WO2017163608A1 - Light-emitting device, display device, and lighting device - Google Patents

Light-emitting device, display device, and lighting device Download PDF

Info

Publication number
WO2017163608A1
WO2017163608A1 PCT/JP2017/003108 JP2017003108W WO2017163608A1 WO 2017163608 A1 WO2017163608 A1 WO 2017163608A1 JP 2017003108 W JP2017003108 W JP 2017003108W WO 2017163608 A1 WO2017163608 A1 WO 2017163608A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
end surface
light guide
reflective layer
Prior art date
Application number
PCT/JP2017/003108
Other languages
French (fr)
Japanese (ja)
Inventor
谷野 友哉
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017163608A1 publication Critical patent/WO2017163608A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to a light emitting device, and a display device and a lighting device including the light emitting device.
  • Patent Document 1 discloses an apparatus in which light from an LED is incident from an end face of a light valve using a reflector having a curved reflecting surface.
  • Patent Document 1 a part of the light from the LED does not enter the light valve, or even if it enters the light valve, a part of the incident light is totally reflected by the light valve. It is thought that it leaks outside without doing. For this reason, it is disadvantageous in obtaining higher luminous efficiency. It is desirable to provide a light emitting device that can obtain higher luminous efficiency, and a display device and an illumination device including the light emitting device.
  • a light emitting device includes a light guide plate having an end surface, an upper surface, and a lower surface, a plurality of light sources provided along the end surface, and one or a plurality of light sources provided between each light source and the end surface.
  • the one or more light-transmitting members have a curved interface that reflects light from each light source and guides it to the end face.
  • the light emitting device further includes a reflective layer made of a dielectric multilayer film provided in contact with the interface, and a low refractive index layer provided in contact with the reflective layer and having a refractive index lower than that of the light transmissive member. I have.
  • the low refractive index layer is made of, for example, air (void) or resin.
  • a display device includes a light emitting device that emits illumination light, and a display panel that is arranged to overlap the light emitting device and displays an image using the illumination light.
  • the light emitting device provided in this display device has the same components as the above light emitting device.
  • the illumination device includes a light emitting device that emits illumination light.
  • the light emitting device provided in this lighting device has the same components as the above light emitting device.
  • a reflective layer made of a dielectric multilayer film is provided on the curved interface of the light transmissive member provided between the light source and the end surface of the light guide plate.
  • a low refractive index layer having a refractive index lower than that of the light transmissive member is provided on the surface of the reflective layer.
  • the reflection formed of the dielectric multilayer film on the curved interface in the light transmissive member provided between the light source and the end surface of the light guide plate Since a low refractive index layer having a refractive index lower than that of the light transmissive member is provided on the surface of the reflective layer, the luminous efficiency can be further improved.
  • the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 4 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 3. It is explanatory drawing for demonstrating the path
  • FIG. 4 is an enlarged plan view illustrating a planar configuration example of a main part of the light emitting device illustrated in FIG. 3. It is explanatory drawing for demonstrating the path
  • FIG. 2 is a conceptual diagram for explaining equations (8) to (12) relating to the light emitting device shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 6.
  • FIG. 7 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 6.
  • It is a figure showing an example of the wavelength dependence of the reflectance of the reflection layer shown in FIG.
  • It is a conceptual diagram for demonstrating the reflectance of the reflection layer shown in FIG.
  • FIG. 7 is a figure showing an example of the wavelength dependence of the reflectance of the reflection layer shown in FIG.
  • FIG. 7 It is sectional drawing showing an example of the intermediate
  • middle light guide part shown in FIG. 7, and a light source. It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 14 is a perspective view illustrating an appearance of a display device according to a second embodiment of the present disclosure.
  • FIG. FIG. 24 is an exploded perspective view of the main body shown in FIG. 23.
  • FIG. 24 is an exploded perspective view of the main body shown in FIG. 23.
  • FIG. 25 is an exploded perspective view illustrating the panel module illustrated in FIG. 24. It is a perspective view showing the external appearance of the tablet-type terminal device (application example 1) carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the other tablet type terminal device (application example 1) carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the 1st illuminating device provided with the light-emitting device of this indication. It is a perspective view showing the external appearance of the 2nd illuminating device provided with the light-emitting device of this indication. It is a perspective view showing the external appearance of the 3rd illuminating device provided with the light-emitting device of this indication.
  • First embodiment light emitting device
  • Example in which a reflective layer is provided on the upper surface and both side surfaces of the intermediate light guide Modified example of the first embodiment (light emitting device) -Example of providing air (gap) between the light source and the intermediate light guide unit-Example of the bottom surface of the intermediate light guide unit made flat-Example of arranging the light source obliquely with respect to the substrate-Intermediate light guide 2.
  • An example in which a reflective layer is provided only on the top surface of the part.
  • An example in which all the light sources are covered with one intermediate light guide part.
  • Second embodiment display device 3.
  • Example in which the light emitting device is applied to a display device. 4.
  • Application example of display device Application examples of lighting equipment
  • FIG. 1 is a perspective view illustrating an overall configuration example of a light emitting device 1 according to the first embodiment of the present disclosure.
  • FIG. 2A is a plan view illustrating an overall configuration example of the light emitting device 1.
  • FIG. 2B is a side view showing a part of the light emitting device 1.
  • FIG. 3 is an enlarged perspective view illustrating a configuration example of a main part of the light emitting device 1.
  • FIG. 4A is an enlarged cross-sectional view illustrating a configuration example of a main part of the light emitting device 1. Further, FIG.
  • FIG. 4B is an explanatory diagram for explaining the path of light from the light source 10 (described later) and the shape of the intermediate light guide 20 (described later).
  • the light transmissive material layer 70 (described later) is omitted.
  • the light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as a lighting device in a room or the like.
  • the light emitting device 1 includes, for example, a plurality of light sources 10, a plurality of intermediate light guides 20, a light guide plate 30, a reflection member 40, and one or a plurality of optical sheets 50.
  • the direction in which the optical sheet 50, the light guide plate 30, and the reflection member 40 are arranged is the Z-axis direction (front-rear direction), and the left-right direction (horizontal direction) on the surface 32 that is the widest surface of the light guide plate 30.
  • Is the Y-axis direction, and the vertical direction on the surface 32 is the X-axis direction.
  • the light emitting device 1 the light emitted from each light source 10 propagates along the X direction through the intermediate light guide 20.
  • Each light source 10 is, for example, a light source having a light exit surface on an XY plane.
  • Each light source 10 is composed of an LED (Light Emitting Diode).
  • Each light source 10 is mounted, for example, on the surface of the substrate 11 arranged in parallel with the XY plane via the solder layer 12, and is arranged in the vicinity of the end face 31 of the light guide plate 30 (see FIGS. 3 and 4A). ).
  • the plurality of light sources 10 are provided along the end surface 31 of the light guide plate 30 (see FIG. 2A).
  • a reflective layer 13 having a reflective surface 13S is provided on the substrate 11 at a position different from the light source 10 (see FIG. 4A).
  • a plurality of intermediate light guides 20 are provided for each light source 10 (see FIG. 2A).
  • the plurality of intermediate light guides 20 are provided between each light source 10 and the end face 31 of the light guide plate 30 and are further disposed along the end face 31 of the light guide plate 30 (see FIG. 2A).
  • FIG. 3 only one intermediate light guide 20 is shown for easy understanding.
  • each intermediate light guide 20 is omitted because each intermediate light guide 20 is hidden behind the substrate 11.
  • Each intermediate light guide 20 includes a light transmissive member 20 ⁇ / b> A that covers one corresponding light source 10.
  • the light transmissive member 20 ⁇ / b> A is a block-shaped member that propagates light emitted from the covering light source 10 along the X direction.
  • the light transmissive member 20A is in contact with the light emitting surface of the light source 10 directly or through an adhesive or the like, and is further in contact with the end surface 31 of the light guide plate 30 through the light transmissive material layer 70 (FIG. 3, see FIG. 4A).
  • the light transmissive member 20 ⁇ / b> A is provided in the entire gap between the surface from which each light source 10 emits light and the end surface 31.
  • the light transmissive member 20A is formed of a light transmissive material such as a silicone resin. The light transmissive member 20A will be described in detail later.
  • the light guide plate 30 guides light from the light source 10 from the end surface 31 to the surface 32.
  • the light guide plate 30 mainly includes, for example, a light-transmitting thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)), or a glass material.
  • a light-transmitting thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)
  • PC polycarbonate resin
  • acrylic resin for example, PMMA (polymethyl methacrylate)
  • the light guide plate 30 includes an end surface 31 on which light emitted from each light source 10 enters via the intermediate light guide unit 20, a surface 32 (upper surface) from which light incident from the end surface 31 is emitted, and its surface 32 is a substantially rectangular parallelepiped light-transmitting member that includes a back surface 33 (lower surface) that faces 32, a side surface 34A that intersects the end surface 31, the front surface 32, and the back surface 33, and that faces in the Y-axis direction.
  • the surface 32 extending along the XY plane has, for example, a planar shape corresponding to an irradiation object (for example, a liquid crystal panel 122 described later) disposed to face the surface 32.
  • the front surface 32 is preferably parallel to the back surface 33.
  • the end surface 31 is preferably perpendicular to the front surface 32 and the back surface 33. Further, as shown in FIG. 4A, a part of the surface 32 may be in contact with the surface of the substrate 11.
  • a concave / convex pattern made of fine convex portions is provided in the effective area AR2 of the surface 32 of the light guide plate 30, in order to improve the straightness of light propagating in the light guide plate 30, for example, a concave / convex pattern made of fine convex portions is provided. Good.
  • the convex portion is, for example, a strip-shaped ridge or ridge extending in one direction (for example, the vertical direction) of the surface 32.
  • a scattering agent may be printed in a pattern on the back surface 33 of the light guide plate 30 as a scattering portion that scatters and makes light propagating through the light guide plate 30 uniform.
  • a scattering part it replaces with a scattering agent, and besides providing the site
  • the reflection member 40 is a plate-like or sheet-like member provided to face the back surface 33 of the light guide plate 30.
  • the reflection member 40 is incident on the light guide plate 30 from the light source 10 via the intermediate light guide unit 20, and then the light leaked from the back surface 33 or transmitted through the back surface 33 from the inside of the light guide plate 30 and emitted.
  • the light is returned toward the light guide plate 30.
  • the reflection member 40 has functions such as reflection, diffusion, and scattering, for example, so that the light from the light source 10 can be efficiently used and the front luminance can be increased.
  • the reflecting member 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET.
  • the surface of the reflecting member 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection.
  • the reflecting member 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin.
  • the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin.
  • the substrate may be glass.
  • the one or more optical sheets 50 are provided to face the surface 32 of the light guide plate 30 in the effective area AR2.
  • the one or more optical sheets 50 are constituted by, for example, a diffusion plate, a diffusion sheet, a lens film, or a polarization separation sheet. In each figure, only one optical sheet 50 is shown. By providing such an optical sheet 50, light emitted from the light guide plate 30 in an oblique direction can be raised in the front direction, and the front luminance can be further increased.
  • the light emitting device 1 further includes a protective member 60 and a light transmissive material layer 70.
  • the protective member 60 is provided so as to cover the surface 32 of the light guide plate 30 in the peripheral area AR1 provided between the intermediate light guide 20 and the effective area AR2.
  • the protection member 60 is made of, for example, light transmissive resin or glass.
  • the peripheral area AR1 is an area in the light guide plate 30 where the optical sheet 50 is not provided.
  • the peripheral area AR1 is a light transmissive area that transmits visible light.
  • the light transmissive material layer 70 is provided so as to connect the intermediate light guide unit 20 and the light guide plate 30 and is made of a light transmissive adhesive such as ultraviolet (UV) curable resin.
  • a light transmissive adhesive such as ultraviolet (UV) curable resin.
  • the light transmissive member 20A has a block shape including an upper surface 22, a lower surface 24, a side surface 21A, a side surface 21B, and an opposing surface 23 (see FIG. 3).
  • the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23 constitute an outer surface of the light transmissive member 20A.
  • the lower surface 24 is a surface facing the substrate 11 or the reflecting surface 13S.
  • the upper surface 22 is a surface facing the lower surface 24.
  • the side surface 21A and the side surface 21B are a pair of surfaces facing each other in the Y-axis direction.
  • the facing surface 23 is a surface facing the end surface 31 of the light guide plate 30 through the light transmissive material layer 70.
  • the light source 10 is surrounded by the reflecting surface 13S, the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23.
  • the light emitted from the light source 10 is directly incident on the facing surface 23, or the reflecting surface 13S, the upper surface 22, the lower surface 24, the side surface 21A and the side surface 21B (hereinafter, these are collectively referred to as “intermediate light guide unit”).
  • the light is reflected by at least one of the reflection surfaces 20 and enters the opposing surface 23.
  • the light incident on the facing surface 23 passes through the light transmissive material layer 70 and enters the light guide plate 30 from the end surface 31 of the light guide plate 30. Further, it is desirable that the dimension D2 in the Z-axis direction on the facing surface 23 is smaller than the dimension D3 in the Z-axis direction on the end surface 31.
  • the upper surface 22 constitutes a part of the outer surface of the light transmissive member 20A.
  • the upper surface 22 is a curved interface that reflects light from the light source 10 covered by the light transmissive member 20 ⁇ / b> A and guides the light to the end surface 31 of the light guide plate 30.
  • the upper surface 22 is a curved surface that faces the light source 10 and the reflecting surface 13S in the Z-axis direction. Specifically, the upper surface 22 is curved so as to approach parallel to the surface 32 as it approaches the end surface 31 in the X-axis direction and to approach parallel to the end surface 31 as it moves away from the end surface 31.
  • the upper surface 22 is substantially parallel to the surface 32 at a position closest to the end surface 31. As shown in FIG. 4A, the distance D1 between the reflecting surface 13S and the front surface 32 in the Z-axis direction is smaller than the distance (thickness D) between the back surface 33 and the front surface 32 in the Z-axis direction. Good.
  • the upper surface 22 may include a curved surface portion 22A having a parabolic cross section in the XZ plane and a planar portion 22B continuous with the curved surface portion 22A.
  • the curved surface portion 22 ⁇ / b> A may have a focal point F that coincides with the light emitting end P ⁇ b> 1 closest to the end surface 31 of the light source 10. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31.
  • the parabola included in the curved surface portion 22A is a quadratic curve drawn at coordinates defined by the symmetry axis J and the axis K orthogonal thereto in the XZ plane.
  • the symmetry axis J is preferably inclined by the angle A with respect to the front surface 32 and the back surface 33.
  • the angle A is the maximum angle satisfying the total reflection condition in which the light incident on the front surface 32 and the back surface 33 from the inside of the light guide plate 30 is totally reflected without leaking to the outside on the front surface 32 and the back surface 33 (referred to as the maximum light guide angle). ).
  • the maximum light guide angle In the light source 10, light emitted from other light emitting points farther from the end face 31 than the light emitting point P1 is incident on the front surface 32 and the back surface 33 at an angle smaller than the angle A, so that the total reflection condition is also satisfied. It is.
  • FIG. 4C is an explanatory diagram for explaining the expression (1).
  • the upper surface 22 includes only the curved surface portion 22A and does not include the flat surface portion 22B is illustrated.
  • the above equations (1) and (2) correspond to the case where the thickness of the light source 10 is sufficiently thin and can be ignored, that is, the case where the light emitting end P1 and the focal point F can be regarded as coincident.
  • the thickness d of the light source 10 it is desirable that the position of the light emitting end P1 of the light source 10 be away from the focal point F in the ⁇ X direction by a distance L1 (see FIG. 4D).
  • the distance L1 is obtained by Expression (3).
  • the light emitting device 1 satisfies the formula (4).
  • tanA D / L (4)
  • L represents the distance from the light emitting end P1 of the light source 10 to the position where the upper surface 22 is parallel to the surface 32 in the X-axis direction (see FIG. 4E). Further, the expression (4) corresponds to the case where the thickness d of the light source 10 is sufficiently thin and can be ignored.
  • Dp 2 ⁇ D ⁇ sinA1 / (1 + sinA1) (6) A ⁇ 0.5 ⁇ A1 ⁇ A ⁇ 1.5 (7) Dp is the distance in the Z-axis direction between the upper surface 22 and the light emitting point P1 at a position corresponding to the position of the light emitting end P1 closest to the end surface 31 in the light source 10.
  • A1 is an allowable maximum light guide angle of the upper surface 22 (see FIG. 4E).
  • the light emitting device 1 satisfies the following formula (8).
  • a ⁇ 90- ⁇ c (8) ⁇ c is a critical angle determined by the refractive index of the light guide plate 30.
  • the side surface 21A and the side surface 21B are curved surfaces that stand on the substrate 11 while facing each other with the upper surface 22 and the reflection surface 13S interposed therebetween in the Y-axis direction. Specifically, as shown in FIG. 5A, each of the side surface 21A and the side surface 21B approaches a direction perpendicular to the end surface 31 as it approaches the end surface 31 in the X-axis direction, and approaches a direction parallel to the end surface 31 as it moves away from the end surface 31. Is so curved.
  • the side surface 21A and the side surface 21B are substantially perpendicular to both the surface 32 and the end surface 31 at a position closest to the end surface 31.
  • the side surface 21A may include a curved surface portion 21A1 having a parabolic cross section in the XY plane and a planar portion 21A2 continuous with the curved surface portion 21A1 (see FIG. 5A).
  • the curved surface portion 21A1 may have a focal point F1 on a virtual straight line parallel to the Y axis passing through the light emission point CP at the center of the light source 10.
