WO2017164397A1 - Linear oscillation motor - Google Patents

Linear oscillation motor Download PDF

Info

Publication number
WO2017164397A1
WO2017164397A1 PCT/JP2017/012132 JP2017012132W WO2017164397A1 WO 2017164397 A1 WO2017164397 A1 WO 2017164397A1 JP 2017012132 W JP2017012132 W JP 2017012132W WO 2017164397 A1 WO2017164397 A1 WO 2017164397A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive signal
vibration motor
linear vibration
mover
duty ratio
Prior art date
Application number
PCT/JP2017/012132
Other languages
French (fr)
Japanese (ja)
Inventor
秀永 洋之
Original Assignee
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル株式会社 filed Critical 日本電産コパル株式会社
Publication of WO2017164397A1 publication Critical patent/WO2017164397A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation
    • H02K33/06Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation with polarised armatures

Definitions

  • the present invention relates to a linear vibration motor.
  • Vibration motors are widely used as devices that are built into portable electronic devices and transmit signal generation such as incoming calls and alarms to carriers by vibrations. Has become an indispensable device.
  • vibration motors have attracted attention as devices for realizing haptics (skin sensation feedback) in human interfaces such as touch panels.
  • a linear vibration motor that can generate relatively large vibrations by linear reciprocating vibration of the mover.
  • a linear vibration motor is provided with a weight and a magnet on the mover side and energizes a coil provided on the stator side, whereby the Lorentz force acting on the magnet becomes a driving force and is elastically supported along the vibration direction. What makes a mover reciprocate is known.
  • a drive system that can perceive a sensation of being pulled in one direction (pseudo force sensation) has been studied.
  • a current flowing through a coil of a linear vibration motor is passed through a first period in which a current in a direction that gives acceleration in a desired direction to the mover, and a second time other than that.
  • the period is set and the first period and the second period are periodically repeated.
  • the ratio of the first period to the period is different from the ratio of the second period, and the frequency of the periodic acceleration motion is 80 Hz or It is shown that a pseudo force sense is presented by including a frequency component in the vicinity of 80 Hz.
  • the above-described conventional technology is able to present a pseudo force sense in a desired direction by giving a partial acceleration to the magnet of the linear vibration motor, and in the human skin receptor, Assuming that the frequency that activates the neural activity of the receptor that contributes to the perception of direction and acceleration is the frequency component near 80 Hz or 80 Hz, the direction switching period of the current is set to include the frequency component near 80 Hz or 80 Hz. ing.
  • the linear vibration motor 3 since the above-described conventional technology gives a partial acceleration to the magnet of the linear vibration motor, the linear vibration motor 3 itself exerts an actual shift force in the direction of the partial acceleration. There is a problem that a shift force different from the manual operation force is applied, and malfunction is likely to occur.
  • the present invention has an object to solve such a problem. That is, an object of the present invention is to provide a linear vibration motor that can effectively perceive a pseudo pulling sensation and that does not act on an actual shift force.
  • the linear vibration motor according to the present invention has the following configuration.
  • a stator a mover that is supported by the stator so as to vibrate along a uniaxial direction, an elastic member that elastically supports vibration of the mover, and a driving force that is applied to the mover along a uniaxial direction.
  • a drive signal generator that generates a drive signal to be input to the coil, and the drive signal generator has a frequency that is 1 ⁇ 2 of a resonance frequency at which the movable element resonates, and a duty ratio of 1
  • a linear vibration motor characterized by generating a drive signal smaller than 1/2 or larger than 1/2.
  • a linear vibration motor 1 includes a stator 2, a mover 3, an elastic member 4, a coil 5, and a drive signal generator 6.
  • the stator 2 is a part of an electronic device on which the frame body and the linear vibration motor 1 are mounted, and is a part that supports the mover 3.
  • the mover 3 is supported by the stator 2 so as to freely vibrate along a uniaxial direction (X direction in the drawing).
  • the mover 3 is connected to one end side of magnets 3A and 3B magnetized in a uniaxial direction (X direction in the figure) via a spacer 3C so that the same poles face each other.
  • Weights 3D and 3E are attached to the other end of 3B so that they can vibrate together.
  • the elastic member 4 elastically supports the vibration of the mover 3, is provided between the stator 2 and the mover 3, and gives an elastic repulsive force to the vibration in the uniaxial direction of the mover 3. .
  • elastic members (coil springs) 4 are provided between the weights 3D and 3E of the mover 3 and the stator 2, respectively.
  • the coil 5 applies a driving force along a uniaxial direction (X direction in the drawing) to the mover 3, and the Lorentz force applied to the magnets 3 ⁇ / b> A and 3 ⁇ / b> B of the mover 3 when the coil 5 is energized is a driving force.
  • the coil 5 is fixed to the stator 2 so that the magnetic flux radiated in the Z direction from the end of the same pole facing each other via the spacer 3C of the magnets 3A and 3B passes through the coil 5.
  • the arrangement relationship between the coil 5 and the magnets 3A and 3B is not limited to the illustrated example, and any arrangement relationship can be used as long as a driving force that vibrates the mover 3 along the uniaxial direction can be obtained. There may be.
  • the drive signal generator 6 generates a drive signal to be input to the coil 5.
  • the drive signal generator 6 is controlled by a control signal of the controller 10 and inputs a predetermined drive signal to the coil 5.
  • a drive signal is input to the coil 5
  • the mover 3 reciprocally vibrates along a uniaxial direction (X direction in the drawing) by the drive force that the coil 5 applies to the magnets 3A and 3B.
  • FIG. 2 and 3 show the drive signal generated by the drive signal generator 6 (FIG. 2 and FIG. 3A) and the change in the amplitude of the vibration of the mover generated by inputting the drive signal (FIG. 2 and FIG. 3). 3 (b)) is shown.
  • the drive signal generated by the drive signal generator 6 is a pulse signal having a frequency that is 1/2 of the resonance frequency at which the mover 3 resonates, and the duty ratio is smaller than 1/2 as shown in FIG. It is a drive pulse signal or, as shown in FIG. 3A, a drive pulse signal having a duty ratio larger than 1 ⁇ 2.
  • the resonance frequency here is the reciprocal of the natural frequency when the mass of the mover 3 is m and the spring constant of the elastic member 4 is k, and is 1 / (k / m) 1/2 Hz.
  • the drive signal generator 6 has a first drive pulse signal having a duty ratio smaller than 1/2 as shown in FIG. 2A and a duty ratio as shown in FIG.
  • a second driving pulse signal greater than 1/2 may be selectively generated, or the first driving pulse signal (see FIG. 2A) with a duty ratio smaller than 1/2 and the duty ratio of 1 / A duty ratio may be gradually changed between the second drive pulse signal (FIG. 3A) greater than 2 and output.
  • the mover 3 vibrates at a resonance frequency that is a double frequency.
  • the amplitude in the B direction in the vibration along the uniaxial direction is substantially constant, but the vibration during the period of the drive pulse signal is The amplitude becomes smaller by the displacement ⁇ X2.
  • the example shown in FIG. 2 (a) has a duty ratio of 1/4
  • the example shown in FIG. 3 (a) has a duty ratio of 3/4.
  • the duty ratio is set to 1/4 and 3/4.
