WO2017163601A1 - 鋳物砂の砂汚染度評価方法及び砂汚染度評価装置 - Google Patents

鋳物砂の砂汚染度評価方法及び砂汚染度評価装置 Download PDF

Info

Publication number
WO2017163601A1
WO2017163601A1 PCT/JP2017/002880 JP2017002880W WO2017163601A1 WO 2017163601 A1 WO2017163601 A1 WO 2017163601A1 JP 2017002880 W JP2017002880 W JP 2017002880W WO 2017163601 A1 WO2017163601 A1 WO 2017163601A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
sample
reference sample
conductivity
foundry sand
Prior art date
Application number
PCT/JP2017/002880
Other languages
English (en)
French (fr)
Inventor
之典 青木
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to US16/072,802 priority Critical patent/US20190033241A1/en
Priority to CN201780008777.4A priority patent/CN108603854A/zh
Priority to JP2018507083A priority patent/JP6747503B2/ja
Priority to RU2018127756A priority patent/RU2018127756A/ru
Priority to EP17769648.1A priority patent/EP3435074A4/en
Priority to BR112018015169-6A priority patent/BR112018015169A2/ja
Priority to MX2018009269A priority patent/MX2018009269A/es
Priority to KR1020187021066A priority patent/KR20180123007A/ko
Publication of WO2017163601A1 publication Critical patent/WO2017163601A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/043Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a granular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • G01N27/046Circuits provided with temperature compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material

