WO2017163687A1 - Air conditioning device for vehicle, and air conditioning control method - Google Patents

Air conditioning device for vehicle, and air conditioning control method Download PDF

Info

Publication number
WO2017163687A1
WO2017163687A1 PCT/JP2017/005867 JP2017005867W WO2017163687A1 WO 2017163687 A1 WO2017163687 A1 WO 2017163687A1 JP 2017005867 W JP2017005867 W JP 2017005867W WO 2017163687 A1 WO2017163687 A1 WO 2017163687A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
pressure
coolant
compressor
Prior art date
Application number
PCT/JP2017/005867
Other languages
French (fr)
Japanese (ja)
Inventor
雄士 小寺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017163687A1 publication Critical patent/WO2017163687A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit

Definitions

  • the present disclosure relates to a vehicle air conditioner and an air conditioning control method.
  • high-temperature engine coolant flows into the heater core, heat is exchanged between the coolant and air, and warmed air is supplied to the vehicle interior. Therefore, many hot water heaters that heat the passenger compartment are used.
  • Patent Document 1 discloses a vehicle air conditioner to which a configuration for heating cooling water using a heat pump is added while being based on an existing hot water heater.
  • the vehicle air conditioner according to the present disclosure has the following configuration. That is, a compressor that compresses the refrigerant, a condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the coolant sent from the engine cooling unit, an expansion valve that expands the high-pressure refrigerant to low and low pressure, and engine cooling An evaporator that performs heat exchange between the coolant introduced into the section and the low-temperature and low-pressure refrigerant, and the coolant heated by the heat exchange between the high-temperature and high-pressure refrigerant and the interior of the vehicle. A heater core that exchanges heat with air.
  • a pressure sensor that detects the pressure of the high-pressure refrigerant that flows between the compressor and the expansion valve; a calculation unit that calculates the temperature of the coolant flowing into the heater core based on the pressure detected by the pressure sensor; And a control unit that controls the air conditioning in the passenger compartment based on the temperature of the coolant calculated by the unit.
  • the air conditioning control method includes a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator, which flows into the heater core with a coolant exchanged with the refrigerant compressed by the compressor.
  • a detection step for detecting the pressure of the high-pressure refrigerant flowing between the compressor and the expansion valve
  • a calculation step for calculating the temperature of the coolant flowing into the heater core based on the pressure detected in the detection step
  • a calculation step And a control step for controlling the air conditioning in the passenger compartment based on the temperature of the coolant calculated in (1).
  • the heat pump of Patent Document 1 includes a compressor that changes the temperature of the refrigerant to high temperature and pressure, and a condenser that heats the cooling liquid by performing heat exchange between the high temperature and pressure refrigerant and the cooling liquid. Thereby, the temperature of the coolant flowing into the heater core becomes higher, and the heating performance can be improved as compared with the existing one.
  • a liquid temperature sensor for detecting the temperature of the coolant is provided at the engine cooling water channel outlet.
  • An object of the present disclosure is to provide a vehicle air-conditioning apparatus and an air-conditioning control method capable of controlling air-conditioning in a vehicle interior without increasing costs.
  • FIG. 1 is a configuration diagram illustrating a vehicle air conditioner 1 according to an embodiment of the present disclosure.
  • a vehicle air conditioner 1 that is mounted on a vehicle having an engine (an internal combustion engine) as a heat generating component and performs air conditioning in the passenger compartment will be described.
  • the vehicle air conditioner 1 of the present embodiment operates by switching to a plurality of operation modes.
  • the vehicle air conditioner 1 includes a component unit 10, a compressor (compressor) 38, an engine cooling unit 40, a heater core 44, an evaporator 48, an expansion valve 37, an outdoor condenser 39, a check valve 15, and these A coolant pipe and a refrigerant pipe connecting the two.
  • the heater core 44 and the evaporator 48 are disposed in an intake passage of an HVAC (Heating, Ventilation, and Air Conditioning) 70.
  • the HVAC 70 is provided with a fan F1 through which intake air flows.
  • the compressor 38 is driven by engine power or electricity to compress the sucked refrigerant into a high temperature and high pressure and discharge it.
  • the high-temperature and high-pressure refrigerant is sent to the condenser 12 or the outdoor condenser 39.
  • the low-pressure refrigerant is sucked from the evaporator 11 or the evaporator 48 of the constituent unit 10 into the compressor 38 via the junction pipe.
  • the engine cooling unit 40 has a pump and releases heat from the engine to the coolant.
  • the pump transfers the coolant.
  • the transfer direction of the cooling liquid is indicated by arrows in FIG.
  • the engine cooling unit 40 may be provided with a radiator that releases heat to the outside air.
  • the cooling liquid is an antifreeze liquid such as LLC (Long Life Coolant) and is a liquid for carrying heat.
  • the heater core 44 is a device that exchanges heat between the coolant and air, and is disposed in the intake passage of the HVAC 70 that supplies air into the passenger compartment.
  • the heater core 44 is supplied with a heated coolant, and releases heat to the air supplied to the passenger compartment during the heating operation.
  • the heater core 44 adjusts the amount of air supplied into the passenger compartment by the opening of the door 44a.
  • the door 44a is opened and closed by electrical control.
  • the evaporator 48 is a device that exchanges heat between the low-temperature and low-pressure refrigerant and the air, and is disposed in the intake passage of the HVAC 70.
  • the evaporator 48 is supplied with a low-temperature and low-pressure refrigerant during cooling operation, dehumidifying operation, and temperature control operation to cool the air supplied to the passenger compartment.
  • the expansion valve 37 expands the high-temperature and high-pressure refrigerant to a low temperature and low pressure and discharges it to the evaporator 48.
  • the outdoor condenser 39 has a passage through which the refrigerant flows and a passage through which the air flows, and performs heat exchange between the refrigerant and the air.
  • a high-temperature and high-pressure refrigerant is flowed to discharge heat from the refrigerant to the outside air.
  • the constituent unit 10 includes an evaporator 11, a condenser 12, a first on-off valve 13, a second on-off valve 14, an expansion valve 16, and a pressure sensor 80.
  • the evaporator 11 has a passage through which a low-temperature and low-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid.
  • the evaporator 11 is introduced with a low-temperature and low-pressure refrigerant from the expansion valve 16 in a predetermined operation mode, and moves heat from the coolant to the low-temperature and low-pressure refrigerant. Thereby, the evaporator 11 vaporizes the low-temperature and low-pressure refrigerant.
  • the coolant inlet of the evaporator 11 is communicated with the heater core 44 via a pipe, and the coolant outlet of the evaporator 11 is communicated with the engine cooling unit 40 via a pipe.
  • the refrigerant inlet of the evaporator 11 communicates with the expansion valve 16 via a pipe, and the refrigerant outlet of the evaporator 11 communicates with a pipe that joins the inlet of the compressor 38.
  • the condenser 12 has a passage through which a high-temperature and high-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid.
  • the condenser 12 is supplied with a high-temperature and high-pressure refrigerant from the compressor 38 in a predetermined operation mode, and releases heat from the high-temperature and high-pressure refrigerant to the coolant. Thereby, the condenser 12 condenses the high-temperature and high-pressure refrigerant.
  • the cooling liquid inlet of the condenser 12 communicates with the engine cooling unit 40 via a pipe, and the cooling liquid outlet of the condenser 12 communicates with the heater core 44 via a pipe.
  • the refrigerant inlet of the condenser 12 communicates with the discharge port of the compressor 38 via a pipe, and the refrigerant outlet of the condenser 12 communicates with the expansion valve 16.
  • the first on-off valve 13 and the second on-off valve 14 are valves that switch the opening and closing of the refrigerant pipes by, for example, electrical control, and for example, electromagnetic valves can be employed.
  • the first on-off valve 13 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the discharge side of the compressor 38 and the refrigerant inlet of the outdoor condenser 39.
  • the second on-off valve 14 opens and closes the refrigerant passage between the branch portion and the refrigerant inlet of the condenser 12.
  • the first on-off valve 13 and the second on-off valve 14 are valves that switch the opening and closing of the refrigerant pipes by, for example, electrical control, and for example, electromagnetic valves can be employed.
  • the first on-off valve 13 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the discharge side of the compressor 38 and the refrigerant inlet of the outdoor condenser 39.
  • the second on-off valve 14 opens and closes the refrigerant passage between the branch portion and the refrigerant inlet of the condenser 12.
  • the expansion valve 16 expands the high-pressure refrigerant to a low temperature and low pressure and discharges it to the evaporator 11.
  • the check valve 15 is provided between the compressor 38 and the evaporator 48, and is a valve that prevents the refrigerant from flowing back in the operation mode in which the refrigerant does not flow through the outdoor condenser 39 and the evaporator 48.
  • the pressure sensor 80 is provided near the refrigerant inlet of the unit 10 and detects the discharge pressure of the refrigerant sucked into the condenser 12. Note that the pressure sensor 80 may be provided at any position on the pipe through which the refrigerant flows between the compressor 38 and the evaporator 11.
  • FIG. 2 is a block diagram illustrating a control configuration of the vehicle air conditioner 1 according to the embodiment of the present disclosure.
  • the vehicle air conditioner 1 includes an air conditioning automatic control unit 51, an HVAC control unit 71, a heat pump heating control unit 52, and a heat pump heating switch 55 as a control system configuration.
  • the air conditioning automatic control unit 51 includes a microcomputer, an I / O (Input / Output) interface, a program memory storing a control program, a working memory, and the like, and the microcomputer performs automatic control of air conditioning according to the control program. is there.
  • the air conditioning automatic control unit 51 receives user setting information and environment information.
  • the user setting information is information on air conditioning set by the user via, for example, an operation panel of an instrument panel.
  • the user setting information includes, for example, A / C (Air-Conditioner) switch information for instructing the operation of the heat pump mainly for cooling or dehumidification, setting temperature information, setting air flow rate information, and the like.
  • a / C Air-Conditioner
  • Environmental information is information obtained from various sensors provided in the vehicle or the vehicle air conditioner 1.
  • the environmental information includes, for example, outside air temperature information, vehicle interior temperature information, and opening information of the door 44a.
  • the air conditioning automatic control unit 51 performs control for starting the compressor 38.
  • the air conditioning automatic control unit 51 sends a command (air conditioning control signal such as door control) to the HVAC control unit 71 to open / close the door 44a of the heater core 44, and open / close each door of the HVAC 70, and the fan F1.
  • a command air conditioning control signal such as door control
  • the HVAC control unit 71 is configured to comprehensively control each drive unit of the HVAC 70 based on a command from the air conditioning automatic control unit 51.
  • the air conditioning automatic control unit 51 also includes communication means capable of transmitting and receiving predetermined information to and from the heat pump heating control unit 52.
  • This communication means may be CAN (Controller Area Network) or a communication means via a dedicated signal line.
  • the heat pump heating control unit 52 can be composed of a microcomputer or a sequencer.
  • the heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14, and mainly performs switching control of the heat pump heating mode.
  • Information for determining whether or not the heat pump heating mode is necessary is input to the heat pump heating control unit 52.
  • this information is switch information (heat pump heating activation signal) indicating ON / OFF of the heat pump heating switch 55.
  • the heat pump heating switch 55 is an operation switch that can be operated by the user. When the user turns on the heat pump heating switch 55 and a heat pump heating activation signal is input, the heat pump heating control unit 52 can determine that the transition to the heat pump heating mode is necessary.
  • the heat pump heating control unit 52 receives outside air temperature information, vehicle interior temperature information, environment information, vehicle interior temperature setting information, and the like as information for determining whether or not the heat pump heating mode is necessary. . Further, information for determining whether or not the heat pump heating mode is necessary includes state information of the vehicle air conditioner 1 such as opening information of the door 44a. In addition, it is not necessary to input all these information, and only some information may be input. Based on these pieces of information, the heat pump heating control unit 52 may detect that heat such as engine exhaust heat is insufficient for heating and determine that the transition to the heat pump heating mode is necessary. it can.
  • the heat pump heating control unit 52 includes communication means capable of transmitting / receiving predetermined information to / from the air conditioning automatic control unit 51.
  • the communication line is not particularly limited, but is connected to the heat pump heating control unit 52 via a connector CN1 (corresponding to a connection unit).
  • At least A / C switch information (corresponding to air conditioning switch information) is sent from the latter to the former, and a compressor activation request signal is sent from the former to the latter. Is done.