  • the difference may be increased so that the duty ratio is 1/5, 4/5, or the like.
  • the linear vibration motor 1 is characterized in that the frequency of the drive signal is 1 ⁇ 2 the frequency at which the mover 3 resonates (resonance frequency). Instead of inputting a drive signal having a resonance frequency that has been generally used in the past, a drive signal having a frequency that is 1 ⁇ 2 of the resonance frequency is input to adjust the duty ratio of the drive signal, and a linear vibration motor.
  • the pseudo directionality can be effectively perceived by the vibration generated by 1. And according to this, the vibration of the linear vibration motor 1 can give only a pseudo pulling sensation without giving a partial acceleration to the magnets 3A and 3B as in the prior art. Thereby, the pseudo directionality can be effectively perceived while avoiding the malfunction caused by the shift force actually acting.
  • FIG. 4 shows a specific configuration example of the linear vibration motor 1 (the drive signal generator 6 is not shown).
  • the basic configuration is the same as the example shown in FIG. 1, but the stator 2 is configured by a box-shaped frame 20, and the movable element 3 is uniaxially (in the figure X shown) in the frame 20.
  • the frame body 20 is provided with a lid body (not shown), a bottom surface 20A, a pair of side walls 20B and 20C along the X direction in the figure, and a pair of side walls 20B and 20C along the Y direction in the figure and facing the vibration direction of the mover 3.
  • Side walls 20D and 20E are provided.
  • the mover 3 includes three magnets 21, 22 and 23 magnetized along the X direction in the figure, a spacer 24 disposed between the magnets 21 and 22, and a spacer 25 disposed between the magnets 22 and 23. And a pair of weights 26 and 27 disposed at both ends.
  • the magnet 21 and the weight 26 are connected by a connecting member 28, and the magnet 23 and the weight 27 are connected by a connecting member 29.
  • the three magnets 21, 22 and 23 and the two spacers 24 and 25 are integrated by a pair of connecting members 30 and 31.
  • guide shafts 32 and 33 are fixed to the pair of weights 26 and 27 so as to extend in one axial direction (X direction in the drawing).
  • the guide shafts 32 and 33 are slidably supported by bearings 34 and 35 provided on the bottom surface 20 ⁇ / b> A of the frame body 20, and the mover 3 vibrates along the guide shafts 32 and 33.
  • the weights 26 and 27 are provided with recesses 26A and 27A that are recessed in the X direction in the drawing, and guide shafts 32 and 33 protrude from the recesses 26A and 27A.
  • the bearings 34 and 35 that support the guide shafts 32 and 33 enter the recesses 26A and 27A when the mover 3 vibrates.
  • a pair of elastic members 40 and 41 are disposed with the guide shaft 32 sandwiched therebetween, and the end of the weight 27 sandwiching the recess 27A.
  • a pair of elastic members 42 and 43 are disposed between the portions 27B and 27C and the side wall 20E with the guide shaft 33 interposed therebetween.
  • buffer members 44 and 45 that receive collisions at the tips of the guide shafts 32 and 33 are attached to the side walls 20D and 20E.
  • the guide shafts 32 and 33 are fixed to the movable element 3 side and the bearings 34 and 35 are provided on the stator 2 side.
  • a guide shaft is provided on the stator 2 side.
  • a bearing may be provided on the movable element 3 side.
  • one guide shaft that penetrates the mover 3 may be fixed to the stator, and the mover 3 may be vibrated along the guide shaft.
  • the coil 5 is fixed to the frame body 20 so that a pair of coils 50 and 51 are connected in series and wound in opposite directions to surround the spacers 24 and 25.
  • the input end portion 5A of the coil 5 is connected to a terminal portion 20F provided on the frame body 20, and a drive signal generator 6 (not shown) is connected to the terminal portion 20F.
  • the linear vibration motor 1 described above can be effectively applied to haptics (skin sensation feedback) in a touch interface.
  • FIG. 5 shows an example of the configuration.
  • the touch interface 100 includes a touch detection unit 102 that detects contact with the touch input surface 101, and a linear vibration including a drive signal generation unit 6 at a position where vibration is transmitted to a finger M that touches the touch input surface 101.
  • a motor 1 is provided.
  • a control unit 10 that controls the drive signal generation unit 6 is provided.
  • the touch detection unit 102 detects contact of the finger M or the like with the touch input surface 101
  • the detection signal is input to the control unit 10
  • the control unit 10 transmits the control signal to the drive signal generation unit. 6 is output.
  • the drive signal generator 6 to which the control signal is input inputs the drive signal to the linear vibration motor 1.
  • the drive signal generator 6 resonates with the resonance frequency at which the mover 3 resonates according to the control instruction of the control signal.
  • Drive signal having a duty ratio smaller than 1/2 or larger than 1/2 is selectively output.
  • the control output of the control unit 10 is a control instruction for selectively generating a first drive pulse signal having a duty ratio smaller than 1/2 and a second drive pulse signal having a duty ratio larger than 1/2. Even if it is a control instruction that is outputted by gradually changing the duty ratio between the first drive pulse signal having a duty ratio smaller than 1/2 and the second drive pulse signal having a duty ratio larger than 1/2. Good.
  • the control unit 10 causes the drive signal generation unit 6 to output a drive signal with an appropriately adjusted duty ratio in accordance with information on a direction instruction to be transmitted to the operator's finger M or the like.
  • an operator who operates the touch input surface 101 can obtain direction instruction information only by a touch operation.
  • the directivity instruction information is given in a pseudo sense by the effective vibration caused by the resonance of the mover 3 by the vibration applied by the linear vibration motor 1, so that highly sensitive skin sensation feedback is possible.
  • the touch detection unit 102 detects the contact of the finger M or the like on the touch input surface 101, and a detection signal is input to the control unit 10, and the control unit 10 outputs the control signal as a drive signal.
  • the drive signal generation unit that generates the drive signal of the linear vibration motor 1 can generate the above-described drive signal by a control signal other than the touch input. For example, by mounting a linear vibration motor including this drive signal generation unit on a portable electronic device, it is possible to give a pseudo sense to an operator having the portable electronic device.
  • FIG. 6 shows an example of a portable electronic device including the linear vibration motor 1 according to the embodiment of the present invention.
  • the portable electronic device 200 including the linear vibration motor 1 is equipped with the touch interface 100 described above, so that it is possible to input signals with high operability and variations when executing games and other applications. It is possible to give a high operational stimulus to the operator, and a high added value information terminal can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Provided is a linear vibration motor that effectively imparts a simulated pulling sensation. This linear vibration motor is equipped with: a stator; a movable element supported on the stator so as to be capable of oscillating along one axial direction; an elastic member elastically supporting the oscillation of the movable element; a coil that imparts driving force to the movable element along the one axial direction; and a drive signal generation unit that generates a drive signal that is input to the coil. The drive signal generation unit generates a drive signal which is 1/2 the frequency of the resonance frequency at which the movable element resonates, and the duty ratio of which is smaller than 1/2 or greater than 1/2.