  • the focal point F1 of the curved surface portion 21A1 is preferably located on the curved surface portion 21B1 described later. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31.
  • the parabola included in the curved surface portion 21A1 is a quadratic curve drawn at coordinates defined by the symmetry axis S and the axis T orthogonal thereto in the XY plane (see FIG. 5B).
  • the symmetry axis S is preferably parallel to the XY plane and inclined by an angle B with respect to the side surfaces 34A and 34B.
  • the angle B is the maximum angle (referred to as the maximum light guide angle) that satisfies the total reflection condition in which light incident on the side surfaces 34A and 34B from the inside of the light guide plate 30 is totally reflected without leaking to the outside on the side surfaces 34A and 34B. is there.
  • the angle B may coincide with the angle A or may be different.
  • the side surface 21B may also have the same configuration as the side surface 21A. That is, as shown in FIG. 5A, the side surface 21B may include a curved surface portion 21B1 having a parabolic cross section in the XY plane and a flat surface portion 21B2 continuous with the curved surface portion 21B1. In that case, the curved surface portion 21 ⁇ / b> B ⁇ b> 1 may have a focal point F ⁇ b> 2 on a virtual straight line parallel to the Y axis passing through the light emission point CP at the center of the light source 10. In particular, the focal point F2 of the curved surface portion 21B1 is preferably located on the curved surface portion 21A1. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31.
  • the light emitting device 1 satisfies the following formulas (9) to (11) (see FIG. 5C).
  • tanB (W1 + W2) / L2 (9)
  • W2 W1 ⁇ sinB1 (10) B1 ⁇ B ⁇ 1.25 (11)
  • W1 is the distance in the Y-axis direction from the light emission point CP of the light source 10 to the position where the side surfaces 21A and 21B are perpendicular to the end surface 31.
  • W2 is the distance in the Y-axis direction between the light emission point CP of the light source 10 and the side surfaces 21A and 21B.
  • L2 is the distance in the X-axis direction from the light emission point CP of the light source 10 to the position where the side surfaces 21A and 21B are perpendicular to the end surface 31.
  • B1 is an allowable maximum light guide angle of the side surfaces 21A and 21B.
  • the light emitting device 1 satisfies the following formula (12) (see FIG. 5C).
  • SX is the dimension of the light source 10 in the X-axis direction.
  • SY is a dimension of the light source 10 in the Y-axis direction. W2 ⁇ (SX + SY) / 2 (12)
  • the light emitting device 1 satisfies the following formula (13).
  • B ⁇ 90- ⁇ c (13) ⁇ c is a critical angle determined by the refractive index of the light guide plate 30.
  • the intermediate light guide unit 20 includes a reflective layer 20 ⁇ / b> B provided in contact with the upper surface 22, the side surface 21 ⁇ / b> A, and the side surface 21 ⁇ / b> B of the light transmissive member 20 ⁇ / b> A.
  • the reflective layer 20B covers the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A.
  • the reflective layer 20B is made of a dielectric multilayer film in contact with the side surface 21A and the side surface 21B. For example, as illustrated in FIGS.
  • the intermediate light guide unit 20 includes a low refractive index layer 20 ⁇ / b> C or a low refractive index layer 20 ⁇ / b> D in contact with the surface of the reflective layer 20 ⁇ / b> B.
  • the low refractive index layer 20C is made of air (void) having a refractive index lower than that of the light transmissive member 20A.
  • the low refractive index layer 20D is made of a resin having a refractive index lower than that of the light transmissive member 20A.
  • the reflectance of the reflective layer 20B is high at a predetermined wavelength and incident angle.
  • a high reflectance can be obtained when the incident angle is small.
  • FIG. 8 shows the result of using 3M ESR (Enhanced Specular Reflector).
  • 3M ESR Enhanced Specular Reflector
  • the dielectric multilayer film generally has an optical design that assumes reflection of light incident through the air layer.
  • the light is Snell's law. Therefore, the light propagates through the dielectric multilayer film at an angle smaller than the incident angle. Therefore, even if the wavelength region with high reflectivity shifts to the short wavelength side as the incident angle increases, the influence of the shift is slightly mitigated by Snell's law.
  • the light from the light source 10 is applied to the reflective layer 20B via the air layer, as shown in the right column of FIGS. 9A, 9B, and 9C, for example. It is not necessarily incident, but is incident on the reflective layer 20B through the light transmissive member 20A made of a material having a refractive index close to that of the reflective layer 20B. Accordingly, the light from the light source 10 is incident on the reflective layer 20B without being refracted so much at the upper surface 22, the side surface 21A, and the side surface 21B. The influence by is great.
  • the upper surface of the reflective layer 20B (the back surface of the reflective layer 20B for light propagating in the reflective layer 20B) is in contact with the low refractive index layer 20C or the low refractive index layer 20D. Therefore, for light having a large incident angle, total reflection at the interface between the upper surface of the reflective layer 20B and the low refractive index layer 20C or the low refractive index layer 20D can be used. Thus, in this embodiment, the reflection loss is suppressed by using the total reflection.
  • FIG. 10 shows an example of the wavelength dependence of the reflectance of the reflective layer 20B.
  • the reflectance of the reflective layer 20B was measured when light having an incident angle of 30 °, 45 °, 60 °, and 75 ° was incident on the reflective layer 20B. In FIG. 10, the reflection on the upper surface of the reflective layer 20B is not considered.
  • the light guide angle in the reflective layer 20B when the incident angle is 30 ° was 19.6 °.
  • the incident angle in the reflective layer 20B was 28.3 °.
  • the incident angle in the reflective layer 20B was 35.5 °.
  • the incident angle in the reflective layer 20B was 40.4 °.
  • ESR of 3M company was used.
  • the reflectivity of the intermediate light guide 20 when the light guide angle in the reflective layer 20B is 42 °, 45 °, and 50 ° was obtained by prediction.
  • FIG. 10 shows that the wavelength at the upper end of the high-reflectance wavelength region gradually decreases as the angle of incidence on the reflective layer 20B increases.
  • FIG. 11 shows an example of the incident angle dependence of the reflectance of the reflective layer 20B.
  • FIG. 11 shows the results when 3M ESR was used.
  • FIG. 11 shows the results when light having wavelengths of 450 nm, 540 nm, and 620 nm is incident on the reflective layer 20B. 42 ° in the figure is a critical angle on the upper surface of the reflective layer 20B when the upper surface of the reflective layer 20B is in contact with the air layer.
  • FIG. 11 shows that the angle of the upper end of incident light with high reflectivity gradually decreases as the wavelength of incident light increases.
  • the angle of light incident on the upper surface of the reflective layer 20B is 42 ° or more, the light incident on the upper surface of the reflective layer 20B is totally reflected on the upper surface of the reflective layer 20B. Therefore, it can be seen from FIGS. 10 and 11 that the intermediate light guide unit 20 can obtain a high reflectivity at almost all incident angles over almost the entire visible light range.
  • the reflective layer 20B preferably has a reflection characteristic according to the refractive index of the low refractive index layer 20D.
  • the low refractive index layer 20D is made of a resin having a refractive index of 1.38, and the refractive index of the reflective layer 20B is 1.5.
  • the reflective layer 20B preferably has a reflection characteristic of reflecting light having an incident angle to the reflective layer 20B of 67 ° or less.
  • the reflective layer 20B preferably has, for example, reflective characteristics having incident angle dependency as shown in Table 1 below. In the reflection characteristics shown in Table 1, light in the visible region is reflected when the incident angle is 67 ° or less.
  • the light source 10 is covered with the light transmissive member 20A. For this reason, the light emitted from the light source 10 propagates in the X-axis direction while being reflected by the upper surface 22, the lower surface 24, the side surface 21A and the side surface 21B of the light transmissive member 20A, and the reflecting surface 13S, and from the end surface 31 to the light guide plate 30 is incident.
  • part of the light incident on the upper surface 22, side surface 21A, and side surface 21B of the light transmissive member 20A is reflected by the reflective layer 20B provided in contact with the upper surface 22, side surface 21A, and side surface 21B of the light transmissive member 20A. Is done.
  • the reflection layer 20B is not provided, the light incident from the light source 10 is less likely to leak to the outside through the upper surface 22, the side surface 21A, or the side surface 21B of the light transmissive member 20A.
  • the luminous efficiency can be further improved.
  • the low refractive index layer 20C made of air or the low refractive index layer 20D made of resin is provided on the upper surface of the reflective layer 20B.
  • the light transmissive member 20A is provided in the entire gap between the surface from which the light from each light source 10 is emitted and the end surface 31. As a result, the number of interfaces that act to scatter the light emitted from each light source 10 can be reduced. As a result, the luminous efficiency can be further improved.
  • the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A constitute a part of the outer surface of the light transmissive member 20A
  • the reflective layer 20B is the light transmissive member 20A.
  • the light source 10 is covered by the intermediate light guide 20.
  • the light emitted from the light source 10 propagates in the X-axis direction while being reflected on the reflection surface 13S, the upper surface 22, the side surface 21A, and the side surface 21B of the intermediate light guide unit 20, and enters the light guide plate 30 from the end surface 31. It will be. Therefore, for example, compared with the case where the intermediate light guide unit 20 does not include the side surface 21A and the side surface 21B, a component of the light emitted from the light source 10 that leaks outside without entering the light guide plate 30 is reduced.
  • the light emission efficiency can be further improved.
  • the light emitting device 1 a part of the light rays emitted from each light emitting point of the light source 10 is directly incident on the light guide plate 30 (the end surface 31 thereof). In the XZ plane, the maximum angle of the directly incident light is A.
  • filling above-mentioned Formula (8) since the light ray which directly injects into the light-guide plate 30 will satisfy
  • the reflecting surface (upper surface 22) can be obtained by matching the light emitting point P1 with the focal point F of the curved surface portion 22A and inclining the symmetry axis J by the angle A. All the light rays reflected by the light incident on the light guide plate 30 (the end face 31) at an angle A. That is, all the light rays emitted from the light emitting end P1 are guided at the angle A.
  • the maximum angle of the directly incident light becomes smaller than the angle A.
  • a light beam having an angle larger than that of the directly incident light beam is reflected on the reflection surface (upper surface 22).
  • the light beam reflected on the reflection surface (upper surface 22) enters the light guide plate 30 at an angle smaller than the angle A as the distance from the focal point F increases. Therefore, the light guide angle of the light emitted from the light emitting end P1 is maximized, and the light is guided at a smaller light guide angle as the distance from the light guide plate 30 increases.
  • the light rays from the light emitting end P1 are aligned in the direction close to the X-axis direction, and the light rays emitted from a position farther from the end face 31 than the light emitting end P1 are emitted from the light emitting end P1.
  • the light beam travels toward the upper surface 22 at an upward angle closer to the Z-axis direction than the light beam from the light emitting end P ⁇ b> 1, and is reflected on the upper surface 22.
  • most of the light rays incident on the light guide plate 30 satisfy the total reflection condition.
  • the curved side surfaces 21A and 21B are provided so as to sandwich the light source 10 in the Y-axis direction. Therefore, when the light emitted from the light source 10 is guided in the X-axis direction, the Y-axis The spread in the direction can be controlled. In particular, by setting the light guide angle of the light emitted from the light source 10 to be equal to or less than the angle B, it is possible to avoid the light from leaking from the side surfaces 34A and 34B of the light guide plate 30.
  • the peripheral area AR1 is provided between the end face 31 and the effective area AR2, the lights emitted from the plurality of light sources 10 arranged in the Y-axis direction are mixed, and the Y-axis direction is mixed. It is possible to emit light having a more uniform intensity distribution in FIG. 5, that is, light with reduced luminance unevenness, from the surface 32 in the effective area AR2.
  • the luminance unevenness at the stage of reaching the effective area AR2 is determined by the maximum light guide angle B in the XY plane and the distance LX from the end surface 31 of the light guide plate 30 to the effective area AR2. Therefore, by providing the peripheral area AR1 between the end face 31 and the effective area AR2, it is possible to reduce luminance unevenness without increasing the maximum light guide angle B.
  • the maximum light guide angle B can be reduced by increasing the dimension in the X-axis direction of the peripheral area AR1 and increasing the distance LX from the end face 31 to the effective area AR2. That is, the number of the light sources 10 arranged in the Y-axis direction can be reduced, and the interval between the adjacent light sources 10 in the Y-axis direction can be increased.
  • the light emitting device 1 is mounted on a device such as a display device, for example, by providing the peripheral region AR1, the light source 10 serving as a heat source can be moved away from the effective region AR2 that overlaps the display panel, for example. Therefore, in this case, the long-term reliability of the display device equipped with the light emitting device 1 can be improved.
  • the effect which improves the designability by exposing a part of light-guide plate 30 positively and showing it to a user can also be anticipated.
  • the light beam incident on the light guide plate 30 propagates at the maximum light guide angle (angle A and angle B) that satisfies the total reflection condition, and therefore does not leak from the surface 32 in the peripheral area AR1.
  • angle A and angle B the maximum light guide angle that satisfies the total reflection condition
  • the angle A and the angle B are sufficiently smaller than a value (90 ⁇ c) defined by the critical angle ⁇ c of the light guide plate 30 to have a margin.
  • a transparent protective member 60 may be provided so as to cover the surface 32 in the peripheral area AR1 for the purpose of protecting the surface 32 from foreign matter adhesion and scratches during use.
  • the substrates are arranged on the back surface of the effective screen. This is because the frame width is desired to be narrow in terms of design.
  • the overall thickness can be reduced by arranging the substrates on the same plane as the front surface 32 without arranging the substrates on the side facing the back surface 33. For example, when installed on a wall surface, the back wall surface can be seen through the transparent peripheral area AR1, so that the feeling of pressure is small and the design is excellent.
  • the distance D1 between the reflecting surface 13S and the front surface 32 is smaller than the distance (thickness D) between the back surface 33 and the front surface 32, and the Z-axis direction of the opposing surface 23
  • the dimension D2 of the light source 10 is smaller than the dimension D3 of the end surface 31 in the Z-axis direction, and the block 14 is provided. Therefore, when light emitted from the light source 10 enters the light guide plate 30 from the intermediate light guide unit 20, Can be prevented from leaking.
  • FIG. 14 illustrates a state in which an area facing the light source 10 in the inner surface of the recess 20H is a curved surface.
  • FIG. 14 further illustrates a state in which the lens member 10 ⁇ / b> A is provided on the light emitting surface of the light source 10.
  • FIG. 15 illustrates a state in which the light transmissive member 20A is greatly swollen and the inner surface of the recess 20H follows the outer surface of the light transmissive member 20A. Even if the light transmissive member 20A is in the form shown in FIGS. 13 to 15, it is possible to obtain an effect close to the effect in the above embodiment.
  • the lower surface 24 of the light transmissive member 20A is provided with the depression 20H as shown in FIG. 12, for example.
  • the lower surface 24 of the light transmissive member 20 ⁇ / b> A may be a flat surface.
  • the light source 10 may be disposed such that the light emission surface of the light source 10 is in contact with the lower surface 24 of the light transmissive member 20 ⁇ / b> A. Further, for example, as illustrated in FIG.
  • the light source 10 may be arranged such that an air layer (gap) exists between the light emitting surface of the light source 10 and the lower surface 24 of the light transmissive member 20 ⁇ / b> A. Good. Even when the light transmissive member 20 ⁇ / b> A is in the form described in FIGS. 16 and 17, an effect close to the effect in the above embodiment can be obtained.
  • the light source 10 is provided so that the light emitting surface of the light source 10 and the substrate 11 are parallel to each other.
  • the light source 10 is provided such that the light emitting surface of the light source 10 and the substrate 11 are not parallel to each other. May be.
  • the light source 10 may be disposed inside the recess 20H, for example, as shown in FIG. Further, for example, as illustrated in FIG. 19, the light source 10 may be arranged such that an air layer (gap) exists between the light emitting surface of the light source 10 and the flat lower surface 24.
  • the reflective layer 20B is provided in contact with all of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A.
  • the reflective layer 20B may be provided in contact with at least a part of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A.
  • the reflective layer 20B may be provided in contact with only the upper surface 22 of the light transmissive member 20A. Even when the reflective layer 20B is in the form shown in FIG. 20, it is possible to obtain an effect close to the effect in the above embodiment.
  • the plurality of intermediate light guides 20 are assigned to each light source 10 one by one.
  • one intermediate light guide 20 ⁇ / b> Y may be provided instead of the plurality of intermediate light guides 20.
  • the intermediate light guide unit 20Y is provided between each light source 10 and the end surface 31 of the light guide plate 30, and further, the long side of the intermediate light guide unit 20Y is disposed along the end surface 31 of the light guide plate 30. Yes.
  • the intermediate light guide 20Y is assigned to all the light sources 10 in common.
  • the intermediate light guide 20Y includes a light transmissive member 20Y1 that covers all the light sources 10.
  • the light transmissive member 20Y1 is a block-like member that propagates most of the light emitted from all the covered light sources 10 along the X direction.
  • the light transmissive member 20Y1 is in contact with the light emission surface of the light source 10 directly or through an adhesive or the like, and is further in contact with the end surface 31 of the light guide plate 30 through the light transmissive material layer 70.
  • the light transmissive member 20 ⁇ / b> Y ⁇ b> 1 is provided in the entire gap between the surface from which each light source 10 emits light and the end surface 31.
  • the light transmissive member 20Y1 is made of a light transmissive material such as silicone resin.
  • the light transmissive member 20Y1 has a block shape including the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23, similarly to the light transmissive member 20A.