Definitions

  • the present invention relates to a sand contamination degree evaluation method and a sand contamination degree evaluation apparatus using a conductivity (EC) as an evaluation index of the sand contamination degree of the foundry sand.
  • EC conductivity
  • Patent Document 1 it is assumed that the soil contains a certain amount of moisture. For this reason, the technique disclosed in Patent Document 1 cannot be applied to foundry sand that is normally in a dry state. In addition, since the foundry sand is usually dry and is almost an insulator, there is no technical idea of measuring conductivity in the first place, and it has been extremely difficult to evaluate the degree of sand contamination.
  • the present invention has been made in view of the above problems, and can measure the conductivity of foundry sand, and can evaluate the degree of sand contamination based on the measured conductivity.
  • An object is to provide an evaluation method and a sand pollution degree evaluation apparatus.
  • the sand contamination degree evaluation method of the foundry sand is a method for evaluating the sand contamination degree of the foundry sand by measuring the conductivity of the foundry sand, wherein the foundry sand is A step of preparing a reference sample and a comparative sample, a step of measuring the electrical conductivity of the reference sample and the comparative sample after humidifying the reference sample and the comparative sample, and the measured reference sample And a step of evaluating the sand contamination degree based on the conductivity of the comparative sample.
  • the method for evaluating the degree of sand contamination of foundry sand according to the present invention is characterized in that the reference sample and the comparative sample are dried and then humidified, and then the conductivity of the reference sample and the comparative sample is measured.
  • the sand contamination degree evaluation method for foundry sand according to the present invention is characterized by measuring the conductivity of the reference sample and the comparative sample after alternately repeating the drying treatment and the humidification treatment a plurality of times.
  • the sand contamination degree evaluation method for foundry sand according to the present invention further includes a step of measuring temperatures of the reference sample and the comparative sample.
  • the sand contamination degree evaluation method for foundry sand includes a step of calculating a temperature difference between the reference sample and the comparative sample, and a conductivity corresponding to the temperature difference is compared with the measured reference sample. And a step of correcting the measured conductivity by adjusting the conductivity of the sample.
  • the sand contamination degree evaluation method for foundry sand is characterized in that the evaluation data of the evaluated sand contamination degree is provided for a reference for controlling the pressure of the roller of the foundry sand recycling apparatus.
  • the sand contamination degree evaluation method for foundry sand according to the present invention is characterized in that a plurality of the reference samples are used.
  • the sand contamination degree evaluation apparatus for foundry sand is an apparatus for evaluating the degree of sand contamination of the foundry sand by measuring the conductivity of the foundry sand, A reference sample container for storing a reference sample of sand, a reference sample conductivity measuring means for measuring the conductivity of the reference sample stored in the reference sample container, and the reference sample stored in the reference sample container.
  • Reference sample humidifying means for humidifying for humidifying, a comparative sample container for storing a comparative sample of the foundry sand, a comparative sample conductivity measuring means for measuring the conductivity of the comparative sample stored in the comparative sample container, and the comparison And a comparative sample humidifying means for humidifying the comparative sample accommodated in the sample container.
  • the sand contamination degree evaluation apparatus for foundry sand includes a reference sample drying means for drying the reference sample accommodated in the reference sample container, and a comparison sample for drying the comparative sample accommodated in the comparison sample container. And a drying means.
  • the sand contamination degree evaluation apparatus for foundry sand includes a reference sample temperature measuring means for measuring the temperature of the reference sample accommodated in the reference sample container, and a temperature of the comparison sample accommodated in the comparison sample container. And a comparative sample temperature measuring means for measuring.
  • the present invention is a method for evaluating the sand contamination degree of the foundry sand by measuring the conductivity of the foundry sand, the step of preparing a reference sample and a comparative sample of the foundry sand, the reference sample and the After humidifying the comparison sample, measuring the conductivity of the reference sample and the comparison sample, and evaluating the degree of sand contamination based on the measured conductivity of the reference sample and the comparison sample Therefore, the conductivity of the foundry sand can be measured, and the sand contamination degree can be evaluated based on the measured conductivity.
  • the reference sample is foundry sand (sample) whose characteristics for evaluating the degree of sand contamination are known.
  • the comparative sample is foundry sand (sample) to be compared with the reference sample, and the sample for which the degree of sand contamination is to be evaluated is used as this comparative sample.
  • the degree of sand contamination indicates, for example, the degree to which a resin, a curing agent, an auxiliary agent, or casting waste added to the foundry sand is contained.
  • the resin is an alkali phenol, furan resin, phenol resin, polyol resin, etc.
  • the curing agent is an organic acid, polyisocyanate, organic ester, etc.
  • the auxiliary is a metal soap, surfactant, etc.
  • the first reference sample 1 is accommodated in the first reference sample container 2.
  • electrodes 3 as first reference sample conductivity measuring means for measuring the conductivity of the first reference sample 1 are inserted and arranged from both sides.
  • a temperature sensor 4 as a first reference sample temperature measuring means for measuring the temperature of the first reference sample 1 is inserted and arranged from above.
  • An aerator 5 is disposed below the electrode 3 and the temperature sensor 4 in the first reference sample container 2.
  • An intermediate container 6 is disposed at a position away from the first reference sample container 2, and the aerator 5 and the intermediate container 6 are connected to each other by a pipe 7.
  • a first reference sample drying means 8 for drying the first reference sample 1 accommodated in the first reference sample container 2 is disposed at a position away from the intermediate container 6.
  • the reference sample drying means 8 is connected in communication by a pipe 9.
  • An aerator 10 is disposed in the first reference sample drying means 8, and an air pump 11 is disposed at a position away from the first reference sample drying means 8.
  • the aerator 10 and the air pump 11 are connected in communication by a pipe 12.
  • a predetermined amount of granular silica gel 13 is accommodated in the first reference sample drying means 8.
  • a first reference sample humidifying means 14 for humidifying the first reference sample 1 accommodated in the first reference sample container 2 is disposed at a position away from the first reference sample drying means 8, and an intermediate container is provided. 6 and the first reference sample humidifying means 14 are connected in communication by a pipe 15.
  • An aerator 16 is disposed in the first reference sample humidifying means 14, and an air pump 17 is disposed at a position away from the first reference sample humidifying means 14.
  • the aerator 16 and the air pump 17 are connected to each other through a pipe 18.
  • a predetermined amount of water 19 is stored in the first reference sample humidifying means 14.
  • the apparatus configuration of the station A for the first reference sample 1 has been described so far.
  • the station B for the second reference sample 101 and the station C for the comparative sample 201 have the apparatus configurations for the first reference sample 1. Since this is the same as the station A of FIG.
  • the station B for the second reference sample 101 is given a code in the 100s
  • the station C for the comparative sample 201 is given a code in the 200s.
  • one of the electrodes 3, 103, and 203 of each of the stations A, B, and C is grounded, and the other is electrically connected to the conductivity measuring circuit 21 via the switching circuit 20.
  • the switching circuit 20 and the conductivity measuring circuit 21 are incorporated in the control means 22.
  • the switching circuit 20 switches which of the electrodes 3, 103, and 203 is to be measured.
  • 21a is a voltmeter
  • 21b is a resistor
  • 21c is an AC power source.
  • the temperature sensors 4, 104, and 204 of the stations A, B, and C are electrically connected to the temperature measurement circuit 24 via the switching circuit 23.
  • the switching circuit 23 and the temperature measuring circuit 24 are incorporated in the control means 22.
  • the switching circuit 23 switches which of the temperature sensors 4, 104, 204 is measured.
  • the air pumps 11, 17, 111, 117, 211, and 217 of the stations A, B, and C are electrically connected to the control unit 22.
  • a predetermined amount of the first reference sample 1 is supplied into the first reference sample container 2 of the station A.
  • a predetermined amount of the second reference sample 101 is supplied into the second reference sample container 102 of the station B.
  • a predetermined amount of the comparative sample 201 is supplied into the comparative sample container 202 of the station C. Note that these samples may be supplied manually or mechanically automatically.
  • a process counter (not shown) is first added.
  • this process counter the number of times of repeating the drying process and the humidification process of the first reference sample 1 described later is set.
  • 1 is added to the process counter.
  • counting of an elapsed timer (not shown) is started. In this elapsed timer, one drying processing time and humidification processing time are set.
  • measurement of the conductivity of the first reference sample 1 by the electrode 3 is started.
  • the conductivity is the reciprocal of the resistance measured by the conductivity measuring circuit 21.
  • measurement of the temperature of the first reference sample 1 by the temperature sensor 4 is started. The measurement of the conductivity and temperature is continuously performed every predetermined time.
  • the first reference sample 1 is dried and humidified. This will be described in detail.