Description

リニア振動モータLinear vibration motor
 本発明は、リニア振動モータに関するものである。 The present invention relates to a linear vibration motor.
 振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生を振動によって携帯者に伝える装置として広く普及しており、携帯者が身に付けて持ち運ぶウエアラブル電子機器においては、不可欠な装置になっている。また、振動モータは、タッチパネルなどのヒューマン・インターフェースにおけるハプティクス(皮膚感覚フィードバック)を実現する装置として、近年注目されている。 Vibration motors (or vibration actuators) are widely used as devices that are built into portable electronic devices and transmit signal generation such as incoming calls and alarms to carriers by vibrations. Has become an indispensable device. In recent years, vibration motors have attracted attention as devices for realizing haptics (skin sensation feedback) in human interfaces such as touch panels.
 振動モータは、各種の形態が開発されている中で、可動子の直線的な往復振動によって比較的大きな振動を発生させることができるリニア振動モータが注目されている。リニア振動モータは、例えば、可動子側に錘とマグネットを設け、固定子側に設けたコイルに通電することで、マグネットに作用するローレンツ力が駆動力となり、振動方向に沿って弾性支持される可動子を往復振動させるものが知られている。 As various types of vibration motors have been developed, attention is focused on linear vibration motors that can generate relatively large vibrations by linear reciprocating vibration of the mover. For example, a linear vibration motor is provided with a weight and a magnet on the mover side and energizes a coil provided on the stator side, whereby the Lorentz force acting on the magnet becomes a driving force and is elastically supported along the vibration direction. What makes a mover reciprocate is known.
 リニア振動モータを利用したハプティクスとしては、一方向に引っ張られるような感覚(擬似的な力覚)が知覚できるような駆動方式が検討されている。例えば、下記特許文献1に示した従来技術では、リニア振動モータのコイルに流す電流を、可動子に所望の方向の加速度を与える向きの電流を流す第1の期間と、それ以外の第2の期間に設定し、第1の期間と第2の期間とを周期的に繰り返し、周期に占める第1の期間の割合が第2の期間の割合と異なり、周期的な加速度運動の周波数を80Hz又は80Hz近傍の周波数成分を含むようにすることで、擬似的な力覚を提示することが示されている。 As a haptic using a linear vibration motor, a drive system that can perceive a sensation of being pulled in one direction (pseudo force sensation) has been studied. For example, in the related art shown in Patent Document 1 below, a current flowing through a coil of a linear vibration motor is passed through a first period in which a current in a direction that gives acceleration in a desired direction to the mover, and a second time other than that. The period is set and the first period and the second period are periodically repeated. The ratio of the first period to the period is different from the ratio of the second period, and the frequency of the periodic acceleration motion is 80 Hz or It is shown that a pseudo force sense is presented by including a frequency component in the vicinity of 80 Hz.
特開2015-223563号公報Japanese Patent Laying-Open No. 2015-223563
 前述した従来技術は、リニア振動モータのマグネットに偏加速度を与えることで、所望の方向への擬似的な力覚を提示することができるとしており、また、人の皮膚の受容器の中で、方向や加速度の知覚に寄与する受容器の神経活動を最も活発化させる周波数が80Hz又は80Hz近傍の周波数成分であるとして、電流の方向切り替え周期を80Hz又は80Hz近傍の周波数成分を含むように設定している。 The above-described conventional technology is able to present a pseudo force sense in a desired direction by giving a partial acceleration to the magnet of the linear vibration motor, and in the human skin receptor, Assuming that the frequency that activates the neural activity of the receptor that contributes to the perception of direction and acceleration is the frequency component near 80 Hz or 80 Hz, the direction switching period of the current is set to include the frequency component near 80 Hz or 80 Hz. ing.
 しかしながら、一般に、リニア振動モータの駆動では、大きな振幅(変位振幅及び速度振幅)の振動を得るために、可動子の質量と可動子を支持する弾性部材(バネ)の弾性係数で設定される固有振動数(共振周波数)で可動子を振動させることがなされている。前述の従来技術では、皮膚の受容体の神経活動を最も活性させる周波数に着目してはいるものの、その周波数では、可動子を共振させて、大きな振幅の振動を得ることができないため、方向性が一方向或いは逆方向に判別できる疑似的な引っ張り感覚を効果的に知覚することができない問題があった。 However, in general, in the drive of a linear vibration motor, in order to obtain a vibration with a large amplitude (displacement amplitude and velocity amplitude), a characteristic set by the mass of the mover and the elastic coefficient of the elastic member (spring) supporting the mover The mover is vibrated at a frequency (resonance frequency). Although the above-mentioned prior art focuses on the frequency that most activates the neural activity of the skin receptor, at that frequency, the mover cannot resonate and vibration with a large amplitude cannot be obtained. However, there is a problem that a pseudo pulling sensation that can be discriminated in one direction or the opposite direction cannot be effectively perceived.
 また、前述した従来技術は、リニア振動モータのマグネットに偏加速度を与えるので、リニア振動モータ3自体が偏加速度の方向に実際のシフト力を作用することになり、インターフェースに装着した場合には、人手による操作力とは別のシフト力が作用して、誤動作を起こしやすくなる問題があった。 In addition, since the above-described conventional technology gives a partial acceleration to the magnet of the linear vibration motor, the linear vibration motor 3 itself exerts an actual shift force in the direction of the partial acceleration. There is a problem that a shift force different from the manual operation force is applied, and malfunction is likely to occur.
 本発明は、このような問題を解決することを課題としている。すなわち、本発明は、疑似的な引っ張り感覚を効果的に知覚させることができ、且つ実際のシフト力は作用しないリニア振動モータを提供することを課題としている。 The present invention has an object to solve such a problem. That is, an object of the present invention is to provide a linear vibration motor that can effectively perceive a pseudo pulling sensation and that does not act on an actual shift force.
 このような課題を解決するために、本発明によるリニア振動モータは、以下の構成を具備するものである。 In order to solve such a problem, the linear vibration motor according to the present invention has the following configuration.
 固定子と、前記固定子に一軸方向に沿って振動自在に支持される可動子と、前記可動子の振動を弾性支持する弾性部材と、前記可動子に一軸方向に沿った駆動力を付与するコイルと、前記コイルに入力する駆動信号を発生する駆動信号発生部とを備え、前記駆動信号発生部は、前記可動子が共振する共振周波数の1/2の周波数であって、デューティ比が1/2より小さいか又は1/2より大きい駆動信号を発生することを特徴とするリニア振動モータ。 A stator, a mover that is supported by the stator so as to vibrate along a uniaxial direction, an elastic member that elastically supports vibration of the mover, and a driving force that is applied to the mover along a uniaxial direction. A drive signal generator that generates a drive signal to be input to the coil, and the drive signal generator has a frequency that is ½ of a resonance frequency at which the movable element resonates, and a duty ratio of 1 A linear vibration motor characterized by generating a drive signal smaller than 1/2 or larger than 1/2.