  • the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23 constitute an outer surface of the light transmissive member 20Y1.
  • the light transmissive member 20Y1 may have, for example, one recess 20H described in FIGS. 12 to 15 and FIG.
  • the light transmissive member 20Y1 may have a flat lower surface 24 described in FIGS. 16, 17, and 19, for example. At this time, each light source 10 may be arranged as shown in FIGS. 16, 17, and 19, for example.
  • the reflective layer 20B is provided in contact with all of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20Y1. Therefore, an effect equivalent to the effect in the above embodiment can be obtained.
  • the plurality of light sources 10 may be arranged in a line along the side surface 31 of the light guide plate 30.
  • the arrangement pitch of the plurality of light sources 10 may be equal.
  • the pitch may be non-uniform.
  • the distance between each light source 10 and the end surface 31 of the light guide plate 30 may be uniform or non-uniform.
  • the plurality of light sources 10 may be arranged in a plurality of rows along the side surface 31 of the light guide plate 30.
  • the reflective layer 20B may be provided in contact with at least a part of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20Y1.
  • the reflective layer 20B may be provided in contact with only the upper surface 22 of the light transmissive member 20Y1. Even when the reflective layer 20B is in the form shown in FIG. 22, it is possible to obtain an effect close to the effect of the modification E.
  • FIG. 23 illustrates an appearance of the display device 101 according to the second embodiment of the present disclosure.
  • the display device 101 includes the light emitting device 1 and is used as, for example, a thin television device.
  • the display device 101 has a configuration in which a flat main body 102 for image display is supported by a stand 103.
  • the display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
  • FIG. 24 is an exploded view of the main body 102 shown in FIG.
  • the main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side).
  • the front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111.
  • the panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed.
  • the mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103.
  • the rear exterior member 113 covers the back and side surfaces of the panel module 112.
  • FIG. 25 is an exploded view of the panel module 112 shown in FIG.
  • the panel module 112 includes, for example, a front casing (top chassis) 121, a liquid crystal panel 122, a frame member (middle chassis) 80, an optical sheet 50, and a light guide plate 30 from the front side (viewer side).
  • the light source 10, the reflection member 40, the rear housing (back chassis) 124, and the timing controller board 127 are provided in this order.
  • the front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122.
  • the liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them.
  • the frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 50.
  • the rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the intermediate housing 123, and the light emitting device 1.
  • the timing controller board 127 is also mounted on the back surface of the rear housing 124.
  • the display device 101 In the display device 101, light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image.
  • the display quality of the display device 101 is improved.
  • display device 101 As described above to an electronic device will be described.
  • the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
  • the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
  • FIG. 26 shows an appearance of a tablet terminal device to which the display device 101 of the above embodiment is applied.
  • FIG. 27 illustrates an appearance of another tablet terminal device to which the display device 101 according to the above-described embodiment is applied.
  • Each of these tablet-type terminal devices has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
  • FIG. 28 and FIG. 29 show the external appearance of a tabletop or floor-standing lighting device to which the light-emitting device 1 of the above embodiment is applied.
  • a lighting unit 843 is attached to a support column 842 provided on a base 841.
  • the illumination unit 843 is configured by the light emitting device 1.
  • the illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 28 or a curved shape shown in FIG. 29 by making the light guide plate 20 into a curved shape.
  • FIG. 30 shows an appearance of an indoor lighting device to which the light emitting device 1 is applied.
  • This illuminating device has the illumination part 844 comprised by the said light-emitting device 1, for example.
  • the illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
  • illumination is performed by light from the light emitting device 1.
  • the light emitting device 1 having high luminous efficiency is used, the illumination quality is improved.
  • this indication can take the following composition.
  • a light guide plate having an end surface, an upper surface, and a lower surface; A plurality of light sources provided along the end surface; One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface; A reflective layer made of a dielectric multilayer film provided in contact with the interface; And a low refractive index layer having a refractive index lower than that of the light transmissive member, which is provided in contact with the reflective layer.
  • the low refractive index layer is made of air or resin.
  • a light emitting device for emitting illumination light A display panel that is arranged so as to overlap with the light emitting device and displays an image using the illumination light, and The light emitting device
  • a light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface;
  • a plurality of light sources provided along the end surface;
  • One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
  • a reflective layer made of a dielectric multilayer film provided in contact with the interface;
  • a display device comprising: a low refractive index layer provided in contact with the reflective layer and having a refractive index lower than that of the light transmissive member.
  • a light emitting device for emitting illumination light The light emitting device A light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface; A plurality of light sources provided along the end surface; One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface; A reflective layer made of a dielectric multilayer film provided in contact with the interface; And a low refractive index layer having a refractive index lower than that of the light transmissive member provided in contact with the reflective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A light-emitting device according to one embodiment of the present invention is provided with a light guide plate, a plurality of light sources disposed along the end face of the light guide plate, and one or a plurality of light-transmissive members provided between the light sources and the end face of the light guide plate. The one or plurality of light-transmissive members have curved boundary faces that reflect light from the light sources and guide the light to the end face. This light-emitting device is further provided with a reflecting layer that is provided to contact the boundary faces and that comprises a dielectric multilayer film, and a low-refractive-index layer that is provided to contact the reflecting layer and that has a lower refractive index than the light-transmissive members.

Description

発光装置、表示装置および照明装置LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
 本開示は、発光装置、ならびにこれを備えた表示装置および照明装置に関する。 The present disclosure relates to a light emitting device, and a display device and a lighting device including the light emitting device.
 液晶表示装置のバックライトとして、光源としてのLED(Light Emitting Diode)と、そのLEDからの光が端面から入射して主面から出射する導光板とを有する発光装置が採用されている。例えば特許文献1には、LEDからの光を、湾曲した反射面を有する反射体を用いてライトバルブの端面から入射するようにした装置が開示されている。 As a backlight of a liquid crystal display device, a light emitting device having an LED (Light Emitting Diode) as a light source and a light guide plate from which light from the LED enters from an end surface and exits from a main surface is employed. For example, Patent Document 1 discloses an apparatus in which light from an LED is incident from an end face of a light valve using a reflector having a curved reflecting surface.
特開2006-332665号公報JP 2006-332665 A
 しかしながら、上記特許文献1の構造では、LEDからの光の一部がライトバルブ内へ入射しなかったり、あるいはライトバルブ内へ入射してもその入射した光の一部がライトバルブにおいて全反射をせずに外部へ漏れてしまったりするものと考えられる。このため、より高い発光効率を得るにあたって不利である。より高い発光効率を得ることのできる発光装置、ならびにこれを備えた表示装置および照明装置を提供することが望ましい。 However, in the structure of Patent Document 1, a part of the light from the LED does not enter the light valve, or even if it enters the light valve, a part of the incident light is totally reflected by the light valve. It is thought that it leaks outside without doing. For this reason, it is disadvantageous in obtaining higher luminous efficiency. It is desirable to provide a light emitting device that can obtain higher luminous efficiency, and a display device and an illumination device including the light emitting device.
 本開示の一実施形態の発光装置は、端面、上面、および下面を有する導光板と、端面に沿って設けられた複数の光源と、各光源と端面との間に設けられた1または複数の光透過性部材とを備えている。1または複数の光透過性部材は、各光源からの光を反射して端面に導く曲面状の界面を有している。この発光装置は、さらに、界面に接して設けられた、誘電体多層膜からなる反射層と、反射層に接して設けられた、光透過性部材よりも屈折率の低い低屈折率層とを備えている。低屈折率層は、例えば、空気(空隙)もしくは樹脂からなる。 A light emitting device according to an embodiment of the present disclosure includes a light guide plate having an end surface, an upper surface, and a lower surface, a plurality of light sources provided along the end surface, and one or a plurality of light sources provided between each light source and the end surface. A light transmissive member. The one or more light-transmitting members have a curved interface that reflects light from each light source and guides it to the end face. The light emitting device further includes a reflective layer made of a dielectric multilayer film provided in contact with the interface, and a low refractive index layer provided in contact with the reflective layer and having a refractive index lower than that of the light transmissive member. I have. The low refractive index layer is made of, for example, air (void) or resin.
 本開示の一実施形態の表示装置は、照明光を出射する発光装置と、発光装置と重なり合うように配置され、照明光を利用して画像を表示する表示パネルとを備えている。この表示装置に設けられた発光装置は、上記の発光装置と同一の構成要素を有している。 A display device according to an embodiment of the present disclosure includes a light emitting device that emits illumination light, and a display panel that is arranged to overlap the light emitting device and displays an image using the illumination light. The light emitting device provided in this display device has the same components as the above light emitting device.
 本開示の一実施形態の照明装置は、照明光を出射する発光装置を備えている。この照明装置に設けられた発光装置は、上記の発光装置と同一の構成要素を有している。 The illumination device according to an embodiment of the present disclosure includes a light emitting device that emits illumination light. The light emitting device provided in this lighting device has the same components as the above light emitting device.
 本開示の一実施形態の発光装置、表示装置および照明装置では、光源と導光板の端面との間に設けられた光透過性部材における曲面状の界面に、誘電体多層膜からなる反射層が設けられており、反射層の表面には、光透過性部材よりも屈折率の低い低屈折率層が設けられている。これにより、界面に反射層が設けられていない場合と比べて、光源から入射した光が界面を透過して外部に漏れ難くなる。 In the light emitting device, the display device, and the lighting device according to an embodiment of the present disclosure, a reflective layer made of a dielectric multilayer film is provided on the curved interface of the light transmissive member provided between the light source and the end surface of the light guide plate. A low refractive index layer having a refractive index lower than that of the light transmissive member is provided on the surface of the reflective layer. Thereby, compared with the case where the reflective layer is not provided in the interface, the light incident from the light source is less likely to leak to the outside through the interface.
 本開示の一実施形態の発光装置、表示装置および照明装置によれば、光源と導光板の端面との間に設けられた光透過性部材における曲面状の界面に、誘電体多層膜からなる反射層を設けるとともに、反射層の表面に、光透過性部材よりも屈折率の低い低屈折率層を設けるようにしたので、発光効率をより向上させることができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。 According to the light emitting device, the display device, and the lighting device of the embodiment of the present disclosure, the reflection formed of the dielectric multilayer film on the curved interface in the light transmissive member provided between the light source and the end surface of the light guide plate. Since a low refractive index layer having a refractive index lower than that of the light transmissive member is provided on the surface of the reflective layer, the luminous efficiency can be further improved. In addition, the effect of this indication is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
本開示の第1の実施の形態に係る発光装置の全体構成例を表す斜視図である。It is a perspective view showing the example of whole composition of a light emitting device concerning a 1st embodiment of this indication. 図1に示した発光装置の全体構成例を表す平面図である。It is a top view showing the example of whole structure of the light-emitting device shown in FIG. 図1に示した発光装置の一部の構成例を表す側面図である。It is a side view showing the example of a structure of a part of light-emitting device shown in FIG. 図1に示した発光装置の要部構成例を表す拡大斜視図である。It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 図3に示した発光装置の要部の断面構成例を表す拡大断面図である。FIG. 4 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 3. 図4Aに示した光源からの光の経路および中間導光部の形状を説明するための説明図である。It is explanatory drawing for demonstrating the path | route of the light from the light source shown to FIG. 4A, and the shape of an intermediate | middle light guide part. 図3に示した中間導光部の上面の形状に関する式(1)を説明するための概念図である。It is a conceptual diagram for demonstrating Formula (1) regarding the shape of the upper surface of the intermediate | middle light guide part shown in FIG. 図1に示した発光装置に関する式(3)を説明するための概念図である。It is a conceptual diagram for demonstrating Formula (3) regarding the light-emitting device shown in FIG. 図1に示した発光装置に関する式(4)を説明するための概念図である。It is a conceptual diagram for demonstrating Formula (4) regarding the light-emitting device shown in FIG. 図3に示した発光装置の要部の平面構成例を表す拡大平面図である。FIG. 4 is an enlarged plan view illustrating a planar configuration example of a main part of the light emitting device illustrated in FIG. 3. 図5Aに示した光源からの光の経路および中間導光部の形状を説明するための説明図である。It is explanatory drawing for demonstrating the path | route of the light from the light source shown to FIG. 5A, and the shape of an intermediate | middle light guide part. 図1に示した発光装置に関する式(8)~(12)を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining equations (8) to (12) relating to the light emitting device shown in FIG. 図1に示した発光装置の要部構成例を表す拡大斜視図である。It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 図6に示した発光装置の要部の断面構成例を表す拡大断面図である。FIG. 7 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 6. 図6に示した発光装置の要部の断面構成例を表す拡大断面図である。FIG. 7 is an enlarged cross-sectional view illustrating a cross-sectional configuration example of a main part of the light emitting device illustrated in FIG. 6. 図6に示した反射層の反射率の波長依存性の一例を表す図である。It is a figure showing an example of the wavelength dependence of the reflectance of the reflection layer shown in FIG. 図6に示した反射層の反射率を説明するための概念図である。It is a conceptual diagram for demonstrating the reflectance of the reflection layer shown in FIG. 図6に示した反射層の反射率の波長依存性の一例を表す図である。It is a figure showing an example of the wavelength dependence of the reflectance of the reflection layer shown in FIG. 図6に示した反射層の反射率の入射角依存性の一例を表す図である。It is a figure showing an example of the incident angle dependence of the reflectance of the reflection layer shown in FIG. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図7に示した中間導光部および光源の一例を表す断面図である。It is sectional drawing showing an example of the intermediate | middle light guide part shown in FIG. 7, and a light source. 図1に示した発光装置の要部構成例を表す拡大斜視図である。It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 図1に示した発光装置の要部構成例を表す拡大斜視図である。It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 図1に示した発光装置の要部構成例を表す拡大斜視図である。It is an expansion perspective view showing the example of a principal part structure of the light-emitting device shown in FIG. 本開示の第2の実施の形態に係る表示装置の外観を表す斜視図である。14 is a perspective view illustrating an appearance of a display device according to a second embodiment of the present disclosure. FIG. 図23に示した本体部を分解して表す斜視図である。FIG. 24 is an exploded perspective view of the main body shown in FIG. 23. 図24に示したパネルモジュールを分解して表す斜視図である。FIG. 25 is an exploded perspective view illustrating the panel module illustrated in FIG. 24. 本開示の表示装置を搭載したタブレット型端末装置(適用例1)の外観を表す斜視図である。It is a perspective view showing the external appearance of the tablet-type terminal device (application example 1) carrying the display apparatus of this indication. 本開示の表示装置を搭載した他のタブレット型端末装置(適用例1)の外観を表す斜視図である。It is a perspective view showing the external appearance of the other tablet type terminal device (application example 1) carrying the display apparatus of this indication. 本開示の発光装置を備えた第1の照明装置の外観を表す斜視図である。It is a perspective view showing the external appearance of the 1st illuminating device provided with the light-emitting device of this indication. 本開示の発光装置を備えた第2の照明装置の外観を表す斜視図である。It is a perspective view showing the external appearance of the 2nd illuminating device provided with the light-emitting device of this indication. 本開示の発光装置を備えた第3の照明装置の外観を表す斜視図である。It is a perspective view showing the external appearance of the 3rd illuminating device provided with the light-emitting device of this indication.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.第1の実施の形態(発光装置)
  中間導光部の上面および両側面に反射層を設けた例
2.第1の実施の形態の変形例(発光装置)
  ・光源と中間導光部との間に空気(空隙)を設けた例
  ・中間導光部の底面を平坦面にした例
  ・光源を基板に対して斜めに傾けて配置した例
  ・中間導光部の上面だけに反射層を設けた例
  ・1つの中間導光部で全ての光源を覆った例
  ・複数の光源の配置に関するバリエーション
3.第2の実施の形態(表示装置)
  上記発光装置を表示装置に適用した例
4.表示装置の適用例
5.照明装置の適用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.

1. First embodiment (light emitting device)
1. Example in which a reflective layer is provided on the upper surface and both side surfaces of the intermediate light guide Modified example of the first embodiment (light emitting device)
-Example of providing air (gap) between the light source and the intermediate light guide unit-Example of the bottom surface of the intermediate light guide unit made flat-Example of arranging the light source obliquely with respect to the substrate-Intermediate light guide 2. An example in which a reflective layer is provided only on the top surface of the part. An example in which all the light sources are covered with one intermediate light guide part. Second embodiment (display device)
3. Example in which the light emitting device is applied to a display device. 4. Application example of display device Application examples of lighting equipment
<1.第1の実施の形態>
[発光装置1の構成]
 図1は、本開示の第1の実施の形態の発光装置1の全体構成例を表した斜視図である。図2Aは、発光装置1の全体構成例を表す平面図である。図2Bは、発光装置1の一部を表す側面図である。図3は、発光装置1の要部構成例を拡大して表す斜視図である。図4Aは、発光装置1の要部構成例を拡大して表す断面図である。さらに図4Bは、光源10(後述)からの光の経路および中間導光部20(後述)の形状を説明するための説明図である。図4Bおよび後述の図4C~4Eでは、光透過性材料層70(後出)を省略して示している。発光装置1は、例えば、透過型の液晶パネルを背後から照明するバックライトとして、あるいは室内等において照明装置として用いられるものである。
<1. First Embodiment>
[Configuration of Light Emitting Device 1]
FIG. 1 is a perspective view illustrating an overall configuration example of a light emitting device 1 according to the first embodiment of the present disclosure. FIG. 2A is a plan view illustrating an overall configuration example of the light emitting device 1. FIG. 2B is a side view showing a part of the light emitting device 1. FIG. 3 is an enlarged perspective view illustrating a configuration example of a main part of the light emitting device 1. FIG. 4A is an enlarged cross-sectional view illustrating a configuration example of a main part of the light emitting device 1. Further, FIG. 4B is an explanatory diagram for explaining the path of light from the light source 10 (described later) and the shape of the intermediate light guide 20 (described later). In FIG. 4B and FIGS. 4C to 4E described later, the light transmissive material layer 70 (described later) is omitted. The light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as a lighting device in a room or the like.