  • the air pump 11 is operated and air is ejected from the aerator 10.
  • the ejected air passes through a gap between the granular silica gels 13 accommodated in the first reference sample drying means 8 to become dry air, and is supplied to the intermediate container 6 through the pipe 9.
  • the dry air supplied to the intermediate container 6 is supplied to the aerator 5 via the pipe 7, and the first reference sample 1 is dried by the dry air ejected from the aerator 5. This drying process is performed for a predetermined time (elapsed timer set time).
  • the air pump 11 is stopped and switched from the drying process to the humidification process.
  • the air pump 17 is operated, and air is ejected from the aerator 16.
  • the jetted air passes through the water 19 accommodated in the first reference sample humidifying means 14 to become wet air, and is supplied to the intermediate container 6 through the pipe 15.
  • the wet air supplied to the intermediate container 6 is supplied to the aerator 5 through the pipe 7, and the humidification process of the first reference sample 1 is performed by the wet air ejected from the aerator 5.
  • This humidification process is performed for a predetermined time (elapsed timer set time).
  • the operation at station A has been described so far, but the same operation is performed at stations B and C.
  • the temperatures of the first reference sample 1, the second reference sample 101, and the comparative sample 201 are measured by the temperature sensors 4, 104, and 204, respectively.
  • the process counter is greater than or equal to the set value.
  • the elapsed timer drying process and the humidifying process count time is equal to or greater than the set value.
  • the temperature difference between the first reference sample 1, the second reference sample 101, and the comparative sample 201 is not more than a set value. If any one of the conditions (1) to (3) is not satisfied, the process returns to the process where the process counter is added, and the subsequent processes are repeated. That is, the first reference sample 1, the second reference sample 101, and the comparative sample 201 are each subjected to a drying process and a humidification process at least once, and are alternately repeated a predetermined number of times (a plurality of times).
  • the conductivity data of the first reference sample 1, the second reference sample 101, and the comparative sample 201 are determined at that time.
  • the drying process or the humidification process for each of the first reference sample 1, the second reference sample 101, and the comparative sample 201 is stopped here.
  • the degree of sand contamination is evaluated based on the determined conductivity data of the first reference sample 1, the second reference sample 101, and the comparative sample 201. This will be described in detail in an embodiment described later.
  • Example> Hereinafter, an example of implementation of the present invention will be described.
  • the first reference sample 1 the second reference sample 101, and the comparative sample 201, those shown in the above ⁇ Sample> were used.
  • the process counter was set to 3 times to alternately repeat the drying process and the humidification process.
  • the elapsed timer was set to 6 minutes for one drying process and 4 minutes for the humidification process.
  • the measurement of conductivity and temperature was continuously performed every 12 seconds.
  • the set value of the temperature difference between the first reference sample 1, the second reference sample 101, and the comparative sample 201 was set to 1 ° C. And (1) The value of the process counter has become 3 times.
  • the count time of the drying process of the elapsed timer is 6 minutes, and the count time of the humidification process is 4 minutes.
  • the temperature difference between the first reference sample 1, the second reference sample 101, and the comparative sample 201 is 0.6 ° C.
  • the determined conductivity data were 158 ⁇ S (micro Siemens) for the first reference sample 1, 737 ⁇ S for the second reference sample 101, and 343 ⁇ S for the comparative sample 201.
  • the conductivity of the comparative sample was scored by the LOI value of the first reference sample and the second reference sample.
  • the evaluation score of the comparative sample can be calculated from the known LOI values of the first reference sample and the second reference sample.
  • the evaluation point Pa of the first reference sample was the LOIa value
  • the evaluation point Pb of the second reference sample was the LOIb value.
  • the evaluation point Pc of the comparative sample is 0.774, which is close to 0.88 which is the actual LOI value of the comparative sample.
  • the evaluation data of the degree of sand contamination shown in the above embodiment can be used as a reference for controlling the pressing force of the roller of the foundry sand recycling apparatus.
  • the foundry sand recycling device referred to here is, for example, a place in which the cast sand continuously put into the rotating drum driven by a motor is subjected to centrifugal force action to form a sand layer on the inner peripheral wall of the rotating drum. It is an apparatus of a type that peels off deposits on the surface of the foundry sand by applying pressure with a roller.
  • the evaluation data shows that the degree of sand contamination is higher than the predetermined value (the target value of how much quality you want to regenerate with the foundry sand reclaimer), increase the roller pressure and increase the regenerative power of the foundry sand. Try to raise.
  • the evaluation data indicates that the degree of sand contamination is lower than a predetermined value, the pressure applied to the roller is weakened so that the regenerating force of the foundry sand is lowered.
  • the evaluation data indicates the degree of sand contamination close to a predetermined value, the regenerating force of the foundry sand is left as it is. In this way, it is possible to control the pressure applied to the rollers of the foundry sand recycling apparatus based on the evaluation data.
  • the first and second reference samples 1 and 101 and the comparative sample 201 are dried and then humidified, and then the electrical conductivity of the first and second reference samples 1 and 101 and the comparative sample 201 is measured. I am doing so. According to this configuration, there is an advantage that the difference in moisture between the surface layer portion and the lower layer portion of the contaminant attached to the sand particles can be reduced as compared with the case where only the humidification treatment is performed.
  • the electrical conductivity of the first and second reference samples 1 and 101 and the comparative sample 201 is measured. According to this structure, there exists an advantage that the difference of the water
  • the present invention includes a step of measuring the temperatures of the first and second reference samples 1 and 101 and the comparative sample 201.
  • the temperature difference can be calculated by measuring the temperature of each of the first reference sample 1, the second reference sample 101, and the comparative sample 201, and the temperature difference between the samples is as small as possible.
  • the conductivity of each sample can be measured in the state.
  • the first reference sample 1, the second reference sample 101, and the comparative sample 201 are dried and humidified under the same conditions.
  • the temperature difference between the samples is made as small as possible. Since the conductivity of each sample is measured in such a state (measurement atmosphere), the conductivity of each sample can be measured under the same conditions as much as possible.
  • the temperature difference between the samples may be equal to or less than a set value.
  • a set value a set value that is listed.
  • the correction of the conductivity by temperature means calculating the temperature difference of each sample at the time of determining the conductivity, and adjusting the conductivity corresponding to the temperature difference to the measured value of the determined conductivity. It is to correct the data.
  • the conductivity data of each sample is corrected even when the temperature difference of each sample is large, so the set value of the temperature difference of each sample is increased, There is an advantage that the time until the conductivity data is determined can be shortened.
  • first reference sample 1 and second reference sample 101 two types are used.
  • the present invention is not limited to this, and only one reference sample is used. Also good.
  • it is more preferable to use a plurality of reference samples because the number of references to be compared with the comparative sample is increased, and the degree of sand contamination can be easily evaluated (easily understood).
  • the first reference sample 1, the second reference sample 101, and the comparative sample 201 are distinguished on the basis of the LOI (ignition loss), but the present invention is not limited to this. You may make it distinguish the 1st reference sample 1, the 2nd reference sample 101, and the comparative sample 201 on the basis of some consumption.
  • LOI ignition loss
  • the drying process and the humidification process for each sample are alternately repeated a predetermined number of times.
  • the humidification process makes it easy for electricity to pass through by absorbing a certain amount of moisture to the contaminants adhering to the sand particles.
  • a humidity gradient is generated between the surface layer and the lower layer of contaminants adhering to the sand particles, and when the difference in layer thickness is large, the moisture in the thin layer is saturated first, and the conductivity is correct. Sometimes it cannot be measured. For this reason, the difference in moisture between the surface layer portion and the lower layer portion of the contaminant adhering to the sand particles is reduced by alternately repeating the drying treatment and the humidifying treatment.
  • the self-hardening foundry sand used for the self-hardening process of alkali phenol (water-soluble) is used as a sample (reference sample and comparative sample), but the sample applicable to the present invention is limited to this. Is not to be done.
  • self-hardening foundry sand of an inorganic self-hardening process using any of water glass, cement, and salts may be used as a sample.
  • first reference sample 2 first reference sample container 3
  • first reference sample conductivity measuring means 4 first reference sample temperature measuring means 5 aerator 6 intermediate container 7
  • first reference sample drying means 9 pipe 10 aerator 11 air pump 12 pipe 13 granular silica gel 14
  • first reference sample humidifying means 15 pipe 16 aerator 17 air pump 18 pipe 19 water 20
  • switching circuit 21 conductivity measuring circuit 21a voltmeter 21b resistor 21c AC power source 22
  • control means 23 switching circuit 24 temperature measuring circuit 101 second Reference sample 102 Second reference sample container 103
  • Second reference sample drying means 109 Pipe 110 Aerator 111
  • Air pump 112 Pipe 113 Granular Silica gel 114

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

要約 鋳物砂の導電率を測定することができ、測定された導電率に基づき砂汚染度を評価することができる鋳物砂の砂汚染度評価方法及び砂汚染度評価装置を提供する。鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する方法であって、前記鋳物砂の基準試料(1、101)と比較試料(201)を準備する工程と、前記基準試料と前記比較試料を加湿処理した後、前記基準試料と前記比較試料の前記導電率を測定する工程と、該測定された前記基準試料と前記比較試料の前記導電率に基づき前記砂汚染度を評価する工程と、を有する。

Description

鋳物砂の砂汚染度評価方法及び砂汚染度評価装置
 本発明は、鋳物砂の砂汚染度の評価指標として導電率(EC)を用いる鋳物砂の砂汚染度評価方法及び砂汚染度評価装置に関する。
 従来、農業分野において、土壌中に電極を直に接触させて該土壌中の導電率を測定することは公知にされている(例えば、特許文献1参照)。
 しかし、特許文献1に示される方式では、土壌にある程度の水分が含まれていることが前提である。このため、通常、乾燥状態である鋳物砂には特許文献1に示される技術を適用することはできなかった。また、鋳物砂は通常、乾燥しており、ほとんど絶縁体なので、そもそも導電率を測定するという技術思想自体がなく、砂汚染度を評価することは極めて困難であった。
 本発明は、上記の問題に鑑みて成されたもので、鋳物砂の導電率を測定することができ、測定された導電率に基づき砂汚染度を評価することができる鋳物砂の砂汚染度評価方法及び砂汚染度評価装置を提供することを目的とする。
特開2001-215203号公報
 上記の目的を達成するために本発明の鋳物砂の砂汚染度評価方法は、鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する方法であって、前記鋳物砂の基準試料と比較試料を準備する工程と、前記基準試料と前記比較試料を加湿処理した後、前記基準試料と前記比較試料の前記導電率を測定する工程と、該測定された前記基準試料と前記比較試料の前記導電率に基づき前記砂汚染度を評価する工程と、を有することを特徴とする。
 また本発明の鋳物砂の砂汚染度評価方法は、前記基準試料と前記比較試料を乾燥処理した後に前記加湿処理し、その後、前記基準試料と前記比較試料の前記導電率を測定することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価方法は、前記乾燥処理及び前記加湿処理を交互に複数回繰り返した後、前記基準試料と前記比較試料の前記導電率を測定することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価方法は、前記基準試料と前記比較試料の温度を測定する工程をさらに有することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価方法は、前記基準試料と前記比較試料の温度差を算出する工程と、該温度差に相当する導電率を、前記測定された前記基準試料と前記比較試料の前記導電率に加減して該測定された導電率を補正する工程と、をさらに有することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価方法は、前記評価された砂汚染度の評価データを鋳物砂再生装置のローラの加圧力を制御するための基準用に提供することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価方法は、前記基準試料を複数用いることを特徴とする。
 また上記の目的を達成するために本発明の鋳物砂の砂汚染度評価装置は、鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する装置であって、前記鋳物砂の基準試料を収容する基準試料容器と、該基準試料容器に収容された前記基準試料の前記導電率を測定する基準試料導電率測定手段と、前記基準試料容器に収容された前記基準試料を加湿させる基準試料加湿手段と、前記鋳物砂の比較試料を収容する比較試料容器と、該比較試料容器に収容された前記比較試料の前記導電率を測定する比較試料導電率測定手段と、前記比較試料容器に収容された前記比較試料を加湿させる比較試料加湿手段と、を具備することを特徴とする。
 また本発明の鋳物砂の砂汚染度評価装置は、前記基準試料容器に収容された前記基準試料を乾燥させる基準試料乾燥手段と、前記比較試料容器に収容された前記比較試料を乾燥させる比較試料乾燥手段と、をさらに具備することを特徴とする。
 さらに本発明の鋳物砂の砂汚染度評価装置は、前記基準試料容器に収容された前記基準試料の温度を測定する基準試料温度測定手段と、前記比較試料容器に収容された前記比較試料の温度を測定する比較試料温度測定手段と、をさらに具備することを特徴とする。
 本発明は、鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する方法であって、前記鋳物砂の基準試料と比較試料を準備する工程と、前記基準試料と前記比較試料を加湿処理した後、前記基準試料と前記比較試料の前記導電率を測定する工程と、該測定された前記基準試料と前記比較試料の前記導電率に基づき前記砂汚染度を評価する工程と、を有するようにしたから、鋳物砂の導電率を測定することができ、測定された導電率に基づき砂汚染度を評価することができる等種々の効果がある。
 この出願は、日本国で2016年3月22日に出願された特願2016-056568号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
本発明の実施形態を示す概要構成図である。
 以下、本発明の実施の形態を図面に基づいて詳しく説明する。なお本実施形態では、2種類の基準試料と1種類の比較試料を用いている。基準試料は、砂汚染度を評価するための特性が既知である鋳物砂(試料)である。比較試料は、基準試料に対して比較の対象となる鋳物砂(試料)であり、砂汚染度を評価したい試料を、この比較試料にする。なお、砂汚染度とは、例えば、鋳物砂に添加される樹脂、硬化剤や助剤あるいは鋳物屑などの含まれている程度を示す。例えば、樹脂としては、アルカリフェノール、フラン樹脂、フェノール樹脂、ポリオール樹脂などであり、硬化剤としては有機酸、ポリイソシアート、有機エステルなどであり、助剤としては、金属石鹸類、界面活性剤などであるが、特に限定はされない。
 図1に示す第1基準試料1用のステーションAにおいて、第1基準試料1は第1基準試料容器2に収容されている。そして、第1基準試料容器2内には、第1基準試料1の導電率を測定する第1基準試料導電率測定手段としての電極3が両側方から挿入されて配設されている。
 また、第1基準試料容器2内には、第1基準試料1の温度を測定する第1基準試料温度測定手段としての温度センサ4が上方から挿入されて配設されている。そして、第1基準試料容器2内における電極3及び温度センサ4の下方には、エアレータ5が配設されている。
 そして、第1基準試料容器2から離れた位置には中間容器6が配設されており、エアレータ5と中間容器6は配管7で連通接続されている。そして、中間容器6から離れた位置には、第1基準試料容器2に収容された第1基準試料1を乾燥させる第1基準試料乾燥手段8が配設されており、中間容器6と第1基準試料乾燥手段8は配管9で連通接続されている。
 そして、第1基準試料乾燥手段8内にはエアレータ10が配設されており、第1基準試料乾燥手段8から離れた位置にはエアポンプ11が配設されている。そして、エアレータ10とエアポンプ11は配管12で連通接続されている。また、第1基準試料乾燥手段8内には粒状のシリカゲル13が所定量、収容されている。
 また、第1基準試料乾燥手段8から離れた位置には、第1基準試料容器2に収容された第1基準試料1を加湿させる第1基準試料加湿手段14が配設されており、中間容器6と第1基準試料加湿手段14は配管15で連通接続されている。そして、第1基準試料加湿手段14内にはエアレータ16が配設されており、第1基準試料加湿手段14から離れた位置にはエアポンプ17が配設されている。そして、エアレータ16とエアポンプ17は配管18で連通接続されている。また、第1基準試料加湿手段14内には水19が所定量、収容されている。
 ここまで第1基準試料1用のステーションAの装置構成について説明したが、第2基準試料101用のステーションB、及び、比較試料201用のステーションCは、装置構成が該第1基準試料1用のステーションAと同じであるため、説明を省略する。なお、第2基準試料101用のステーションBでは100番台の符号を、比較試料201用のステーションCでは200番台の符号を付与している。
 また、ステーションA、B、Cの各々の電極3、103、203の一方は接地され、他方は切替回路20を介して導電率測定回路21に電気的に接続されている。切替回路20及び導電率測定回路21は制御手段22内に組み込まれている。切替回路20は、電極3、103、203のうち、どれを測定するかを切替えるものである。導電率測定回路21において、21aは電圧計、21bは抵抗、21cは交流電源である。
 そして、ステーションA、B、Cの各々の温度センサ4、104、204は、切替回路23を介して温度測定回路24に電気的に接続されている。切替回路23及び温度測定回路24は制御手段22内に組み込まれている。切替回路23は、温度センサ4、104、204のうち、どれを測定するかを切替えるものである。また、ステーションA、B、Cの各々のエアポンプ11、17、111、117、211、217は、制御手段22に電気的に接続されている。
 このように構成された砂汚染度評価装置の作動について説明する。まず、自硬性鋳物砂の2種類の基準試料と1種類の比較試料を準備する。
 <試料>
 ・鋳物砂骨材:製品名「ルナモス」(花王クエーカー株式会社製。人工砂)
 ・添加樹脂(自硬性プロセス):アルカリフェノール(水溶性)
※LOI(強熱減量)の異なる3種類の試料を準備
 ・第1基準試料1:LOIが0.64%(高品位)
 ・第2基準試料101:LOIが1.06%(低品位)
 ・比較試料201:LOIが0.88%(中品位)
 その後、ステーションAの第1基準試料容器2内に所定量の第1基準試料1を供給する。そして、ステーションBの第2基準試料容器102内に所定量の第2基準試料101を供給する。そして、ステーションCの比較試料容器202内に所定量の比較試料201を供給する。なお、これらの試料の供給は、手作業で行なっても、機械的に自動で行っても、どちらでもよい。
 以降、ステーションA、B、Cでは同じ作動がなされるため、代表してステーションAでの作動についてのみ説明する。ステーションAでは、まず、工程カウンタ(図示せず)が加算される。この工程カウンタには、後述する第1基準試料1の乾燥処理と加湿処理を交互に繰り返す回数が設定されている。該乾燥処理と加湿処理の両方を1回行なうと、工程カウンタに1が加算される。次に、経過タイマ(図示せず)のカウントが開始される。この経過タイマには、1回の乾燥処理時間及び加湿処理時間が設定されている。
 次に、電極3による第1基準試料1の導電率の測定が開始される。なお導電率は、導電率測定回路21で測定される抵抗の逆数である。そして、温度センサ4による第1基準試料1の温度の測定が開始される。なお、この導電率及び温度の測定は、所定時間毎に継続して行われる。
 次に、第1基準試料1の乾燥処理と加湿処理を行う。これについて詳述する。まず、エアポンプ11が作動され、エアレータ10からエアーが噴出される。該噴出されたエアーは、第1基準試料乾燥手段8内に収容されている粒状のシリカゲル13の隙間を通過することにより乾燥エアーとなり、配管9を介して中間容器6に供給される。中間容器6に供給された乾燥エアーは配管7を介してエアレータ5に供給され、エアレータ5から噴出する乾燥エアーにより第1基準試料1の乾燥処理がなされる。この乾燥処理は所定時間(経過タイマの設定時間)なされる。
 その後、エアポンプ11を停止させ、乾燥処理から加湿処理に切り換える。加湿処理では、まず、エアポンプ17が作動され、エアレータ16からエアーが噴出される。該噴出されたエアーは、第1基準試料加湿手段14内に収容されている水19を通過することにより湿潤エアーとなり、配管15を介して中間容器6に供給される。中間容器6に供給された湿潤エアーは配管7を介してエアレータ5に供給され、エアレータ5から噴出する湿潤エアーにより第1基準試料1の加湿処理がなされる。この加湿処理は所定時間(経過タイマの設定時間)なされる。
 ここまでステーションAでの作動について説明してきたが、ステーションB及びCでも同じ作動がなされる。なお第1基準試料1、第2基準試料101、比較試料201は各々、温度センサ4、104、204によって温度が測定されている。そして、
(1)工程カウンタが設定値以上。
(2)経過タイマの乾燥処理及び加湿処理のカウント時間が設定値以上。
(3)第1基準試料1、第2基準試料101、比較試料201の各試料の温度差が設定値以下。
 この(1)~(3)の条件のうち、一つでも満たさない場合は、上述の工程カウンタが加算される工程まで戻り、以降の工程が繰り返される。即ち、第1基準試料1、第2基準試料101、比較試料201は各々、乾燥処理と加湿処理が少なくとも1回行われ、場合によっては交互に所定回数(複数回)繰り返される。
 また、この(1)~(3)の条件を全て満たす場合は、その時点で第1基準試料1、第2基準試料101、比較試料201の各々の導電率のデータが確定される。また第1基準試料1、第2基準試料101、比較試料201の各々の乾燥処理又は加湿処理は、ここで停止される。
 次に、確定された第1基準試料1、第2基準試料101、比較試料201の各々の導電率のデータに基づいて砂汚染度を評価する。これについては後述する実施例で詳述する。
 <実施例>
 以下、本発明の実施の一例について説明する。第1基準試料1、第2基準試料101、比較試料201は、上述の<試料>に示したものを使用した。ステーションA、B、Cとも、工程カウンタは、乾燥処理と加湿処理を交互に繰り返す回数を3回に設定した。経過タイマは、1回の乾燥処理時間を6分、加湿処理時間を4分に設定した。
 ステーションA、B、Cとも、導電率及び温度の測定は、12秒毎に継続して行った。第1基準試料1、第2基準試料101、比較試料201の各試料の温度差の設定値は1℃にした。そして、
(1)工程カウンタの値が3回になった。
(2)経過タイマの乾燥処理のカウント時間が6分、加湿処理のカウント時間が4分になった。
(3)第1基準試料1、第2基準試料101、比較試料201の各試料の温度差が0.6℃になった。
 このように、(1)~(3)の条件を全て満たしたので、その時点で第1基準試料1、第2基準試料101、比較試料201の各々の導電率のデータを確定した。確定された導電率のデータは、第1基準試料1が158μS(マイクロジーメンス)、第2基準試料101が737μS、比較試料201が343μSであった。これらが下記Ea~Ecの値になる。
 該確定された各々の導電率のデータに基づいて砂汚染度を評価した。これについて詳述する。
<評価係数算定>
 KEc =(Kb-Ka)/(Eb-Ea)×(Ec-Ea)+Ka  ・・・式1
※Ea:第1基準試料の導電率
 Eb:第2基準試料の導電率
 Ec:比較試料の導電率
 Ka:第1基準試料評価係数
 Kb:第2基準試料評価係数
 KEc:比較試料の導電率評価係数
 式1を用い、Kaを0、Kbを1としてKEcを算出した。
 KEc =(1-0)/(737-158)×(343-158)+0=0.32
 高品位の第1基準試料のKaを0に、低品位の第2基準試料のKbを1にしたので、式1により、比較試料の導電率評価係数を0~1の間の一次関数により算出することができる。
<砂汚染度評価>
 Pc=KEc×(LOIb-LOIa)+LOIa  ・・・式2
※LOIa:第1基準試料のLOI値
 LOIb:第2基準試料のLOI値
 KEc:比較試料の導電率評価係数
 Pc:比較試料の評価点
 式2を用い、第1基準試料及び第2基準試料のLOI値で比較試料の導電率を採点した。
 Pc=0.32×(1.06-0.64)+0.64=0.774
  式2では、第1基準試料と第2基準試料の既知のLOI値から、比較試料の評価点を算出することができる。
 第1基準試料の評価点PaをLOIaの値、第2基準試料の評価点PbをLOIbの値とした。
 その結果、各試料の評価点は、Pa=0.64、Pb=1.06、Pc=0.774となった。
 比較試料の評価点Pcは0.774であるが、これは比較試料の実際のLOI値である0.88に近い。
このようにすることで、比較試料の評価点は、LOI値の近似値として砂汚染度を評価できる。なお本発明において評価とは、砂汚染度がどの程度かを定量的に見定めることを意味する。
 本発明では、上述の実施形態で示した砂汚染度の評価データを、鋳物砂再生装置のローラの加圧力を制御するための基準として用いることができる。ここでいう鋳物砂再生装置とは例えば、モータにより駆動される回転ドラム内に連続して投入された鋳物砂が遠心力作用を受けて、回転ドラム内周壁に砂層を形成していったところをローラによって加圧することで、鋳物砂表面の付着物を剥離する方式の装置のことである。
 評価データが所定値(鋳物砂再生装置でどの程度の品位まで再生させたいかの目標値)より砂汚染度が高いことを示す場合は、ローラの加圧力を強くして鋳物砂の再生力を上げるようにする。評価データが所定値より砂汚染度が低いことを示す場合は、ローラの加圧力を弱くして鋳物砂の再生力を下げるようにする。評価データが所定値に近い砂汚染度を示す場合は、鋳物砂の再生力はそのままにする。このようにして、評価データを基準として鋳物砂再生装置のローラの加圧力を制御することができる。
 なお本発明では、第1、第2基準試料1、101と比較試料201を乾燥処理した後に加湿処理し、その後、第1、第2基準試料1、101と比較試料201の導電率を測定するようにしている。本構成によれば、加湿処理のみをした場合に比べ、砂粒に付着した汚染物質の表層部と下層部の水分の差を小さくできるという利点がある。
 また本発明では、上述の乾燥処理及び加湿処理を交互に複数回繰り返した後、第1、第2基準試料1、101と比較試料201の導電率を測定するようにしている。本構成によれば、砂粒に付着した汚染物質の表層部と下層部の水分の差を小さくできるという利点がある。
 さらに本発明では、第1、第2基準試料1、101と比較試料201の温度を測定する工程を有している。本構成によれば、第1基準試料1、第2基準試料101、比較試料201の各試料の温度を測定して温度差を算出することができ、各試料の温度差が可及的に小さい状態で各試料の導電率を測定することができるという利点がある。
 なお本発明の実施形態では、第1基準試料1、第2基準試料101、比較試料201の各試料を同じ条件で乾燥処理及び加湿処理している。また、各試料の温度差も可及的に小さくなるようにしている。このような状態(測定雰囲気)で各試料の導電率を測定しているから、各試料の導電率を可及的に同じ条件下で測定することができる。
 また本発明の実施形態では、第1基準試料1、第2基準試料101、比較試料201の各々の導電率のデータが確定される条件として、各試料の温度差が設定値以下になることが挙げられている。しかし、各試料の温度差が設定値以下になるまでに時間がかかりすぎる場合があり、このような場合は、各試料の温度差の設定値を大きくし、温度による導電率の補正を行うようにしてもよい。
 温度による導電率の補正とは、導電率確定時の各試料の温度差を算出し、該温度差に相当する導電率を、確定された導電率の測定値に加減して、該導電率のデータを補正することである。このように、温度による導電率の補正を行うようにすると、各試料の温度差が大きな場合でも各試料の導電率のデータが補正されるため、各試料の温度差の設定値を大きくし、該導電率のデータが確定されるまでの時間を短縮することができるという利点がある。
 さらに本発明の実施形態では、2種類の基準試料(第1基準試料1及び第2基準試料101)を用いたが、これに限定されるものではなく、基準試料を一つだけ用いるようにしてもよい。ただし、基準試料を複数用いるほうが、比較試料と比べる基準が多くなり、砂汚染度の評価がしやすくなる(分かりやすくなる)ため、より好ましい。
 さらに本発明の実施形態では、第1基準試料1、第2基準試料101、比較試料201をLOI(強熱減量)の多少を基準として区別しているが、これに限定されるものではなく、酸消費量の多少を基準として第1基準試料1、第2基準試料101、比較試料201を区別するようにしてもよい。
 さらに本発明の実施形態では、各試料の乾燥処理と加湿処理が交互に所定回数繰り返されるようにしている。加湿処理をすることにより、砂粒に付着した汚染物質にある程度の水分を吸収させることで電気を通りやすくしている。しかし、加湿処理だけだと砂粒に付着した汚染物質の表層部と下層部に湿度勾配が生じ、層厚の差が大きい場合に、薄い層の水分が先に飽和してしまい、導電率が正しく測定できないこともある。このため、乾燥処理と加湿処理を交互に繰り返すことにより、砂粒に付着した汚染物質の表層部と下層部の水分の差を小さくするようにしている。
 なお本発明の実施形態では、アルカリフェノール(水溶性)の自硬性プロセスに用いた自硬性鋳物砂を試料(基準試料及び比較試料)としているが、本発明に適用可能な試料は、これに限定されるものではない。この他に例えば、水ガラス、セメント又は塩類のいずれかを使用する無機自硬性プロセスの自硬性鋳物砂を試料としてもよい。また、自硬性鋳物砂に限らず、無機中子造型プロセスに用いた鋳物砂(中子砂)、もしくは、生型砂を試料としてもよい。
 以下に、本明細書および図面で用いた主な符号をまとめて示す。
1 第1基準試料
2 第1基準試料容器
3 第1基準試料導電率測定手段
4 第1基準試料温度測定手段
5 エアレータ
6 中間容器
7 配管
8 第1基準試料乾燥手段
9 配管
10 エアレータ
11 エアポンプ
12 配管
13 粒状のシリカゲル
14 第1基準試料加湿手段
15 配管
16 エアレータ
17 エアポンプ
18 配管
19 水
20 切替回路
21 導電率測定回路
21a 電圧計
21b 抵抗
21c 交流電源
22 制御手段
23 切替回路
24 温度測定回路
101 第2基準試料
102 第2基準試料容器
103 第2基準試料導電率測定手段
104 第2基準試料温度測定手段
105 エアレータ
106 中間容器
107 配管
108 第2基準試料乾燥手段
109 配管
110 エアレータ
111 エアポンプ
112 配管
113 粒状のシリカゲル
114 第2基準試料加湿手段
115 配管
116 エアレータ
117 エアポンプ
118 配管
119 水
201 比較試料
202 比較試料容器
203 比較試料導電率測定手段
204 比較試料温度測定手段
205 エアレータ
206 中間容器
207 配管
208 比較試料乾燥手段
209 配管
210 エアレータ
211 エアポンプ
212 配管
213 粒状のシリカゲル
214 比較試料加湿手段
215 配管
216 エアレータ
217 エアポンプ
218 配管
219 水
A B C ステーション

Claims (10)

  1.  鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する方法であって、
     前記鋳物砂の基準試料と比較試料を準備する工程と、
     前記基準試料と前記比較試料を加湿処理した後、前記基準試料と前記比較試料の前記導電率を測定する工程と、
     該測定された前記基準試料と前記比較試料の前記導電率に基づき前記砂汚染度を評価する工程と、を有することを特徴とする、
     鋳物砂の砂汚染度評価方法。
  2.  前記基準試料と前記比較試料を乾燥処理した後に前記加湿処理し、その後、前記基準試料と前記比較試料の前記導電率を測定することを特徴とする、
     請求項1記載の鋳物砂の砂汚染度評価方法。
  3.  前記乾燥処理及び前記加湿処理を交互に複数回繰り返した後、前記基準試料と前記比較試料の前記導電率を測定することを特徴とする、
     請求項2記載の鋳物砂の砂汚染度評価方法。
  4.  前記基準試料と前記比較試料の温度を測定する工程をさらに有することを特徴とする、
     請求項1~3のいずれかに記載の鋳物砂の砂汚染度評価方法。
  5.  前記基準試料と前記比較試料の温度差を算出する工程と、
     該温度差に相当する導電率を、前記測定された前記基準試料と前記比較試料の前記導電率に加減して該測定された導電率を補正する工程と、をさらに有することを特徴とする、
     請求項4記載の鋳物砂の砂汚染度評価方法。
  6.  前記評価された砂汚染度の評価データを鋳物砂再生装置のローラの加圧力を制御するための基準用に提供することを特徴とする、
     請求項1~3のいずれかに記載の鋳物砂の砂汚染度評価方法。
  7.  前記基準試料を複数用いることを特徴とする、
     請求項1~3のいずれかに記載の鋳物砂の砂汚染度評価方法。
  8.  鋳物砂の導電率を測定することにより、該鋳物砂の砂汚染度を評価する装置であって、
     前記鋳物砂の基準試料を収容する基準試料容器と、
     該基準試料容器に収容された前記基準試料の前記導電率を測定する基準試料導電率測定手段と、
     前記基準試料容器に収容された前記基準試料を加湿させる基準試料加湿手段と、
     前記鋳物砂の比較試料を収容する比較試料容器と、
     該比較試料容器に収容された前記比較試料の前記導電率を測定する比較試料導電率測定手段と、
     前記比較試料容器に収容された前記比較試料を加湿させる比較試料加湿手段と、を具備することを特徴とする、
     鋳物砂の砂汚染度評価装置。
  9.  前記基準試料容器に収容された前記基準試料を乾燥させる基準試料乾燥手段と、
     前記比較試料容器に収容された前記比較試料を乾燥させる比較試料乾燥手段と、をさらに具備することを特徴とする、
     請求項8記載の鋳物砂の砂汚染度評価装置。
  10.  前記基準試料容器に収容された前記基準試料の温度を測定する基準試料温度測定手段と、
     前記比較試料容器に収容された前記比較試料の温度を測定する比較試料温度測定手段と、をさらに具備することを特徴とする
     請求項8又は9のいずれかに記載の鋳物砂の砂汚染度評価装置。
PCT/JP2017/002880 2016-03-22 2017-01-27 鋳物砂の砂汚染度評価方法及び砂汚染度評価装置 WO2017163601A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/072,802 US20190033241A1 (en) 2016-03-22 2017-01-27 Method and apparatus for evaluating degree of contamination of foundry sand
CN201780008777.4A CN108603854A (zh) 2016-03-22 2017-01-27 铸造砂的砂污染度评价方法以及砂污染度评价装置
JP2018507083A JP6747503B2 (ja) 2016-03-22 2017-01-27 鋳物砂の砂汚染度評価方法及び砂汚染度評価装置
RU2018127756A RU2018127756A (ru) 2016-03-22 2017-01-27 Способ и устройство для оценки степени загрязненности формовочной смеси
EP17769648.1A EP3435074A4 (en) 2016-03-22 2017-01-27 SAND CONTAMINATION DEGREE ASSESSMENT METHOD AND SAND CONTAMINATION DEGREE ASSESSMENT DEVICE FOR FOUNDRY SAND
BR112018015169-6A BR112018015169A2 (ja) 2016-03-22 2017-01-27 A sand degree-of-contamination valuation method and a sand degree-of-contamination evaluation system of molding sand
MX2018009269A MX2018009269A (es) 2016-03-22 2017-01-27 Metodo y aparato para evaluar el grado de contaminacion de la arena de fundicion.
KR1020187021066A KR20180123007A (ko) 2016-03-22 2017-01-27 주물사의 모래 오염도 평가 방법 및 모래 오염도 평가 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056568 2016-03-22
JP2016056568 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163601A1 true WO2017163601A1 (ja) 2017-09-28

Family

ID=59899945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002880 WO2017163601A1 (ja) 2016-03-22 2017-01-27 鋳物砂の砂汚染度評価方法及び砂汚染度評価装置

Country Status (10)

Country Link
US (1) US20190033241A1 (ja)
EP (1) EP3435074A4 (ja)
JP (1) JP6747503B2 (ja)
KR (1) KR20180123007A (ja)
CN (1) CN108603854A (ja)
BR (1) BR112018015169A2 (ja)
MX (1) MX2018009269A (ja)
RU (1) RU2018127756A (ja)
TW (1) TW201734450A (ja)
WO (1) WO2017163601A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041822A1 (en) 2018-08-30 2020-03-05 Allan James Yeomans Method of validating a test and apparatus for use in the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540104B (zh) * 2020-12-17 2024-05-14 成都龙之泉科技股份有限公司 一种混凝土基体腐蚀控制质量检测方法
AU2022202462A1 (en) * 2021-04-19 2022-11-03 YS2 Humus Pty Limited Method of calibrating and operating apparatus for use in assessing the carbon content of soils

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122148A (ja) * 1982-01-13 1983-07-20 Sintokogio Ltd 鋳物砂粘土分含有量の測定方法およびその装置
JPH0661346U (ja) * 1991-03-30 1994-08-30 北海道銑鉄鋳物工業組合 鋳型砂自動解析装置
JPH0751791A (ja) * 1993-08-20 1995-02-28 Hayasaka Riko Kk エキスパートシステム
JPH07190975A (ja) * 1993-12-24 1995-07-28 Sintokogio Ltd 鋳物砂水分量の測定装置
JP2014000595A (ja) * 2012-06-20 2014-01-09 Sintokogio Ltd 鋳物砂再生装置及び鋳物砂再生方法
JP2015519200A (ja) * 2012-06-13 2015-07-09 新東工業株式会社 鋳物砂の混練調整方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600210A (en) * 1945-06-06 1948-04-02 Glacier Co Ltd Improvements in the control of moisture content in sands used for moulding
GB613822A (en) * 1943-11-05 1948-12-03 Henri Jean Daussan Improvements in and relating to molten metal containers
BE512953A (ja) * 1951-07-19
GB1105803A (en) * 1965-11-01 1968-03-13 Int Harvester Co Method for controlling the active clay content in sand moulding compositions
US5673637A (en) * 1991-07-22 1997-10-07 Crop Technology, Inc. Soil constituent sensor and precision agrichemical delivery system and method
USH1337H (en) * 1992-09-21 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Process for biodegradatioon of soil contaminants that contain volatile/semivolatile components
US7363112B2 (en) * 2004-05-10 2008-04-22 Brent Arthur Cartwright Digital moisture monitor controller with wide applications soil, and hydroponics moisture sensors, and optional X10 multi-sensor, multi-pump controller
US7183779B2 (en) * 2004-12-28 2007-02-27 Spectrum Technologies, Inc. Soil probe device and method of making same
US7655861B2 (en) * 2007-01-06 2010-02-02 Duley Wayne C Grounding and energy dispersion system
JP2009241094A (ja) * 2008-03-31 2009-10-22 Mazda Motor Corp 水溶性鋳型の製造装置
CN102240596A (zh) * 2011-06-17 2011-11-16 常州天合光能有限公司 一种回收砂浆质量的监控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122148A (ja) * 1982-01-13 1983-07-20 Sintokogio Ltd 鋳物砂粘土分含有量の測定方法およびその装置
JPH0661346U (ja) * 1991-03-30 1994-08-30 北海道銑鉄鋳物工業組合 鋳型砂自動解析装置
JPH0751791A (ja) * 1993-08-20 1995-02-28 Hayasaka Riko Kk エキスパートシステム
JPH07190975A (ja) * 1993-12-24 1995-07-28 Sintokogio Ltd 鋳物砂水分量の測定装置
JP2015519200A (ja) * 2012-06-13 2015-07-09 新東工業株式会社 鋳物砂の混練調整方法
JP2014000595A (ja) * 2012-06-20 2014-01-09 Sintokogio Ltd 鋳物砂再生装置及び鋳物砂再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435074A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041822A1 (en) 2018-08-30 2020-03-05 Allan James Yeomans Method of validating a test and apparatus for use in the method
EP3844480A4 (en) * 2018-08-30 2022-08-31 Allan James Yeomans METHOD FOR VALIDATING A TEST AND APPARATUS FOR USE IN THE METHOD
EP4276460A3 (en) * 2018-08-30 2024-01-17 Allan James Yeomans Method of validating a test and apparatus for use in the method
US11946947B2 (en) 2018-08-30 2024-04-02 Allan James Yeomans Method of validating a test and apparatus for use in the method

Also Published As

Publication number Publication date
CN108603854A (zh) 2018-09-28
EP3435074A1 (en) 2019-01-30
BR112018015169A2 (ja) 2018-12-18
US20190033241A1 (en) 2019-01-31
JPWO2017163601A1 (ja) 2019-01-31
TW201734450A (zh) 2017-10-01
RU2018127756A (ru) 2020-04-22
KR20180123007A (ko) 2018-11-14
JP6747503B2 (ja) 2020-08-26
EP3435074A4 (en) 2020-05-06
MX2018009269A (es) 2018-09-03

Similar Documents

Publication Publication Date Title
WO2017163601A1 (ja) 鋳物砂の砂汚染度評価方法及び砂汚染度評価装置
Oh et al. On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells
CN111157854A (zh) 电缆剩余寿命的处理方法、装置、存储介质以及处理器
JP2009008427A (ja) 受配電機器の余寿命診断方法
CN106295207A (zh) 基于气象数据统计的绝缘子污秽度评估方法
JP5836904B2 (ja) 絶縁材料の劣化診断方法及び装置
JP2003009316A (ja) 受配電設備の寿命診断方法
CN114018968A (zh) 用于评估电子辐照提升整支复合绝缘子抗老化性能的方法
CN104048913B (zh) 一种rtv材料老化程度判断方法
JP7014512B2 (ja) 電池用セパレータの製造方法及び電池用セパレータ製造装置
CN111037819B (zh) 一种改善静电消散特性的环氧绝缘复合材料制备方法
JP2008037130A (ja) 車両帯電電位評価方法
CN105644110A (zh) 快速玻璃贴膜方法
CN116819241A (zh) 一种绝缘子寿命检测方法及***
CN106054420A (zh) 一种tft玻璃基板铂金加热器的制作方法
JP6037611B2 (ja) 受配電機器の絶縁余寿命診断方法
CN105842107B (zh) 一种绝缘子表面积污的清理方法
Zhang et al. Computation of AC critical flashover voltage of insulators covered with ice
CN108414520B (zh) 一种绝缘清洗剂成膜附着性能测试方法
JP2013134111A (ja) 物体の腐食速度測定方法
KR101419699B1 (ko) 정전기 방지 기능을 갖는 클린 롤 및 이에 적합한 도전성 롤 제조 방법
US11867609B2 (en) Method and apparatus for accelerated corrosion testing
JP2007263570A (ja) 直流電動機のm値測定方法およびその装置
KR20080105852A (ko) 리튬이차전지의 극판 제조장치 및 극판 제조방법
JP5332037B2 (ja) 絶縁劣化モニタ装置、電気機器および絶縁劣化モニタ方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507083

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187021066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009269

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018015169

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769648

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769648

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018015169

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180725