  • the A / C switch information is, for example, on / off information of an A / C switch provided in the operation unit of the instrument panel.
  • the A / C switch is an operation switch that the user instructs to start the compressor 38 mainly for cooling or dehumidification.
  • the compressor activation request signal is a signal for requesting activation of the compressor 38. With this signal, the heat pump heating control unit 52 can activate the compressor 38 even when the A / C switch is off.
  • the heat pump heating control unit 52 determines whether the compressor 38 is driven based on the information from the air conditioning automatic control unit 51. A request signal is sent to the air conditioning automatic control unit 51.
  • the air conditioning automatic control unit 51 drives the compressor 38 by a compressor activation request signal even when the A / C switch is off. Furthermore, the heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14 to perform control for shifting to the heat pump heating mode.
  • the information communicated between the air conditioning automatic control unit 51 and the heat pump heating control unit 52 includes information indicating the current operation mode of the vehicle air conditioner 1, opening information of each door of the HVAC 70, and the like. May be.
  • the refrigerant discharge pressure value detected by the pressure sensor 80 is input to the heat pump heating control unit 52 (corresponding to the control unit).
  • the heat pump heating control unit 52 includes a calculation unit 53.
  • the calculation unit 53 calculates the temperature of the coolant sent from the condenser 12 to the heater core 44 (heater core inlet coolant temperature) based on the refrigerant discharge pressure value, and outputs the calculated result.
  • the heat pump heating control unit 52 controls the air conditioning in the passenger compartment based on the calculated heater core inlet coolant temperature.
  • the heat pump heating control unit 52 determines whether the compressor 38 is driven when the heater core inlet coolant temperature exceeds a predetermined upper limit value, and if so, sends a compressor stop request signal to the air conditioning automatic control unit. Send to 51. Further, the air conditioning automatic control unit 51 sends a compressor stop signal to the compressor 38.
  • the upper limit value is determined in advance based on the set temperature, and is stored in an internal memory (not shown) of the heat pump heating control unit 52.
  • the heat pump heating control unit 52 determines whether the compressor 38 is driven when the heater core inlet coolant temperature is less than a predetermined lower limit, and if not, the heater core inlet coolant temperature is Information indicating that the value is less than the lower limit value is sent to the instrument panel display unit via the air conditioning automatic control unit 51.
  • FIG. 3 is a diagram showing the relationship between the refrigerant discharge pressure and the heater core inlet coolant temperature.
  • the discharge pressure value of the refrigerant discharged from the compressor 38 and sucked into the condenser 12 is shown on the horizontal axis
  • the heater core inlet coolant temperature is shown on the vertical axis.
  • FIG. 4 is a diagram schematically showing heat exchange between the refrigerant and the cooling water performed in the condenser 12.
  • FIG. 4 shows the discharge pressure, refrigerant temperature, and coolant temperature of the refrigerant sucked into the condenser 12 by P_in, Tr_in, and Tw_in, and the discharge pressure, refrigerant temperature, and coolant temperature of the discharged refrigerant are P_out, Tr_out. , Tw_out.
  • the section of the sensible heat change of the refrigerant and the section of the latent heat change are indicated by S1 and S2, respectively.
  • the refrigerant temperature Tr in the condenser 12 changes from Tr_in to Tr_out due to sensible heat change and sensible heat change of the refrigerant. Further, the temperature Tw of the coolant in the condenser 12 changes from Tw_in to Tw_out due to heat exchange with the refrigerant. Since the coolant is sent from the condenser 12 to the heater core 44, the coolant temperature Tw_out corresponds to the heater core inlet coolant temperature.
  • FIG. 5 is a diagram showing the relationship between the refrigerant discharge pressure P_in (see FIG. 4) and the heater core inlet coolant temperature and the refrigerant saturation temperature (saturated refrigerant temperature) at the refrigerant discharge pressure.
  • the horizontal axis represents pressure
  • the vertical axis represents temperature.
  • the saturated refrigerant temperature can be obtained from the refrigerant discharge pressure P_in (see FIG. 4).
  • FIG. 5 shows that the saturated refrigerant temperature at the refrigerant discharge pressure is close to the heater core inlet coolant temperature at the same discharge pressure. That is, the heater core inlet coolant temperature can be obtained from the refrigerant discharge pressure.
  • the calculation unit 53 Based on the refrigerant discharge pressure P_in detected by the pressure sensor 80, the calculation unit 53 refers to the ph diagram (pressure-enthalpy diagram) of the refrigerant, calculates the saturated refrigerant temperature, and calculates the saturated refrigerant temperature. Used as an estimate of coolant temperature.
  • the data of the refrigerant ph diagram is stored in advance in the internal memory of the heat pump heating control unit 52.
  • the heat pump heating control unit 52 controls the air conditioning described above based on the heater core inlet coolant temperature estimated by the calculation unit 53.
  • FIG. 5 shows that when the subcool (SC) in heat exchange between the refrigerant and the coolant is 0 [K], the saturated refrigerant temperature takes a value closer to the heater core inlet coolant temperature. .
  • SC subcool
  • the calculation unit 53 obtains a saturation pressure corresponding to the specific enthalpy of the refrigerant at the time of subcool (SC) as a pressure correction value. Then, the calculation unit 53 corrects the discharge pressure from the obtained pressure correction value, calculates the saturated refrigerant temperature at the corrected discharge pressure, and sets the calculated saturated refrigerant temperature as the estimated value of the heater core inlet coolant temperature.
  • SC subcool
  • the vehicle air conditioner 1 operates by being switched to several operation modes such as a heat pump heating mode, a hot water heating mode, a temperature control mode, and a cooling mode.
  • the heat pump heating mode is a mode in which the vehicle interior is heated by operating the heat pump.
  • the hot water heating mode is a mode in which the passenger compartment is heated without operating the heat pump.
  • the cooling mode is a mode in which the passenger compartment is cooled by the action of the heat pump.
  • the temperature adjustment mode is a mode in which the temperature and humidity of the air are adjusted by appropriately combining air cooling and dehumidification with a low-temperature refrigerant and air heating with a high-temperature coolant.
  • the heat pump heating mode and the cooling mode will be described as representative examples.
  • the first on-off valve 13 is closed and the second on-off valve 14 is switched to open. Further, the door 44a of the heater core 44 is opened (for example, fully opened).
  • the compressor 38 when the compressor 38 is further operated, the refrigerant circulates through the condenser 12, the expansion valve 16, the evaporator 11, and the compressor 38 in this order.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 38 dissipates heat to the coolant in the condenser 12 and condenses.
  • the condensed refrigerant is expanded by the expansion valve 16 to become a low-temperature and low-pressure refrigerant, and is sent to the evaporator 11.
  • the low-temperature and low-pressure refrigerant is vaporized by absorbing heat from the coolant in the evaporator 11.
  • the vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
  • the coolant flows in the order of the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11, and further returns to the engine cooling unit 40 to circulate in the above order.
  • the coolant that has absorbed heat from the engine by the engine cooling unit 40 is further heated by the condenser 12 and sent to the heater core 44.
  • the coolant that has reached a high temperature can sufficiently heat the intake air that is sent into the passenger compartment by the heater core 44.
  • the coolant that has passed through the heater core 44 has a higher temperature than the outside air, and the evaporator 11 can dissipate heat to the refrigerant to vaporize the refrigerant.
  • the coolant cooled by the evaporator 11 can be sent to the engine cooling unit 40 to sufficiently cool the engine.
  • the vehicle interior can be sufficiently heated.
  • FIG. 6 is a flowchart showing processing performed by the heat pump heating control unit 52.
  • the processing of the heat pump heating control unit 52 is started when a heat pump heating activation signal is input to the heat pump heating control unit 52.
  • the heat pump heating control unit 52 determines whether a heat pump heating start signal has been received (step S12).
  • the calculation unit 53 corrects the discharge pressure value. Specifically, the calculation unit 53 calculates a discharge pressure value Pdref obtained by correcting the discharge pressure value Pd detected by the pressure sensor 80 with the pressure correction value Kd (step S14).
  • the calculation unit 53 calculates the saturated refrigerant temperature of the corrected discharge pressure value Pdref with reference to the ph diagram of the refrigerant, and uses the calculated saturated refrigerant temperature as the estimated value of the heater core inlet coolant temperature Thc_in. (Step S16).
  • step S12 when the heat pump heating activation signal is not received (step S12: NO), the calculation unit 53 calculates the temperature of the cooling lead detected by a liquid temperature sensor (not shown) provided at the engine cooling water channel outlet. It is used as an estimated value of the heater core inlet coolant temperature Thc_in (step S20).
  • the calculation unit 53 outputs the heater core inlet coolant temperature Thc_in (step S18).
  • the heat pump heating control unit 52 controls the air conditioning in the passenger compartment based on the heater core inlet coolant temperature Thc_in.
  • the first on-off valve 13 is switched to open and the second on-off valve 14 is switched to close. Further, the door 44a of the heater core 44 is fully closed. Further, when the compressor 38 is operated, the refrigerant flows in the order of the outdoor condenser 39, the expansion valve 37, the evaporator 48, and the compressor 38, and returns to the outdoor condenser 39 to circulate in the above order.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 38 dissipates heat to the air by the outdoor condenser 39 and condenses.
  • the condensed refrigerant is expanded by the expansion valve 37 to become a low-temperature and low-pressure refrigerant and is sent to the evaporator 48.
  • the low-temperature and low-pressure refrigerant cools and evaporates the intake air sent into the passenger compartment by the evaporator 48.
  • the vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
  • the coolant flows through the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11.
  • the heat dissipation of the cooling liquid is mainly performed by the radiator of the engine cooling unit 40.
  • the refrigerant is vaporized by the evaporator 48 to cool the intake air sent to the vehicle interior. Thereby, the vehicle interior can be cooled.
  • the calculation unit 53 calculates the heater core inlet coolant temperature based on the refrigerant discharge pressure. Therefore, it is not necessary to provide a liquid temperature sensor for detecting the heater core inlet coolant temperature, and the air conditioning in the passenger compartment can be controlled without increasing the cost.
  • the calculated saturated refrigerant temperature depends on the heater core coolant temperature by referring to the refrigerant discharge pressure by using the subcool (SC) of the refrigerant as a pressure correction value.
  • SC subcool
  • the control to stop the compressor 38 when the heater core inlet coolant temperature calculated by the calculation unit 53 exceeds the upper limit value has been described.
  • the present disclosure further defines a lower limit value in advance, for example, when the heater core inlet coolant temperature is lower than a predetermined lower limit value after the compressor 38 is stopped in the heat pump heating mode, You may control to start the compressor 38. FIG. This makes it possible to keep the heater core inlet coolant temperature within an allowable range.
  • the refrigerant discharge pressure correction value is calculated based on the refrigerant subcool (SC)
  • SC refrigerant subcool
  • the present disclosure provides the refrigerant discharge pressure correction value as The refrigerant pressure loss due to the shape and length of the refrigerant pipe between the compressor 38 and the position where the pressure sensor is provided, or the flow rate of the coolant exchanged with the refrigerant in the condenser 12 You may calculate based on.
  • the pressure loss of the refrigerant is obtained by a predetermined formula or experiment.
  • the relationship between the discharge pressure correction value and the coolant flow rate can also be obtained by a predetermined formula or experiment.
  • the relationship obtained in the experiment may be a table, and the discharge pressure correction value may be obtained by referring to the table based on the coolant flow rate.
  • the present disclosure is suitably used for an air conditioner and an air conditioning system that are required to control air conditioning in a vehicle interior without increasing costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This air conditioning device for a vehicle is provided with: a refrigerant circuit including a compressor that compresses a refrigerant, a condenser that conducts heat exchange between a high-temperature, high-pressure refrigerant and a cooling liquid dispensed from an engine cooling unit, an expansion valve that expands the high-pressure refrigerant to a low temperature and low pressure, and an evaporator that conducts heat exchange between the cooling liquid to be introduced to the engine cooling unit and the low-temperature, low-pressure refrigerant; a heater core that conducts heat exchange between the cooling liquid, which was heated via heat exchange with the high-temperature, high-pressure refrigerant, and air sent into a vehicle interior; a pressure sensor that detects the pressure of the high-pressure refrigerant flowing between the compressor and the expansion valve; a calculation unit that calculates, on the basis of the pressure detected by the pressure sensor, the temperature of the cooling liquid flowing to the heater core; and a control unit that controls the air conditioning of the vehicle interior on the basis of the temperature of the cooling liquid calculated by the calculation unit.