 発光装置1は、例えば、複数の光源10、複数の中間導光部20、導光板30、反射部材40および1または複数の光学シート50を備えている。 The light emitting device 1 includes, for example, a plurality of light sources 10, a plurality of intermediate light guides 20, a light guide plate 30, a reflection member 40, and one or a plurality of optical sheets 50.
 本明細書では、光学シート50と、導光板30と、反射部材40とが並ぶ方向をZ軸方向(前後方向)とし、導光板30における最も広い面である表面32において左右方向(水平方向)をY軸方向とし、表面32において上下方向をX軸方向とする。発光装置1では、各光源10から発せられた光は中間導光部20を経ておおよそX方向に沿って伝播するようになっている。 In this specification, the direction in which the optical sheet 50, the light guide plate 30, and the reflection member 40 are arranged is the Z-axis direction (front-rear direction), and the left-right direction (horizontal direction) on the surface 32 that is the widest surface of the light guide plate 30. Is the Y-axis direction, and the vertical direction on the surface 32 is the X-axis direction. In the light emitting device 1, the light emitted from each light source 10 propagates along the X direction through the intermediate light guide 20.
 各光源10は、例えばXY平面に光出射面を有する光源である。各光源10は、LED(Light Emitting Diode;発光ダイオード)で構成されている。各光源10は、例えばXY平面と平行に配置された基板11の表面に半田層12を介して実装されており、導光板30の端面31の近傍に配置されている(図3,図4A参照)。複数の光源10は、導光板30の端面31に沿って設けられている(図2A参照)。また、基板11上の、光源10と異なる位置には、反射面13Sを有する反射層13が設けられている(図4A参照)。 Each light source 10 is, for example, a light source having a light exit surface on an XY plane. Each light source 10 is composed of an LED (Light Emitting Diode). Each light source 10 is mounted, for example, on the surface of the substrate 11 arranged in parallel with the XY plane via the solder layer 12, and is arranged in the vicinity of the end face 31 of the light guide plate 30 (see FIGS. 3 and 4A). ). The plurality of light sources 10 are provided along the end surface 31 of the light guide plate 30 (see FIG. 2A). In addition, a reflective layer 13 having a reflective surface 13S is provided on the substrate 11 at a position different from the light source 10 (see FIG. 4A).
 複数の中間導光部20は、光源10ごとに1つずつ設けられている(図2A参照)。複数の中間導光部20は、各光源10と導光板30の端面31との間に設けられており、さらに、導光板30の端面31に沿って配置されている(図2A参照)。図3では、理解を容易にするため、1つの中間導光部20だけが示されている。また、図1では、各中間導光部20が基板11の背後に隠れているので、各中間導光部20が省略されている。各中間導光部20は、対応する1つの光源10を覆う光透過性部材20Aを有している。光透過性部材20Aは、覆っている光源10から発せられた光をX方向に沿って自らの内部を伝播させるブロック状の部材である。光透過性部材20Aは、直接、または接着材等を介して光源10の光出射面に接しており、さらに、光透過性材料層70を介して導光板30の端面31に接している(図3,図4A参照)。光透過性部材20Aは、各光源10から光が出射される面と端面31との間隙全体に設けられている。光透過性部材20Aは、例えばシリコーン樹脂などの光透過性の材料によって形成されている。光透過性部材20Aについては、後に詳述する。 A plurality of intermediate light guides 20 are provided for each light source 10 (see FIG. 2A). The plurality of intermediate light guides 20 are provided between each light source 10 and the end face 31 of the light guide plate 30 and are further disposed along the end face 31 of the light guide plate 30 (see FIG. 2A). In FIG. 3, only one intermediate light guide 20 is shown for easy understanding. Further, in FIG. 1, each intermediate light guide 20 is omitted because each intermediate light guide 20 is hidden behind the substrate 11. Each intermediate light guide 20 includes a light transmissive member 20 </ b> A that covers one corresponding light source 10. The light transmissive member 20 </ b> A is a block-shaped member that propagates light emitted from the covering light source 10 along the X direction. The light transmissive member 20A is in contact with the light emitting surface of the light source 10 directly or through an adhesive or the like, and is further in contact with the end surface 31 of the light guide plate 30 through the light transmissive material layer 70 (FIG. 3, see FIG. 4A). The light transmissive member 20 </ b> A is provided in the entire gap between the surface from which each light source 10 emits light and the end surface 31. The light transmissive member 20A is formed of a light transmissive material such as a silicone resin. The light transmissive member 20A will be described in detail later.
 導光板30は、光源10からの光を端面31から表面32へと導くものである。導光板30は、例えば、ポリカーボネート樹脂(PC)もしくはアクリル樹脂(例えば、PMMA(ポリメチルメタクリレート))などの光透過性熱可塑性樹脂、またはガラス材料を主に含んで構成されている。導光板30は、各光源10からそれぞれ発せられた光が中間導光部20を経由して入射する端面31と、その端面31から入射した光が出射される表面32(上面)と、その表面32と対向する裏面33(下面)と、端面31、表面32および裏面33と交差し、Y軸方向において対向する側面34Aおよび側面34Bとを含む略直方体状の光透過性部材である。XY平面に沿って広がる表面32は、例えば、表面32と対向して配置される被照射物(例えば後述の液晶パネル122)に対応した平面形状を有している。表面32は裏面33と平行であることが望ましい。また、端面31は、表面32および裏面33と垂直であることが望ましい。また、図4Aに示したように、表面32の一部は基板11の表面と接していてもよい。なお、導光板30の表面32のうちの有効領域AR2には、導光板30内を伝播する光の直進性を向上させるために、例えば、微細な凸部よりなる凹凸パターンが設けられているとよい。凸部は、例えば、表面32の一方向(例えば上下方向)に延在する帯状の突条または畝である。導光板30の裏面33には、導光板30内を伝播する光を散乱し、均一化させる散乱部として、例えば、散乱剤がパターン状に印刷されているとよい。なお、散乱部としては、散乱剤に代えて、フィラーを含んだ部位を設けるほか、表面を部分的に粗面にすることも可能である。 The light guide plate 30 guides light from the light source 10 from the end surface 31 to the surface 32. The light guide plate 30 mainly includes, for example, a light-transmitting thermoplastic resin such as polycarbonate resin (PC) or acrylic resin (for example, PMMA (polymethyl methacrylate)), or a glass material. The light guide plate 30 includes an end surface 31 on which light emitted from each light source 10 enters via the intermediate light guide unit 20, a surface 32 (upper surface) from which light incident from the end surface 31 is emitted, and its surface 32 is a substantially rectangular parallelepiped light-transmitting member that includes a back surface 33 (lower surface) that faces 32, a side surface 34A that intersects the end surface 31, the front surface 32, and the back surface 33, and that faces in the Y-axis direction. The surface 32 extending along the XY plane has, for example, a planar shape corresponding to an irradiation object (for example, a liquid crystal panel 122 described later) disposed to face the surface 32. The front surface 32 is preferably parallel to the back surface 33. The end surface 31 is preferably perpendicular to the front surface 32 and the back surface 33. Further, as shown in FIG. 4A, a part of the surface 32 may be in contact with the surface of the substrate 11. In addition, in the effective area AR2 of the surface 32 of the light guide plate 30, in order to improve the straightness of light propagating in the light guide plate 30, for example, a concave / convex pattern made of fine convex portions is provided. Good. The convex portion is, for example, a strip-shaped ridge or ridge extending in one direction (for example, the vertical direction) of the surface 32. For example, a scattering agent may be printed in a pattern on the back surface 33 of the light guide plate 30 as a scattering portion that scatters and makes light propagating through the light guide plate 30 uniform. In addition, as a scattering part, it replaces with a scattering agent, and besides providing the site | part containing a filler, it is also possible to make the surface partially rough.
 反射部材40は、導光板30の裏面33と対向して設けられた板状またはシート状部材である。反射部材40は、光源10から中間導光部20を経由して導光板30へ入射したのち、裏面33から漏れ出てきた光、または導光板30の内部から裏面33を透過して出射された光を、導光板30へ向けて戻すものである。反射部材40は、例えば、反射、拡散、散乱などの機能を有しており、これにより光源10からの光を効率的に利用し、正面輝度を高めることが可能となっている。 The reflection member 40 is a plate-like or sheet-like member provided to face the back surface 33 of the light guide plate 30. The reflection member 40 is incident on the light guide plate 30 from the light source 10 via the intermediate light guide unit 20, and then the light leaked from the back surface 33 or transmitted through the back surface 33 from the inside of the light guide plate 30 and emitted. The light is returned toward the light guide plate 30. The reflection member 40 has functions such as reflection, diffusion, and scattering, for example, so that the light from the light source 10 can be efficiently used and the front luminance can be increased.
 反射部材40は、例えば、発泡PET(ポリエチレンテレフタレート),銀蒸着フィルム,多層膜反射フィルム,または白色PETにより構成されている。反射部材40に正反射(鏡面反射)の機能を持たせる場合には、反射部材40の表面は、銀蒸着,アルミニウム蒸着,または多層膜反射などの処理がなされたものであることが好ましい。反射部材40に微細形状を付与する場合は、反射部材40は、熱可塑性樹脂を用いた熱プレス成型,または溶融押し出し成型などの手法で一体的に形成されていてもよいし、また、例えばPETなどからなる基材上にエネルギー線(たとえば紫外線)硬化樹脂を塗布したのち、そのエネルギー線硬化樹脂に形状を転写して形成されていてもよい。ここで、熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、PMMA(ポリメチルメタクリレート樹脂)などのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、MS(メチルメタクリレートとスチレンの共重合体)などの非晶性共重合ポリエステル樹脂、ポリスチレン樹脂およびポリ塩化ビニル樹脂などが挙げられる。また、エネルギー線(たとえば紫外線)硬化樹脂に形状を転写する場合は、基材はガラスであってもよい。 The reflecting member 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET. When the reflecting member 40 has a regular reflection (specular reflection) function, the surface of the reflecting member 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection. When a fine shape is imparted to the reflecting member 40, the reflecting member 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin. Here, examples of the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin. Further, when the shape is transferred to an energy ray (for example, ultraviolet ray) curable resin, the substrate may be glass.
 1または複数の光学シート50(図1,図2B参照)は、有効領域AR2において導光板30の表面32と対向して設けられている。1または複数の光学シート50は、例えば、拡散板、拡散シート、レンズフィルム、または偏光分離シートなどにより構成されている。各図では、1つの光学シート50だけが示されている。このような光学シート50を設けることにより、導光板30から斜め方向に出射した光を正面方向に立ち上げることが可能となり、正面輝度をさらに高めることが可能となる。 The one or more optical sheets 50 (see FIGS. 1 and 2B) are provided to face the surface 32 of the light guide plate 30 in the effective area AR2. The one or more optical sheets 50 are constituted by, for example, a diffusion plate, a diffusion sheet, a lens film, or a polarization separation sheet. In each figure, only one optical sheet 50 is shown. By providing such an optical sheet 50, light emitted from the light guide plate 30 in an oblique direction can be raised in the front direction, and the front luminance can be further increased.
 発光装置1は、さらに、保護部材60と光透過性材料層70とを有している。 The light emitting device 1 further includes a protective member 60 and a light transmissive material layer 70.
 保護部材60は、中間導光部20と有効領域AR2との間に設けられた周辺領域AR1において導光板30の表面32を覆うように設けられている。保護部材60は、例えば光透過性の樹脂やガラスなどにより構成されている。周辺領域AR1は、導光板30のうち光学シート50が設けられていない領域である。周辺領域AR1は、導光板30、保護部材60および反射部材40が光透過性の材料により構成されている場合、可視光を透過する光透過性領域となる。 The protective member 60 is provided so as to cover the surface 32 of the light guide plate 30 in the peripheral area AR1 provided between the intermediate light guide 20 and the effective area AR2. The protection member 60 is made of, for example, light transmissive resin or glass. The peripheral area AR1 is an area in the light guide plate 30 where the optical sheet 50 is not provided. When the light guide plate 30, the protection member 60, and the reflection member 40 are made of a light transmissive material, the peripheral area AR1 is a light transmissive area that transmits visible light.
 また、光透過性材料層70は、中間導光部20と導光板30とを繋ぐように設けられており、例えば紫外線(UV)硬化樹脂などの光透過性の接着剤により構成されている。 Further, the light transmissive material layer 70 is provided so as to connect the intermediate light guide unit 20 and the light guide plate 30 and is made of a light transmissive adhesive such as ultraviolet (UV) curable resin.
[光透過性部材20Aの詳細な構成]
 続いて、光透過性部材20Aの詳細な構成について説明する。光透過性部材20Aは、上面22、下面24、側面21A、側面21Bおよび対向面23を含むブロック形状となっている(図3参照)。上面22、下面24、側面21A、側面21Bおよび対向面23は、光透過性部材20Aにおける外面を構成している。下面24は基板11または反射面13Sと対向する面である。上面22は下面24と対向する面である。側面21Aおよび側面21Bは、Y軸方向において互いに対向する一対の面である。対向面23は、光透過性材料層70介して導光板30の端面31と対向する面である。
[Detailed Configuration of Light-Transparent Member 20A]
Next, a detailed configuration of the light transmissive member 20A will be described. The light transmissive member 20A has a block shape including an upper surface 22, a lower surface 24, a side surface 21A, a side surface 21B, and an opposing surface 23 (see FIG. 3). The upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23 constitute an outer surface of the light transmissive member 20A. The lower surface 24 is a surface facing the substrate 11 or the reflecting surface 13S. The upper surface 22 is a surface facing the lower surface 24. The side surface 21A and the side surface 21B are a pair of surfaces facing each other in the Y-axis direction. The facing surface 23 is a surface facing the end surface 31 of the light guide plate 30 through the light transmissive material layer 70.
 図3,図4Aに示したように、光源10は、反射面13S、上面22、下面24、側面21A、側面21Bおよび対向面23によって取り囲まれている。このため、光源10から発せられた光は、対向面23に直接入射し、または、反射面13S、上面22、下面24、側面21Aおよび側面21B(以下、これらをまとめて単に「中間導光部20の反射面」と称する。)のうちの少なくとも1つにおいて反射したのち対向面23に入射する。なお、対向面23に入射した光は、光透過性材料層70を透過して導光板30の端面31から導光板30に入射する。また、対向面23におけるZ軸方向の寸法D2は、端面31におけるZ軸方向の寸法D3よりも小さいことが望ましい。 3 and 4A, the light source 10 is surrounded by the reflecting surface 13S, the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23. For this reason, the light emitted from the light source 10 is directly incident on the facing surface 23, or the reflecting surface 13S, the upper surface 22, the lower surface 24, the side surface 21A and the side surface 21B (hereinafter, these are collectively referred to as “intermediate light guide unit”). The light is reflected by at least one of the reflection surfaces 20 and enters the opposing surface 23. The light incident on the facing surface 23 passes through the light transmissive material layer 70 and enters the light guide plate 30 from the end surface 31 of the light guide plate 30. Further, it is desirable that the dimension D2 in the Z-axis direction on the facing surface 23 is smaller than the dimension D3 in the Z-axis direction on the end surface 31.
(上面22の構成)
 上面22は、光透過性部材20Aにおける外面の一部を構成している。上面22は、光透過性部材20Aによって覆われた光源10からの光を反射して導光板30の端面31に導く曲面状の界面である。上面22は、Z軸方向において光源10および反射面13Sと対向する曲面である。詳細には、上面22は、X軸方向において端面31に近づくほど表面32に対し平行に近づくと共に端面31から遠ざかるほど端面31に対し平行に近づくように湾曲している。上面22は、最も端面31に近い位置において表面32に対し実質的に平行となっている。また、図4Aに示したように、Z軸方向における反射面13Sと表面32との距離D1は、Z軸方向における裏面33と表面32との距離(厚さD)よりも小さくなっているとよい。
(Configuration of the upper surface 22)
The upper surface 22 constitutes a part of the outer surface of the light transmissive member 20A. The upper surface 22 is a curved interface that reflects light from the light source 10 covered by the light transmissive member 20 </ b> A and guides the light to the end surface 31 of the light guide plate 30. The upper surface 22 is a curved surface that faces the light source 10 and the reflecting surface 13S in the Z-axis direction. Specifically, the upper surface 22 is curved so as to approach parallel to the surface 32 as it approaches the end surface 31 in the X-axis direction and to approach parallel to the end surface 31 as it moves away from the end surface 31. The upper surface 22 is substantially parallel to the surface 32 at a position closest to the end surface 31. As shown in FIG. 4A, the distance D1 between the reflecting surface 13S and the front surface 32 in the Z-axis direction is smaller than the distance (thickness D) between the back surface 33 and the front surface 32 in the Z-axis direction. Good.
