code sequence system that simultaneously uses diversity gain and coding gain.
  • the bit error rate improvement performance and the code generation freedom are excellent in the trellis code method, but the operation complexity is simple in the space-time block code.
  • Such a spatial diversity gain can be obtained by an amount corresponding to the product N_T ⁇ N_R of the number of transmit antennas N_T and the number of receive antennas N_R.
  • the spatial multiplexing technique is a method of transmitting different data strings at each transmitting antenna, and at the receiver, mutual interference occurs between data transmitted simultaneously from the transmitter.
  • the receiver removes this interference using an appropriate signal processing technique and receives it.
  • the noise cancellation schemes used here include: maximum likelihood detection (MLD) receivers, zero-forcing (ZF) receivers, minimum mean square error (MMSE) receivers, Diagonal-Bell Laboratories Layered Space-Time (D-BLAST), and V-BLAST (Vertical-Bell Laboratories Layered Space-Time).
  • MLD maximum likelihood detection
  • ZF zero-forcing
  • MMSE minimum mean square error
  • D-BLAST Diagonal-Bell Laboratories Layered Space-Time
  • V-BLAST Very-Bell Laboratories Layered Space-Time
  • N_T transmit antennas and N_R receive antennas as shown in FIG. 5.
  • N_T the maximum transmittable information
  • the transmission power can be different in each of the transmission information s_1, s_2, ..., s_N_T, and if each transmission power is P_1, P_2, ..., P_N_T, the transmission information is adjusted transmission power Can be represented by the following vector:
  • the transmission information in which the transmission power of Equation 3 is adjusted may be represented as a diagonal matrix P of the transmission power as follows.
  • the information vector of which the transmission power of Equation 4 is adjusted is then multiplied by the weight matrix W to form N_T transmission signals x_1, x_2, ..., x_N_T which are actually transmitted.
  • the weight matrix plays a role of appropriately distributing transmission information to each antenna according to a transmission channel situation.
  • Such transmission signals x_1, x_2, ..., x_N_T can be expressed as follows using a vector x.
  • w_ij represents a weight between the i th transmit antenna and the j th transmission information, and W represents this in a matrix.
  • W is called a weight matrix or a precoding matrix.
  • the above-described transmission signal (x) can be considered divided into the case of using the spatial diversity and the case of using the spatial multiplexing.
  • the elements of the information vector s all have different values, while using spatial diversity causes the same signal to be sent through multiple channel paths. Therefore, the elements of the information vector s all have the same value.
  • a method of mixing spatial multiplexing and spatial diversity is also conceivable. That is, for example, the same signal may be transmitted using spatial diversity through three transmission antennas, and the rest may be considered to be spatially multiplexed to transmit different signals.
  • the reception signals are represented by the vectors y, respectively, of the reception signals y_1, y_2, ..., y_N_R of each antenna as follows.
  • each channel may be classified according to a transmit / receive antenna index, and a channel passing through the receive antenna i from the transmit antenna j will be denoted as h_ij. Note that the order of the index of h_ij is that of the receiving antenna index first and that of the transmitting antenna is later.
  • These channels can be grouped together and displayed in vector and matrix form.
  • An example of the vector display is described as follows.
  • FIG. 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • a channel arriving from a total of N_T transmit antennas to a reception antenna i may be expressed as follows.
  • Equation 7 when all the channels passing through the N_R receiving antennas from the N_T transmitting antennas through the matrix representation as shown in Equation 7 can be expressed as follows.
  • n_1, n_2, ..., n_N_R added to each of the N_R receiving antennas is expressed as a vector. Is as follows.
  • each of the multiple input / output antenna communication systems may be represented through the following relationship.
  • the number of rows and columns of the channel matrix H indicating the state of the channel is determined by the number of transmit and receive antennas.
  • the number of rows is equal to the number of receiving antennas N_R
  • the number of columns is equal to the number of transmitting antennas N_T.
  • the channel matrix H becomes an N_R ⁇ N_T matrix.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other.
  • the rank of the matrix cannot be greater than the number of rows or columns.
  • the rank (H) of the channel matrix H is limited as follows.
  • the rank when the matrix is subjected to eigen value decomposition, the rank may be defined as the number of nonzero eigenvalues among eigen values. Similarly, the rank can be defined as the number of non-zero singular values when SVD (singular value decomposition). Therefore, the physical meaning of rank in the channel matrix is the maximum number that can send different information in a given channel.
  • 'rank' for MIMO transmission indicates the number of paths that can independently transmit a signal at a specific time point and a specific frequency resource, and 'number of layers' indicates transmission on each path.
  • the transmitting end since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • Reference signal ( RS : Reference Signal)
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There is an RS for obtaining channel state information and an RS used for data demodulation. Since the former is intended for the UE to acquire channel state information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for radio resource management (RRM) measurement such as handover.
  • RRM radio resource management
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal. There is a dedicated RS. Such reference signals may be used to provide information for demodulation and channel measurement. That is, DRS is used only for data demodulation and CRS is used for both purposes of channel information acquisition and data demodulation.
  • CRS common reference signal
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), precoding matrix index (PMI) and / or rank indicator (RI). Feedback to the base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 7 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe x frequency domain in a time domain in which a reference signal is mapped. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in the case of normal cyclic prefix (normal CP) (in case of FIG. 7 (a)), and an extended cyclic prefix ( extended CP: Extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 7 (b)).
  • normal CP normal cyclic prefix
  • extended CP Extended Cyclic Prefix
  • the resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid are determined by the CRS of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the location of the resource element described as 'D' means the location of the DRS.
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It may be used to demodulate data transmitted using a transmission scheme such as a multi-user MIMO.
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, when the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • the newly designed RS in LTE-A system is divided into two categories, RS for channel measurement purpose for selecting MCS, PMI, etc. (CSI-RS: Channel State Information-RS, Channel State Indication-RS, etc.) And RS (Data Demodulation-RS) for demodulation of data transmitted through eight transmit antennas.
  • CSI-RS Channel State Information-RS, Channel State Indication-RS, etc.
  • RS Data Demodulation-RS
  • CSI-RS for the purpose of channel measurement has a feature that is designed for channel measurement-oriented purposes, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for the purpose of obtaining information on the channel state, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • LTE-A system up to eight transmit antennas are supported on the downlink of a base station.
  • the RS for up to 8 transmit antennas are transmitted in every subframe in the same manner as the CRS of the existing LTE, the RS overhead becomes excessively large. Therefore, in the LTE-A system, two RSs are added, separated into CSI-RS for CSI measurement and DM-RS for data demodulation for selecting MCS and PMI.
  • the CSI-RS can be used for purposes such as RRM measurement, but is designed for the purpose of obtaining CSI. Since the CSI-RS is not used for data demodulation, it does not need to be transmitted every subframe.
  • the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, the period or pattern in which the CSI-RS is transmitted may be set by the eNB.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS index of the CSI-RS for each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmitted subframe. , And information about the CSI-RS sequence.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • these resources may be orthogonally allocated in FDM / TDM manner by mapping CSI-RSs for each antenna port to different REs.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB informs its cell UE of the information about the CSI-RS, it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the subframe offset through which the CSI-RS is transmitted, and the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted and the frequency interval (spacing), the RE offset or shift value in the frequency axis.
  • the CSI-RS sequence is a complex-valued modulation symbol a_k used as a reference symbol on each antenna port p as shown in Equation 12 below. maps to, l ⁇ (p)
  • Equation 12 k ', l' (where k 'is a subcarrier index in a resource block and l' represents an OFDM symbol index in a slot) and the conditions of n_s are as shown in Table 3 or Table 4 below. It is determined according to the same CSI-RS configuration.
  • Table 3 illustrates the mapping of (k ', l') from the CSI-RS configuration in the generic CP.
  • Table 4 illustrates the mapping of (k ', l') from the CSI-RS configuration in the extended CP.
  • ICI inter-cell interference
  • HetNet heterogeneous network
  • the CSI-RS configuration is different depending on the number of antenna ports and the CP in the cell, and adjacent cells may have different configurations as much as possible.
  • the CSI-RS configuration may be divided into a case of applying to both the FDD frame and the TDD frame and the case of applying only to the TDD frame according to the frame structure.
  • (k ', l') and n_s are determined according to the CSI-RS configuration, and time-frequency resources used for CSI-RS transmission are determined according to each CSI-RS antenna port.
  • FIG. 8 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 8 illustrates CSI-RS patterns for a case where 1, 2, 4, or 8 CSI-RS antenna ports are included in a subframe to which a normal CP is applied.
  • FIG. 8 (a) shows 20 CSI-RS configurations available for CSI-RS transmission by one or two CSI-RS antenna ports
  • FIG. 8 (b) shows four CSI-RS antenna ports.
  • 10 shows CSI-RS configurations available for use
  • FIG. 8 (c) shows five CSI-RS configurations available for CSI-RS transmission by eight CSI-RS antenna ports.
  • the radio resource (ie, RE pair) to which the CSI-RS is transmitted is determined according to each CSI-RS configuration.
  • CSI-RS is performed on a radio resource according to the configured CSI-RS configuration among the 10 CSI-RS configurations shown in FIG. Is sent.
  • CSI-RS is performed on a radio resource according to the CSI-RS configuration among the five CSI-RS configurations shown in FIG. Is sent.
  • CSI-RS for each antenna port is transmitted by CDM to the same radio resource per two antenna ports (that is, ⁇ 15,16 ⁇ , ⁇ 17,18 ⁇ , ⁇ 19,20 ⁇ , and ⁇ 21,22 ⁇ ). do.
  • the respective CSI-RS complex symbols for antenna ports 15 and 16 are the same, but different orthogonal codes (e.g., Walsh codes) are multiplied to the same radio resource.
  • the complex symbol of CSI-RS for antenna port 15 is multiplied by [1, 1]
  • the complex symbol of CSI-RS for antenna port 16 is multiplied by [1 -1] and mapped to the same radio resource.
  • the UE can detect the CSI-RS for a particular antenna port by multiplying the transmitted multiplied code. That is, the multiplied code [1 1] is multiplied to detect the CSI-RS for the antenna port 15, and the multiplied code [1 -1] is multiplied to detect the CSI-RS for the antenna port 16.
  • the radio resources according to the CSI-RS configuration having a small number of CSI-RS antenna ports It includes radio resources.
  • the radio resource for the number of eight antenna ports includes both the radio resource for the number of four antenna ports and the radio resource for the number of one or two antenna ports.
  • FIG. 9 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 9 illustrates CSI-RS patterns for a case where 1, 2, 4, or 8 CSI-RS antenna ports are included in a subframe to which an extended CP is applied.
  • FIG. 9 (a) shows 16 CSI-RS configurations available for CSI-RS transmission by one or two CSI-RS antenna ports
  • FIG. 8 (b) shows four CSI-RS antenna ports.
  • 8 shows the CSI-RS configurations available for use
  • FIG. 8 (c) shows the four CSI-RS configurations available for CSI-RS transmission by eight CSI-RS antenna ports.
  • the radio resource (ie, RE pair) to which the CSI-RS is transmitted is determined according to each CSI-RS configuration.
  • CSI-RS is performed on a radio resource according to the configured CSI-RS configuration among the eight CSI-RS configurations shown in FIG. Is sent.
  • CSI-RS is performed on a radio resource according to the CSI-RS configuration among four CSI-RS configurations shown in FIG. 9 (c).
  • a plurality of CSI-RS configurations may be used in one cell. Only non-zero power (NZP) CSI-RS is used with zero or one CSI-RS configuration, and zero power (ZP: zero power) CSI-RS is zero or multiple CSI-RS. Configuration can be used.
  • NZP non-zero power
  • ZP zero power
  • ZP CSI-RS For each bit set to 1 in ZP CSI-RS (ZP CSI-RS), a 16-bit bitmap set by the upper layer, the UE corresponds to the four CSI-RS columns of Tables 3 and 4 above. Assume zero transmit power in the REs (except in the case of overlapping with the RE assuming the NZP CSI-RS set by the upper layer). Most Significant Bit (MSB) corresponds to the lowest CSI-RS configuration index, and the next bit in the bitmap corresponds to the next CSI-RS configuration index.
  • MSB Most Significant Bit
  • the CSI-RS is transmitted only in a downlink slot that satisfies the condition of (n_s mod 2) in Tables 3 and 4 and a subframe that satisfies the CSI-RS subframe configuration.
  • CSI-RSs are not transmitted in subframes that conflict with special subframe, sync signal (SS), PBCH, or SIB 1 (SystemInformationBlockType1) message transmission or subframes configured for paging message transmission Do not.
  • SS sync signal
  • PBCH Physical Broadcast Channel
  • SIB 1 SystemInformationBlockType1
  • the CSI-RS is not configured to be transmitted every subframe, but is configured to be transmitted at a predetermined transmission period corresponding to a plurality of subframes. In this case, the CSI-RS transmission overhead may be much lower than in the case where the CSI-RS is transmitted every subframe.
  • T_CSI-RS Subframe periods
  • ⁇ _CSI-RS subframe offset
  • Table 5 illustrates a CSI-RS subframe configuration
  • the CSI-RS transmission period (T_CSI-RS) and the subframe offset ( ⁇ _CSI-RS) are determined according to the CSI-RS subframe configuration (I_CSI-RS).
  • the CSI-RS subframe configuration of Table 5 may be set to any one of a 'SubframeConfig' field and a 'zeroTxPowerSubframeConfig' field.
  • the CSI-RS subframe configuration may be set separately for the NZP CSI-RS and the ZP CSI-RS.
  • the subframe including the CSI-RS satisfies Equation 13 below.
  • T_CSI-RS denotes a CSI-RS transmission period
  • ⁇ _CSI-RS denotes a subframe offset value
  • n_f denotes a system frame number
  • n_s denotes a slot number
  • one UE may configure one CSI-RS resource configuration.
  • the UE may be configured with one or more CSI-RS resource configuration (s).
  • Massive MIMO Massive MIMO
  • a MIMO system with multiple antennas can be referred to as a Massive MIMO system, and is attracting attention as a means to improve spectral efficiency, energy efficiency, and processing complexity. .
  • Massive MIMO is also referred to as Full-Dimension MIMO (FD-MIMO).
  • FD-MIMO Full-Dimension MIMO
  • AAS means a system in which each antenna includes an active element such as an amplifier.
  • AAS eliminates the need for separate cables, connectors, and other hardware to connect amplifiers and antennas with active antennas, thus providing high efficiency in terms of energy and operating costs.
  • the AAS supports an electronic beam control scheme for each antenna, it enables advanced MIMO techniques such as forming a precise beam pattern or forming a three-dimensional beam pattern in consideration of the beam direction and beam width.
  • a 3D beam pattern may be formed by an active antenna of the AAS.
  • FIG. 10 illustrates a two-dimensional active antenna system having 64 antenna elements in a wireless communication system to which the present invention can be applied.
  • N_h represents the number of antenna columns in the horizontal direction
  • N_v represents the number of antenna rows in the vertical direction.
  • the radio wave can be controlled in both the vertical direction (elevation) and the horizontal direction (azimuth) to control the transmission beam in three-dimensional space.
  • This type of wavelength control mechanism may be referred to as three-dimensional beamforming.
  • FIG. 11 illustrates a system in which a base station or a terminal has a plurality of transmit / receive antennas capable of forming 3D (3-Dimension) beams based on AAS in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram illustrating the example described above, and illustrates a 3D MIMO system using a 2D antenna array (ie, 2D-AAS).
  • the base station when the receiving beam is formed using a large receiving antenna, a signal power increase effect according to the antenna array gain can be expected. Therefore, in the uplink, the base station can receive a signal transmitted from the terminal through a plurality of antennas, the terminal can set its transmission power very low in consideration of the gain of the large receiving antenna to reduce the interference effect. There is an advantage.
  • FIG. 12 illustrates a two-dimensional antenna system having cross polarization in a wireless communication system to which the present invention can be applied.
  • systems based on active antennas gain the gain of the antenna elements by weighting the active elements (e.g. amplifiers) attached (or included) to each antenna element. You can adjust the gain dynamically. Since the radiation pattern depends on the antenna arrangement such as the number of antenna elements, antenna spacing, etc., the antenna system can be modeled at the antenna element level.
  • active elements e.g. amplifiers
  • An antenna array model such as the example of FIG. 12 may be represented by (M, N, P), which corresponds to a parameter characterizing the antenna array structure.
  • M is the number of antenna elements with the same polarization in each column (ie in the vertical direction) (ie, the number or angle of antenna elements with + 45 ° slant in each column). Number of antenna elements with a -45 ° slant in the column).
  • N represents the number of columns in the horizontal direction (ie, the number of antenna elements in the horizontal direction).
  • the antenna port can be mapped to a physical antenna element.
  • An antenna port may be defined by a reference signal associated with the corresponding antenna port.
  • antenna port 0 may be associated with a cell-specific reference signal (CRS) and antenna port 6 may be associated with a positioning reference signal (PRS).
  • CRS cell-specific reference signal
  • PRS positioning reference signal
  • antenna port 0 may be mapped to one physical antenna element, while antenna port 1 may be mapped to another physical antenna element.
  • two downlink transmissions exist from the terminal point of view. One is associated with a reference signal for antenna port 0 and the other is associated with a reference signal for antenna port 1.
  • a single antenna port can be mapped to multiple physical antenna elements. This may be the case when used for beamforming. Beamforming can direct downlink transmissions to specific terminals by using multiple physical antenna elements. In general, this can be achieved using an antenna array consisting of multiple columns of multiple cross polarization antenna elements. In this case, at the terminal, there is a single downlink transmission generated from a single antenna port. One relates to the CRS for antenna port 0 and the other relates to the CRS for antenna port 1.
  • the antenna port represents downlink transmission at the terminal, not actual downlink transmission transmitted from the physical antenna element at the base station.
  • multiple antenna ports are used for downlink transmission, but each antenna port may be mapped to multiple physical antenna elements.
  • the antenna array may be used for downlink MIMO or downlink diversity.
  • antenna ports 0 and 1 may each map to multiple physical antenna elements.
  • two downlink transmissions exist from the terminal point of view. One is associated with a reference signal for antenna port 0 and the other is associated with a reference signal for antenna port 1.
  • MIMO precoding of a data stream may go through antenna port virtualization, transceiver unit (or transceiver unit) (TXRU) virtualization, and antenna element pattern.
  • TXRU transceiver unit
  • Antenna port virtualization allows the stream on the antenna port to be precoded on the TXRU.
  • TXRU virtualization allows the TXRU signal to be precoded on the antenna element.
  • the antenna element pattern may have a directional gain pattern of the signal radiated from the antenna element.
  • TXRU static antenna pattern
  • Antenna port virtualization can be performed in a frequency-selective manner.
  • an antenna port is defined with a reference signal (or pilot).
  • the DMRS is transmitted in the same bandwidth as the data signal, and both the DMRS and the data are precoded with the same precoder (or the same TXRU virtualized precoding).
  • the CSI-RS is transmitted through multiple antenna ports.
  • the precoder characterizing the mapping between the CSI-RS port and TXRU may be designed with a unique matrix so that the UE can estimate the TXRU virtualization precoding matrix for the data precoding vector.
  • the TXRU virtualization method includes 1D TXRU virtualization and 2D TXRU virtualization, which will be described with reference to the following drawings.
  • FIG. 13 illustrates a transceiver unit model in a wireless communication system to which the present invention can be applied.
  • M_TXRU TXRUs are associated with M antenna elements consisting of a single column antenna array with the same polarization.
  • the TXRU model configuration corresponding to the antenna array model configuration (M, N, P) of FIG. 11 may be represented by (M_TXRU, N, P).
  • M_TXRU means the number of TXRUs present in the same column and the same polarization in 2D, and always satisfies M_TXRU ⁇ M. That is, the total number of TXRUs is equal to M_TXRU ⁇ N ⁇ P.
  • TXRU virtualization model is based on the correlation between the antenna element and the TXRU, as shown in FIG. 12 (a).
  • TXRU virtualization model option-1 sub-array partition model and as shown in FIG. 12 (b).
  • TXRU virtualization model Option-2 Can be divided into a full-connection model.
  • antenna elements are divided into multiple antenna element groups, and each TXRU is connected to one of the groups.
  • signals of multiple TXRUs are combined and delivered to a single antenna element (or an array of antenna elements).
  • q is a transmission signal vector of antenna elements having M equally polarized (co-polarized) in one column.
  • w is the wideband TXRU virtualization weight vector and W is the wideband TXRU virtualization weight matrix.
  • x is a signal vector of M_TXRU TXRUs.
  • mapping between the antenna port and the TXRUs may be one-to-one (1-to-1) or one-to-many.
  • TXRU-to-element mapping in FIG. 13 shows only one example, and the present invention is not limited thereto, and TXRU and antenna elements may be implemented in various forms from a hardware point of view. The present invention can be equally applied to the mapping between them.
  • CSI-RS patterns for a large number of RS ports need to be supported / designed so that the UE acquires CSI and reports it to the base station.
  • legacy systems support 1-port, 2-port, 4-port or 8-port CSI-RS patterns
  • Rel. 13 supports 12-port and 16-port patterns in which conventional 4-port and / or 8-port CSI-RS patterns are aggregated.
  • new CSI-RS patterns for larger numbers of ports e.g. 20-port, 24-port, 28-port, 32-port, 64-port, etc.
  • Setting method needs to be considered.
  • Q-port CSI-RS e.g., to support effective closed-loop MIMO transmission from a transmitter with a large number of transmission antenna elements (e.g., MXNXP), such as a massive MIMO system).
  • a Q-port CSI-RS is a non-precoded CSI-RS, which does not apply beamforming when transmitted from a transmitter, and may be transmitted in a form in which each CSI-RS port having a wide beam width is transmitted. .
  • Second Embodiment Method of Defining a New Pattern
  • the second embodiment is a method of defining a plurality of CSI-RS patterns by selecting / using at least one of the CSI-RS designs defined / expressed by the first embodiment.
  • a 20-port CSI-RS resource / pattern may be considered. To create a 20-port CSI-RS resource / pattern, ten two-port CSI-RS resources / patterns, or five four-port CSI-RS resources / patterns, may be merged. If you merge 10 2-port CSI-RS resources / patterns, 20-port CSI-RS resources / patterns of branches can be derived, and when merging five 4-port CSI-RS resources / patterns, Branch 20-port CSI-RS resources / patterns may be derived.
  • the method of designing a CSI-RS resource / pattern proposed in the present specification is to configure a new 20-port or more CSI-RS resource / pattern by merging a plurality of (eg, two) CSI-RS resources / patterns. Suggest.
  • the merged port unit is legacy 2-, 4-, 8-port and Rel. It may be a port newly defined as 12-, 16- and 20-ports defined in 13 or more. More specifically, each merged CSI-RS resource / pattern may correspond to "composite CSI-RS resource / pattern", where the synthesized CSI-RS resource / pattern is Rel.
  • a plurality of legacy CSI-RS resources / patterns defined in 13 may mean one CSI-RS resource / pattern defined in a merged form.
  • the synthesized CSI-RS resource / pattern is Rel.
  • One 16-port CSI-RS resource / pattern consisting of two legacy 8-port CSI-RS resources / patterns defined in 13 or one 12- consisting of three legacy 4-port CSI-RS resources It may mean a port CSI-RS resource / pattern.
  • the “synthetic CSI-RS resource / pattern” in which legacy CSI-RS resources are merged and defined in this specification does not mean comprehensively a CSI-RS resource in which legacy CSI-RS resources / patterns are merged. It may mean only CSI-RS resources / patterns merged under limited conditions in a restricted form, and only the synthetic CSI-RS resources / patterns defined in this manner may be new 20-port or more CSI-RS resources proposed in this specification. It may correspond to at least one (ie, merge unit) of a plurality of (eg, two) CSI-RS resources / patterns merged to form a / pattern.
  • the number of ports of CSI-RS resources / patterns merged with the synthesized CSI-RS resources / patterns may be limited to a predefined value. For example, a 16-port CSI-RS resource / pattern as an allowed composite CSI-RS resource / pattern is merged by 8-port + 8-port (ie, two legacy 8-port CSI-RS resource / patterns). Only 12 / port CSI-RS resources / patterns may refer to resources / patterns in which 4-port + 4-port + 4-port are merged.
  • the specific CSI-RS resource / pattern corresponds to a synthetic CSI-RS resource / pattern It may be used as a CSI-RS resource merging unit proposed in the present specification.
  • CDM-2 and / or CDM-4 the specific limitations / conditions include the limited application of CDM-2 and / or CDM-4, the limitation of the RE location to which the CDM applies, and / or the limited application of CDM-x (x> 4). Can be.
  • 'CDM-x' may be interpreted as a CDM having a length x of an orthogonal sequence included in a weight vector or a CDM having x number of weight vectors.
  • a new 20-port or more CSI-RS resource / pattern when designing a new 20-port or more CSI-RS resource / pattern, it may be limited to only merging of predetermined resources / patterns.
  • other forms of merging other than preset / specified / specific merging for example, merging three or more CSI-RS resources / patterns, merging a plurality of CSI-RS resources / patterns having different port numbers, etc.
  • the implementation complexity of the terminal can be guaranteed to be below a certain level.
  • examples of acceptable CSI-RS resources / patterns of a predetermined / specified / specific merging is as follows. Embodiments such as may exist.
  • the above-described embodiments show one example in which two CSI-RS resources / patterns are combined.
  • the combining order of CSI-RS resource patterns of different sizes may be changed.
  • two divided CSI-RS resources / patterns may be merged to form a new CSI-RS resource / pattern of 20-ports or more.
  • the present invention is not limited thereto, and the above-described embodiment may be generalized or extended to an embodiment in which a plurality of separate CSI-RS resources / patterns are merged to form a new CSI-RS resource / pattern of 20-ports or more.
  • the above-described embodiment may be generalized or extended to an embodiment in which a plurality of separate CSI-RS resources / patterns are merged to form a new CSI-RS resource / pattern of 20-ports or more.
  • CSI-RS resources / patterns merged are located in the same RB, respectively in different subframes apart from each other on the time axis, or in different RBs (or PRB pairs) away from each other on the frequency axis. Each can be located. Except for embodiments that are merged within one RB, that is, embodiments that are merged between different RBs (or PRB pairs) on the time axis, or between different RBs (or PRB pairs) on the frequency axis, may be used as cell reuse elements ( This may include increasing the cell reuse factor or constructing a CSI-RS resource / pattern in excess of 40 REs as defined in the standard.
  • the UE When CSI-RS resources / patterns are merged and present in one RB, the UE expects that the merged CSI-RS resources / patterns do not overlap each other. That is, if the merged CSI-RS resources / patterns are configured to overlap at least a part of each other, the terminal may ignore the configuration, such as regards this as an error case.
  • 'merged CSI-RS resources / patterns do not overlap' may be interpreted that merged CSI-RS resources / patterns are not transmitted through the same resource block on the same subframe or frequency axis on the time axis. have.
  • the base station / network may be given a specific restriction that the configuration should be provided only in a form in which the merged CSI-RS resources / patterns do not overlap each other.
  • two CSI-RS resources / patterns are merged to form a new CSI-RS resource / pattern of 20-ports or more
  • the merged CSI-RS resources / patterns are separated from each other on the time axis.
  • An embodiment in which each is located in different subframes or in different RBs spaced apart from each other on a frequency axis will be described in more detail.
  • two CSI-RS resources / patterns are merged and described based on a case in which a new CSI-RS resource / pattern of 20-port or more is configured, but is not limited thereto.
  • a plurality of separate CSI-RS resources / patterns may be merged to generalize or extend to an embodiment of constructing a new CSI-RS resource / pattern of 20-ports or more.
  • FIG. 14 illustrates a 32-port CSI-RS resource / pattern in which two 16-port CSI-RS resources / patterns are merged according to an embodiment of the present invention.
  • port numbers 0, 1, 2, 3,... Is an example for convenience of explanation, and port numbers 0, 1, 2, 3,... Is 15, 16, 17, 18... It may be sequentially mapped to port numbers.
  • Table 5 shows a CSI-RS transmission subframe configuration in the LTE system.
  • the CSI-RS transmission subframe configuration is defined based on the CSI-RS transmission period and the subframe offset.
  • the CSI-RS transmission period may be set in 5, 10, 20, 40 or 80 subframe units.
  • the CSI-RS transmitted in time division multiplexing (TDM) may have different offset values for each resource (in this case, the CSI-RS resource may correspond to a synthetic CSI-RS resource). That is, when configuring the 32-port CSI-RS resource in the example of FIG. 14, the 16-port CSI-RS resource in subframe n and the CSI- of 16-port CSI-RS resource / pattern in subframe n + x.
  • RS offsets may be set differently from each other. That is, when a specific synthetic CSI-RS resource is merged to form a new CSI-RS resource / pattern, there is a restriction that it cannot be TDM between resources / patterns in the corresponding synthetic CSI-RS resource and must be transmitted in the same subframe. Can be given.
  • FIG. 15 illustrates a 32-port CSI-RS resource / pattern in which two 16-port CSI-RS resources / patterns are merged according to an embodiment of the present invention.
  • port numbers 0, 1, 2, 3,... Is an example for convenience of explanation, and port numbers 0, 1, 2, 3,... Is 15, 16, 17, 18... It may be sequentially mapped to port numbers.
  • R1 and R2 mean different synthetic CSI-RS resources / patterns 1 and 2, respectively, and R1 and R2 having the same pattern are merged to form one new CSI-RS resource / pattern.
  • a synthesized CSI-RS resource / pattern becomes a component of a new 20-port or more CSI-RS resource / pattern, between the CSI-RS resources / patterns merged in the corresponding synthesized CSI-RS resource / pattern It may not be FDM and may be given a restriction that all should be transmitted within the same RB pair.
  • the CSI of the m-th RB in the subframe n and the (m + y) -th RB in the subframe n + x may be derived / applied / considered.
  • FIG. 17 illustrates an embodiment of a CSI-RS resource / pattern design using an FDM scheme according to an embodiment of the present invention.
  • each CSI-RS resource to be merged has a frequency interval of 12c as shown in FIG. 17. And the frequency offset may be set to 12d.
  • c and / or d may be set differently for each of the merged CSI-RS resources. That is, c and / or d may be set differently only for the merged CSI-RS resources, and c and / or d may not be set differently for each port in each CSI-RS resource / pattern.
  • a period of RB through which CSI-RSs are transmitted / mapped (hereinafter referred to as a 'CSI-RS RB period')
  • the c value associated with.) May be set to one c value to be applied in common to the two (synthesized) CSI-RS resources / patterns to be merged.
  • the d value associated with the offset of the RB to which the CSI-RS is transmitted / mapped (hereinafter referred to as 'CSI-RS RB offset') may be individually set for each CSI-RS resource / pattern to be merged.
  • the c value associated with the CSI-RS RB period and the d value associated with the CSI-RS RB offset may be defined / set in a form of joint encoding with each other.
  • subframeConfig which sets the time base-related settings as a joint encoding between periods / offsets in the current standard
  • the RB periods and / or offsets are set as joint encodings as a frequency axis-specific setting, such as a specific RBconfig (each CSI It can be set as a single parameter (of -RS resource unit).
  • one c value and d values for each CSI-RS resource can be set by defining joint encoding in a single RBconfig parameter. This, in turn, may be interpreted that the RBconfig parameter is set / defined by joint encoding of one c value and a plurality of d values (eg, d1 and d2).
  • information on x and / or y may be RRC signaled and transmitted to the terminal.
  • the RE location (eg, RE location where each CSI-RS resource / pattern starts) of the merged CSI-RS resources / patterns may be informed to the UE for each CSI-RS resource / pattern through RRC signaling.
  • CSI-RS resources / patterns may be equally limited to each other.
  • two 16-port CSI-RS resources / patterns are merged / combined to create a 32-port CSI-RS resource / pattern, and 12-port CSI-RSs to create a 24-port CSI-RS resource / pattern Only two RS resources / patterns are merged may limit the number of ports of each CSI-RS resource / pattern merged to a predetermined number. Also, if the merged CSI-RS resources / patterns are located in different PRBs (or mapped), CSI-RSs may be limited to being mapped to the same RE location in units of RB pairs.
  • CDM-2 and CDM-4 are supported for 12-port and 16-port CSI-RS resources / patterns.
  • CDM-2 and CDM-4 are extended when 20-port CSI-RS resources / patterns proposed in this specification are configured only with 12-port or 16-port CSI-RS resources / patterns supported by CDM-4. It may be supported, and information on which CDM is applied may be delivered to the terminal through RRC signaling. However, at this time, the CDM-4 applied to the CSI-RS resources / patterns merged in the present invention may be different from the CDM-4 applied to the 12-port and 16-port CSI-RS resources / patterns defined in Rel.13. have.
  • the 28-port CSI-RS resource / pattern consists of a merge of 16-port CSI-RS resource / pattern and 12-port CSI-RS resource / pattern
  • the 16-port CSI-RS resource to be merged CDM-4 is applied to 2 by 2 REs adjacent to each other in the / pattern
  • CDM-4 is applied in a legacy 4-port form to the merged 12-port CSI-RS resource / pattern.
  • the X-port created by merging the corresponding CSI-RS resources / patterns can be defined as applying the legacy 4-port unit / type CDM-4 to the CSI-RS resource / pattern above. That is, when the base station / network provides the terminal with CDM related settings to be applied to the CSI-RS resource / pattern, the merged CSI-RS resources / patterns should be provided with a configuration in which the same CDM-4 pattern is applied. Restrictions can be imposed.
  • the number of ports greater than 24 REs for CSI-RS resources / patterns existing in OFDM symbols 9 and 10, such as 28- and 32-port CSI-RS resources / patterns In case of transmitting the CSI-RS resource / pattern, full power transmission may not be possible. This is because, when CDM-4 is applied to CSI-RS resources / patterns mapped to 5, 6 or 12 and 13 OFDM symbols other than 9 and 10 OFDM symbols, 6 dB boosting is difficult. Accordingly, in the present specification, to achieve the maximum power transmission of the 28-, 32-port CSI-RS resource / pattern, an embodiment of applying / setting an FDM or TDM scheme for reducing the CSI-RS density is proposed as follows.
  • the corresponding CSI-RS resource / pattern may be restricted / configured to be transmitted by FDM or TDM. / Configuration may be indicated through RRC signaling of the base station.
  • CSI-RS resources / patterns having four times the number of ports for example, CSI-RS such as 20-port, 24-port, 28-port, 32-port, or 64-port Only limited resources / patterns can be configured. Therefore, in order to configure CSI-RS resources / patterns having more various port numbers, a method of configuring 6-port and 10-port CSI-RS resources / patterns is also proposed below.
  • the 6-port CSI-RS resource / pattern may be configured as a subset of the legacy 8-port CSI-RS resource / pattern.
  • the embodiment illustrated in this figure shows six ports in legacy 8-ports ⁇ 0,1,2,3,4,5,6,7 ⁇ , for example, ⁇ 0,1,2,3, 4,5 ⁇ , ⁇ 2,3,4,5,6,7 ⁇ , ⁇ 0,1,4,5,6,7 ⁇ or ⁇ 0,1,2,3,6,7 ⁇ , And configuring a 6-port CSI-RS resource / pattern.
  • the 6-port CSI-RS resources / patterns may be configured with the same subset of the legacy 8-port 6-port CSI-RS resources / pattern for each resource / pattern, or may be configured with different subsets for each resource / pattern. It may be.
  • the 6-port CSI-RS resource / pattern consists of a subset of the legacy 8-port CSI-RS resource / pattern, the cell reuse factor of the proposed 6-port CSI-RS resource / pattern design is 5 do.
  • CSI-RS resources consisting of 40 REs may be newly defined as CSI-RS resources consisting of 48 REs. More specifically, the port number ⁇ 4,5 ⁇ of the pattern # 0, the port number ⁇ 0,1 ⁇ , the pattern # of the pattern # 1, in addition to the 40 REs previously defined as CSI-RS resources in this embodiment Eight REs corresponding to the port number ⁇ 4,5 ⁇ of 6 and the location of the port number ⁇ 0,1 ⁇ of pattern # 7 may be configured as additional CSI-RS resources, so a total of 48 REs may be set to CSI-RS. Can be used / configured as a resource.
  • An advantage of designing the 6-port CSI-RS resource according to the present embodiment is that the cell reuse factor is increased to 8 compared to the embodiment of FIG. 18.
  • CDM-2 is applied to the 6-port CSI-RS resource / pattern according to the present embodiment, and RE corresponding to 0, 1, 2, 3, 4, and 5 of each resource / pattern CDM-2 may be applied to these fields.
  • the CSI-RS resource / pattern according to the CSI-RS resource / pattern design illustrated in FIG. 19 may be configured. .