Description

車両用空調装置および空調制御方法Vehicle air conditioner and air conditioning control method
 本開示は、車両用空調装置および空調制御方法に関する。 The present disclosure relates to a vehicle air conditioner and an air conditioning control method.
 従来の車両用の暖房装置として、高温になったエンジン冷却水(冷却液)をヒーターコアに流入させ、冷却液と空気との間で熱交換を行い、暖められた空気を車室内に供給することで、車室内を暖房する温水式ヒータが多く採用されている。 As a conventional vehicle heating device, high-temperature engine coolant (coolant) flows into the heater core, heat is exchanged between the coolant and air, and warmed air is supplied to the vehicle interior. Therefore, many hot water heaters that heat the passenger compartment are used.
 例えば、特許文献1には、既存の温水式ヒータを基本としつつ、ヒートポンプを利用して冷却水を加熱する構成を付加した車両用空調装置が開示されている。 For example, Patent Document 1 discloses a vehicle air conditioner to which a configuration for heating cooling water using a heat pump is added while being based on an existing hot water heater.
特開平10-76837号公報Japanese Patent Laid-Open No. 10-76837
 本開示に係る車両用空調装置は、以下の構成を具備する。すなわち、冷媒を圧縮するコンプレッサと、高温高圧の冷媒とエンジン冷却部から送出された冷却液との間で熱交換を行う凝縮器と、高圧の冷媒を低温低圧に膨張する膨張弁と、エンジン冷却部に導入される冷却液と低温低圧の冷媒との間で熱交換を行う蒸発器と、を含む冷媒回路と、高温高圧の冷媒との熱交換で加熱された冷却液と車室内へ送られる空気との間で熱交換を行うヒーターコアと、を具備する。そして、コンプレッサと膨張弁との間を流れる高圧冷媒の圧力を検出する圧力センサと、圧力センサで検出された圧力に基づいて、ヒーターコアに流入する冷却液の温度を算出する算出部と、算出部で算出した冷却液の温度に基づいて車室内の空調を制御する制御部と、を備える。 The vehicle air conditioner according to the present disclosure has the following configuration. That is, a compressor that compresses the refrigerant, a condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the coolant sent from the engine cooling unit, an expansion valve that expands the high-pressure refrigerant to low and low pressure, and engine cooling An evaporator that performs heat exchange between the coolant introduced into the section and the low-temperature and low-pressure refrigerant, and the coolant heated by the heat exchange between the high-temperature and high-pressure refrigerant and the interior of the vehicle. A heater core that exchanges heat with air. A pressure sensor that detects the pressure of the high-pressure refrigerant that flows between the compressor and the expansion valve; a calculation unit that calculates the temperature of the coolant flowing into the heater core based on the pressure detected by the pressure sensor; And a control unit that controls the air conditioning in the passenger compartment based on the temperature of the coolant calculated by the unit.
 また、本開示に係る空調制御方法は、コンプレッサ、凝縮器、膨張弁および蒸発器を含む冷媒回路において、コンプレッサにより圧縮された冷媒との間で熱交換が行われた冷却液をヒーターコアに流入させ、冷却液と空気との間で熱交換を行い、暖められた空気を車室内に供給する空調制御方法において、以下のステップを備える。すなわち、コンプレッサと膨張弁との間を流れる高圧冷媒の圧力を検出する検出ステップと、検出ステップで検出した圧力に基づいて、ヒーターコアに流入する冷却液の温度を算出する算出ステップと、算出ステップで算出した冷却液の温度に基づいて車室内の空調を制御する制御ステップと、を備える。 In addition, the air conditioning control method according to the present disclosure includes a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator, which flows into the heater core with a coolant exchanged with the refrigerant compressed by the compressor. In the air conditioning control method of performing heat exchange between the coolant and air and supplying warmed air to the passenger compartment, the following steps are provided. That is, a detection step for detecting the pressure of the high-pressure refrigerant flowing between the compressor and the expansion valve, a calculation step for calculating the temperature of the coolant flowing into the heater core based on the pressure detected in the detection step, and a calculation step And a control step for controlling the air conditioning in the passenger compartment based on the temperature of the coolant calculated in (1).
 本開示によれば、コストを嵩ませずに、車室内の空調を制御することができる。 According to the present disclosure, it is possible to control the air conditioning in the passenger compartment without increasing costs.
本開示の実施の形態に係る車両用空調装置を示す構成図である。It is a lineblock diagram showing the air-conditioner for vehicles concerning an embodiment of this indication. 本開示の実施の形態の車両用空調装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the vehicle air conditioner of embodiment of this indication. 冷媒の吐出圧力とヒーターコア入口冷却液温度との関係を示す図である。It is a figure which shows the relationship between the discharge pressure of a refrigerant | coolant, and heater core inlet coolant temperature. 凝縮器で行われる冷媒と冷却水との間の熱交換を概略的に示す図である。It is a figure which shows roughly the heat exchange between the refrigerant | coolant and cooling water which are performed with a condenser. 冷媒の吐出圧力とヒーターコア入口冷却液温度との関係を示す図である。It is a figure which shows the relationship between the discharge pressure of a refrigerant | coolant, and heater core inlet coolant temperature. ヒートポンプ暖房制御部が行う処理を示すフロー図である。It is a flowchart which shows the process which a heat pump heating control part performs.
 本開示の実施の形態の説明に先立ち、従来の車両用空調装置における問題点を簡単に説明する。特許文献1のヒートポンプは、冷媒を高温高圧にするコンプレッサと、高温高圧にされた冷媒と冷却液との間で熱交換を行うことで、冷却液を加熱する凝縮器とを有する。これにより、ヒーターコアに流入する冷却液の温度がより高温となり、既存のものより暖房性能を向上させることが可能となる。 Prior to the description of the embodiment of the present disclosure, problems in the conventional vehicle air conditioner will be briefly described. The heat pump of Patent Document 1 includes a compressor that changes the temperature of the refrigerant to high temperature and pressure, and a condenser that heats the cooling liquid by performing heat exchange between the high temperature and pressure refrigerant and the cooling liquid. Thereby, the temperature of the coolant flowing into the heater core becomes higher, and the heating performance can be improved as compared with the existing one.
 車室内の空調を快適なものにするためには、ヒーターコアに流入する冷却液の温度を検出し、検出された冷却液の温度に基づいて空調を制御する必要がある。 To make the air conditioning in the passenger compartment comfortable, it is necessary to detect the temperature of the coolant flowing into the heater core and control the air conditioning based on the detected temperature of the coolant.
 例えば、冷却液の温度に基づいてエンジンの冷却装置の制御を行うために、冷却液の温度を検出するための液温センサがエンジン冷却水路出口に設けられている。 For example, in order to control the cooling device of the engine based on the temperature of the coolant, a liquid temperature sensor for detecting the temperature of the coolant is provided at the engine cooling water channel outlet.
 しかしながら、エンジン冷却水路出口に設けられた液温センサによって、ヒーターコアに流入する冷却液の温度を検出しようとしても、エンジン冷却水路出口における冷却液の温度と、凝縮器で加熱されてからヒーターコアに流入する冷却液の温度とは異なるため、冷却液の温度を正確に検出できず、空調の制御に用いることが難しいという問題点があった。 However, even if an attempt is made to detect the temperature of the coolant flowing into the heater core by the liquid temperature sensor provided at the exit of the engine coolant passage, the temperature of the coolant at the exit of the engine coolant passage and the heater core after being heated by the condenser Therefore, there is a problem that the temperature of the coolant cannot be accurately detected and is difficult to use for air conditioning control.
 また、ヒーターコアに流入する冷却液の温度を検出するために、新たな液温センサをヒーターコアの入口に設けた場合、コストが嵩むという問題点があった。 Also, when a new liquid temperature sensor is provided at the inlet of the heater core in order to detect the temperature of the coolant flowing into the heater core, there is a problem that the cost increases.
 本開示の目的は、コストを嵩ませずに、車室内の空調を制御することが可能な車両用空調装置および空調制御方法を提供することである。 An object of the present disclosure is to provide a vehicle air-conditioning apparatus and an air-conditioning control method capable of controlling air-conditioning in a vehicle interior without increasing costs.
 以下、本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の実施の形態に係る車両用空調装置1を示す構成図である。 FIG. 1 is a configuration diagram illustrating a vehicle air conditioner 1 according to an embodiment of the present disclosure.
 本実施の形態では、発熱部品としてのエンジン(内燃機関)を有する車両に搭載されて、車室内の空気調整を行う車両用空調装置1について説明する。 In the present embodiment, a vehicle air conditioner 1 that is mounted on a vehicle having an engine (an internal combustion engine) as a heat generating component and performs air conditioning in the passenger compartment will be described.
 本実施の形態の車両用空調装置1は、複数の運転モードに切り換えられて動作する。このために、車両用空調装置1は、構成ユニット10、コンプレッサ(圧縮機)38、エンジン冷却部40、ヒーターコア44、エバポレータ48、膨張弁37、室外コンデンサ39、逆止弁15、および、これらの間を結ぶ冷却液の配管および冷媒配管等を有する。ヒーターコア44と、エバポレータ48とは、HVAC(Heating, Ventilation, and Air Conditioning)70の吸気通路内に配置される。HVAC70には、吸気を流すファンF1が設けられている。 The vehicle air conditioner 1 of the present embodiment operates by switching to a plurality of operation modes. For this purpose, the vehicle air conditioner 1 includes a component unit 10, a compressor (compressor) 38, an engine cooling unit 40, a heater core 44, an evaporator 48, an expansion valve 37, an outdoor condenser 39, a check valve 15, and these A coolant pipe and a refrigerant pipe connecting the two. The heater core 44 and the evaporator 48 are disposed in an intake passage of an HVAC (Heating, Ventilation, and Air Conditioning) 70. The HVAC 70 is provided with a fan F1 through which intake air flows.
 コンプレッサ38は、エンジンの動力または電気により駆動して、吸入した冷媒を高温高圧に圧縮して吐出する。高温高圧の冷媒は、凝縮器12または室外コンデンサ39に送られる。低圧の冷媒は、構成ユニット10の蒸発器11、又は、エバポレータ48から合流管を介してコンプレッサ38へ吸入される。 The compressor 38 is driven by engine power or electricity to compress the sucked refrigerant into a high temperature and high pressure and discharge it. The high-temperature and high-pressure refrigerant is sent to the condenser 12 or the outdoor condenser 39. The low-pressure refrigerant is sucked from the evaporator 11 or the evaporator 48 of the constituent unit 10 into the compressor 38 via the junction pipe.
 エンジン冷却部40は、ポンプを有し、エンジンから熱を冷却液に放出させる。ポンプは冷却液を移送する。冷却液の移送方向を図1に矢印で示す。なお、エンジン冷却部40には、熱を外気に放出するラジエータが備えられていてもよい。 The engine cooling unit 40 has a pump and releases heat from the engine to the coolant. The pump transfers the coolant. The transfer direction of the cooling liquid is indicated by arrows in FIG. The engine cooling unit 40 may be provided with a radiator that releases heat to the outside air.
 冷却液は、例えば、LLC(Long Life Coolant)などの不凍液であり、熱を運ぶための液体である。 The cooling liquid is an antifreeze liquid such as LLC (Long Life Coolant) and is a liquid for carrying heat.
 ヒーターコア44は、冷却液と空気との間で熱交換を行う機器であり、車室内へ空気を供給するHVAC70の吸気通路内に配置される。ヒーターコア44には、加熱された冷却液が供給され、暖房運転時に車室内へ供給される空気に熱を放出する。ヒーターコア44は、ドア44aの開度により車室内に供給する空気の量を調整する。ドア44aは電気的な制御で開閉する。 The heater core 44 is a device that exchanges heat between the coolant and air, and is disposed in the intake passage of the HVAC 70 that supplies air into the passenger compartment. The heater core 44 is supplied with a heated coolant, and releases heat to the air supplied to the passenger compartment during the heating operation. The heater core 44 adjusts the amount of air supplied into the passenger compartment by the opening of the door 44a. The door 44a is opened and closed by electrical control.
 エバポレータ48は、低温低圧の冷媒と、空気との間で熱交換を行う機器であり、HVAC70の吸気通路内に配置される。エバポレータ48には、冷房運転時、除湿運転時、また温調運転時に低温低圧の冷媒が流され、車室内へ供給される空気を冷却する。 The evaporator 48 is a device that exchanges heat between the low-temperature and low-pressure refrigerant and the air, and is disposed in the intake passage of the HVAC 70. The evaporator 48 is supplied with a low-temperature and low-pressure refrigerant during cooling operation, dehumidifying operation, and temperature control operation to cool the air supplied to the passenger compartment.
 膨張弁37は、高温高圧の冷媒を低温低圧に膨張して、エバポレータ48に吐出する。 The expansion valve 37 expands the high-temperature and high-pressure refrigerant to a low temperature and low pressure and discharges it to the evaporator 48.