 図4Bに示したように、上面22は、XZ平面において放物線形状の断面を有する曲面部分22Aと、この曲面部分22Aと連続する平面部分22Bとを含むものであってもよい。その場合、曲面部分22Aは、光源10のうち端面31に最も近い発光端P1と一致する焦点Fを有するとよい。光源10から発せられた光を端面31へ導くにあたり、より制御しやすくなるからである。なお、曲面部分22Aに含まれる放物線は、XZ平面において、対称軸Jとそれと直交する軸Kとで規定される座標に描かれる2次曲線である。ここで、対称軸Jは、表面32および裏面33に対して角度Aだけ傾いているとよい。角度Aは、表面32および裏面33に導光板30の内部から入射した光が表面32および裏面33において外部へ漏洩することなく全反射する全反射条件を満たす最大の角度(導光最大角度と呼ぶ)である。なお、光源10のうち、発光点P1よりも端面31から遠い他の発光点から発せられた光は、角度Aよりも小さい角度で表面32および裏面33に入射するので、やはり全反射条件は満たされる。 As shown in FIG. 4B, the upper surface 22 may include a curved surface portion 22A having a parabolic cross section in the XZ plane and a planar portion 22B continuous with the curved surface portion 22A. In that case, the curved surface portion 22 </ b> A may have a focal point F that coincides with the light emitting end P <b> 1 closest to the end surface 31 of the light source 10. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31. The parabola included in the curved surface portion 22A is a quadratic curve drawn at coordinates defined by the symmetry axis J and the axis K orthogonal thereto in the XZ plane. Here, the symmetry axis J is preferably inclined by the angle A with respect to the front surface 32 and the back surface 33. The angle A is the maximum angle satisfying the total reflection condition in which the light incident on the front surface 32 and the back surface 33 from the inside of the light guide plate 30 is totally reflected without leaking to the outside on the front surface 32 and the back surface 33 (referred to as the maximum light guide angle). ). In the light source 10, light emitted from other light emitting points farther from the end face 31 than the light emitting point P1 is incident on the front surface 32 and the back surface 33 at an angle smaller than the angle A, so that the total reflection condition is also satisfied. It is.
 図4Cに示したように、発光装置1では、XZ断面において以下の式(1)が成立しているとよい。図4Cは、式(1)を説明するための説明図である。ただし、図4Cでは、簡単のため、上面22が曲面部分22Aのみからなり平面部分22Bを含まない場合が示されている。 As shown in FIG. 4C, in the light emitting device 1, the following formula (1) may be satisfied in the XZ section. FIG. 4C is an explanatory diagram for explaining the expression (1). However, in FIG. 4C, for the sake of simplicity, the case where the upper surface 22 includes only the curved surface portion 22A and does not include the flat surface portion 22B is illustrated.
r=2×f/(1-cos2A)=D/sinA ……(1)
rは焦点Fと、上面22および対向面23の交点との距離である。fは放物線形状の断面を有する曲面部分22Aの焦点距離である。Dは導光板30の厚さ(Z軸方向の寸法)である。Aは上面22の最大導光角度である。
r = 2 × f / (1-cos2A) = D / sinA (1)
r is the distance between the focal point F and the intersection of the upper surface 22 and the opposing surface 23. f is the focal length of the curved surface portion 22A having a parabolic cross section. D is the thickness (dimension in the Z-axis direction) of the light guide plate 30. A is the maximum light guide angle of the upper surface 22.
 式(1)より、以下の式(2)が求められる。 From the formula (1), the following formula (2) is obtained.
f=sinA×D ……(2) f = sinA × D (2)
 上記の式(1)および(2)は、光源10の厚さが十分に薄く、無視できる場合、すなわち、発光端P1と焦点Fとが一致するとみなせる場合に該当する。ここで、光源10の厚さdを考慮すると、光源10の発光端P1の位置は、焦点Fから-X方向へ距離L1だけ遠ざけることが望ましい(図4D参照)。距離L1は式(3)で求められる。 The above equations (1) and (2) correspond to the case where the thickness of the light source 10 is sufficiently thin and can be ignored, that is, the case where the light emitting end P1 and the focal point F can be regarded as coincident. Here, considering the thickness d of the light source 10, it is desirable that the position of the light emitting end P1 of the light source 10 be away from the focal point F in the −X direction by a distance L1 (see FIG. 4D). The distance L1 is obtained by Expression (3).
L1=d/tanA ……(3) L1 = d / tanA (3)
 発光装置1は、式(4)を満足していることが望ましい。
tanA=D/L ……(4)
Lは、X軸方向において、光源10における発光端P1から、上面22が表面32に対し平行となる位置に至るまでの距離を表す(図4E参照)。また、式(4)では、光源10の厚さdが十分に薄く、無視できる場合に該当する。
It is desirable that the light emitting device 1 satisfies the formula (4).
tanA = D / L (4)
L represents the distance from the light emitting end P1 of the light source 10 to the position where the upper surface 22 is parallel to the surface 32 in the X-axis direction (see FIG. 4E). Further, the expression (4) corresponds to the case where the thickness d of the light source 10 is sufficiently thin and can be ignored.
 式(4)について光源10の厚さdを考慮すると、発光装置1は下記の式(5)を満足していることが望ましい。
tanA=D/(L+d/tanA) ……(5)
In consideration of the thickness d of the light source 10 in the formula (4), it is desirable that the light emitting device 1 satisfies the following formula (5).
tanA = D / (L + d / tanA) (5)
 さらに、発光装置1は、式(6)および式(7)を満足していることが望ましい。
Dp=2×D×sinA1/(1+sinA1) ……(6)
A×0.5≦A1≦A×1.5 ……(7)
Dpは、光源10のうち端面31に最も近い発光端P1の位置に対応する位置での上面22と発光点P1とのZ軸方向の距離である。A1は、上面22の許容最大導光角度である(図4E参照)。
Furthermore, it is desirable that the light emitting device 1 satisfies the expressions (6) and (7).
Dp = 2 × D × sinA1 / (1 + sinA1) (6)
A × 0.5 ≦ A1 ≦ A × 1.5 (7)
Dp is the distance in the Z-axis direction between the upper surface 22 and the light emitting point P1 at a position corresponding to the position of the light emitting end P1 closest to the end surface 31 in the light source 10. A1 is an allowable maximum light guide angle of the upper surface 22 (see FIG. 4E).
 さらに、発光装置1は、以下の式(8)を満足していることが望ましい。
A<90-θc ……(8)
θcは導光板30の屈折率で定まる臨界角である。
Furthermore, it is desirable that the light emitting device 1 satisfies the following formula (8).
A <90-θc (8)
θc is a critical angle determined by the refractive index of the light guide plate 30.
(側面21A,21Bの構成)
 側面21Aおよび側面21Bは、Y軸方向において上面22および反射面13Sを挟んで対向しつつ、基板11に立設する曲面である。詳細には、図5Aに示したように、側面21Aおよび側面21Bは、それぞれ、X軸方向において端面31に近づくほど端面31に対し垂直に近づくと共に端面31から遠ざかるほど端面31に対し平行に近づくように湾曲している。側面21Aおよび側面21Bは、最も端面31に近い位置において表面32および端面31の双方に対し実質的に垂直となっている。
(Configuration of side surfaces 21A and 21B)
The side surface 21A and the side surface 21B are curved surfaces that stand on the substrate 11 while facing each other with the upper surface 22 and the reflection surface 13S interposed therebetween in the Y-axis direction. Specifically, as shown in FIG. 5A, each of the side surface 21A and the side surface 21B approaches a direction perpendicular to the end surface 31 as it approaches the end surface 31 in the X-axis direction, and approaches a direction parallel to the end surface 31 as it moves away from the end surface 31. Is so curved. The side surface 21A and the side surface 21B are substantially perpendicular to both the surface 32 and the end surface 31 at a position closest to the end surface 31.
 側面21Aは、XY平面において放物線形状の断面を有する曲面部分21A1と、曲面部分21A1と連続する平面部分21A2とを含むものであってもよい(図5A参照)。その場合、曲面部分21A1は、光源10の中心の発光点CPを通るY軸に平行な仮想直線上に焦点F1を有するとよい。特に、曲面部分21A1の焦点F1は、後出の曲面部分21B1上に位置するとよい。光源10から発せられた光を端面31へ導くにあたり、より制御しやすくなるからである。なお、曲面部分21A1に含まれる放物線は、XY平面において、対称軸Sとそれと直交する軸Tとで規定される座標に描かれる2次曲線である(図5B参照)。ここで、対称軸Sは、XY平面に対して平行であると共に、側面34A,34Bに対して角度Bだけ傾いているとよい。角度Bは、側面34A,34Bに導光板30の内部から入射した光が側面34A,34Bにおいて外部へ漏洩することなく全反射する全反射条件を満たす最大の角度(導光最大角度と呼ぶ)である。角度Bは角度Aと一致していてもよいし、異なっていてもよい。 The side surface 21A may include a curved surface portion 21A1 having a parabolic cross section in the XY plane and a planar portion 21A2 continuous with the curved surface portion 21A1 (see FIG. 5A). In that case, the curved surface portion 21A1 may have a focal point F1 on a virtual straight line parallel to the Y axis passing through the light emission point CP at the center of the light source 10. In particular, the focal point F1 of the curved surface portion 21A1 is preferably located on the curved surface portion 21B1 described later. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31. Note that the parabola included in the curved surface portion 21A1 is a quadratic curve drawn at coordinates defined by the symmetry axis S and the axis T orthogonal thereto in the XY plane (see FIG. 5B). Here, the symmetry axis S is preferably parallel to the XY plane and inclined by an angle B with respect to the side surfaces 34A and 34B. The angle B is the maximum angle (referred to as the maximum light guide angle) that satisfies the total reflection condition in which light incident on the side surfaces 34A and 34B from the inside of the light guide plate 30 is totally reflected without leaking to the outside on the side surfaces 34A and 34B. is there. The angle B may coincide with the angle A or may be different.
 側面21Bもまた、側面21Aと同様の構成を有するとよい。すなわち、図5Aに示したように、側面21Bは、XY平面において放物線形状の断面を有する曲面部分21B1と、曲面部分21B1と連続する平面部分21B2とを含むものであってもよい。その場合、曲面部分21B1は、光源10の中心の発光点CPを通るY軸に平行な仮想直線上に焦点F2を有するとよい。特に、曲面部分21B1の焦点F2は、曲面部分21A1上に位置するとよい。光源10から発せられた光を端面31へ導くにあたり、より制御しやすくなるからである。 The side surface 21B may also have the same configuration as the side surface 21A. That is, as shown in FIG. 5A, the side surface 21B may include a curved surface portion 21B1 having a parabolic cross section in the XY plane and a flat surface portion 21B2 continuous with the curved surface portion 21B1. In that case, the curved surface portion 21 </ b> B <b> 1 may have a focal point F <b> 2 on a virtual straight line parallel to the Y axis passing through the light emission point CP at the center of the light source 10. In particular, the focal point F2 of the curved surface portion 21B1 is preferably located on the curved surface portion 21A1. This is because it becomes easier to control the light emitted from the light source 10 to the end face 31.
 さらに、発光装置1は、以下の式(9)から(11)を満足していることが望ましい(図5C参照)。
tanB=(W1+W2)/L2 ……(9)
W2=W1×sinB1 ……(10)
B1≦B×1.25 ……(11)
W1は、光源10の発光点CPから、側面21A,21Bが端面31に対し垂直となる位置に至るまでのY軸方向の距離である。W2は、光源10の発光点CPと側面21A,21BとのY軸方向の距離である。L2は、光源10の発光点CPから、側面21A,21Bが端面31に対し垂直となる位置に至るまでのX軸方向の距離である。B1は側面21A,21Bの許容最大導光角度である。
Furthermore, it is desirable that the light emitting device 1 satisfies the following formulas (9) to (11) (see FIG. 5C).
tanB = (W1 + W2) / L2 (9)
W2 = W1 × sinB1 (10)
B1 ≦ B × 1.25 (11)
W1 is the distance in the Y-axis direction from the light emission point CP of the light source 10 to the position where the side surfaces 21A and 21B are perpendicular to the end surface 31. W2 is the distance in the Y-axis direction between the light emission point CP of the light source 10 and the side surfaces 21A and 21B. L2 is the distance in the X-axis direction from the light emission point CP of the light source 10 to the position where the side surfaces 21A and 21B are perpendicular to the end surface 31. B1 is an allowable maximum light guide angle of the side surfaces 21A and 21B.
 さらに、発光装置1は、以下の式(12)を満足していることが望ましい(図5C参照)。SXは光源10におけるX軸方向の寸法である。SYは光源10におけるY軸方向の寸法である。
W2≧(SX+SY)/2 ……(12)
Furthermore, it is desirable that the light emitting device 1 satisfies the following formula (12) (see FIG. 5C). SX is the dimension of the light source 10 in the X-axis direction. SY is a dimension of the light source 10 in the Y-axis direction.
W2 ≧ (SX + SY) / 2 (12)
 さらに、発光装置1は、以下の式(13)を満足していることが望ましい。
B<90-θc ……(13)
θcは導光板30の屈折率で定まる臨界角である。
Furthermore, it is desirable that the light emitting device 1 satisfies the following formula (13).
B <90-θc (13)
θc is a critical angle determined by the refractive index of the light guide plate 30.
(反射層20B)
 中間導光部20は、例えば、図7A,図7Bに示したように、光透過性部材20Aの上面22、側面21Aおよび側面21Bに接して設けられた反射層20Bを有している。反射層20Bは、光透過性部材20Aの上面22、側面21Aおよび側面21Bを覆っている。反射層20Bは、側面21Aおよび側面21Bに接する誘電体多層膜からなる。中間導光部20は、例えば、図7A,図7Bに示したように、反射層20Bの表面に接する低屈折率層20Cもしくは低屈折率層20Dを有している。低屈折率層20Cは、光透過性部材20Aよりも屈折率の低い空気(空隙)からなる。低屈折率層20Dは、光透過性部材20Aよりも屈折率の低い樹脂からなる。
(Reflection layer 20B)
For example, as illustrated in FIGS. 7A and 7B, the intermediate light guide unit 20 includes a reflective layer 20 </ b> B provided in contact with the upper surface 22, the side surface 21 </ b> A, and the side surface 21 </ b> B of the light transmissive member 20 </ b> A. The reflective layer 20B covers the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A. The reflective layer 20B is made of a dielectric multilayer film in contact with the side surface 21A and the side surface 21B. For example, as illustrated in FIGS. 7A and 7B, the intermediate light guide unit 20 includes a low refractive index layer 20 </ b> C or a low refractive index layer 20 </ b> D in contact with the surface of the reflective layer 20 </ b> B. The low refractive index layer 20C is made of air (void) having a refractive index lower than that of the light transmissive member 20A. The low refractive index layer 20D is made of a resin having a refractive index lower than that of the light transmissive member 20A.
 中間導光部20における効率を決める上で重要な点は所定の波長、入射角で反射層20Bの反射率が高いことである。上述したように、反射層20Bには、誘電体多層膜が用いられているので、入射角が小さいときには、高い反射率が得られる。例えば、図8に示したように、入射角が30°のとき、可視領域全体に亘って高い反射率が得られる。なお、図8には、3M社のESR(Enhanced Specular Reflector)を用いた結果を示した。しかし、光源10からの光には、入射角の大きい成分も多く含まれるので、入射角の大きい光に対しても、高い反射率が得られることが望ましい。ところが、誘電体多層膜では、一般的に、反射率の高い波長域は入射角が大きくなるにつれて短波長側にシフトする。入射角θと、反射率の高い波長域の波長λとの関係は、以下の式(12)で示される。
cosθ/λ=一定値…(12)
An important point in determining the efficiency of the intermediate light guide 20 is that the reflectance of the reflective layer 20B is high at a predetermined wavelength and incident angle. As described above, since the dielectric multilayer film is used for the reflective layer 20B, a high reflectance can be obtained when the incident angle is small. For example, as shown in FIG. 8, when the incident angle is 30 °, a high reflectance can be obtained over the entire visible region. FIG. 8 shows the result of using 3M ESR (Enhanced Specular Reflector). However, since the light from the light source 10 includes many components having a large incident angle, it is desirable that a high reflectance be obtained even for light having a large incident angle. However, in a dielectric multilayer film, in general, a wavelength region with high reflectivity shifts to a shorter wavelength side as the incident angle increases. The relationship between the incident angle θ and the wavelength λ in the wavelength range with high reflectivity is expressed by the following equation (12).
cos θ / λ = constant value (12)
 誘電体多層膜は、一般的に、空気層を介して入射する光に対する反射を想定した光学設計となっている。光が、空気層を介して誘電体多層膜に入射すると、例えば、図9(A),図9(B),図9(C)の左欄に示したように、光は、スネルの法則によって、入射角よりも小さな角度で誘電体多層膜内を伝播する。そのため、反射率の高い波長域が、入射角が大きくなるにつれて短波長側にシフトする場合であっても、そのシフトによる影響は、スネルの法則によって若干、緩和される。 The dielectric multilayer film generally has an optical design that assumes reflection of light incident through the air layer. When light enters the dielectric multilayer film through the air layer, for example, as shown in the left column of FIGS. 9A, 9B, and 9C, the light is Snell's law. Therefore, the light propagates through the dielectric multilayer film at an angle smaller than the incident angle. Therefore, even if the wavelength region with high reflectivity shifts to the short wavelength side as the incident angle increases, the influence of the shift is slightly mitigated by Snell's law.