本発明の実施形態に係るリニア振動モータの基本構成を示した説明図である。It is explanatory drawing which showed the basic composition of the linear vibration motor which concerns on embodiment of this invention. (a)は駆動信号発生部が発生する駆動信号(デューティ比1/2より小)を示した説明図であり、(b)はその駆動信号を入力することで生じる可動子の振動の振幅変化を示した説明図である。(A) is explanatory drawing which showed the drive signal (smaller than duty ratio 1/2) which a drive signal generation part produces | generates, (b) is the amplitude change of the vibration of the needle | mover which arises by inputting the drive signal It is explanatory drawing which showed. (a)は駆動信号発生部が発生する駆動信号(デューティ比1/2より大)を示した説明図であり、(b)はその駆動信号を入力することで生じる可動子の振動の振幅変化を示した説明図である。(A) is explanatory drawing which showed the drive signal (greater than duty ratio 1/2) which a drive signal generation part generate | occur | produces, (b) is the amplitude change of the vibration of the needle | mover which arises by inputting the drive signal It is explanatory drawing which showed. 本発明の実施形態に係るリニア振動モータの構成例を示した説明図(内部平面図)である。It is explanatory drawing (internal top view) which showed the structural example of the linear vibration motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア振動モータを用いたタッチインターフェースの構成例を示した説明図である。It is explanatory drawing which showed the structural example of the touch interface using the linear vibration motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア振動モータを備える携帯電子機器の構成例を示した説明図である。It is explanatory drawing which showed the structural example of the portable electronic device provided with the linear vibration motor which concerns on embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図面における同一符号は同一部位を指しており、適宜重複説明を省略する。図1に示すように、本発明の実施形態に係るリニア振動モータ1は、固定子2と、可動子3と、弾性部材4と、コイル5と、駆動信号発生部6とを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals in different drawings refer to the same parts, and repeated description will be omitted as appropriate. As shown in FIG. 1, a linear vibration motor 1 according to an embodiment of the present invention includes a stator 2, a mover 3, an elastic member 4, a coil 5, and a drive signal generator 6.
 固定子2は、枠体やリニア振動モータ1を装着する電子機器の一部などであり、可動子3を支持する部位である。可動子3は、固定子2に一軸方向(図示X方向)に沿って振動自在に支持されている。図示の例では、可動子3は、一軸方向(図示X方向)に着磁されたマグネット3A,3Bの一端側を、同極が向き合うようにスペーサ3Cを介して接続しており、マグネット3A,3Bの他端側に錘3D,3Eを取り付けて、一体に振動できるようにしている。 The stator 2 is a part of an electronic device on which the frame body and the linear vibration motor 1 are mounted, and is a part that supports the mover 3. The mover 3 is supported by the stator 2 so as to freely vibrate along a uniaxial direction (X direction in the drawing). In the illustrated example, the mover 3 is connected to one end side of magnets 3A and 3B magnetized in a uniaxial direction (X direction in the figure) via a spacer 3C so that the same poles face each other. Weights 3D and 3E are attached to the other end of 3B so that they can vibrate together.
 弾性部材4は、可動子3の振動を弾性支持しており、固定子2と可動子3との間に設けられ、可動子3の一軸方向の振動に対して弾性反発力を付与している。図示の例では、可動子3の錘3D,3Eと固定子2との間にそれぞれ弾性部材(コイルバネ)4が配備されている。 The elastic member 4 elastically supports the vibration of the mover 3, is provided between the stator 2 and the mover 3, and gives an elastic repulsive force to the vibration in the uniaxial direction of the mover 3. . In the illustrated example, elastic members (coil springs) 4 are provided between the weights 3D and 3E of the mover 3 and the stator 2, respectively.
 コイル5は、可動子3に一軸方向(図示X方向)に沿った駆動力を付与するものであり、コイル5への通電で可動子3のマグネット3A,3Bに付与されるローレンツ力が駆動力になる。図示の例では、コイル5は、固定子2に固定されており、マグネット3A,3Bのスペーサ3Cを介して対向した同極の端部から図示Z方向に放射する磁束がコイル5を通過するように、スペーサ3Cの周りに巻回されている。コイル5とマグネット3A,3Bとの配置関係は図示の例に限定されるものではなく、可動子3を一軸方向に沿って振動させる駆動力が得られるものであれば、どのような配置関係であってもよい。 The coil 5 applies a driving force along a uniaxial direction (X direction in the drawing) to the mover 3, and the Lorentz force applied to the magnets 3 </ b> A and 3 </ b> B of the mover 3 when the coil 5 is energized is a driving force. become. In the illustrated example, the coil 5 is fixed to the stator 2 so that the magnetic flux radiated in the Z direction from the end of the same pole facing each other via the spacer 3C of the magnets 3A and 3B passes through the coil 5. Are wound around the spacer 3C. The arrangement relationship between the coil 5 and the magnets 3A and 3B is not limited to the illustrated example, and any arrangement relationship can be used as long as a driving force that vibrates the mover 3 along the uniaxial direction can be obtained. There may be.
 駆動信号発生部6は、コイル5に入力する駆動信号を発生する。駆動信号発生部6は、制御部10の制御信号によって制御され、所定の駆動信号をコイル5に入力する。コイル5に駆動信号が入力されると、コイル5がマグネット3A,3Bに付与する駆動力によって、可動子3が一軸方向(図示X方向)に沿って往復振動する。 The drive signal generator 6 generates a drive signal to be input to the coil 5. The drive signal generator 6 is controlled by a control signal of the controller 10 and inputs a predetermined drive signal to the coil 5. When a drive signal is input to the coil 5, the mover 3 reciprocally vibrates along a uniaxial direction (X direction in the drawing) by the drive force that the coil 5 applies to the magnets 3A and 3B.
 図2及び図3は、駆動信号発生部6が発生する駆動信号(図2及び図3の(a))とその駆動信号を入力することで生じる可動子の振動の振幅変化(図2及び図3の(b))を示している。 2 and 3 show the drive signal generated by the drive signal generator 6 (FIG. 2 and FIG. 3A) and the change in the amplitude of the vibration of the mover generated by inputting the drive signal (FIG. 2 and FIG. 3). 3 (b)) is shown.
 駆動信号発生部6が発生する駆動信号は、可動子3が共振する共振周波数の1/2の周波数のパルス信号であり、図2(a)に示すように、デューティ比が1/2より小さい駆動パルス信号であるか、又は図3(a)に示すように、デューティ比が1/2より大きい駆動パルス信号である。ここでの共振周波数は、可動子3の質量をm、弾性部材4のバネ定数をkとしたときの固有振動数の逆数であり、1/(k/m)1/2Hzとなる。 The drive signal generated by the drive signal generator 6 is a pulse signal having a frequency that is 1/2 of the resonance frequency at which the mover 3 resonates, and the duty ratio is smaller than 1/2 as shown in FIG. It is a drive pulse signal or, as shown in FIG. 3A, a drive pulse signal having a duty ratio larger than ½. The resonance frequency here is the reciprocal of the natural frequency when the mass of the mover 3 is m and the spring constant of the elastic member 4 is k, and is 1 / (k / m) 1/2 Hz.
 駆動信号発生部6は、駆動パルス信号として、図2(a)に示すような、デューティ比が1/2より小さい第1駆動パルス信号と、図3(a)に示すような、デューティ比が1/2より大きい第2駆動パルス信号を選択的に発生するようにしてもよいし、デューティ比が1/2より小さい第1駆動パルス信号(図2(a)参照)とデューティ比が1/2より大きい第2駆動パルス信号(図3(a)との間で、デューティ比を徐々に変化させて出力するようにしてもよい。 The drive signal generator 6 has a first drive pulse signal having a duty ratio smaller than 1/2 as shown in FIG. 2A and a duty ratio as shown in FIG. A second driving pulse signal greater than 1/2 may be selectively generated, or the first driving pulse signal (see FIG. 2A) with a duty ratio smaller than 1/2 and the duty ratio of 1 / A duty ratio may be gradually changed between the second drive pulse signal (FIG. 3A) greater than 2 and output.
 リニア振動モータ1は、図2(a)に示すようなデューティ比(1/2より小)の駆動信号を入力すると、図2(b)に示すように、駆動パルス信号の周波数の2倍の周波数である共振周波数で可動子3が振動する。この際、図2(b)に示すように、一軸方向(図示X方向)に沿った振動におけるA方向の振幅は略一定高さになるが、その逆のB方向の振幅は、駆動パルス信号の周期の間の振動が変位ΔX1だけ小さい振幅になる。また、リニア振動モータ1は、図3(a)に示すようなデューディ比(1/2より大)の駆動信号を入力すると、図3(b)に示すように、駆動パルス信号の周波数の2倍の周波数である共振周波数で可動子3が振動する。この際、図3(b)に示すように、一軸方向(図示X方向)に沿った振動におけるB方向の振幅は略一定の高さになるが、駆動パルス信号の周期の間の振動は、変位ΔX2だけ小さい振幅になる。 When a drive signal having a duty ratio (less than 1/2) as shown in FIG. 2A is input to the linear vibration motor 1, the frequency of the drive pulse signal is twice as shown in FIG. 2B. The mover 3 vibrates at a resonance frequency that is a frequency. At this time, as shown in FIG. 2 (b), the amplitude in the A direction in the vibration along the uniaxial direction (the X direction in the drawing) is substantially constant, but the opposite amplitude in the B direction is the drive pulse signal. The vibration during the period becomes a small amplitude by the displacement ΔX1. Further, when a drive signal having a duty ratio (greater than 1/2) as shown in FIG. 3A is input to the linear vibration motor 1, the frequency of the drive pulse signal is 2 as shown in FIG. 3B. The mover 3 vibrates at a resonance frequency that is a double frequency. At this time, as shown in FIG. 3B, the amplitude in the B direction in the vibration along the uniaxial direction (the X direction in the drawing) is substantially constant, but the vibration during the period of the drive pulse signal is The amplitude becomes smaller by the displacement ΔX2.
 図2(a)に示す駆動信号を入力して、図2(b)に示す振幅変化を示すリニア振動モータ1の振動を、指先などで人(操作者)が感知すると、人は、図1の矢印で示すA方向(図示左方向)への疑似的な引っ張り感覚を得る。また、図3(a)に示す駆動信号を入力して、図3(b)に示す振幅変化を示すリニア振動モータ1の振動を、指先などで人(操作者)が感知すると、人は、図1の矢印で示すB方向(図示右方向)への疑似的な引っ張り感覚を得る。 When the driving signal shown in FIG. 2A is input and the person (operator) senses the vibration of the linear vibration motor 1 showing the amplitude change shown in FIG. A pseudo pulling sensation in the A direction (left direction in the figure) indicated by the arrow is obtained. Further, when the driving signal shown in FIG. 3A is inputted and the person (operator) senses the vibration of the linear vibration motor 1 showing the amplitude change shown in FIG. A pseudo pulling sensation in the B direction (right direction in the figure) indicated by the arrow in FIG. 1 is obtained.
 ここで、図2(a)に示す例は、デューティ比が1/4であり、図3(a)に示す例は、デューティ比が3/4である。このように、デューティ比の差を大きくすることで、より顕著に左右の引っ張り感覚の違いが認識しやすくなる。ここでは、左右の疑似的な引っ張り感を得るために、デューティ比を1/4と3/4にしているが、リニア振動モータの形態(例えば、後述する図4に示す形態など)によっては、更に差を大きくして、デューティ比を1/5と4/5などにしてもよい。 Here, the example shown in FIG. 2 (a) has a duty ratio of 1/4, and the example shown in FIG. 3 (a) has a duty ratio of 3/4. Thus, by increasing the difference in duty ratio, it becomes easier to recognize the difference between the left and right pulling sensations more prominently. Here, in order to obtain the left and right pseudo pull feeling, the duty ratio is set to 1/4 and 3/4. However, depending on the form of the linear vibration motor (for example, the form shown in FIG. 4 described later), Further, the difference may be increased so that the duty ratio is 1/5, 4/5, or the like.
 本発明の実施形態に係るリニア振動モータ1は、駆動信号の周波数を可動子3が共振する周波数(共振周波数)の1/2の周波数としていることが特徴となる。従来、一般に採用されている共振周波数の駆動信号を入力することに換えて、共振周波数の1/2の周波数の駆動信号を入力することで、駆動信号のデューティ比を調整して、リニア振動モータ1が発生する振動によって、効果的に擬似的な方向性を知覚させることができる。そして、これによると、リニア振動モータ1の振動は、従来技術のようにマグネット3A,3Bに偏加速度を付与することなく無く、疑似的な引っ張り感覚のみを付与することができる。これにより、シフト力が実際に作用して誤動作を起こすことを回避しながら、効果的に疑似的な方向性を知覚させることができる。 The linear vibration motor 1 according to the embodiment of the present invention is characterized in that the frequency of the drive signal is ½ the frequency at which the mover 3 resonates (resonance frequency). Instead of inputting a drive signal having a resonance frequency that has been generally used in the past, a drive signal having a frequency that is ½ of the resonance frequency is input to adjust the duty ratio of the drive signal, and a linear vibration motor. The pseudo directionality can be effectively perceived by the vibration generated by 1. And according to this, the vibration of the linear vibration motor 1 can give only a pseudo pulling sensation without giving a partial acceleration to the magnets 3A and 3B as in the prior art. Thereby, the pseudo directionality can be effectively perceived while avoiding the malfunction caused by the shift force actually acting.
 図4は、リニア振動モータ1の具体的な構成例を示している(駆動信号発生部6は図示省略)。この例は、基本構成は図1に示した例と同様であるが、固定子2は、箱状の枠体20によって構成され、この枠体20内に、可動子3が一軸方向(図示X方向)に沿って振動自在に収納されている。枠体20は、図示省略した蓋体と、底面20Aと、図示X方向に沿った一対の側壁20B,20Cと、図示Y方向に沿って設けられ、可動子3の振動方向に対面する一対の側壁20D,20Eを備えている。 FIG. 4 shows a specific configuration example of the linear vibration motor 1 (the drive signal generator 6 is not shown). In this example, the basic configuration is the same as the example shown in FIG. 1, but the stator 2 is configured by a box-shaped frame 20, and the movable element 3 is uniaxially (in the figure X shown) in the frame 20. Direction). The frame body 20 is provided with a lid body (not shown), a bottom surface 20A, a pair of side walls 20B and 20C along the X direction in the figure, and a pair of side walls 20B and 20C along the Y direction in the figure and facing the vibration direction of the mover 3. Side walls 20D and 20E are provided.
 可動子3は、図示X方向に沿って着磁された3つのマグネット21,22,23と、マグネット21,22間に配置されるスペーサ24と、マグネット22,23間に配置されるスペーサ25と、両端に配置される一対の錘26,27とを備えている。マグネット21と錘26とは連結部材28によって連結されており、マグネット23と錘27とは連結部材29によって連結されている。また、3つのマグネット21,22,23と2つのスペーサ24,25とは、一対の連結部材30,31によって一体化されている。 The mover 3 includes three magnets 21, 22 and 23 magnetized along the X direction in the figure, a spacer 24 disposed between the magnets 21 and 22, and a spacer 25 disposed between the magnets 22 and 23. And a pair of weights 26 and 27 disposed at both ends. The magnet 21 and the weight 26 are connected by a connecting member 28, and the magnet 23 and the weight 27 are connected by a connecting member 29. The three magnets 21, 22 and 23 and the two spacers 24 and 25 are integrated by a pair of connecting members 30 and 31.
 そして、この例では、一対の錘26,27にそれぞれ一軸方向(図示X方向)に延びるガイドシャフト32,33が固定されている。ガイドシャフト32,33は、枠体20の底面20Aに設けられる軸受34,35に摺動自在に軸支されており、可動子3はガイドシャフト32,33に沿って振動する。錘26,27には、図示X方向に凹む凹部26A,27Aが設けられ、その凹部26A,27Aからガイドシャフト32,33が突出している。そして、ガイドシャフト32,33を軸支する軸受34,35は、可動子3の振動時には、凹部26A,27A内に入り込むようになっている。 In this example, guide shafts 32 and 33 are fixed to the pair of weights 26 and 27 so as to extend in one axial direction (X direction in the drawing). The guide shafts 32 and 33 are slidably supported by bearings 34 and 35 provided on the bottom surface 20 </ b> A of the frame body 20, and the mover 3 vibrates along the guide shafts 32 and 33. The weights 26 and 27 are provided with recesses 26A and 27A that are recessed in the X direction in the drawing, and guide shafts 32 and 33 protrude from the recesses 26A and 27A. The bearings 34 and 35 that support the guide shafts 32 and 33 enter the recesses 26A and 27A when the mover 3 vibrates.
 凹部26Aを挟んだ錘26の端部26B,26Cと側壁20Dとの間には、ガイドシャフト32を挟んで一対の弾性部材40,41が配備されており、凹部27Aを挟んだ錘27の端部27B,27Cと側壁20Eとの間には、ガイドシャフト33を挟んで一対の弾性部材42,43が配備されている。また、側壁20D,20Eには、ガイドシャフト32,33の先端の衝突を受ける緩衝部材44,45が取り付けられている。なお、図示の例では、ガイドシャフト32,33を可動子3側に固定して、固定子2側に軸受34,35を設けているが、逆に、固定子2側にガイドシャフトを設けて、可動子3側に軸受を設けるようにしてもよい。また、可動子3を貫通する一本のガイドシャフトを固定子に固定して、可動子3をガイドシャフトに沿って振動させるようにしてもよい。 Between the end portions 26B and 26C of the weight 26 sandwiching the recess 26A and the side wall 20D, a pair of elastic members 40 and 41 are disposed with the guide shaft 32 sandwiched therebetween, and the end of the weight 27 sandwiching the recess 27A. A pair of elastic members 42 and 43 are disposed between the portions 27B and 27C and the side wall 20E with the guide shaft 33 interposed therebetween. Further, buffer members 44 and 45 that receive collisions at the tips of the guide shafts 32 and 33 are attached to the side walls 20D and 20E. In the illustrated example, the guide shafts 32 and 33 are fixed to the movable element 3 side and the bearings 34 and 35 are provided on the stator 2 side. Conversely, a guide shaft is provided on the stator 2 side. A bearing may be provided on the movable element 3 side. Alternatively, one guide shaft that penetrates the mover 3 may be fixed to the stator, and the mover 3 may be vibrated along the guide shaft.
 コイル5は、一対のコイル50,51が、直列接続され且つ互いに逆向きに巻かれて、スペーサ24,25を取り巻くように枠体20に固定されている。コイル5の入力端部5Aは、枠体20に設けた端子部20Fに接続されており、この端子部20Fには、図示省略の駆動信号発生部6が接続される。 The coil 5 is fixed to the frame body 20 so that a pair of coils 50 and 51 are connected in series and wound in opposite directions to surround the spacers 24 and 25. The input end portion 5A of the coil 5 is connected to a terminal portion 20F provided on the frame body 20, and a drive signal generator 6 (not shown) is connected to the terminal portion 20F.
 前述したリニア振動モータ1は、タッチインターフェースにおけるハプティクス(皮膚感覚フィードバック)に効果的に適用することができる。図5は、その構成例を示している。タッチインターフェース100は、タッチ入力面101への接触を検知するタッチ検知部102を備えており、タッチ入力面101に触れた指Mなどに振動が伝わる位置に、駆動信号発生部6を備えるリニア振動モータ1が配備されている。また、駆動信号発生部6を制御する制御部10が配備されている。 The linear vibration motor 1 described above can be effectively applied to haptics (skin sensation feedback) in a touch interface. FIG. 5 shows an example of the configuration. The touch interface 100 includes a touch detection unit 102 that detects contact with the touch input surface 101, and a linear vibration including a drive signal generation unit 6 at a position where vibration is transmitted to a finger M that touches the touch input surface 101. A motor 1 is provided. In addition, a control unit 10 that controls the drive signal generation unit 6 is provided.
 このようなタッチインターフェース100は、タッチ検知部102がタッチ入力面101への指Mなどの接触を検知すると、その検知信号が制御部10に入力され、制御部10は制御信号を駆動信号発生部6に出力する。制御信号が入力された駆動信号発生部6は、リニア振動モータ1に駆動信号を入力するが、この際、駆動信号発生部6は、制御信号の制御指示に従って、可動子3が共振する共振周波数の1/2の周波数であって、デューティ比が1/2より小さいか又は1/2より大きい駆動信号を選択的に出力する。これにより、タッチ入力面101に触れた指Mなどには、単純な振動の皮膚感覚がフィードバックされるだけでなく、方向性を有する疑似的な引っ張り感がフィードバックされることになる。 In such a touch interface 100, when the touch detection unit 102 detects contact of the finger M or the like with the touch input surface 101, the detection signal is input to the control unit 10, and the control unit 10 transmits the control signal to the drive signal generation unit. 6 is output. The drive signal generator 6 to which the control signal is input inputs the drive signal to the linear vibration motor 1. At this time, the drive signal generator 6 resonates with the resonance frequency at which the mover 3 resonates according to the control instruction of the control signal. Drive signal having a duty ratio smaller than 1/2 or larger than 1/2 is selectively output. As a result, the finger M touching the touch input surface 101 not only feeds back a simple skin sensation of vibration, but also feeds back a pseudo pulling feeling having directionality.
 この際、制御部10の制御出力は、デューティ比が1/2より小さい第1駆動パルス信号とデューティ比が1/2より大きい第2駆動パルス信号を選択的に発生させる制御指示であってもよいし、デューティ比が1/2より小さい第1駆動パルス信号とデューティ比が1/2より大きい第2駆動パルス信号との間でデューティ比を徐々に変化させて出力する制御指示であってもよい。制御部10は、操作者の指Mなどに伝えたい方向指示の情報に応じて、適宜デューティ比を調整した駆動信号を駆動信号発生部6から出力させる。 At this time, the control output of the control unit 10 is a control instruction for selectively generating a first drive pulse signal having a duty ratio smaller than 1/2 and a second drive pulse signal having a duty ratio larger than 1/2. Even if it is a control instruction that is outputted by gradually changing the duty ratio between the first drive pulse signal having a duty ratio smaller than 1/2 and the second drive pulse signal having a duty ratio larger than 1/2. Good. The control unit 10 causes the drive signal generation unit 6 to output a drive signal with an appropriately adjusted duty ratio in accordance with information on a direction instruction to be transmitted to the operator's finger M or the like.
 このようなタッチインターフェース100によると、タッチ入力面101を操作する操作者は、方向性の指示情報をタッチ操作のみで得ることができる。この際、リニア振動モータ1によって付与される振動よって、可動子3の共振による効果的な振動によって方向性の指示情報が疑似感覚で与えられるので、感知度の高い皮膚感覚フィードバックが可能になる。 According to such a touch interface 100, an operator who operates the touch input surface 101 can obtain direction instruction information only by a touch operation. At this time, the directivity instruction information is given in a pseudo sense by the effective vibration caused by the resonance of the mover 3 by the vibration applied by the linear vibration motor 1, so that highly sensitive skin sensation feedback is possible.
 なお、図5に示した例では、タッチ検出部102がタッチ入力面101への指Mなどの接触を検知して、検知信号が制御部10に入力され、制御部10が制御信号を駆動信号発生部6に出力する例を示しているが、リニア振動モータ1の駆動信号を発生する駆動信号発生部は、タッチ入力以外の制御信号によって前述した駆動信号を発生することができる。例えば、この駆動信号発生部を備えるリニア振動モータを携帯電子機器に搭載することで、携帯電子機器を持つ操作者に擬似感覚を与えることができる。 In the example illustrated in FIG. 5, the touch detection unit 102 detects the contact of the finger M or the like on the touch input surface 101, and a detection signal is input to the control unit 10, and the control unit 10 outputs the control signal as a drive signal. Although an example of outputting to the generation unit 6 is shown, the drive signal generation unit that generates the drive signal of the linear vibration motor 1 can generate the above-described drive signal by a control signal other than the touch input. For example, by mounting a linear vibration motor including this drive signal generation unit on a portable electronic device, it is possible to give a pseudo sense to an operator having the portable electronic device.
 図6は、本発明の実施形態に係るリニア振動モータ1を備えた携帯電子機器の一例を示している。リニア振動モータ1を備えた携帯電子機器200は、例えば、前述したタッチインターフェース100を装備することで、操作性の高い信号入力が可能になると共に、ゲームやその他のアプリケーションを実行する際に、バリエーションの高い操作刺激を操作者に与えることが可能になり、高付加価値の情報端末を実現することができる。 FIG. 6 shows an example of a portable electronic device including the linear vibration motor 1 according to the embodiment of the present invention. For example, the portable electronic device 200 including the linear vibration motor 1 is equipped with the touch interface 100 described above, so that it is possible to input signals with high operability and variations when executing games and other applications. It is possible to give a high operational stimulus to the operator, and a high added value information terminal can be realized.
 以上、本発明の実施の形態にて図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As mentioned above, although it explained in full detail with reference to drawings in embodiment of this invention, a concrete structure is not restricted to these embodiment, The design change of the range which does not deviate from the summary of this invention And the like are included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.
1:リニア振動モータ,2:固定子,
3:可動子,3A,3B,21,22,23:マグネット,
3C,24,25:スペーサ,3D,3E、26,27:錘,
26A,27A:凹部,26B,26C,27B,27C:端部,
4,40,41,42,43:弾性部材,
5,50,51:コイル,5A:入力端部,6:駆動信号発生部,
10:制御部,
20:枠体,20A:底面,20B,20C,20D,20E:側壁,
20F:端子部,28,29,30,31:連結部材,
32,33:ガイドシャフト,34,35:軸受,
44,45:緩衝部材,
100:タッチインターフェース,101:タッチ入力面,
102:タッチ検知部,200:携帯情報端末
1: Linear vibration motor, 2: Stator,
3: Mover, 3A, 3B, 21, 22, 23: Magnet,
3C, 24, 25: Spacer, 3D, 3E, 26, 27: Weight,
26A, 27A: recess, 26B, 26C, 27B, 27C: end,
4, 40, 41, 42, 43: elastic member,
5, 50, 51: Coil, 5A: Input end, 6: Drive signal generator,
10: control unit,
20: Frame, 20A: Bottom, 20B, 20C, 20D, 20E: Side wall,
20F: terminal part, 28, 29, 30, 31: connecting member,
32, 33: Guide shaft, 34, 35: Bearing,
44, 45: cushioning members,
100: Touch interface, 101: Touch input surface,
102: Touch detection unit, 200: Portable information terminal

Claims (6)

  1.  固定子と、
     前記固定子に一軸方向に沿って振動自在に支持される可動子と、
     前記可動子の振動を弾性支持する弾性部材と、
     前記可動子に一軸方向に沿った駆動力を付与するコイルと、
     前記コイルに入力する駆動信号を発生する駆動信号発生部とを備え、
     前記駆動信号発生部は、前記可動子が共振する共振周波数の1/2の周波数であって、デューティ比が1/2より小さいか又は1/2より大きい駆動信号を発生することを特徴とするリニア振動モータ。
    A stator,
    A mover supported by the stator so as to vibrate along a uniaxial direction;
    An elastic member that elastically supports vibration of the mover;
    A coil for applying a driving force along a uniaxial direction to the mover;
    A drive signal generator for generating a drive signal to be input to the coil,
    The drive signal generator generates a drive signal having a frequency that is ½ of a resonance frequency at which the movable element resonates and a duty ratio that is less than ½ or greater than ½. Linear vibration motor.
  2.  前記可動子はマグネットと錘を備え、
     前記固定子に前記コイルが固定され、
     前記可動子は一軸方向に延びるガイドシャフトに沿って振動することを特徴とする請求項1記載のリニア振動モータ。
    The mover includes a magnet and a weight,
    The coil is fixed to the stator;
    The linear vibration motor according to claim 1, wherein the mover vibrates along a guide shaft extending in a uniaxial direction.
  3.  前記駆動信号発生部は、前記駆動信号として、デューティ比が1/2より小さい第1駆動パルス信号とデューティ比が1/2より大きい第2駆動パルス信号を選択的に発生することを特徴とする請求項1又は2記載のリニア振動モータ。 The drive signal generator selectively generates a first drive pulse signal having a duty ratio smaller than 1/2 and a second drive pulse signal having a duty ratio larger than 1/2 as the drive signals. The linear vibration motor according to claim 1 or 2.
  4.  前記駆動信号発生部は、前記駆動信号として、デューティ比が1/2より小さい第1駆動パルス信号とデューティ比が1/2より大きい第2駆動パルス信号との間でデューティ比を徐々に変化させて出力することを特徴とする請求項1又は2記載のリニア振動モータ。 The drive signal generation unit gradually changes the duty ratio between the first drive pulse signal having a duty ratio of less than 1/2 and the second drive pulse signal having a duty ratio of greater than 1/2 as the drive signal. The linear vibration motor according to claim 1, wherein the linear vibration motor is output.
  5.  請求項1~4のいずれか1項に記載されたリニア振動モータを備えるタッチインターフェースであって、
     タッチ検知部と、
     前記タッチ検知部の検知信号によって前記駆動信号発生部を制御する制御部とを備えることを特徴とするタッチインターフェース。
    A touch interface comprising the linear vibration motor according to any one of claims 1 to 4,
    A touch detection unit;
    A touch interface comprising: a control unit that controls the drive signal generation unit according to a detection signal of the touch detection unit.
  6.  請求項1~4のいずれか1項に記載されたリニア振動モータを備えた携帯電子機器。 A portable electronic device comprising the linear vibration motor according to any one of claims 1 to 4.
PCT/JP2017/012132 2016-03-25 2017-03-24 Linear oscillation motor WO2017164397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062551A JP2017175879A (en) 2016-03-25 2016-03-25 Linear vibration motor
JP2016-062551 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164397A1 true WO2017164397A1 (en) 2017-09-28

Family

ID=59900443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012132 WO2017164397A1 (en) 2016-03-25 2017-03-24 Linear oscillation motor

Country Status (2)

Country Link
JP (1) JP2017175879A (en)
WO (1) WO2017164397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410969A (en) * 2021-07-19 2021-09-17 歌尔股份有限公司 Vibration motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343931A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Vibratory linear actuator and electric toothbrush using the same
JP2010130746A (en) * 2008-11-26 2010-06-10 Kyocera Corp Vibration controller and personal digital assistant
JP2015070729A (en) * 2013-09-30 2015-04-13 日本電産コパル株式会社 Information terminal processing device and vibration generator system
US20150222165A1 (en) * 2014-01-31 2015-08-06 General Electric Company Reluctance-based resonant linear motor
JP2015223563A (en) * 2014-05-28 2015-12-14 日本電信電話株式会社 Acceleration generation device
WO2016017584A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343931A (en) * 2003-05-16 2004-12-02 Matsushita Electric Works Ltd Vibratory linear actuator and electric toothbrush using the same
JP2010130746A (en) * 2008-11-26 2010-06-10 Kyocera Corp Vibration controller and personal digital assistant
JP2015070729A (en) * 2013-09-30 2015-04-13 日本電産コパル株式会社 Information terminal processing device and vibration generator system
US20150222165A1 (en) * 2014-01-31 2015-08-06 General Electric Company Reluctance-based resonant linear motor
JP2015223563A (en) * 2014-05-28 2015-12-14 日本電信電話株式会社 Acceleration generation device
WO2016017584A1 (en) * 2014-07-28 2016-02-04 日本電産コパル株式会社 Linear vibration motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410969A (en) * 2021-07-19 2021-09-17 歌尔股份有限公司 Vibration motor

Also Published As

Publication number Publication date
JP2017175879A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5461381B2 (en) Vibration generator
JP2019170118A (en) Vibration actuator and electronic apparatus
JP5450366B2 (en) Vibration generator
JP7188851B2 (en) Vibration actuator and portable electronic device provided with the same
JP2018034084A (en) Haptic actuator, electronic equipment, and haptic feedback generation method
JP2015070729A (en) Information terminal processing device and vibration generator system
WO2018139542A1 (en) Vibration device, wearable terminal and incoming call notification device
TWI611071B (en) Noise reducing or vibration damping device and a structural member provided with such device
JP6245913B2 (en) Vibration actuator
JP2019201486A (en) Linear vibration motor and electronic equipment
JP2019180168A (en) Vibration actuator and vibration presentation device
JP2018019514A (en) Vibration actuator
US9584001B2 (en) Vibration actuator
KR20150082769A (en) Linear vibrator
CN114761141B (en) Somatosensory vibration generating device and somatosensory vibration presenting device
JP2016182569A (en) Vibration actuator
WO2017164397A1 (en) Linear oscillation motor
CN113131707A (en) Vibration actuator and electronic device
JP2019041548A (en) Linear oscillation motor and electronic equipment
JP2018200533A (en) Tactile transmission device
JP2017212793A (en) Linear vibration motor
WO2018008280A1 (en) Linear vibration motor
JP6378125B2 (en) Linear vibration motor
JP2022056733A (en) Vibration actuator and electronic instrument
JP2022056732A (en) Vibration actuator and electronic instrument

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770437

Country of ref document: EP

Kind code of ref document: A1