  • the 10-port CSI-RS resource / pattern may consist of a merge of 4-port and 6-port CSI-RS resources / patterns or a merge of 2-port and 8-port CSI-RS resources / patterns. Since the 10-port CSI-RS resource / pattern is not a multiple of 4, CDM-4 cannot be applied. Therefore, only CDM-2 may be limitedly applied to a new CSI-RS resource / pattern created using the 10-port CSI-RS resource / pattern.
  • the description has been focused on embodiments of merging two CSI-RS resources / patterns.
  • CDM-6 to be applied / applied to the 6-port CSI-RS resource / pattern design shown in FIG. 19 is proposed first.
  • CDM-6 may be applied to CSI-RSs transmitted through the new 6-port CSI-RS resource / pattern illustrated in FIG. 19 by multiplying the weight vector of Equation 14 below for each port. That is, in the CSI-RS resource / pattern shown in FIG. 19, CSI-RSs mapped to six FDM CSI-RS ports denoted as ⁇ 0,1,2,3,4,5 ⁇ By multiplying the weight vectors, CDM-6 can be applied / configured. In this case, different weight vectors W_0 to W_5 may be sequentially multiplied to CSI-RSs mapped to respective ports ⁇ 0,1,2,3,4,5 ⁇ .
  • Equation 14 is an equation derived from a 6 ⁇ 6 DFT matrix, and each code is orthogonal to each other.
  • FIG. 20 is a diagram illustrating an embodiment where CDM-6 is applied on a time axis according to an embodiment of the present invention.
  • the equations are mapped to CSI-RSs mapped to six TDM CSI-RS ports, designated ⁇ 0,1,2,3,4,5 ⁇ .
  • CDM-6 can be configured / applied.
  • the CDM when the CDM is applied on the time axis, the CDM is applied to the same set of REs on the frequency axis.
  • the present invention is not limited thereto, and three of the legacy 2-ports positioned in the OFDM symbols ⁇ 5,6 ⁇ , ⁇ 9,10 ⁇ , and ⁇ 12,13 ⁇ may be selected to apply CDM-6 (ie, CDM-6 may be applied to a set of REs located on the same or different frequency axes).
  • CDM-6 may be applied to a set of REs located on the same or different frequency axes.
  • the subcarrier difference in the frequency axis is 2 Limited to less than or equal to REs.
  • the configuration of the codeword may be derived from the DFT matrix or the Walsh matrix. More specifically, the codeword for the CDM-8 may be derived from the DFT matrix and may be constructed by extending Equation 14 into an 8x8 DFT matrix. In addition, the codeword for the CDM-8 can be derived from the Walsh matrix, the weight vector of the CDM-8 is configured as shown in Equation 15 below.
  • Equation 14 a plurality of Walsh matrices having a difference by a permutation function of each row or column may be derived, and Equation 15 shows an example thereof.
  • FIG. 21 is a diagram illustrating five legacy CSI-RS configurations available for CSI-RS transmission by eight CSI-RS antenna ports. Description of the drawings may be equally applicable to the description of Figure 8 (c).
  • CDM-8 can be applied / configured. That is, the CDM-8 may be applied on a legacy 8-port CSI-RS resource / pattern basis.
  • CDM-8 in the order of ⁇ 0,1,4,5,2,3,6,7 ⁇ in the 8-port CSI-RS resource / pattern in the figure (or ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ weight vectors according to equation (15) are sequentially added to the CSI-RSs mapped to the respective ports)
  • CDM-8 may be applied / set.
  • 22 through 24 are diagrams illustrating an 8-port CSI-RS resource / pattern design to which a CDM-8 is applied according to an embodiment of the present invention.
  • the REs to which the CDM-8 is applied are densely gathered along the frequency axis than the legacy 8-port CSI-RS resource / pattern design shown in FIG. 21. As such, the performance is expected to be better in frequency selective channels.
  • the embodiment of FIG. 23 is an embodiment in which CDM-8 is applied to a CSI-RS mapped to eight REs existing over two subcarriers and four OFDM symbols.
  • CDM-8 is applied to a CSI-RS mapped to eight REs existing over two subcarriers and four OFDM symbols.
  • the 8-port CSI-RS resource / pattern # 0 is more densely gathered on the time axis than the pattern # 1, the 8-port CSI-RS resource / pattern # 0 is expected to exhibit more robust performance in phase drift and the like.
  • the embodiments may be understood as the embodiment which is designed to be as compact as possible in the time and / or frequency axis in order to obtain better performance in an environment where the channel is severely changed. That is, in each embodiment the OFDM symbol spacing between two port groups is at most two symbols, so that the spacing of subcarriers is not set (e.g., two port groups are located within four consecutive subcarriers and / or mapped to the same subcarrier). May be designed to be / mapped onto.
  • FIG. 24 shows an 8-port CSI-RS pattern / resource using up to 56 REs by allocating an assignable RE (or an allocable RE for data transmission) for the purpose of transmitting CSI-RSs for DM-RS. Indicates how to design.
  • the 8-port CSI-RS pattern / resource of FIG. 24 has an advantage that the cell reuse factor is greater than 7 as compared to the 8-port CSI-RS pattern / resource of FIG. 22.
  • three 8-port CSI-RS resources / patterns illustrated in FIG. 22 may be merged to configure one 24-port CSI-RS resource / pattern. More specifically, as shown in FIG. 22, the 24-port CSI-RS resource / pattern has 9th (or 10th) and 10th (11th) OFDM symbols and a frequency axis in the time axis within one subframe. Three 8-port CSI-RS resources / patterns located adjacent to / near by may be merged and configured.
  • the 24-port CSI-RS resource pattern may consist of first to third 8-port CSI-RS resources / pattern, and the first to third 8-port CSI-RS resources / pattern may be one Two OFDM symbols (9th / 10th and 10th / 11th OFDM symbols) and four consecutive subcarriers may be located in the subframe.
  • the first 8-port CSI-RS resource / pattern may be located in the 9th / 10th and 10th / 11th OFDM symbols and 11th / 1st to 8th / 4th subcarrier regions in one subframe. have.
  • Specific coordinates for the first 8-port CSI-RS resource / pattern (k ', l') described above with reference to FIG. 8 (where k 'is a subcarrier index in a resource block and l' is a slot). Expressing the OFDM symbol index), (11, 2), (11, 3), (10, 2), (10, 3), (9, 2), (9) of the second slot in the subframe. , 3), (8, 2) and (8, 3).
  • the second 8-port CSI-RS resource / pattern is located in the 9th / 10th and 10th / 11th OFDM symbols and 7th / 5th to 4th / 8th subcarrier regions in one subframe. can do. If specific coordinates for the second 8-port CSI-RS resource / pattern are expressed using (k ', l') described above with reference to FIG. 8, (7, 2) of the second slot in the subframe , (7, 3), (6, 2), (6, 3), (5, 2), (5, 3), (4, 2) and (4, 3).
  • the third 8-port CSI-RS resource / pattern is located in the 9th / 10th and 10th / 11th OFDM symbols and the 3rd, 9th, 0th, and 12th subcarrier regions in one subframe. can do. If specific coordinates for the third 8-port CSI-RS resource / pattern are expressed using (k ', l') described above with reference to FIG. 8, (3, 2) of the second slot in the subframe , (3, 3), (2, 2), (2, 3), (1, 2), (1, 3), (0, 2) and (0, 3).
  • CDM-8 may be applied to the CSI-RSs mapped to the first to third 8-port CSI-RS resources / pattern.
  • CDM-16 is proposed.
  • the weight vector of the CDM-16 can also be derived from the Walsh matrix similar to the proposed CDM-8. That is, the weight vector may be derived from Equation 16 below from the 16 ⁇ 16 Walsh matrix.
  • the CDM-16 proposed in the present specification may be applied to one 16-port CSI-RS resource / pattern configured by merging two of the 8-port CSI-RS resources / patterns to which the previously proposed CDM-8 is applied.
  • one 16-port CSI-RS resource / pattern may be configured by merging two resources / patterns arbitrarily from among the legacy 8-port CSI-RS resources / patterns shown in FIG. You can apply CDM-16 to your patterns. In this case, the two CSI-RS resources / patterns merged are sequentially ⁇ 0,1,2,3,4,5,6,7 ⁇ , ⁇ 8,9,10,11,12,13,14,15 ⁇ . Numbered to apply CDM-16 or ⁇ 0,1,4,5,2,3,6,7 ⁇ , ⁇ 0,1,4,5,2,3,6,7 ⁇ +8 16 can be extended.
  • the former shows the port numbering sequentially in the legacy 8-port unit, and the latter shows the port numbering Rel.
  • the scheme is set to 2X2 RE units.
  • CDM-8 related embodiments described above with reference to FIGS. 22 to 24 may be merged as described above and extended to the CDM-16 application embodiment.
  • CDM-12 and CDM-20 are proposed.
  • the CDM-12 proposed in the present specification may be applied to one 12-port CSI-RS resource / pattern configured by merging two of the 6-port CSI-RS resources / patterns to which the previously proposed CDM-6 is applied.
  • one 12-port CSI-RS resource / pattern may be configured by merging two resources / patterns arbitrarily among the 6-port CSI-RS resources / patterns shown in FIG. 19, and the configured resource / pattern CDM-16 can be applied to Equation (18).
  • the two CSI-RS resources / patterns merged are sequentially numbered with ⁇ 0,1,2,3,4,5 ⁇ and ⁇ 8,9,10,11,12,13 ⁇ to apply CDM-12. have.
  • the weight vector of the CDM-20 may be constructed using Equation 19 below.
  • the CSI-RS resource / pattern to which the weight vector of Equation 19 can be applied may be applied to a 20-port CSI-RS resource / pattern configured according to the embodiments proposed herein, and the merging resources / patterns may be sequentially You can number and apply CDM-20 to that resource / pattern.
  • the information on the CDM length applied to the CSI-RS may be indicated by the base station through the RRC signaling to the terminal.
  • FIG. 25 is a flowchart illustrating a CSI reporting method of a terminal according to an embodiment of the present invention.
  • the above-described embodiments and descriptions may be applied in the same or similar manner, and overlapping descriptions will be omitted.
  • the UE may receive CSI-RS resource information about the CSI-RS resource to which the CSI-RS is mapped from the base station (S2510).
  • the CSI-RS resources used are configured by aggregating a plurality of CSI-RS resources, but the merged CSI-RS resources are located in different subframes on the time axis or on different resource blocks on the frequency axis, respectively. can do.
  • at least one of the merged CSI-RS resources may correspond to a synthetic CSI-RS resource configured by merging a plurality of legacy CSI-RS resources.
  • the plurality of legacy CSI-RS resources constituting the synthetic CSI-RS resource may be limited to CSI-RS resources of the same port number.
  • the CSI-RS resource may be limited to being composed of merging of CSI-RS resources of a predefined port number.
  • different subframes in which the merged CSI-RS resources are located may have different CSI-RS subframe offsets.
  • the merged CSI-RS resources are located in different subframes spaced apart from each other at a predetermined number of subframe intervals, information about the predetermined number of subframe intervals is signaled to be transmitted to the terminal through RRC (Radio Resource Control) signaling. Can be.
  • the merged CSI-RS resources may be mapped to the same subcarriers in different subframes.
  • the merged CSI-RS resources are located in different resource blocks separated by a predetermined number of resource blocks, information on the predetermined number of resource blocks may be RRC signaled and transmitted to the terminal.
  • the transmission period of the different resource blocks in which the merged CSI-RS resources are located is set to the same for each of the merged CSI-RS resources, resource block offsets of different resource blocks are different for each of the merged CSI-RS resources Can be set. In this case, the transmission period and the resource block offset may be jointly encoded and transmitted to the terminal.
  • the 12-port CSI-RS resource or the 16-port CSI-RS resource is included.
  • Code Division Multiplexing (CDM) having 2 or 4 orthogonal weight vectors may be applied to the mapped CSI-RSs.
  • the terminal may receive the CSI-RS transmitted through at least one antenna port from the base station based on the received CSI-RS resource information (S2520).
  • the terminal may generate the CSI based on the received CSI-RS and report the generated CSI to the base station (S2530).
  • a CDM having 6, 8, 12, 18 or 20 orthogonal weight vectors according to the number of ports of each CSI-RS resource merged into the CSI-RS resource to which the CSI-RS is mapped is included. Can be applied.
  • the method of applying CDM-8 to RS resources / patterns / configurations may be considered.
  • the CDM-x applied to the X-port CSI-RS resource / pattern / configuration may be interpreted as being transmitted by applying the CDM-x to the CSI-RS transmitted through the X-port CSI-RS resource / pattern. have.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left-to-right direction, and a subcarrier index in a range of 0-11 is sequentially assigned in a lower-to-up direction. do.
  • the 32-port CSI-RS resource / pattern / configuration in FIGS. 26 and 27 is configured by selectively merging four (legacy) 8-port CSI-RS resources / pattern / configuration.
  • CDM-8 may be applied in units of groups represented by the same alphabet (eg, A, B, C, D).
  • a 32-port CSI-RS resource / pattern / configuration includes a first group containing 8 REs labeled A, a second group containing 8 REs labeled B, and 8 REs labeled C
  • the third group may be divided into a fourth group including eight REs indicated by D, and CDM-8 may be applied to each group.
  • CSI-RS transmitted through the first group, CSI-RS transmitted through the second group, CSI-RS transmitted through the third group, and CSI-RS transmitted through the fourth group (one Same) CDM-8 can be applied.
  • the maximum transmit power per CSI-RS port When the maximum transmit power per CSI-RS port is assumed to be '1', according to the embodiment of FIG. 26, the maximum transmit power becomes '3/4' (CDM in REs of OFDM symbol index 5 and 6). 8 times power boost by applying -8, 3 times power boost by borrowing transmit power from another port). Thus, when using the CSI-RS resources / patterns / configurations of the FIG. 26 embodiment, maximum power transmission per CSI-RS port may not be achieved.
  • FIG. 27 may be proposed.
  • CDM-8 is applied to REs of OFDM symbol indexes 5 and 6, thereby boosting power by 8 times.
  • four times power boosting can result in a maximum transmit power of '1'.
  • the (legacy) 8-port CSI-RS resource configuration 3 which is not shown in this figure, may also be used for merging 32-port CSI-RS resources.
  • [0, 1, 3, 4] or [0, 2, 3, 4] is selected from five (legacy) 8-port CSI-RS resource configurations defined with respect to 8 (c).
  • 32-port CSI-RS resource / pattern / configuration can be configured.
  • Second group represented by 'B' (8, 5), (8, 6), (10, 9), (10, 10), (8, 9), (8, 10), (8, 12) ), (8, 13)
  • CSI-RS resource configuration 3 can be divided into four groups to which CDM-8 is applied independently.
  • (k ', l') where k 'is the subcarrier index in the resource block and l' is two before the specific coordinates for the group for CDM-8 application in CSI-RS resource configuration # 3.
  • (k ', l') where k 'is the subcarrier index in the resource block and l' is two before the specific coordinates for the group for CDM-8 application in CSI-RS resource configuration # 3.
  • 7, 9 REs of (7, 10) may be included in the first group corresponding to the alphabet 'A', (6, 9),
  • the REs of (6, 10) may be included in the second group corresponding to the alphabet 'B', and the REs of (1, 9) and (1, 10) may be included in the third group corresponding to the alphabet 'C'.
  • REs of (0, 9) and (0, 10) may be included in a fourth group corresponding to the letter 'D'.
  • each (legacy) 8-port CSI-RS resource / pattern / configuration is different from each other.
  • a plurality of subgroups / patterns eg, CDMs
  • CDMs having the same alphabet among all (legacy) 8-port CSI-RS resources / patterns / configurations, which may be divided into a plurality of subgroups / patterns represented by the alphabet.
  • the merge of -2 patterns may form a CDM-8 pattern / group to which CDM-8 is applied.
  • port numbering to be described later may be determined according to the order of the resourceConfig.
  • the 32-port CSI-RS resource / pattern / configuration to which the CDM-8 is applied to each group will be described later in detail with reference to FIG. 30.
  • the base station may inform the terminal of the merged 8-port CSI-RS resources by RRC signaling. have.
  • the base station may direct all four 8-port CSI-RS resources / patterns / configurations merged into 32-port CSI-RS resources to the UE through RRC signaling. (Legacy) Only signaling two 8-port CSI-RS resources / patterns / configurations merged into 32-port CSI-RS resources / patterns / configurations among 8-port CSI-RS resources / patterns / configurations It can also be reduced.
  • each CDM-8 weight mapping method follows Walsh matrix, and there may be difference in application by permutation.
  • Equation 20 l is the final CSI-RS port number according to the port numbering result, k is each CSI-RS resource / configuration number to be merged, and K is the number of CSI-RS resources / patterns / configurations to be merged / included. , p 'represents the legacy CSI-RS port number to be merged, respectively.
  • Equation 21 the port numbering embodiment may be expressed as Equation 21 below.
  • Equation 20 (or Equation 21) may mean that the antenna ports are numbered in the order of the CSI-RS resource / configuration number defined as shown in Table 3.
  • CDM-8 may be applied to a CSI-RS transmitted through each CSI-RS port numbered according to Equation 20 (or Equation 21) as shown in Table 7 below.
  • Table 7 shows eight weight vectors applied to each CSI-RS port number derived according to Equation 20 (or Equation 21).
  • One row consists of four elements, each representing each group to which the CDM-8 pattern is applied independently. That is, there are four groups to which a total of four independent CDM-8 patterns are applied to the 32-port CSI-RS resource / pattern / configuration. Eight rows represent ports to which eight weight vectors, respectively, constitute the CDM-8. Each column represents a group to which the CDM-8 pattern is applied independently.
  • the first group ⁇ 15,16,23,24,31,32,39,40 ⁇ , the second group ⁇ 17,18,25,26,33,34,41,42 ⁇ , the third group ⁇ 19,20,27,28,35,36,43,44 ⁇ , and the fourth group ⁇ 21,22,29,30,37,38,45,46 ⁇ (independently) have CDM-8 Can be applied.
  • ⁇ 15,17,19,21 ⁇ ports are [1 1 1 1 1 1 1 1 1 1]
  • ⁇ 16,18,20,22 ⁇ ports are [1 -1 1 -1 1- 1 1 1 -1]
  • ⁇ 23,25,27,29 ⁇ ports are [1 1 -1 -1 1 1 -1 -1]
  • ⁇ 24,26,28,30 ⁇ ports are [1 -1- 1 1 1 1 -1 -1 1]
  • ⁇ 31,33,35,37 ⁇ ports have [1 1 1 1 1 1 -1 -1 -1]
  • ⁇ 32,34,36,38 ⁇ ports have [ 1 -1 1 -1 -1 1], ⁇ 39,41,43,45 ⁇ ports have [1 1 -1 -1 -1 -1 1], ⁇ 40,42,44,46 ⁇
  • the weight vector of [1 -1 -1 1 -1 1 1] is applied respectively.
  • FIG. 26 and / or 27 may be equally or similarly applied to a 24-port CSI-RS resource / pattern / configuration.
  • CSI-RS resources are identified by different letters A, B, C, and D (+ E) in FIGS. 26 and / or 27.
  • Three groups can be selected from among / pattern / configuration groups, and CDM-8 can be applied to each selected group independently.
  • FIG. 28 illustrates a CDM-8 pattern design applied to a 24-port CSI-RS resource / pattern / configuration according to an embodiment of the present invention.
  • Eight REs divided by the same pattern in FIG. 28 represent one (legacy) 8-port CSI-RS resource / pattern / configuration.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left-to-right direction, and a subcarrier index in a range of 0-11 is sequentially assigned in a lower-to-up direction. do.
  • the merged (legacy) 8-port CSI-RS resources / patterns / configurations are set at OFDM symbol indexes 5, 6 or 12, 13.
  • Two from OFDM symbol indexes 9 and 10 can be configured to configure 24-port CSI-RS resource / pattern / configuration.
  • groups may be divided for each alphabet, and each group may be restricted to apply the CDM-8.
  • each of the RE groups to which the CDM-8 is applied has two RE groups (eg, A group and B group) belonging to OFDM symbol indexes 5, 6, or 12 and 13 in order to obtain a power boosting gain. May be limited to form an independent group to which the RE group (s) of OFDM symbol indexes 9 and 10 and CDM-8 are applied, respectively.
  • FIG. 29 illustrates a CDM-8 pattern design applied to a 24-port CSI-RS resource / pattern / configuration according to an embodiment of the present invention.
  • Eight REs divided by the same pattern in FIG. 29 represent one (legacy) 8-port CSI-RS resource / pattern / configuration constituting a 24-port CSI-RS resource / pattern / configuration.
  • RE groups marked with 0, 1, 2, 5, 3, 6, 4, 7, 8, and 9 represent (legacy) 8-port CSI-RS configurations, respectively.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left-to-right direction, and a subcarrier index in a range of 0-11 is sequentially assigned in a lower-to-up direction. do.
  • CDM-8 can be applied as a (legacy) 8-port CSI-RS resource / pattern / organization unit to be merged, but in this case (legacy) 8- corresponding to the RE group represented by 0 and 1, 8 and 9
  • the power boosting gain is not large because the transmit power of other ports is not available.
  • the embodiments of FIGS. 24 and 26 to 28 capable of maximum power transfer are difficult to apply to both 24- and 32-port CSI-RS resources / patterns / configurations in common.
  • a method using a 4-port CSI-RS pool (or resource / pattern / configuration) is proposed to apply the CDM-8 to enable maximum power transmission.
  • the (legacy) 8-port CSI-RS resource / pattern / configuration is divided into two 4-port CSI-RS pools, where each 4-port CSI-RS pool is viewed as a basic unit on which CDM-4 is performed. Can be.
  • CDM-4 is applied to the 4-port CSI-RS pool with the weight of 22 or column below.
  • the (legacy) 8-port CSI-RS resource / pattern / configurations merged Information regarding three 8-port CSI-RS resources / patterns / configurations, 3 for a port and 4 for a 32-port may be configured through RRC signaling.
  • a terminal having a 24-port CSI-RS resource / pattern / configuration set up ⁇ 0,1 ⁇ , ⁇ 2,5 ⁇ , and ⁇ 4,7 ⁇ such as three (legacy) 8-port CSI-RS. If the resource / pattern / configuration has been set, it can be seen that the terminal has been configured with six 4-port CSI-RS pools (or resources / pattern / configuration) for CDM-8 application.
  • the base station independently of the four-port CSI-RS pool (or resource / pattern / configuration) configured in the terminal two sub-port 4-port CSI-RS pool (or resource / pattern) to which the CDM-8 will be applied / Configuration) Information about the group / pair can be additionally informed to the terminal through RRC signaling or can be set in advance in the terminal.
  • Each 4-port pair / group It has a weight of, and CDM-8 can be applied using this. This method is expressed by the following equation (23).
  • a set to which the CDM-8 is applied may be determined based on the subcarrier position. For example, as shown in the figure, subcarrier indexes k '0 to 5 are set2 and 6 to 11 are set1. It can be defined as.
  • the CDM-8 pattern for the CSI-RS resource / pattern / configuration to which the CDM-8 is applied may be determined based on the predefined set.
  • two of the three (legacy) 8-port CSI-RS resources / patterns / merges that are merged can be selected within the same set and CDM-8 can be applied, and the other (legacy) ) 8-port CSI-RS resource / pattern / configuration can be applied to CDM-8 as it is within the resource / pattern / configuration.
  • the first to third (legacy) 8-port CSI-RS resources / patterns / configurations are ⁇ 0,1 ⁇ , ⁇ 2,5 ⁇ and ⁇ 4, 7 ⁇ of FIG. 29, CDM-8 Is applied / set to ⁇ 0 and 2 ⁇ , ⁇ 1 and 5 ⁇ , and ⁇ 4 and 7 ⁇ , respectively.
  • two of the four (legacy) 8-port CSI-RS resources / patterns / merges that are merged can be selected within the same set to apply CDM-8, and the other two (legacy) 8- For the port CSI-RS resources / patterns / configurations, two CDM-8s can be applied in the same set.
  • the first through fourth (legacy) 8-port CSI-RS resource / pattern / configurations are shown in ⁇ 0,1 ⁇ , ⁇ 2,5 ⁇ , ⁇ 4,7 ⁇ , ⁇ 8, 9 ⁇ in FIG.
  • CDM-8 may be applied to ⁇ 0 and 2 ⁇ , ⁇ 1 and 5 ⁇ , ⁇ 4 and 8 ⁇ , and ⁇ 7 and 9 ⁇ , respectively.
  • the first lower 4-port CSI-RS pool to which CDM-8 is applied ⁇ 0,1,4,7 ⁇ With a weight of [1 1] ⁇ T in the second lower 4-port CSI-RS pool ⁇ 2,5,8,9 ⁇ Equation 23 is applied with a weight of [1 -1] ⁇ T to form a CDM-8 pattern.
  • the base station should additionally perform RRC signaling information on resource selection to the terminal. That is, the base station, in the case of 24-port two resources / patterns / selected for the CDM-8 application in each set of the three (legacy) 8-port CSI-RS resources / patterns / configurations set by the terminal Configurations (three in total, can be indicated in 2-bit map format); for 32-port, four (legacy) 8-port CSI-RS resources / patterns / configurations can be applied within each set of CDM-8
  • the two resources / patterns / configurations (6 types, which can be indicated in a 3-bit map format) can be informed to the UE through additional RRC signaling.
  • the base station and the terminal may be defined in advance to apply the CDM-8 in the order of the 8-port CSI-RS resources / patterns / configuration to be merged. That is, the above-described CDM-8 mapping scheme may be applied in the order of resource / pattern / configuration set for merging.
  • the first and second 8-port CSI-RS resources / patterns / configurations of UEs having received 24-port CSI-RS resources / patterns / configurations are ⁇ 0,1 ⁇ and ⁇ 2,5 in FIG. 29.
  • CDM-8 applies to ⁇ 0 and 2 ⁇ and ⁇ 1 and 5 ⁇ respectively
  • CDM-8 applies to ⁇ 3,7 ⁇ , the third 8-port CSI-RS resource / pattern / configuration. Is set.
  • CDM-8 applies to the two lower 4-port CSI-RS pools included in the first and second CSI-RS resource / pattern / configuration in the same set, and the third in the same set.
  • CDM-8 may be applied to two lower 4-port CSI-RS pools included in the fourth 8-port CSI-RS resource / pattern / configuration.
  • the first to fourth 8-port CSI-RS resources / patterns / configurations of the UEs receiving the 32-port CSI-RS resources / patterns / configurations are ⁇ 0,1 ⁇ , ⁇ 2,5 ⁇ , ⁇ 4,7 ⁇ , ⁇ 8, 9 ⁇
  • CDM-8 may be applied to ⁇ 0 and 2 ⁇ , ⁇ 1 and 5 ⁇ , ⁇ 4 and 8 ⁇ , ⁇ 7 and 9 ⁇ respectively.
  • FIG. 30 is a diagram illustrating CDM-8 patterns according to an embodiment of the present invention. More specifically, FIG. 30 (a) is a diagram generalizing the embodiment described above with reference to FIG. 27, and FIG. 30 (b) is a diagram generalizing the embodiment described above with respect to FIG. .
  • REs denoted by the same pattern represent one (legacy) 8-port CSI-RS resource / pattern / configuration to be merged, and REs denoted by the same alphabet represent one CDM-8 pattern or group to which CDM-8 is applied. Indicates.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left-to-right direction, and a subcarrier index in a range of 0-11 is sequentially assigned in a lower-to-up direction. do.
  • a group of four (legacy) 8-port CSI-RS resources / patterns / configurations (FIG. 30 (a)) or two (FIG. 30 (b)) to be merged when applying CDM-8 CDM-8 may be applied to each group (denoted by the same alphabet). This means that for maximum power transfer, the CDM-8 is not only applied to one (legacy) 8-port CSI-RS resource / pattern / configuration, but rather the entire (legacy) 8-port CSI-RS resource / pattern being merged. Can be interpreted as being applied across configurations.
  • the terminal may be set to the 32-port CSI-RS resource / pattern / configuration of the merged form of four 8-port CSI-RS resources / patterns / configurations, in this case as shown in this figure Likewise, the lower two-port CSI-RS resource / patterns / configurations grouped (indicated) by the same alphabet among the merged (legacy) 8-port CSI-RS resources / patterns / configurations (in case of FIG. 30 (a)). CDM-8 may be applied in units of lower 4-port CSI-RS resources / patterns / configurations (in case of FIG. 30 (b)).
  • each (legacy) 8-port CSI-RS resource / pattern / configuration can be divided into two or four groups, with CDMs in the same group over the entire 8-port CSI-RS resource / pattern / configuration being merged. -8 may apply.
  • Both the embodiments of FIGS. 30 (a) and 30 (b) show both maximal power transfer and versatility of CDM-8 application (e.g., when dividing into two groups under the same CSI-RS density, both 24- and 32-ports) It can be applied to 32 groups, which can be applied to 4 groups.
  • flexibility may be required for the base station to set the above two options.
  • the base station RRC provides information about the lower CSI-RS resource / pattern / configuration (or legacy (8) -port CSI-RS resource / pattern / configuration divided into two or four groups) to which CDM-8 is applied. Signaling can be directed / assigned to the terminal.
  • the CDM-8 applied to the 20-port and 28-port CSI-RS resources / patterns / configurations may be configured / configured as a subset of the CDM-8 patterns proposed in FIG.
  • the 20-port CSI-RS resource / pattern / configuration is Can be selected.
  • a 20-port CSI-RS resource / pattern / configuration is selected.
  • the port numbering is sequentially performed for each group / pattern to which the CDM-8 is applied.
  • a 20-port CSI-RS resource / pattern / configuration can be configured as a CSI-RS resource / pattern / configuration.
  • the 28-port may similarly be selected and configured within the 32-port CSI-RS resource / pattern / configuration.
  • a 24-port or 32-port CSI-RS resource / pattern / configuration is composed of a merge of (legacy) 8-port CSI-RS resources / pattern / configuration, and one CDM to which CDM-8 is applied.
  • the -8 group / pattern is defined as a merge of subgroups / patterns separated based on (legacy) 8-port CSI-RS resources / patterns / configuration. That is, if (legacy) 8-port CSI-RS resource / pattern / configuration is divided into 2 or 4 subgroups / patterns, subgroup / pattern divided by each (legacy) 8-port CSI-RS resource pattern CDM-8 groups / patterns can be defined as two or four merged.
  • a 23-port or 32-port CSI-RS resource / pattern / configuration is configured as a merge of legacy 4-port CSI-RS resources / pattern / configuration, and a legacy 4-port CSI-RS resource / pattern /
  • the base station can configure the CSI-RS to which the CDM-8 is applied more flexibly.
  • maximum power transmission per CSI-RS port should be considered, and the positions between REs constituting the CDM-8 pattern / group should not be large.
  • a subgroup / pattern merging rule is proposed to prevent performance degradation in an embodiment in which legacy 4-port CSI-RS resources / patterns / configurations are merged.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left-to-right direction, and a subcarrier index in a range of 0-11 is sequentially assigned in a lower-to-up direction.
  • REs indicated by the same pattern in FIG. 31 indicate one legacy 4-port CSI-RS resource / pattern / configuration.
  • a set to which CDM-8 is applied may be determined based on a subcarrier position. For example, as shown in this figure, subcarrier indexes k '0 to 5 are set2, and 6 to 11 are set1. It can be defined as.
  • the merged REs may be included in the same number in set 1 and set 2, and / or may be restricted to apply CDM-8 only in each set to improve the performance of CDM-8.
  • four (0,1) RE pairs may be selected and configured in one CDM-8 pattern in Set 1 of FIG. 31. If two legacy 4-port CSI-RS resources / patterns / configurations located at OFDM symbols 5, 6, 12, and 13, respectively, are merged, one CDM-8 pattern / group among REs of the same subcarrier location is merged. Can be configured. For example, (0,1) REs located at subcarrier index 9 and OFDM symbol indexes 5 and 6 and (0,1) REs located at subcarrier index 9 and OFDM symbol indexes 12 and 13 have the same CDM-. 8 Patterns / Groups can be configured. In addition, one CDM-8 pattern / group may be limited to not include two (0,1) RE pairs located at the same OFDM symbol index.
  • (0,1) REs located at subcarrier index 9 and OFDM symbol indexes 5 and 6 and (0,1) REs located at subcarrier index 8 and OFDM symbol indexes 5 and 6 are the same CDM-. 8 Patterns / groups cannot be constructed. Alternatively, (0,1) RE pairs belonging to OFDM symbol indexes 5, 6 and 12, 13 may be limited to belong to only one CDM-8 pattern / group.
  • Equations 24 and 25 two port numbering such as Equations 24 and 25 may be considered.
  • Equations 24 and 25 n denotes the final CSI-RS port number according to the port numbering result, K denotes the number of CSI-RS configurations, and N denotes the number of antenna ports per CSI-RS configuration to be merged.
  • the description of each parameter used in equations (24) and (25) applies equally to the description above with respect to equation (20).
  • Equation 24 corresponds to the simplest port numbering rule for sequentially numbering each merged CSI-RS port.
  • Equation 25 may be set for the purpose of sharing CSI-RS of a terminal and a Rel-14 CDM-8 terminal in which CSI-RS resources / patterns / configurations over 32-ports to which CDM-8 is applied are configured with forward compatibility.
  • the port numbering rule according to Equation 24 or 25 may be previously promised between the terminal and the base station or the base station may indicate the terminal through RRC signaling.
  • a plurality of CSI-RS resources / patterns / configurations for example, merging of 2 to 4 CSI-RS resources / patterns / configurations, where each merged CSI-RS resources / patterns / configurations
  • the example may be in the form of a "composite resource" consisting of legacy CSI-RS resources / patterns / configurations.
  • the "composite resource" form is not further defined, and the description is extended to a more general embodiment in which each (legacy) CSI-RS resource / pattern / configuration is merged.
  • CSI-RS configuration means a REB for each PRB-pair to which the CSI-RS is transmitted / mapped (as in the current physical layer standard). You can see it (it can be referred to as “resourceConfig” in higher layer terminology).
  • resourceConfig in higher layer terminology.
  • CSI-RS resource (configuration) (as in the term of the current physical layer standard), as well as the CSI-RS configuration information, scrambling parameter information (for example, VCID; virtual cell ID), CSI-RS antenna port Number, transmission subframe period / offset information, and / or qcl-CRS related information, etc. may be used (in higher layer terminology, it may be indicated as “CSI-RS-ConfigNZP”).
  • 24-port CSI-RS resource / pattern / configuration 4 + 4 + 4 + 4 + 4 + 4/8 + 8 + 8 (ie, six (legacy) 4-port CSI-RS resources / pattern / configuration or Merging of three (legacy) 8-port CSI-RS resources / patterns / configurations
  • 28-port CSI-RS resource / pattern / configuration 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 (i.e. merging of 7 (legacy) 4-port CSI-RS resources / pattern / configuration)
  • 32-port CSI-RS resource / pattern / configuration 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4/8 + 8 + 8 + 8 (i.e. 8 (legacy) 4-port CSI-RS Resource / pattern / configuration or merging of four (legacy) 8-port CSI-RS resources / pattern / configuration)
  • CSI-RS resources / patterns / configurations of 20-port or more are legacy CSI-RS resources / patterns / configurations of the same port size (e.g. 4- or 8-port CSI-RS resources / patterns / configurations). It can consist of a merge of.
  • 20-, 24-, 28-, and 32-port CSI-RS resources / patterns / configurations may be derived in the form of merging between CSI-RS resources / patterns / configurations of different ports.
  • the number of specific ports only by a combination of the number of merged CSI-RS resources / patterns / configurations (K) and the number of antenna ports per merged CSI-RS resources / patterns / configurations (N) Certain restrictions may be imposed so that CSI-RS resources / patterns having (eg, 20, 24, 28, 32) can be configured / set / indicated.
  • the CSI-RS resources / patterns / configurations of a specific port number may be designed in a direction that minimizes / simplifies the combination of (legacy) CSI-RS resources / patterns / configurations.
  • all N merged CSI-RS resources / patterns / configurations may be transmitted in units of PRBs, or may be transmitted in units of specific PRB-pair groups through TDM and / or FDM schemes. In the latter case, there may be a certain number of merged CSI-RS resources / patterns / configurations less than N in each PRB.
  • the CSI-RS transmission overhead is reduced in terms of the network.
  • An embodiment of such a definition / setting may be shown in Tables 9 and 10 below.
  • “fdmtype” indicates the PRB-pair index (es) of each PRB-pair (e.g., for each individual CSI-RS resource / pattern / configuration that is set / merged). 0, 1, 2, ..., N_RB-1, where N_RB corresponds to the total number of RBs corresponding to the system bandwidth.
  • fdmtype may be set to indicate any one of ⁇ even, odd ⁇ . If fdmtype is set to “even”, the CSI-RS resource / pattern / configuration to which fdmtype is indicated is 0, 2, 4,... This may mean that all transmissions are performed over a PRB-pair having an index of. Or, if fdmtype is set to “odd”, CSI-RS resource / pattern / configuration which is indicated by fdmtype is 1, 3, 5,... This may mean that all transmissions are performed over a PRB-pair having an index of.
  • fdmtype may indicate a value of any one of ⁇ 0,1,2, .. M-1 ⁇ .
  • RPF Repetition Factor
  • fdmtype is "0"
  • the CSI-RS resource / pattern / configuration which is indicated by fdmtype is 0, M, 2M,... It may mean that all should be transmitted over a PRB-pair having an index of.
  • “1” CSI-RS resource / pattern / configuration indicated by fdmtype is 1, M + 1, 2M + 1,. This may mean that all transmissions are performed over a PRB-pair having an index of.
  • fdmtype is “M-1”
  • the CSI-RS resource / pattern / configuration which is indicated by fdmtype is M-1, 2M-1, 3M-1,... This may mean that all transmissions are performed over a PRB-pair having an index of.
  • the number of ports transmitted in one PRB-pair is equal to K.
  • the CSI-RS density is set to 1/3 RE / RB / port.
  • the value of M may be indicated by RRC signaling or may be set in advance as described above.
  • N_d 1
  • CSI-RS-ConfigNZP-r11 CSI-RS-ConfigNZP-r11
  • N_d CSI-RS resources / configurations / patterns may be fixed to “even”. This means that N_d (default) CSI-RS resources / patterns / configurations are always 0, 2, 4,... This means that all transmissions are performed over PRB-pairs having an index of.
  • the base station can flexibly set fdmtype among ⁇ even, odd ⁇ for each resource / pattern / configuration for the remaining (N-N_d) CSI-RS resources / patterns / configuration other than N_d. do.
  • the base station has an fdmtype of N_d (default) CSI-RS resources / configuration / pattern is “even (or odd), but all other (N-N_d) CSI-RS resources / configuration / pattern are“ odd (or even) ”.
  • This embodiment has the feature that the application of such an asymmetric FDM scheme is possible to improve the flexibility of the FDM configuration of the base station.
  • This embodiment may be interpreted as a content about density (RE / RB / port) fdmtype of 1/2.
  • the CSI-RS may be transmitted in PRB-pairs having a satisfactory index value.
  • the base station can flexibly configure / apply CSI-RS resources / patterns / configurations to the UE to which the FDM type is set / applied.
  • CSI-RS resources / patterns / configurations may be independently set for each PRB-pair.
  • the legacy terminal maximizes the use of other resources except the CSI-RS resource set in the terminal configured / applied to the FDM type or maximizes the cell reuse factor may be proposed.
  • the CSI-RS resources / configuration / pattern may be the same, but only the signaling related to the FDM type may be set differently. For example, for a 32-port CSI-RS resource / configuration / pattern and 1/2 density setting, the base station sets 8-port CSI-RS configurations 1 and 2 to even PRB-pair and 8-port CSI-RS configuration. You can set 1 and 2 to odd PRB-pair respectively.
  • the base station assigns 4-port CSI-RS configurations 1, 2, and 3 to even PRB-pair to 4-port CSI.
  • -RS configuration 1 and 2 can be set to odd PRB-pair respectively.
  • the merged K values such as 20-port and 28-port CSI-RS resources / patterns / configurations, are odd, one CSI in the default state in the example (eg, “even / odd PRB-pair”) -RS resource / pattern / configuration can be set in advance to be further mapped.
  • the terminal may have M CSI-RS resources / Only patterns / configurations can be set.
  • tdmtype is any subframe index (es) for each merged CSI-RS configuration (for example, 0, 1, 2,..., N_period-1, where N_period means CSI-RS transmission period). An indicator that indicates whether this is being sent.
  • tdmtype may be indicated by any one of ⁇ 0, 1, 2, 3, 4 ⁇ , which means that ⁇ 0, 1, 2, 3 from the CSI-RS transmission offset.
  • 4 ⁇ may mean that the CSI-RS is transmitted in a subframe having an index separated by 4 ⁇ .
  • legacy field eg, CSI- RS-ConfigNZP-r11
  • the 'tdmtype' for N_d CSI-RS resources / configurations / patterns is set to a specific “default state“. It can be set / instructed separately through RRC signaling or fixed to a specific state on a standard.
  • the "default state” can be fixed to "offset + 0".
  • N_d 1 CSI-RS resources / patterns / configurations are always transmitted in a subframe having an index of 'offset + 0'.
  • the base station can flexibly set among offset + ⁇ 0,1,2,3,4 ⁇ for each resource / pattern / configuration.
  • the base station may set “offset + 0” for N_d (default) CSI-RS resources / patterns / configurations, but for the remaining (N ⁇ N_d) CSI-RS resources / patterns / configurations. All can be set to "offset + 1".
  • This embodiment has the feature that the application of such an asymmetric TDM scheme is possible to improve the flexibility of the TDM configuration of the base station.
  • each CSI-RS is configured to perform QCL assumption with a specific dedicated CRS (PCR) only for Doppler spread and Doppler shift. Since the QCL information is set, it is difficult to accurately measure delay spread information only with the CSI-RS in the case of the FDM CSI-RS.
  • TM transmission mode
  • PCR dedicated CRS
  • the FDM CSI-RS when the FDM CSI-RS is configured in the UE, even if the QCL-type B is configured in the UE (for TM 10, etc.), the FDM CSI-RS and ⁇ Delay spread and Specific QCLed associated with a PCI (CRS) information may be provided to the terminal to (in addition) perform the QCL assumption about the average delay ⁇ .
  • CRS PCI
  • the QCLed CRS information must be provided to the UE so that the UE always measures the ⁇ Delay spread and / or Average delay estimated through the corresponding QCLed CRS in order to measure the FDMed CSI-RS.
  • Can be used to increase the measurement performance of the FDM CSI-RS using large-scale parameters (LSP) of the channel.
  • LSP large-scale parameters
  • the UE is set to QCL-type B. For example, even if the delay spread and / or average delay are generally set to measure / estimate without assistance from other RSs, the terminal may follow (exceptionally) at least one of the following options: May be defined / set.
  • the UE may make the same assumption as “QCL-type A” for channel measurement / estimation (exceptionally) of the (FDM) CSI-RS.
  • QCL type A for channel measurement / estimation (exceptionally) of the (FDM) CSI-RS.
  • the performance improvement can be obtained by utilizing LSPs estimated from serving-cell CRS ports 0 to 3 as in the QCL-type A assumption.
  • QCL type B is still applied for such existing CSI-RS. Since it should be applied, it means that QCL-type A or QCL-type B may be selectively applied depending on the property of a specific CSI-RS.
  • Option 2 In the above condition, QCLed CRS ( ⁇ Doppler spread, Doppler shift ⁇ ) interworked for the UE to apply (basically) QCL-type B in the channel measurement / estimation (exceptively) of (FDM) CSI-RS.
  • QCL can be assumed for serving cell CRS port 0-3 and ⁇ Delay spread and / or Average delay ⁇ .
  • the PCI of a specific CRS indicated with PCI
  • the CRS that can assume QCL for a specific LSP may be different. Has characteristics.
  • the UE is (exceptionally) from QCLed CRS (indicated with PCI) interworked to apply basically in QCL-Type B in channel measurement / estimation of (FDM) CSI-RS.
  • QCL assumptions can be applied to ⁇ Doppler spread, Doppler shift ⁇ as well as ⁇ Delay spread and / or Average delay ⁇ .
  • the combination of available LSPs may be different.
  • Doppler shift ⁇ parameter from the QCLed CRS can be utilized by the QCL assumption, but in the case of the new CSI-RS, in addition to the parameter, the ⁇ Delay spread and / or Average delay ⁇
  • the parameter also has the effect that it can be used by the QCL assumption.
  • cell 1 and cell 2 configure CSI-RS 1 and CSI-RS 2 as 10ms grids, respectively, but set the subframe (SF) offset by 5ms for each cell, so that UEs in the coverage of each cell
  • a specific zero-power (ZP) CSI-RS covering both transmission positions of CSI-RS 1 and CSI-RS 2 may be set to a 5ms grid and applied to PDSCH rate matching.
  • ZP zero-power
  • ZP CSI-RS can be additionally set, which does not need to fit a 5ms grid. That is, in the example in which cell 1 and cell 2 configure CSI-RS 1 and CSI-RS 2 respectively with a 10ms grid, each UE is additionally configured with additional ZP CSI-RS 2 in a state in which the existing specific ZP CSI-RS 1 is configured. Can be set.
  • the SF offset may be set to an arbitrary value together with the ZP CSI-RS 1, and the UE sets an additional ZP CSI-RS 2 without a specific restriction such as a 5ms grid. I can receive it.
  • cell 1 and cell 2 is set to CSI-RS 1 and CSI-RS 2, for example, each 5ms grid, and transmitting the CSI-RS in the form of SF offset between each other by 1ms
  • CSI-RS 1 and CSI-RS 2 for example, each 5ms grid
  • the additional ZP CSI-RS 2 may be designed to be set to, for example, ZP CSI-RS REs present in an adjacent plurality of SFs (or a plurality of SFs present in the same period). It may be.
  • the ZP CSI-RS 2 may not be set to a period and a single SF offset, but may be set to, for example, a period and a plurality of SF offsets (for example, 5 ms). Period and SF offset 0 and 1).
  • the new type of ZP CSI-RS 2 proposed above may be limited to be set only when at least one of the following specific conditions is met:
  • a new type of CSI-RS (e.g., 24-, 28-), in which 40 cell re-factors (1 per PRB pair) that can be allocated in an existing CSI-RS configuration, can only satisfy 1 (or 2) cell reuse factors.
  • 32-port CSI-RS is set (at least one)
  • a new ZP CSI-RS may be set.
  • this setting / operation may be activated / deactivated by a separate explicit RRC indicator.
  • CDM-2 may be applied like the existing legacy CSI-RS.
  • CDM-4 is Rel. As defined in 13, 2 by 2 is the legacy 4-port CSI-RS resource / pattern / configuration unit when merged in 4-port units, and OFDM symbol and subcarrier are concatenated when merged in 8-port units. CDM-4 can be applied in the RE form. In the case of CDM-x (x> 4), the above-described embodiment can be followed.
  • the same CDM may be applied to resources in each PRB.
  • 32 is a diagram illustrating port numbering according to an embodiment of the present invention.
  • ports of a CSI-RS resource / pattern / configuration to which the CSI-RS is mapped are in a PRB having the same even (or odd) index. Ports corresponding to transmitted CSI-RSs are preferentially numbered, and ports corresponding to CSI-RSs transmitted in a PRB having the remaining odd (or even) indexes may be numbered.
  • N CSI-RS configuration (s) information constituting X-port CSI-RS resource / pattern / configuration configured / mapped by each (FDM / TDM) PRB-pair group independently provided by RRC signaling
  • the above-described port numbering rule may be applied.
  • This port numbering rule can of course be extended to embodiments in which a PRB-pair group (A> 2) consisting of two or more PRB-pairs is merged.
  • a port as shown in Equation 26 so that legacy terminals can reuse the X-port CSI-RS resources / patterns / configurations that are merged and configured. Numbering rules can also be considered.
  • Is an indicator function that has a value of 1 only when the PRB index z is odd ('0' otherwise), Is the number of CSI-RS configurations to be merged in the even-numbered (or with even index) PRB-pair. For example, for the example of FIG. 32, 3.
  • the description of the remaining parameters is equally applicable to the above-described equation.
  • One 4-port CSI-RS resource / pattern / configuration of the P may be sequentially ported to 39, 40, 41, 42, respectively.
  • Equation 26 is applicable to the CSI-RS configured of the CDM-2.
  • X 20, 24, 28, 32
  • CDM-x related RRC signaling proposed in the present specification is as follows.
  • CDM-2, CDM-4, etc. may also be applied.
  • the base station can inform the terminal which CDM type is applied / used to the RRC. That is, the base station may inform the terminal of which CDM type is applied / used in the CDM-2, the CDM-4, the CDM-8, or the set consisting of at least some of the three, as an RRC.
  • CDM-2, CDM-6, etc. may also be applied.
  • the base station can inform the terminal which CDM type is applied / used to the RRC. That is, the base station may inform the terminal of which CDM type is used / applied in the CDM-2, the CDM-6, the CDM-12, or the set consisting of at least some of the three, as an RRC.
  • CDM-2, CDM-4, CDM-8, etc. may also be applied.
  • the base station can inform the terminal which CDM type is applied / used to the RRC. That is, the base station may inform the terminal of which CDM type is used in the CDM-2, the CDM-4, the CDM-8, the CDM-16, or the set consisting of at least some of the four as the RRC.
  • CDM-2 may also be applied. Accordingly, the base station can inform the terminal which CDM type is applied / used to the RRC. That is, the base station may inform the terminal of which CDM type among the CDM-2 and CDM-20 is applied / used to the UE.
  • CDM-4 is applied to all five 4-port CSI-RSs constituting the 20-port CSI-RS.
  • CDM-8 and CDM-4 or CDM-2 and CDM-4 may be mixed in the 20-port CSI-RS.
  • the base station can more flexibly configure the CDM applied to the CSI-RS, thereby alleviating the problem of power imbalance between CSI-RS ports that may occur due to merging of CSI-RS resources / patterns / configurations. Effect occurs.
  • the base station may inform the terminal which CDM type is applied for each RE or for each CSI-RS resource / pattern / configuration to be merged through the RRC.
  • Two alternatives can be considered to support the new ⁇ 20, 24, 28, 32 ⁇ CSI-RS ports in eFD-MIMO.
  • the new CSI-RS port consists of a set of legacy 2/4/8 ports
  • Alt. 1 means that at least one of the new CSI-RS configurations should be added and fixed in the standard.
  • the advantage of this alternative is that the UE implementation issues are minimized and the enhanced functionality can be integrated into the existing tables of the standard.
  • Alt. 2 is Alt. Compared to 1, it has the advantage that it can provide more flexibility in setting up RRC for merging K (> 1) CSI-RS configurations.
  • Alt. 2 Given the consistency with the CSI-RS design in Rel-13 FD-MIMO, Alt. 2 may be more preferred.
  • K is the number of merged CSI-RS configurations and N is the number of antenna ports per merged CSI-RS configuration.
  • the new CSI-RS port may be configured with a value of (K, N) as shown in Table 11 below.
  • CDM-4 is a way to increase 12- and 16-port CSI-RS transmit power. Since the same merging method for 12-port and 16-port CSI-RS is considered for the new CSI-RS port, the same method as CDM-4 applied to Rel-13 can be directly extended for the newly defined CSI-RS port. have. That is, in the case of 4-port merging, CDM-4 is applied to 4 REs located in legacy 4-port CSI-RS, and CDM-4 applied to 4 REs 2 by 2 is 8-port. Merge cases can also be considered.
  • a CSI-RS density of 1 RE / RB / port is maintained.
  • the cell reuse factor of newly defined CSI-RS such as 24-, 28- and 32-ports is at most 1.
  • FDM-based CSI-RS designs can be considered to increase cell reuse factor and reduce overall network CSI-RS overhead.
  • two adjacent PRB-pairs can be used to configure a new CSI-RS port. In this case, the CSI-RS density is 0.5 RE / RB / port.
  • each block represents REs, and each RE is sequentially assigned an OFDM symbol index in a range of 0 to 13 in a left to right direction, and a subcarrier index in a range of 0 to 11 is sequentially allocated in a lower to upper direction.
  • the FDM-based CSI-RS design is adopted with a low CSI-RS density ( ⁇ 1 RE / RB / port), the delay spread cannot be accurately estimated using only the FDM-based CSI-RS, and noise suppression performance may be degraded. .
  • the QCL linkage between the CSI-RS and the CRS can be further assumed for delay spread in addition to at least existing QCL characteristics (ie, Doppler shift and Doppler spread).
  • QCL characteristics ie, Doppler shift and Doppler spread.
  • power boosting of CSI-RS transmission by CDM-4 may not be satisfactory due to the large number of CSI-RS ports.
  • CDM-8 can be applied to new CSI-RS designs with 8-port merging (ie 24- and 32-port CSI-RS). In this case the CDM-8 can be applied to REs located in the merged (legacy) 8-port.
  • FIG. 34 is a flowchart illustrating a CSI-RS reception method of a terminal according to an embodiment of the present invention.
  • this flowchart corresponds to an extension / replenishment of the embodiments described above with reference to FIGS. 27 and 30 (a) described above. Descriptions of the above-described embodiments with respect to the flowchart may be applied in the same or similar manner, and redundant descriptions are omitted.
  • the UE may receive CSI-RS configuration information regarding the CSI-RS configuration to which the CSI-RS is mapped (S3410).
  • the terminal may receive the CSI-RS transmitted through the plurality of antenna ports from the base station based on the received CSI-RS configuration information (S3420).
  • the CSI-RS configuration is a 32-port CSI-RS configuration in which four 8-port CSI-RS configurations are merged
  • the CDM-8 in which the number of orthogonal weight vectors is 8 in the 32-port CSI-RS configuration
  • the pattern can be applied.
  • the CDM-8 pattern may be applied to the RE-pairs selected one by one for the merged 8-port CSI-RS configuration.
  • the 32-port CSI-RS configuration comprises first to fourth (legacy) 8-port CSI-RSs selected from among five (legacy) 8-port CSI-RS configurations located in RB-pairs (ie, PRB-pairs). It can be configured by merging the configuration as described above.
  • an 8-port CSI-RS configuration '0' including REs located at OFDM symbol indexes 5-6, subcarrier indexes 8-9, and 2-3, OFDM symbol index 9- 8-port CSI-RS configuration '1' located at 10, subcarrier indexes 10-11 and 4-5, OFDM symbol index 9-10, subcarrier indexes 8-9 and 2-3 8-port CSI-RS configuration '2', 8-port CSI-RS configuration '3' located at OFDM symbol indexes 9-10, subcarrier indexes 6-7 and 0-1, and OFDM symbol index 12- It may be assumed that an 8-port CSI-RS configuration '4' located at No. 13 and subcarrier indexes 8-9 and 2-3 is defined.
  • the first to fourth 8-port CSI-RS configurations may be selected from the '0' to '4' configuration of the 8-port CSI-RS.
  • a first (legacy) 8-port CSI-RS configuration is an 8-port CSI-RS configuration '0'
  • a fourth (legacy) 8-port CSI-RS configuration is an 8-port CSI-RS configuration '4. It may correspond to '.
  • the second and third (legacy) 8-port CSI-RS configurations may be selected from 8-port CSI-RS configurations '1' to '3'.
  • the second (legacy) 8-port CSI-RS configuration is an 8-port CSI-RS configuration '2'
  • the third (legacy) 8-port CSI-RS configuration is an 8-port CSI-RS configuration '3. Can be selected respectively.
  • a first group consisting of merging of RE-pairs having the highest subcarrier index for each merged 8-port CSI-RS configuration, and a RE-pair having a second highest subcarrier index for each merged 8-port CSI-RS configuration Group consisting of merging of the second group, second group consisting of merging of RE-pairs with the third highest subcarrier index per merged 8-port CSI-RS configuration, and fourth by merged 8-port CSI-RS configuration It may be assumed that a fourth group consisting of merging RE-pairs having a high subcarrier index is defined. In this case, the same CDM-8 pattern may be applied to each of the first to fourth groups.
  • the coordinates (k ', l') of the RE-pairs included in the first group are (9, 5) and (9, 6), (9, 9) and (9, 10), (7, 9). ) And (7, 10), (9, 12) and (9, 13), the coordinates of the RE-pairs included in the third group are (8, 5) and (8, 6), (8, 9) and (8, 10), (6, 9) and (6, 10), (8, 12) and (8, 13), the coordinates of the RE-pairs included in the second group are (3, 5) and (3 , 6), (3, 9) and (3, 10), (1, 9) and (1, 10), (3, 12) and (3, 13), the RE-pair included in the fourth group
  • Their coordinates are (2, 5) and (2, 6), (2, 9) and (2, 10), (0, 9) and (0, 10), (2, 12) and (2, 13) Each may correspond to.
  • the first and second groups may be the first set. Located in the set, and the third and fourth groups may be located in the second set.
  • 32 CSI-RS antenna ports transmitting a 32-port CSI-RS configuration may be numbered in 8-port units. More specifically, 32 CSI-RS antenna ports carrying a 32-port CSI-RS configuration may be numbered according to Equation 20, 21 or 24.
  • the antenna port number corresponding to the first group is ⁇ 15, 16, 23, 24, 31, 32, 39, 40 ⁇
  • the antenna port number corresponding to the second group is ⁇ 17, 18, 25, 26, 33 , 34, 41, 42 ⁇
  • the antenna port number corresponding to the third group is ⁇ 19, 20, 27, 28, 35, 36, 43, 44 ⁇
  • the antenna port number corresponding to the fourth group is ⁇ 21, 22 , 29, 30, 37, 38, 45, 46 ⁇ .
  • the weight vector of the CDM-8 pattern applied to each group may be determined based on Equation 15. Therefore, the CSI-RS transmitted through the antenna ports numbered 15, 17, 19 and 21 is transmitted through the antenna ports numbered [1 1 1 1 1 1 1 1 1], 16, 18, 20 and 22.
  • 35 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a wireless communication system includes a base station 3510 and a plurality of terminals 3520 located in an area of a base station 3510.
  • the base station 3510 includes a processor 3511, a memory 3512, and an RF unit 3513.
  • the processor 3511 implements the functions, processes, and / or methods proposed in FIGS. 1 to 34. Layers of the air interface protocol may be implemented by the processor 3511.
  • the memory 3512 is connected to the processor 3511 and stores various information for driving the processor 3511.
  • the RF unit 3513 is connected to the processor 3511 and transmits and / or receives a radio signal.
  • the terminal 3520 includes a processor 3351, a memory 3352, and an RF unit 3523.
  • the processor 3351 implements the functions, processes, and / or methods proposed in FIGS. 1 to 34. Layers of the air interface protocol may be implemented by the processor 3351.
  • the memory 3352 is connected to the processor 3351 and stores various information for driving the processor 3351.
  • the RF unit 3323 is connected to the processor 3351 to transmit and / or receive a radio signal.
  • the memories 3512 and 3522 may be inside or outside the processors 3511 and 3521, and may be connected to the processors 3511 and 3521 by various well-known means.
  • the base station 3510 and / or the terminal 3520 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 양상은, 무선 통신 시스템에서 단말의 채널 상태 정보-참조 신호(CSI-RS(Reference Signal))를 수신하는 방법에 있어서, 상기 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신하는 단계; 및 상기 수신한 CSI-RS 구성 정보에 기초하여 상기 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 상기 CSI-RS를 수신하는 단계; 를 포함하되, 상기 CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합(aggregate)된 32-포트 CSI-RS 구성인 경우, 상기 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터(weight vector)의 개수가 8인 CDM(Code Division Multiplexing)-8 패턴이 적용되되, 상기 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE(Resource Element)-쌍(pair)들에 상기 CDM-8 패턴이 적용될 수 있다.

Description

무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 채널 상태 정보(Channel State Information)-참조 신호를 송수신하기 위한 방법을 방법 및 이를 수행/지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은 채널 상태 정보(CSI: Channel State Information)를 송수신하기 위한 방법을 제안한다.
또한, 본 발명의 목적은 보다 큰 포트 수의 CSI-RS 자원을 디자인하기 위해 더 작은 포트 수의 CSI-RS 자원들을 병합하기 위한 효율적인 방식을 제안하고자 함이 그 목적이다.
또한, 다수의 CSI-RS 자원을 병합하여 사용함에 따라 발생할 수 있는 오버헤드를 최소화하기 위한 방법을 제안하고자 함이 그 목적이다.
또한, 본 발명의 목적은 채널 상태 정보-참조 신호를 송수신하기 위한 방법을 제안하기 위함이다.
또한, 본 발명은 CSI-RS의 최대 전력 전송을 달성하기 위한 CDM 적용 방식을 제안하고자 함이 그 목적이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 단말의 채널 상태 정보-참조 신호(CSI-RS(Reference Signal))를 수신하는 방법에 있어서, 상기 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신하는 단계; 및 상기 수신한 CSI-RS 구성 정보에 기초하여 상기 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 상기 CSI-RS를 수신하는 단계; 를 포함하되, 상기 CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합(aggregate)된 32-포트 CSI-RS 구성인 경우, 상기 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터(weight vector)의 개수가 8인 CDM(Code Division Multiplexing)-8 패턴이 적용되되, 상기 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE(Resource Element)-쌍(pair)들에 상기 CDM-8 패턴이 적용될 수 있다.
또한, 상기 32-포트 CSI-RS 구성은 RB(Resource Block)-쌍에 위치하는 5개의 8-포트 CSI-RS 구성들 중에서 선택된 제1 내지 제4 8-포트 CSI-RS 구성의 병합으로 구성될 수 있다.
또한, OFDM(orthogonal frequency division multiplexing) 심볼 인덱스 5-6번, 부반송파 인덱스 8-9번 및 2-3번에 위치하는 RE들이 포함된 8-포트 CSI-RS 구성 ‘0’, 상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 10-11번 및 4-5번에 위치하는 8-포트 CSI-RS 구성 ‘1’, 상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘2’, 상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 6-7번 및 0-1번에 위치하는 8-포트 CSI-RS 구성 ‘3’, 및 상기 OFDM 심볼 인덱스 12-13번, 상기 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘4’가 정의될 수 있다.
또한, 상기 제1 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘0’, 상기 제4 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘4’에 해당하며, 상기 제2 및 제3 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘1’ 내지 ‘3’에서 선택될 수 있다.
또한, 상기 제2 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘2’, 상기 제3 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘3’에 해당할 수 있다.
또한, 상기 병합된 8-포트 CSI-RS 구성별로 가장 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제1 그룹, 상기 병합된 8-포트 CSI-RS 구성별로 두 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제3 그룹, 상기 병합된 8-포트 CSI-RS 구성별로 세 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제2 그룹, 및 상기 병합된 8-포트 CSI-RS 구성별로 네 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제4 그룹이 정의되는 경우, 상기 제1 내지 제4 그룹별로 동일한 CDM-8 패턴이 각각 적용될 수 있다.
또한, 상기 제1 그룹에 포함되는 RE-쌍들의 좌표(k’, l’)는, (9, 5) 및 (9, 6), (9, 9) 및 (9, 10), (7, 9) 및 (7, 10), (9, 12) 및 (9, 13), 상기 제3 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (8, 5) 및 (8, 6), (8, 9) 및 (8, 10), (6, 9) 및 (6, 10), (8, 12) 및 (8, 13), 상기 제2 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (3, 5) 및 (3, 6), (3, 9) 및 (3, 10), (1, 9) 및 (1, 10), (3, 12) 및 (3, 13), 상기 제4 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (2, 5) 및 (2, 6), (2, 9) 및 (2, 10), (0, 9) 및 (0, 10), (2, 12) 및 (2, 13)에 각각 해당함, 여기서 상기 k’는 하나의 서브 프레임 내에서의 상기 부반송파 인덱스, 상기 l’는 상기 하나의 서브 프레임 내에서의 OFDM 심볼 인덱스를 각각 나타낼 수 있다.
또한, 상기 32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 8-포트 단위로 넘버링될 수 있다.
또한, 상기 32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 수학식 1에 따라 넘버링될 수 있다.
[수학식 1]
Figure PCTKR2017003187-appb-I000001
여기서, 상기 n은 상기 수학식 1에 따라 결정되는 최종 CSI-RS 포트 넘버, 상기 N은 상기 병합되는 CSI-RS 구성당 안테나 포트의 개수, 상기 k는 상기 병합되는 CSI-RS 구성 넘버임.
또한, 상기 제1 그룹에 대응되는 안테나 포트 넘버는 {15, 16, 23, 24, 31, 32, 39, 40}, 상기 제2 그룹에 대응되는 안테나 포트 넘버는 {17, 18, 25, 26, 33, 34, 41, 42}, 상기 제3 그룹에 대응되는 안테나 포트 넘버는 {19, 20, 27, 28, 35, 36, 43, 44}, 상기 제4 그룹에 대응되는 안테나 포트 넘버는 {21, 22, 29, 30, 37, 38, 45, 46}일 수 있다.
또한, 상기 CDM-8 패턴의 상기 가중치 벡터는 수학식 2에 기초하여 결정될 수 있다.
[수학식 2]
Figure PCTKR2017003187-appb-I000002
또한, 상기 수학식 1에 따라 15, 17, 19 및 21로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 1 1 1 1 1 1 1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 16, 18, 20 및 22로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 1 -1 1 -1 1 -1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 23, 25, 27 및 29로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 -1 -1 1 1 -1 -1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 24, 26, 28 및 30로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 -1 1 1 -1 -1 1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 31, 33, 35 및 37로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 1 1 -1 -1 -1 -1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 32, 34, 36 및 38로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 1 -1 -1 1 -1 1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 39, 41, 43 및 45로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 -1 -1 -1 -1 1 1]의 CDM-8 패턴이 적용되며, 상기 수학식 1에 따라 40, 42, 44 및 46로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 -1 1 -1 1 1 -1]의 CDM-8 패턴이 적용될 수 있다.
또한, 상기 CSI-RS 구성은, 상기 4개의 8-포트 CSI-RS 구성들이 병합된 상기 32-포트 CSI-RS 구성, 5개의 4-포트 CSI-RS 구성들이 병합된 20-포트 CSI-RS 구성, 3개의 상기 8-포트 CSI-RS 구성들이 병합된 24-포트 CSI-RS 구성 및 7개의 상기 4-포트 CSI-RS 구성들이 병합된 28-포트 CSI-RS 구성 중 어느 하나로 설정될 수 있다.
또한, 본 발명의 다른 양상은, 무선 통신 시스템에서 채널 상태 정보-참조 신호(CSI-RS(Reference Signal))를 수신하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛을 제어하는 프로세서; 를 포함하고, 상기 프로세서는, 상기 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신하고,
상기 수신한 CSI-RS 구성 정보에 기초하여 상기 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 상기 CSI-RS를 수신하되, 상기 CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합(aggregate)된 32-포트 CSI-RS 구성인 경우, 상기 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터(weight vector)의 개수가 8인 CDM(Code Division Multiplexing)-8 패턴이 적용되되, 상기 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE(Resource Element)-쌍(pair)들에 상기 CDM-8 패턴이 적용될 수 있다.
또한, 상기 32-포트 CSI-RS 구성은 RB(Resource Block)-쌍에 위치하는 5개의 8-포트 CSI-RS 구성들 중에서 선택된 제1 내지 제4 8-포트 CSI-RS 구성의 병합으로 구성될 수 있다.
본 발명의 실시예에 따르면, 단말이 원활하게 기지국에게 CSI를 도출하여 피드백할 수 있다.
또한, 본 발명의 실시예에 따른 CSI-RS 패턴을 사용하는 경우, 레가시 시스템의 CSI-RS 패턴을 재사용하므로, 레가시 시스템을 크게 변경하지 않고도 새롭고 효율적인 CSI-RS 패턴의 도출/사용이 가능하다는 효과를 갖는다. 또한, 이로써 새로운 시스템과 레가시 시스템과의 호환성이 유지될 수 있다는 효과를 갖는다.
또한, 본 발명의 실시예에 따른 CSI-RS 패턴을 사용하는 경우, CSI-RS 전송에 있어 최대 전력 전송이 가능하다는 효과를 갖는다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서, 64개의 안테나 요소(antenna elements)를 가지는 2차원 능동 안테나 시스템을 예시한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국 또는 단말이 AAS 기반의 3D(3-Dimension) 빔 형성이 가능한 다수의 송/수신 안테나를 갖고 있는 시스템을 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 교차 편파(cross polarization)를 가지는 2차원 안테나 시스템을 예시한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
도 14는 본 발명의 일 실시예에 따른 두 개의 16-포트 CSI-RS 자원/패턴들이 병합된 32-포트 CSI-RS 자원/패턴을 예시한 도면이다.
도 15는 본 발명의 일 실시예에 따른 두 개의 16-포트 CSI-RS 자원/패턴들이 병합된 32-포트 CSI-RS 자원/패턴을 예시한 도면이다.
도 16은 본 발명의 일 실시예에 따른 FDM 방식을 이용한 CSI-RS 자원/패턴 디자인의 실시예를 도시한 도면이다.
도 17은 본 발명의 일 실시예에 따른 FDM 방식을 이용한 CSI-RS 자원/패턴 디자인의 실시예를 도시한 도면이다.
도 18 및 19는 본 발명의 실시예에 따른 6-포트 CSI-RS 자원/패턴의 구성 방법을 예시한 도면들이다.
도 20은 본 발명의 일 실시예에 따른 시간 축에서 CDM-6를 적용한 경우의 실시예를 예시한 도면이다.
도 21은 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 5가지 레가시 CSI-RS 구성들을 예시한 도면이다.
도 22 내지 도 24는 본 발명의 실시예에 따른 CDM-8이 적용되는 8-포트 CSI-RS 자원/패턴 디자인을 예시한 도면들이다.
도 25는 본 발명의 일 실시예에 따른 단말의 CSI 보고 방법에 관한 순서도이다.
도 26 및 27은 본 발명의 일 실시예에 따른 CDM-8이 적용되는 병합된 32-포트 CSI-RS 자원/패턴/구성 디자인을 예시한다.
도 28은 본 발명의 일 실시예에 따른 24-포트 CSI-RS 자원/패턴/구성에 적용되는 CDM-8 패턴 디자인을 예시한다.
도 29는 본 발명의 일 실시예에 따른 24-포트 CSI-RS 자원/패턴/구성에 적용되는 CDM-8 패턴 디자인을 예시한다.
도 30은 본 발명의 일 실시예에 따른 CDM-8 패턴들을 예시한 도면이다.
도 31은 본 발명의 일 실시예에 따른 CDM-8 패턴들을 예시한 도면이다.
도 32는 본 발명의 일 실시예에 따른 포트 넘버링을 예시한 도면이다.
도 33은 본 발명의 일 실시예에 따른 FDM 기반의 32-포트 CSI-RS 디자인을 예시한다.
도 34는 본 발명의 일 실시예에 따른 단말의 CSI-RS 수신 방법에 관한 순서도이다.
도 35은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2017003187-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017003187-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)라 하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
MIMO (Multi-Input Multi-Output)
MIMO 기술은 지금까지 일반적으로 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여, 다중 송신(Tx) 안테나와 다중 수신(Rx) 안테나를 사용한다. 다시 말해서, MIMO 기술은 무선 통신 시스템의 송신단 또는 수신단에서 다중 입출력 안테나를 사용하여 용량 증대 또는 성능 개성을 꾀하기 위한 기술이다. 이하에서는 'MIMO'를 '다중 입출력 안테나'라 칭하기로 한다.
더 구체적으로, 다중 입출력 안테나 기술은 하나의 완전한 메시지(total message)를 수신하기 위하여 한 개의 안테나 경로에 의존하지 않으며, 여러 개의 안테나를 통해 수신한 복수의 데이터 조각을 수집하여 완전한 데이터를 완성시킨다. 결과적으로, 다중 입출력 안테나 기술은 특정 시스템 범위 내에서 데이터 전송율을 증가시킬 수 있으며, 또한 특정 데이터 전송율을 통해 시스템 범위를 증가시킬 수 있다.
차세대 이동통신은 기존 이동통신에 비해 훨씬 높은 데이터 전송률을 요구하므로 효율적인 다중 입출력 안테나 기술이 반드시 필요할 것으로 예상된다. 이와 같은 상황에서 MIMO 통신 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신 기술이며, 데이터 통신 확대 등으로 인해 한계 상황에 따라 다른 이동통신의 전송량 한계를 극복할 수 있는 기술로서 관심을 모으고 있다.
한편, 현재 연구되고 있는 다양한 전송효율 향상 기술 중 다중 입출력 안테나(MIMO) 기술은 추가적인 주파수 할당이나 전력증가 없이도 통신 용량 및 송수신 성능을 획기적으로 향상시킬 수 있는 방법으로서 현재 가장 큰 주목을 받고 있다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 5를 참조하면, 송신 안테나의 수를 N_T개로, 수신 안테나의 수를 N_R개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가하므로, 전송 레이트(transfer rate)를 향상시키고, 주파수 효율을 획기적으로 향상시킬 수 있다. 이 경우, 채널 전송 용량의 증가에 따른 전송 레이트는 하나의 안테나를 이용하는 경우의 최대 전송 레이트(R_o)에 다음과 같은 레이트 증가율(R_i)이 곱해진 만큼으로 이론적으로 증가할 수 있다.