 本実施の形態では、光源10からの光は、例えば、図9(A),図9(B),図9(C)の右欄に示したように、空気層を介して反射層20Bに入射する訳ではなく、反射層20Bの屈折率に近い屈折率の材料で構成された光透過性部材20Aを介して反射層20Bに入射する。従って、光源10からの光は、上面22、側面21Aおよび側面21Bであまり屈折されることなく、反射層20Bに入射するので、光が空気層を介して入射する場合と比べて、上述のシフトによる影響が大きい。しかし、本実施の形態では、反射層20Bの上面(反射層20B内を伝播する光にとっては反射層20Bの裏面)は、低屈折率層20Cもしくは低屈折率層20Dに接している。そのため、入射角の大きな光に対しては、反射層20Bの上面と、低屈折率層20Cもしくは低屈折率層20Dとの界面での全反射を利用することができる。このように、本実施の形態では、上記全反射を利用することにより反射ロスを抑えている。 In the present embodiment, the light from the light source 10 is applied to the reflective layer 20B via the air layer, as shown in the right column of FIGS. 9A, 9B, and 9C, for example. It is not necessarily incident, but is incident on the reflective layer 20B through the light transmissive member 20A made of a material having a refractive index close to that of the reflective layer 20B. Accordingly, the light from the light source 10 is incident on the reflective layer 20B without being refracted so much at the upper surface 22, the side surface 21A, and the side surface 21B. The influence by is great. However, in the present embodiment, the upper surface of the reflective layer 20B (the back surface of the reflective layer 20B for light propagating in the reflective layer 20B) is in contact with the low refractive index layer 20C or the low refractive index layer 20D. Therefore, for light having a large incident angle, total reflection at the interface between the upper surface of the reflective layer 20B and the low refractive index layer 20C or the low refractive index layer 20D can be used. Thus, in this embodiment, the reflection loss is suppressed by using the total reflection.
 図10は、反射層20Bの反射率の波長依存性の一例を表したものである。 FIG. 10 shows an example of the wavelength dependence of the reflectance of the reflective layer 20B.
 実測では、反射層20Bに対して30°、45°、60°、75°の入射角の光を入射させたときの反射層20Bの反射率を計測した。図10では、反射層20Bの上面での反射は考慮されていない。なお、入射角が30°のときの反射層20B内の導光角度は19.6°であった。入射角が45°のときの反射層20B内の導光角度は28.3°であった。入射角が60°のときの反射層20B内の導光角度は35.5°であった。入射角が75°のときの反射層20B内の導光角度は40.4°であった。実測では、3M社のESRを用いた。なお、反射層20B内の導光角度が42°、45°、50°のときの中間導光部20の反射率については、予測により求めた。 In actual measurement, the reflectance of the reflective layer 20B was measured when light having an incident angle of 30 °, 45 °, 60 °, and 75 ° was incident on the reflective layer 20B. In FIG. 10, the reflection on the upper surface of the reflective layer 20B is not considered. The light guide angle in the reflective layer 20B when the incident angle is 30 ° was 19.6 °. When the incident angle was 45 °, the light guide angle in the reflective layer 20B was 28.3 °. When the incident angle was 60 °, the light guide angle in the reflective layer 20B was 35.5 °. When the incident angle was 75 °, the light guide angle in the reflective layer 20B was 40.4 °. In actual measurement, ESR of 3M company was used. The reflectivity of the intermediate light guide 20 when the light guide angle in the reflective layer 20B is 42 °, 45 °, and 50 ° was obtained by prediction.
 図10から、反射層20Bへの入射角が大きくなるにつれて、反射率の高い波長域の上端の波長が徐々に小さくなっていくことがわかる。 FIG. 10 shows that the wavelength at the upper end of the high-reflectance wavelength region gradually decreases as the angle of incidence on the reflective layer 20B increases.
 図11は、反射層20Bの反射率の入射角依存性の一例を表したものである。図11には、3M社のESRを用いたときの結果を示した。図11には、波長が450nm、540nm、620nmの光を反射層20Bに入射させたときの結果を示した。図中の42°は、反射層20Bの上面が空気層に接しているときの、反射層20Bの上面における臨界角である。 FIG. 11 shows an example of the incident angle dependence of the reflectance of the reflective layer 20B. FIG. 11 shows the results when 3M ESR was used. FIG. 11 shows the results when light having wavelengths of 450 nm, 540 nm, and 620 nm is incident on the reflective layer 20B. 42 ° in the figure is a critical angle on the upper surface of the reflective layer 20B when the upper surface of the reflective layer 20B is in contact with the air layer.
 図11から、入射光の波長が大きくなるにつれて、反射率の高い入射光の上端の角度が徐々に小さくなっていくことがわかる。ただし、反射層20Bの上面に入射する光の角度が42°以上のときは、反射層20Bの上面に入射する光は、反射層20Bの上面において全反射される。従って、図10、図11から、中間導光部20では、可視光域のほぼ全てに亘って、ほぼ全ての入射角で高い反射率が得られることがわかる。 FIG. 11 shows that the angle of the upper end of incident light with high reflectivity gradually decreases as the wavelength of incident light increases. However, when the angle of light incident on the upper surface of the reflective layer 20B is 42 ° or more, the light incident on the upper surface of the reflective layer 20B is totally reflected on the upper surface of the reflective layer 20B. Therefore, it can be seen from FIGS. 10 and 11 that the intermediate light guide unit 20 can obtain a high reflectivity at almost all incident angles over almost the entire visible light range.
 中間導光部20において、低屈折率層20Dが設けられている場合には、反射層20Bは、低屈折率層20Dの屈折率の大きさに応じた反射特性を有していることが好ましい。例えば、低屈折率層20Dが屈折率1.38の樹脂で構成され、反射層20Bの屈折率が1.5となっているとする。この場合、反射層20Bの上面における臨界角は67°となるので、反射層20Bは、反射層20Bへの入射角が67°以下の光を反射する反射特性を有していることが好ましい。反射層20Bは、例えば、以下の表1に示したような入射角依存性を有する反射特性となっていることが好ましい。表1に記載の反射特性では、入射角が67°以下において、可視領域の光が反射される。 In the intermediate light guide 20, when the low refractive index layer 20D is provided, the reflective layer 20B preferably has a reflection characteristic according to the refractive index of the low refractive index layer 20D. . For example, it is assumed that the low refractive index layer 20D is made of a resin having a refractive index of 1.38, and the refractive index of the reflective layer 20B is 1.5. In this case, since the critical angle on the upper surface of the reflective layer 20B is 67 °, the reflective layer 20B preferably has a reflection characteristic of reflecting light having an incident angle to the reflective layer 20B of 67 ° or less. The reflective layer 20B preferably has, for example, reflective characteristics having incident angle dependency as shown in Table 1 below. In the reflection characteristics shown in Table 1, light in the visible region is reflected when the incident angle is 67 ° or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[発光装置1の作用および効果]
 本実施の形態の発光装置1では、光源10が光透過性部材20Aによって覆われている。このため、光源10から発せられた光は、光透過性部材20Aの上面22、下面24、側面21Aおよび側面21Bや、反射面13Sで反射しながらX軸方向へ伝播し、端面31から導光板30へ入射する。このとき、光透過性部材20Aの上面22、側面21Aおよび側面21Bに入射した光の一部は、光透過性部材20Aの上面22、側面21Aおよび側面21Bに接して設けた反射層20Bによって反射される。これにより、反射層20Bが設けられていない場合と比べて、光源10から入射した光が光透過性部材20Aの上面22、側面21Aまたは側面21Bを透過して外部に漏れ難くなる。その結果、発光効率をより向上させることができる。
[Operation and Effect of Light-Emitting Device 1]
In the light emitting device 1 of the present embodiment, the light source 10 is covered with the light transmissive member 20A. For this reason, the light emitted from the light source 10 propagates in the X-axis direction while being reflected by the upper surface 22, the lower surface 24, the side surface 21A and the side surface 21B of the light transmissive member 20A, and the reflecting surface 13S, and from the end surface 31 to the light guide plate 30 is incident. At this time, part of the light incident on the upper surface 22, side surface 21A, and side surface 21B of the light transmissive member 20A is reflected by the reflective layer 20B provided in contact with the upper surface 22, side surface 21A, and side surface 21B of the light transmissive member 20A. Is done. Thereby, compared with the case where the reflection layer 20B is not provided, the light incident from the light source 10 is less likely to leak to the outside through the upper surface 22, the side surface 21A, or the side surface 21B of the light transmissive member 20A. As a result, the luminous efficiency can be further improved.
 本実施の形態の発光装置1では、反射層20Bの上面に、空気からなる低屈折率層20C、または、樹脂からなる低屈折率層20Dが接して設けられている。これにより、反射層20Bの上面で全反射する入射角範囲を広く取ることができるので、光源10から入射した光が光透過性部材20Aの上面22、側面21Aまたは側面21Bを透過して外部に漏れ難くなる。その結果、発光効率をより向上させることができる。 In the light emitting device 1 of the present embodiment, the low refractive index layer 20C made of air or the low refractive index layer 20D made of resin is provided on the upper surface of the reflective layer 20B. Thereby, since the incident angle range which totally reflects on the upper surface of the reflective layer 20B can be widened, the light incident from the light source 10 is transmitted through the upper surface 22, the side surface 21A or the side surface 21B of the light transmissive member 20A to the outside. It becomes difficult to leak. As a result, the luminous efficiency can be further improved.
 本実施の形態の発光装置1では、光透過性部材20Aは、各光源10から光が出射される面と端面31との間隙全体に設けられている。これにより、各光源10から発せられた光に対して散乱の作用をする界面の数を減らすことができる。その結果、発光効率をより向上させることができる。 In the light emitting device 1 of the present embodiment, the light transmissive member 20A is provided in the entire gap between the surface from which the light from each light source 10 is emitted and the end surface 31. As a result, the number of interfaces that act to scatter the light emitted from each light source 10 can be reduced. As a result, the luminous efficiency can be further improved.
 本実施の形態の発光装置1では、光透過性部材20Aの上面22、側面21Aおよび側面21Bが光透過性部材20Aにおける外面の一部を構成しており、反射層20Bが光透過性部材20Aの上面22、側面21Aおよび側面21Bを覆うように設けられている。これにより、可視光域のほぼ全てに亘って、ほぼ全ての入射角で高い反射率を得ることが可能となる。その結果、発光効率をより向上させることができる。 In the light emitting device 1 of the present embodiment, the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A constitute a part of the outer surface of the light transmissive member 20A, and the reflective layer 20B is the light transmissive member 20A. Are provided so as to cover the upper surface 22, the side surface 21A and the side surface 21B. Thereby, it is possible to obtain a high reflectance at almost all incident angles over almost the entire visible light range. As a result, the luminous efficiency can be further improved.
 本実施の形態の発光装置1では、光源10が中間導光部20によって覆われている。このため、光源10から発せられた光は、中間導光部20における反射面13S、上面22、側面21Aおよび側面21Bにおいて反射しながらX軸方向へ伝播し、端面31から導光板30へ入射することとなる。したがって、例えば中間導光部20が側面21Aおよび側面21Bを含まない場合と比べ、光源10から発せられた光のうち導光板30へ入射することなく外部へ漏洩してしまう成分が低減される。また、導光板30において全反射をするよう、光源10から発せられた光が適切な入射角で導光板30へ入射するように調整することが容易である。したがって、本実施の形態の発光装置1によれば、発光効率をより向上させることができる。 In the light emitting device 1 of the present embodiment, the light source 10 is covered by the intermediate light guide 20. For this reason, the light emitted from the light source 10 propagates in the X-axis direction while being reflected on the reflection surface 13S, the upper surface 22, the side surface 21A, and the side surface 21B of the intermediate light guide unit 20, and enters the light guide plate 30 from the end surface 31. It will be. Therefore, for example, compared with the case where the intermediate light guide unit 20 does not include the side surface 21A and the side surface 21B, a component of the light emitted from the light source 10 that leaks outside without entering the light guide plate 30 is reduced. Further, it is easy to adjust the light emitted from the light source 10 to be incident on the light guide plate 30 at an appropriate incident angle so that the light is totally reflected in the light guide plate 30. Therefore, according to the light emitting device 1 of the present embodiment, the light emission efficiency can be further improved.
 発光装置1では、光源10の各発光点から発せられた光線のうち、一部は導光板30(の端面31)へ直接入射する。XZ平面において、直接入射する光線の最大角度はAである。なお、上述の式(8)を満たす場合、導光板30へ直接入射する光線は導光板30において全反射条件を満たすこととなるので好ましい。ここで、発光点P1から発せられた光線のうち、最大角度Aよりも大きな角度を有する光線は反射面(上面22)において反射する。ここで、光源10の厚さdを零とみなせる場合、発光点P1を曲面部分22Aの焦点Fと一致させると共に、対称軸Jを角度Aだけ傾斜させるようにすれば、反射面(上面22)で反射した光線はすべて角度Aで導光板30(の端面31)に入射する。すなわち、発光端P1から発せられた光線は全て角度Aで導光される。 In the light emitting device 1, a part of the light rays emitted from each light emitting point of the light source 10 is directly incident on the light guide plate 30 (the end surface 31 thereof). In the XZ plane, the maximum angle of the directly incident light is A. In addition, when satisfy | filling above-mentioned Formula (8), since the light ray which directly injects into the light-guide plate 30 will satisfy | fill the total reflection conditions in the light-guide plate 30, it is preferable. Here, among the light rays emitted from the light emitting point P1, a light ray having an angle larger than the maximum angle A is reflected on the reflection surface (upper surface 22). Here, when the thickness d of the light source 10 can be regarded as zero, the reflecting surface (upper surface 22) can be obtained by matching the light emitting point P1 with the focal point F of the curved surface portion 22A and inclining the symmetry axis J by the angle A. All the light rays reflected by the light incident on the light guide plate 30 (the end face 31) at an angle A. That is, all the light rays emitted from the light emitting end P1 are guided at the angle A.
 発光端P1よりも導光板30から離れた位置から発せられた光線についても同様に、その一部は導光板30の端面31へ直接入射する。このとき、直接入射する光線の最大角度は角度Aよりも小さくなる。直接入射する光線よりも大きな角度の光線は反射面(上面22)において反射する。反射面(上面22)において反射した光線は焦点Fの位置から離れるほど角度Aよりも小さい角度で導光板30へ入射する。したがって、発光端P1から発せられた光線の導光角度を最大となり、導光板30から遠ざかるほど小さい導光角度で導光することになる。なお、この発光装置1では、実用的範囲においては、発光端P1からの光線はX軸方向に近い方向において揃い、発光端P1よりも端面31から遠い位置から発せられた光線は発光端P1から離れるにつれ発光端P1からの光線よりもZ軸方向に近い上向きの角度で上面22へ向かい、上面22において反射する。その結果、導光板30に入射した光線の大部分は全反射条件を満たすこととなる。 Similarly, a part of the light beam emitted from a position farther from the light guide plate 30 than the light emitting end P1 is directly incident on the end surface 31 of the light guide plate 30. At this time, the maximum angle of the directly incident light becomes smaller than the angle A. A light beam having an angle larger than that of the directly incident light beam is reflected on the reflection surface (upper surface 22). The light beam reflected on the reflection surface (upper surface 22) enters the light guide plate 30 at an angle smaller than the angle A as the distance from the focal point F increases. Therefore, the light guide angle of the light emitted from the light emitting end P1 is maximized, and the light is guided at a smaller light guide angle as the distance from the light guide plate 30 increases. In the light emitting device 1, in a practical range, the light rays from the light emitting end P1 are aligned in the direction close to the X-axis direction, and the light rays emitted from a position farther from the end face 31 than the light emitting end P1 are emitted from the light emitting end P1. As the distance increases, the light beam travels toward the upper surface 22 at an upward angle closer to the Z-axis direction than the light beam from the light emitting end P <b> 1, and is reflected on the upper surface 22. As a result, most of the light rays incident on the light guide plate 30 satisfy the total reflection condition.
 また、本実施の形態では、湾曲した側面21A,21Bが光源10をY軸方向に挟むように設けられているので、光源10から発せられた光線をX軸方向へ導光する際、Y軸方向への広がりを制御することができる。特に、光源10から発せられた光線の導光角度を角度B以下とすることにより、その光線が導光板30の側面34A,34Bから漏れるのを回避することができる。 In the present embodiment, the curved side surfaces 21A and 21B are provided so as to sandwich the light source 10 in the Y-axis direction. Therefore, when the light emitted from the light source 10 is guided in the X-axis direction, the Y-axis The spread in the direction can be controlled. In particular, by setting the light guide angle of the light emitted from the light source 10 to be equal to or less than the angle B, it is possible to avoid the light from leaking from the side surfaces 34A and 34B of the light guide plate 30.