 室外コンデンサ39は、冷媒を流す通路と、空気を流す通路とを有し、冷媒と空気との間で熱交換を行う。室外コンデンサ39は、冷房モードおよび除湿モードのとき、高温高圧の冷媒が流されて、冷媒から外気へ熱を排出させる。 The outdoor condenser 39 has a passage through which the refrigerant flows and a passage through which the air flows, and performs heat exchange between the refrigerant and the air. When the outdoor condenser 39 is in the cooling mode and the dehumidifying mode, a high-temperature and high-pressure refrigerant is flowed to discharge heat from the refrigerant to the outside air.
 構成ユニット10は、蒸発器11と、凝縮器12と、第1開閉弁13と、第2開閉弁14と、膨張弁16と、圧力センサ80とを有する。 The constituent unit 10 includes an evaporator 11, a condenser 12, a first on-off valve 13, a second on-off valve 14, an expansion valve 16, and a pressure sensor 80.
 蒸発器11は、冷温低圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。蒸発器11には、所定の運転モードのときに、膨張弁16から低温低圧の冷媒が導入されて、冷却液から低温低圧冷媒へ熱を移動させる。これにより、蒸発器11は、低温低圧の冷媒を気化させる。 The evaporator 11 has a passage through which a low-temperature and low-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid. The evaporator 11 is introduced with a low-temperature and low-pressure refrigerant from the expansion valve 16 in a predetermined operation mode, and moves heat from the coolant to the low-temperature and low-pressure refrigerant. Thereby, the evaporator 11 vaporizes the low-temperature and low-pressure refrigerant.
 蒸発器11の冷却液の導入口は、配管を介してヒーターコア44に連通され、蒸発器11の冷却液の送出口は、配管を介してエンジン冷却部40に連通されている。蒸発器11の冷媒の導入口は、配管を介して膨張弁16に連通され、蒸発器11の冷媒の送出口は、コンプレッサ38の吸入口へ合流する配管に連通されている。 The coolant inlet of the evaporator 11 is communicated with the heater core 44 via a pipe, and the coolant outlet of the evaporator 11 is communicated with the engine cooling unit 40 via a pipe. The refrigerant inlet of the evaporator 11 communicates with the expansion valve 16 via a pipe, and the refrigerant outlet of the evaporator 11 communicates with a pipe that joins the inlet of the compressor 38.
 凝縮器12は、高温高圧の冷媒を流す通路と、冷却液を流す通路とを有し、冷媒と冷却液との間で熱交換を行う。凝縮器12には、所定の運転モードのときに、コンプレッサ38から高温高圧の冷媒が送られて、高温高圧の冷媒から冷却液へ熱を放出させる。これにより、凝縮器12は、高温高圧の冷媒を凝縮させる。 The condenser 12 has a passage through which a high-temperature and high-pressure refrigerant flows and a passage through which a cooling liquid flows, and performs heat exchange between the refrigerant and the cooling liquid. The condenser 12 is supplied with a high-temperature and high-pressure refrigerant from the compressor 38 in a predetermined operation mode, and releases heat from the high-temperature and high-pressure refrigerant to the coolant. Thereby, the condenser 12 condenses the high-temperature and high-pressure refrigerant.
 凝縮器12の冷却液の導入口は、配管を介してエンジン冷却部40に連通され、凝縮器12の冷却液の送出口は、配管を介してヒーターコア44に連通されている。凝縮器12の冷媒の導入口は、配管を介してコンプレッサ38の吐出口へ連通され、凝縮器12の冷媒の送出口は、膨張弁16に連通されている。 The cooling liquid inlet of the condenser 12 communicates with the engine cooling unit 40 via a pipe, and the cooling liquid outlet of the condenser 12 communicates with the heater core 44 via a pipe. The refrigerant inlet of the condenser 12 communicates with the discharge port of the compressor 38 via a pipe, and the refrigerant outlet of the condenser 12 communicates with the expansion valve 16.
 第1開閉弁13および第2開閉弁14は、例えば電気的な制御により、冷媒配管の開閉を切り替える弁であり、例えば電磁弁を採用できる。第1開閉弁13は、コンプレッサ38吐出側の冷媒通路の分岐部と、室外コンデンサ39の冷媒導入口との間の冷媒通路を開閉する。第2開閉弁14は、上記分岐部と凝縮器12の冷媒導入口との間の冷媒通路を開閉する。 The first on-off valve 13 and the second on-off valve 14 are valves that switch the opening and closing of the refrigerant pipes by, for example, electrical control, and for example, electromagnetic valves can be employed. The first on-off valve 13 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the discharge side of the compressor 38 and the refrigerant inlet of the outdoor condenser 39. The second on-off valve 14 opens and closes the refrigerant passage between the branch portion and the refrigerant inlet of the condenser 12.
 第1開閉弁13および第2開閉弁14は、例えば電気的な制御により、冷媒配管の開閉を切り替える弁であり、例えば電磁弁を採用できる。第1開閉弁13は、コンプレッサ38吐出側の冷媒通路の分岐部と、室外コンデンサ39の冷媒導入口との間の冷媒通路を開閉する。第2開閉弁14は、上記分岐部と凝縮器12の冷媒導入口との間の冷媒通路を開閉する。 The first on-off valve 13 and the second on-off valve 14 are valves that switch the opening and closing of the refrigerant pipes by, for example, electrical control, and for example, electromagnetic valves can be employed. The first on-off valve 13 opens and closes the refrigerant passage between the branch portion of the refrigerant passage on the discharge side of the compressor 38 and the refrigerant inlet of the outdoor condenser 39. The second on-off valve 14 opens and closes the refrigerant passage between the branch portion and the refrigerant inlet of the condenser 12.
 膨張弁16は、高圧の冷媒を低温低圧に膨張して、蒸発器11に吐出する。 The expansion valve 16 expands the high-pressure refrigerant to a low temperature and low pressure and discharges it to the evaporator 11.
 逆止弁15は、コンプレッサ38とエバポレータ48との間に設けられ、室外コンデンサ39およびエバポレータ48に冷媒が流れない運転モードのときに、冷媒の逆流を防ぐ弁である。 The check valve 15 is provided between the compressor 38 and the evaporator 48, and is a valve that prevents the refrigerant from flowing back in the operation mode in which the refrigerant does not flow through the outdoor condenser 39 and the evaporator 48.
 圧力センサ80は、ユニット10の冷媒導入口付近に設けられ、凝縮器12に吸入される冷媒の吐出圧力を検出する。なお、圧力センサ80は、コンプレッサ38と蒸発器11との間を結ぶ冷媒の流れる配管のいずれの位置に設けられてもよい。 The pressure sensor 80 is provided near the refrigerant inlet of the unit 10 and detects the discharge pressure of the refrigerant sucked into the condenser 12. Note that the pressure sensor 80 may be provided at any position on the pipe through which the refrigerant flows between the compressor 38 and the evaporator 11.
 図2は、本開示の実施の形態の車両用空調装置1の制御構成を示すブロック図である。 FIG. 2 is a block diagram illustrating a control configuration of the vehicle air conditioner 1 according to the embodiment of the present disclosure.
 車両用空調装置1は、制御系の構成として、空調自動制御部51と、HVAC制御部71と、ヒートポンプ暖房制御部52と、ヒートポンプ暖房スイッチ55とを備えている。 The vehicle air conditioner 1 includes an air conditioning automatic control unit 51, an HVAC control unit 71, a heat pump heating control unit 52, and a heat pump heating switch 55 as a control system configuration.
 空調自動制御部51は、マイクロコンピュータ、I/O(Input/Output)インターフェイス、制御プログラムを格納したプログラムメモリ、作業用のメモリ等を備え、マイクロコンピュータが制御プログラムに従って空調の自動制御を行う構成である。 The air conditioning automatic control unit 51 includes a microcomputer, an I / O (Input / Output) interface, a program memory storing a control program, a working memory, and the like, and the microcomputer performs automatic control of air conditioning according to the control program. is there.
 空調自動制御部51には、ユーザー設定情報と環境情報とが入力される。 The air conditioning automatic control unit 51 receives user setting information and environment information.
 ユーザー設定情報は、例えばインパネ(Instrument Panel)の操作部を介してユーザーにより設定される空調に関する情報である。ユーザー設定情報には、例えば、主に冷房又は除湿のためにヒートポンプの作動を指示するためのA/C(Air Conditioner)スイッチ情報、設定温度情報、設定送風量情報などが含まれる。 The user setting information is information on air conditioning set by the user via, for example, an operation panel of an instrument panel. The user setting information includes, for example, A / C (Air-Conditioner) switch information for instructing the operation of the heat pump mainly for cooling or dehumidification, setting temperature information, setting air flow rate information, and the like.
 環境情報は、車両又は車両用空調装置1に設けられた各種センサから得られる情報である。環境情報には、例えば、外気温度情報、車室内温度情報、ドア44aの開度情報などが含まれる。 Environmental information is information obtained from various sensors provided in the vehicle or the vehicle air conditioner 1. The environmental information includes, for example, outside air temperature information, vehicle interior temperature information, and opening information of the door 44a.
 また、空調自動制御部51は、コンプレッサ38を起動する制御を行う。 In addition, the air conditioning automatic control unit 51 performs control for starting the compressor 38.
 さらに、空調自動制御部51は、HVAC制御部71へ指令(ドア制御などの空調制御信号)を送って、ヒーターコア44のドア44aの開閉、その他、HVAC70の各ドアの開閉、および、ファンF1の駆動等の各制御を行う。HVAC制御部71は、空調自動制御部51からの指令に基づき、HVAC70の各駆動部の制御を統括的に行う構成である。 Further, the air conditioning automatic control unit 51 sends a command (air conditioning control signal such as door control) to the HVAC control unit 71 to open / close the door 44a of the heater core 44, and open / close each door of the HVAC 70, and the fan F1. Each control such as driving is performed. The HVAC control unit 71 is configured to comprehensively control each drive unit of the HVAC 70 based on a command from the air conditioning automatic control unit 51.
 空調自動制御部51は、また、ヒートポンプ暖房制御部52との間で所定の情報を送受信可能な通信手段を備えている。この通信手段は、CAN(Controller Area Network)であってもよいし、専用の信号線を介した通信手段であってもよい。 The air conditioning automatic control unit 51 also includes communication means capable of transmitting and receiving predetermined information to and from the heat pump heating control unit 52. This communication means may be CAN (Controller Area Network) or a communication means via a dedicated signal line.
 ヒートポンプ暖房制御部52は、マイクロコンピュータまたはシーケンサーから構成することができる。ヒートポンプ暖房制御部52は、第1開閉弁13と第2開閉弁14との開閉制御を行って、主に、ヒートポンプ式暖房モードの切換制御を行う。 The heat pump heating control unit 52 can be composed of a microcomputer or a sequencer. The heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14, and mainly performs switching control of the heat pump heating mode.
 ヒートポンプ暖房制御部52には、ヒートポンプ式暖房モードの要否を判別するための情報が入力される。具体的には、この情報は、ヒートポンプ暖房スイッチ55のオン・オフを示すスイッチ情報(ヒートポンプ暖房起動信号)である。ヒートポンプ暖房スイッチ55は、ユーザーが操作可能な操作スイッチである。ヒートポンプ暖房制御部52は、ユーザーがヒートポンプ暖房スイッチ55をオン操作してヒートポンプ暖房起動信号が入力された場合に、ヒートポンプ式暖房モードへの移行が必要であると判別することができる。 Information for determining whether or not the heat pump heating mode is necessary is input to the heat pump heating control unit 52. Specifically, this information is switch information (heat pump heating activation signal) indicating ON / OFF of the heat pump heating switch 55. The heat pump heating switch 55 is an operation switch that can be operated by the user. When the user turns on the heat pump heating switch 55 and a heat pump heating activation signal is input, the heat pump heating control unit 52 can determine that the transition to the heat pump heating mode is necessary.
 ヒートポンプ暖房制御部52には、ヒートポンプ式暖房モードの要否を判別するための情報として、外気温度情報、車室内温度情報、および、環境情報、並びに、車室内温度の設定情報などが入力される。また、ヒートポンプ式暖房モードの要否を判別するための情報として、ドア44aの開度情報など車両用空調装置1の状態情報が含まれる。なお、これら全ての情報が入力される必要はなく、幾つかの情報のみが入力されてもよい。これらの情報に基づいて、ヒートポンプ暖房制御部52は、暖房用にエンジン排熱等の熱が不足していることを検知して、ヒートポンプ式暖房モードへの移行が必要であると判別することができる。 The heat pump heating control unit 52 receives outside air temperature information, vehicle interior temperature information, environment information, vehicle interior temperature setting information, and the like as information for determining whether or not the heat pump heating mode is necessary. . Further, information for determining whether or not the heat pump heating mode is necessary includes state information of the vehicle air conditioner 1 such as opening information of the door 44a. In addition, it is not necessary to input all these information, and only some information may be input. Based on these pieces of information, the heat pump heating control unit 52 may detect that heat such as engine exhaust heat is insufficient for heating and determine that the transition to the heat pump heating mode is necessary. it can.
 ヒートポンプ暖房制御部52は、空調自動制御部51との間で所定の情報を送受信可能な通信手段を備えている。通信線は、特に制限されないが、コネクタCN1(接続部に相当)を介してヒートポンプ暖房制御部52に接続される。 The heat pump heating control unit 52 includes communication means capable of transmitting / receiving predetermined information to / from the air conditioning automatic control unit 51. The communication line is not particularly limited, but is connected to the heat pump heating control unit 52 via a connector CN1 (corresponding to a connection unit).
 ヒートポンプ暖房制御部52と空調自動制御部51との間の通信では、少なくとも、後者から前者へA/Cスイッチ情報(空調スイッチ情報に相当)が送られ、前者から後者へコンプレッサ起動要求信号が送信される。 In communication between the heat pump heating control unit 52 and the air conditioning automatic control unit 51, at least A / C switch information (corresponding to air conditioning switch information) is sent from the latter to the former, and a compressor activation request signal is sent from the former to the latter. Is done.
 A/Cスイッチ情報は、例えばインパネの操作部に設けられたA/Cスイッチのオン・オフ情報である。A/Cスイッチは、主に冷房又は除湿のためにユーザーがコンプレッサ38の起動を指示する操作スイッチである。 The A / C switch information is, for example, on / off information of an A / C switch provided in the operation unit of the instrument panel. The A / C switch is an operation switch that the user instructs to start the compressor 38 mainly for cooling or dehumidification.
 コンプレッサ起動要求信号は、コンプレッサ38の起動を要求する信号であり、この信号により、A/Cスイッチがオフであっても、ヒートポンプ暖房制御部52からコンプレッサ38を起動することが可能となる。 The compressor activation request signal is a signal for requesting activation of the compressor 38. With this signal, the heat pump heating control unit 52 can activate the compressor 38 even when the A / C switch is off.
 ヒートポンプ暖房制御部52は、ヒートポンプ式暖房モードへの移行が必要であると判別した場合、空調自動制御部51からの情報により、コンプレッサ38が駆動しているか判別し、駆動していなければコンプレッサ起動要求信号を空調自動制御部51へ送る。空調自動制御部51は、A/Cスイッチがオフであっても、コンプレッサ起動要求信号により、コンプレッサ38を駆動させる。さらに、ヒートポンプ暖房制御部52は、第1開閉弁13および第2開閉弁14の開閉制御を行って、ヒートポンプ式暖房モードへ移行する制御を行う。 When the heat pump heating control unit 52 determines that the transition to the heat pump heating mode is necessary, the heat pump heating control unit 52 determines whether the compressor 38 is driven based on the information from the air conditioning automatic control unit 51. A request signal is sent to the air conditioning automatic control unit 51. The air conditioning automatic control unit 51 drives the compressor 38 by a compressor activation request signal even when the A / C switch is off. Furthermore, the heat pump heating control unit 52 performs opening / closing control of the first opening / closing valve 13 and the second opening / closing valve 14 to perform control for shifting to the heat pump heating mode.
 なお、空調自動制御部51とヒートポンプ暖房制御部52とで通信される情報には、現在の車両用空調装置1の運転モードを示す情報、および、HVAC70の各ドアの開度情報等が含まれてもよい。 The information communicated between the air conditioning automatic control unit 51 and the heat pump heating control unit 52 includes information indicating the current operation mode of the vehicle air conditioner 1, opening information of each door of the HVAC 70, and the like. May be.
 ヒートポンプ暖房制御部52(制御部に相当)には圧力センサ80により検出された冷媒の吐出圧力値が入力される。ヒートポンプ暖房制御部52は、算出部53を有する。算出部53は、冷媒の吐出圧力値に基づいて、凝縮器12からヒーターコア44へ送られる冷却液の温度(ヒータコア入口冷却液温度)を算出し、算出した結果を出力する。ヒートポンプ暖房制御部52は、上記算出したヒーターコア入口冷却液温度に基づいて車室内の空調を制御する。 The refrigerant discharge pressure value detected by the pressure sensor 80 is input to the heat pump heating control unit 52 (corresponding to the control unit). The heat pump heating control unit 52 includes a calculation unit 53. The calculation unit 53 calculates the temperature of the coolant sent from the condenser 12 to the heater core 44 (heater core inlet coolant temperature) based on the refrigerant discharge pressure value, and outputs the calculated result. The heat pump heating control unit 52 controls the air conditioning in the passenger compartment based on the calculated heater core inlet coolant temperature.
 ヒートポンプ暖房制御部52は、ヒーターコア入口冷却液温度が予め定められた上限値を超えている場合、コンプレッサ38が駆動しているか判別し、駆動していればコンプレッサ停止要求信号を空調自動制御部51へ送る。さらに、空調自動制御部51は、コンプレッサ停止信号をコンプレッサ38へ送る。なお、上限値は、設定温度に基づいて予め定められ、ヒートポンプ暖房制御部52の内部メモリ(図示略)に記憶されている。 The heat pump heating control unit 52 determines whether the compressor 38 is driven when the heater core inlet coolant temperature exceeds a predetermined upper limit value, and if so, sends a compressor stop request signal to the air conditioning automatic control unit. Send to 51. Further, the air conditioning automatic control unit 51 sends a compressor stop signal to the compressor 38. The upper limit value is determined in advance based on the set temperature, and is stored in an internal memory (not shown) of the heat pump heating control unit 52.
 また、ヒートポンプ暖房制御部52は、ヒーターコア入口冷却液温度が予め定められた下限値未満である場合、コンプレッサ38が駆動しているか判別し、駆動していければ、ヒーターコア入口冷却液温度が下限値未満である旨の情報を、空調自動制御部51を介してインパネの表示部へ送る。 Further, the heat pump heating control unit 52 determines whether the compressor 38 is driven when the heater core inlet coolant temperature is less than a predetermined lower limit, and if not, the heater core inlet coolant temperature is Information indicating that the value is less than the lower limit value is sent to the instrument panel display unit via the air conditioning automatic control unit 51.
 図3は、冷媒の吐出圧力とヒーターコア入口冷却液温度との関係を示す図である。図3に、コンプレッサ38から吐出され、凝縮器12に吸入された冷媒の吐出圧力値を横軸に示し、ヒーターコア入口冷却液温度を縦軸に示す。 FIG. 3 is a diagram showing the relationship between the refrigerant discharge pressure and the heater core inlet coolant temperature. In FIG. 3, the discharge pressure value of the refrigerant discharged from the compressor 38 and sucked into the condenser 12 is shown on the horizontal axis, and the heater core inlet coolant temperature is shown on the vertical axis.
 図3に示すように、冷媒の吐出圧力とヒーターコア入口冷却液温度との間には、両者のいずれか一方が高くなると、もう一方も高くなるという相関関係が成立している。 As shown in FIG. 3, a correlation is established between the refrigerant discharge pressure and the heater core inlet coolant temperature, in which case one of both increases, the other increases.
 図4は、凝縮器12で行われる冷媒と冷却水との間の熱交換を概略的に示す図である。図4に凝縮器12に吸入される冷媒の吐出圧力、冷媒温度、冷却液の温度をP_in,Tr_in,Tw_inで示し、流出される冷媒の吐出圧力、冷媒温度、冷却液の温度をP_out,Tr_out,Tw_outで示す。また、冷媒の顕熱変化の区間および潜熱変化の区間をそれぞれS1,S2で示す。 FIG. 4 is a diagram schematically showing heat exchange between the refrigerant and the cooling water performed in the condenser 12. FIG. 4 shows the discharge pressure, refrigerant temperature, and coolant temperature of the refrigerant sucked into the condenser 12 by P_in, Tr_in, and Tw_in, and the discharge pressure, refrigerant temperature, and coolant temperature of the discharged refrigerant are P_out, Tr_out. , Tw_out. Moreover, the section of the sensible heat change of the refrigerant and the section of the latent heat change are indicated by S1 and S2, respectively.
 凝縮器12における冷媒温度Trは、冷媒の顕熱変化および顕熱変化によりTr_inからTr_outに変化する。また、凝縮器12における冷却液の温度Twは、冷媒との間の熱交換によりTw_inからTw_outに変化する。なお、冷却液は凝縮器12からヒーターコア44に送り出されるため、冷却液の温度Tw_outは、ヒーターコア入口冷却液温度に相当する。 The refrigerant temperature Tr in the condenser 12 changes from Tr_in to Tr_out due to sensible heat change and sensible heat change of the refrigerant. Further, the temperature Tw of the coolant in the condenser 12 changes from Tw_in to Tw_out due to heat exchange with the refrigerant. Since the coolant is sent from the condenser 12 to the heater core 44, the coolant temperature Tw_out corresponds to the heater core inlet coolant temperature.
 図5は、冷媒の吐出圧力P_in(図4参照)とヒーターコア入口冷却液温度との関係を示すとともに、冷媒の吐出圧力における冷媒の飽和温度(飽和冷媒温度)を示す図である。図5の横軸に圧力を示し、縦軸に温度を示す。なお、飽和冷媒温度は、冷媒の吐出圧力P_in(図4参照)から求めることができる。 FIG. 5 is a diagram showing the relationship between the refrigerant discharge pressure P_in (see FIG. 4) and the heater core inlet coolant temperature and the refrigerant saturation temperature (saturated refrigerant temperature) at the refrigerant discharge pressure. In FIG. 5, the horizontal axis represents pressure, and the vertical axis represents temperature. The saturated refrigerant temperature can be obtained from the refrigerant discharge pressure P_in (see FIG. 4).
 図5は、冷媒の吐出圧力における飽和冷媒温度が同じ吐出圧力におけるヒーターコア入口冷却液温度に近い値をとることを示している。つまり、冷媒の吐出圧力からヒーターコア入口冷却液温度を求めることが可能となる。 FIG. 5 shows that the saturated refrigerant temperature at the refrigerant discharge pressure is close to the heater core inlet coolant temperature at the same discharge pressure. That is, the heater core inlet coolant temperature can be obtained from the refrigerant discharge pressure.
 算出部53は、圧力センサ80により検出された冷媒の吐出圧力P_inに基づき、冷媒のp-h線図(圧力-エンタルピー線図)を参照して飽和冷媒温度を算出し、これをヒーターコア入口冷却液温度の推定値として用いる。なお、冷媒のp-h線図のデータは、ヒートポンプ暖房制御部52の内部メモリに予め記憶されている。 Based on the refrigerant discharge pressure P_in detected by the pressure sensor 80, the calculation unit 53 refers to the ph diagram (pressure-enthalpy diagram) of the refrigerant, calculates the saturated refrigerant temperature, and calculates the saturated refrigerant temperature. Used as an estimate of coolant temperature. The data of the refrigerant ph diagram is stored in advance in the internal memory of the heat pump heating control unit 52.
 ヒートポンプ暖房制御部52は、算出部53による推定されたヒーターコア入口冷却液温度に基づいて上述する空調を制御する。 The heat pump heating control unit 52 controls the air conditioning described above based on the heater core inlet coolant temperature estimated by the calculation unit 53.
 さらに、図5は、冷媒と冷却液との間の熱交換におけるサブクール(SC)が0[K]のとき、飽和冷媒温度がヒーターコア入口冷却液温度にさらに近い値をとることを示している。つまり、冷媒の吐出圧力からヒーターコア入口冷却液温度を求める場合、サブクール(SC)に基づいて算出した圧力補正値を参照することで、飽和冷媒温度がヒーターコア入口冷却液温度にさらに近い値となる。 Further, FIG. 5 shows that when the subcool (SC) in heat exchange between the refrigerant and the coolant is 0 [K], the saturated refrigerant temperature takes a value closer to the heater core inlet coolant temperature. . In other words, when obtaining the heater core inlet coolant temperature from the refrigerant discharge pressure, the saturated refrigerant temperature is set closer to the heater core inlet coolant temperature by referring to the pressure correction value calculated based on the subcool (SC). Become.
 算出部53は、サブクール(SC)時の冷媒の比エンタルピーに対応する飽和圧力を圧力補正値として求める。そして、算出部53は、求めた圧力補正値から吐出圧力を補正し、補正した吐出圧力における飽和冷媒温度を算出し、算出した飽和冷媒温度をヒーターコア入口冷却液温度の推定値とする。 The calculation unit 53 obtains a saturation pressure corresponding to the specific enthalpy of the refrigerant at the time of subcool (SC) as a pressure correction value. Then, the calculation unit 53 corrects the discharge pressure from the obtained pressure correction value, calculates the saturated refrigerant temperature at the corrected discharge pressure, and sets the calculated saturated refrigerant temperature as the estimated value of the heater core inlet coolant temperature.
 次に、車両用空調装置1の動作について説明する。 Next, the operation of the vehicle air conditioner 1 will be described.
 車両用空調装置1は、ヒートポンプ式暖房モード、温水式暖房モード、温調モード、および、冷房モードなど、いくつかの動作モードに切り換えられて動作する。ヒートポンプ式暖房モードは、ヒートポンプを作動させて車室内を暖房するモードである。温水式暖房モードは、ヒートポンプを作動させずに車室内を暖房するモードである。冷房モードはヒートポンプの作用により車室内を冷房するモードである。温調モードは、低温冷媒による空気の冷却および除湿と、高温の冷却液による空気の加熱とを適宜組み合わせて、空気の温度および湿度の調整を行うモードである。以下では、ヒートポンプ式暖房モードおよび冷房モードを代表例として説明する。 The vehicle air conditioner 1 operates by being switched to several operation modes such as a heat pump heating mode, a hot water heating mode, a temperature control mode, and a cooling mode. The heat pump heating mode is a mode in which the vehicle interior is heated by operating the heat pump. The hot water heating mode is a mode in which the passenger compartment is heated without operating the heat pump. The cooling mode is a mode in which the passenger compartment is cooled by the action of the heat pump. The temperature adjustment mode is a mode in which the temperature and humidity of the air are adjusted by appropriately combining air cooling and dehumidification with a low-temperature refrigerant and air heating with a high-temperature coolant. Hereinafter, the heat pump heating mode and the cooling mode will be described as representative examples.
 図1を用いて、ヒートポンプ式暖房モードの動作を説明する。 The operation of the heat pump heating mode will be described with reference to FIG.
 ヒートポンプ式暖房モードでは、図1に示すように、第1開閉弁13が閉、第2開閉弁14が開に切り換えられる。また、ヒーターコア44のドア44aは開かれる(例えば全開)。 In the heat pump heating mode, as shown in FIG. 1, the first on-off valve 13 is closed and the second on-off valve 14 is switched to open. Further, the door 44a of the heater core 44 is opened (for example, fully opened).
 ヒートポンプ式暖房モードでは、さらに、コンプレッサ38が作動することで、冷媒は、凝縮器12、膨張弁16、蒸発器11、および、コンプレッサ38を、この順で循環的に流れる。 In the heat pump heating mode, when the compressor 38 is further operated, the refrigerant circulates through the condenser 12, the expansion valve 16, the evaporator 11, and the compressor 38 in this order.
 コンプレッサ38により圧縮された高温高圧冷媒は、凝縮器12にて冷却液へ放熱して凝縮する。凝縮した冷媒は、膨張弁16により膨張して低温低圧冷媒となり、蒸発器11に送られる。低温低圧冷媒は、蒸発器11にて冷却液から熱を吸収して気化する。気化した低圧冷媒は、コンプレッサ38に吸引されて圧縮される。 The high-temperature and high-pressure refrigerant compressed by the compressor 38 dissipates heat to the coolant in the condenser 12 and condenses. The condensed refrigerant is expanded by the expansion valve 16 to become a low-temperature and low-pressure refrigerant, and is sent to the evaporator 11. The low-temperature and low-pressure refrigerant is vaporized by absorbing heat from the coolant in the evaporator 11. The vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
 冷却液は、エンジン冷却部40、凝縮器12、ヒーターコア44、および、蒸発器11の順に流れ、さらに、エンジン冷却部40に戻ることにより、上記の順に循環する。 The coolant flows in the order of the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11, and further returns to the engine cooling unit 40 to circulate in the above order.
 ここで、エンジン冷却部40でエンジンから熱を吸収した冷却液は、さらに凝縮器12で加熱されてヒーターコア44に送られる。高温になった冷却液は、ヒーターコア44で車室内へ送られる吸気を十分に加熱することができる。 Here, the coolant that has absorbed heat from the engine by the engine cooling unit 40 is further heated by the condenser 12 and sent to the heater core 44. The coolant that has reached a high temperature can sufficiently heat the intake air that is sent into the passenger compartment by the heater core 44.
 ヒーターコア44を通過した冷却液は、外気より温度が高く、蒸発器11にて冷媒に放熱を行って冷媒を気化させることができる。蒸発器11にて冷却された冷却液は、エンジン冷却部40へ送られてエンジンを十分に冷却することができる。 The coolant that has passed through the heater core 44 has a higher temperature than the outside air, and the evaporator 11 can dissipate heat to the refrigerant to vaporize the refrigerant. The coolant cooled by the evaporator 11 can be sent to the engine cooling unit 40 to sufficiently cool the engine.
 以上のヒートポンプ式暖房モードの動作により、車室内の十分な暖房を行うことができる。 By the operation of the above heat pump heating mode, the vehicle interior can be sufficiently heated.
 図6はヒートポンプ暖房制御部52が行う処理を示すフロー図である。ヒートポンプ暖房制御部52の処理は、ヒートポンプ暖房制御部52にヒートポンプ暖房起動信号が入力されたときに開始される。 FIG. 6 is a flowchart showing processing performed by the heat pump heating control unit 52. The processing of the heat pump heating control unit 52 is started when a heat pump heating activation signal is input to the heat pump heating control unit 52.
 ヒートポンプ暖房制御部52は、ヒートポンプ暖房起動信号を受信したか否かを判断する(ステップS12)。 The heat pump heating control unit 52 determines whether a heat pump heating start signal has been received (step S12).
 ヒートポンプ暖房起動信号を受けた場合(ステップS12:YES)、算出部53は、吐出圧力値補正を行う。具体的には、算出部53は、圧力センサ80により検出された吐出圧力値Pdを圧力補正値Kdで補正した吐出圧力値Pdrefを算出する(ステップS14)。 When the heat pump heating start signal is received (step S12: YES), the calculation unit 53 corrects the discharge pressure value. Specifically, the calculation unit 53 calculates a discharge pressure value Pdref obtained by correcting the discharge pressure value Pd detected by the pressure sensor 80 with the pressure correction value Kd (step S14).
 次に、算出部53は、冷媒のp-h線図を参照して、補正した吐出圧力値Pdrefの飽和冷媒温度を算出し、算出した飽和冷媒温度をヒーターコア入口冷却液温度Thc_inの推定値として用いる(ステップS16)。 Next, the calculation unit 53 calculates the saturated refrigerant temperature of the corrected discharge pressure value Pdref with reference to the ph diagram of the refrigerant, and uses the calculated saturated refrigerant temperature as the estimated value of the heater core inlet coolant temperature Thc_in. (Step S16).
 一方で、ヒートポンプ暖房起動信号を受信していない場合(ステップS12:NO)、算出部53は、エンジン冷却水路出口に設けられた液温センサ(図示略)により検出された冷却鉛の温度を、ヒーターコア入口冷却液温度Thc_inの推定値として用いる(ステップS20)。 On the other hand, when the heat pump heating activation signal is not received (step S12: NO), the calculation unit 53 calculates the temperature of the cooling lead detected by a liquid temperature sensor (not shown) provided at the engine cooling water channel outlet. It is used as an estimated value of the heater core inlet coolant temperature Thc_in (step S20).
 次に、算出部53は、ヒーターコア入口冷却液温度Thc_inを出力する(ステップS18)。ヒートポンプ暖房制御部52は、ヒーターコア入口冷却液温度Thc_inに基づいて、車室内の空調を制御する。 Next, the calculation unit 53 outputs the heater core inlet coolant temperature Thc_in (step S18). The heat pump heating control unit 52 controls the air conditioning in the passenger compartment based on the heater core inlet coolant temperature Thc_in.
 次に、冷房モードの動作を説明する。 Next, the operation in the cooling mode will be described.
 冷房モードでは、第1開閉弁13が開、第2開閉弁14が閉に切り換えられる。また、ヒーターコア44のドア44aは、全閉される。さらに、コンプレッサ38が作動することで、冷媒は、室外コンデンサ39、膨張弁37、エバポレータ48、および、コンプレッサ38の順に流れ、室外コンデンサ39に戻ることにより、上記の順に循環する。 In the cooling mode, the first on-off valve 13 is switched to open and the second on-off valve 14 is switched to close. Further, the door 44a of the heater core 44 is fully closed. Further, when the compressor 38 is operated, the refrigerant flows in the order of the outdoor condenser 39, the expansion valve 37, the evaporator 48, and the compressor 38, and returns to the outdoor condenser 39 to circulate in the above order.
 コンプレッサ38により圧縮された高温高圧冷媒は、室外コンデンサ39にて空気へ放熱して凝縮する。凝縮された冷媒は、膨張弁37により膨張されて低温低圧冷媒となり、エバポレータ48へ送られる。低温低圧冷媒は、エバポレータ48にて、車室内へ送られる吸気を冷却して気化する。気化した低圧冷媒は、コンプレッサ38に吸引されて圧縮される。 The high-temperature and high-pressure refrigerant compressed by the compressor 38 dissipates heat to the air by the outdoor condenser 39 and condenses. The condensed refrigerant is expanded by the expansion valve 37 to become a low-temperature and low-pressure refrigerant and is sent to the evaporator 48. The low-temperature and low-pressure refrigerant cools and evaporates the intake air sent into the passenger compartment by the evaporator 48. The vaporized low-pressure refrigerant is sucked into the compressor 38 and compressed.
 冷却液は、エンジン冷却部40、凝縮器12、ヒーターコア44、および、蒸発器11を流れる。冷却液は、蒸発器11、凝縮器12、および、ヒーターコア44を通過する際、冷媒又は空気との間でほとんど熱交換されない。冷却液の放熱は、主に、エンジン冷却部40のラジエータで行われる。上記するように、冷媒がエバポレータ48にて気化することにより、車室内へ送られる吸気を冷却する。これにより、車室内の冷房を行うことができる。 The coolant flows through the engine cooling unit 40, the condenser 12, the heater core 44, and the evaporator 11. When the coolant passes through the evaporator 11, the condenser 12, and the heater core 44, almost no heat is exchanged with the refrigerant or air. The heat dissipation of the cooling liquid is mainly performed by the radiator of the engine cooling unit 40. As described above, the refrigerant is vaporized by the evaporator 48 to cool the intake air sent to the vehicle interior. Thereby, the vehicle interior can be cooled.
 以上の実施の形態の車両用空調装置1によれば、算出部53が冷媒の吐出圧力に基づいてヒーターコア入口冷却液温度を算出する。これにより、ヒーターコア入口冷却液温度を検出するための液温センサを設ける必要がなく、コストが嵩まずに、車室内の空調を制御することができる。 According to the vehicle air conditioner 1 of the above embodiment, the calculation unit 53 calculates the heater core inlet coolant temperature based on the refrigerant discharge pressure. Thereby, it is not necessary to provide a liquid temperature sensor for detecting the heater core inlet coolant temperature, and the air conditioning in the passenger compartment can be controlled without increasing the cost.
 また、実施の形態の車両用空調装置1によれば、冷媒の吐出圧力を冷媒のサブクール(SC)などを圧力補正値して参照することで、算出した飽和冷媒温度がヒーターコア冷却液温度により近い値となるこの飽和冷媒温度に基づいて空調を制御することにより、車室内の空調制御を的確に行うことができる。 In addition, according to the vehicle air conditioner 1 of the embodiment, the calculated saturated refrigerant temperature depends on the heater core coolant temperature by referring to the refrigerant discharge pressure by using the subcool (SC) of the refrigerant as a pressure correction value. By controlling the air conditioning based on the saturated refrigerant temperature that is a close value, the air conditioning control in the passenger compartment can be performed accurately.
 なお、上記実施の形態では、ヒートポンプ式暖房モードにおいて、算出部53により算出されたヒーターコア入口冷却液温度が上限値を超えた場合、コンプレッサ38を停止させるように制御することについて説明した。それに限らず、本開示は、さらに、予め下限値を定めておき、例えば、ヒートポンプ式暖房モードにおけるコンプレッサ38の停止後に、ヒーターコア入口冷却液温度が予め定められた下限値未満になった場合、コンプレッサ38を起動させるよう制御してもよい。これにより、ヒーターコア入口冷却液温度を許容範囲内に保つことが可能となる。 In the above-described embodiment, in the heat pump heating mode, the control to stop the compressor 38 when the heater core inlet coolant temperature calculated by the calculation unit 53 exceeds the upper limit value has been described. However, the present disclosure further defines a lower limit value in advance, for example, when the heater core inlet coolant temperature is lower than a predetermined lower limit value after the compressor 38 is stopped in the heat pump heating mode, You may control to start the compressor 38. FIG. This makes it possible to keep the heater core inlet coolant temperature within an allowable range.
 また、上記実施の形態では、冷媒の吐出圧力補正値を、冷媒のサブクール(SC)を基にして算出する場合を一例に挙げて説明したが、本開示は、冷媒の吐出圧力補正値として、コンプレッサ38と圧力センサが設けられた位置との間における冷媒配管の形状や長さ等に起因する冷媒の圧力損失、または、凝縮器12において冷媒との間で熱交換される冷却液の流量に基づいて算出してもよい。冷媒の圧力損失は所定の式または実験により求められる。また、吐出圧力補正値と冷却液の流量との関係も所定の式または実験により求められる。なお、実験で求められた関係をテーブルとし、冷却液の流量に基づきテーブルを参照して、吐出圧力補正値を求めるようにしてもよい。 In the above embodiment, the case where the refrigerant discharge pressure correction value is calculated based on the refrigerant subcool (SC) has been described as an example. However, the present disclosure provides the refrigerant discharge pressure correction value as The refrigerant pressure loss due to the shape and length of the refrigerant pipe between the compressor 38 and the position where the pressure sensor is provided, or the flow rate of the coolant exchanged with the refrigerant in the condenser 12 You may calculate based on. The pressure loss of the refrigerant is obtained by a predetermined formula or experiment. The relationship between the discharge pressure correction value and the coolant flow rate can also be obtained by a predetermined formula or experiment. The relationship obtained in the experiment may be a table, and the discharge pressure correction value may be obtained by referring to the table based on the coolant flow rate.
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, each of the above-described embodiments is merely an example of a specific example for carrying out the present disclosure, and the technical scope of the present disclosure should not be construed in a limited manner. . That is, the present disclosure can be implemented in various forms without departing from the gist or the main features thereof.
 本開示は、コストを嵩ませずに、車室内の空調を制御することが要求される空調装置や空調システムに好適に利用される。 The present disclosure is suitably used for an air conditioner and an air conditioning system that are required to control air conditioning in a vehicle interior without increasing costs.
 1 車両用空調装置
 11 蒸発器
 12 凝縮器
 16 膨張弁
 37 膨張弁
 38 コンプレッサ
 39 室外コンデンサ
 40 エンジン冷却部
 44 ヒーターコア
 44a ドア
 48 エバポレータ
 51 空調自動制御部
 52 ヒートポンプ暖房制御部
 53 算出部
 80 圧力センサ
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 11 Evaporator 12 Condenser 16 Expansion valve 37 Expansion valve 38 Compressor 39 Outdoor condenser 40 Engine cooling part 44 Heater core 44a Door 48 Evaporator 51 Air-conditioning automatic control part 52 Heat pump heating control part 53 Calculation part 80 Pressure sensor

Claims (3)

  1.  冷媒を圧縮するコンプレッサと、高温高圧の冷媒とエンジン冷却部から送出された冷却液との間で熱交換を行う凝縮器と、高圧の冷媒を低温低圧に膨張する膨張弁と、前記エンジン冷却部に導入される冷却液と低温低圧の冷媒との間で熱交換を行う蒸発器と、を含む冷媒回路と、
     前記高温高圧の冷媒との熱交換で加熱された冷却液と車室内へ送られる空気との間で熱交換を行うヒーターコアと、
     前記コンプレッサと前記膨張弁との間を流れる高圧冷媒の圧力を検出する圧力センサと、
     前記圧力センサで検出された圧力に基づいて、前記ヒーターコアに流入する冷却液の温度を算出する算出部と、
     前記算出部で算出した冷却液の温度に基づいて車室内の空調を制御する制御部と、
     を備える、車両用空調装置。
    A compressor that compresses the refrigerant; a condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the coolant sent from the engine cooling unit; an expansion valve that expands the high-pressure refrigerant to a low temperature and low pressure; and the engine cooling unit An evaporator that performs heat exchange between the coolant introduced into the refrigerant and the low-temperature and low-pressure refrigerant, and a refrigerant circuit that includes:
    A heater core that exchanges heat between the coolant heated by heat exchange with the high-temperature and high-pressure refrigerant and the air sent to the passenger compartment;
    A pressure sensor for detecting the pressure of the high-pressure refrigerant flowing between the compressor and the expansion valve;
    Based on the pressure detected by the pressure sensor, a calculator that calculates the temperature of the coolant flowing into the heater core;
    A control unit for controlling air conditioning in the passenger compartment based on the temperature of the coolant calculated by the calculation unit;
    A vehicle air conditioner.
  2.  前記算出部は、冷媒のサブクール、冷媒の圧力損失、並びに、冷却液の流量のうちの少なくとも1つを基にして算出される圧力補正値を参照して、冷却液の温度を算出する、請求項1に記載の車両用空調装置。 The calculating unit refers to a pressure correction value calculated based on at least one of a refrigerant subcool, a refrigerant pressure loss, and a coolant flow rate, and calculates a coolant temperature. Item 2. The vehicle air conditioner according to Item 1.
  3.  コンプレッサ、凝縮器、膨張弁および蒸発器を含む冷媒回路において、前記コンプレッサにより圧縮された冷媒との間で熱交換が行われた冷却液をヒーターコアに流入させ、冷却液と空気との間で熱交換を行い、暖められた空気を車室内に供給する空調制御方法において、
     前記コンプレッサと前記膨張弁との間を流れる高圧冷媒の圧力を検出する検出ステップと、
    前記検出ステップで検出した圧力に基づいて、前記ヒーターコアに流入する冷却液の温度を算出する算出ステップと、
     前記算出ステップで算出した冷却液の温度に基づいて車室内の空調を制御する制御ステップと、
    を備える、空調制御方法。
    In a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator, a coolant that has undergone heat exchange with the refrigerant compressed by the compressor is caused to flow into the heater core, and between the coolant and air. In an air-conditioning control method that performs heat exchange and supplies warmed air into the passenger compartment,
    A detection step of detecting the pressure of the high-pressure refrigerant flowing between the compressor and the expansion valve;
    A calculation step for calculating the temperature of the coolant flowing into the heater core based on the pressure detected in the detection step;
    A control step of controlling air conditioning in the passenger compartment based on the temperature of the coolant calculated in the calculating step;
    An air conditioning control method.
PCT/JP2017/005867 2016-03-25 2017-02-17 Air conditioning device for vehicle, and air conditioning control method WO2017163687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061613 2016-03-25
JP2016061613A JP2017171209A (en) 2016-03-25 2016-03-25 Vehicular air conditioning apparatus and air condition control method

Publications (1)

Publication Number Publication Date
WO2017163687A1 true WO2017163687A1 (en) 2017-09-28

Family

ID=59899976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005867 WO2017163687A1 (en) 2016-03-25 2017-02-17 Air conditioning device for vehicle, and air conditioning control method

Country Status (2)

Country Link
JP (1) JP2017171209A (en)
WO (1) WO2017163687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088993A1 (en) * 2020-09-24 2022-03-24 Toyota Jidosha Kabushiki Kaisha Vehicle air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097320A (en) * 2018-12-18 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157568A (en) * 1988-12-12 1990-06-18 Daikin Ind Ltd Refrigerant residence suppressing device for air conditioning device
JPH0914779A (en) * 1995-06-27 1997-01-17 Nippondenso Co Ltd Refrigerating cycle controller
WO2015011920A1 (en) * 2013-07-26 2015-01-29 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
JP2015044569A (en) * 2013-07-31 2015-03-12 株式会社デンソー Vehicular refrigeration cycle device
WO2015072126A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Vehicular air-conditioning device, and constituent units of same
WO2015098049A1 (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157568A (en) * 1988-12-12 1990-06-18 Daikin Ind Ltd Refrigerant residence suppressing device for air conditioning device
JPH0914779A (en) * 1995-06-27 1997-01-17 Nippondenso Co Ltd Refrigerating cycle controller
WO2015011920A1 (en) * 2013-07-26 2015-01-29 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
JP2015044569A (en) * 2013-07-31 2015-03-12 株式会社デンソー Vehicular refrigeration cycle device
WO2015072126A1 (en) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 Vehicular air-conditioning device, and constituent units of same
WO2015098049A1 (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088993A1 (en) * 2020-09-24 2022-03-24 Toyota Jidosha Kabushiki Kaisha Vehicle air conditioning device
US11964537B2 (en) * 2020-09-24 2024-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle air conditioning device

Also Published As

Publication number Publication date
JP2017171209A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6836209B2 (en) Vehicle cooling system
JP6108322B2 (en) Air conditioner for vehicles
US8948966B2 (en) Heat pump system for vehicle and method of controlling the same
JP6992659B2 (en) Vehicle heat management device
US20190023100A1 (en) Vehicle Air Conditioner
JP5786615B2 (en) Automotive temperature control system
US20160001636A1 (en) Vehicle air conditioning device
CN111791671A (en) Vehicle-mounted temperature adjusting device
JP6387532B2 (en) Air conditioner for vehicle and component unit thereof
WO2015098049A1 (en) Air conditioning device for vehicle
JP2011178372A (en) Air conditioner for vehicle and operation switching method thereof
KR101511508B1 (en) Heat pump system for vehicle
WO2017163687A1 (en) Air conditioning device for vehicle, and air conditioning control method
JPWO2015008463A1 (en) Air conditioner for vehicle and component unit thereof
JP2017171247A (en) Vehicular air conditioning apparatus
KR101622631B1 (en) Heat pump system for vehicle and its control method
KR101418858B1 (en) Heat pump system for vehicle
CN116981580A (en) Air conditioner for vehicle
KR20140114471A (en) Heat pump system for vehicle
WO2015141210A1 (en) Air conditioning device for vehicle
JP2011230659A (en) Air conditioning system for vehicle and control method of the same
KR101430005B1 (en) Heat pump system for vehicle and its control method
KR20170087080A (en) Heat pump system for vehicle
JP7494139B2 (en) Vehicle air conditioning system
KR101461989B1 (en) Heat pump system for vehicle and its control method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769734

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769734

Country of ref document: EP

Kind code of ref document: A1