Figure PCTKR2017003187-appb-M000001
즉, 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다.
이와 같은 다중 입출력 안테나의 기술은 다양한 채널 경로를 통과한 심볼들을 이용하여 전송 신뢰도를 높이는 공간 다이버시티(spatial diversity) 방식과, 다수의 송신 안테나를 이용하여 다수의 데이터 심볼을 동시에 송신하여 전송률을 향상시키는 공간 멀티플렉싱(spatial multiplexing) 방식으로 나눌 수 있다. 또한 이러한 두 가지 방식을 적절히 결합하여 각각의 장점을 적절히 얻고자 하는 방식에 대한 연구도 최근 많이 연구되고 있는 분야이다.
각각의 방식에 대해 좀더 구체적으로 살펴보면 다음과 같다.
첫째로, 공간 다이버시티 방식의 경우에는 시공간 블록 부호 계열과, 다이버시티 이득과 부호화 이득을 동시에 이용하는 시공간 트렐리스(Trelis) 부호 계열 방식이 있다. 일반적으로 비트 오류율 개선 성능과 부호 생성 자유도는 트렐리스 부호 방식이 우수하지만, 연산 복잡도는 시공간 블록 부호가 간단하다. 이와 같은 공간 다이버서티 이득은 송신 안테나 수(N_T)와 수신 안테나 수(N_R)의 곱(N_T × N_R)에 해당되는 양을 얻을 수 있다.
둘째로, 공간 멀티플렉싱 기법은 각 송신 안테나에서 서로 다른 데이터 열을 송신하는 방법인데, 이때 수신기에서는 송신기로부터 동시에 전송된 데이터 사이에 상호 간섭이 발생하게 된다. 수신기에서는 이 간섭을 적절한 신호처리 기법을 이용하여 제거한 후 수신한다. 여기에 사용되는 잡음 제거 방식은 MLD(maximum likelihood detection) 수신기, ZF(zero-forcing) 수신기, MMSE(minimum mean square error) 수신기, D-BLAST (Diagonal-Bell Laboratories Layered Space-Time), V-BLAST(Vertical-Bell Laboratories Layered Space-Time) 등이 있으며, 특히 송신단에서 채널 정보를 알 수 있는 경우에는 SVD(singular value decomposition) 방식 등을 사용할 수 있다.
셋째로, 공간 다이버시티와 공간 멀티플렉싱의 결합된 기법을 들 수 있다. 공간 다이버시티 이득만을 얻을 경우 다이버시티 차수의 증가에 따른 성능개선 이득이 점차 포화되며, 공간 멀티플렉싱 이득만을 취하면 무선 채널에서 전송 신뢰도가 떨어진다. 이를 해결하면서 두 가지 이득을 모두 얻는 방식들이 연구되어 왔으며, 이 중 시공간 블록 부호 (Double-STTD), 시공간 BICM(STBICM) 등의 방식이 있다.
상술한 바와 같은 다중 입출력 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링하는 경우 다음과 같이 나타낼 수 있다.
먼저, 도 5에 도시된 바와 같이 N_T개의 송신 안테나와 N_R개의 수신 안테나가 존재하는 것을 가정한다.
먼저, 송신 신호에 대해 살펴보면, 이와 같이 N_T개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 N_T개 이므로, 이를 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000002
한편, 각각의 전송 정보 s_1, s_2, ..., s_N_T에 있어 전송 전력을 달리 할 수 있으며, 이때 각각의 전송 전력을 P_1, P_2, ..., P_N_T라 하면, 전송 전력이 조정된 전송 정보는 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000003
또한, 수학식 3의 전송 전력이 조정된 전송 정보를 전송 전력의 대각 행렬 P로 다음과 같이 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000004
한편, 수학식 4의 전송 전력이 조정된 정보 벡터는 그 후 가중치 행렬 W가 곱해져 실제 전송되는 N_T개의 전송 신호 x_1, x_2, ..., x_N_T를 구성한다. 여기서, 가중치 행렬은 전송 채널 상황 등에 따라 전송 정보를 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송 신호 x_1, x_2, ..., x_N_T를 벡터 x를 이용하여 다음과 같이 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000005
여기서, w_ij는 i번째 송신 안테나와 j번째 전송 정보간의 가중치를 나타내며, W는 이를 행렬로 나타낸 것이다. 이와 같은 행렬 W를 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)라 부른다.
한편, 상술한 바와 같은 전송 신호(x)는 공간 다이버시티를 사용하는 경우와 공간 멀티플랙싱을 사용하는 경우로 나누어 생각해 볼 수 있다.
공간 멀티플랙싱을 사용하는 경우는 서로 다른 신호를 다중화하여 보내게 되므로, 정보 벡터 s의 원소들이 모두 다른 값을 가지게 되는 반면, 공간 다이버시티를 사용하게 되면 같은 신호를 여러 채널 경로를 통하여 보내게 되므로 정보 벡터 s의 원소들이 모두 같은 값을 갖게 된다.
물론, 공간 멀티플랙싱과 공간 다이버시티를 혼합하는 방법도 고려 가능하다. 즉, 예를 들어 3 개의 송신 안테나를 통하여 같은 신호를 공간 다이버시티를 이용하여 전송하고, 나머지는 각각 다른 신호를 공간 멀티플랙싱하여 보내는 경우도 고려할 수 있다.
다음으로, 수신신호는 N_R개의 수신 안테나가 있는 경우, 각 안테나의 수신신호 y_1, y_2, ..., y_N_R을 벡터 y로 다음과 같이 나타내기로 한다.
Figure PCTKR2017003187-appb-M000006
한편, 다중 입출력 안테나 통신 시스템에 있어서의 채널을 모델링하는 경우, 각각의 채널은 송수신 안테나 인덱스에 따라 구분할 수 있으며, 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 h_ij로 표시하기로 한다. 여기서, h_ij의 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신안테나의 인덱스가 나중임에 유의한다.
이러한 채널은 여러 개를 한데 묶어서 벡터 및 행렬 형태로도 표시 가능하다. 벡터 표시의 예를 들어 설명하면 다음과 같다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 6에 도시된 바와 같이 총 N_T개의 송신 안테나로부터 수신안테나 i로 도착하는 채널은 다음과 같이 표현 가능하다.
Figure PCTKR2017003187-appb-M000007
또한, 상기 수학식 7과 같은 행렬 표현을 통해 N_T개의 송신 안테나로부터 N_R개의 수신 안테나를 거치는 채널을 모두 나타내는 경우 다음과 같이 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000008
한편, 실제 채널은 위와 같은 채널 행렬 H를 거친 후에 백색 잡음(AWGN: Additive White Gaussian Noise)가 더해지게 되므로, N_R개의 수신 안테나 각각에 더해지는 백색 잡음 n_1, n_2, ..., n_N_R을 백터로 표현하면 다음과 같다.
Figure PCTKR2017003187-appb-M000009
상술한 바와 같은 전송 신호, 수신 신호, 채널, 및 백색 잡음의 모델링을 통해 다중 입출력 안테나 통신 시스템에서의 각각은 다음과 같은 관계를 통해 나타낼 수 있다.
Figure PCTKR2017003187-appb-M000010
한편, 채널의 상태를 나타내는 채널 행렬 H의 행과 열의 수는 송수신 안테나 수에 의해서 결정된다. 채널 행렬 H는 앞서 살펴본 바와 같이 행의 수는 수신 안테나의 수 N_R과 같아지고, 열의 수는 송신 안테나의 수 N_T와 같아 지게 된다. 즉, 채널 행렬 H는 N_R×N_T 행렬이 된다.
일반적으로, 행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 다음과 같이 제한된다.
Figure PCTKR2017003187-appb-M000011
또한, 행렬을 고유치 분해(Eigen value decomposition)를 하였을 때, 랭크는 고유치(eigen value)들 중에서 0이 아닌 고유치들의 개수로 정의할 수 있다. 비슷한 방법으로, 랭크를 SVD(singular value decomposition) 했을 때 0이 아닌 특이값(singular value)들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 명세서에 있어, MIMO 전송에 대한 '랭크(Rank)'는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수'는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
참조 신호( RS : Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 상태 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 상태 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 무선 자원 무선 자원 관리(RRM: Radio Resource Management) 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 7을 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 7(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 7(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 하위 호환성(backward compatibility), 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서 LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation-RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS를 매 서브 프레임마다 전 대역에 전송하게 되면 RS 오버헤드가 지나치게 커지게 된다. 따라서 LTE-A 시스템에서는 MCS, PMI 등의 선택을 위한 CSI 측정 목적의 CSI-RS와 데이터 복조를 위한 DM-RS로 분리되어 두 개의 RS가 추가되었다. CSI-RS는 RRM 측정 등의 목적으로도 사용될 수는 있지만 CSI 획득의 주목적을 위해서 디자인되었다. CSI-RS는 데이터 복조에 사용되지 않으므로 매 서브 프레임마다 전송될 필요는 없다. 그러므로 CSI-RS의 오버헤드를 줄이기 위하여 시간 축 상에서 간헐적으로 전송하도록 한다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM 방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM 방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송된다. 이때, 사용되는 안테나 포트는 각각 p=15, p=15,16, p=15,...,18, p=15,...,22이다. CSI-RS는 서브캐리어 간격 Δf=15kHz에 대해서만 정의될 수 있다.
CSI-RS 전송을 위해 설정된 서브프레임 내에서, CSI-RS 시퀀스는 아래 수학식 12와 같이 각 안테나 포트(p) 상의 참조 심볼(reference symbol)로서 이용되는 복소 변조 심볼(complex-valued modulation symbol) a_k,l^(p)에 매핑된다.
Figure PCTKR2017003187-appb-M000012
상기 수학식 12에서, (k',l')(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 슬롯 내 OFDM 심볼 인덱스를 나타낸다.) 및 n_s의 조건은 아래 표 3 또는 표 4와 같은 CSI-RS 설정(configuration)에 따라 결정된다.
표 3는 일반 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure PCTKR2017003187-appb-T000003
표 4는 확장 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure PCTKR2017003187-appb-T000004
표 3 및 표 4를 참조하면, CSI-RS의 전송에 있어서, 이종 네트워크(HetNet: heterogeneous network) 환경을 포함하여 멀티 셀 환경에서 셀간 간섭(ICI: inter-cell interference)을 줄이기 위하여 최대 32개(일반 CP 경우) 또는 최대 28개(확장 CP 경우)의 서로 다른 구성(configuration)이 정의된다.
CSI-RS 구성은 셀 내의 안테나 포트의 개수 및 CP에 따라 서로 다르며, 인접한 셀은 최대한 서로 다른 구성을 가질 수 있다. 또한, CSI-RS 구성은 프레임 구조에 따라 FDD 프레임과 TDD 프레임에 모두 적용하는 경우와 TDD 프레임에만 적용하는 경우로 나눠질 수 있다.
표 3 및 표 4를 기반으로 CSI-RS 구성에 따라 (k',l') 및 n_s가 정해지고, 각 CSI-RS 안테나 포트에 따라 CSI-RS 전송에 이용하는 시간-주파수 자원이 결정된다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다. 특히, 도 8은 normal CP가 적용된 서브프레임 내에서 CSI-RS 안테나 포트가 1, 2, 4 또는 8개인 경우에 대한 CSI-RS 패턴들을 예시한다.
도 8(a)는 1개 또는 2개의 CSI-RS 안테나 포트들에 의한 CSI-RS 전송에 사용 가능한 20가지 CSI-RS 구성들을 나타낸 것이고, 도 8(b)는 4개의 CSI-RS 안테나 포트들에 의해 사용 가능한 10가지 CSI-RS 구성들을 나타낸 것이며, 도 8(c)는 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 5가지 CSI-RS 구성들을 나타낸 것이다.
이와 같이, 각 CSI-RS 구성에 따라 CSI-RS가 전송되는 무선 자원(즉, RE 쌍)이 결정된다.
특정 셀에 대하여 CSI-RS 전송을 위해 1개 혹은 2개의 안테나 포트가 설정되면, 도 8(a)에 도시된 20가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
마찬가지로, 특정 셀에 대하여 CSI-RS 전송을 위해 4개의 안테나 포트가 설정되면, 도 8(b)에 도시된 10가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다. 또한, 특정 셀에 대하여 CSI-RS 전송을 위해 8개의 안테나 포트가 설정되면, 도 8(c)에 도시된 5가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
2개의 안테나 포트 별(즉, {15,16}, {17,18}, {19,20}, {21,22})로 각각의 안테나 포트에 대한 CSI-RS는 동일한 무선 자원에 CDM되어 전송된다. 안테나 포트 15 및 16를 예를 들면, 안테나 포트 15 및 16에 대한 각각의 CSI-RS 복소 심볼은 동일하나, 서로 다른 직교 코드(예를 들어, 왈시 코드(walsh code)가 곱해져서 동일한 무선 자원에 매핑된다. 안테나 포트 15에 대한 CSI-RS의 복소 심볼에는 [1, 1]이 곱해지고, 안테나 포트 16에 대한 CSI-RS의 복소 심볼에는 [1 -1]이 곱해져서 동일한 무선 자원에 매핑된다. 이는 안테나 포트 {17,18}, {19,20}, {21,22}도 마찬가지이다.
UE는 전송된 심볼에 곱해진 코드를 곱하여 특정 안테나 포트에 대한 CSI-RS를 검출할 수 있다. 즉, 안테나 포트 15에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 1]을 곱하고, 안테나 포트 16에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 -1]을 곱한다.
도 8(a) 내지 (c)를 참조하면, 동일한 CSI-RS 구성 인덱스에 해당하게 되면, 안테나 포트 수가 많은 CSI-RS 구성에 따른 무선 자원은 CSI-RS 안테나 포트 수가 적은 CSI-RS 구성에 따른 무선 자원을 포함한다. 예를 들어, CSI-RS 구성 0의 경우, 8개 안테나 포트 수에 대한 무선 자원은 4개 안테나 포트 수에 대한 무선 자원과 1 또는 2개의 안테나 포트 수에 대한 무선 자원을 모두 포함한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
특히, 도 9는 extended CP가 적용된 서브프레임 내에서 CSI-RS 안테나 포트가 1, 2, 4 또는 8개인 경우에 대한 CSI-RS 패턴들을 나타낸다.
도 9(a)는 1개 또는 2개의 CSI-RS 안테나 포트들에 의한 CSI-RS 전송에 사용 가능한 16가지 CSI-RS 구성들을 나타낸 것이고, 도 8(b)는 4개의 CSI-RS 안테나 포트들에 의해 사용 가능한 8가지 CSI-RS 구성들을 나타낸 것이며, 도 8(c)는 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 4가지 CSI-RS 구성들을 나타낸 것이다.
이와 같이, 각 CSI-RS 구성에 따라 CSI-RS가 전송되는 무선 자원(즉, RE 쌍)이 결정된다.
특정 셀에 대하여 CSI-RS 전송을 위해 1개 혹은 2개의 안테나 포트가 설정되면, 도 9(a)에 도시된 16가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
마찬가지로, 특정 셀에 대하여 CSI-RS 전송을 위해 4개의 안테나 포트가 설정되면, 도 9(b)에 도시된 8가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다. 또한, 특정 셀에 대하여 CSI-RS 전송을 위해 8개의 안테나 포트가 설정되면, 도 9(c)에 도시된 4가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.하나의 셀에서 복수의 CSI-RS 구성이 사용될 수 있다. 넌-제로 전력(NZP: non-zero power) CSI-RS는 0개 또는 1개 CSI-RS 구성만이 이용되고, 제로 전력(ZP: zero power) CSI-RS는 0개 또는 여러 개의 CSI-RS 구성이 이용될 수 있다.
상위 계층에 의해 설정되는 16 비트의 비트맵인 ZP CSI-RS(ZeroPowerCSI-RS)에서 1로 설정된 각 비트 별로, UE는 위의 표 3 및 표 4의 4개의 CSI-RS 열(column)에 해당하는 RE들에서(상위 계층에 의해 설정된 NZP CSI-RS를 가정하는 RE와 중복되는 경우를 제외) 제로 전송 전력을 가정한다. 최상위 비트(MSB: Most Significant Bit)는 가장 낮은 CSI-RS 구성 인덱스에 해당하고, 비트맵 내에서 그 다음의 비트는 순서대로 다음의 CSI-RS 구성 인덱스에 해당한다.
CSI-RS는 위의 표 3 및 표 4에서 (n_s mod 2)의 조건을 만족하는 하향링크 슬롯 및 CSI-RS 서브프레임 구성을 만족하는 서브프레임에서만 전송된다.
프레임 구조 타입 2(TDD)의 경우, 스페셜 서브프레임, 동기 신호(SS), PBCH 또는 SIB 1(SystemInformationBlockType1) 메시지 전송과 충돌되는 서브프레임 또는 페이징 메시지 전송을 위해 설정된 서브프레임에서 CSI-RS는 전송되지 않는다.
또한, 안테나 포트 세트 S(S={15}, S={15,16}, S={17,18}, S={19,20} 또는 S={21,22}) 내 속하는 어떠한 안테나 포트에 대한 CSI-RS가 전송되는 RE는 PDSCH 또는 다른 안테나 포트의 CSI-RS 전송에 사용되지 않는다.
CSI-RS 전송에 사용되는 시간-주파수 자원들은 데이터 전송에 사용될 수 없으므로, CSI-RS 오버헤드가 증가할수록 데이터 처리량(throughput)이 감소하게 된다. 이를 고려하여 CSI-RS는 매 서브프레임마다 전송되도록 구성되지 않고, 다수의 서브프레임에 해당하는 소정의 전송 주기마다 전송되도록 구성된다. 이 경우, 매 서브프레임마다 CSI-RS가 전송되는 경우에 비하여 CSI-RS 전송 오버헤드가 많이 낮아질 수 있다.
CSI-RS 전송을 위한 서브프레임 주기(이하, 'CSI 전송 주기'로 지칭함)(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)은 아래 표 5과 같다.
표 5은 CSI-RS 서브프레임 구성을 예시한다.
Figure PCTKR2017003187-appb-T000005
표 5을 참조하면, CSI-RS 서브프레임 구성(I_CSI-RS)에 따라 CSI-RS 전송 주기(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)이 결정된다.
표 5의 CSI-RS 서브프레임 구성은 앞서 'SubframeConfig' 필드 및 'zeroTxPowerSubframeConfig' 필드 중 어느 하나로 설정될 수 있다. CSI-RS 서브프레임 구성은 NZP CSI-RS 및 ZP CSI-RS에 대하여 개별적으로(separately) 설정될 수 있다.
CSI-RS를 포함하는 서브프레임은 아래 수학식 13을 만족한다.
Figure PCTKR2017003187-appb-M000013
수학식 13에서 T_CSI-RS는 CSI-RS 전송 주기, Δ_CSI-RS는 서브프레임 오프셋 값, n_f는 시스템 프레임 넘버, n_s는 슬롯 넘버를 의미한다.
서빙 셀에 대해 전송 모드 9(transmission mode 9)가 설정된 UE의 경우, UE는 하나의 CSI-RS 자원 구성이 설정될 수 있다. 서빙 셀에 대해 전송 모드 10(transmission mode 10)이 설정된 UE의 경우, UE는 하나 또는 그 이상의 CSI-RS 자원 구성(들)이 설정될 수 있다.
매시브 MIMO (Massive MIMO )
다수의 안테나를 가지는 MIMO 시스템을 매시브 MIMO(Massive MIMO) 시스템으로 지칭할 수 있으며, 스펙트럼 효율(spectral efficiency), 에너지 효율(energy efficiency), 프로세싱 복잡도(processing complexity)를 향상 시키기 위한 수단으로써 주목 받고 있다.
최근 3GPP에서는 미래의 이동 통신 시스템의 스펙트럼 효율성에 대한 요구사항을 만족시키기 위하여 매시브 MIMO 시스템에 대한 논의가 시작되었다. 매시브 MIMO는 전-차원 MIMO(FD-MIMO: Full-Dimension MIMO)로도 지칭된다.
LTE 릴리즈(Rel: release)-12 이후의 무선 통신 시스템에서는 능동 안테나 시스템(AAS: Active Antenna System)의 도입이 고려되고 있다.
신호의 위상 및 크기를 조정할 수 있는 증폭기와 안테나가 분리되어 있는 기존의 수동 안테나 시스템과 달리, AAS는 각각의 안테나가 증폭기와 같은 능동 소자를 포함하도록 구성된 시스템을 의미한다.
AAS는 능동 안테나 사용에 따라 증폭기와 안테나를 연결하기 위한 별도의 케이블, 커넥터, 기타 하드웨어 등이 필요하지 않고, 따라서 에너지 및 운용 비용 측면에서 효율성이 높은 특징을 갖는다. 특히, AAS는 각 안테나 별 전자식 빔 제어(electronic beam control) 방식을 지원하기 때문에 빔 방향 및 빔 폭을 고려한 정교한 빔 패턴 형성 또는 3차원 빔 패턴을 형성하는 등의 진보된 MIMO 기술을 가능하게 한다.
AAS 등의 진보된 안테나 시스템의 도입으로 다수의 입출력 안테나와 다차원 안테나 구조를 갖는 대규모 MIMO 구조 또한 고려되고 있다. 일례로, 기존의 일자 형 안테나 배열과 달리 2차원(2D: 2-Dimension) 안테나 배열을 형성할 경우, AAS의 능동 안테나에 의해 3차원 빔 패턴을 형성할 수 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서, 64개의 안테나 요소(antenna elements)를 가지는 2차원 능동 안테나 시스템을 예시한다.
도 10에서는 일반적인 2차원(2D: 2 Dimension) 안테나 배열을 예시하고 있으며, 도 10과 같이 N_t=N_v * N_h개의 안테나가 정방형의 모양을 갖는 경우를 고려할 수 있다. 여기서, N_h는 수평 방향으로 안테나 열의 개수를 N_v는 수직 방향으로 안테나 행의 개수를 나타낸다.
이러한 2D 구조의 안테나 배열을 이용하면, 3차원 공간에서 전송 빔을 제어할 수 있도록 무선 파장(radio wave)이 수직 방향(고도(elevation)) 및 수평 방향(방위각(azimuth))으로 모두 제어될 수 있다. 이러한 타입의 파장 제어 메커니즘을 3차원 빔포밍으로 지칭할 수 있다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국 또는 단말이 AAS 기반의 3D(3-Dimension) 빔 형성이 가능한 다수의 송/수신 안테나를 갖고 있는 시스템을 예시한다.
도 11은 앞서 설명한 예를 도식화한 것으로서, 2차원 안테나 배열(즉, 2D-AAS)를 이용한 3D MIMO 시스템을 예시한다.
송신 안테나 관점에서 상기 3차원 빔 패턴을 활용할 경우, 빔의 수평 방향뿐만 아니라 수직 방향으로의 준-정적 또는 동적인 빔 형성을 수행할 수 있으며 일례로 수직 방향의 섹터 형성 등의 응용을 고려할 수 있다.
또한, 수신 안테나 관점에서는 대규모 수신 안테나를 활용하여 수신 빔을 형성할 때, 안테나 배열 이득(antenna array gain)에 따른 신호 전력 상승 효과를 기대할 수 있다. 따라서, 상향링크의 경우, 기지국이 다수의 안테나를 통해 단말로부터 전송되는 신호를 수신할 수 있으며, 이때 단말은 간섭 영향을 줄이기 위해 대규모 수신 안테나의 이득을 고려하여 자신의 송신 전력을 매우 낮게 설정할 수 있는 장점이 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 교차 편파(cross polarization)를 가지는 2차원 안테나 시스템을 예시한다.
편파(Polarization)를 고려한 2D 평면 배열 안테나(planar antenna array) 모델의 경우, 도 12와 같이 도식화할 수 있다.
수동적 안테나(passive antenna)에 따른 기존의 MIMO 시스템과 달리, 능동 안테나에 기반한 시스템은 각 안테나 요소에 부착된(또는 포함된) 능동 소자(예를 들어, 증폭기)에 가중치를 적용함으로써 안테나 요소의 이득(gain)을 동적으로 조절할 수 있다. 방사 패턴(radiation pattern)은 안테나 요소의 개수, 안테나 간격(spacing) 등과 같은 안테나 배치(arrangement)에 의존하므로, 안테나 시스템은 안테나 요소 레벨에서 모델링될 수 있다.
도 12의 예시와 같은 안테나 배열 모델을 (M, N, P)로 나타낼 수 있으며, 이는 안테나 배열 구조를 특징 짓는 파라미터에 해당된다.
M은 각 열(즉, 수직 방향에서)에서 같은 편파(polarization)를 가지고 있는 안테나 요소(antenna element)의 개수(즉, 각 열에서 +45°경사(slant)를 가지고 있는 안테나 요소의 개수 또는 각 열에서 -45°경사(slant)를 가지고 있는 안테나 요소의 개수)를 나타낸다.
N은 수평 방향의 열의 개수(즉, 수평 방향에서 안테나 요소의 개수)를 나타낸다.
P는 편파(polarization)의 차원(dimension)의 개수를 나타낸다. 도 11의 경우와 같이 교차 편파(cross polarization)의 경우 P=2이나, 동일 편파(co-polarization)의 경우 P=1이다.
안테나 포트(antenna port)는 물리적 안테나 요소(physical antenna element)로 매핑될 수 있다. 안테나 포트(antenna port)는 해당 안테나 포트와 관련된 참조 신호에 의해 정의될 수 있다. 예를 들어, LTE 시스템에서 안테나 포트 0는 CRS(Cell-specific Reference Signal)와 관련되고, 안테나 포트 6는 PRS(Positioning Reference Signal)와 관련될 수 있다.
일례로, 안테나 포트와 물리적 안테나 요소 간은 일대일 매핑될 수 있다. 단일의 교차 편파(cross polarization) 안테나 요소가 하향링크 MIMO 또는 하향링크 전송 다이버시티를 위해 사용되는 경우 등이 이에 해당될 수 있다. 예를 들어, 안테나 포트 0는 하나의 물리적 안테나 요소에 매핑되는 반면, 안테나 포트 1은 다른 물리적 안테나 요소에 매핑될 수 있다. 이 경우, 단말 입장에서는, 2개의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 참조 신호와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 참조 신호와 관련된다.
다른 일례로, 단일의 안테나 포트는 다중의 물리적 안테나 요소에 매핑될 수 있다. 빔포밍(beamforming)을 위해 사용되는 경우 등이 이에 해당될 수 있다. 빔포밍은 다중의 물리적 안테나 요소를 이용함으로써, 하향링크 전송이 특정 단말에게 향하도록 할 수 있다. 일반적으로 다중의 교차 편파(cross polarization) 안테나 요소의 다중의 열(column)로 구성되는 안테나 배열(antenna array)를 사용하여 이를 달성할 수 있다. 이 경우, 단말 입장에서는, 단일의 안테나 포트로부터 발생된 단일의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 CRS와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 CRS와 관련된다.
즉, 안테나 포트는 기지국에서 물리적 안테나 요소로부터 전송된 실제 하향링크 전송이 아닌 단말 입장에서의 하향링크 전송을 나타낸다.
다른 일례로, 다수의 안테나 포트가 하향링크 전송을 위해 사용되나, 각 안테나 포트는 다중의 물리적 안테나 요소에 매핑될 수 있다. 이 경우는 안테나 배열이 하향링크 MIMO 또는 하향링크 다이버시티를 위해 사용되는 경우 등이 이에 해당될 수 있다. 예를 들어, 안테나 포트 0 및 1은 각각 다중의 물리적 안테나 요소에 매핑될 수 있다. 이 경우, 단말 입장에서는, 2개의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 참조 신호와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 참조 신호와 관련된다.
FD-MIMO 에서는, 데이터 스트림의 MIMO 프리코딩은 안테나 포트 가상화, 트랜스시버 유닛(또는 송수신 유닛)(TXRU: transceiver unit) 가상화, 안테나 요소 패턴을 거칠 수 있다.
안테나 포트 가상화는 안테나 포트 상의 스트림이 TXRU 상에서 프리코딩된다. TXRU 가상화는 TXRU 신호가 안테나 요소 상에서 프리코딩된다. 안테나 요소 패턴은 안테나 요소로부터 방사되는 신호는 방향성의 이득 패턴(directional gain pattern)을 가질 수 있다.
기존의 송수신기(transceiver) 모델링에서는, 안테나 포트와 TXRU 간의 정적인 일대일 매핑이 가정되고, TXRU 가상화 효과는 TXRU 가상화 및 안테나 요소 패턴의 효과 모두를 포함하는 정적인 (TXRU) 안테나 패턴으로 합쳐진다.
안테나 포트 가상화는 주파수-선택적인 방법으로 수행될 수 있다. LTE에서 안테나 포트는 참조 신호(또는 파일럿)와 함께 정의된다. 예를 들어, 안테나 포트 상에서 프리코딩된 데이터 전송을 위해, DMRS가 데이터 신호와 동일한 대역폭에서 전송되고, DMRS와 데이터 모두 동일한 프리코더(또는 동일한 TXRU 가상화 프리코딩)로 프리코딩된다. CSI 측정을 위해 CSI-RS는 다중의 안테나 포트를 통해 전송된다. CSI-RS 전송에 있어서, 단말에서 데이터 프리코딩 벡터를 위한 TXRU 가상화 프리코딩 행렬을 추정할 수 있도록 CSI-RS 포트와 TXRU 간의 매핑을 특징짓는 프리코더는 고유한 행렬로 설계될 수 있다.
TXRU 가상화 방법은 1차원 TXRU 가상화(1D TXRU virtualization)와 2차원 TXRU 가상화(2D TXRU virtualization)이 논의되며, 이에 대하여 아래 도면을 참조하여 설명한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
1D TXRU 가상화에 있어서, M_TXRU 개의 TXRU은 동일한 편파(polarization)을 가지는 단일의 열(column) 안테나 배열로 구성되는 M개의 안테나 요소와 관련된다.
2D TXRU 가상화에 있어서, 앞서 도 11의 안테나 배열 모델 구성 (M, N, P)에 상응하는 TXRU 모델 구성은 (M_TXRU, N, P)로 나타낼 수 있다. 여기서, M_TXRU는 2D 같은 열, 같은 편파(polarization)에 존재하는 TXRU의 개수를 의미하며, M_TXRU ≤ M을 항상 만족한다. 즉, TXRU의 총 개수는 M_TXRU×N×P와 같다.
TXRU 가상화 모델은 안테나 요소와 TXRU와의 상관 관계에 따라 도 12(a)와 같이 TXRU 가상화(virtualization) 모델 옵션-1: 서브-배열 분할 모델(sub-array partition model)과 도 12(b)와 같이 TXRU 가상화 모델 옵션-2: 전역 연결(full-connection) 모델로 구분될 수 있다.
도 13(a)를 참조하면, 서브-배열 분할 모델(sub-array partition model)의 경우, 안테나 요소는 다중의 안테나 요소 그룹으로 분할되고, 각 TXRU는 그룹 중 하나와 연결된다.
도 13(b)를 참조하면, 전역 연결(full-connection) 모델의 경우, 다중의 TXRU의 신호가 결합되어 단일의 안테나 요소(또는 안테나 요소의 배열)에 전달된다.
도 13에서 q는 하나의 열(column) 내 M개의 같은 편파(co-polarized)를 가지는 안테나 요소들의 송신 신호 벡터이다. w는 광대역 TXRU 가상화 가중치 벡터(wideband TXRU virtualization weight vector)이며, W는 광대역 TXRU 가상화 가중치 행렬(wideband TXRU virtualization weight matrix)이다. x는 M_TXRU 개의 TXRU들의 신호 벡터이다.
여기서, 안테나 포트와 TXRU들과의 매핑은 일대일(1-to-1) 또는 일대다(1-to-many)일 수 있다.
도 13에서 TXRU와 안테나 요소 간의 매핑(TXRU-to-element mapping)은 하나의 예시를 보여주는 것일 뿐이고, 본 발명이 이에 한정되는 것은 아니며 하드웨어 관점에서 이 밖에 다양한 형태로 구현될 수 있는 TXRU와 안테나 요소 간의 매핑에도 본 발명이 동일하게 적용될 수 있다.
채널 상태 정보 송수신 방법
2D-AAS 안테나 구조 등을 사용하는 매시브 MIMO 시스템에서는, 단말이 CSI를 획득하고 이를 기지국으로 보고하도록 하기 위해, 많은 수의 RS 포트들에 대한 CSI-RS 패턴이 지원/디자인될 필요가 있다. 대표적으로 레가시 시스템에서는 1-포트, 2- 포트, 4- 포트 또는 8-포트 CSI-RS 패턴을 지원하고 있고, Rel. 13에서는 종래의 4-포트 및/또는 8-포트 CSI-RS 패턴이 병합(aggregation)된 12-포트 및 16-포트 패턴을 지원하고 있다. 향후, 더 높은 spectral efficiency를 달성하기 위하여, 더 많은 수의 포트(예를 들어 20-포트, 24-포트, 28-포트, 32-포트, 64-포트 등)를 위한 새로운 CSI-RS 패턴 및 이에 대한 설정 방법이 고려될 필요가 있다.
이는, 매시브 MIMO 시스템과 같이 많은 수(예를 들어, MⅩNⅩP)의 전송 안테나 요소들을 구비한 송신단으로부터의 효과적인 (closed-loop) MIMO 전송을 지원하기 위해 Q-포트 CSI-RS 패턴(예를 들어, Q <= MNP)이 단말에 설정될 수 있는데, 이 경우 단말은 이러한 Q-포트 CSI-RS를 측정하여 CSI를 도출/계산할 수 있어야 하기 때문이다. 대표적으로 이러한 Q-포트 CSI-RS는, non-precoded CSI-RS로서, 송신단에서 전송될 때 빔포밍이 적용되지 않으며, wide beam width를 갖는 각 CSI-RS 포트가 전송되는 형태로 전송될 수 있다.
본 명세서에서는 X-포트(예를 들어, X=18) 이상의 안테나 포트들에 매핑되는 새로운 CSI-RS 패턴 디자인을 위해 고려될 수 있는 옵션들은 다음과 같다.
제1 실시예: 레가시(2-, 4-, 8-포트) 및 Rel. 13에서 정의된 12-, 16-포트들을 병합(aggregation)하여 사용하는 방법
제2 실시예: 새로운 패턴을 정의하는 방법
제2 실시예는 제1 실시예에 의해 정의/표현되는 CSI-RS 디자인 중 적어도 하나를 선택/이용하여, 다수의 CSI-RS 패턴을 정의하는 방법이다.
제1 실시예에 대한 보다 구체적인 실시예로, 20-포트 CSI-RS 자원/패턴을 고려해볼 수 있다. 20-포트 CSI-RS 자원/패턴을 만들기 위해, 10개의 2-포트 CSI-RS 자원/패턴들, 혹은 5개의 4-포트 CSI-RS 자원/패턴들이 병합될 수 있다. 10개의 2-포트 CSI-RS 자원/패턴을 병합하는 경우, 총
Figure PCTKR2017003187-appb-I000003
가지의 20-포트 CSI-RS 자원/패턴이 도출될 수 있으며, 5개의 4-포트 CSI-RS 자원/패턴을 병합하는 경우, 총
Figure PCTKR2017003187-appb-I000004
가지의 20-포트 CSI-RS 자원/패턴이 도출될 수 있다.
다만, 이와 같이 병합되는 CSI-RS 자원을 늘리는 것은 시스템의 복잡도를 증가시킨다는 문제점이 존재한다. 따라서, 본 명세서에서는 이러한 복잡도 증가를 방지하기 위하여, 2개의 CSI-RS 자원 병합에 기반한 X-포트(여기서, X는 자연수에 해당하며, 예를 들어, X=18일 수 있음) 이상의 CSI-RS 자원/패턴 디자인 방법에 대하여 제안하기로 한다.
본 명세서에서 제안하는 CSI-RS 자원/패턴의 디자인 방법은, 복수개(예를 들어, 두 개)의 CSI-RS 자원/패턴을 병합하여 새로운 20-포트 이상의 CSI-RS 자원/패턴을 구성하는 것을 제안한다. 이때, 병합되는 포트 단위는 레가시 2-, 4-, 8-포트와 Rel. 13에서 정의되는 12-, 16- 및 20-포트 이상으로 새롭게 정의되는 포트일 수 있다. 보다 상세하게는, 병합되는 각 CSI-RS 자원/패턴은 “합성 CSI-RS 자원(composite CSI-RS resource)/패턴”에 해당할 수 있으며, 여기서 합성된 CSI-RS 자원/패턴은 Rel. 13에서 정의되는 복수의 레가시 CSI-RS 자원/패턴들이 병합된 형태로 정의된 하나의 CSI-RS 자원/패턴을 의미할 수 있다. 예를 들어, 합성된 CSI-RS 자원/패턴은 Rel. 13에서 정의되는 2개의 레가시 8-포트 CSI-RS 자원/패턴들로 구성되는 하나의 16-포트 CSI-RS 자원/패턴 또는 3개의 레가시 4-포트 CSI-RS 자원들로 구성되는 하나의 12-포트 CSI-RS 자원/패턴 등을 의미할 수 있다.
다만, 본 명세서에서 레가시 CSI-RS 자원들이 병합되어 정의된 “합성 CSI-RS 자원/패턴”은, 임의로 레가시 CSI-RS 자원/패턴들이 병합된 CSI-RS 자원을 포괄적으로 의미하는 것이 아니라, 특정 제한이 부여된 형태로 한정적인 조건 하에서 병합된 CSI-RS 자원/패턴만을 의미할 수 있으며, 이렇게 정의된 합성 CSI-RS 자원/패턴만이 본 명세서에서 제안하는 새로운 20-포트 이상의 CSI-RS 자원/패턴을 구성하기 위해 병합되는 복수 개(예를 들어, 2개)의 CSI-RS 자원/패턴들 중 적어도 하나(즉, 병합 단위)에 해당할 수 있다.
대표적인 특정 제한/조건으로서, 합성 CSI-RS 자원/패턴에 병합되는 CSI-RS 자원/패턴의 포트 수가 사전에 미리 정의된 값으로 제한될 수 있다. 예를 들어, 허용되는 합성 CSI-RS 자원/패턴으로서 16-포트 CSI-RS 자원/패턴은 8-포트+8-포트(즉, 2개의 레가시 8-포트 CSI-RS 자원/패턴들)가 병합된 자원/패턴만으로 제한될 수 있으며, 12-포트 CSI-RS 자원/패턴은 4-포트+4-포트+4-포트가 병합된 자원/패턴만을 의미할 수 있다. 즉, 특정 CSI-RS 자원/패턴에 병합되는 CSI-RS 자원/패턴의 포트 수가 기설정된 n-포트에 해당하는 경우, 해당 특정 CSI-RS 자원/패턴은 합성 CSI-RS 자원/패턴에 해당되어, 본 명세서에서 제안하는 CSI-RS 자원 병합 단위로 사용될 수 있다.
이외에도, 특정 제한/조건으로서 CDM-2 및/또는 CDM-4의 제한적인 적용, CDM이 적용되는 RE 위치를 특정 위치로 제한 및/또는 CDM-x(x>4)의 제한적인 적용 등이 설정될 수 있다.
본 명세서에서 ‘CDM-x’은 weight vector에 포함된 직교하는 시퀀스의 길이가 x인 CDM 또는 weight vector의 개수가 x개인 CDM으로 해석될 수 있다.
또한, 본 명세서에서는 복수개(예를 들어, 2개)의 CSI-RS 자원/패턴들을 병합함으로써 새로운 20-포트 이상의 CSI-RS 자원/패턴을 디자인 하는 경우, 다음과 같은 제한 조건이 적용될 수 있다.
예를 들어, 새로운 20-포트 이상의 CSI-RS 자원/패턴을 디자인하는 경우에는, 기설정된 자원/패턴의 병합만이 허용되는 것으로 한정할 수 있다. 다시 말하면, 기설정된/명시된/특정 병합을 제외한 다른 형태의 병합(예를 들어, 3개 이상의 CSI-RS 자원/패턴들의 병합, 다른 포트 수를 갖는 복수의 CSI-RS 자원/패턴들의 병합 등)은 불허하며, 이를 통해 단말의 구현 복잡도를 특정 레벨 이하로 보장할 수 있다.
이때, 2개의 CSI-RS 자원/패턴들을 병합함으로써 새로운 20-포트 이상의 CSI-RS 자원/패턴을 디자인하는 경우, 허용 가능한 기설정된/명시된/특정 병합의 CSI-RS 자원/패턴의 예시로는 다음과 같은 실시예들이 존재할 수 있다.
(1) 20-포트 CSI-RS 자원/패턴:
-16-포트 CSI-RS 자원/패턴 + 4-포트 CSI-RS 자원/패턴
- 12-포트 CSI-RS 자원/패턴 + 8-포트 CSI-RS 자원/패턴
(2) 24-포트 CSI-RS 자원/패턴:
- 12-포트 CSI-RS 자원/패턴 + 12-포트 CSI-RS 자원/패턴,
- 20-포트 CSI-RS 자원/패턴 + 4-포트 CSI-RS 자원/패턴,
- 16-포트 CSI-RS 자원/패턴 + 8-포트 CSI-RS 자원/패턴
(3) 28-포트 CSI-RS 자원/패턴:
- 12-포트 CSI-RS 자원/패턴 + 16-포트 CSI-RS 자원/패턴
- 20-포트 CSI-RS 자원/패턴 + 8-포트 CSI-RS 자원/패턴
(4) 32-포트 CSI-RS 자원/패턴:
- 16-포트 CSI-RS 자원/패턴 + 16-포트 CSI-RS 자원/패턴,
- 20-포트 CSI-RS 자원/패턴 + 12-포트 CSI-RS 자원/패턴,
- 24-포트 CSI-RS 자원/패턴 + 8-포트 CSI-RS 자원/패턴
(5) 64-포트 CSI-RS 자원/패턴:
- 32-포트 CSI-RS 자원/패턴 + 32-포트 CSI-RS 자원/패턴
상술한 실시예들은 2개의 CSI-RS 자원/패턴들이 결합된 하나의 예시를 나타낸 것이며, 상술한 실시예에서 서로 다른 크기의 CSI-RS 자원 패턴들의 결합 순서는 변경될 수 있다.
이렇듯 상술한 실시예에 따라, 구분된 두 개의 CSI-RS 자원/패턴이 병합되어 20-포트 이상의 새로운 CSI-RS 자원/패턴이 구성될 수 있다. 그러나, 이에 한정되는 것은 아니며, 상술한 실시예는 복수개의 구분된 CSI-RS 자원/패턴들이 병합되어 20-포트 이상의 새로운 CSI-RS 자원/패턴을 구성하는 실시예에 일반화 또는 확장 적용될 수 있음은 물론이다.
상술한 실시예에 따라 병합되는 CSI-RS 자원/패턴들은 동일한 RB 내에 위치하거나, 시간 축으로 서로 떨어진 서로 다른 서브 프레임에 각각 위치하거나, 혹은 주파수 축으로 서로 떨어진 서로 다른 RB(또는 PRB 쌍)에 각각 위치할 수 있다. 하나의 RB 내에서 병합되는 실시예를 제외하는 경우, 즉, 시간 축으로 서로 다른 RB(또는 PRB 쌍)간 혹은 주파수 축으로 서로 다른 RB(또는 PRB 쌍)간 병합되는 실시예는 셀 재사용 요소(cell reuse factor)를 증가시키거나, 혹은 표준에 정의된 40 RE를 초과하는 CSI-RS 자원/패턴을 구성하는 경우를 포함할 수 있다.
하나의 RB 내에서 CSI-RS 자원/패턴이 병합되어 존재하는 경우, 단말은 병합되는 CSI-RS 자원/패턴들끼리는 서로 중복(overlap) 되지 않는다고 기대한다. 즉, 만일 병합되는 CSI-RS 자원/패턴들끼리 서로 적어도 일부가 중복되는 형태로 설정된다면, 단말은 이를 error case로 간주하는 등 해당 설정을 무시할 수 있다. 여기서, ‘병합되는 CSI-RS 자원/패턴들끼리 중복되지 않음’은 병합되는 CSI-RS 자원/패턴들끼리는 시간 축에서 동일한 서브 프레임 또는 주파수 축에서 동일한 자원 블록을 통해 전송되지 않는다는 것으로 해석될 수 있다.
따라서, 기지국/네트워크에는 단말에게 이러한 설정을 제공할 때, 병합되는 CSI-RS 자원/패턴들끼리 서로 중복되지 않는 형태로만 설정을 제공해야 한다는 특정 제한이 부여될 수 있다.
이하에서는 설명의 편의를 위해 두 개의 CSI-RS 자원/패턴이 병합되어 20-포트 이상의 새로운 CSI-RS 자원/패턴이 구성하는 경우에 있어서, 병합되는 CSI-RS 자원/패턴들이 시간 축으로 서로 떨어진 서로 다른 서브 프레임에 각각 위치하거나, 혹은 주파수 축으로 서로 떨어진 서로 다른 RB에 각각 위치하는 실시예에 관하여 보다 상세히 살펴본다. 이하의 실시예들에서 설명의 편의를 위해, 두 개의 CSI-RS 자원/패턴이 병합되어 20-포트 이상의 새로운 CSI-RS 자원/패턴이 구성하는 경우를 중심으로 설명하나, 이에 한정되는 것은 아니며, 복수개의 구분된 CSI-RS 자원/패턴들이 병합되어 20-포트 이상의 새로운 CSI-RS 자원/패턴을 구성하는 실시예에 일반화 또는 확장 적용될 수 있음은 물론이다.
도 14는 본 발명의 일 실시예에 따른 두 개의 16-포트 CSI-RS 자원/패턴들이 병합된 32-포트 CSI-RS 자원/패턴을 예시한 도면이다. 본 도면에서, 포트 넘버 0,1,2,3,…는 설명의 편의를 위한 예시이며, 실제로 포트 넘버 0,1,2,3,…는 15, 16, 17, 18 … 등의 포트 넘버로 순차적으로 매핑될 수 있다.
도 14를 참조하면, 병합되는 16-포트 CSI-RS 자원/패턴들은 각각 서로 다른 서브 프레임에 위치한다. 보다 구체적으로, 병합되는 두 개의 CSI-RS 자원/패턴은 서브 프레임 n(또는 n번째 서브 프레임)과 해당 서브 프레임 n으로부터 x(x=0,1,2,….)만큼 떨어진 두 번째 서브 프레임 n+x(또는 n+x번째 서브 프레임)에 각각 위치하여(또는 매핑되어), 새로운 20-포트 이상의 CSI-RS 자원/패턴을 구성할 수 있다. 만일 구성되는 포트의 개수가 40개 이하가 되면, 해당 CSI-RS 자원/패턴들은 동일한 서브 프레임 내(즉, x=0)에서 병합될 수 있다.
표 5는 LTE 시스템에서의 CSI-RS 전송 서브 프레임 구성을 나타내고 있다. CSI-RS 전송 서브 프레임 구성은 CSI-RS 전송 주기와 서브 프레임 오프셋에 기초하여 정의된다. CSI-RS 전송 주기는 5, 10, 20, 40 또는 80 서브 프레임 단위로 설정될 수 있다. 본 명세서에서 제안하는 발명에서 time division multiplexing(TDM) 전송되는 CSI-RS는 자원(이때, CSI-RS 자원은 합성 CSI-RS 자원에 해당할 수 있음)별로 서로 다른 오프셋 값을 가질 수 있다. 즉, 도 14의 예제에서 32-포트 CSI-RS 자원을 구성할 때, 서브 프레임 n에서 16-포트 CSI-RS 자원과 서브 프레임 n+x에서의 16-포트 CSI-RS 자원/패턴의 CSI-RS 오프셋은 서로 상이하게 설정될 수 있다. 즉, 특정 합성 CSI-RS 자원이 병합되어 새로운 CSI-RS 자원/패턴을 구성할 때에는, 해당 합성 CSI-RS 자원 내의 자원/패턴들 간에는 TDM될 수 없고 동일한 서브 프레임 내에서 모두 전송되어야 한다는 제한이 부여될 수 있다.
도 15는 본 발명의 일 실시예에 따른 두 개의 16-포트 CSI-RS 자원/패턴들이 병합된 32-포트 CSI-RS 자원/패턴을 예시한 도면이다. 본 도면에서, 포트 넘버 0,1,2,3,…는 설명의 편의를 위한 예시이며, 실제로 포트 넘버 0,1,2,3,…는 15, 16, 17, 18 … 등의 포트 넘버로 순차적으로 매핑될 수 있다.
도 15를 참조하면, 병합되는 16-포트 CSI-RS 자원/패턴들은 동일한 서브 프레임 내의 서로 다른 RB에 위치한다. 보다 구체적으로, 서브 프레임 n 내의 m번째 PRB와 해당 m번째 PRB에서 y(y=0, 1, 2, ...)만큼 떨어진 (m+y)번째 RB에 병합되는 두 개의 CSI-RS 자원/패턴들이 각각 위치하여(매핑되어), 새로운 20-포트 이상의 CSI-RS 자원/패턴을 구성하게 된다. 만일 구성되는 포트의 개수가 40개 이하가 되면, 해당 CSI-RS 자원/패턴들은 동일한 RB 내(즉, y=0)에서 병합될 수 있다.
도 16은 본 발명의 일 실시예에 따른 FDM 방식을 이용한 CSI-RS 자원/패턴 디자인의 실시예를 도시한 도면이다. 도 16에서 R1과 R2는 각각 서로 다른 합성 CSI-RS 자원/패턴 1과 2를 의미하며, 동일한 패턴을 갖는 R1 및 R2가 병합되어 하나의 새로운 CSI-RS 자원/패턴을 구성하게 된다.
도 16을 참조하면, 두 개의 병합되는 CSI-RS 자원/패턴들이 동일한 서브 프레임 내에서 이웃하는/연속적인 RB들에 각각 위치하는/매핑되는 경우(즉, y가 1인 경우(y=1)), 연속적인 2개의 RB가 frequency division multiplexing(FDM)되어 연속적인 24개의 부반송파들(subcarriers)이 X-포트(예를 들어, X=18) 이상의 새로운 CSI-RS 자원/패턴을 구성할 수 있다. 또한, 두 개의 병합되는 CSI-RS 자원/패턴들이 동일한 서브 프레임 내에서 하나의 RB를 사이에 두고 떨어진 RB들에 각각 위치하는/매핑되는 경우(즉, y가 2인 경우(y=2)), 연속된 홀수 번째에 위치한 두 개의 RB들 혹은 짝수 번째에 위치한 두 개의 RB들이 FDM되어 X-포트(예를 들어, X=18) 이상의 새로운 CSI-RS 자원/패턴을 구성할 수 있다.
본 실시예에서 합성 CSI-RS 자원/패턴이 새로운 20-포트 이상의 CSI-RS 자원/패턴의 구성 요소가 되는 경우, 해당 합성 CSI-RS 자원/패턴 내에서 병합된 CSI-RS 자원/패턴들 간에는 FDM될 수 없으며, 동일한 RB 쌍 내에서 모두 전송되어야 한다는 제한이 부여될 수 있다.
한편, 도면에는 도시하지 않았으나, 또 다른 실시 예로서 상술한 도 14 및 15의 실시예들의 조합으로 서브 프레임 n 내의 m번째 RB와 서브 프레임 (n+x) 내의 (m+y)번째 RB의 CSI-RS 자원/패턴의 병합도 물론 도출/적용/고려될 수 있음은 물론이다.
도 17은 본 발명의 일 실시예에 따른 FDM 방식을 이용한 CSI-RS 자원/패턴 디자인의 실시예를 도시한 도면이다.
상술한 실시예에 따라 FDM 방식을 이용하여 CSI-RS 자원/패턴을 설정하려면, TDM 방식과 마찬가지로, CSI-RS 전송 (RB) 주기와 CSI-RS가 전송/매핑되는 RB 오프셋 등의 정보가 추가적으로 단말에 RRC(Radio Resource Control) 시그널링되어야 한다. 이를 위해, 본 명세서에서는 주파수 축으로 FDM하여 복수의 CSI-RS 자원들이 병합된 새로운 CSI-RS 자원/패턴의 전송 시, 병합되는 각 CSI-RS 자원은 도 17에 도시한 바와 같이 12c의 주파수 간격으로 전송되고 주파수 오프셋은 12d로 설정될 수 있다. 이때, 병합되는 CSI-RS 자원별로 c 및/또는 d가 다르게 설정될 수 있다. 즉, 병합되는 CSI-RS 자원별로만 c 및/또는 d가 달리 설정되고, 각 CSI-RS 자원/패턴 내의 포트별로는 c 및/또는 d가 다르게 설정되지 않도록 한정될 수 있다.
또한, 두 개의 CSI-RS 자원/패턴들이 병합되어 하나의 새로운 CSI-RS 자원/패턴을 구성하는 경우, CSI-RS가 전송/매핑되는 RB의 주기(이하, ‘CSI-RS RB 주기’라 지칭함.)와 관련된 c 값은 병합되는 2개의 (합성) CSI-RS 자원/패턴들에 대해 공통으로 적용할 하나의 c값으로 설정될 수 있다. 이 경우, CSI-RS가 전송/매핑되는 RB의 오프셋(이하, ‘CSI-RS RB 오프셋’이라 지칭함.)과 관련된 d 값은 병합되는 각 CSI-RS 자원/패턴별로 개별 설정될 수 있다. 다시 말하면, 병합되는 CSI-RS 자원들(R1, R2)의 주기는 공통적으로 설정된 RB 주기를 따르는 가운데, 병합되는 자원별(R1, R2)로 상이한 RB 오프셋(R1 오프셋, R2 오프셋)이 설정될 수 있다. 이는, 병합되는 CSI-RS 자원들은 도 17과 같은 형태로 동일 RB 주기로 FDM되어 전송되는 형태만이 허용되는 것으로 해석될 수 있다. 이를 통해, 각 CSI-RS 자원별로 동일한 RS 밀도(density)를 갖도록 한다는 효과가 있다.
CSI-RS RB 주기와 관련된 c 값과 CSI-RS RB 오프셋과 관련된 d 값은 서로 조인트 인코딩(joint encoding)되는 형태로 정의/설정될 수 있다. 예를 들어, 현재 표준에서 시간축 관련 설정을 주기/오프셋 간의 joint encoding 형태로서 설정하는 subframeConfig와 같이, 주파수축 관련 설정으로서 RB 주기 및/또는 오프셋을 joint encoding 형태로 설정하여 특정 RBconfig와 같은 (각 CSI-RS 자원 단위의) 단일 파라미터로 설정할 수 있다. 만일, 상기 설명과 같이 c 값을 병합되는 CSI-RS 자원 간에 공통적으로 적용한다면, 하나의 c 값과 각 CSI-RS 자원별 d 값들(예를 들어, 하나의 c 값과 두 개의 d 값들(d1, d2))을 모두 단일 RBconfig 파라미터에 joint encoding으로 정의하여 설정하는 것도 가능하다. 이는 결국, RBconfig 파라미터는 하나의 c 값과, 복수의 d 값들(예를 들어, d1, d2)의 파라미터들이 joint encoding되어 설정/정의되는 것으로 해석될 수 있다.
상술한 2개의 CSI-RS 자원/패턴이 병합되어 새로운 CSI-RS 자원/패턴을 구성하는 실시예를 고려할 때, x 및/또는 y에 관한 정보는 RRC 시그널링되어 단말에 전송될 수 있다. 여기서 (x=y=0, x=y=1)인 경우는, 단말이 암시적으로(implicitly) 인지할 수 있기 때문에 추가적인 RRC 시그널링이 필요하지 않을 수 있다. 병합되는 각 CSI-RS 자원/패턴의 RE 위치(예를 들어, 각 CSI-RS 자원/패턴이 시작되는 RE 위치)는 RRC 시그널링을 통하여 단말에 각 CSI-RS 자원/패턴별로 알려줄 수 있다.
시그널링 오버헤드를 줄이기 위하여, 병합되는 CSI-RS 자원/패턴들 간의 특정 설정(예를 들어, port 수)을 서로 동일하게 한정할 수도 있다. 일 실시예로, 32-포트 CSI-RS 자원/패턴을 만들기 위하여 16-포트 CSI-RS 자원/패턴 두 개가 병합/조합되며, 24-포트 CSI-RS 자원/패턴을 만들기 위하여 12-포트 CSI-RS 자원/패턴 두 개가 병합되는 것으로만 병합되는 각 CSI-RS 자원/패턴의 포트 수를 기설정된 개수로 한정할 수 있다. 또한, 병합되는 CSI-RS 자원/패턴이 각각 서로 다른 PRB에 위치한다면(또는 매핑된다면), CSI-RS는 RB 쌍 단위로 동일한 RE 위치에 매핑되는 것으로 한정될 수 있다.
Rel.13에서는 12-포트 및 16-포트 CSI-RS 자원/패턴에 대하여 CDM-2와 CDM-4가 지원된다. 본 명세서에서 제안하는 20-포트 이상의 CSI-RS 자원/패턴을 CDM-4가 지원되는 12-포트 또는 16-포트 CSI-RS 자원/패턴으로만 구성하는 경우에 CDM-2와 CDM-4가 확장 지원될 수 있으며, 어떤 CDM이 적용되는 지에 대한 정보는 RRC 시그널링을 통하여 단말에 전달될 수 있다. 다만, 이때 본 발명에서 병합되는 CSI-RS 자원/패턴에 적용되는 CDM-4는 Rel.13에서 정의되는 12-포트, 16-포트 CSI-RS 자원/패턴에 적용되는 CDM-4는 상이할 수 있다.
다시 말해, 12-포트 CSI-RS 자원/패턴은 레가시 4-포트 단위/형태(즉, CDM이 적용되며, 6개의 부반송파만큼 이격된 두 개의 2RE 세트(또는 두 개의 RE 쌍) 단위)로 CDM-4가 적용되고, 16-포트 CSI-RS 자원/패턴은 서로 인접한 2 by 2 RE(2행 2열의 RE)에 CDM-4가 적용된다. 이에 기초하여, 본 명세서에서 제안 하는 실시예에서, 복수의 CSI-RS 자원/패턴들의 병합으로 만들어지는 X-포트(예를 들어, X=18) 이상의 CSI-RS 자원/패턴은 병합되는 각 자원/패턴별로 상이한 CDM-4가 적용될 수 있다.
일 실시예로서, 28-포트 CSI-RS 자원/패턴이 16-포트 CSI-RS 자원/패턴 및 12-포트 CSI-RS 자원/패턴의 병합으로 구성되는 경우, 병합되는 16-포트 CSI-RS 자원/패턴에는 서로 인접한 2 by 2 RE들에 CDM-4가 적용되며, 병합되는 12-포트 CSI-RS 자원/패턴에는 레가시 4-포트 형태로 CDM-4가 적용된다는 특징이 있으며, 단말은 이를 구현하기 위한 동작을 수행한다.
또한, 만일 병합되는 CSI-RS 자원/패턴들 중에서 적어도 하나가 레가시 4-포트 단위/형태의 CDM-4가 적용된다면, 해당 CSI-RS 자원/패턴들의 병합으로 만들어지는 X-포트(예를 들어, X=18) 이상의 CSI-RS 자원/패턴에도 레가시 4-포트 단위/형태의 CDM-4를 적용해야 하는 것으로 정의할 수 있다. 즉, 기지국/네트워크는 단말에게 CSI-RS 자원/패턴에 적용할 CDM 관련 설정을 제공할 때, 병합되는 CSI-RS 자원/패턴들끼리는 동일한 CDM-4 패턴이 적용되는 형태로 설정을 제공해야 한다는 제한이 부여될 수 있다.
상기 CDM-4 적용 방식을 고려하는 경우, 28-, 32-포트 CSI-RS 자원/패턴과 같이, OFDM symbol 9, 10번에 존재하는 CSI-RS 자원/패턴을 위한 24개의 RE보다 많은 포트 수의 CSI-RS 자원/패턴을 전송하는 경우, 최대 전력 전송(full power transmission)이 불가할 수 있다. 이는 9, 10번 OFDM 심볼이 아닌 다른 5,6번 혹은 12, 13번 OFDM 심볼에 매핑된 CSI-RS 자원/패턴에 CDM-4를 적용하는 경우, 6dB boosting이 어렵기 때문이다. 따라서, 본 명세서에서는 28-, 32-포트 CSI-RS 자원/패턴의 최대 전력 전송을 달성하기 위하여, CSI-RS density를 줄이기 위한 FDM 혹은 TDM 방식을 적용/설정하는 실시예를 아래와 같이 제안한다. 다시 말해, 24-포트 이상의 포트 수를 갖는 CSI-RS 자원/패턴에 대하여 CDM-4가 설정되면, 해당 CSI-RS 자원/패턴은 FDM 혹은 TDM 방식으로 전송되도록 제한/설정될 수 있으며, 이러한 제한/설정은 기지국의 RRC signalling을 통해 지시될 수 있다.
상술한 실시예를 적용하는 경우, 4배수의 포트 수를 갖는 CSI-RS 자원/패턴, 예를 들어 20-포트, 24-포트, 28-포트, 32-포트 또는 64-포트 등의 CSI-RS 자원/패턴만을 제한적으로 구성할 수 있게 된다. 따라서, 이하에서는 좀더 다양한 포트 수를 갖는 CSI-RS 자원/패턴을 구성하기 위하여, 6-포트, 10-포트 CSI-RS 자원/패턴의 구성 방법 또한 제안한다.
도 18 및 19는 본 발명의 실시예에 따른 6-포트 CSI-RS 자원/패턴의 구성 방법을 예시한 도면들이다.
도 18을 참조하면, 일 실시예로서 6-포트 CSI-RS 자원/패턴은 레가시 8-포트 CSI-RS 자원/패턴의 부분 집합으로 구성될 수 있다. 즉, 본 도면에 예시된 실시예는 레가시 8-포트 {0,1,2,3,4,5,6,7}에서 6개의 포트들, 예를 들어, {0,1,2,3,4,5}, {2,3,4,5,6,7}, {0,1,4,5,6,7} 혹은 {0,1,2,3,6,7}을 선택하여, 6-포트 CSI-RS 자원/패턴을 구성하는 것을 특징으로 한다. 이때, 6-포트 CSI-RS 자원/패턴들은 각 자원/패턴별로 레가시 8-포트 6-포트 CSI-RS 자원/패턴의 동일한 부분 집합으로 구성되거나, 또는 각 자원/패턴 별로 상이한 부분 집합으로 구성될 수도 있다. 본 실시예에서 6-포트 CSI-RS 자원/패턴은 레가시 8-포트 CSI-RS 자원/패턴의 부분 집합으로 구성되므로, 제안하는 6-포트 CSI-RS 자원/패턴 디자인의 cell reuse factor는 5가 된다.
본 실시예에 따른 6-포트 CSI-RS 자원/패턴 디자인의 경우 포트 수가 4의 배수가 아니므로, CDM-4가 적용될 수 없다. 따라서, 6-포트 CSI-RS 자원/패턴을 이용하여 만들어진 새로운 CSI-RS 자원/패턴에는 CDM-2만이 한정적으로 적용될 수 있다.
도 19를 참조하면, 기존 40개의 RE로 구성되었던 CSI-RS 자원들은 48개의 RE로 구성된 CSI-RS 자원들로 새롭게 정의될 수 있다. 보다 상세하게는, 본 실시예에서 기존에 CSI-RS 자원으로서 정의되는 40개의 RE들 외, 패턴 #0의 포트 넘버 {4,5}, 패턴 #1의 포트 넘버 {0,1}, 패턴 #6의 포트 넘버 {4,5}, 패턴 #7의 포트 넘버 {0,1}의 위치에 대응하는 8개의 RE들이 추가적인 CSI-RS 자원으로 설정될 수 있으며, 따라서 총 48개의 RE들이 CSI-RS 자원으로 사용/설정될 수 있다. 본 실시예에 따른 6-포트 CSI-RS 자원을 디자인할 때의 이점은 도 18의 실시예에 비하여 cell reuse factor가 8로 증가한다는 장점이 있다.
본 실시예에 따른 6-포트 CSI-RS 자원/패턴에는 CDM-2의 적용을 가정하며, 각 자원/패턴의 0번과 1번, 2번과 3번, 4번과 5번에 상응하는 RE들에 CDM-2가 적용될 수 있다.
단말이 본 실시예에 따른 6-포트 CSI-RS 자원/패턴을 RRC 시그널링을 통해 설정받는 경우, 도 19에 예시된 CSI-RS 자원/패턴 디자인에 따른 CSI-RS 자원/패턴을 설정받을 수 있다.
10-포트 CSI-RS 자원/패턴은 4-포트 및 6-포트 CSI-RS 자원/패턴들의 병합 또는 2-포트 및 8-포트 CSI-RS 자원/패턴들의 병합으로 구성될 수 있다. 10-포트 CSI-RS 자원/패턴은 포트 수가 4의 배수가 아니므로, CDM-4가 적용될 수 없다. 따라서, 10-포트 CSI-RS 자원/패턴을 이용하여 만들어진 새로운 CSI-RS 자원/패턴에는 CDM-2만이 한정적으로 적용될 수 있다.
이상으로, X-포트(예를 들어, x=18) 이상의 CSI-RS 자원/패턴을 디자인하는 경우, 2개의 CSI-RS 자원/패턴들을 병합하는 실시예들을 중심으로 설명하였다. 그러나 이에 한정되는 것은 아니며, 앞서 상술한 실시예들은 복수개의 CSI-RS 자원/패턴들을 병합(즉, y개의 CSI-RS 자원/패턴들을 병합 (y>=2))함으로써 X-포트(예를 들어, x=18) 이상의 CSI-RS 자원/패턴을 디자인하는 실시예로 확장 적용될 수 있음은 물론이다.
상술한 실시예들에 따라 X-포트(예를 들어, X=18) 이상의 CSI-RS 자원/패턴을 구성할 때, Rel. 13에서 도입되는 CDM-4를 이용하더라도, 여전히 full-power 전송의 미지원 혹은 CSI-RS 전송 포트 사이의 power 불균형 문제가 발생할 수 있다. 따라서 본 명세서에서는, 이러한 문제를 해결하기 위해, X-포트(예를 들어, X=18) 이상의 CSI-RS 자원/패턴에 적용할 4보다 더 긴 길이를 갖는 CDM 방식을 제안하고자 한다.
우선, 도 19에 도시한 6-포트 CSI-RS 자원/패턴 디자인에 부합하는/적용할 CDM-6에 대해서 먼저 제안한다. 도 19에 예시한 새로운 6-포트 CSI-RS 자원/패턴을 통해 전송되는 CSI-RS들에는 포트별로 아래의 수학식 14의 weight vector가 곱해짐으로써 CDM-6가 적용될 수 있다. 즉, 도 19에 도시된 CSI-RS 자원/패턴에서 {0,1,2,3,4,5}로 표기된 6개의 FDM된 CSI-RS 포트들에 매핑된 CSI-RS들에 수학식 14의 weight vector가 곱해짐으로써 CDM-6가 적용/설정될 수 있다. 이때, 각 포트별({0,1,2,3,4,5})로 매핑되는 CSI-RS들에는 서로 다른 weight vector(W_0~W_5)가 순차적으로 곱해질 수 있다.
Figure PCTKR2017003187-appb-M000014
수학식 14는 6Ⅹ6 DFT 행렬로부터 도출된 수식이며, 각 코드는 서로 직교(orthogonal)한다.
상술한 실시예를 적용하게 되면, CDM으로 7.8dB를 보장하여, CSI-RS 전송 포트 사이의 power 불균형 이슈를 완화시킬 수 있다는 장점이 있다.
도 20은 본 발명의 일 실시예에 따른 시간 축에서 CDM-6를 적용한 경우의 실시예를 예시한 도면이다.
도 20에 예시된 6-포트 CSI-RS 자원/패턴 디자인에서, {0,1,2,3,4,5}로 표기된 6개의 TDM된 CSI-RS 포트에 매핑되는 CSI-RS들에 수학식 14의 weight vector가 곱해짐으로써 CDM-6이 설정/적용될 수 있다.
본 실시예에서는 시간 축으로 CDM이 적용될 때, 주파수 축에서 같은 RE들의 집합에 CDM이 적용된다. 그러나, 이에 한정되는 것은 아니며, OFDM 심볼 {5,6}, {9,10} 및 {12,13}에 각각 위치한 레가시 2-포트들 중 3개가 선택되어 CDM-6가 적용될 수도 있다(즉, 동일한 주파수 축 또는 상이한 주파수 축에 위치한 RE 들의 집합에 CDM-6가 적용될 수 있음). 다만, 이 경우, 시스템 유연성(flexibility)을 높일 수는 있지만, 주파수 선택적인 환경에서 성능 열화가 예상되므로, 본 실시예(즉, 시간 축 CDM-6 적용 실시예)는 주파수 축에서 부반송파 차이가 2개 이하인 RE들에 제한적으로 적용될 수 있다.
이하에서는 CDM-8에 대하여 제안한다.
CDM-8의 경우, 코드워드의 구성은 DFT 행렬 혹은 Walsh 행렬로부터 도출될 수 있다. 보다 상세하게는, CDM-8을 위한 코드워드는 DFT 행렬로부터 도출될 수 있으며, 수학식 14를 8Ⅹ8 DFT 행렬로 확장함으로써 구성될 수 있다. 또한, CDM-8을 위한 코드워드는 Walsh 행렬로부터 도출될 수 있으며, CDM-8의 weight vector는 아래의 수학식 15와 같이 구성된다.
Figure PCTKR2017003187-appb-M000015
수학식 14에 기초하여 각 행 혹은 열의 permutation 함수에 의한 차이가 있는 다수의 Walsh 행렬들이 도출될 수 있으며, 수학식 15는 이에 대한 예시를 나타낸다.
도 21은 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 5가지 레가시 CSI-RS 구성들을 예시한 도면이다. 본 도면에 관한 설명은 도 8(c)에 관한 설명이 동일하게 적용될 수 있다.
본 도면의 8-포트 CSI-RS 자원/패턴에서 {0,1,2,3,4,5,6,7}로 표시된 CSI-RS 포트에 매핑되는 CSI-RS들에 수학식 15에 따른 weight vector들이 순차적으로 곱해짐으로써 CDM-8이 적용/설정될 수 있다. 즉, 레가시 8-포트 CSI-RS 자원/패턴 단위로 CDM-8이 적용될 수 있다.
CDM-8을 적용/실시하는 또 다른 예제로서, 본 도면의 8-포트 CSI-RS 자원/패턴에서 {0,1,4,5,2,3,6,7} 순으로(또는 {0,1,2,3,4,5,6,7} 순으로 등등 병합되는 특정 8RE에서 미리 정의/설정된 순서대로) 각 포트들에 매핑되는 CSI-RS들에 수학식 15에 따른 weight vector들이 순차적으로 곱해짐으로써 CDM-8이 적용/설정될 수도 있다.
도 22 내지 도 24는 본 발명의 실시예에 따른 CDM-8이 적용되는 8-포트 CSI-RS 자원/패턴 디자인을 예시한 도면들이다.
도 22의 실시예에 따른 8-포트 CSI-RS 자원/패턴의 경우, 도 21에 도시된 레가시 8-포트 CSI-RS 자원/패턴 디자인보다 CDM-8이 적용되는 RE들이 주파수축으로 조밀하게 모여있기 때문에, 주파수 선택적인 채널에서 그 성능이 더 우수할 것으로 예상된다.
도 23의 실시예는 부반송파 2개와 OFDM 심볼 4개에 걸쳐 존재하는 8개의 RE들에 매핑되는 CSI-RS에 CDM-8을 적용하는 실시예이다. 도 23의 실시예에서 8-포트 CSI-RS 자원/패턴 #0는 패턴 #1에 비하여, 시간 축으로 RE들이 좀더 조밀하게 모여있기 때문에, phase drift 등에 보다 강건한 성능을 보일 것으로 예상된다.
도 22 및 도 23의 실시예들은 두 개의 포트 그룹 {0,1,2,3} 및 {4,5,6,7}이, 시간 및 주파수 축으로 2 Ⅹ 2 형태로 위치한 4개의 RE들로 구성된 RE 그룹 두 개에 각각 매핑되는 것을 특징으로 한다. 본 실시예들은 채널이 심하게 변화하는 환경에서 보다 좋은 성능을 얻기 위하여, 시간 및/또는 주파수 축으로 최대한 조밀하게 디자인된 실시예로 이해될 수 있다. 즉, 각 실시예들에서 두 포트 그룹간의 OFDM 심볼 간격은 최대 2 심볼이며, 부반송파의 간격은 설정되지 않도록(예를 들어, 두 개의 포트 그룹은 연속적인 4개의 부반송파 내에 위치하거나/매핑되거나 동일한 부반송파 상에 위치하도록/매핑되도록) 디자인될 수 있다.
도 24는 DM-RS를 위하여 할당 가능한 RE(또는 데이터 전송을 위해 할당 가능한 RE)를 CSI-RS를 전송하기 위한 목적으로 할당하여, 최대 56개의 RE를 이용하여 8-포트 CSI-RS 패턴/자원을 디자인하는 방법을 나타낸다.
도 24의 8-포트 CSI-RS 패턴/자원은 도 22의 8-포트 CSI-RS 패턴/자원에 비하여, cell reuse factor가 7로 더 크다는 장점을 갖는다.
한편, 도 22에 도시된 3개의 8-포트 CSI-RS 자원/패턴들이 병합되어 하나의 24-포트 CSI-RS 자원/패턴을 구성할 수 있다. 보다 상세하게는, 도 22에 도시한 바와 같이, 24-포트 CSI-RS 자원/패턴은 하나의 서브 프레임 내의 시간축에서 9번(또는 10번째) 및 10번(11번째) OFDM 심볼들 및 주파수축에서 이웃하여/인접하여 위치하는 3개의 8-포트 CSI-RS 자원/패턴들이 병합되어 구성될 수 있다.
예를 들어, 24-포트 CSI-RS 자원 패턴은 제1 내지 제3 8-포트 CSI-RS 자원/패턴으로 구성될 수 있으며, 제1 내지 제3 8-포트 CSI-RS 자원/패턴은 하나의 서브 프레임 내의 2개의 OFDM 심볼(9번/10번째 및 10번/11번째 OFDM 심볼) 및 연속되는 4개의 부반송파에 각각 위치할 수 있다.
이때, 제1 8-포트 CSI-RS 자원/패턴은 하나의 서브 프레임 내 9번/10번째 및 10번/11번째 OFDM 심볼과 11번/1번째 내지 8번/4번째 부반송파 영역에 위치할 수 있다. 이러한 제1 8-포트 CSI-RS 자원/패턴에 대한 구체적인 좌표를 앞서 도 8과 관련하여 상술한 (k’, l’)(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 슬롯 내 OFDM 심볼 인덱스를 나타냄)을 이용하여 표현하면, 서브 프레임 내두 번째 슬롯의 (11, 2), (11, 3), (10, 2), (10, 3), (9, 2), (9, 3), (8, 2) 및 (8, 3)와 같이 나타낼 수 있다.
이와 유사하게, 제2 8-포트 CSI-RS 자원/패턴은 하나의 서브 프레임 내 9번/10번째 및 10번/11번째 OFDM 심볼과 7번/5번째 내지 4번/8번째 부반송파 영역에 위치할 수 있다. 이러한 제2 8-포트 CSI-RS 자원/패턴에 대한 구체적인 좌표를 앞서 도 8과 관련하여 상술한 (k’, l’)을 이용하여 표현하면, 서브 프레임 내 두 번째 슬롯의 (7, 2), (7, 3), (6, 2), (6, 3), (5, 2), (5, 3), (4, 2) 및 (4, 3)와 같이 나타낼 수 있다.
이와 유사하게, 제3 8-포트 CSI-RS 자원/패턴은 하나의 서브 프레임 내 9번/10번째 및 10번/11번째 OFDM 심볼과 3번/9번째 내지 0번/12번째 부반송파 영역에 위치할 수 있다. 이러한 제3 8-포트 CSI-RS 자원/패턴에 대한 구체적인 좌표를 앞서 도 8과 관련하여 상술한 (k’, l’)을 이용하여 표현하면, 서브 프레임 내 두 번째 슬롯의 (3, 2), (3, 3), (2, 2), (2, 3), (1, 2), (1, 3), (0, 2) 및 (0, 3)와 같이 나타낼 수 있다.
이때, 제1 내지 제3 8-포트 CSI-RS 자원/패턴에 매핑되는 CSI-RS들에는 각각 CDM-8이 적용될 수 있음은 앞서 상술한 바와 같다.
이하에서는 CDM-16에 대하여 제안한다.
CDM-16의 weight vector 역시, 상기 제안한 CDM-8과 유사하게 Walsh 행렬로부터 도출될 수 있다. 즉, weight vector는 16Ⅹ16 Walsh 행렬로부터 하기의 수학식 16과 같이 도출될 수 있다.
Figure PCTKR2017003187-appb-M000016
본 명세서에서 제안하는 CDM-16은 앞서 제안한 CDM-8이 적용되는 8-포트 CSI-RS 자원/패턴들 중 2개가 병합되어 구성된 하나의 16-포트 CSI-RS 자원/패턴에 적용될 수 있다.
예를 들어, 도 21에 도시된 레가시 8-포트 CSI-RS 자원/패턴들 중에서 임의로 두 개의 자원/패턴들을 병합하여 하나의 16-포트 CSI-RS 자원/패턴을 구성할 수 있으며, 구성된 자원/패턴에 CDM-16을 적용할 수 있다. 이때 병합되는 두 개의 CSI-RS 자원/패턴들은 순차적으로 {0,1,2,3,4,5,6,7}, {8,9,10,11,12,13,14,15}로 넘버링되어 CDM-16가 적용되거나 {0,1,4,5,2,3,6,7}, {0,1,4,5,2,3,6,7}+8로 넘버링되어 CDM-16가 확장 적용될 수 있다.
즉, CDM-16 적용 시, 전자는 포트 넘버링을 레가시 8-포트 단위로 순차적으로 하는 방식을 나타내며, 후자는 포트 넘버링을 Rel. 13의 16-포트 CDM-4 방식처럼, 2Ⅹ2 RE 단위로 하는 방식을 나타낸다.
이외에도, 앞서 도 22 내지 24과 관련하여 상술한 CDM-8 관련 실시예들은 앞서 상술한 바와 같이 병합되어 CDM-16 적용 실시예로 확장 적용될 수 있다.
이하에서는 CDM-12 및 CDM-20에 대하여 제안한다.
앞서 상술한 바와 같이 2의 지수가 아닌 CDM-x이 적용될 경우, DFT 행렬이 이용되었다. 이는 binary(1 혹은 -1)로 구성되는 Walsh 행렬이 존재하지 않기 때문이다. 하지만 x=12 혹은 20인 경우에도 Hadamard 행렬 구성 시, Paley construction을 사용하면 1과 -1로 구성되는 binary 직교 행렬을 구성할 수 있게 된다. 이는, DFT로 직교 행렬을 구성하는 경우에 비하여, 정수로 CDM weight vector가 구성되므로, 복잡도를 낮출 수 있는 장점이 있다. Paley construction은 finite fields를 이용하여 Hadamard 행렬을 구성하는 방법으로, GF(q)의 quadratic residue를 이용하며, 여기서 q는 홀수인 소수를 나타낸다. 이 경우, (q+1)의 hadamard 행렬은 다음의 수학식 17과 같이 구성될 수 있다.
Figure PCTKR2017003187-appb-M000017
여기서
Figure PCTKR2017003187-appb-I000005
는 (q+1)Ⅹ(q+1) identity 행렬,
Figure PCTKR2017003187-appb-I000006
은 1로 구성된 q-길이의 vector,
Figure PCTKR2017003187-appb-I000007
는 qⅩq Jacobsthal 행렬로 행 a 및 열 b가
Figure PCTKR2017003187-appb-I000008
로 구성되어있으며, 여기서
Figure PCTKR2017003187-appb-I000009
는 finite field 원소인 a가 perfect square 인지 여부를 지시한다. 예를 들어, 임의의 non-zero finite field 원소 b에 대하여 a=b^2이면
Figure PCTKR2017003187-appb-I000010
는 1, 그렇지 않으면(예를 들어, a가 square로 나타낼 수 없으면)
Figure PCTKR2017003187-appb-I000011
는 -1이 지시된다. 이러한 내용에 기초하여, CDM-12의 weight vector를 도출하면 아래의 수학식 18과 같다.
Figure PCTKR2017003187-appb-M000018
본 명세서에서 제안하는 CDM-12는 앞서 제안한 CDM-6이 적용되는 6-포트 CSI-RS 자원/패턴들 중 2개가 병합되어 구성된 하나의 12-포트 CSI-RS 자원/패턴에 적용될 수 있다.
예를 들어, 도 19에 도시된 6-포트 CSI-RS 자원/패턴들 중에서 임의로 두 개의 자원/패턴들을 병합하여 하나의 12-포트 CSI-RS 자원/패턴을 구성할 수 있으며, 구성된 자원/패턴에 수학식 18을 이용하여 CDM-16을 적용할 수 있다. 이때 병합되는 두 개의 CSI-RS 자원/패턴들은 순차적으로 {0,1,2,3,4,5}, {8,9,10,11,12,13}로 넘버링되어 CDM-12가 적용될 수 있다.
이외에도, 앞서 도 18 내지 20과 관련하여 상술한 CDM-6 관련 실시예들은 앞서 상술한 바와 같이 병합되어 CDM-12 적용 실시예로 확장 적용될 수 있다.
CDM-20의 weight vector는 아래의 수학식 19를 이용하여 구성될 수 있다.
Figure PCTKR2017003187-appb-M000019
수학식 19의 weight vector가 적용될 수 있는 CSI-RS 자원/패턴은 본 명세서에서 제안한 실시예들에 따라 구성된 20-포트 CSI-RS 자원/패턴에 적용될 수 있으며, 병합되는 자원/패턴을 순차적으로 포트 넘버링하고, 해당 자원/패턴에 CDM-20을 적용할 수 있다.
본 명세서에서 CDM-12와 CDM-20을 Paley construction을 이용하여 구성하는 방식을 제안하였으나, CDM-6를 구성하는 DFT 행렬을 이용하는 방식으로도 확장 적용할 수 있다.
또한, CSI-RS에 적용되는 CDM 길이에 관한 정보는 기지국이 단말에 RRC signalling을 통해 지시해줄 수 있다.
도 25는 본 발명의 일 실시예에 따른 단말의 CSI 보고 방법에 관한 순서도이다. 본 순서도에는 앞서 상술한 실시예 및 설명이 동일/유사하게 적용될 수 있으며 중복되는 설명은 생략한다.
우선, 단말은 CSI-RS가 매핑되는 CSI-RS 자원에 관한 CSI-RS 자원 정보를 기지국으로부터 수신할 수 있다(S2510).
이때 사용되는 CSI-RS 자원은 복수의 CSI-RS 자원들이 병합(aggregate)되어 구성되되, 병합되는 CSI-RS 자원들은 시간 축에서 서로 다른 서브 프레임들 또는 주파수 축에서 서로 다른 자원 블록들에 각각 위치할 수 있다. 이때 병합되는 CSI-RS 자원들 중 적어도 하나는 복수의 레가시 CSI-RS 자원들이 병합되어 구성된 합성 CSI-RS 자원에 해당할 수 있다. 또한 합성 CSI-RS 자원을 구성하는 복수의 레가시 CSI-RS 자원들은 동일한 포트수의 CSI-RS 자원들로 제한될 수 있다. 그리고/또는 CSI-RS 자원은 미리 정의된 포트 수의 CSI-RS 자원들의 병합으로 구성되는 것으로 제한될 수 있다.
또한, 병합되는 CSI-RS 자원들이 위치하는 서로 다른 서브 프레임들은 각각 서로 다른 CSI-RS 서브 프레임 오프셋을 가질 수 있다. 또한, 병합되는 CSI-RS 자원들이 기설정된 서브 프레임 수 간격으로 떨어진 서로 다른 서브 프레임들에 각각 위치하는 경우, 기설정된 서브 프레임 수 간격에 관한 정보는 RRC(Radio Resource Control) 시그널링되어 단말로 전송될 수 있다. 또한, 병합되는 CSI-RS 자원들이 시간 축에서 서로 다른 서브 프레임들에 각각 위치하는 경우, 병합되는 CSI-RS 자원들은 서로 다른 서브 프레임 내에서 동일한 부반송파들에 매핑될 수 있다.
만일, 병합되는 CSI-RS 자원들은 기설정된 자원 블록 수 간격으로 떨어진 서로 다른 자원 블록들에 각각 위치하는 경우, 기설정된 자원 블록 수 간격에 관한 정보는 RRC 시그널링되어 단말로 전송될 수 있다. 또한, 만일 병합되는 CSI-RS 자원들이 위치하는 서로 다른 자원 블록들의 전송 주기는 병합되는 CSI-RS 자원별로 동일하게 설정되며, 서로 다른 자원 블록들의 자원 블록 오프셋은 병합되는 CSI-RS 자원별로 상이하게 설정될 수 있다. 이때, 전송 주기 및 자원 블록 오프셋은 조인트 인코딩되어 단말로 전송될 수 있다.
또한, 만일 병합되는 CSI-RS 자원들 중 적어도 하나가 12-포트 CSI-RS 자원 또는 16-포트 CSI-RS 자원에 해당하는 경우, 12-포트 CSI-RS 자원 또는 16-포트 CSI-RS 자원에 매핑되는 CSI-RS에는 직교하는 가중치 벡터의 개수가 2 또는 4인 CDM(Code Division Multiplexing)이 적용될 수 있다.
다음으로, 단말은 수신한 CSI-RS 자원 정보에 기초하여 기지국으로부터 하나 이상의 안테나 포트를 통해 전송되는 CSI-RS를 수신할 수 있다(S2520).
마지막으로 단말은 수신한 CSI-RS에 기초하여 CSI를 생성하고, 생성한 CSI를 기지국으로 보고할 수 있다(S2530).
한편, 상기 CSI-RS에는, CSI-RS가 매핑되는 CSI-RS 자원으로 병합되는 각 CSI-RS 자원들의 포트 수에 따라 직교하는 가중치 벡터의 개수가 6, 8, 12, 18 또는 20개인 CDM이 적용될 수 있다.
이하에서는 앞서 상술한 CDM-8에 대해 추가적인 실시예에 대해 제안한다.
또 다른 실시예로서, 레가시 포트들(예를 들어, 2-, 4-, 8-, 12- 및 16-포트)이 병합되어 생성된 X-포트(예를 들어, X=18) 이상의 CSI-RS 자원/패턴/구성에 CDM-8을 적용하는 방법이 고려될 수 있다. 본 명세서에서 X-포트 CSI-RS 자원/패턴/구성에 CDM-x이 적용됨은 X-포트 CSI-RS 자원/패턴을 통해 전송되는 CSI-RS에 CDM-x가 적용되어 전송되는 것으로 해석될 수 있다.
도 26 및 27은 본 발명의 일 실시예에 따른 CDM-8이 적용되는 병합된 32-포트 CSI-RS 자원/패턴/구성 디자인을 예시한다. 도 26 및 27에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다. 또한, 도 26 및 27에서 32-포트 CSI-RS 자원/패턴/구성은 4개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성들이 선택적으로 병합되어 구성된다.
도 26 및 27에 도시된 32-포트 CSI-RS 자원/패턴/구성에는, 동일한 알파벳(예를 들어, A, B, C, D)으로 표시된 그룹 단위로 CDM-8이 적용될 수 있다. 예를 들어, 32-포트 CSI-RS 자원/패턴/구성은 A로 표시된 8개의 RE들을 포함하는 제1 그룹, B로 표시된 8개의 RE들을 포함하는 제2 그룹, C로 표시된 8개의 RE들을 포함하는 제3 그룹, D로 표시된 8개의 RE들을 포함하는 제4 그룹으로 구분될 수 있으며, 각 그룹 단위로 CDM-8이 적용될 수 있다.
즉, 제1 그룹을 통해 전송되는 CSI-RS, 제2 그룹을 통해 전송되는 CSI-RS, 제3 그룹을 통해 전송되는 CSI-RS, 제4 그룹을 통해 전송되는 CSI-RS 각각에 (하나의 동일한) CDM-8이 적용될 수 있다.
CSI-RS 포트당 최대 전송 전력을 ‘1’로 상정했을 때, 도 26의 실시예를 따르는 경우, 최대 전송 전력은 ‘3/4’이 된다(OFDM 심볼 인덱스 5번, 6번의 RE들에 CDM-8이 적용됨으로써 8배 파워 부스팅되며, 다른 포트에서 전송 파워를 빌려옴으로써 3배의 파워 부스팅됨). 따라서, 도 26 실시예의 CSI-RS 자원/패턴/구성을 사용하는 경우, CSI-RS 포트당 최대 전력 전송을 달성하지 못하게 된다.
이를 해결하기 위하여, 도 27의 실시예가 제안될 수 있다. CSI-RS 포트당 최대 전송 전력을 ‘1’로 상정했을 때, 도 27의 실시예를 따르는 경우, OFDM 심볼 인덱스 5번, 6번의 RE들에 CDM-8이 적용됨으로써 8배 파워 부스팅되며, 다른 포트에서 전송 파워를 빌려옴으로써 4배 파워 부스팅이되어, 최대 전송 전력이 ‘1’이 될 수 있다.
도 27의 실시예의 경우, 병합되는 4개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성으로, OFDM 5번과 6번에서 1개, 12번과 13번에서 1개, 그리고, 9번과 10번에서 나머지 2개가 선택되도록 제한될 수 있다. 도 27에는 앞서 도 8(c)와 관련하여 정의된 5개의 (레가시) 8-포트 CSI-RS 자원 구성들 중 [0, 1, 2, 4]가 선택되어 32-포트 CSI-RS 자원/패턴/구성을 구성하는 예를 중심으로 도시한 것이다. 따라서, 본 도면에 도시되지 않은 (레가시) 8-포트 CSI-RS 자원 구성 3번 역시, 32-포트 CSI-RS 자원을 병합에 사용될 수 있다. 예를 들어, 8(c)와 관련하여 정의된 5개의 (레가시) 8-포트 CSI-RS 자원 구성들 중 [0, 1, 3, 4] 또는 [0, 2, 3, 4]가 선택되어 32-포트 CSI-RS 자원/패턴/구성을 구성할 수 있다.
도 27의 실시예에서 CDM-8이 적용되는 각 그룹의 구체적인 좌표를 (k’, l’)(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 두 개의 슬롯에 걸친 OFDM 심볼 인덱스를 나타냄)을 이용하여 나타내면 아래와 같을 수 있다.
- ‘A’로 표시된 제1 그룹: (9, 5), (9, 6), (11, 9), (11, 10), (9, 9), (9, 10), (9, 12), (9, 13)
- ‘B’로 표시된 제2 그룹: (8, 5), (8, 6), (10, 9), (10, 10), (8, 9), (8, 10), (8, 12), (8, 13)
- ‘C’로 표시된 제3 그룹: (3, 5), (3, 6), (5, 9), (5, 10), (3, 9), (3, 10), (3, 12), (3, 13)
- ‘D’로 표시된 제4 그룹: (2, 5), (2, 6), (4, 9), (4, 10), (2, 9), (2, 10), (2, 12), (2, 13)
본 도면에 도시되지 않은 3번 CSI-RS 자원 구성 역시, 다른 CSI-RS 자원 구성과 마찬가지로, CDM-8이 독립적으로 적용되는 4개의 그룹들로 구별될 수 있다. 예를 들어, 3번 CSI-RS 자원 구성 내 CDM-8 적용을 위한 그룹에 대한 구체적인 좌표를 앞서 (k’, l’)(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 두 개의 슬롯에 걸친 OFDM 심볼 인덱스를 나타냄)을 이용하여 표현하면, (7, 9), (7, 10)의 RE들은 알파벳 ‘A’에 해당하는 제1 그룹에 포함될 수 있으며, (6, 9), (6, 10)의 RE들은 알파벳 ‘B’에 해당하는 제2 그룹에 포함될 수 있으며, (1, 9), (1, 10)의 RE들은 알파벳 ‘C’에 해당하는 제3 그룹에 포함될 수 있으며, (0, 9), (0, 10)의 RE들은 알파벳 ‘D’ 해당하는 제4 그룹에 포함될 수 있다.
즉, 상술한 도 27의 실시예를 정리하면, eFD-MIMO에서의 32-포트 CSI-RS 자원/패턴/구성의 경우, 각 (레가시) 8-포트 CSI-RS 자원/패턴/구성들은 서로 다른 알파벳으로 표시되는 복수의 하위 그룹/패턴으로 구분될 수 있으며, 전체 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 사이에서 동일한 알파벳을 갖는 복수의 하위 그룹/패턴(예를 들어, CDM-2 패턴)들의 병합으로 CDM-8이 적용되는 CDM-8 패턴/그룹이 구성될 수 있다.
이때, resourceConfig의 순서에 따라서 후술될 포트 넘버링이 결정될 수 있다.
이러한 각 그룹별로 CDM-8이 적용되는 32-포트 CSI-RS 자원/패턴/구성에 관하여는 도 30과 관련하여 이하에서 상세히 후술하기로 한다.
도 27의 실시예에 따라 CDM-8이 적용되는 32-포트 CSI-RS 자원/패턴/구성을 단말이 설정받는 경우, 기지국은 병합되는 8-포트 CSI-RS 자원들을 RRC signaling으로 단말에 알려줄 수 있다. 이 경우, 기지국은 32-포트 CSI-RS 자원으로 병합되는 4개의 8-포트 CSI-RS 자원/패턴/구성들을 모두 RRC 시그널링으로 단말에 지시할 수도 있으나, 9번 및 10번에 위치하는 3개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 중 32-포트 CSI-RS 자원/패턴/구성으로 병합되는 두 개의 8-포트 CSI-RS 자원/패턴/구성만을 알려주어 시그널링 오버헤드를 줄일 수도 있다.
도 27의 실시예의 32-포트 CSI-RS 자원/패턴/구성이 적용되는 경우, 해당 자원/패턴/구성에 CDM-8을 적용하기 위한 포트 넘버링의 실시예는 수학식 20과 같다. 기본적으로 각 CDM-8 weight 매핑 방식은 Walsh 행렬을 따르며, permutation에 의하여 적용의 차이가 있을 수 있다.
Figure PCTKR2017003187-appb-M000020
수학식 20에서 l은 포트 넘버링 결과에 따른 최종 CSI-RS 포트 넘버, k는 병합되는 각 CSI-RS 자원/구성(configuration) 넘버, K는 병합/포함되는 CSI-RS 자원/패턴/구성의 개수, p’는 병합되는 레가시 CSI-RS 포트 넘버를 각각 나타낸다.
만일, 수학식 20에서 k의 범위를 1~K가 아닌, 0부터 K-1로 설정한다면, 포트 넘버링 실시예는 이하의 수학식 21과 같이 표현될 수도 있다.
Figure PCTKR2017003187-appb-M000021
수학식 20(또는 수학식 21)은 표 3에서와 같이 정의된 CSI-RS 자원/구성 넘버 순서대로 안테나 포트가 넘버링됨을 의미할 수 있다.
수학식 20(또는 수학식 21)에 따라 넘버링된 각 CSI-RS 포트를 통해 전송되는 CSI-RS에는 아래의 표 7과 같이 CDM-8이 적용될 수 있다.
Figure PCTKR2017003187-appb-T000006
표 7은 수학식 20(또는 수학식 21)에 따라 도출된 CSI-RS 포트 넘버별로 적용되는 8개의 weight vector를 나타낸다. 하나의 행은 4개의 element로 구성되며 각 element는 CDM-8 패턴이 독립적으로 적용되는 각 그룹을 대표한다. 즉, 32-포트 CSI-RS 자원/패턴/구성에는 총 네 개의 독립적인 CDM-8 패턴들이 적용되는 네 개의 그룹들이 존재한다. 그리고 8개의 행은 각각 CDM-8을 구성하는 8개의 weight vector가 적용되는 포트들을 의미한다. 각 열은 CDM-8 패턴이 독립적으로 적용되는 그룹을 의미한다.
따라서, 제1 그룹인 {15,16,23,24,31,32,39,40}, 제2 그룹인 {17,18,25,26,33,34,41,42}, 제3 그룹인 {19,20,27,28,35,36,43,44}, 및 제4 그룹인 {21,22,29,30,37,38,45,46}에 각각 (독립적으로) CDM-8이 적용될 수 있다. 또한, 각 그룹에서 {15,17,19,21} 포트들에는 [1 1 1 1 1 1 1 1 1], {16,18,20,22} 포트들에는 [1 -1 1 -1 1 -1 1 -1], {23,25,27,29} 포트들에는 [1 1 -1 -1 1 1 -1 -1], {24,26,28,30} 포트들에는 [1 -1 -1 1 1 -1 -1 1], {31,33,35,37} 포트들에는 [1 1 1 1 -1 -1 -1 -1], {32,34,36,38} 포트들에는 [1 -1 1 -1 -1 1 -1 1], {39,41,43,45} 포트들에는 [1 1 -1 -1 -1 -1 1 1], {40,42,44,46} 포트들에는 [1 -1 -1 1 -1 1 1 -1]의 weight vector가 각각 적용되게 된다.
앞서 상술한 도 26 및/또는 27에 따른 실시예는 24-포트 CSI-RS 자원/패턴/구성에도 동일/유사하게 적용될 수 있다. 예를 들어, 24-포트 CSI-RS 자원/패턴/구성에 CDM-8 적용 시, 도 26 및/또는 27에서 서로 다른 알파벳 A, B, C, D (+ E)으로 구분되는 CSI-RS 자원/패턴/구성 그룹들 중에서 3개의 그룹을 선택하고, 선택된 각 그룹 별로 독립적으로 CDM-8이 적용될 수 있다.
하지만 이 경우, CSi-RS 전송에 사용되지 않는 RE가 존재하여 자원이 낭비되므로, 이하에서는 도 28과 같이 CDM-8이 적용되는 24-포트 CSI-RS 자원/패턴/구성을 제안한다.
도 28은 본 발명의 일 실시예에 따른 24-포트 CSI-RS 자원/패턴/구성에 적용되는 CDM-8 패턴 디자인을 예시한다. 도 28에서 동일한 패턴으로 구분되는 8개의 RE들은 하나의 (레가시) 8-포트 CSI-RS 자원/패턴/구성을 나타낸다. 또한, 본 도면에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다.
도 28을 참조하면, CSI-RS 포트당 최대 전력 전송을 달성하기 위하여, 병합되는 (레가시) 8-포트 CSI-RS 자원/패턴/구성을 OFDM 심볼 인덱스 5, 6번 혹은 12, 13번에서 한 개, OFDM 심볼 인덱스 9, 10번에서 2개를 선택하여 24-포트 CSI-RS 자원/패턴/구성을 구성할 수 있다. 또한, 도면에 도시된 바와 같이 각 알파벳 별로 그룹을 나누고, 각 그룹별로 CDM-8을 적용하도록 제한할 수 있다. 이때, CDM-8이 적용되는 각 RE 그룹들은 파워 부스팅 이득을 가져가기 위해, OFDM 심볼 인덱스 5, 6번 혹은 12, 13번에서 속한 2개의 RE 그룹들(예를 들어, A 그룹 및 B 그룹)은 각각 OFDM 심볼 인덱스 9, 10번의 RE 그룹(들)과 CDM-8이 적용되는 독립적인 그룹을 구성하도록 제한될 수 있다.
도 29는 본 발명의 일 실시예에 따른 24-포트 CSI-RS 자원/패턴/구성에 적용되는 CDM-8 패턴 디자인을 예시한다. 도 29에서 동일한 패턴으로 구분되는 8개의 RE들은 24-포트 CSI-RS 자원/패턴/구성을 구성하는 하나의 (레가시) 8-포트 CSI-RS 자원/패턴/구성을 나타낸다. 즉 0과 1, 2와 5, 3과 6, 4와 7, 8과 9가 표시된 RE 그룹은 각각 (레가시) 8-포트 CSI-RS 구성을 의미한다. 또한, 본 도면에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다.
CDM-8이 효과적으로 적용될 수 있는 8의 배수의 Q-포트의 경우(예를 들어, Q=24, 32), (레가시) 8-포트 CSI-RS 자원/패턴/구성 단위로 병합되어 구성될 수 있다. 이 경우, 병합되는 (레가시) 8-포트 CSI-RS 자원/패턴/구성 단위로 CDM-8이 적용될 수 있지만, 이 경우 0과 1, 8과 9로 표시된 RE 그룹에 해당하는 (레가시) 8-포트 CSI-RS 자원/패턴/구성의 경우, 다른 포트의 전송 파워를 이용할 수 없어 파워 부스팅 이득이 크지 않다. 또한, 최대 전력 전송이 가능한 도 24, 26 내지 28의 실시예들은 24-, 32-포트 CSI-RS 자원/패턴/구성에 모두 공통으로 적용하기 어렵다.
따라서, 도 29에 도시한 바와 같이, 최대 전력 전송이 가능하도록 CDM-8을 적용하기 위해, 4-포트 CSI-RS 풀(또는 자원/패턴/구성)을 이용하는 방법을 제안한다. 본 실시예에서 (레가시) 8-포트 CSI-RS 자원/패턴/구성은 두 개의 4-포트 CSI-RS 풀들 구분되며, 각 4-포트 CSI-RS 풀은 CDM-4가 수행되는 기본 단위로 볼 수 있다. 이러한 4-포트 CSI-RS 풀에는 이하의 수학식 22 행 혹은 열을 weight로 CDM-4가 적용된다.
Figure PCTKR2017003187-appb-M000022
본 실시예를 따를 때, 단말이 24-, 32-포트 CSI-RS 자원/패턴/구성을 설정/적용받는 경우, 병합되는 (레가시) 8-포트 CSI-RS 자원/패턴/구성들(24-포트인 경우 3개, 32-포트인 경우 4개의 8-포트 CSI-RS 자원/패턴/구성들)에 관한 정보를 RRC 시그널링을 통해 설정 받을 수 있다. 예를 들어, 24-포트 CSI-RS 자원/패턴/구성을 설정 받은 단말이 {0,1}, {2,5}, {4,7} 이렇게 총 3개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성을 설정 받았다면, 이는 단말이 CDM-8 적용을 위한 6개의 4-포트 CSI-RS 풀(또는 자원/패턴/구성)을 설정 받은 것으로 볼 수 있다.
이 경우, 기지국은 단말에 설정된 4-포트 CSI-RS 풀(또는 자원/패턴/구성)들 중 독립적으로 CDM-8이 적용될 2개의 하위(sub) 4-포트 CSI-RS 풀(또는 자원/패턴/구성) 그룹/쌍에 관한 정보를 추가적으로 RRC 시그널링을 통해 단말에 알려주거나 미리 단말에 설정해 놓을 수 있다. 각 4-포트 쌍/그룹은
Figure PCTKR2017003187-appb-I000012
의 weight를 가지게 되며, 이를 이용하여 CDM-8이 적용될 수 있다. 이러한 방식을 수식으로 표현하면 이하의 수학식 23과 같다.
Figure PCTKR2017003187-appb-M000023
다만, 24-포트 CSI-RS 자원/패턴/구성에 대한 추가적인 RRC signaling의 경우, 6개의 병합되는 하위 4-포트 CSI-RS 풀(또는 자원/패턴/구성)들 중 2개가 선택되므로 6_C_2의 경우의 수가 존재하게 되며, 32-포트 CSI-RS 자원/패턴/구성에 대한 추가적인 RRC signaling의 경우, 8개의 병합되는 하위 4-포트 CSI-RS 풀(또는 자원/패턴/구성)들 중 2개가 선택되므로 8_C_2의 경우의 수가 존재하게 되어, signaling overhead가 클 수 있다. 따라서, CDM-8이 적용되는 set을 한정하여, 이를 RRC signalling을 통해 단말에 알려줄 수도 있다.
일 실시예로서, 부반송파 위치를 기준으로 CDM-8이 적용되는 set가 결정될 수 있으며, 예를 들어, 본 도면에 도시한 바와 같이 부반송파 인덱스(k’) 0~5이 set2, 6~11이 set1으로 정의될 수 있다. 이 경우, CDM-8이 적용되는 CSI-RS 자원/패턴/구성에 관한 CDM-8 패턴은 이렇듯 미리 정의된 set를 기준으로 결정될 수 있다.
24-포트의 경우, 병합되는 3개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 중 동일한 set 내에서 2개가 선택되어 CDM-8이 적용될 수 있으며, 선택되지 않은 나머지 하나의 (레가시) 8-포트 CSI-RS 자원/패턴/구성에는 해당 자원/패턴/구성 내에서 그대로 CDM-8이 적용될 수 있다. 예를 들어, 첫 번째 내지 세 번째 (레가시) 8-포트 CSI-RS 자원/패턴/구성들이 도 29의 {0,1}, {2,5} 및 {4, 7}인 경우, CDM-8은 {0과 2}, {1과 5}, {4와 7}에 각각 적용/설정된다.
32-포트의 경우, 병합되는 4개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 중 동일한 set 내에서 2개가 선택되어 CDM-8이 적용될 수 있으며, 나머지 두 개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성에 대해서도 동일한 set 내에서 2개가 선택되어 CDM-8이 적용될 수 있다. 예를 들어, 첫 번째 내지 네 번째 (레가시) 8-포트 CSI-RS 자원/패턴/구성들이 도 29의 {0,1}, {2,5}, {4,7}, {8, 9}인 경우, CDM-8은 {0과 2}, {1과 5}, {4와 8} 및 {7과 9} 각각에 적용될 수 있다. 이때, CDM-8이 적용되는 첫 번째 하위 4-포트 CSI-RS 풀인 {0,1,4,7}은
Figure PCTKR2017003187-appb-I000013
에서 [1 1]^T의 weight를 가지고, 두 번째 하위 4-포트 CSI-RS 풀인 {2,5,8,9}는
Figure PCTKR2017003187-appb-I000014
에서 [1 -1]^T의 weight를 가지고 수학식 23이 적용되어, CDM-8 패턴을 구성하게 된다.
본 실시예를 따르는 경우, 기지국은 단말에 자원 선택에 관한 정보를 추가적으로 RRC signaling 해주어야 한다. 즉, 기지국은, 24-포트의 경우 단말이 설정 받은 3개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 중 각 set 내에서 CDM-8 적용을 위해 선택되는 2개의 자원/패턴/구성(총 3가지, 2-bit 맵 형식으로 지시될 수 있음), 32-포트의 경우, 4개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성 중 각 set 내에서 CDM-8 적용을 위해 선택되는 2개의 자원/패턴/구성(총 6가지, 3-bit 맵 형식으로 지시될 수 있음)을 추가적인 RRC signaling으로 단말에 알려줄 수 있다.
또는, CDM-8에 대한 추가적인 RRC signaling없이, 병합되는 8-포트 CSI-RS 자원/패턴/구성 순서대로 CDM-8을 적용하는 방식을 기지국과 단말이 사전에 정의될 수도 있다. 즉, 병합을 위하여 설정되는 자원/패턴/구성 순서대로 상술한 CDM-8 매핑 방식이 적용될 수 있다.
예를 들어, 24-포트 CSI-RS 자원/패턴/구성을 설정받은 단말의 첫 번째 및 두 번째 8-포트 CSI-RS 자원/패턴/구성이 도 29의 {0,1}, {2,5}인 경우, CDM-8은 {0과 2}, {1과 5}에 각각 적용되며, 세 번째 8-포트 CSI-RS 자원/패턴/구성인 {4,7}에 CDM-8이 적용/설정된다. 32-포트의 경우, 동일한 set 내에서 첫 번째 및 두 번째 CSI-RS 자원/패턴/구성에 포함되는 하위 4-포트 CSI-RS 풀 두 개에 CDM-8이 적용되며, 동일한 set 내에서 세 번째 및 네 번째 8-포트 CSI-RS 자원/패턴/구성에 포함되는 하위 4-포트 CSI-RS 풀 두 개에도 CDM-8이 적용될 수 있다. 예를 들어, 32-포트 CSI-RS 자원/패턴/구성을 설정받은 단말의 첫 번째 내지 네 번째 8-포트 CSI-RS 자원/패턴/구성이 {0,1}, {2,5}, {4,7}, {8, 9}인 경우, CDM-8은 {0과 2}, {1과 5}, {4와 8}, {7과 9} 각각에 대해 적용될 수 있다.
도 30은 본 발명의 일 실시예에 따른 CDM-8 패턴들을 예시한 도면이다. 보다 상세하게는, 도 30(a)는 도 27과 관련하여 상술한 실시예를 일반화하여 도시한 도면이며, 도 30(b)는 도 29와 관련하여 상술한 실시예를 일반화하여 도시한 도면이다. 도 30에서 동일한 패턴으로 표시된 RE들은 병합되는 하나의 (레가시) 8-포트 CSI-RS 자원/패턴/구성을 나타내며, 동일한 알파벳으로 표시된 RE들은 CDM-8이 적용되는 하나의 CDM-8 패턴 또는 그룹을 나타낸다. 또한, 본 도면에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다.
도 30을 참조하면, CDM-8 적용 시, 병합되는 (레가시) 8-포트 CSI-RS 자원/패턴/구성이 4개(도 30(a)) 혹은 2개(도 30(b))의 그룹으로 나뉠 수 있으며, (동일한 알파벳으로 표시된) 각 그룹별로 CDM-8이 적용될 수 있다. 이는, 최대 전력 전송을 위해 CDM-8은, 하나의 (레가시) 8-포트 CSI-RS 자원/패턴/구성에 대해서만 적용되는 것이 아니라, 병합되는 전체 (레가시) 8-포트 CSI-RS 자원/패턴/구성에 걸쳐서 적용되는 것으로 해석될 수 있다.
보다 상세하게는, 단말은 4개의 8-포트 CSI-RS 자원/패턴/구성들이 병합된 형태의 32-포트 CSI-RS 자원/패턴/구성을 설정받을 수 있으며, 이 경우 본 도면에 도시된 바와 같이, 병합된 (레가시) 8-포트 CSI-RS 자원/패턴/구성들 사이에서 동일한 알파벳으로 그룹핑된(표시된) 하위 2-포트 CSI-RS 자원/패턴/구성들(도 30(a)의 경우) 또는 하위 4-포트 CSI-RS 자원/패턴/구성들(도 30(b)의 경우) 단위로 CDM-8이 각각 적용될 수 있다. 이는, 각 (레가시) 8-포트 CSI-RS 자원/패턴/구성은 2개 또는 4개의 그룹으로 나뉠 수 있으며, 병합되는 전체 8-포트 CSI-RS 자원/패턴/구성들에 걸쳐서 동일한 그룹별로 CDM-8이 적용될 수 있다.
도 30(a) 및 30(b)의 실시예들 모두 최대 전력 전송과 CDM-8 적용의 범용성(예를 들어, 동일 CSI-RS density 하에서 2개의 그룹으로 나누는 경우, 24-, 32-포트 모두에 적용 가능하며, 4개의 그룹 나누는 경우 32-포트에 적용 가능함)의 측면에서 장점이 있다. 또한, 채널의 주파수/시간 도메인의 variation과 최대 전력 전송으로 인한 성능 향상의 장단점을 고려할 때, 상술한 두 가지 option들을 기지국이 설정해줄 수 있는 유연성(flexibility)이 필요할 수 있다. 이 경우, 기지국은 CDM-8이 적용되는 하위 CSI-RS 자원/패턴/구성(또는 2개 혹은 4개의 그룹으로 나뉜 (레가시) 8-포트 CSI-RS 자원/패턴/구성)에 관한 정보를 RRC signalling으로 단말에 지시/지정해 줄 수 있다.
또한, 20-포트와 28-포트 CSI-RS 자원/패턴/구성에 적용되는 CDM-8의 경우, 도 30에서 제안한 CDM-8 패턴의 subset으로 구성/설정될 수 있다. 예를 들어, A, B, C 이렇게 세 개의 그룹/패턴에 각각 수학식 15의 OCC code이 적용된 24-포트 CSI-RS 자원/패턴/구성 내에서 20-포트 CSI-RS 자원/패턴/구성이 선택될 수 있다. 20-포트 CSI-RS 자원/패턴/구성이 선택되는 가장 간단한 실시예로, 24-포트 CSI-RS 자원/패턴/구성에서 CDM-8이 적용되는 각 그룹/패턴 별로 순차적으로 포트 넘버링을 실시한 후(예를 들어, A 그룹/패턴: 15, 16, … 22, B 그룹/패턴: 23, 24, … 30, C 패턴: 31, 32, … 38) 후, 이 중 15~34 포트 넘버를 갖는 CSI-RS 자원/패턴/구성으로 20-포트 CSI-RS 자원/패턴/구성을 구성할 수 있다. 28-포트 또한 이와 유사하게 32-포트 CSI-RS 자원/패턴/구성 내에서 선택되어 구성될 수 있다.
상술한 실시예에서 24-포트 또는 32-포트 CSI-RS 자원/패턴/구성은 (레가시) 8-포트 CSI-RS 자원/패턴/구성의 병합으로 구성되며, CDM-8이 적용되는 하나의 CDM-8 그룹/패턴은, (레가시) 8-포트 CSI-RS 자원/패턴/구성을 기준으로 구분된 하위 그룹/패턴들의 병합으로 정의된다. 즉, (레가시) 8-포트 CSI-RS 자원/패턴/구성이 2개 또는 4개의 하위 그룹/패턴으로 구분된 경우, 각 (레가시) 8-포트 CSI-RS 자원 패턴 별로 구분된 하위 그룹/패턴들 2개 혹은 4개가 병합된 형태로 CDM-8 그룹/패턴이 정의될 수 있다.
그러나, 이와 달리, 23-포트 또는 32-포트 CSI-RS 자원/패턴/구성을 레가시 4-포트 CSI-RS 자원/패턴/구성의 병합으로 구성하고, 레가시 4-포트 CSI-RS 자원/패턴/구성 단위로 구분된 하위 패턴/그룹을 병합하여 CDM-8 그룹/패턴을 구성하는 경우, 기지국 입장에서는 좀더 유연하게 CDM-8이 적용되는 CSI-RS를 구성할 수 있다. 하지만, 이 경우에도 성능 열화를 막기 위하여, CSI-RS 포트당 최대 전력 전송이 고려되어야 하며, CDM-8 패턴/그룹을 구성하는 RE들간의 위치 또한 이격이 크면 안된다. 이하에서는, 레가시 4-포트 CSI-RS 자원/패턴/구성이 병합되는 실시예에서 성능 열화를 막기 위한 하위 그룹/패턴 병합 규칙을 제안한다.
도 31은 본 발명의 일 실시예에 따른 CDM-8 패턴들을 예시한 도면이다. 또한, 본 도면에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다. 도 31에서 동일한 패턴으로 표시된 RE들은 하나의 레가시 4-포트 CSI-RS 자원/패턴/구성을 나타낸다. 또한, 도 31에서 부반송파 위치를 기준으로 CDM-8이 적용되는 set가 결정될 수 있으며, 예를 들어, 본 도면에 도시한 바와 같이 부반송파 인덱스(k’) 0~5이 set2, 6~11이 set1으로 정의될 수 있다.
도 31을 참조하면, (24- 또는 32-포트 CSI-RS 자원/패턴/구성으로) 병합되는 레가시 4-포트 CSI-RS 자원/패턴/구성의 경우, 적어도 OFDM 심볼 인덱스 5, 6번에서 1개, 12, 13번에서 1개가 반드시 선택되도록 제한될 수 있다. 또한, 파워 불균형(Power imbalance) 문제를 해결하기 위하여, OFDM 심볼 인덱스 5, 6번과 12, 13번에서 선택되는 4-포트 CSI-RS 자원/패턴/구성의 개수는 동일(예를 들어, 1개 혹은 2개)하도록 설정될 수 있다. 그리고/또는, 병합된 RE들은 set 1과 set 2에 동일한 수로 포함되고, 및/또는 CDM-8의 성능 향상을 위하여 각 set 내에서만 CDM-8이 적용되도록 제한될 수도 있다.
예를 들어, 도 31의 Set 1 내에서 (0,1) RE pair 4개를 선택하여 하나의 CDM-8 패턴으로 구성할 수 있다. 만일 OFDM 심볼 5,6번과 12, 13번 각각에 위치한 2개의 레가시 4-포트 CSI-RS 자원/패턴/구성이 병합되는 경우에는, 동일한 부반송파 위치의 RE들끼리 하나의 CDM-8 패턴/그룹을 구성할 수 있다. 예를 들어, 부반송파 인덱스 9번 및 OFDM 심볼 인덱스 5, 6번에 위치한 (0,1) RE들과 부반송파 인덱스 9번 및 OFDM 심볼 인덱스 12, 13번에 위치한 (0,1) RE들이 동일한 CDM-8 패턴/그룹을 구성할 수 있다. 또한, 하나의 CDM-8 패턴/그룹에는 동일한 OFDM 심볼 인덱스에 위치한 두 개의 (0,1) RE pair가 포함되지 않도록 제한될 수 있다. 예를 들어, 부반송파 인덱스 9번 및 OFDM 심볼 인덱스 5, 6번에 위치한 (0,1) RE들과 부반송파 인덱스 8번 및 OFDM 심볼 인덱스 5, 6번에 위치한 (0,1) RE들은 동일한 CDM-8 패턴/그룹을 구성할 수 없다. 또는, OFDM 심볼 인덱스 5, 6번과 12, 13번에 속한 (0,1) RE pair들은 하나의 CDM-8 패턴/그룹에 하나씩만 속하도록 제한될 수도 있다.
CDM-8이 적용되는 CSI-RS 디자인 경우, 아래의 수학식 24 및 25와 같은 두 가지 포트 넘버링을 고려할 수 있다.
Figure PCTKR2017003187-appb-M000024
Figure PCTKR2017003187-appb-M000025
수학식 24 및 25에서 n은 포트 넘버링 결과에 따른 최종 CSI-RS 포트 넘버, K는 CSI-RS 구성의 개수를 나타내며, N은 병합되는 CSI-RS 구성당 안테나 포트의 개수를 나타낸다. 이외에, 수학식 24 및 25에 사용된 각 파라미터에 관한 설명은 수학식 20과 관련하여 상술한 설명이 동일하게 적용된다.
수학식 24은, 병합되는 CSI-RS 포트별로 순차적으로 넘버링하는 가장 간단한 포트 넘버링 규칙에 해당한다.
수학식 25는 forward compatibility를 하여, CDM-8이 적용되는 32-포트 이상의 CSI-RS 자원/패턴/구성이 설정된 단말과 Rel-14 CDM-8 단말의 CSI-RS 공유 목적으로 설정될 수 있다.
수학식 24 또는 25에 따른 포트 넘버링 규칙은 단말과 기지국 사이에 사전에 약속되거나 기지국이 RRC signalling을 통해 단말에 지시해줄 수 있다.
이상으로 복수의 CSI-RS 자원/패턴/구성들의 병합(예를 들어, 2~4개의 CSI-RS 자원/패턴/구성의 병합, 여기서, 병합되는 각 CSI-RS 자원/패턴/구성은 복수의 레가시 CSI-RS 자원/패턴/구성으로 구성된 “composite resource”형태일 수 있음) 실시예에 대해 초점을 맞추어 기술하였다. 이하에서는 “composite resource”형태를 특별히 추가 정의하지 않고, 각 (레가시) CSI-RS 자원/패턴/구성들이 병합되는 보다 일반적인 실시예로 확장하여 기술한다.
이하에서는, 용어의 혼동이 없도록 하기 위하여, “CSI-RS 구성(configuration)”이란, (현재 물리계층 표준상의 용어와 같이) CSI-RS가 전송/매핑되는 PRB-pair별 RE 위치를 의미하는 것으로 볼 수 있다(상위 계층 용어로는 “resourceConfig”로 표시될 수 있음). 또한, “CSI-RS resource(configuration)”이란 (현재 물리계층 표준상의 용어와 같이) 상기 CSI-RS 구성 정보뿐만 아니라 스크램블링 파라미터 정보(예를 들어, VCID; virtual cell ID), CSI-RS 안테나 포트 수, 전송 서브 프레임 주기/오프셋 정보 및/또는 qcl-CRS 관련 정보 등을 포함하는 의미로 사용할 수 있다(상위 계층 용어로는 “CSI-RS-ConfigNZP”로 표시될 수 있음).
상술한, 20-, 24-, 28-, 32-포트를 위한 CSI-RS 디자인에서, 아래와 같은 다수의 (레가시) 4-, 8-포트 CSI-RS 자원/패턴/구성들의 병합 방식이 고려될 수 있다.
- 20-포트 CSI-RS 자원/패턴/구성: 4+4+4+4+4(즉, 5개의 (레가시) 4-포트 CSI-RS 자원/패턴/구성의 병합)
- 24-포트 CSI-RS 자원/패턴/구성: 4+4+4+4+4+4 / 8+8+8 (즉, 6개의 (레가시) 4-포트 CSI-RS 자원/패턴/구성 또는 3개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성의 병합)
- 28-포트 CSI-RS 자원/패턴/구성: 4+4+4+4+4+4+4 (즉, 7개의 (레가시) 4-포트 CSI-RS 자원/패턴/구성의 병합)
- 32-포트 CSI-RS 자원/패턴/구성: 4+4+4+4+4+4+4+4 / 8+8+8+8 (즉, 8개의 (레가시) 4-포트 CSI-RS 자원/패턴/구성 또는 4개의 (레가시) 8-포트 CSI-RS 자원/패턴/구성의 병합)
즉, 20-포트 이상의 CSI-RS 자원/패턴/구성은 동일한 포트 사이즈의 레가시 CSI-RS 자원/패턴/구성들(예를 들어, 4- 또는 8-포트 CSI-RS 자원/패턴/구성들)의 병합으로 구성될 수 있다.
상술한 병합 실시예 외에도, 서로 다른 포트 수의 CSI-RS 자원/패턴/구성 간의 병합 형태로도 20-, 24-, 28-, 32-포트 CSI-RS 자원/패턴/구성이 도출될 수 있지만, 본 명세서에서는 설정/동작의 simplicity를 위해 병합되는 K개(k=1,2,…,K)의 CSI-RS 자원/패턴/구성들은 모두 같은 포트 수로 구성되는 것으로 제한한다(즉, N_1=N_2=…N_K=N, N=4 or 8).
일례로, 아래의 표 8과 같이, 병합되는 CSI-RS 자원/패턴/구성의 개수(K) 및 병합되는 CSI-RS 자원/패턴/구성별 안테나 포트 개수(N)의 조합으로만 특정 포트 수(예를 들어, 20, 24, 28, 32)를 갖는 CSI-RS 자원/패턴이 구성/설정/지시될 수 있도록 일정한 제한이 부여될 수 있다.
Figure PCTKR2017003187-appb-T000007
즉, 표 8과 같이, 특정 포트 수의 CSI-RS 자원/패턴/구성은 병합되는 (레가시) CSI-RS 자원/패턴/구성들의 조합이 최소화/단순화되는 방향으로 디자인될 수 있다.
본 실시예를 따르는 경우, 모든 N개의 병합된 CSI-RS 자원/패턴/구성들은 PRB 단위로 전송될 수도 있고, 또는 TDM 및/또는 FDM 방식을 통하여 특정 PRB-pair group 단위로 전송될 수도 있다. 후자의 경우, 각 PRB에는 N보다 작은 특정 개수의 병합된 CSI-RS 자원/패턴/구성들이 존재할 수 있다. TDM 및/또는 FDM 방식으로 전송되는 경우, 네트워크 측면에서 CSI-RS 전송 오버헤드가 줄어든다는 효과를 갖는다.
TDM 혹은 FDM 전송의 경우, A개(예를 들어, A=2)의 (인접한) PRB-pair에 걸쳐서 N개의 병합된 CSI-RS 자원/패턴/구성이 나누어 전송되는 형태(즉, 각 PRB-pair당 N/A개의 CSI-RS 자원/패턴/구성이 전송되는 형태)가 정의/설정될 수 있다. 그리고/또는 이러한 A개의 PRB-pair group이 전대역에 걸쳐(혹은 특정 대역에 걸쳐) 반복되는 형태가 정의/설정될 수 있다. 이러한 정의/설정에 대한 실시 예는 이하의 표 9 및 10과 같이 나타낼 수 있다.
Figure PCTKR2017003187-appb-T000008
Figure PCTKR2017003187-appb-T000009
표 9 및 10에서 “fdmtype”은 설정/병합되는 개별 CSI-RS 자원/패턴/구성별로 각각 어떠한 PRB-pair를 통해 전송되는지를 알려주기 위해 해당 PRB-pair의 index(es)(예를 들어, 0, 1, 2, …, N_RB - 1, 여기서 N_RB는 시스템 대역폭과 대응되는 RB의 총 개수에 해당)를 지시하는 지시자이다.
예를 들어, fdmtype은 {even, odd}중에서 어느 하나를 지시하도록 설정될 수 있다. 만일 fdmtype이 “even”으로 설정되면, fdmtype의 지시 대상인 CSI-RS 자원/패턴/구성은 0, 2, 4, … 의 인덱스를 갖는 PRB-pair에 걸쳐 모두 전송되어야 함을 의미할 수 있다. 또는, 만일 fdmtype이 “odd”로 설정되면, fdmtype의 지시 대상인 CSI-RS 자원/패턴/구성은 1, 3, 5, … 의 인덱스를 갖는 PRB-pair에 걸쳐 모두 전송되어야 함을 의미할 수 있다.
또 다른 예시로, fdmtype은 {0,1,2,..M-1} 중 어느 하나의 값을 지시할 수 있다. 이는, RPF(Repetition Factor) 값이 M인 경우를 의미하며, M의 값은 RRC 시그널링을 통해 별도로 지시되거나, 병합되는 CSI-RS 자원/패턴/구성 개수(N)과 동일하게 설정될 수 있다.
만일 fdmtype이 “0”이면, fdmtype의 지시 대상인 CSI-RS 자원/패턴/구성은 0, M, 2M, … 의 인덱스를 갖는 PRB-pair에 걸쳐 모두 전송되어야 함을 의미할 수 있으며, “1”이면 fdmtype의 지시 대상인 CSI-RS 자원/패턴/구성은 1, M+1, 2M+1, … 의 인덱스를 갖는 PRB-pair에 걸쳐 모두 전송되어야 함을 의미할 수 있다. 만일, fdmtype이 “M-1”이면, fdmtype의 지시 대상인 CSI-RS 자원/패턴/구성은 M-1, 2M-1, 3M-1, … 의 인덱스를 갖는 PRB-pair에 걸쳐 모두 전송되어야 함을 의미할 수 있다.
M이 병합되는 CSI-RS 자원/패턴/구성 개수(N)과 동일하게 설정되는 경우, 하나의 PRB-pair에서 전송되는 포트의 수는 K와 같다. 예를 들어, 24-포트 CSI-RS 자원/패턴/구성이 (N,K)=(3,8)으로 구성되는 경우, 한 PRB에서 전송되는 포트 수는 8이 된다(N=3). 또한, 이 경우, CSI-RS density는 1/3 RE/RB/port로 설정된다.
M의 값을 CSI-RS decimation으로 사용하는 경우, M개의 PRB에서 Q-포트(Q=NK) CSI-RS가 전송하는 것이 고려될 수 있다. 이때, M의 값은 RRC signalling으로 지시되거나 사전에 미리 설정되어 있을 수 있음은 앞서 상술한 바와 같다.
예를 들어, M=2인 경우, (every) odd 혹은 (every) even PRB에서만 Q-포트(Q=NK) CSI-RS가 전송되며, M=3인 경우, 0, 3, 6, … PRB에서만 Q-포트(Q=NK) CSI-RS가 전송될 수 있으며, 각 단말마다 상이한 offset 값이 설정될 수 있다. 예를 들어, offset ‘1’을 설정받은 단말은 1, 4, 7, … PRB에서만 Q-포트(Q=NK) CSI-RS를 전송할 수 있다.
그리고/또한, M의 값이 N의 값과 동일하게 설정되도록 미리 약속될 수도 있다. 이때, 후술할 바와 같이, 병합되는 총 N개의 CSI-RS 자원/구성/패턴들 중 특정 N_d(예를 들어, N_d=1)개는 기존의 CSI-RS 자원/구성/패턴 관련 설정(또는 레가시 필드)(예를 들어, CSI-RS-ConfigNZP-r11) 상에 포함되어 있을 수 있다. 이 경우, 레가시 필드에 “fdmtype”과 같은 새로운 필드를 포함시키기 어려우므로(레가시 단말들이 인식할 수 없음), N_d개의 CSI-RS 자원/구성/패턴에 대한 “fdmtype”은 특정 “default state“로 RRC 시그널링을 통해 별도로 설정/지시되거나, 표준상에서 특정 상태로 고정될 수 있다. 예를 들어, N_d개의 CSI-RS 자원/구성/패턴에 대한 “default state”는 “even”으로 고정될 수 있다. 이는, N_d개의 (default) CSI-RS 자원/패턴/구성은 항상 0, 2, 4, … 의 인덱스를 갖는 PRB-pair들에 걸쳐 모두 전송된다는 의미가 된다.
이 경우, 기지국이 N_d개 이외의 나머지 (N-N_d)개의 CSI-RS 자원/패턴/구성에 대하여, 각 자원/패턴/구성별로 fdmtype을 {even, odd} 중에서 flexible하게 설정할 수 있다는 장점이 발생한다. 일례로, 기지국은 N_d개의 (default) CSI-RS 자원/구성/패턴의 fdmtype은 “even(또는 odd)”이지만, 그 외의 모든 (N-N_d)개의 CSI-RS 자원/구성/패턴은 모두 “odd(또는 even)”로 설정할 수 있다.
본 실시예는 기지국의 FDM 설정의 유연성을 향상시키기 위해 이러한 비대칭적인 FDM 방식의 적용이 가능하다는 특징을 갖는다. 본 실시예는 1/2의 density (RE/RB/port) fdmtype에 관한 내용으로 해석될 수 있다.
만일, 본 실시예보다 낮은 density 1/M(예를 들어, M=3)의 FDM type을 고려하는 경우, 간단하게 even, odd가 아닌, 특정 offset 값 F(예를 들어, F=0,1,…,M-1)가 단말에 설정될 수 있으며, 여기서 F에 대한 modular M 연산(예를 들어, F = mod(i, M), 여기서 i=0,…..,N_RB_max-1)을 만족하는 인덱스 값을 갖는 PRB-pair들에서 CSI-RS가 전송될 수 있다.
예를 들어, M=3 및 F=0으로 설정된 CSI-RS는 0, 3, 6, …의 인덱스를 갖는 PRB-pair들에서 전송되는 것으로 해석될 수 있다. 이 경우, default state로서 “F=0”으로 고정될 수 있다. 이러한 실시예를 density=1/2인 경우에 적용하면, F=0과 F=1로 표현할 수 있다.
CSI-RS resource Config와 fdmtype(예를 들어, F값)과 관련된 시그널링을 이용하여, 기지국은 FDM type이 설정/적용된 단말에 유연하게 CSI-RS 자원/패턴/구성을 설정/적용할 수 있다. 이 경우, 각 PRB-pair 별로 CSI-RS 자원/패턴/구성이 독립적으로 설정될 수 있다.
또한, 레가시 단말이, FDM type으로 설정/적용된 단말에 설정된 CSI-RS 자원을 제외한 다른 자원의 사용을 최대화하거나 cell reuse factor를 최대화하는 실시예가 제안될 수 있다. 일 실시예로서, FDM type이 적용된 단말의 경우, CSI-RS 자원/구성/패턴은 동일하되, FDM type과 관련된 시그널링만 다르게 설정되도록 제한될 수 있다. 예를 들어, 32-포트 CSI-RS 자원/구성/패턴 및 1/2 density 설정을 위하여, 기지국은 8-포트 CSI-RS 구성 1과 2를 even PRB-pair에, 8-포트 CSI-RS 구성 1과 2를 odd PRB-pair에 각각 설정할 수 있다.
또 다른 실시예로, 20-포트 CSI-RS 자원/패턴/구성 및 1/2 density 설정을 위하여, 기지국은 4-포트 CSI-RS 구성 1, 2, 3을 even PRB-pair에 4-포트 CSI-RS 구성 1과 2를 odd PRB-pair에 각각 설정할 수 있다.
20-포트 및 28-포트 CSI-RS 자원/패턴/구성과 같이 병합되는 K 값이 홀수인 경우, 상기 예에서의 default state(예를 들어, “even/odd PRB-pair”)에 1개의 CSI-RS 자원/패턴/구성 더 매핑되도록 사전에 설정될 수 있다.
혹은 density value(d)의 signaling, 예를 들어, d=1(M=1)으로 설정된 단말은, density를 ‘1’로 인식을 하며, d=1/2(M=2)으로 설정받은 단말은 density를 ‘1/2’로 인식하며, d=1/3(M=3)으로 설정받은 단말은 density가 1/3으로 인식할 수 있으며, 이 경우, 단말은 M개의 CSI-RS 자원/패턴/구성만 설정받을 수 있다.
이 경우, 동일한 resource configuration number를 갖는 처음 [K / M]개의 resource configuration들은 F=0, F=1, ..., F=M-1과 함께 모두 단말에 설정된 것으로 인식되며, 나머지 K-[K / M]M개의 resource configuration들은 default state(예를 들어, F=0)인 PRB-pair에 설정되는 것으로 정의될 수도 있다. 예를 들어, 28-포트 CSI-RS 자원/패턴/구성 및 1/3 density(d=1/3, M=3) 설정을 위하여, 기지국이 4-포트 CSI-RS 구성 3, 6, 7과 M=3을 단말에 설정해주면, 단말은 default F=0 PRB-pair들에는 4-포트 CSI-RS 구성 3, 6, 7이, F=1과 F=2인 PRB-pair들에는 4-포트 CSI-RS 구성 3, 6가 매핑/설정되는 것으로 인식할 수 있다.
그리고/또는 상술한 “fdmtype” 정보뿐만 아니라 “tdmtype”정보가 fdmtype 정보와 유사하게 시그널링될 수 있다. 여기서, “tdmtype”은 병합되는 개별 CSI-RS 구성별로 어떠한 subframe index(es)(예를 들어, 0, 1, 2, …, N_period - 1, 여기서 N_period는 CSI-RS 전송 주기를 의미함)에서 전송되는 것인지를 지시해주는 지시자이다.
이에 대한 간단한 예시로는, tdmtype이 {0, 1, 2, 3, 4} 중에서 어느 하나의 값으로 지시될 수 있으며, 이것의 의미는, CSI-RS 전송 오프셋으로부터 {0, 1, 2, 3, 4}만큼 떨어진 인덱스를 갖는 subframe에서 CSI-RS가 전송된다는 의미일 수 있다. 여기서 tdmtype이 {0, 1, 2, 3, 4} 중 어느 하나의 값으로 지시됨은 N_period = 10인 경우에도, CSI-RS 병합이 적용되는 subframe 인덱스가 {0, 1, 2, 3, 4}로 제한됨을 의미하며, 이는 phase drift 등으로 인한 성능 열화가 줄어든다는 장점을 갖는다.
이때, 총 N개의 병합되는 CSI-RS 구성들 중 특정 N_d(예를 들어, N_d=1)개는 기존의 CSI-RS 자원/패턴/구성 관련 설정(또는 레가시 필드)(예를 들어, CSI-RS-ConfigNZP-r11) 상에 포함되어 있을 수가 있다. 이 경우, 레가시 필드에 “tdmtype”과 같은 새로운 필드를 포함시키기 어려우므로(레가시 단말들이 인식할 수 없음), N_d개의 CSI-RS 자원/구성/패턴에 대한 ‘tdmtype’은 특정 “default state“로 RRC 시그널링을 통해 별도로 설정/지시되거나, 표준상에 특정 상태로 고정될 수 있다.
일례로 “default state”는 “offset + 0”으로 고정될 수 있다. 이는, N_d(예를 들어, N_d=1)개의 (default) CSI-RS 자원/패턴/구성은 항상 ‘offset + 0’의 인덱스를 갖는 subframe에서 모두 전송됨을 의미한다. 나머지 (N - N_d)개의 CSI-RS 자원/패턴/구성에 대하여 기지국은 각 자원/패턴/구성별로 offset + {0,1,2,3,4} 중에서 유연하게 설정할 수 있다.
예를 들어, 기지국은 N_d개의 (default) CSI-RS 자원/패턴/구성에 대해서는 “offset + 0”을 설정할 수 있으나, 그 외의 나머지 (N - N_d)개의 CSI-RS 자원/패턴/구성에 대해서는 모두 “offset + 1”로 설정할 수 있다. 본 실시예는 기지국의 TDM 설정의 유연성을 향상시키기 위해 이러한 비대칭적인 TDM 방식의 적용이 가능하다는 특징을 갖는다.
상기 제안된 “fdmtype” 및 “tdmtype” 관련 실시예들은 독립적으로 혹은 조합되어 적용될 수 있다.
FDM된 CSI-RS 설정 시, noise suppression을 수행하기 위해서, delay spread, Doppler spread, Doppler shift, average gain, 및 average delay 등의 정보가 정확하게 측정될 수 있어야 한다. 하지만, TM(Transmission Mode) 10 및 QCL-type B가 설정된 단말의 경우, Doppler spread, Doppler shift에 대해서만 특정 CRS(indicated by a physical cell-ID; PCI)와의 QCL 가정을 수행하도록 (각 CSI-RS 설정상에서) QCL 정보가 설정되므로, FDM된 CSI-RS의 경우는 CSI-RS만으로 delay spread에 대한 정보를 정확하게 측정하기 어렵다.
이를 해결하기 위해, 일 실시예로서, FDM된 CSI-RS가 단말에 설정되는 경우에는, (TM 10 등에 있어서) QCL-타입 B가 단말에 설정되더라도, 해당 FDM된 CSI-RS와 {Delay spread 및/또는 Average delay}에 대해서도 (추가적으로) QCL 가정을 수행하도록 하는 특정 QCLed CRS(associated with a PCI) 정보가 단말에 제공될 수 있다.
또는, FDM된 CSI-RS가 설정되는 경우에는, 반드시 QCLed CRS 정보가 단말에 제공되도록 하여, 단말이 FDMed CSI-RS을 측정하기 위해서는 항상 해당 QCLed CRS를 통해 추정된 {Delay spread 및/또는 Average delay}를 포함한 채널의 large-scale parameter(LSP)들을 이용하여 FDM된 CSI-RS의 측정 성능을 높일 수 있도록 할 수 있다. 보다 상세하게는, FDM된 CSI-RS 등 CSI-RS density가 기존보다 낮아지는 특성이 있는 새로운 CSI-RS 설정에 있어서는, 단말이 QCL-타입 B로 설정되는 등 해당 CSI-RS 자체로만 특정 LSP(예를 들어, Delay spread 및/또는 Average delay)를 다른 RS로부터의 도움 없이 측정/추정을 하도록 일반적으로 설정된 경우라 할지라도, 다음과 같은 옵션들 중 적어도 하나의 옵션을 (예외적으로) 따르도록 단말의 동작이 정의/설정될 수 있다.
- Option 1: 상기 조건에서는, 단말이 (예외적으로) (FDM된) CSI-RS의 채널 측정/추정을 위해, “QCL-타입 A”와 동일한 가정할 수 있도록 한다. 이는, (FDM된) CSI-RS의 채널 측정/추정에 있어서, QCL-타입 A 가정에서와 같이 serving-cell CRS 포트 0~3으로부터 추정된 LSP들을 활용함으로써 성능 향상을 얻을 수 있음을 의미한다. 본 옵션에 따를 때, 단말이 (FDM된) CSI-RS 등과 다른 기존의 CSI-RS도 함께 설정받은 경우(e.g., CoMP 목적 등을 위해), 이러한 기존의 CSI-RS에 대해서는 여전히 QCL 타입 B를 적용해야 하므로, 특정 CSI-RS의 속성에 따라 QCL-타입 A 또는 QCL-타입 B가 선택적으로 적용될 수 있음을 의미한다.
- Option 2: 상기 조건에서는, 단말이 (예외적으로) (FDM된) CSI-RS의 채널 측정/추정에 있어서, QCL-타입 B에서 기본적으로 적용하도록 연동된 QCLed CRS({Doppler spread, Doppler shift}를 위한) 이외에도, 추가적으로 항상 serving cell CRS port 0-3와 {Delay spread 및/또는 Average delay}에 대해서 QCL을 가정할 수 있도록 한다. 본 옵션에 따를 때, CSI-RS 설정 상에서 기본적으로 설정되는 특정 CRS(PCI와 함께 지시되는)의 PCI가 serving-cell CRS의 PCI와 다른 경우, 특정 LSP별로 QCL 가정이 가능한 CRS가 상이할 수 있다는 특징을 갖는다. 또한, 본 옵션에 따를 때, 기지국 설정상의 유연성이 제공된다는 효과가 있다.
- Option 3: 상기 조건에서는, 단말이 (예외적으로) (FDM된) CSI-RS의 채널 측정/추정에 있어서, QCL-타입 B에서 기본적으로 적용하도록 연동된 QCLed CRS(PCI와 함께 지시되는)로부터 {Doppler spread, Doppler shift} 뿐만 아니라 {Delay spread 및/또는 Average delay}에 대해서도 함께 QCL 가정을 적용할 수 있도록 한다. 본 옵션을 따를 경우, 본 명세서에서 제안된 새로운 타입의 CSI-RS와 기존 CSI-RS의 채널 측정/추정에 있어서, QCL 가정에 의한 성능 향상의 도움을 받을 수 있는 QCLed CRS로부터 추정된 LSP들 중 활용 가능한 LSP들의 조합이 상이할 수 있다는 특징을 갖는다. 즉, 기존의 CSI-RS의 경우, QCLed CRS로부터 {Doppler spread, Doppler shift} 파라미터만 QCL 가정에 의한 활용이 가능하지만, 새로운 CSI-RS의 경우 해당 파라미터에 추가로 {Delay spread 및/또는 Average delay} 파라미터도 QCL 가정에 의한 활용이 가능하다는 효과가 있다.
CSI-RS는 특정 주기(예를 들어, 5ms grid, 또는 10ms grid, …)로 전송될 수 있다. 기존 CSI-RS를 위해 할당 가능한 RE들이 PRB-pair당 40개임을 감안할 때, 20-포트를 초과하는 X-포트(예를 들어, X=24, 28, 32) CSI-RS 자원/패턴/구성이 1개의 PRB-pair에서 설정되는 경우 cell reuse factor가 ‘1’밖에 되지 않는다는 문제가 있다. 따라서, cell reuse factor를 늘리기 위한 네트워크 단에서의 cell간 coordination이 수행될 수 있다.
예를 들어, cell 1과 cell 2는 10ms grid로 CSI-RS 1과 CSI-RS 2를 각각 설정하되, 각 cell 별로 subframe(SF) offset은 5ms만큼 차이나게 설정함으로써, 각 cell의 커버리지 내 UE들이 CSI-RS 1 및 CSI-RS 2의 전송 위치가 모두 커버되는 특정 zero-power(ZP) CSI-RS를 5ms grid로 설정받아 PDSCH rate matching에 적용하도록 할 수 있다. 결국, 이와 같이 적절한 ZP CSI-RS 설정을 통해 각 CSI-RS x의 전송 자원의 위치가 PDSCH 전송 자원 위치와 겹치게 되는 경우를 방지함으로써 각 CSI-RS x의 수신 품질을 보장할 수 있다.
그러나, 본 실시예의 경우, 20-포트를 초과하는 X-포트(예를 들어, X=24, 28, 32) CSI-RS 자원/패턴/구성에 대해서는 cell reuse factor를 증가시키기 위해 5ms grid의 CSI-RS는 설정할 수 없게 된다는 문제가 있다.
이를 해결하기 위하여, (상기와 같이 20-포트를 초과하는 X-포트(예를 들어, X=24, 28, 32) CSI-RS 자원/패턴/구성 등과 같은 새로운 CSI-RS 설정을 받는 경우에 한정하여) 기존의 ZP CSI-RS 설정에 추가하여 5ms grid를 맞출 필요가 없는 ZP CSI-RS가 추가적으로 설정될 수 있다. 즉, 상기 cell 1과 cell 2는 10ms grid로 CSI-RS 1과 CSI-RS 2를 각각 설정하는 예시에서, 각 단말들은 기존의 특정 ZP CSI-RS 1을 설정받은 상태에서 추가적인 ZP CSI-RS 2를 설정받을 수 있다. 이 경우, 이러한 ZP CSI-RS 2는, ZP CSI-RS 1과 함께 SF 오프셋이 임의의 값으로 설정될 수 있으며, 5ms grid와 같은 특정 제한이 부여되지 않은 추가적인 ZP CSI-RS 2를 단말이 설정받을 수 있다.
그렇게 되면, cell 1 및 cell 2는 CSI-RS 1과 CSI-RS 2를, 예를 들어, 각각 5ms grid로 설정하고, 서로간의 SF 오프셋이 1ms만큼 차이가 나는 형태로 CSI-RS를 전송하는 것이 가능하게 되고, 이것이 모두 ZP CSI-RS 1 및/또는 2에 의해 rate matching되어 PDSCH 전송과의 충돌이 방지된다는 장점이 있다.
이때, 추가적인 ZP CSI-RS 2는, 예를 들어, 인접한(adjacent) 복수의 SF들(또는 동일한 주기 내에 존재하는 복수의 SF들)에 존재하는 ZP CSI-RS RE들로 설정될 수 있도록 디자인될 수도 있다. 다시 말해, ZP CSI-RS 2는 종래의 ZP CSI-RS 1과 같이, 주기와 단일 SF 오프셋으로 설정되지 않고, 예를 들어, 주기와 다수의 SF 오프셋으로 설정될 수 있다(예를 들어, 5ms 주기와 SF 오프셋 0 및 1).
이상에서 제안된 새로운 형태의 ZP CSI-RS 2는 다음과 같은 특정 조건들 중 적어도 하나가 충족되는 경우에만 설정될 수 있는 것으로 한정될 수도 있다:
- 기존 CSI-RS 구성 시 할당 가능한 40개의 RE(PRB pair당) 내에서, cell reuse factor가 1(혹은 2)밖에 만족되지 못하는 특정 새로운 형태의 CSI-RS(예를 들어, 24-, 28-, 32-포트 CSI-RS)가 (적어도 하나) 설정되는 경우
- 특정 전송 모드(예를 들어, TM11)가 설정되는 경우
- CSI 절차의 설정 상에서 특정 RRC 지시자를 통하여 새로운 타입의 CSI-RS가 설정됨이 지시되는 경우, 이와 연동된 새로운 ZP CSI-RS가 설정될 수 있음. 또는, 별도의 명시적(explicit) RRC 지시자에 의해 이러한 설정/동작이 활성화/비활성화될 수 있음.
복수의 레가시 CSI-RS 자원/패턴/구성이 병합된 형태로 전송되는 CSI-RS의 경우, 기존 레가시 CSI-RS와 같이 CDM-2가 적용될 수 있다. 또한, CDM-4는 Rel. 13에서 정의된 것과 마찬가지로, 4-포트 단위로 병합된 경우에는 레가시 4-포트 CSI-RS 자원/패턴/구성 단위로, 8-포트 단위로 병합된 경우에는 OFDM 심볼과 부반송파가 연접한 2 by 2 RE 형태로 CDM-4가 적용될 수 있다. CDM-x(x>4)의 경우에는, 앞서 상술한 실시예를 따를 수 있으며, FDM 혹은 TDM되어 CSI-RS가 구성/전송되는 경우 각 PRB 내의 자원에서 동일한 CDM이 적용될 수 있다.
도 32는 본 발명의 일 실시예에 따른 포트 넘버링을 예시한 도면이다.
도 32를 참조하면, CSI-RS가 PRB-pair에 걸쳐 FDM되어 전송되는 경우, 해당 CSI-RS가 매핑되는 CSI-RS 자원/패턴/구성의 포트들은 동일한 even(혹은 odd) 인덱스를 갖는 PRB에서 전송되는 CSI-RS에 대응되는 포트들이 우선적으로 넘버링되며, 나머지 odd(혹은 even) 인덱스를 갖는 PRB에서 전송되는 CSI-RS에 대응되는 포트들이 넘버링될 수 있다.
예를 들어, X-포트(X=20) 구성 시, RRC 시그널링 혹은 기지국과 단말의 사전 약속에 의하여, 병합되는 5개의 4-포트 CSI-RS 자원/패턴/구성들 중 3개는 0번 PRB에 구성/매핑되어 15~26으로 순차적으로 포트 넘버링되고, 나머지 2개는 1번 PRB에 구성/매핑되어 27~34으로 순차적으로 포트 넘버링될 수 있다. 이어 PRB 2번과 3번도 0번과 1번과 같이 동일하게 상술한 포트 넘버링 규칙에 따라 넘버링될 수 있다.
혹은 각 (FDM된 / TDM된) PRB-pair 그룹별로 구성/매핑되는 X-포트 CSI-RS 자원/패턴/구성을 구성하는 N개의 CSI-RS 구성(들) 정보가 독립적으로 RRC 시그널링에 의해 제공될 수 있으며, 이 경우에도 상술한 포트 넘버링 규칙이 적용될 수 있다. 이러한 포트 넘버링 규칙은 2개 이상의 PRB-pair로 이루어진 PRB-pair group(A>2)이 병합되는 실시예에도 물론 확장 적용될 수 있다.
각 PRB-pair와 대응되는 CSI-RS 포트들이 순차적으로 포트 넘버링되는 규칙 외에도, 병합되어 구성되는 X-포트 CSI-RS 자원/패턴/구성을 레가시 단말들이 재사용할 수 있도록, 수학식 26과 같은 포트 넘버링 규칙 또한 고려될 수 있다.
Figure PCTKR2017003187-appb-M000026
수학식 26에서
Figure PCTKR2017003187-appb-I000015
는 indicator function으로 PRB 인덱스 z 가 홀수 일 때만 1의 값을 가지며(그렇지 않은 경우, ‘0’),
Figure PCTKR2017003187-appb-I000016
는 짝수 번째(또는 짝수 인덱스를 갖는) PRB-pair에서 병합되는 CSI-RS 구성의 개수이다. 예를 들어, 도 32의 예제의 경우,
Figure PCTKR2017003187-appb-I000017
=3이 된다. 이외에 나머지 파라미터들에 관한 설명은 앞서 상술한 수학식과 관련하여 상술한 설명이 동일하게 적용된다.
수학식 26을 FDM 전송에 확장 적용하게 되면, 설정받은 특정 PRB offset 값 F(F=0,1,…,M-1)에 존재하는 CSI-RS 구성이 순차적으로 포트 넘버링될 수 있다. 예를 들어, 28-포트 CSI-RS 자원/패턴/구성이 4-포트 CSI-RS 자원/패턴/구성 7개의 병합으로 구성되며, M=3(density 1/3)의 FDM으로 전송/설정되는 경우, F=0에 3개의 4-포트 CSI-RS 자원/패턴/구성, F=1에 3개의 4-포트 CSI-RS 자원/패턴/구성, F=2에 1개의 4-포트 CSI-RS 자원/패턴/구성이 설정/매핑되는 경우를 가정할 수 있다. 이 경우, F=0의 3개의 4-포트 CSI-RS 자원/패턴/구성을 전송하는 포트들은 15,16,17,18/19,20,21,22/23,24,25,26으로, F=1의 3개의 4-포트 CSI-RS 자원/패턴/구성을 전송하는 포트들은 27,28,29,30/31,32,33,34/35,36,37,38으로, F=2의 1개의 4-포트 CSI-RS 자원/패턴/구성은 39,40,41,42로 순차적으로 각각 포트 넘버링될 수 있다.
수학식 26은 CDM-2로 구성되는 CSI-RS에 적용이 가능하다. CDM-4가 적용되는 12- 혹은 16-포트 CSI-RS 자원/패턴/구성의 경우, 수학식 26은 앞서 상술한 X-포트(X=20, 24, 28, 32) CSI-RS 자원/패턴/구성의 예제에서, 모든 각 PRB-pair 내에서 병합되는 CSI-RS 자원/패턴/구성의 총 포트 수가 12(혹은 16)인 경우에만 적용이 가능하다. 예를 들어, 수학식 26은, 24-포트 CSI-RS 자원/패턴/구성이 12-포트씩 2개의 PRB-pair로 나뉘어 전송되거나(24=12+12), 또는 36-포트 CSI-RS 자원/패턴/구성이 18-포트씩 2개의 PRB-pair로 나뉘어 전송(32=16+16)되는 경우에 한하여 적용이 가능하다.
본 명세서에서 제안하는 CDM-x 관련된 RRC 시그널링에 관한 실시예는 다음과 같다.
1. CDM-6는, 6-포트 단위의 CSI-RS 자원/패턴/구성들의 병합으로 구성되거나 총 포트 수가 6의 배수인 X-포트(예를 들어, X=12, 24, 30… ) CSI-RS 자원/패턴/구성에 적용될 수 있다. CDM-6가 적용되는 X-포트 CSI-RS 자원/패턴/구성의 경우, CDM-2 또한 적용될 수 있다. 따라서, 기지국은 단말에 RRC로 어떠한 CDM-type이 적용/사용되는지를 알려 줄 수 있다. 즉, 기지국은 CDM-2 및 CDM-6 중 어떠한 CDM 타입이 적용/사용되는지를 단말에 RRC로 알려줄 수 있다.
2. CDM-8은, 8-포트 단위의 CSI-RS 자원/패턴/구성들의 병합으로 구성되는 혹은 총 포트 수가 8의 배수인 X-포트(예를 들어, X=16, 24, 32, 40, … ) CSI-RS 자원/패턴/구성에 적용될 수 있다. CDM-8이 적용되는 X-포트 CSI-RS 자원/패턴/구성의 경우, CDM-2, CDM-4 등 또한 적용될 수 있다. 따라서, 기지국은 단말에 RRC로 어떠한 CDM 타입이 적용/사용되는지를 알려줄 수 있다. 즉, 기지국은 CDM-2, CDM-4, CDM-8 혹은 상기 세 개 중의 적어도 일부로 구성된 set에서 어떠한 CDM 타입이 적용/사용되는지를 단말에 RRC로 알려줄 수 있다.
3. CDM-12는, 총 포트의 수가 12의 배수인 X-포트(예를 들어, X=12, 24, 36, 48, … ) CSI-RS 자원/패턴/구성에 적용될 수 있다. CDM-12가 적용되는 X-포트 CSI-RS 자원/패턴/구성의 경우, CDM-2, CDM-6 등 또한 적용될 수 있다. 따라서, 기지국은 단말에 RRC로 어떠한 CDM 타입이 적용/사용되는지를 알려줄 수 있다. 즉, 기지국은 CDM-2, CDM-6, CDM-12, 혹은 상기 세 개 중 적어도 일부로 구성된 set에서 어떠한 CDM 타입이 사용/적용되는지를 단말에 RRC로 알려줄 수 있다.
4. CDM-16은 총 포트 수가 16의 배수인 X-포트(예를 들어, X=16, 32, 48, 64… ) CSI-RS 자원/패턴/구성에 적용될 수 있다. CDM-16이 적용되는 X-포트 CSI-RS 자원/패턴/구성의 경우, CDM-2, CDM-4, CDM-8 등 또한 적용될 수 있다. 따라서, 기지국은 단말에 RRC로 어떠한 CDM 타입이 적용/사용되는지를 알려줄 수 있다. 즉, 기지국은 CDM-2, CDM-4, CDM-8, CDM-16, 혹은 상기 네 개 의 적어도 일부로 구성된 set에서 어떠한 CDM 타입이 사용되는지를 단말에 RRC로 알려줄 수 있다.
5. CDM-20은 총 포트 수가 20의 배수인 X-포트(예를 들어, X=20, 40, 60… ) CSI-RS 자원/패턴/구성에 적용될 수 있다. CDM-20이 적용되는 X-포트 CSI-RS 자원/패턴/구성의 경우, CDM-2 또한 적용될 수 있다. 따라서, 기지국은 단말에 RRC로 어떠한 CDM 타입이 적용/사용되는지를 알려줄 수 있다. 즉, 기지국은 CDM-2, CDM-20 중 어떠한 CDM 타입이 적용/사용되는 지를 단말에 RRC로 알려줄 수 있다.
이상에서는, 설정된 X-포트 CSI-RS에 동일한 CDM-x가 적용되는 실시예에 대해서 설명하였다. 예를 들어, 상술한 실시예를 따를 경우, 20-포트 CSI-RS을 구성하는 5개의 4-포트 CSI-RS에는 모두 동일하게 CDM-4가 적용된다. 그러나 이와 달리, 이하에서는 작은 포트 단위의 CSI-RS가 병합되어 구성된 X-포트 CSI-RS에 서로 다른 CDM 타입을 적용하는 실시예 또한 추가로 제안한다. 예를 들어, 20-포트 CSI-RS에 CDM-8과 CDM-4 혹은 CDM-2와 CDM-4가 혼재하여 적용될 수 있다.
본 실시예에 따를 때, 기지국이 CSI-RS에 적용하는 CDM을 좀더 유연하게 설정할 수 있게 되어, CSI-RS 자원/패턴/구성의 병합으로 인하여 발생할 수 있는 CSI-RS 포트간의 power imbalance 문제를 완화된다는 효과가 발생한다. 기지국은 단말에 RRC를 통하여, RE별 혹은 병합되는 CSI-RS 자원/패턴/구성별로 어떠한 CDM 타입이 적용되는지를 알려줄 수 있다.
eFD-MIMO에서 새로운 {20, 24, 28, 32} CSI-RS 포트를 지원하기 위해 다음과 같은 두 가지 대안이 고려될 수 있다.
- Alt. 1: 새로운 CSI-RS 패턴을 고정함
- Alt. 2: 새로운 CSI-RS 포트는 레가시 2/4/8 포트의 집합으로 구성됨
Alt. 1은 새로운 CSI-RS 구성 중 적어도 하나가 표준에 추가 및 고정되어야 함을 의미한다. 본 대안의 이점은 UE 구현 이슈가 최소화되고 향상된 기능이 표준의 기존 테이블에 통합될 수 있다는 것이다.
반면, Alt. 2는 Alt. 1 대비, K(>1) CSI-RS 구성들의 병합에 대한 RRC 설정에 있어서 더 많은 유연성을 제공할 수 있다는 장점을 갖는다.
Rel-13 FD-MIMO에서 CSI-RS 디자인과의 일관성을 고려하면, Alt. 2가 보다 바람직할 수 있다. 이와 관련하여, Rel-13의 12-포트 및 16-포트 CSI-RS의 병합 원칙이 재사용될 수 있다. 12-포트 및 16-포트 CSI-RS 디자인에서 최소 K 값을 갖는 N1 = N2 = ... NK = N인 병합 케이스만 허용된다. 여기서, K는 병합된 CSI-RS 구성의 개수이고, N은 병합된 CSI-RS 구성당 안테나 포트의 수이다. 본 원리에 따라, 새로운 CSI-RS 포트는, 이하의 표 11과 같이 (K, N)의 값으로 구성될 수 있다.
Figure PCTKR2017003187-appb-T000010
표 11을 따르는 경우, 20-, 24-, 28-, 32-포트 CSI-RS를 디자인하기 위해, 병합된 CSI-RS 구성들의 최소 개수(K)를 갖는 Rel-13의 12-포트 및 16-포트 CSI-RS의 병합 원리와 병합된 CSI-RS 구성 당 최대 동일한 포트 수(N)가 유지될 수 있다.
Rel-13의 CSI-RS 디자인의 또 다른 특징은 12-포트 및 16-포트 CSI-RS 송신 전력을 높이기 위한 방법으로 CDM-4가 도입된다는 것이다. 12-포트 및 16-포트 CSI-RS에 대한 동일한 병합 방법이 새로운 CSI-RS 포트에 고려되므로, Rel-13에 적용된 CDM-4와 동일한 방법을 새로 정의된 CSI-RS 포트에 대해 직접 확장할 수 있다. 즉, 4-포트 병합의 경우, 레가시 4-포트 CSI-RS에 위치하는 4개의 RE들에 대해 CDM-4가 적용되고, 2 by 2인 4개의 RE들에 적용되는 CDM-4는 8-포트 병합 케이스에도 고려될 수 있다.
레가시 CSI-RS 디자인에서 1 RE/RB/포트의 CSI-RS density가 유지된다. 그러나, 이 밀도로, 24-, 28- 및 32-포트와 같이 새롭게 정의된 CSI-RS의 cell reuse factor는 최대 1이 된다. Cell reuse factor를 높이고 전체 네트워크 CSI-RS 오버헤드를 줄이기 위해 FDM 기반의 CSI-RS 디자인이 고려될 수 있다. FDM 기반의 CSI-RS 디자인에서, 두 개의 인접한 PRB-pair가 새로운 CSI-RS 포트를 구성하는 데 사용될 수 있다. 이 경우, CSI-RS density는 0.5RE/RB/포트가 된다.
도 33은 본 발명의 일 실시예에 따른 FDM 기반의 32-포트 CSI-RS 디자인을 예시한다.
본 도면에서 각 블록은 RE들을 나타내며, 각 RE들은 좌→우측 방향으로 0~13 범위의 OFDM 심볼 인덱스가 순차적으로 할당되며, 하→상측 방향으로 0~11 범위의 부반송파 인덱스가 순차적으로 할당된다.
이러한 FDM 기반의 CSI-RS 디자인이 낮은 CSI-RS density(<1 RE/RB/포트)로 채택되면 FDM 기반의 CSI-RS만으로 delay spread를 정확하게 추정할 수 없으므로, noise suppression 성능이 저하될 수 있다.
이러한 문제를 해결하기 위해, CSI-RS와 CRS 사이의 QCL 연계(linkage)는 적어도 기존의 QCL 특성들(즉, Doppler shift 및 Doppler spread)에 부가하여 지연 확산에 대해 추가로 가정될 수 있다. 또한 FDM 기반 CSI-RS 디자인의 경우, CDM-4에 의한 CSI-RS 전송의 파워 부스팅은 많은 CSI-RS 포트 수로 인해 만족스럽지 않을 수 있다. 따라서, CDM-8이 8-포트 병합(즉, 24- 및 32-포트 CSI-RS)을 갖는 새로운 CSI-RS 설계에 적용될 수 있다. 이 경우 CDM-8은 병합된 (레가시) 8-포트에 위치하는 RE들에 적용될 수 있다.
도 34는 본 발명의 일 실시예에 따른 단말의 CSI-RS 수신 방법에 관한 순서도이다. 특히 본 순서도는 앞서 상술한 도 27, 30(a)와 관련하여 상술한 실시예들의 확장/보충 실시예에 해당한다. 본 순서도와 관련하여 상술한 실시예들에 관한 설명이 동일/유사하게 적용될 수 있으며, 중복되는 설명은 생략한다.
우선, 단말은 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신할 수 있다(S3410). 다음으로, 단말은 수신한 CSI-RS 구성 정보에 기초하여 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 CSI-RS를 수신할 수 있다(S3420).
만일, CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합된 32-포트 CSI-RS 구성인 경우, 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터의 개수가 8인 CDM-8 패턴이 적용될 수 있다. 이 경우, 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE-쌍들에 상기 CDM-8 패턴이 적용될 수 있다.
32-포트 CSI-RS 구성은 RB-쌍(즉, PRB-pair)에 위치하는 5개의 (레가시) 8-포트 CSI-RS 구성들 중에서 선택된 제1 내지 제4 (레가시) 8-포트 CSI-RS 구성의 병합으로 구성될 수 있음은 앞서 상술한 바와 같다.
이때, 표 3에서와 같이, OFDM 심볼 인덱스 5-6번, 부반송파 인덱스 8-9번 및 2-3번에 위치하는 RE들이 포함된 8-포트 CSI-RS 구성 ‘0’, OFDM 심볼 인덱스 9-10번, 부반송파 인덱스 10-11번 및 4-5번에 위치하는 8-포트 CSI-RS 구성 ‘1’, OFDM 심볼 인덱스 9-10번, 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘2’, OFDM 심볼 인덱스 9-10번, 부반송파 인덱스 6-7번 및 0-1번에 위치하는 8-포트 CSI-RS 구성 ‘3’, 및 OFDM 심볼 인덱스 12-13번, 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘4’가 정의되는 경우를 가정할 수 있다. 이 경우, 상기 제1 내지 제4 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘0’ 내지 ‘4’ 에서 선택될 수 있다. 예를 들어, 제1 (레가시) 8-포트 CSI-RS 구성은 8-포트 CSI-RS 구성 ‘0’, 제4 (레가시) 8-포트 CSI-RS 구성은 8-포트 CSI-RS 구성 ‘4’에 해당할 수 있다. 또한, 제2 및 제3 (레가시) 8-포트 CSI-RS 구성은 8-포트 CSI-RS 구성 ‘1’ 내지 ‘3’에서 선택될 수 있다. 예를 들어, 제2 (레가시) 8-포트 CSI-RS 구성은 8-포트 CSI-RS 구성 ‘2’, 제3 (레가시) 8-포트 CSI-RS 구성은 8-포트 CSI-RS 구성 ‘3’으로 각각 선택될 수 있다.
또한, 병합된 8-포트 CSI-RS 구성별로 가장 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제1 그룹, 병합된 8-포트 CSI-RS 구성별로 두 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제3 그룹, 병합된 8-포트 CSI-RS 구성별로 세 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제2 그룹, 및 병합된 8-포트 CSI-RS 구성별로 네 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제4 그룹이 정의되는 경우를 가정해볼 수 있다. 이 경우, 제1 내지 제4 그룹별로 동일한 CDM-8 패턴이 각각 적용될 수 있다.
이때, 제1 그룹에 포함되는 RE-쌍들의 좌표(k’, l’)는, (9, 5) 및 (9, 6), (9, 9) 및 (9, 10), (7, 9) 및 (7, 10), (9, 12) 및 (9, 13), 제3 그룹에 포함되는 RE-쌍들의 좌표는 (8, 5) 및 (8, 6), (8, 9) 및 (8, 10), (6, 9) 및 (6, 10), (8, 12) 및 (8, 13), 제2 그룹에 포함되는 RE-쌍들의 좌표는 (3, 5) 및 (3, 6), (3, 9) 및 (3, 10), (1, 9) 및 (1, 10), (3, 12) 및 (3, 13), 제4 그룹에 포함되는 상기 RE-쌍들의 좌표는 (2, 5) 및 (2, 6), (2, 9) 및 (2, 10), (0, 9) 및 (0, 10), (2, 12) 및 (2, 13)에 각각 해당할 수 있다.
만일, CSI-RS가 전송되는 서브 프레임이 주파수 축에서 부반송파 인덱스 0-5 범위의 제1 세트 및 상기 부반송파 인덱스 6-11 범위의 제2 세트로 구분되는 경우, 제1 및 제2 그룹은 제1 세트에 위치하며, 제3 및 제4 그룹은 상기 제2 세트에 위치할 수 있다.
32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 8-포트 단위로 넘버링될 수 있다. 보다 상세하게는, 32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 수학식 20, 21 또는 24에 따라 넘버링될 수 있다.
또한, 제1 그룹에 대응되는 안테나 포트 넘버는 {15, 16, 23, 24, 31, 32, 39, 40}, 제2 그룹에 대응되는 안테나 포트 넘버는 {17, 18, 25, 26, 33, 34, 41, 42}, 제3 그룹에 대응되는 안테나 포트 넘버는 {19, 20, 27, 28, 35, 36, 43, 44}, 제4 그룹에 대응되는 안테나 포트 넘버는 {21, 22, 29, 30, 37, 38, 45, 46}일 수 있다.
이때 각 그룹별로 적용되는 CDM-8 패턴의 상기 가중치 벡터는 수학식 15에 기초하여 결정될 수 있다. 따라서, 15, 17, 19 및 21로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 1 1 1 1 1 1 1 1], 16, 18, 20 및 22로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 -1 1 -1 1 -1 1 -1], 23, 25, 27 및 29로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 1 -1 -1 1 1 -1 -1], 24, 26, 28 및 30로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 -1 -1 1 1 -1 -1 1], 31, 33, 35 및 37로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 1 1 1 -1 -1 -1 -1], 32, 34, 36 및 38로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 -1 1 -1 -1 1 -1 1], 39, 41, 43 및 45로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 1 -1 -1 -1 -1 1 1], 40, 42, 44 및 46로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 [1 -1 -1 1 -1 1 1 -1]의 CDM-8 패턴이 각각 적용될 수 있다. 이러한 안테나 포트별 CDM-8 적용 내용을 정리하면 앞서 상술한 표 7과 같다.
본 발명이 적용될 수 있는 장치 일반
도 35은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 35을 참조하면, 무선 통신 시스템은 기지국(3510)과 기지국(3510) 영역 내에 위치한 다수의 단말(3520)을 포함한다.
기지국(3510)은 프로세서(processor, 3511), 메모리(memory, 3512) 및 RF부(radio frequency unit, 3513)을 포함한다. 프로세서(3511)는 앞서 도 1 내지 도 34에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(3511)에 의해 구현될 수 있다. 메모리(3512)는 프로세서(3511)와 연결되어, 프로세서(3511)를 구동하기 위한 다양한 정보를 저장한다. RF부(3513)는 프로세서(3511)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(3520)은 프로세서(3521), 메모리(3522) 및 RF부(3523)을 포함한다. 프로세서(3521)는 앞서 도 1 내지 도 34에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(3521)에 의해 구현될 수 있다. 메모리(3522)는 프로세서(3521)와 연결되어, 프로세서(3521)를 구동하기 위한 다양한 정보를 저장한다. RF부(3523)는 프로세서(3521)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(3512, 3522)는 프로세서(3511, 3521) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(3511, 3521)와 연결될 수 있다. 또한, 기지국(3510) 및/또는 단말(3520)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
발명의 실시를 위한 다양한 형태가 발명의 실시를 위한 최선의 형태에서 설명되었다.
본 발명은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 채널 상태 정보-참조 신호(CSI-RS(Reference Signal))를 수신하는 방법에 있어서,
    상기 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신하는 단계; 및
    상기 수신한 CSI-RS 구성 정보에 기초하여 상기 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 상기 CSI-RS를 수신하는 단계; 를 포함하되,
    상기 CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합(aggregate)된 32-포트 CSI-RS 구성인 경우,
    상기 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터(weight vector)의 개수가 8인 CDM(Code Division Multiplexing)-8 패턴이 적용되되,
    상기 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE(Resource Element)-쌍(pair)들에 상기 CDM-8 패턴이 적용되는, 단말의 CSI-RS 수신 방법.
  2. 제 1 항에 있어서,
    상기 32-포트 CSI-RS 구성은 RB(Resource Block)-쌍에 위치하는 5개의 8-포트 CSI-RS 구성들 중에서 선택된 제1 내지 제4 8-포트 CSI-RS 구성의 병합으로 구성되는, 단말의 CSI-RS 수신 방법.
  3. 제 2 항에 있어서,
    OFDM(orthogonal frequency division multiplexing) 심볼 인덱스 5-6번, 부반송파 인덱스 8-9번 및 2-3번에 위치하는 RE들이 포함된 8-포트 CSI-RS 구성 ‘0’,
    상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 10-11번 및 4-5번에 위치하는 8-포트 CSI-RS 구성 ‘1’,
    상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘2’,
    상기 OFDM 심볼 인덱스 9-10번, 상기 부반송파 인덱스 6-7번 및 0-1번에 위치하는 8-포트 CSI-RS 구성 ‘3’, 및
    상기 OFDM 심볼 인덱스 12-13번, 상기 부반송파 인덱스 8-9번 및 2-3번에 위치하는 8-포트 CSI-RS 구성 ‘4’가 정의되는, 단말의 CSI-RS 수신 방법.
  4. 제 3 항에 있어서,
    상기 제1 내지 제4 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘0’ 내지 ‘4’ 에서 선택되는, 단말의 CSI-RS 수신 방법.
  5. 제 4 항에 있어서,
    상기 제1 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘0’에 해당하며, 상기 제2 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘2’에 해당하며, 상기 제3 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘3’에 해당하며, 상기 제4 8-포트 CSI-RS 구성은 상기 8-포트 CSI-RS 구성 ‘4’에 해당하는, 단말의 CSI-RS 수신 방법.
  6. 제 4 항에 있어서,
    상기 병합된 8-포트 CSI-RS 구성별로 가장 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제1 그룹,
    상기 병합된 8-포트 CSI-RS 구성별로 두 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제3 그룹,
    상기 병합된 8-포트 CSI-RS 구성별로 세 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제2 그룹, 및
    상기 병합된 8-포트 CSI-RS 구성별로 네 번째로 높은 부반송파 인덱스를 갖는 RE-쌍들의 병합으로 구성된 제4 그룹이 정의되는 경우,
    상기 제1 내지 제4 그룹별로 동일한 CDM-8 패턴이 각각 적용되는, 단말의 CSI-RS 수신 방법.
  7. 제 6 항에 있어서,
    상기 제1 그룹에 포함되는 RE-쌍들의 좌표(k’, l’)는, (9, 5) 및 (9, 6), (9, 9) 및 (9, 10), (7, 9) 및 (7, 10), (9, 12) 및 (9, 13),
    상기 제3 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (8, 5) 및 (8, 6), (8, 9) 및 (8, 10), (6, 9) 및 (6, 10), (8, 12) 및 (8, 13),
    상기 제2 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (3, 5) 및 (3, 6), (3, 9) 및 (3, 10), (1, 9) 및 (1, 10), (3, 12) 및 (3, 13),
    상기 제4 그룹에 포함되는 상기 RE-쌍들의 상기 좌표는 (2, 5) 및 (2, 6), (2, 9) 및 (2, 10), (0, 9) 및 (0, 10), (2, 12) 및 (2, 13)에 각각 해당함,
    여기서 상기 k’는 하나의 서브 프레임 내에서의 상기 부반송파 인덱스, 상기 l’는 상기 하나의 서브 프레임 내에서의 OFDM 심볼 인덱스를 각각 나타내는, 단말의 CSI-RS 수신 방법.
  8. 제 6 항에 있어서,
    상기 32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 8-포트 단위로 넘버링되는, 단말의 CSI-RS 수신 방법.
  9. 제 8 항에 있어서,
    상기 32-포트 CSI-RS 구성을 전송하는 32개의 CSI-RS 안테나 포트들은 수학식 1에 따라 넘버링되는, 단말의 CSI-RS 수신 방법.
    [수학식 1]
    Figure PCTKR2017003187-appb-I000018
    여기서, 상기 n은 상기 수학식 1에 따라 결정되는 최종 CSI-RS 포트 넘버, 상기 N은 상기 병합되는 CSI-RS 구성당 안테나 포트의 개수, 상기 k는 상기 병합되는 CSI-RS 구성 넘버임.
  10. 제 9 항에 있어서,
    상기 제1 그룹에 대응되는 안테나 포트 넘버는 {15, 16, 23, 24, 31, 32, 39, 40},
    상기 제2 그룹에 대응되는 안테나 포트 넘버는 {17, 18, 25, 26, 33, 34, 41, 42},
    상기 제3 그룹에 대응되는 안테나 포트 넘버는 {19, 20, 27, 28, 35, 36, 43, 44},
    상기 제4 그룹에 대응되는 안테나 포트 넘버는 {21, 22, 29, 30, 37, 38, 45, 46}인, 단말의 CSI-RS 수신 방법.
  11. 제 10 항에 있어서,
    상기 CDM-8 패턴의 상기 가중치 벡터는 수학식 2에 기초하여 결정되는, 단말의 CSI-RS 수신 방법.
    [수학식 2]
    Figure PCTKR2017003187-appb-I000019
  12. 제 11 항에 있어서,
    상기 수학식 1에 따라 15, 17, 19 및 21로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 1 1 1 1 1 1 1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 16, 18, 20 및 22로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 1 -1 1 -1 1 -1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 23, 25, 27 및 29로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 -1 -1 1 1 -1 -1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 24, 26, 28 및 30로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 -1 1 1 -1 -1 1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 31, 33, 35 및 37로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 1 1 -1 -1 -1 -1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 32, 34, 36 및 38로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 1 -1 -1 1 -1 1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 39, 41, 43 및 45로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 1 -1 -1 -1 -1 1 1]의 CDM-8 패턴이 적용되며,
    상기 수학식 1에 따라 40, 42, 44 및 46로 넘버링된 안테나 포트들을 통해 전송되는 CSI-RS에는 상기 수학식 2에 따라 [1 -1 -1 1 -1 1 1 -1]의 CDM-8 패턴이 적용되는, 단말의 CSI-RS 수신 방법.
  13. 제 12 항에 있어서,
    상기 CSI-RS 구성은, 상기 4개의 8-포트 CSI-RS 구성들이 병합된 상기 32-포트 CSI-RS 구성, 5개의 4-포트 CSI-RS 구성들이 병합된 20-포트 CSI-RS 구성, 3개의 상기 8-포트 CSI-RS 구성들이 병합된 24-포트 CSI-RS 구성 및 7개의 상기 4-포트 CSI-RS 구성들이 병합된 28-포트 CSI-RS 구성 중 어느 하나로 설정되는, 단말의 CSI-RS 수신 방법.
  14. 무선 통신 시스템에서 채널 상태 정보-참조 신호(CSI-RS(Reference Signal))를 수신하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서; 를 포함하고,
    상기 프로세서는,
    상기 CSI-RS가 매핑되는 CSI-RS 구성(configuration)에 관한 CSI-RS 구성 정보를 기지국으로부터 수신하고,
    상기 수신한 CSI-RS 구성 정보에 기초하여 상기 기지국으로부터 복수의 안테나 포트들을 통해 전송되는 상기 CSI-RS를 수신하되,
    상기 CSI-RS 구성이 4개의 8-포트 CSI-RS 구성들이 병합(aggregate)된 32-포트 CSI-RS 구성인 경우,
    상기 32-포트 CSI-RS 구성에, 직교하는 가중치 벡터(weight vector)의 개수가 8인 CDM(Code Division Multiplexing)-8 패턴이 적용되되,
    상기 병합된 8-포트 CSI-RS 구성별로 하나씩 선택된 RE(Resource Element)-쌍(pair)들에 상기 CDM-8 패턴이 적용되는, 단말.
  15. 제 14 항에 있어서,
    상기 32-포트 CSI-RS 구성은 RB(Resource Block)-쌍에 위치하는 5개의 8-포트 CSI-RS 구성들 중에서 선택된 제1 내지 제4 8-포트 CSI-RS 구성의 병합으로 구성되는, 단말.
PCT/KR2017/003187 2016-03-24 2017-03-24 무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치 WO2017164688A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/088,050 US11870717B2 (en) 2016-03-24 2017-03-24 Method for transmitting and receiving channel state information reference signal in wireless communication system, and apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201662313116P 2016-03-24 2016-03-24
US62/313,116 2016-03-24
US201662315642P 2016-03-30 2016-03-30
US62/315,642 2016-03-30
US201662368134P 2016-07-28 2016-07-28
US62/368,134 2016-07-28
US201662401917P 2016-09-30 2016-09-30
US62/401,917 2016-09-30
US201662417432P 2016-11-04 2016-11-04
US62/417,432 2016-11-04

Publications (1)

Publication Number Publication Date
WO2017164688A1 true WO2017164688A1 (ko) 2017-09-28

Family

ID=59899614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003187 WO2017164688A1 (ko) 2016-03-24 2017-03-24 무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11870717B2 (ko)
WO (1) WO2017164688A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073022A (zh) * 2019-07-18 2022-02-18 瑞典爱立信有限公司 在大规模mu-mimo***中的cqi饱和减轻

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110009183A (ko) * 2008-08-21 2011-01-27 아사히 가라스 가부시키가이샤 발광 장치
KR20130040933A (ko) * 2010-05-31 2013-04-24 차이나 모바일 커뮤니케이션즈 코포레이션 다운링크 채널 측정 참조 신호의 송신 방법, 장치 및 수신 방법, 장치
KR20130045137A (ko) * 2010-08-16 2013-05-03 지티이 (유에스에이) 인크. Lte-어드밴스 시스템들에서의 csi-rs 자원 할당을 위한 방법들 및 시스템들
US20160050006A1 (en) * 2013-04-16 2016-02-18 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241916B1 (ko) 2010-02-07 2013-03-11 엘지전자 주식회사 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
CN104038320B (zh) * 2013-03-04 2019-03-01 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
CN106664192B (zh) * 2015-01-30 2020-12-01 韩国电子通信研究院 用于配置csi-rs天线端口的端口编号的方法和设备
CN106688190B (zh) * 2015-09-03 2018-07-24 Lg电子株式会社 在无线通信***中报告信道状态信息的方法及其设备
KR101958877B1 (ko) * 2017-06-15 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110009183A (ko) * 2008-08-21 2011-01-27 아사히 가라스 가부시키가이샤 발광 장치
KR20130040933A (ko) * 2010-05-31 2013-04-24 차이나 모바일 커뮤니케이션즈 코포레이션 다운링크 채널 측정 참조 신호의 송신 방법, 장치 및 수신 방법, 장치
KR20130045137A (ko) * 2010-08-16 2013-05-03 지티이 (유에스에이) 인크. Lte-어드밴스 시스템들에서의 csi-rs 자원 할당을 위한 방법들 및 시스템들
US20160050006A1 (en) * 2013-04-16 2016-02-18 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC: "Introduction of 12/16 Ports CSI-RS for Extended Cyclic Prefix", RL-160383, 3GPP TSG-RAN MEETING #84, 4 February 2016 (2016-02-04), St. Julian's, Malta, XP051063706 *

Also Published As

Publication number Publication date
US20230155758A1 (en) 2023-05-18
US11870717B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2017052330A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018056789A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018030855A1 (ko) 무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치
WO2019108048A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018128504A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2017039399A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2017090987A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018143721A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2017116141A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018231001A1 (ko) 무선 통신 시스템에서 협력 전송 수행 방법 및 이를 위한 장치
WO2016200106A1 (ko) 무선 통신 시스템에서 채널 측정 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2017034270A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2016204549A1 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2017048107A1 (ko) 무선 통신 시스템에서 피드백 신호를 송수신하는 방법 및 장치
WO2017039384A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2018225936A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2017010753A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018230975A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770658

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770658

Country of ref document: EP

Kind code of ref document: A1