 また、本実施の形態では、端面31と有効領域AR2との間に周辺領域AR1を設けるようにしたので、Y軸方向に並ぶ複数の光源10から各々発せられた光を混合し、Y軸方向においてより均質化された強度分布を有する光、すなわち輝度むらの低減された光を有効領域AR2における表面32から出射させることができる。有効領域AR2に到達する段階での輝度むらは、XY平面内における導光最大角度Bと、導光板30の端面31から有効領域AR2までの距離LXとによって決まる。したがって、端面31と有効領域AR2との間に周辺領域AR1を設けることにより、導光最大角Bを大きくせずとも輝度むらを低減することができる。また、周辺領域AR1のX軸方向の寸法を拡大し、端面31から有効領域AR2までの距離LXを稼ぐことにより、導光最大角Bを小さくすることもできる。すなわち、Y軸方向に並ぶ複数の光源10の数を減らし、Y軸方向において隣り合う光源10同志の間隔を広げることもできる。さらにこの発光装置1を例えば表示装置などのデバイスに搭載した場合、周辺領域AR1を設けることにより、熱源ともなる光源10を例えば表示パネルと重なりあうこととなる有効領域AR2から遠ざけることができる。よってこの場合、発光装置1を搭載した表示装置の長期信頼性を高めることができる。また、導光板30の一部を積極的に露出させ、ユーザに見せることにより意匠性を高める効果も期待できる。 In the present embodiment, since the peripheral area AR1 is provided between the end face 31 and the effective area AR2, the lights emitted from the plurality of light sources 10 arranged in the Y-axis direction are mixed, and the Y-axis direction is mixed. It is possible to emit light having a more uniform intensity distribution in FIG. 5, that is, light with reduced luminance unevenness, from the surface 32 in the effective area AR2. The luminance unevenness at the stage of reaching the effective area AR2 is determined by the maximum light guide angle B in the XY plane and the distance LX from the end surface 31 of the light guide plate 30 to the effective area AR2. Therefore, by providing the peripheral area AR1 between the end face 31 and the effective area AR2, it is possible to reduce luminance unevenness without increasing the maximum light guide angle B. In addition, the maximum light guide angle B can be reduced by increasing the dimension in the X-axis direction of the peripheral area AR1 and increasing the distance LX from the end face 31 to the effective area AR2. That is, the number of the light sources 10 arranged in the Y-axis direction can be reduced, and the interval between the adjacent light sources 10 in the Y-axis direction can be increased. Further, when the light emitting device 1 is mounted on a device such as a display device, for example, by providing the peripheral region AR1, the light source 10 serving as a heat source can be moved away from the effective region AR2 that overlaps the display panel, for example. Therefore, in this case, the long-term reliability of the display device equipped with the light emitting device 1 can be improved. Moreover, the effect which improves the designability by exposing a part of light-guide plate 30 positively and showing it to a user can also be anticipated.
 なお、発光装置1では、導光板30へ入射した光線は全反射条件を満たす導光最大角度(角度Aおよび角度B)で伝播するので、周辺領域AR1において表面32から漏れることはない。しかしながら、導光板30の表面32に傷が発生したり異物が付着したりした場合には導光板30へ入射した光線の全反射が乱されることがある。そのため、角度Aおよび角度Bを、導光板30の臨界角θcで規定される値(90-θc)よりも十分に小さくし、マージンを持たせることが望ましい。あるいは、使用時の異物付着および傷の発生から表面32を保護する目的で、周辺領域AR1における表面32を覆うように透明な保護部材60を設けるようにしてもよい。ただし、製造過程において保護部材60により表面32を覆う以前の工程での異物付着および傷の発生の可能性もあるので、角度Aおよび角度Bを、余裕のある数値に設定することが望ましい。なお、一般的な表示装置では基板類を有効画面の裏面に配置する。意匠性の点で額縁幅が狭いことが望まれるためである。これに対し、本実施の形態の発光装置1を搭載した表示装置では基板類を裏面33と対向する側に配置せず、表面32と同一平面上に配置することで全体の薄型化が図れる。例えば壁面に設置した場合、透明な周辺領域AR1を介して背後の壁面が見通せるので圧迫感が少なく、意匠性に優れる。 In the light emitting device 1, the light beam incident on the light guide plate 30 propagates at the maximum light guide angle (angle A and angle B) that satisfies the total reflection condition, and therefore does not leak from the surface 32 in the peripheral area AR1. However, when the surface 32 of the light guide plate 30 is scratched or foreign matter adheres, the total reflection of the light incident on the light guide plate 30 may be disturbed. Therefore, it is desirable that the angle A and the angle B are sufficiently smaller than a value (90−θc) defined by the critical angle θc of the light guide plate 30 to have a margin. Alternatively, a transparent protective member 60 may be provided so as to cover the surface 32 in the peripheral area AR1 for the purpose of protecting the surface 32 from foreign matter adhesion and scratches during use. However, since there is a possibility that foreign matter adheres and scratches occur in the previous process of covering the surface 32 with the protective member 60 in the manufacturing process, it is desirable to set the angle A and the angle B to values with a margin. In general display devices, the substrates are arranged on the back surface of the effective screen. This is because the frame width is desired to be narrow in terms of design. On the other hand, in the display device on which the light emitting device 1 of the present embodiment is mounted, the overall thickness can be reduced by arranging the substrates on the same plane as the front surface 32 without arranging the substrates on the side facing the back surface 33. For example, when installed on a wall surface, the back wall surface can be seen through the transparent peripheral area AR1, so that the feeling of pressure is small and the design is excellent.
 また、発光装置1では、図4Aに示したように、反射面13Sと表面32との距離D1は裏面33と表面32との距離(厚さD)よりも小さく、対向面23のZ軸方向の寸法D2は端面31におけるZ軸方向の寸法D3よりも小さく、さらにブロック14を設けるようにしたので、光源10から発せられた光が中間導光部20から導光板30へ入射する際、外部へ漏れてしまうのを防ぐことができる。 4A, the distance D1 between the reflecting surface 13S and the front surface 32 is smaller than the distance (thickness D) between the back surface 33 and the front surface 32, and the Z-axis direction of the opposing surface 23 The dimension D2 of the light source 10 is smaller than the dimension D3 of the end surface 31 in the Z-axis direction, and the block 14 is provided. Therefore, when light emitted from the light source 10 enters the light guide plate 30 from the intermediate light guide unit 20, Can be prevented from leaking.
<2.第1の実施の形態の変形例>
[変形例A]
 上記実施の形態では、光透過性部材20Aの下面24には、例えば、図12に示したように、窪み20Hが設けられており、その窪み20Hに嵌め込むようにして光源10が設けられていた。つまり、光源10の光出射面と光透過性部材20Aの下面24とが互いに接触していた。しかし、例えば、図13、図14、図15に示したように、窪み20Hの内面と光源10の光出射面との間に空気層(空隙)が設けられていてもよい。図13では、窪み20Hが直方体形状の空隙となっている様子が例示されている。図14では、窪み20Hの内面のうち、光源10と対向する領域が曲面となっている様子が例示されている。図14では、さらに、光源10の光出射面に、レンズ部材10Aが設けられている様子が例示されている。図15では、光透過性部材20Aが大きくえぐられ、窪み20Hの内面が光透過性部材20Aの外面に倣っている様子が例示されている。光透過性部材20Aが、図13~図15に記載の態様となっている場合であっても、上記実施の形態における効果に近い効果を得ることができる。
<2. Modification of First Embodiment>
[Modification A]
In the above embodiment, for example, as illustrated in FIG. 12, the lower surface 24 of the light transmissive member 20A is provided with the recess 20H, and the light source 10 is provided so as to be fitted into the recess 20H. That is, the light emitting surface of the light source 10 and the lower surface 24 of the light transmissive member 20A are in contact with each other. However, for example, as shown in FIGS. 13, 14, and 15, an air layer (gap) may be provided between the inner surface of the recess 20 </ b> H and the light emitting surface of the light source 10. FIG. 13 illustrates a state in which the recess 20H is a rectangular parallelepiped-shaped space. FIG. 14 illustrates a state in which an area facing the light source 10 in the inner surface of the recess 20H is a curved surface. FIG. 14 further illustrates a state in which the lens member 10 </ b> A is provided on the light emitting surface of the light source 10. FIG. 15 illustrates a state in which the light transmissive member 20A is greatly swollen and the inner surface of the recess 20H follows the outer surface of the light transmissive member 20A. Even if the light transmissive member 20A is in the form shown in FIGS. 13 to 15, it is possible to obtain an effect close to the effect in the above embodiment.
[変形例B]
 上記実施の形態では、光透過性部材20Aの下面24には、例えば、図12に示したような窪み20Hが設けられていた。しかし、例えば、図16、図17に示したように、光透過性部材20Aの下面24が平坦面となっていてもよい。このとき、光源10は、例えば、図16に示したように、光源10の光出射面が光透過性部材20Aの下面24と接するように配置されていてもよい。また、光源10は、例えば、図17に示したように、光源10の光出射面と光透過性部材20Aの下面24との間に空気層(空隙)が存在するように配置されていてもよい。光透過性部材20Aが、図16、図17に記載の態様となっている場合であっても、上記実施の形態における効果に近い効果を得ることができる。
[Modification B]
In the above embodiment, the lower surface 24 of the light transmissive member 20A is provided with the depression 20H as shown in FIG. 12, for example. However, for example, as illustrated in FIGS. 16 and 17, the lower surface 24 of the light transmissive member 20 </ b> A may be a flat surface. At this time, for example, as illustrated in FIG. 16, the light source 10 may be disposed such that the light emission surface of the light source 10 is in contact with the lower surface 24 of the light transmissive member 20 </ b> A. Further, for example, as illustrated in FIG. 17, the light source 10 may be arranged such that an air layer (gap) exists between the light emitting surface of the light source 10 and the lower surface 24 of the light transmissive member 20 </ b> A. Good. Even when the light transmissive member 20 </ b> A is in the form described in FIGS. 16 and 17, an effect close to the effect in the above embodiment can be obtained.
[変形例C]
 上記実施の形態およびその変形例では、光源10は、光源10の光出射面と基板11とが互いに平行となるように設けられていた。しかし、上記実施の形態およびその変形例において、例えば、図18、図19に示したように、光源10は、光源10の光出射面と基板11とが互いに非平行となるように設けられていてもよい。このとき、光源10は、例えば、図18に示したように、窪み20Hの内部に配置されていてもよい。また、光源10は、例えば、図19に示したように、光源10の光出射面と平坦な下面24との間に空気層(空隙)が存在するように配置されていてもよい。
[Modification C]
In the embodiment and the modification thereof, the light source 10 is provided so that the light emitting surface of the light source 10 and the substrate 11 are parallel to each other. However, in the above embodiment and its modification, for example, as shown in FIGS. 18 and 19, the light source 10 is provided such that the light emitting surface of the light source 10 and the substrate 11 are not parallel to each other. May be. At this time, the light source 10 may be disposed inside the recess 20H, for example, as shown in FIG. Further, for example, as illustrated in FIG. 19, the light source 10 may be arranged such that an air layer (gap) exists between the light emitting surface of the light source 10 and the flat lower surface 24.
[変形例D]
 上記実施の形態およびその変形例では、反射層20Bは、光透過性部材20Aの上面22、側面21Aおよび側面21Bの全てに接して設けられていた。しかし、上記実施の形態およびその変形例において、反射層20Bは、光透過性部材20Aの上面22、側面21Aおよび側面21Bのうち少なくとも一部に接して設けられていてもよい。例えば、図20に示したように、反射層20Bは、光透過性部材20Aの上面22だけに接して設けられていてもよい。反射層20Bが、図20に記載の態様となっている場合であっても、上記実施の形態における効果に近い効果を得ることができる。
[Modification D]
In the embodiment and the modification thereof, the reflective layer 20B is provided in contact with all of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A. However, in the above-described embodiment and its modification, the reflective layer 20B may be provided in contact with at least a part of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20A. For example, as illustrated in FIG. 20, the reflective layer 20B may be provided in contact with only the upper surface 22 of the light transmissive member 20A. Even when the reflective layer 20B is in the form shown in FIG. 20, it is possible to obtain an effect close to the effect in the above embodiment.
[変形例E]
 上記実施の形態およびその変形例では、複数の中間導光部20が、光源10ごとに1つずつ割り当てられていた。しかし、上記実施の形態およびその変形例において、例えば、図21に示したように、複数の中間導光部20の代わりに、1つの中間導光部20Yが設けられていてもよい。中間導光部20Yは、各光源10と導光板30の端面31との間に設けられており、さらに、中間導光部20Yの長辺が導光板30の端面31に沿うように配置されている。中間導光部20Yは、全ての光源10に対して共通に割り当てられたものである。中間導光部20Yは、全ての光源10を覆う光透過性部材20Y1を有している。光透過性部材20Y1は、覆っている全ての光源10から発せられた光の多くをX方向に沿って自らの内部を伝播させるブロック状の部材である。光透過性部材20Y1は、直接、または接着材等を介して光源10の光出射面に接しており、さらに、光透過性材料層70を介して導光板30の端面31に接している。光透過性部材20Y1は、各光源10から光が出射される面と端面31との間隙全体に設けられている。光透過性部材20Y1は、例えばシリコーン樹脂などの光透過性の材料によって形成されている。
[Modification E]
In the embodiment and the modification thereof, the plurality of intermediate light guides 20 are assigned to each light source 10 one by one. However, in the above embodiment and its modification, for example, as shown in FIG. 21, one intermediate light guide 20 </ b> Y may be provided instead of the plurality of intermediate light guides 20. The intermediate light guide unit 20Y is provided between each light source 10 and the end surface 31 of the light guide plate 30, and further, the long side of the intermediate light guide unit 20Y is disposed along the end surface 31 of the light guide plate 30. Yes. The intermediate light guide 20Y is assigned to all the light sources 10 in common. The intermediate light guide 20Y includes a light transmissive member 20Y1 that covers all the light sources 10. The light transmissive member 20Y1 is a block-like member that propagates most of the light emitted from all the covered light sources 10 along the X direction. The light transmissive member 20Y1 is in contact with the light emission surface of the light source 10 directly or through an adhesive or the like, and is further in contact with the end surface 31 of the light guide plate 30 through the light transmissive material layer 70. The light transmissive member 20 </ b> Y <b> 1 is provided in the entire gap between the surface from which each light source 10 emits light and the end surface 31. The light transmissive member 20Y1 is made of a light transmissive material such as silicone resin.
 光透過性部材20Y1は、光透過性部材20Aと同様に、上面22、下面24、側面21A、側面21Bおよび対向面23を含むブロック形状となっている。上面22、下面24、側面21A、側面21Bおよび対向面23は、光透過性部材20Y1における外面を構成している。なお、光透過性部材20Y1は、例えば、図12~図15、図19に記載の窪み20Hを光源10ごとに1つずつ有していてもよい。光透過性部材20Y1は、例えば、図16、図17、図19に記載の平坦な下面24を有していてもよい。このとき、各光源10は、例えば、図16、図17、図19に記載の配置となっていてもよい。 The light transmissive member 20Y1 has a block shape including the upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23, similarly to the light transmissive member 20A. The upper surface 22, the lower surface 24, the side surface 21A, the side surface 21B, and the facing surface 23 constitute an outer surface of the light transmissive member 20Y1. The light transmissive member 20Y1 may have, for example, one recess 20H described in FIGS. 12 to 15 and FIG. The light transmissive member 20Y1 may have a flat lower surface 24 described in FIGS. 16, 17, and 19, for example. At this time, each light source 10 may be arranged as shown in FIGS. 16, 17, and 19, for example.
 本変形例Eにおいて、反射層20Bが、光透過性部材20Y1の上面22、側面21Aおよび側面21Bの全てに接して設けられている。従って、上記実施の形態における効果と同等の効果を得ることができる。 In Modification E, the reflective layer 20B is provided in contact with all of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20Y1. Therefore, an effect equivalent to the effect in the above embodiment can be obtained.
 本変形例Eにおいて、複数の光源10は、導光板30の側面31に沿って一列に並んで配置されていてよい。また、本変形例Eにおいて、複数の光源10が導光板30の側面31に沿って一列に並んで配置されている場合に、複数の光源10の配列ピッチは、等ピッチであってもよいし、不均一なピッチであってもよい。また、本変形例Eにおいて、複数の光源10は、例えば、各光源10と導光板30の端面31との距離が均一になっていてもよいし、不均一になっていてもよい。本変形例Eにおいて、複数の光源10は、導光板30の側面31に沿って複数列に並んで配置されていてよい。 In the modification E, the plurality of light sources 10 may be arranged in a line along the side surface 31 of the light guide plate 30. In the modification E, when the plurality of light sources 10 are arranged in a line along the side surface 31 of the light guide plate 30, the arrangement pitch of the plurality of light sources 10 may be equal. The pitch may be non-uniform. In the modification E, for example, the distance between each light source 10 and the end surface 31 of the light guide plate 30 may be uniform or non-uniform. In the modification E, the plurality of light sources 10 may be arranged in a plurality of rows along the side surface 31 of the light guide plate 30.
[変形例F]
 上記変形例Eにおいて、反射層20Bは、光透過性部材20Y1の上面22、側面21Aおよび側面21Bのうち少なくとも一部に接して設けられていてもよい。例えば、図22に示したように、反射層20Bは、光透過性部材20Y1の上面22だけに接して設けられていてもよい。反射層20Bが、図22に記載の態様となっている場合であっても、上記変形例Eにおける効果に近い効果を得ることができる。
[Modification F]
In Modification E, the reflective layer 20B may be provided in contact with at least a part of the upper surface 22, the side surface 21A, and the side surface 21B of the light transmissive member 20Y1. For example, as shown in FIG. 22, the reflective layer 20B may be provided in contact with only the upper surface 22 of the light transmissive member 20Y1. Even when the reflective layer 20B is in the form shown in FIG. 22, it is possible to obtain an effect close to the effect of the modification E.
<3.第2の実施の形態>
 図23は、本開示の第2の実施の形態の表示装置101の外観を表したものである。表示装置101は、発光装置1を備え、例えば薄型テレビジョン装置として用いられるものである。表示装置101は、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、表示装置101は、スタンド103を本体部102に取付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。
<3. Second Embodiment>
FIG. 23 illustrates an appearance of the display device 101 according to the second embodiment of the present disclosure. The display device 101 includes the light emitting device 1 and is used as, for example, a thin television device. The display device 101 has a configuration in which a flat main body 102 for image display is supported by a stand 103. The display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
 図24は、図23に示した本体部102を分解して表したものである。本体部102は、例えば、前面側(視聴者側)から、前部外装部材(ベゼル)111,パネルモジュール112および後部外装部材(リアカバー)113をこの順に有している。前部外装部材111は、パネルモジュール112の前面周縁部を覆う額縁状の部材であり、下方には一対のスピーカー114が配置されている。パネルモジュール112は前部外装部材111に固定され、その背面には電源基板115および信号基板116が実装されると共に取付金具117が固定されている。取付金具117は、壁掛けブラケットの取付、基板等の取付およびスタンド103の取付のためのものである。後部外装部材113は、パネルモジュール112の背面および側面を被覆している。 FIG. 24 is an exploded view of the main body 102 shown in FIG. The main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side). The front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111. The panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed. The mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103. The rear exterior member 113 covers the back and side surfaces of the panel module 112.
 図25は、図24に示したパネルモジュール112を分解して表したものである。パネルモジュール112は、例えば、前面側(視聴者側)から、前部筐体(トップシャーシ)121と,液晶パネル122と,枠状部材(ミドルシャーシ)80と,光学シート50と,導光板30および光源10と,反射部材40と,後部筐体(バックシャーシ)124とタイミングコントローラ基板127とをこの順に有している。 FIG. 25 is an exploded view of the panel module 112 shown in FIG. The panel module 112 includes, for example, a front casing (top chassis) 121, a liquid crystal panel 122, a frame member (middle chassis) 80, an optical sheet 50, and a light guide plate 30 from the front side (viewer side). The light source 10, the reflection member 40, the rear housing (back chassis) 124, and the timing controller board 127 are provided in this order.
 前部筐体121は、液晶パネル122の前面周縁部を覆う枠状の金属部品である。液晶パネル122は、例えば、液晶セル122Aと、ソース基板122Bと、これらを接続するCOF(Chip On Film)などの可撓性基板122Cとを有している。枠状部材123は、液晶パネル122および光学シート50を保持する枠状の樹脂部品である。後部筐体124は、液晶パネル122,中間筐体123および発光装置1を収容する、鉄(Fe)等よりなる金属部品である。タイミングコントローラ基板127もまた、後部筐体124の背面に実装されている。 The front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122. The liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them. The frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 50. The rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the intermediate housing 123, and the light emitting device 1. The timing controller board 127 is also mounted on the back surface of the rear housing 124.
 表示装置101では、発光装置1からの光が液晶パネル122により選択的に透過されることにより、画像表示が行われる。ここでは、第1の実施の形態で説明したように、発光効率の高い発光装置1が用いられているので、表示装置101の表示品質が向上する。 In the display device 101, light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image. Here, as described in the first embodiment, since the light emitting device 1 having high light emission efficiency is used, the display quality of the display device 101 is improved.
<4.表示装置の適用例>
 以下、上記のような表示装置101の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラ等が挙げられる。換言すれば、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
<4. Application example of display device>
Hereinafter, application examples of the display device 101 as described above to an electronic device will be described. Examples of the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. In other words, the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
 図26は、上記実施の形態の表示装置101が適用されるタブレット型端末装置の外観を表したものである。図27は、上記実施の形態の表示装置101が適用される他のタブレット型端末装置の外観を表したものである。これらのタブレット型端末装置は、いずれも、例えば表示部210および非表示部220を有しており、この表示部210が上記実施の形態の表示装置101により構成されている。 FIG. 26 shows an appearance of a tablet terminal device to which the display device 101 of the above embodiment is applied. FIG. 27 illustrates an appearance of another tablet terminal device to which the display device 101 according to the above-described embodiment is applied. Each of these tablet-type terminal devices has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
<5.照明装置の適用例>
 図28、図29は、上記実施の形態の発光装置1が適用される卓上用もしくは床置き用の照明装置の外観を表したものである。この照明装置は、例えば、基台841に設けられた支柱842に、照明部843を取り付けたものである。照明部843は、上記発光装置1により構成されている。照明部843は、導光板20を湾曲形状とすることにより、図28に示した筒状、または図29に示した曲面状など、任意の形状とすることが可能である。
<5. Application example of lighting device>
FIG. 28 and FIG. 29 show the external appearance of a tabletop or floor-standing lighting device to which the light-emitting device 1 of the above embodiment is applied. In this lighting device, for example, a lighting unit 843 is attached to a support column 842 provided on a base 841. The illumination unit 843 is configured by the light emitting device 1. The illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 28 or a curved shape shown in FIG. 29 by making the light guide plate 20 into a curved shape.
 図30は、上記発光装置1が適用される室内用の照明装置の外観を表したものである。この照明装置は、例えば、上記発光装置1により構成された照明部844を有している。照明部844は、建造物の天井850Aに適宜の個数および間隔で配置されている。なお、照明部844は、用途に応じて、天井850Aに限らず、壁850Bまたは床(図示せず)など任意の場所に設置することが可能である。 FIG. 30 shows an appearance of an indoor lighting device to which the light emitting device 1 is applied. This illuminating device has the illumination part 844 comprised by the said light-emitting device 1, for example. The illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
 これらの照明装置では、発光装置1からの光により、照明が行われる。ここでは、発光効率の高い発光装置1が用いられているので、照明品質が向上する。 In these illumination devices, illumination is performed by light from the light emitting device 1. Here, since the light emitting device 1 having high luminous efficiency is used, the illumination quality is improved.
 以上、実施の形態およびその変形例、ならびに適用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。 As described above, the present disclosure has been described with reference to the embodiment, its modified examples, and application examples. However, the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible. In addition, the effect described in this specification is an illustration to the last. The effects of the present disclosure are not limited to the effects described in this specification. The present disclosure may have effects other than those described in this specification.
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 端面、上面、および下面を有する導光板と、
 前記端面に沿って設けられた複数の光源と、
 各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
 前記界面に接して設けられた、誘電体多層膜からなる反射層と、
 前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
 を備えた
 発光装置。
(2)
 前記低屈折率層は、空気もしくは樹脂からなる
 (1)に記載の発光装置。
(3)
 前記光透明部材は、各前記光源から光が出射される面と前記端面との間隙全体に設けられている
 (1)または(2)に記載の発光装置。
(4)
 前記界面は、前記光透過性部材における外面の一部を構成しており、
 前記反射層は、前記界面の全体もしくは一部を覆うように設けられている
 (1)ないし(3)のいずれか1つに記載の発光装置。
(5)
 照明光を出射する発光装置と、
 前記発光装置と重なり合うように配置され、前記照明光を利用して画像を表示する表示パネルと
 を備え、
 前記発光装置は、
 端面、前記照明光の出射する出射領域を含む上面、および下面を有する導光板と、
 前記端面に沿って設けられた複数の光源と、
 各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
 前記界面に接して設けられた、誘電体多層膜からなる反射層と、
 前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
 を有する
 表示装置。
(6)
 照明光を出射する発光装置を備え、
 前記発光装置は、
 端面、前記照明光の出射する出射領域を含む上面、および下面を有する導光板と、
 前記端面に沿って設けられた複数の光源と、
 各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
 前記界面に接して設けられた、誘電体多層膜からなる反射層と、
 前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
 を有する
 照明装置。
For example, this indication can take the following composition.
(1)
A light guide plate having an end surface, an upper surface, and a lower surface;
A plurality of light sources provided along the end surface;
One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
A reflective layer made of a dielectric multilayer film provided in contact with the interface;
And a low refractive index layer having a refractive index lower than that of the light transmissive member, which is provided in contact with the reflective layer.
(2)
The light emitting device according to (1), wherein the low refractive index layer is made of air or resin.
(3)
The light-transmitting member according to (1) or (2), wherein the light transparent member is provided in an entire gap between a surface from which light is emitted from each light source and the end surface.
(4)
The interface constitutes a part of the outer surface of the light transmissive member,
The light emitting device according to any one of (1) to (3), wherein the reflective layer is provided so as to cover all or a part of the interface.
(5)
A light emitting device for emitting illumination light;
A display panel that is arranged so as to overlap with the light emitting device and displays an image using the illumination light, and
The light emitting device
A light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface;
A plurality of light sources provided along the end surface;
One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
A reflective layer made of a dielectric multilayer film provided in contact with the interface;
A display device comprising: a low refractive index layer provided in contact with the reflective layer and having a refractive index lower than that of the light transmissive member.
(6)
A light emitting device for emitting illumination light;
The light emitting device
A light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface;
A plurality of light sources provided along the end surface;
One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
A reflective layer made of a dielectric multilayer film provided in contact with the interface;
And a low refractive index layer having a refractive index lower than that of the light transmissive member provided in contact with the reflective layer.
 本出願は、日本国特許庁において2016年3月24日に出願された日本特許出願番号第2016-060382号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-060382 filed on March 24, 2016 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (6)

  1.  端面、上面、および下面を有する導光板と、
     前記端面に沿って設けられた複数の光源と、
     各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
     前記界面に接して設けられた、誘電体多層膜からなる反射層と、
     前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
     を備えた
     発光装置。
    A light guide plate having an end surface, an upper surface, and a lower surface;
    A plurality of light sources provided along the end surface;
    One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
    A reflective layer made of a dielectric multilayer film provided in contact with the interface;
    And a low refractive index layer having a refractive index lower than that of the light transmissive member, which is provided in contact with the reflective layer.
  2.  前記低屈折率層は、空気もしくは樹脂からなる
     請求項1に記載の発光装置。
    The light emitting device according to claim 1, wherein the low refractive index layer is made of air or resin.
  3.  前記光透明部材は、各前記光源から光が出射される面と前記端面との間隙全体に設けられている
     請求項1に記載の発光装置。
    The light-emitting device according to claim 1, wherein the light transparent member is provided in an entire gap between a surface from which light is emitted from each light source and the end surface.
  4.  前記界面は、前記光透過性部材における外面の一部を構成しており、
     前記反射層は、前記界面の全体もしくは一部を覆うように設けられている
     請求項3に記載の発光装置。
    The interface constitutes a part of the outer surface of the light transmissive member,
    The light emitting device according to claim 3, wherein the reflective layer is provided so as to cover all or a part of the interface.
  5.  照明光を出射する発光装置と、
     前記発光装置と重なり合うように配置され、前記照明光を利用して画像を表示する表示パネルと
     を備え、
     前記発光装置は、
     端面、前記照明光の出射する出射領域を含む上面、および下面を有する導光板と、
     前記端面に沿って設けられた複数の光源と、
     各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
     前記界面に接して設けられた、誘電体多層膜からなる反射層と、
     前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
     を有する
     表示装置。
    A light emitting device for emitting illumination light;
    A display panel that is arranged so as to overlap with the light emitting device and displays an image using the illumination light, and
    The light emitting device
    A light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface;
    A plurality of light sources provided along the end surface;
    One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
    A reflective layer made of a dielectric multilayer film provided in contact with the interface;
    A display device comprising: a low refractive index layer provided in contact with the reflective layer and having a refractive index lower than that of the light transmissive member.
  6.  照明光を出射する発光装置を備え、
     前記発光装置は、
     端面、前記照明光の出射する出射領域を含む上面、および下面を有する導光板と、
     前記端面に沿って設けられた複数の光源と、
     各前記光源と前記端面との間に設けられ、各前記光源からの光を反射して前記端面に導く曲面状の界面を有する1または複数の光透過性部材と、
     前記界面に接して設けられた、誘電体多層膜からなる反射層と、
     前記反射層に接して設けられた、前記光透過性部材よりも屈折率の低い低屈折率層と
     を有する
     照明装置。
    A light emitting device for emitting illumination light;
    The light emitting device
    A light guide plate having an end surface, an upper surface including an emission region from which the illumination light is emitted, and a lower surface;
    A plurality of light sources provided along the end surface;
    One or a plurality of light transmissive members provided between each of the light sources and the end surface, and having a curved interface that reflects light from each of the light sources and guides the light to the end surface;
    A reflective layer made of a dielectric multilayer film provided in contact with the interface;
    And a low refractive index layer having a refractive index lower than that of the light transmissive member provided in contact with the reflective layer.
PCT/JP2017/003108 2016-03-24 2017-01-30 Light-emitting device, display device, and lighting device WO2017163608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060382 2016-03-24
JP2016060382 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163608A1 true WO2017163608A1 (en) 2017-09-28

Family

ID=59901111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003108 WO2017163608A1 (en) 2016-03-24 2017-01-30 Light-emitting device, display device, and lighting device

Country Status (1)

Country Link
WO (1) WO2017163608A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764150A (en) * 2019-10-21 2021-05-07 元太科技工业股份有限公司 Front light module and display device
JP2021106159A (en) * 2019-07-01 2021-07-26 大日本印刷株式会社 Diffusion member, laminate, diffusion member set, led backlight and display device
JP2021106137A (en) * 2019-12-27 2021-07-26 日亜化学工業株式会社 Method of manufacturing linear light source
CN115079466A (en) * 2021-03-12 2022-09-20 南京瀚宇彩欣科技有限责任公司 Light guide module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155315A (en) * 1998-09-14 2000-06-06 Sharp Corp Frontlight and reflective liquid crystal display device
JP2004199967A (en) * 2002-12-18 2004-07-15 Advanced Display Inc Planar light source device, liquid crystal display device, and display device
JP2007234385A (en) * 2006-02-28 2007-09-13 Yamaha Corp Backlight device
JP2007317659A (en) * 2006-05-26 2007-12-06 Avago Technologies General Ip (Singapore) Private Ltd Indirect lighting apparatus for illuminating optical waveguide
JP2009506503A (en) * 2005-08-27 2009-02-12 スリーエム イノベイティブ プロパティズ カンパニー End-lit backlight with optical recycling cavity with concave transflector
JP2013218953A (en) * 2012-04-11 2013-10-24 Sony Corp Light-emitting device, display device and lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155315A (en) * 1998-09-14 2000-06-06 Sharp Corp Frontlight and reflective liquid crystal display device
JP2004199967A (en) * 2002-12-18 2004-07-15 Advanced Display Inc Planar light source device, liquid crystal display device, and display device
JP2009506503A (en) * 2005-08-27 2009-02-12 スリーエム イノベイティブ プロパティズ カンパニー End-lit backlight with optical recycling cavity with concave transflector
JP2007234385A (en) * 2006-02-28 2007-09-13 Yamaha Corp Backlight device
JP2007317659A (en) * 2006-05-26 2007-12-06 Avago Technologies General Ip (Singapore) Private Ltd Indirect lighting apparatus for illuminating optical waveguide
JP2013218953A (en) * 2012-04-11 2013-10-24 Sony Corp Light-emitting device, display device and lighting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106159A (en) * 2019-07-01 2021-07-26 大日本印刷株式会社 Diffusion member, laminate, diffusion member set, led backlight and display device
JP7044186B2 (en) 2019-07-01 2022-03-30 大日本印刷株式会社 Diffusing member, laminate, set of diffusing member, LED backlight and display device
JP2022071213A (en) * 2019-07-01 2022-05-13 大日本印刷株式会社 Diffusion member, laminate, diffusion member set, led backlight, and display device
JP7103541B2 (en) 2019-07-01 2022-07-20 大日本印刷株式会社 Diffusing member, laminate, set of diffusing member, LED backlight and display device
JP2022141711A (en) * 2019-07-01 2022-09-29 大日本印刷株式会社 Diffusion member, laminate, set of diffusion members, led backlight, and display device
JP7491346B2 (en) 2019-07-01 2024-05-28 大日本印刷株式会社 Diffusion member, laminate, diffusion member set, LED backlight and display device
CN112764150A (en) * 2019-10-21 2021-05-07 元太科技工业股份有限公司 Front light module and display device
JP2021106137A (en) * 2019-12-27 2021-07-26 日亜化学工業株式会社 Method of manufacturing linear light source
JP7121298B2 (en) 2019-12-27 2022-08-18 日亜化学工業株式会社 Method for manufacturing linear light source
US11757063B2 (en) 2019-12-27 2023-09-12 Nichia Corporation Method for manufacturing linear light source
CN115079466A (en) * 2021-03-12 2022-09-20 南京瀚宇彩欣科技有限责任公司 Light guide module

Similar Documents

Publication Publication Date Title
US9523808B2 (en) Thin film type back light unit for flat panel display
CN105425334B (en) Show equipment
US9638956B2 (en) Backlight unit and display apparatus thereof
US10302837B2 (en) Backlight unit and liquid crystal display including the same
CN107884998B (en) Backlight module and display device with same
JP6991373B2 (en) Light emitting device, display device and lighting device
US10317610B2 (en) Illumination device and display device
WO2017163608A1 (en) Light-emitting device, display device, and lighting device
TWI626482B (en) Viewing angle switchable back light unit
JP7166413B2 (en) Light-emitting device, display device and lighting device
US10620361B2 (en) Super directional light guide film and thin film type back light unit for flat panel display using the same
JP4645314B2 (en) Light guide plate, edge light type surface light source and liquid crystal display device using the same
KR20040075725A (en) Spread illuminating apparatus adapted to allow light to exit out from both surfaces of light conductive plate
EP3605214A1 (en) Display device
WO2016147505A1 (en) Light emission device, display device, and illumination device
US10788703B2 (en) Frame, surface light source device, display device and electronic device
KR20140067471A (en) Diffusing light guide film, backlight unit, and liquid crystal display device having thereof
US20220004059A1 (en) Display And Electronic Apparatus
TWI275871B (en) Backlight system
CN114141164A (en) Electronic device
JP6708593B2 (en) Display device
CN216434597U (en) Backlight module, display device and electronic equipment
WO2017169047A1 (en) Light emitting device, display device and lighting device
WO2017073175A1 (en) Light emitting device, display apparatus, and illumination apparatus
TWI359289B (en) Optical plate and backlight module using the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769655

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP