WO2017163445A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2017163445A1
WO2017163445A1 PCT/JP2016/072920 JP2016072920W WO2017163445A1 WO 2017163445 A1 WO2017163445 A1 WO 2017163445A1 JP 2016072920 W JP2016072920 W JP 2016072920W WO 2017163445 A1 WO2017163445 A1 WO 2017163445A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
unit
indoor unit
indoor
learning
Prior art date
Application number
PCT/JP2016/072920
Other languages
French (fr)
Japanese (ja)
Inventor
守 濱田
勇人 堀江
潤一 萩谷
和也 有村
祐輔 門田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017163445A1 publication Critical patent/WO2017163445A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner that performs cooling or heating from a time earlier than the target time so that the room temperature becomes the target temperature at the set target time.
  • an air conditioner that starts an indoor unit at a time earlier than the target time by a preliminary operation time so that the room temperature becomes the target temperature at the set target time (see, for example, Patent Document 1).
  • the gain (tD / ⁇ T) is learned based on the relationship between the temperature difference ⁇ T between the room temperature and the target temperature when the indoor unit is started, and the operation time tD of the indoor unit, and the room temperature is targeted.
  • a preliminary operation time tD necessary for obtaining the temperature is obtained.
  • the relationship between the temperature difference ⁇ T and the operation time tD is generally not linear, there is a problem that if the learning is performed using only one gain, the accuracy of the preliminary operation time tD decreases (FIGS. 4 and 9). reference). If the preliminary operation time tD is too long, the target temperature Ts is reached at a time earlier than the target time ts, and power is wasted. On the other hand, if the preliminary operation time tD is too short, the room temperature Tr does not become the target temperature Ts even when the target time ts is reached, and comfort is reduced.
  • a main object of the present invention is to provide an air conditioner capable of obtaining the preliminary operation time of the indoor unit with high accuracy.
  • An air conditioner includes an indoor unit that adjusts a room temperature, a temperature detector that detects the room temperature, a temperature setting unit that sets a target temperature, a time setting unit that sets a target time, And a controller that activates the indoor unit at a time earlier than the target time by a preliminary operation time so that the room temperature reaches the target temperature at the target time.
  • the control device has a learning unit that learns a relationship between a temperature difference between a room temperature and a target temperature at the time of starting the indoor unit and an operation time of the indoor unit based on past operation data of the indoor unit, and learning of the learning unit And a calculation unit that obtains a preliminary operation time necessary for setting the room temperature to the target temperature based on the result.
  • the learning unit divides the relationship between the temperature difference and the operation time of the indoor unit into first to Nth learning regions according to the magnitude of the temperature difference, and for each learning region, the temperature difference and the operation time of the indoor unit To learn the relationship.
  • N is an integer of 2 or more.
  • the relationship between the temperature difference between the room temperature and the target temperature at the start of the indoor unit and the operation time of the indoor unit is divided into a plurality of learning regions according to the magnitude of the temperature difference, The relationship between the temperature difference and the operation time of the indoor unit is learned for each learning region, and the preliminary operation time is obtained based on the learning result. Therefore, it is possible to learn the relationship between the temperature difference and the operation time of the indoor unit with high accuracy both in the learning region where the temperature difference is small and in the learning region where the temperature difference is large. Can be obtained with high accuracy.
  • FIG. 1 It is a block diagram which shows the structure of the air conditioning apparatus by Embodiment 1 of this invention. It is a figure which shows the usage method of the indoor unit shown in FIG. It is a figure which shows the relationship between the operating time of an indoor unit at the time of air conditioning, and room temperature. It is a figure which shows the relationship between the temperature difference of room temperature and target temperature at the time of air_conditioning
  • FIG. 4 is a diagram for explaining a problem of the first embodiment. It is a block diagram which shows the structure of the air conditioning apparatus by Embodiment 2 of this invention.
  • FIG. 1 is a block diagram showing a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner includes an indoor unit 1, an operation unit 3, and a control device 6.
  • the indoor unit 1 is attached to the upper part of the wall or the ceiling of the room 9, and blows out cool air during cooling and blows out warm air during heating to adjust the room temperature.
  • the indoor unit 1 is controlled by the control device 6.
  • the indoor unit 1 sucks room air, cools and sucks out the sucked room air, and lowers the room temperature Tr to the target temperature Ts.
  • the indoor unit 1 sucks indoor air, warms and sucks out the sucked indoor air, and raises the indoor temperature Tr to the target temperature Ts.
  • the indoor unit 1 is provided with a temperature detector 2.
  • the temperature detector 2 detects a room temperature (room air temperature) Tr and outputs a signal indicating the detected value to the control device 6.
  • the operation unit 3 includes a target temperature setting unit 4 and a target time setting unit 5.
  • the target temperature setting unit 4 is operated by the user of the air conditioner in order to set the target temperature Ts.
  • the target time setting unit 5 is operated by the user of the air conditioner in order to set the target time ts.
  • the target time ts is a time at which the user wants the room temperature Tr to become the target temperature Ts. For example, when the time when the user returns home is set as the target time ts, the indoor unit 1 is activated at a time earlier than the target time ts by the preliminary operation time tD, and the indoor 9 Is adjusted to the target temperature Ts.
  • the operation unit 3 is, for example, a remote control device operated by a user, and includes a plurality of buttons for performing power on / off, switching between cooling and heating, setting a target temperature Ts, setting a target time ts, A liquid crystal display device that displays the set target temperature Ts, the target time ts, and the like, a clock that indicates the time, a transmitter that transmits a signal indicating the set target temperature Ts, the target time ts, and the like to the control device 6 are included.
  • the control device 6 may be provided in the housing of the indoor unit 1 or may be provided outside the housing.
  • the control device 6 controls the indoor unit 1 in accordance with signals from the operation unit 3 and the temperature detector 2.
  • the control device 6 activates the indoor unit 1 at the activation time tx that is the preliminary operation time tD before the target time ts so that the room temperature Tr reaches the target temperature Ts at the target time ts.
  • the control device 6 includes a learning unit 7 and a calculation unit 8.
  • the learning unit 7 operates based on a signal indicating a time from a clock (not shown) of the operation unit 3, a signal from the temperature detector 2 of the indoor unit 1, and the like.
  • the relationship between tD and room temperature Tr (operation data of indoor unit 1) is acquired and recorded in a built-in memory (not shown).
  • the learning unit 7 learns the relationship between the temperature difference ⁇ T between the room temperature Tr and the target temperature Ts when the indoor unit 1 is started, and the operation time tD of the indoor unit 1 based on the recorded past operation data.
  • the learning unit 7 divides the relationship between the temperature difference ⁇ T and the operation time tD of the indoor unit 1 into first to Nth learning regions, and the temperature difference ⁇ T and the operation time tD of the indoor unit 1 for each learning region. Learn relationships.
  • the temperature difference ⁇ T in the first learning region is smaller than the temperature difference ⁇ T in the second learning region.
  • the learning unit 7 approximates the relationship between the temperature difference ⁇ T and the operation time tD with a straight line for each learning region.
  • the calculation unit 8 obtains the preliminary operation time tD of the indoor unit 1 necessary for changing the room temperature Tr by the temperature difference ⁇ T based on the learning result of the learning unit 7.
  • the arithmetic unit 8 obtains a preliminary operation time (precooling time) tDc of the indoor unit 1 necessary for lowering the room temperature Tr by the temperature difference ⁇ Tc during cooling.
  • the arithmetic unit 8 obtains a preliminary operation time (pre-warming time) tDh of the indoor unit 1 necessary for raising the room temperature Tr by the temperature difference ⁇ Th during heating.
  • the indoor unit 1 is activated in response to ⁇ ⁇ t.
  • FIG. 3 is a diagram illustrating the relationship between the operation time tDc of the indoor unit 1 and the room temperature Tr during cooling.
  • the room temperature Tr gradually decreases.
  • the room temperature Tr decreases rapidly, but when the room temperature Tr decreases with time, the rate of decrease of the room temperature Tr decreases. This is because the heat entering the room 9 from the outside increases as the difference between the outside temperature and the room temperature Tr increases with time.
  • the learning unit 7 determines the operation time tD and the room temperature Tr shown in FIG.
  • operation data of the indoor unit 1 is acquired and recorded in a built-in memory (not shown).
  • FIG. 4 is a diagram showing the relationship between the temperature difference ⁇ Tc during cooling and the operation time tDc of the indoor unit 1.
  • the tangent slope tDc / ⁇ Tc of the curve C1 is small, and as the temperature difference ⁇ Tc increases, the tangential slope tDc / ⁇ Tc of the curve C1 increases.
  • the learning unit 7 obtains a curve C1 indicating the relationship between the temperature difference ⁇ Tc and the operation time tDc of the indoor unit 1 based on past operation data of the indoor unit 1.
  • the relationship between the temperature difference ⁇ Tc and the operation time tDc of the indoor unit 1 is generally represented by a curve C1 instead of a straight line. If this characteristic is approximated using one straight line (for example, L0), the error of tDc / ⁇ Tc increases. Therefore, in the first embodiment, the learning unit 7 changes the relationship between the temperature difference ⁇ Tc and the operation time tDc according to the magnitude of the temperature difference ⁇ Tc, as shown in FIG.
  • the learning area A2 is divided, and the relationship between the temperature difference ⁇ Tc and the operation time tDc of the indoor unit 1 is learned in each of the first and second learning areas A1 and A2.
  • the first learning area A1 is an area where ⁇ Tc ⁇ T1
  • the second learning area A2 is an area where T1 ⁇ Tc.
  • the learning unit 7 approximates the relationship between the temperature difference ⁇ Tc and the operation time tDc in the first learning region A1 with a straight line L1, and the relationship between the temperature difference ⁇ Tc and the operation time tDc in the second learning region A2 with a straight line L2. Approximate. In that case, you may approximate using the least squares method, and you may approximate using another method.
  • tDc A ⁇ ⁇ Tc and stored in the learning unit 7
  • tDc B ⁇ ⁇ Tc ⁇ C and stored in the learning unit 7.
  • A, B, and C is a positive real number, and A ⁇ B.
  • FIG. 6 is a flowchart showing the operation of the control device 6 during cooling.
  • the learning unit 7 approximates the relationship between the temperature difference ⁇ Tc and the operation time tDc by straight lines L1 and L2, sets the target temperature Ts using the target temperature setting unit 4, and sets the target time ts using the target time setting unit 5. It shall be set.
  • step S2 the calculation unit 8 calculates the room temperature Tr by the temperature difference ⁇ Tc obtained in step S1 based on the relationship between the temperature difference ⁇ Tc learned by the learning unit 7 and the operation time tDc (straight lines L1, L2 in FIG. 5). The preliminary operation time tDc required to reduce the value is obtained.
  • FIG. 7 is a diagram illustrating the time change of the room temperature Tr during cooling. As shown in FIG. 7, the operation of the indoor unit 1 is started at time tx that is earlier than the target time ts by the preliminary operation time tDc, the room temperature Tr is lowered, and the room temperature Tr reaches the target temperature Ts at the target time ts.
  • FIG. 8 is a diagram illustrating a relationship between the operation time tDc of the indoor unit 1 during heating and the room temperature Tr.
  • the indoor unit 1 when the indoor unit 1 is activated, the room temperature Tr gradually increases. At the start of heating, the room temperature Tr rises rapidly, but when the room temperature Tr increases with time, the room temperature Tr rises slowly. This is because the heat entering the room 9 from the outside increases as the difference between the outside temperature and the room temperature Tr increases with time.
  • the learning unit 7 displays a signal based on a signal indicating a time from a clock (not shown) of the operation unit 3 and a signal from the temperature detector 2 of the indoor unit 1. 8 is acquired (operation data of the indoor unit 1) and recorded in a built-in memory (not shown).
  • FIG. 9 is a diagram showing the relationship between the temperature difference ⁇ Th during heating and the operation time tDh of the indoor unit 1.
  • the tangent slope tDh / ⁇ Th of the curve C11 is small, and as the temperature difference ⁇ Th increases, the tangential slope tDh / ⁇ Th of the curve C11 increases.
  • the learning unit 7 obtains a curve C11 indicating the relationship between the temperature difference ⁇ Th and the operation time tDh of the indoor unit 1 based on past operation data recorded in a built-in memory (not shown).
  • the relationship between the temperature difference ⁇ Th and the operation time tDh of the indoor unit 1 is generally represented not by a straight line but by a curve C11. If this characteristic is approximated using a single straight line (for example, L10), the error of tDh / ⁇ Th increases. Therefore, in the first embodiment, as shown in FIG. 10, the learning unit 7 determines the relationship between the temperature difference ⁇ Th and the operation time tDh of the indoor unit 1 in the first learning region according to the magnitude of the temperature difference ⁇ Th. Dividing into A11 and the second learning area A12, the relationship between the temperature difference ⁇ Th and the operating time tDh of the indoor unit 1 is learned in each of the first and second learning areas A11, A12.
  • the first learning region A11 is a region where ⁇ Th ⁇ T11
  • the second learning region A12 is a region where T11 ⁇ Th.
  • the learning unit 7 approximates the relationship between the temperature difference ⁇ Th and the operation time tDh in the first learning region A11 with a straight line L11, and the relationship between the temperature difference ⁇ Th and the operation time tDh in the second learning region A12 with a straight line L12. Approximate. In that case, you may approximate using the least squares method, and you may approximate using another method.
  • E, F, and G is a positive real number, and E ⁇ F.
  • the calculation unit 8 is based on the relationship between the temperature difference ⁇ Th learned by the learning unit 7 and the operation time tDh (straight lines L11 and L12 in FIG. 5), and the preliminary operation time necessary for increasing the room temperature Tr by the temperature difference ⁇ Th. tDh is obtained.
  • FIG. 11 is a flowchart showing the operation of the control device 6 during heating.
  • the learning unit 7 learns the relationship between the temperature difference ⁇ Th and the operation time tDh, the target temperature Ts is set using the target temperature setting unit 4, and the target time ts is set using the target time setting unit 5. To do.
  • step S12 the arithmetic unit 8 calculates the room temperature Tr by the temperature difference ⁇ Th obtained in step S11 based on the relationship between the temperature difference ⁇ Th learned by the learning unit 7 and the operation time tDh (straight lines L11, L12 in FIG. 10). The preliminary operation time tDh required to raise the value is obtained.
  • step S13 the control device 6 obtains a difference ⁇ t between the target time ts set using the target time setting unit 5 and the current time tn.
  • FIG. 12 is a diagram illustrating the time change of the room temperature Tr during heating. As shown in FIG. 12, the operation of the indoor unit 1 is started at time tx that is earlier than the target time ts by the preliminary operation time tDh, the room temperature Tr rises, and the room temperature Tr reaches the target temperature Ts at the target time ts.
  • Is divided into a plurality of learning areas A1, A2 (or A11, A12) according to the magnitude of the temperature difference ⁇ Tc (or ⁇ Th), and the temperature difference ⁇ Tc (or ⁇ Th) and the operation time of the indoor unit 1 are determined for each learning area.
  • the relationship with tDc (or tDh) is learned, and the preliminary operation time tDc (or tDh) of the indoor unit 1 is obtained based on the learning result.
  • the temperature difference ⁇ Tc (or ⁇ Th) and the operation time tDc (or tDh) of the indoor unit 1 are also obtained in the learning region where the temperature difference ⁇ Tc (or ⁇ Th) is small and in the learning region where the temperature difference ⁇ Tc (or ⁇ Th) is large.
  • the preliminary operation time tDc (or tDh) of the indoor unit 1 can be obtained with high accuracy. For this reason, the room temperature Tr reaches the target temperature Ts at a time earlier than the target time ts and power consumption increases, or the room temperature Tr reaches the target temperature Ts at a time later than the target time ts, resulting in a decrease in comfort. This makes it possible to realize optimal start-up control that achieves both energy saving and comfort.
  • the relationship between the temperature difference ⁇ Tc (or ⁇ Th) and the operation time tDc (or tDh) is represented by two straight lines L1, L2 (or L11, L12).
  • the preliminary operation time tDc (or tDh) of the indoor unit 1 is obtained by approximation, and the indoor unit 1 is started at a time tx that is earlier than the target time ts by the preliminary operation time tDc (or tDh).
  • the temperature difference ⁇ Tc (or ⁇ Th) is small, the time for changing from the room temperature Tr to the target temperature Ts is shortened, and the room temperature Tr may overshoot.
  • FIG. 13 is a diagram illustrating the time change of the room temperature Tr during cooling, and is a diagram contrasted with FIG.
  • the preliminary operation time tDc of the indoor unit 1 becomes short
  • the room temperature Tr decreases below the target temperature Ts. May end up.
  • power is wasted as much as the overshoot.
  • FIG. 14 is a diagram showing the configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention, and is a diagram contrasted with FIG.
  • the air conditioner includes an indoor unit 1A, a heat source unit (temperature adjustment unit) 10, an operation unit 3, and a control unit 6A.
  • the indoor unit 1 ⁇ / b> A is attached to the upper part of the wall of the room 9 or the ceiling, like the indoor unit 1.
  • the indoor unit 1A includes a flow rate adjustment valve (flow rate adjustment unit) 11, a heat exchanger 12, a blower 13, and temperature detectors 2 and 14.
  • a flow rate adjustment valve flow rate adjustment unit
  • One end of the flow rate adjusting valve 11 is connected to the discharge port of the heat source device 10 via the pipe 15, and the other end is connected to the suction port of the heat exchanger 12 via the pipe 16.
  • the outlet of the heat exchanger 12 is connected to the suction port of the heat source unit 10 via the pipe 17.
  • the heat source device 10 is controlled by the control device 6A. At the time of cooling, the heat source device 10 cools water (heat medium) returned from the heat exchanger 12 via the pipe 17 to generate cold water, and the cold water is supplied via the pipe 15, the flow rate adjustment valve 11, and the pipe 16. To the heat exchanger 12. The temperature of the cold water can be controlled. The cooling capacity of the air conditioner increases as the temperature of the cold water decreases.
  • the heat source unit 10 warms the water returned from the heat exchanger 12 through the pipe 17 to generate hot water, and the hot water is supplied to the heat exchanger through the pipe 15, the flow control valve 11, and the pipe 16. 12 is supplied.
  • the temperature of the hot water can be controlled.
  • the heating capacity of the air conditioner increases with the temperature of the hot water.
  • the flow rate adjusting valve 11 is controlled by the control device 6A and adjusts the flow rate of cold water (or hot water) supplied from the heat source unit 10 to the heat exchanger 12.
  • the heat exchanger 12 performs heat exchange between cold water (or hot water) supplied from the heat source device 10 and room air.
  • the room air is cooled by cold water during cooling, and the room air is warmed by hot water during heating.
  • the cooling capacity increases according to the flow rate of cold water, and the heating capacity increases according to the flow rate of hot water.
  • the blower 13 is controlled by the control device 6 ⁇ / b> A, sucks room air, and supplies it to the heat exchanger 12. At the time of cooling, the air cooled in the heat exchanger 12 is blown out into the room 9. During heating, air warmed in the heat exchanger 12 is blown out into the room 9. The amount of air generated by the blower 13 can be controlled. Both the cooling capacity and the heating capacity increase according to the air volume of the blower 13.
  • the temperature detector 2 detects the room temperature Tr and outputs a signal indicating the detected value to the control device 6A.
  • the temperature detector 14 detects the temperature of cold water (or hot water) passing through the pipe 17 and outputs a signal indicating the detected value to the control device 6A.
  • the operation unit 3 is the one shown in FIG. 1, and is used by the user to set the target temperature Ts and the target time ts.
  • the control device 6 ⁇ / b> A controls the heat source device 10, the flow rate adjustment valve 11, and the blower 13 based on signals from the operation unit 3 and output signals from the temperature detectors 2 and 14. Control.
  • the control device 6A may be provided in the casing of the indoor unit 1A, or may be provided outside the casing of the indoor unit 1A.
  • FIG. 15 is a diagram illustrating the operation of the control device 6A during cooling.
  • the air flow capacity of the blower 13 is set to a low level. Set. Thereby, the cooling capacity of the indoor unit 1A can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
  • the air blowing capability of the blower 13 is set to a high level Set. Thereby, the cooling capacity of the indoor unit 1A can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
  • FIG. 16 is a diagram illustrating the operation of the control device 6A during heating.
  • the control device 6A reduces the blowing capacity of the blower 13 to a low level. Set. Thereby, the heating capability of 1 A of indoor units can be made small, the overshoot of room temperature Tr can be suppressed, and power consumption can be reduced.
  • the control device 6A is in the second learning region A12 where the temperature difference ⁇ Th between the target temperature Ts and the room temperature Tr is larger than T11, and when heating is started based on the straight line L12, the blowing capacity of the blower 13 is set to a high level. Set. Thereby, the heating capability of the indoor unit 1A can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
  • the present invention is not limited to this, and the temperature difference ⁇ Tc (or ⁇ Th) is the first learning region A1 (or A11). The same effect can be obtained if the air conditioning capacity is made lower than the air conditioning capacity when the temperature difference ⁇ Tc (or ⁇ Th) is in the second learning region A2 (or A12).
  • Air conditioning capacity includes cooling capacity and heating capacity.
  • As a method of reducing the cooling capacity there is a method of increasing the temperature of the cold water by controlling the heat source device 10.
  • As a method of lowering the heating capacity there is a method of controlling the heat source device 10 to lower the temperature of the hot water.
  • As a method of reducing the cooling capacity and the heating capacity there is a method of controlling the flow rate adjusting valve 11 to reduce the flow rate of cold water (or hot water).
  • FIG. 17 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention, and is a diagram contrasted with FIG.
  • the air conditioner includes an indoor unit 1B, an outdoor unit 20, an operation unit 3, and a control device 6B.
  • the indoor unit 1 ⁇ / b> B is attached to the upper part of the wall of the room 9 or the ceiling, like the indoor unit 1.
  • the outdoor unit 20 is installed outdoors.
  • the control device 6B may be provided in the housing of the indoor unit 1B, or may be provided outside the housing of the indoor unit 1B.
  • the operation unit 3 may be provided on the outer surface of the casing of the indoor unit 1B, or may be provided separately from the indoor unit 1B as a remote controller.
  • the outdoor unit 20 includes a compressor 21, a four-way valve 22, and an outdoor heat exchanger 23.
  • the indoor unit 1B includes an expansion valve 24, an indoor heat exchanger 25, a blower 26, and the temperature detector 2.
  • the compressor 21 is controlled by the control device 6B, compresses the refrigerant (heat medium) sucked from the suction port 21a, and discharges high-temperature and high-pressure refrigerant from the discharge port 21b. By controlling the operating frequency of the compressor 21, the flow rate and temperature of the refrigerant can be controlled.
  • the four-way valve 22 is controlled by the control device 6B.
  • the four-way valve 22 connects the suction port 21a of the compressor 21 to the indoor heat exchanger 25 and connects the discharge port 21b to the outdoor heat exchanger 23 during cooling.
  • the four-way valve 22 connects the suction port 21a of the compressor 21 to the outdoor heat exchanger 23 and connects the discharge port 21b to the indoor heat exchanger 25 during heating.
  • the outdoor heat exchanger 23 performs heat exchange between the refrigerant and the outside air.
  • the expansion valve 24 is provided between the outdoor heat exchanger 23 and the indoor heat exchanger 25.
  • the expansion valve 24 is controlled by the control device 6B and controls the flow rate of the refrigerant and expands the refrigerant. By controlling the opening degree of the expansion valve 24, the flow rate and temperature of the refrigerant can be controlled.
  • the opening degree of the expansion valve 24 is set according to the operating frequency of the compressor 21.
  • the indoor heat exchanger 25 performs heat exchange between the refrigerant and the room air.
  • the blower 26 is controlled by the control device 6B, sucks room air, and supplies it to the indoor heat exchanger 25. At the time of cooling, air cooled in the indoor heat exchanger 25 is blown out into the room 9. During heating, air warmed in the indoor heat exchanger 25 is blown out into the room 9. The amount of air generated by the blower 26 can be controlled. Both the cooling capacity and the heating capacity increase according to the air volume of the blower 26.
  • the temperature detector 2 detects the room temperature Tr and outputs a signal indicating the detected value to the control device 6B.
  • the operation unit 3 is the one shown in FIG. 1 and is operated by the user to set the target temperature Ts and the target time ts.
  • the control device 6 ⁇ / b> B is based on a signal from the operation unit 3 and an output signal from the temperature detector 2. To control.
  • the refrigerant heat-exchanged with indoor air by the indoor heat exchanger 25 is supplied to the suction port 21a of the compressor 21 through the four-way valve 22 and is compressed by the compressor 21.
  • the high-temperature and high-pressure refrigerant discharged from the discharge port 21 b of the compressor 21 is supplied to the outdoor heat exchanger 23 via the four-way valve 22, and heat is exchanged with the outside air in the outdoor heat exchanger 23.
  • the refrigerant heat-exchanged by the outdoor heat exchanger 23 is expanded by the expansion valve 24 and becomes a low temperature.
  • the expanded low-temperature refrigerant exchanges heat with indoor air in the indoor heat exchanger 25, and then returns to the suction port 21a of the compressor 21 via the four-way valve 22.
  • the room air is sucked by the blower 26 and cooled by the indoor heat exchanger 25 and then blown out into the room 9.
  • the control device 6B When the target time ts is set, as shown in FIG. 15, the control device 6B is in the first learning region A1 where the temperature difference ⁇ Tc between the room temperature Tr and the target temperature Ts is smaller than T1, and is based on the straight line L1.
  • the blowing capacity of the blower 26 When the cooling is started, the blowing capacity of the blower 26 is set to a low level. Thereby, the cooling capability of the indoor unit 1B can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
  • the air blowing capacity of the blower 26 is set to a high level. Set. As a result, the cooling capacity of the indoor unit 1B can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
  • the refrigerant heat-exchanged with the outside air by the outdoor heat exchanger 23 is supplied to the suction port 21 a of the compressor 21 through the four-way valve 22 and is compressed by the compressor 21.
  • the high-temperature and high-pressure refrigerant discharged from the discharge port 21 b of the compressor 21 is supplied to the indoor heat exchanger 25 through the four-way valve 22, and is heat-exchanged with indoor air in the indoor heat exchanger 25.
  • the room air is sucked by the blower 26 and heated by the indoor heat exchanger 25 and then blown into the room 9.
  • the refrigerant heat-exchanged by the indoor heat exchanger 25 is expanded by the expansion valve 24 and becomes a low temperature.
  • the expanded low-temperature refrigerant exchanges heat with indoor air in the indoor heat exchanger 25, and then returns to the suction port 21a of the compressor 21 via the four-way valve 22.
  • the control device 6B is in the first learning region A11 where the temperature difference ⁇ Th between the target temperature Ts and the room temperature Tr is smaller than T11, and when the heating starts based on the straight line L11, 26 blowing capacity is set to a low level. Thereby, the heating capability of the indoor unit 1B can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
  • the control device 6B is in the second learning area A12 where the temperature difference ⁇ Th between the target temperature Ts and the room temperature Tr is larger than T11, and when the heating is started based on the straight line L12, the blowing capacity of the blower 26 is set to a high level. Set. Thereby, the heating capability of the indoor unit 1B can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
  • the present invention is not limited to this, and the temperature difference ⁇ Tc (or ⁇ Th) is the first learning region A1 (or A11). The same effect can be obtained if the air conditioning capacity is made lower than the air conditioning capacity when the temperature difference ⁇ Tc (or ⁇ Th) is in the second learning region A2 (or A12).
  • the operating frequency of the compressor 21 As a method of reducing the air conditioning capacity, there is a method of reducing the operating frequency of the compressor 21.
  • the opening degree of the expansion valve 24 is set according to the operating frequency of the compressor 21.
  • the compressor 21 and the expansion valve 24 jointly constitute both a flow rate adjusting unit that adjusts the flow rate of the refrigerant (heat medium) and a temperature adjusting unit that adjusts the temperature of the refrigerant (heat medium).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air-conditioning device is equipped with a control device (6), which activates an indoor unit (1) at a time (tx) earlier than a target time (ts) by a preliminary operation time period so that room temperature (Tr) reaches the target temperature (Ts) at the target time (ts). The control device (6) includes a learning unit (7) that learns the relationship between the operation time of the indoor unit (1) and the temperature difference between the room temperature (Tr) at the start-up of the indoor unit (1) and the target temperature (Ts) on the basis of the past operation data of the indoor unit (1) and a calculating unit (8) that calculates the preliminary operation time period required for setting the room temperature (Tr) at the target temperature (Ts) on the basis of the learning result of the learning unit (7). The learning unit (7) separates the relationship between the operation time of the indoor unit and the temperature difference into a plurality of learning regions according to the magnitude of the temperature difference, and learns the relationship between the operation time of the indoor unit and the temperature difference in each of the learning regions.

Description

空気調和装置Air conditioner
 この発明は空気調和装置に関し、特に、設定された目標時刻に室温が目標温度になるように、目標時刻よりも早い時刻から冷房または暖房を行なう空気調和装置に関する。 The present invention relates to an air conditioner, and more particularly to an air conditioner that performs cooling or heating from a time earlier than the target time so that the room temperature becomes the target temperature at the set target time.
 従来より、設定された目標時刻に室温が目標温度になるように、目標時刻よりも予備運転時間だけ早い時刻に室内機を起動させる空気調和装置がある(たとえば、特許文献1参照)。このような空気調和装置では、室内機の起動時における室温と目標温度との温度差ΔTと、室内機の運転時間tDとの関係に基づいてゲイン(tD/ΔT)を学習し、室温を目標温度にするために必要な予備運転時間tDを求める。 Conventionally, there is an air conditioner that starts an indoor unit at a time earlier than the target time by a preliminary operation time so that the room temperature becomes the target temperature at the set target time (see, for example, Patent Document 1). In such an air conditioner, the gain (tD / ΔT) is learned based on the relationship between the temperature difference ΔT between the room temperature and the target temperature when the indoor unit is started, and the operation time tD of the indoor unit, and the room temperature is targeted. A preliminary operation time tD necessary for obtaining the temperature is obtained.
特開2014-20720号公報JP 2014-20720 A
 しかし、温度差ΔTと運転時間tDとの関係は一般的には線形でないので、1つのゲインのみを用いて学習すると、予備運転時間tDの精度が低下するという問題がある(図4、図9参照)。予備運転時間tDが長過ぎると、目標時刻tsよりも早い時刻に目標温度Tsに到達してしまい、電力が無駄に消費される。逆に、予備運転時間tDが短か過ぎると、目標時刻tsになっても室温Trが目標温度Tsにならず、快適性が低下してしまう。 However, since the relationship between the temperature difference ΔT and the operation time tD is generally not linear, there is a problem that if the learning is performed using only one gain, the accuracy of the preliminary operation time tD decreases (FIGS. 4 and 9). reference). If the preliminary operation time tD is too long, the target temperature Ts is reached at a time earlier than the target time ts, and power is wasted. On the other hand, if the preliminary operation time tD is too short, the room temperature Tr does not become the target temperature Ts even when the target time ts is reached, and comfort is reduced.
 それゆえに、この発明の主たる目的は、室内機の予備運転時間を高精度で求めることが可能な空気調和装置を提供することである。 Therefore, a main object of the present invention is to provide an air conditioner capable of obtaining the preliminary operation time of the indoor unit with high accuracy.
 この発明に係る空気調和装置は、室温を調整する室内機と、室温を検出する温度検出器と、目標温度を設定するための温度設定部と、目標時刻を設定するための時刻設定部と、目標時刻に室温が目標温度に到達するように、目標時刻よりも予備運転時間だけ早い時刻に室内機を起動させる制御装置とを備えたものである。制御装置は、室内機の過去の運転データに基づいて、室内機の起動時における室温と目標温度との温度差と、室内機の運転時間との関係を学習する学習部と、学習部の学習結果に基づいて、室温を目標温度にするために必要な予備運転時間を求める演算部とを含む。学習部は、温度差と室内機の運転時間との関係を温度差の大きさに応じて第1~第Nの学習領域に分割し、各学習領域毎に温度差と室内機の運転時間との関係を学習する。Nは2以上の整数である。 An air conditioner according to the present invention includes an indoor unit that adjusts a room temperature, a temperature detector that detects the room temperature, a temperature setting unit that sets a target temperature, a time setting unit that sets a target time, And a controller that activates the indoor unit at a time earlier than the target time by a preliminary operation time so that the room temperature reaches the target temperature at the target time. The control device has a learning unit that learns a relationship between a temperature difference between a room temperature and a target temperature at the time of starting the indoor unit and an operation time of the indoor unit based on past operation data of the indoor unit, and learning of the learning unit And a calculation unit that obtains a preliminary operation time necessary for setting the room temperature to the target temperature based on the result. The learning unit divides the relationship between the temperature difference and the operation time of the indoor unit into first to Nth learning regions according to the magnitude of the temperature difference, and for each learning region, the temperature difference and the operation time of the indoor unit To learn the relationship. N is an integer of 2 or more.
 この発明に係る空気調和装置では、室内機の起動時における室温と目標温度との温度差と、室内機の運転時間との関係を温度差の大きさに応じて複数の学習領域に分割し、各学習領域毎に温度差と室内機の運転時間との関係を学習し、その学習結果に基づいて予備運転時間を求める。したがって、温度差が小さな学習領域においても、温度差が大きな学習領域においても、温度差と室内機の運転時間との関係を高精度で学習することができ、その結果、室内機の予備運転時間を高精度で求めることができる。 In the air conditioner according to the present invention, the relationship between the temperature difference between the room temperature and the target temperature at the start of the indoor unit and the operation time of the indoor unit is divided into a plurality of learning regions according to the magnitude of the temperature difference, The relationship between the temperature difference and the operation time of the indoor unit is learned for each learning region, and the preliminary operation time is obtained based on the learning result. Therefore, it is possible to learn the relationship between the temperature difference and the operation time of the indoor unit with high accuracy both in the learning region where the temperature difference is small and in the learning region where the temperature difference is large. Can be obtained with high accuracy.
この発明の実施の形態1による空気調和装置の構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning apparatus by Embodiment 1 of this invention. 図1に示した室内機の使用方法を示す図である。It is a figure which shows the usage method of the indoor unit shown in FIG. 冷房時における室内機の運転時間と室温との関係を示す図である。It is a figure which shows the relationship between the operating time of an indoor unit at the time of air conditioning, and room temperature. 冷房時における室温および目標温度の温度差と室内機の運転時間との関係を示す図である。It is a figure which shows the relationship between the temperature difference of room temperature and target temperature at the time of air_conditioning | cooling, and the operation time of an indoor unit. 冷房時における学習部の学習方法を説明するための図である。It is a figure for demonstrating the learning method of the learning part at the time of air_conditioning | cooling. 冷房時における制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus at the time of air_conditioning | cooling. 冷房時における空気調和装置の動作を示す図である。It is a figure which shows operation | movement of the air conditioning apparatus at the time of air_conditioning | cooling. 暖房時における室内機の運転時間と室温との関係を示す図である。It is a figure which shows the relationship between the operating time of the indoor unit at the time of heating, and room temperature. 暖房時における室温および目標温度の温度差と室内機の運転時間との関係を示す図である。It is a figure which shows the relationship between the temperature difference of the room temperature and the target temperature at the time of heating, and the operation time of an indoor unit. 暖房時における学習部の学習方法を説明するための図である。It is a figure for demonstrating the learning method of the learning part at the time of heating. 暖房時における制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus at the time of heating. 暖房時における空気調和装置の動作を示す図である。It is a figure which shows operation | movement of the air conditioning apparatus at the time of heating. 実施の形態1の問題点を説明するための図である。FIG. 4 is a diagram for explaining a problem of the first embodiment. この発明の実施の形態2による空気調和装置の構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning apparatus by Embodiment 2 of this invention. 冷房時における空気調和装置の動作を示す図である。It is a figure which shows operation | movement of the air conditioning apparatus at the time of air_conditioning | cooling. 暖房時における空気調和装置の動作を示す図である。It is a figure which shows operation | movement of the air conditioning apparatus at the time of heating. この発明の実施の形態3による空気調和装置の構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning apparatus by Embodiment 3 of this invention.
 [実施の形態1]
 図1は、この発明の実施の形態1による空気調和装置の構成を示すブロック図である。図1において、この空気調和装置は、室内機1、操作部3、および制御装置6を備える。室内機1は、図2に示すように、室内9の壁の上部、あるいは天井に取り付けられ、冷房時には冷風を吹き出し、暖房時には温風を吹き出し、室内温度を調整するものである。
[Embodiment 1]
1 is a block diagram showing a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 1, the air conditioner includes an indoor unit 1, an operation unit 3, and a control device 6. As shown in FIG. 2, the indoor unit 1 is attached to the upper part of the wall or the ceiling of the room 9, and blows out cool air during cooling and blows out warm air during heating to adjust the room temperature.
 図1に戻って、室内機1は、制御装置6によって制御される。室内機1は、冷房時には、室内空気を吸い込み、吸い込んだ室内空気を冷やして吹き出し、室内温度Trを目標温度Tsに下げる。室内機1は、暖房時には、室内空気を吸い込み、吸い込んだ室内空気を暖めて吹き出し、室内温度Trを目標温度Tsに上げる。室内機1には、温度検出器2が設けられている。温度検出器2は、室温(室内空気の温度)Trを検出し、検出値を示す信号を制御装置6に出力する。 Referring back to FIG. 1, the indoor unit 1 is controlled by the control device 6. During cooling, the indoor unit 1 sucks room air, cools and sucks out the sucked room air, and lowers the room temperature Tr to the target temperature Ts. During heating, the indoor unit 1 sucks indoor air, warms and sucks out the sucked indoor air, and raises the indoor temperature Tr to the target temperature Ts. The indoor unit 1 is provided with a temperature detector 2. The temperature detector 2 detects a room temperature (room air temperature) Tr and outputs a signal indicating the detected value to the control device 6.
 操作部3は、目標温度設定部4および目標時刻設定部5を含む。目標温度設定部4は、目標温度Tsを設定するために、空気調和装置のユーザによって操作される。目標時刻設定部5は、目標時刻tsを設定するために、空気調和装置のユーザによって操作される。目標時刻tsは、ユーザにとって室内温度Trが目標温度Tsになっていて欲しい時刻である。たとえば、ユーザが帰宅する時刻を目標時刻tsとして設定すると、その目標時刻tsよりも予備運転時間tDだけ早い時刻に室内機1が起動され、ユーザが帰宅した時刻(すなわち目標時刻ts)に室内9が目標温度Tsに調整される。 The operation unit 3 includes a target temperature setting unit 4 and a target time setting unit 5. The target temperature setting unit 4 is operated by the user of the air conditioner in order to set the target temperature Ts. The target time setting unit 5 is operated by the user of the air conditioner in order to set the target time ts. The target time ts is a time at which the user wants the room temperature Tr to become the target temperature Ts. For example, when the time when the user returns home is set as the target time ts, the indoor unit 1 is activated at a time earlier than the target time ts by the preliminary operation time tD, and the indoor 9 Is adjusted to the target temperature Ts.
 操作部3は、たとえば、ユーザによって操作されるリモートコントロール装置であり、電源のオン/オフ、冷房と暖房の切り換え、目標温度Tsの設定、目標時刻tsの設定などを行なうための複数のボタン、設定された目標温度Ts、目標時刻tsなどを表示する液晶表示装置、時刻を示す時計、設定された目標温度Ts、目標時刻tsなどを示す信号を制御装置6に送信する送信機などを含む。 The operation unit 3 is, for example, a remote control device operated by a user, and includes a plurality of buttons for performing power on / off, switching between cooling and heating, setting a target temperature Ts, setting a target time ts, A liquid crystal display device that displays the set target temperature Ts, the target time ts, and the like, a clock that indicates the time, a transmitter that transmits a signal indicating the set target temperature Ts, the target time ts, and the like to the control device 6 are included.
 制御装置6は、室内機1の筐体内に設けられていてもよいし、筐体外に設けられていても構わない。制御装置6は、操作部3および温度検出器2からの信号に従って室内機1を制御する。制御装置6は、目標時刻tsに室温Trが目標温度Tsに到達するように、目標時刻tsよりも予備運転時間tDだけ前の起動時刻txに室内機1を起動させる。制御装置6は、学習部7および演算部8を含む。 The control device 6 may be provided in the housing of the indoor unit 1 or may be provided outside the housing. The control device 6 controls the indoor unit 1 in accordance with signals from the operation unit 3 and the temperature detector 2. The control device 6 activates the indoor unit 1 at the activation time tx that is the preliminary operation time tD before the target time ts so that the room temperature Tr reaches the target temperature Ts at the target time ts. The control device 6 includes a learning unit 7 and a calculation unit 8.
 学習部7は、室内機1が運転される度に、操作部3の時計(図示せず)からの時刻を示す信号、室内機1の温度検出器2からの信号などに基づいて、運転時間tDと室温Trの関係(室内機1の運転データ)を取得し、内蔵メモリ(図示せず)に記録する。学習部7は、記録した過去の運転データに基づいて、室内機1の起動時における室温Trと目標温度Tsとの温度差ΔTと、室内機1の運転時間tDとの関係を学習する。学習部7は、温度差ΔTと室内機1の運転時間tDとの関係を第1~第Nの学習領域に分割し、各学習領域毎に温度差ΔTと室内機1の運転時間tDとの関係を学習する。Nは2以上の整数である。ここでは、N=2の場合について説明する。第1の学習領域における温度差ΔTは、第2の学習領域における温度差ΔTよりも小さい。 Each time the indoor unit 1 is operated, the learning unit 7 operates based on a signal indicating a time from a clock (not shown) of the operation unit 3, a signal from the temperature detector 2 of the indoor unit 1, and the like. The relationship between tD and room temperature Tr (operation data of indoor unit 1) is acquired and recorded in a built-in memory (not shown). The learning unit 7 learns the relationship between the temperature difference ΔT between the room temperature Tr and the target temperature Ts when the indoor unit 1 is started, and the operation time tD of the indoor unit 1 based on the recorded past operation data. The learning unit 7 divides the relationship between the temperature difference ΔT and the operation time tD of the indoor unit 1 into first to Nth learning regions, and the temperature difference ΔT and the operation time tD of the indoor unit 1 for each learning region. Learn relationships. N is an integer of 2 or more. Here, a case where N = 2 is described. The temperature difference ΔT in the first learning region is smaller than the temperature difference ΔT in the second learning region.
 学習部7は、各学習領域毎に温度差ΔTと運転時間tDとの関係を直線で近似する。学習部7は、冷房時における温度差ΔTc=Tr-Tsと運転時間tDcとの関係を学習するとともに、暖房時における温度差ΔTh=Ts-Trと運転時間tDhとの関係を学習する。 The learning unit 7 approximates the relationship between the temperature difference ΔT and the operation time tD with a straight line for each learning region. The learning unit 7 learns the relationship between the temperature difference ΔTc = Tr−Ts during cooling and the operation time tDc, and learns the relationship between the temperature difference ΔTh = Ts−Tr during heating and the operation time tDh.
 演算部8は、学習部7の学習結果に基づいて、室温Trを温度差ΔT分だけ変更するために必要な室内機1の予備運転時間tDを求める。演算部8は、冷房時には、室温Trを温度差ΔTc分だけ低下させるために必要な室内機1の予備運転時間(予冷時間)tDcを求める。演算部8は、暖房時には、室温Trを温度差ΔTh分だけ上昇させるために必要な室内機1の予備運転時間(予暖時間)tDhを求める。 The calculation unit 8 obtains the preliminary operation time tD of the indoor unit 1 necessary for changing the room temperature Tr by the temperature difference ΔT based on the learning result of the learning unit 7. The arithmetic unit 8 obtains a preliminary operation time (precooling time) tDc of the indoor unit 1 necessary for lowering the room temperature Tr by the temperature difference ΔTc during cooling. The arithmetic unit 8 obtains a preliminary operation time (pre-warming time) tDh of the indoor unit 1 necessary for raising the room temperature Tr by the temperature difference ΔTh during heating.
 制御装置6は、目標時刻設定部5を用いて設定された目標時刻tsと現在時刻tnとの差Δt=ts-tnと、演算部8によって求められた予備運転時間tDとを比較し、tD≦Δtとなったことに応じて室内機1を起動させる。 The control device 6 compares the difference Δt = ts−tn between the target time ts set by using the target time setting unit 5 and the current time tn with the preliminary operation time tD obtained by the calculation unit 8, and tD The indoor unit 1 is activated in response to ≦ Δt.
 次に、冷房時における空気調和装置の動作についてより詳細に説明する。図3は、冷房時における室内機1の運転時間tDcと室温Trとの関係を示す図である。図3において、室内機1を起動させると、室温Trは徐々に低下する。冷房開始時には室温Trは速く低下するが、時間が経過して室温Trが低くなると、室温Trの低下速度が遅くなる。これは、時間が経過して外気温度と室温Trの差が大きくなるに従って、室外から室内9に進入する熱が増大するからである。学習部7は、操作部3の時計(図示せず)からの時刻を示す信号、室内機1の温度検出器2からの信号などに基づいて、図3に示した運転時間tDと室温Trの関係(室内機1の運転データ)を取得し、内蔵メモリ(図示せず)に記録する。 Next, the operation of the air conditioner during cooling will be described in more detail. FIG. 3 is a diagram illustrating the relationship between the operation time tDc of the indoor unit 1 and the room temperature Tr during cooling. In FIG. 3, when the indoor unit 1 is started, the room temperature Tr gradually decreases. At the start of cooling, the room temperature Tr decreases rapidly, but when the room temperature Tr decreases with time, the rate of decrease of the room temperature Tr decreases. This is because the heat entering the room 9 from the outside increases as the difference between the outside temperature and the room temperature Tr increases with time. The learning unit 7 determines the operation time tD and the room temperature Tr shown in FIG. 3 based on a signal indicating a time from a clock (not shown) of the operation unit 3 and a signal from the temperature detector 2 of the indoor unit 1. The relationship (operation data of the indoor unit 1) is acquired and recorded in a built-in memory (not shown).
 図4は、冷房時における温度差ΔTcと室内機1の運転時間tDcとの関係を示す図である。温度差ΔTcは、室内機1の起動時の室温Trと目標温度Tsとの差ΔTc=Tr-Tsである。すなわち冷房時における温度差ΔTcは、室温Trから目標温度Tsを減算した値である。図4に示すように、温度差ΔTcが小さい場合は曲線C1の接線の傾きtDc/ΔTcは小さく、温度差ΔTcが大きくなる程に曲線C1の接線の傾きtDc/ΔTcが大きくなる。学習部7は、室内機1の過去の運転データに基づいて、温度差ΔTcと室内機1の運転時間tDcとの関係を示す曲線C1を得る。 FIG. 4 is a diagram showing the relationship between the temperature difference ΔTc during cooling and the operation time tDc of the indoor unit 1. The temperature difference ΔTc is a difference ΔTc = Tr−Ts between the room temperature Tr and the target temperature Ts when the indoor unit 1 is started. That is, the temperature difference ΔTc during cooling is a value obtained by subtracting the target temperature Ts from the room temperature Tr. As shown in FIG. 4, when the temperature difference ΔTc is small, the tangent slope tDc / ΔTc of the curve C1 is small, and as the temperature difference ΔTc increases, the tangential slope tDc / ΔTc of the curve C1 increases. The learning unit 7 obtains a curve C1 indicating the relationship between the temperature difference ΔTc and the operation time tDc of the indoor unit 1 based on past operation data of the indoor unit 1.
 このように、温度差ΔTcと室内機1の運転時間tDcとの関係は、一般的には直線ではなく曲線C1で表される。この特性を1本の直線(たとえばL0)を用いて近似しようとすると、tDc/ΔTcの誤差が大きくなる。そこで、本実施の形態1では、学習部7は、図5に示すように、温度差ΔTcと運転時間tDcの関係を温度差ΔTcの大きさに応じて第1の学習領域A1と第2の学習領域A2とに分割し、第1および第2の学習領域A1,A2の各々において温度差ΔTcと室内機1の運転時間tDcとの関係を学習する。第1の学習領域A1はΔTc<T1の領域であり、第2の学習領域A2はT1<ΔTcの領域である。 Thus, the relationship between the temperature difference ΔTc and the operation time tDc of the indoor unit 1 is generally represented by a curve C1 instead of a straight line. If this characteristic is approximated using one straight line (for example, L0), the error of tDc / ΔTc increases. Therefore, in the first embodiment, the learning unit 7 changes the relationship between the temperature difference ΔTc and the operation time tDc according to the magnitude of the temperature difference ΔTc, as shown in FIG. The learning area A2 is divided, and the relationship between the temperature difference ΔTc and the operation time tDc of the indoor unit 1 is learned in each of the first and second learning areas A1 and A2. The first learning area A1 is an area where ΔTc <T1, and the second learning area A2 is an area where T1 <ΔTc.
 学習部7は、第1の学習領域A1における温度差ΔTcと運転時間tDcとの関係を直線L1で近似し、第2の学習領域A2における温度差ΔTcと運転時間tDcとの関係を直線L2で近似する。その際、最小二乗法を用いて近似してもよいし、他の方法を用いて近似してもよい。第1および第2の学習領域A1,A2の境界値ΔTc=T1は、予め決めておいてもよいし、温度差ΔTcと運転時間tDcとの関係を直線L1,L2で近似しながら決定してもかまわない。たとえば、直線L1は数式tDc=A×ΔTcで表されて学習部7に記憶され、直線L2は数式tDc=B×ΔTc-Cで表されて学習部7に記憶される。A,B,Cの各々は正の実数であり、A<Bである。 The learning unit 7 approximates the relationship between the temperature difference ΔTc and the operation time tDc in the first learning region A1 with a straight line L1, and the relationship between the temperature difference ΔTc and the operation time tDc in the second learning region A2 with a straight line L2. Approximate. In that case, you may approximate using the least squares method, and you may approximate using another method. The boundary value ΔTc = T1 between the first and second learning regions A1 and A2 may be determined in advance, or determined by approximating the relationship between the temperature difference ΔTc and the operation time tDc with the straight lines L1 and L2. It doesn't matter. For example, the straight line L1 is expressed by the mathematical expression tDc = A × ΔTc and stored in the learning unit 7, and the straight line L2 is expressed by the mathematical expression tDc = B × ΔTc−C and stored in the learning unit 7. Each of A, B, and C is a positive real number, and A <B.
 演算部8は、温度検出器2によって検出された室温Trと、目標温度設定部4を用いて設定された目標温度Tsとに基づいて温度差ΔTc=Tr-Tsを求める。演算部8は、学習部7によって学習された温度差ΔTcと運転時間tDcとの関係に基づき、室温Trを温度差ΔTcだけ低下させるために必要な予備運転時間tDcを求める。 The calculation unit 8 obtains a temperature difference ΔTc = Tr−Ts based on the room temperature Tr detected by the temperature detector 2 and the target temperature Ts set using the target temperature setting unit 4. Based on the relationship between the temperature difference ΔTc learned by the learning unit 7 and the operation time tDc, the calculation unit 8 obtains the preliminary operation time tDc necessary for reducing the room temperature Tr by the temperature difference ΔTc.
 [冷房時の制御]
 図6は、冷房時における制御装置6の動作を示すフローチャートである。学習部7によって温度差ΔTcと運転時間tDcとの関係が直線L1,L2によって近似され、目標温度設定部4を用いて目標温度Tsが設定され、目標時刻設定部5を用いて目標時刻tsが設定されたものとする。
[Control during cooling]
FIG. 6 is a flowchart showing the operation of the control device 6 during cooling. The learning unit 7 approximates the relationship between the temperature difference ΔTc and the operation time tDc by straight lines L1 and L2, sets the target temperature Ts using the target temperature setting unit 4, and sets the target time ts using the target time setting unit 5. It shall be set.
 ステップS1において制御装置6の演算部8は、温度検出器2によって検出された室温Trと目標温度設定部4を用いて設定された目標温度Tsとの温度差ΔTc=Tr-Tsを求める。ステップS2において演算部8は、学習部7によって学習された温度差ΔTcと運転時間tDcとの関係(図5の直線L1,L2)に基づいて、ステップS1で求めた温度差ΔTc分だけ室温Trを低下させるのに必要な予備運転時間tDcを求める。 In step S1, the calculation unit 8 of the control device 6 obtains a temperature difference ΔTc = Tr−Ts between the room temperature Tr detected by the temperature detector 2 and the target temperature Ts set using the target temperature setting unit 4. In step S2, the calculation unit 8 calculates the room temperature Tr by the temperature difference ΔTc obtained in step S1 based on the relationship between the temperature difference ΔTc learned by the learning unit 7 and the operation time tDc (straight lines L1, L2 in FIG. 5). The preliminary operation time tDc required to reduce the value is obtained.
 ステップS3において制御装置6は、目標時刻設定部5を用いて設定された目標時刻tsと現在時刻tnとの差Δt=ts-tnを求める。ステップS4において制御装置6は、tDc≦Δtであるか否かを判別し、tDc≦Δtでない場合はステップS3に戻り、tDc≦Δtである場合はステップS5において室内機1を起動させる。したがって、室内機1は、目標時刻tsよりも予備運転時間tDcだけ早い時刻tx=ts-tDcに起動される。 In step S3, the control device 6 obtains a difference Δt = ts−tn between the target time ts set using the target time setting unit 5 and the current time tn. In step S4, the control device 6 determines whether or not tDc ≦ Δt. If tDc ≦ Δt is not satisfied, the process returns to step S3, and if tDc ≦ Δt, the indoor unit 1 is activated in step S5. Therefore, the indoor unit 1 is activated at time tx = ts−tDc, which is earlier than the target time ts by the preliminary operation time tDc.
 図7は、冷房時における室温Trの時間変化を例示する図である。図7に示すように、目標時刻tsよりも予備運転時間tDcだけ早い時刻txに室内機1の運転が開始され、室温Trが低下し、目標時刻tsにおいて室温Trが目標温度Tsに到達する。 FIG. 7 is a diagram illustrating the time change of the room temperature Tr during cooling. As shown in FIG. 7, the operation of the indoor unit 1 is started at time tx that is earlier than the target time ts by the preliminary operation time tDc, the room temperature Tr is lowered, and the room temperature Tr reaches the target temperature Ts at the target time ts.
 [暖房時の制御]
 次に、暖房時における空気調和装置の動作について詳細に説明する。図8は、暖房時における室内機1の運転時間tDcと室温Trとの関係を示す図である。図8において、室内機1を起動させると、室温Trは徐々に上昇する。暖房開始時には室温Trは速く上昇するが、時間が経過して室温Trが高くなると、室温Trの上昇速度が遅くなる。これは、時間が経過して外気温度と室温Trの差が大きくなるに従って、室外から室内9に進入する熱が増大するからである。学習部7は、室内機1が暖房運転される度に、操作部3の時計(図示せず)からの時刻を示す信号、室内機1の温度検出器2からの信号などに基づいて、図8に示した運転時間tDと室温Trの関係(室内機1の運転データ)を取得し、内蔵メモリ(図示せず)に記録する。
[Control during heating]
Next, the operation of the air conditioner during heating will be described in detail. FIG. 8 is a diagram illustrating a relationship between the operation time tDc of the indoor unit 1 during heating and the room temperature Tr. In FIG. 8, when the indoor unit 1 is activated, the room temperature Tr gradually increases. At the start of heating, the room temperature Tr rises rapidly, but when the room temperature Tr increases with time, the room temperature Tr rises slowly. This is because the heat entering the room 9 from the outside increases as the difference between the outside temperature and the room temperature Tr increases with time. Each time the indoor unit 1 is operated for heating, the learning unit 7 displays a signal based on a signal indicating a time from a clock (not shown) of the operation unit 3 and a signal from the temperature detector 2 of the indoor unit 1. 8 is acquired (operation data of the indoor unit 1) and recorded in a built-in memory (not shown).
 図9は、暖房時における温度差ΔThと室内機1の運転時間tDhとの関係を示す図である。温度差ΔThは、目標温度Tsと室内機1の起動時の室温Trとの差ΔTh=Ts-Trである。すなわち暖房時における温度差ΔThは、目標温度Tsから室温Trを減算した値である。図9に示すように、温度差ΔThが小さい場合は曲線C11の接線の傾きtDh/ΔThは小さく、温度差ΔThが大きくなる程に曲線C11の接線の傾きtDh/ΔThが大きくなる。学習部7は、内蔵メモリ(図示せず)に記録した過去の運転データに基づいて、温度差ΔThと室内機1の運転時間tDhとの関係を示す曲線C11を得る。 FIG. 9 is a diagram showing the relationship between the temperature difference ΔTh during heating and the operation time tDh of the indoor unit 1. The temperature difference ΔTh is a difference ΔTh = Ts−Tr between the target temperature Ts and the room temperature Tr when the indoor unit 1 is started. That is, the temperature difference ΔTh during heating is a value obtained by subtracting the room temperature Tr from the target temperature Ts. As shown in FIG. 9, when the temperature difference ΔTh is small, the tangent slope tDh / ΔTh of the curve C11 is small, and as the temperature difference ΔTh increases, the tangential slope tDh / ΔTh of the curve C11 increases. The learning unit 7 obtains a curve C11 indicating the relationship between the temperature difference ΔTh and the operation time tDh of the indoor unit 1 based on past operation data recorded in a built-in memory (not shown).
 このように、温度差ΔThと室内機1の運転時間tDhとの関係は、一般的には直線ではなく曲線C11で表される。この特性を1本の直線(たとえばL10)を用いて近似しようとすると、tDh/ΔThの誤差が大きくなる。そこで、本実施の形態1では、学習部7は、図10に示すように、温度差ΔThと室内機1の運転時間tDhとの関係を温度差ΔThの大きさに応じて第1の学習領域A11と第2の学習領域A12とに分割し、第1および第2の学習領域A11,A12の各々において温度差ΔThと室内機1の運転時間tDhとの関係を学習する。第1の学習領域A11はΔTh<T11の領域であり、第2の学習領域A12はT11<ΔThの領域である。 Thus, the relationship between the temperature difference ΔTh and the operation time tDh of the indoor unit 1 is generally represented not by a straight line but by a curve C11. If this characteristic is approximated using a single straight line (for example, L10), the error of tDh / ΔTh increases. Therefore, in the first embodiment, as shown in FIG. 10, the learning unit 7 determines the relationship between the temperature difference ΔTh and the operation time tDh of the indoor unit 1 in the first learning region according to the magnitude of the temperature difference ΔTh. Dividing into A11 and the second learning area A12, the relationship between the temperature difference ΔTh and the operating time tDh of the indoor unit 1 is learned in each of the first and second learning areas A11, A12. The first learning region A11 is a region where ΔTh <T11, and the second learning region A12 is a region where T11 <ΔTh.
 学習部7は、第1の学習領域A11における温度差ΔThと運転時間tDhとの関係を直線L11で近似し、第2の学習領域A12における温度差ΔThと運転時間tDhとの関係を直線L12で近似する。その際、最小二乗法を用いて近似してもよいし、他の方法を用いて近似してもよい。第1および第2の学習領域A11,A12の境界値ΔTc=T11は、予め決めておいてもよいし、温度差ΔThと運転時間tDhとの関係を直線L1,L2で近似しながら決定してもかまわない。たとえば、直線L11は数式tDc=E×ΔTcで表されて学習部7に記憶され、直線L12は数式tDc=F×ΔTc-Gで表されて学習部7に記憶される。E,F,Gの各々は正の実数であり、E<Fである。 The learning unit 7 approximates the relationship between the temperature difference ΔTh and the operation time tDh in the first learning region A11 with a straight line L11, and the relationship between the temperature difference ΔTh and the operation time tDh in the second learning region A12 with a straight line L12. Approximate. In that case, you may approximate using the least squares method, and you may approximate using another method. The boundary value ΔTc = T11 between the first and second learning areas A11, A12 may be determined in advance, or determined by approximating the relationship between the temperature difference ΔTh and the operation time tDh with the straight lines L1, L2. It doesn't matter. For example, the straight line L11 is expressed by the mathematical expression tDc = E × ΔTc and stored in the learning unit 7, and the straight line L12 is expressed by the mathematical expression tDc = F × ΔTc−G and stored in the learning unit 7. Each of E, F, and G is a positive real number, and E <F.
 演算部8は、温度検出器2によって検出された室温Trと、目標温度設定部4を用いて設定された目標温度Tsとに基づいて温度差ΔTh=Ts-Trを求める。演算部8は、学習部7によって学習された温度差ΔThと運転時間tDhとの関係(図5の直線L11,L12)に基づき、室温Trを温度差ΔThだけ上昇させるために必要な予備運転時間tDhを求める。 The calculation unit 8 obtains a temperature difference ΔTh = Ts−Tr based on the room temperature Tr detected by the temperature detector 2 and the target temperature Ts set using the target temperature setting unit 4. The calculation unit 8 is based on the relationship between the temperature difference ΔTh learned by the learning unit 7 and the operation time tDh (straight lines L11 and L12 in FIG. 5), and the preliminary operation time necessary for increasing the room temperature Tr by the temperature difference ΔTh. tDh is obtained.
 図11は、暖房時における制御装置6の動作を示すフローチャートである。学習部7によって温度差ΔThと運転時間tDhとの関係が学習され、目標温度設定部4を用いて目標温度Tsが設定され、目標時刻設定部5を用いて目標時刻tsが設定されたものとする。 FIG. 11 is a flowchart showing the operation of the control device 6 during heating. The learning unit 7 learns the relationship between the temperature difference ΔTh and the operation time tDh, the target temperature Ts is set using the target temperature setting unit 4, and the target time ts is set using the target time setting unit 5. To do.
 ステップS11において制御装置6の演算部8は、目標温度設定部4を用いて設定された目標温度Tsと温度検出器2によって検出された室温Trとの温度差ΔTh=Ts-Trを求める。ステップS12において演算部8は、学習部7によって学習された温度差ΔThと運転時間tDhとの関係(図10の直線L11,L12)に基づいて、ステップS11で求めた温度差ΔTh分だけ室温Trを上昇させるのに必要な予備運転時間tDhを求める。 In step S11, the calculation unit 8 of the control device 6 obtains a temperature difference ΔTh = Ts−Tr between the target temperature Ts set using the target temperature setting unit 4 and the room temperature Tr detected by the temperature detector 2. In step S12, the arithmetic unit 8 calculates the room temperature Tr by the temperature difference ΔTh obtained in step S11 based on the relationship between the temperature difference ΔTh learned by the learning unit 7 and the operation time tDh (straight lines L11, L12 in FIG. 10). The preliminary operation time tDh required to raise the value is obtained.
 ステップS13において制御装置6は、目標時刻設定部5を用いて設定された目標時刻tsと現在時刻tnとの差Δtを求める。ステップS14において制御装置6は、tDh≦Δtであるか否かを判別し、tDh≦Δtでない場合はステップS13に戻り、tDh≦Δtである場合はステップS15において室内機1を起動させる。したがって、室内機1は、目標時刻tsよりも予備運転時間tDhだけ早い時刻tx=ts-tDhに起動される。 In step S13, the control device 6 obtains a difference Δt between the target time ts set using the target time setting unit 5 and the current time tn. In step S14, the control device 6 determines whether or not tDh ≦ Δt. If tDh ≦ Δt is not satisfied, the process returns to step S13, and if tDh ≦ Δt, the indoor unit 1 is activated in step S15. Therefore, the indoor unit 1 is activated at time tx = ts−tDh that is earlier than the target time ts by the preliminary operation time tDh.
 図12は、暖房時における室温Trの時間変化を例示する図である。図12示すように、目標時刻tsよりも予備運転時間tDhだけ早い時刻txに室内機1の運転が開始され、室温Trが上昇し、目標時刻tsにおいて室温Trが目標温度Tsに到達する。 FIG. 12 is a diagram illustrating the time change of the room temperature Tr during heating. As shown in FIG. 12, the operation of the indoor unit 1 is started at time tx that is earlier than the target time ts by the preliminary operation time tDh, the room temperature Tr rises, and the room temperature Tr reaches the target temperature Ts at the target time ts.
 以上のように、この実施の形態1では、室内機1の起動時における室温Trと目標温度Tsとの温度差ΔTc(またはΔTh)と、室内機1の運転時間tDc(またはtDh)との関係を温度差ΔTc(またはΔTh)の大きさに応じて複数の学習領域A1,A2(またはA11,A12)に分割し、各学習領域毎に温度差ΔTc(またはΔTh)と室内機1の運転時間tDc(またはtDh)との関係を学習し、その学習結果に基づいて室内機1の予備運転時間tDc(またはtDh)を求める。 As described above, in the first embodiment, the relationship between the temperature difference ΔTc (or ΔTh) between the room temperature Tr and the target temperature Ts when the indoor unit 1 is started and the operation time tDc (or tDh) of the indoor unit 1. Is divided into a plurality of learning areas A1, A2 (or A11, A12) according to the magnitude of the temperature difference ΔTc (or ΔTh), and the temperature difference ΔTc (or ΔTh) and the operation time of the indoor unit 1 are determined for each learning area. The relationship with tDc (or tDh) is learned, and the preliminary operation time tDc (or tDh) of the indoor unit 1 is obtained based on the learning result.
 したがって、温度差ΔTc(またはΔTh)が小さな学習領域においても、温度差ΔTc(またはΔTh)が大きな学習領域においても、温度差ΔTc(またはΔTh)と室内機1の運転時間tDc(またはtDh)との関係を高精度で求めることができ、その結果、室内機1の予備運転時間tDc(またはtDh)を高精度で求めることができる。このため、目標時刻tsよりも早い時刻に室温Trが目標温度Tsに到達して消費電力が増大したり、目標時刻tsよりも遅い時刻に室温Trが目標温度Tsに到達して快適性が低下することを防止することができ、省エネ性と快適性を両立した最適な起動制御を実現することができる。 Therefore, the temperature difference ΔTc (or ΔTh) and the operation time tDc (or tDh) of the indoor unit 1 are also obtained in the learning region where the temperature difference ΔTc (or ΔTh) is small and in the learning region where the temperature difference ΔTc (or ΔTh) is large. Can be obtained with high accuracy, and as a result, the preliminary operation time tDc (or tDh) of the indoor unit 1 can be obtained with high accuracy. For this reason, the room temperature Tr reaches the target temperature Ts at a time earlier than the target time ts and power consumption increases, or the room temperature Tr reaches the target temperature Ts at a time later than the target time ts, resulting in a decrease in comfort. This makes it possible to realize optimal start-up control that achieves both energy saving and comfort.
 [実施の形態2]
 実施の形態1では、図5(または図10)で示したように、温度差ΔTc(またはΔTh)と運転時間tDc(またはtDh)の関係を2つの直線L1,L2(またはL11,L12)によって近似し、室内機1の予備運転時間tDc(またはtDh)を求め、目標時刻tsよりも予備運転時間tDc(またはtDh)だけ早い時刻txに室内機1を起動させた。しかし、温度差ΔTc(またはΔTh)が小さい場合は、室温Trから目標温度Tsに変化させる時間が短くなり、室温Trがオーバーシュートする場合がある。
[Embodiment 2]
In the first embodiment, as shown in FIG. 5 (or FIG. 10), the relationship between the temperature difference ΔTc (or ΔTh) and the operation time tDc (or tDh) is represented by two straight lines L1, L2 (or L11, L12). The preliminary operation time tDc (or tDh) of the indoor unit 1 is obtained by approximation, and the indoor unit 1 is started at a time tx that is earlier than the target time ts by the preliminary operation time tDc (or tDh). However, when the temperature difference ΔTc (or ΔTh) is small, the time for changing from the room temperature Tr to the target temperature Ts is shortened, and the room temperature Tr may overshoot.
 図13は、冷房時における室温Trの時間変化を例示する図であって、図7と対比される図である。図13に示すように、室温Trと目標温度Tsとの温度差ΔTc=Tr-Tsが小さい場合は、室内機1の予備運転時間tDcが短くなり、室温Trが目標温度Tsよりも低下してしまう場合がある。このように、室温Trがオーバーシュートしてしまうと、オーバーシュートした分だけ電力が無駄に消費される。 FIG. 13 is a diagram illustrating the time change of the room temperature Tr during cooling, and is a diagram contrasted with FIG. As shown in FIG. 13, when the temperature difference ΔTc = Tr−Ts between the room temperature Tr and the target temperature Ts is small, the preliminary operation time tDc of the indoor unit 1 becomes short, and the room temperature Tr decreases below the target temperature Ts. May end up. As described above, when the room temperature Tr overshoots, power is wasted as much as the overshoot.
 この問題は、暖房時でも同様である。目標温度Tsと室温Trとの温度差ΔTh=Ts-Trが小さい場合は、室内機1の予備運転時間tDhが短くなり、室温Trが目標温度Tsを超えてしまう場合がある。この場合も、オーバーシュート分だけ電力が無駄に消費される。本実施の形態2では、この問題の解決が図られる。 This problem is the same even when heating. When the temperature difference ΔTh = Ts−Tr between the target temperature Ts and the room temperature Tr is small, the preliminary operation time tDh of the indoor unit 1 is shortened, and the room temperature Tr may exceed the target temperature Ts. In this case, too much power is wasted for the overshoot. In the second embodiment, this problem can be solved.
 図14は、この発明の実施の形態2による空気調和装置の構成を示す図であって、図1と対比される図である。図14において、空気調和装置は、室内機1A、熱源機(温度調整部)10、操作部3、および制御装置6Aを備える。室内機1Aは、図2で示したように室内機1と同様に、室内9の壁の上部または天井に取り付けられる。 FIG. 14 is a diagram showing the configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention, and is a diagram contrasted with FIG. In FIG. 14, the air conditioner includes an indoor unit 1A, a heat source unit (temperature adjustment unit) 10, an operation unit 3, and a control unit 6A. As shown in FIG. 2, the indoor unit 1 </ b> A is attached to the upper part of the wall of the room 9 or the ceiling, like the indoor unit 1.
 室内機1Aは、流量調整弁(流量調整部)11、熱交換器12、送風機13、および温度検出器2,14を含む。流量調整弁11の一方端は配管15を介して熱源機10の吐出口に接続され、その他方端は配管16を介して熱交換器12の吸込口に接続される。熱交換器12の出口は配管17を介して熱源機10の吸込口に接続される。 The indoor unit 1A includes a flow rate adjustment valve (flow rate adjustment unit) 11, a heat exchanger 12, a blower 13, and temperature detectors 2 and 14. One end of the flow rate adjusting valve 11 is connected to the discharge port of the heat source device 10 via the pipe 15, and the other end is connected to the suction port of the heat exchanger 12 via the pipe 16. The outlet of the heat exchanger 12 is connected to the suction port of the heat source unit 10 via the pipe 17.
 熱源機10は、制御装置6Aによって制御される。熱源機10は、冷房時には、熱交換器12から配管17を介して戻された水(熱媒体)を冷やして冷水を生成し、その冷水を配管15、流量調整弁11、および配管16を介して熱交換器12に供給する。冷水の温度は制御可能になっている。空気調和器の冷房能力は冷水の温度を低下させるほど増大する。 The heat source device 10 is controlled by the control device 6A. At the time of cooling, the heat source device 10 cools water (heat medium) returned from the heat exchanger 12 via the pipe 17 to generate cold water, and the cold water is supplied via the pipe 15, the flow rate adjustment valve 11, and the pipe 16. To the heat exchanger 12. The temperature of the cold water can be controlled. The cooling capacity of the air conditioner increases as the temperature of the cold water decreases.
 熱源機10は、暖房時には、熱交換器12から配管17を介して戻された水を温めて温水を生成し、その温水を配管15、流量調整弁11、および配管16を介して熱交換器12に供給する。温水の温度は制御可能になっている。空気調和器の暖房能力は、温水の温度に応じて増大する。 During heating, the heat source unit 10 warms the water returned from the heat exchanger 12 through the pipe 17 to generate hot water, and the hot water is supplied to the heat exchanger through the pipe 15, the flow control valve 11, and the pipe 16. 12 is supplied. The temperature of the hot water can be controlled. The heating capacity of the air conditioner increases with the temperature of the hot water.
 流量調整弁11は、制御装置6Aによって制御され、熱源機10から熱交換器12に供給される冷水(または温水)の流量を調整する。熱交換器12は、熱源機10から供給される冷水(または温水)と室内空気との熱交換を行なう。冷房時には室内空気は冷水によって冷却され、暖房時には室内空気は温水によって温められる。冷房能力は冷水の流量に応じて増大し、暖房能力は温水の流量に応じて増大する。 The flow rate adjusting valve 11 is controlled by the control device 6A and adjusts the flow rate of cold water (or hot water) supplied from the heat source unit 10 to the heat exchanger 12. The heat exchanger 12 performs heat exchange between cold water (or hot water) supplied from the heat source device 10 and room air. The room air is cooled by cold water during cooling, and the room air is warmed by hot water during heating. The cooling capacity increases according to the flow rate of cold water, and the heating capacity increases according to the flow rate of hot water.
 送風機13は、制御装置6Aによって制御され、室内空気を吸い込んで熱交換器12に供給する。冷房時は、熱交換器12において冷やされた空気が室内9に吹き出される。暖房時は、熱交換器12において温められた空気が室内9に吹き出される。送風機13によって生成される風量は制御可能になっている。冷房能力および暖房能力はともに、送風機13の風量に応じて増大する。 The blower 13 is controlled by the control device 6 </ b> A, sucks room air, and supplies it to the heat exchanger 12. At the time of cooling, the air cooled in the heat exchanger 12 is blown out into the room 9. During heating, air warmed in the heat exchanger 12 is blown out into the room 9. The amount of air generated by the blower 13 can be controlled. Both the cooling capacity and the heating capacity increase according to the air volume of the blower 13.
 温度検出器2は、室温Trを検出し、検出値を示す信号を制御装置6Aに出力する。温度検出器14は、配管17を通過する冷水(または温水)の温度を検出し、検出値を示す信号を制御装置6Aに出力する。 The temperature detector 2 detects the room temperature Tr and outputs a signal indicating the detected value to the control device 6A. The temperature detector 14 detects the temperature of cold water (or hot water) passing through the pipe 17 and outputs a signal indicating the detected value to the control device 6A.
 操作部3は、図1で示したものであり、目標温度Tsおよび目標時刻tsの設定などを行なうためにユーザによって使用される。制御装置6Aは、図1で示した学習、演算機能に加え、操作部3からの信号、温度検出器2,14の出力信号に基づいて、熱源機10、流量調整弁11、および送風機13を制御する。制御装置6Aは、室内機1Aの筐体内に設けられていてもよいし、室内機1Aの筐体外に設けられていても構わない。 The operation unit 3 is the one shown in FIG. 1, and is used by the user to set the target temperature Ts and the target time ts. In addition to the learning and calculation functions shown in FIG. 1, the control device 6 </ b> A controls the heat source device 10, the flow rate adjustment valve 11, and the blower 13 based on signals from the operation unit 3 and output signals from the temperature detectors 2 and 14. Control. The control device 6A may be provided in the casing of the indoor unit 1A, or may be provided outside the casing of the indoor unit 1A.
 図15は、冷房時における制御装置6Aの動作を示す図である。制御装置6Aは、室温Trと目標温度Tsの温度差ΔTcがT1よりも小さな第1の学習領域A1にあり、直線L1に基づいて冷房を開始する場合は、送風機13の送風能力を低レベルに設定する。これにより、室内機1Aの冷房能力を小さくして室温Trのオーバーシュートを抑制し、消費電力を低減化することができる。 FIG. 15 is a diagram illustrating the operation of the control device 6A during cooling. When the temperature difference ΔTc between the room temperature Tr and the target temperature Ts is in the first learning area A1 where the control device 6A starts cooling based on the straight line L1, the air flow capacity of the blower 13 is set to a low level. Set. Thereby, the cooling capacity of the indoor unit 1A can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
 制御装置6Aは、室温Trと目標温度Tsの温度差ΔTcがT1よりも大きな第2の学習領域A2にあり、直線L2に基づいて冷房を開始する場合は、送風機13の送風能力を高レベルに設定する。これにより、室内機1Aの冷房能力を大きくして室温Trを迅速に目標温度Tsにすることが可能となる。 When the temperature difference ΔTc between the room temperature Tr and the target temperature Ts is in the second learning region A2 where the control device 6A is larger than T1, and the cooling device starts cooling based on the straight line L2, the air blowing capability of the blower 13 is set to a high level Set. Thereby, the cooling capacity of the indoor unit 1A can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
 図16は、暖房時における制御装置6Aの動作を示す図である。制御装置6Aは、目標温度Tsと室温Trの温度差ΔThがT11よりも小さな第1の学習領域A11にあり、直線L11に基づいて暖房を開始する場合は、送風機13の送風能力を低レベルに設定する。これにより、室内機1Aの暖房能力を小さくして室温Trのオーバーシュートを抑制し、消費電力を低減化することができる。 FIG. 16 is a diagram illustrating the operation of the control device 6A during heating. When the temperature difference ΔTh between the target temperature Ts and the room temperature Tr is in the first learning region A11 that is smaller than T11 and the heating starts based on the straight line L11, the control device 6A reduces the blowing capacity of the blower 13 to a low level. Set. Thereby, the heating capability of 1 A of indoor units can be made small, the overshoot of room temperature Tr can be suppressed, and power consumption can be reduced.
 制御装置6Aは、目標温度Tsと室温Trの温度差ΔThがT11よりも大きな第2の学習領域A12にあり、直線L12に基づいて暖房を開始する場合は、送風機13の送風能力を高レベルに設定する。これにより、室内機1Aの暖房能力を大きくして室温Trを迅速に目標温度Tsにすることが可能となる。 The control device 6A is in the second learning region A12 where the temperature difference ΔTh between the target temperature Ts and the room temperature Tr is larger than T11, and when heating is started based on the straight line L12, the blowing capacity of the blower 13 is set to a high level. Set. Thereby, the heating capability of the indoor unit 1A can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
 なお、この実施の形態2では、温度差ΔTc(またはΔTh)が第1の学習領域A1(またはA11)である場合における送風機13の送風能力を、温度差ΔTc(またはΔTh)が第2の学習領域A2(またはA12)である場合における送風機13の送風能力よりも低くしたが、これに限るものではなく、温度差ΔTc(またはΔTh)が第1の学習領域A1(またはA11)である場合における空調能力を、温度差ΔTc(またはΔTh)が第2の学習領域A2(またはA12)である場合における空調能力よりも低くすれば同じ効果が得られる。 In the second embodiment, the blowing capacity of the blower 13 when the temperature difference ΔTc (or ΔTh) is the first learning region A1 (or A11), and the temperature difference ΔTc (or ΔTh) is the second learning. Although it was lower than the blowing capacity of the blower 13 in the case of the region A2 (or A12), the present invention is not limited to this, and the temperature difference ΔTc (or ΔTh) is the first learning region A1 (or A11). The same effect can be obtained if the air conditioning capacity is made lower than the air conditioning capacity when the temperature difference ΔTc (or ΔTh) is in the second learning region A2 (or A12).
 空調能力は、冷房能力と暖房能力を含む。冷房能力を下げる方法としては、熱源機10を制御して冷水の温度を高くする方法がある。暖房能力を下げる方法としては、熱源機10を制御して温水の温度を低くする方法がある。冷房能力および暖房能力を下げる方法としては、流量調整弁11を制御して冷水(または温水)の流量を小さくする方法がある。 Air conditioning capacity includes cooling capacity and heating capacity. As a method of reducing the cooling capacity, there is a method of increasing the temperature of the cold water by controlling the heat source device 10. As a method of lowering the heating capacity, there is a method of controlling the heat source device 10 to lower the temperature of the hot water. As a method of reducing the cooling capacity and the heating capacity, there is a method of controlling the flow rate adjusting valve 11 to reduce the flow rate of cold water (or hot water).
 [実施の形態3]
 図17は、この発明の実施の形態3による空気調和装置の構成を示す図であって、図14と対比される図である。図17において、空気調和装置は、室内機1B、室外機20、操作部3、および制御装置6Bを備える。室内機1Bは、図2で示したように室内機1と同様に、室内9の壁の上部または天井に取り付けられる。室外機20は、屋外に設置される。制御装置6Bは、室内機1Bの筐体内に設けられていてもよいし、室内機1Bの筐体の外部に設けられていてもよい。操作部3は、室内機1Bの筐体の外面に設けられていてもよいし、リモートコントローラとして室内機1Bとは別に設けられていてもよい。
[Embodiment 3]
FIG. 17 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention, and is a diagram contrasted with FIG. In FIG. 17, the air conditioner includes an indoor unit 1B, an outdoor unit 20, an operation unit 3, and a control device 6B. As shown in FIG. 2, the indoor unit 1 </ b> B is attached to the upper part of the wall of the room 9 or the ceiling, like the indoor unit 1. The outdoor unit 20 is installed outdoors. The control device 6B may be provided in the housing of the indoor unit 1B, or may be provided outside the housing of the indoor unit 1B. The operation unit 3 may be provided on the outer surface of the casing of the indoor unit 1B, or may be provided separately from the indoor unit 1B as a remote controller.
 室外機20は、圧縮機21、四方弁22、および室外熱交換器23を含む。室内機1Bは、膨張弁24、室内熱交換器25、送風機26、および温度検出器2を含む。圧縮機21は、制御装置6Bによって制御され、吸込口21aから吸い込んだ冷媒(熱媒体)を圧縮し、高温で高圧の冷媒を吐出口21bから吐出する。圧縮機21の運転周波数を制御することにより、冷媒の流量および温度を制御することが可能となっている。 The outdoor unit 20 includes a compressor 21, a four-way valve 22, and an outdoor heat exchanger 23. The indoor unit 1B includes an expansion valve 24, an indoor heat exchanger 25, a blower 26, and the temperature detector 2. The compressor 21 is controlled by the control device 6B, compresses the refrigerant (heat medium) sucked from the suction port 21a, and discharges high-temperature and high-pressure refrigerant from the discharge port 21b. By controlling the operating frequency of the compressor 21, the flow rate and temperature of the refrigerant can be controlled.
 四方弁22は、制御装置6Bによって制御される。四方弁22は、冷房時には、圧縮機21の吸込口21aを室内熱交換器25に接続するとともに、吐出口21bを室外熱交換器23に接続する。四方弁22は、暖房時には、圧縮機21の吸込口21aを室外熱交換器23に接続するとともに、吐出口21bを室内熱交換器25に接続する。室外熱交換器23は、冷媒と外気との熱交換を行なう。 The four-way valve 22 is controlled by the control device 6B. The four-way valve 22 connects the suction port 21a of the compressor 21 to the indoor heat exchanger 25 and connects the discharge port 21b to the outdoor heat exchanger 23 during cooling. The four-way valve 22 connects the suction port 21a of the compressor 21 to the outdoor heat exchanger 23 and connects the discharge port 21b to the indoor heat exchanger 25 during heating. The outdoor heat exchanger 23 performs heat exchange between the refrigerant and the outside air.
 膨張弁24は、室外熱交換器23と室内熱交換器25の間に設けられる。膨張弁24は、制御装置6Bによって制御され、冷媒の流量を制御するとともに冷媒を膨張させる。膨張弁24の開度を制御することにより、冷媒の流量および温度を制御することが可能となっている。膨張弁24の開度は、圧縮機21の運転周波数に応じて設定される。室内熱交換器25は、冷媒と室内空気との熱交換を行なう。 The expansion valve 24 is provided between the outdoor heat exchanger 23 and the indoor heat exchanger 25. The expansion valve 24 is controlled by the control device 6B and controls the flow rate of the refrigerant and expands the refrigerant. By controlling the opening degree of the expansion valve 24, the flow rate and temperature of the refrigerant can be controlled. The opening degree of the expansion valve 24 is set according to the operating frequency of the compressor 21. The indoor heat exchanger 25 performs heat exchange between the refrigerant and the room air.
 送風機26は、制御装置6Bによって制御され、室内空気を吸い込んで室内熱交換器25に供給する。冷房時は、室内熱交換器25において冷やされた空気が室内9に吹き出される。暖房時は、室内熱交換器25において温められた空気が室内9に吹き出される。送風機26によって生成される風量は制御可能になっている。冷房能力および暖房能力はともに、送風機26の風量に応じて増大する。温度検出器2は、室温Trを検出し、検出値を示す信号を制御装置6Bに出力する。 The blower 26 is controlled by the control device 6B, sucks room air, and supplies it to the indoor heat exchanger 25. At the time of cooling, air cooled in the indoor heat exchanger 25 is blown out into the room 9. During heating, air warmed in the indoor heat exchanger 25 is blown out into the room 9. The amount of air generated by the blower 26 can be controlled. Both the cooling capacity and the heating capacity increase according to the air volume of the blower 26. The temperature detector 2 detects the room temperature Tr and outputs a signal indicating the detected value to the control device 6B.
 操作部3は、図1で示したものであり、目標温度Tsおよび目標時刻tsの設定などを行なうためにユーザによって操作される。制御装置6Bは、図1で示した学習、演算機能に加え、操作部3からの信号、温度検出器2の出力信号に基づいて、圧縮機21、四方弁22、膨張弁24、および送風機26を制御する。 The operation unit 3 is the one shown in FIG. 1 and is operated by the user to set the target temperature Ts and the target time ts. In addition to the learning and calculation functions shown in FIG. 1, the control device 6 </ b> B is based on a signal from the operation unit 3 and an output signal from the temperature detector 2. To control.
 次に、この空気調和装置の動作について説明する。冷房時には、室内熱交換器25で室内空気と熱交換された冷媒が四方弁22を介して圧縮機21の吸込口21aに供給され、圧縮機21によって圧縮される。圧縮機21の吐出口21bから吐出された高温で高圧の冷媒は、四方弁22を介して室外熱交換器23に供給され、室外熱交換器23で外気と熱交換される。室外熱交換器23で熱交換された冷媒は、膨張弁24によって膨張されて低温になる。膨張した低温の冷媒は、室内熱交換器25で室内空気と熱交換した後、四方弁22を介して圧縮機21の吸込口21aに戻る。室内空気は、送風機26によって吸い込まれ、室内熱交換器25で冷やされた後に、室内9に吹き出される。 Next, the operation of this air conditioner will be described. At the time of cooling, the refrigerant heat-exchanged with indoor air by the indoor heat exchanger 25 is supplied to the suction port 21a of the compressor 21 through the four-way valve 22 and is compressed by the compressor 21. The high-temperature and high-pressure refrigerant discharged from the discharge port 21 b of the compressor 21 is supplied to the outdoor heat exchanger 23 via the four-way valve 22, and heat is exchanged with the outside air in the outdoor heat exchanger 23. The refrigerant heat-exchanged by the outdoor heat exchanger 23 is expanded by the expansion valve 24 and becomes a low temperature. The expanded low-temperature refrigerant exchanges heat with indoor air in the indoor heat exchanger 25, and then returns to the suction port 21a of the compressor 21 via the four-way valve 22. The room air is sucked by the blower 26 and cooled by the indoor heat exchanger 25 and then blown out into the room 9.
 目標時刻tsが設定された場合、制御装置6Bは、図15で示したように、室温Trと目標温度Tsの温度差ΔTcがT1よりも小さな第1の学習領域A1にあり、直線L1に基づいて冷房を開始する場合は、送風機26の送風能力を低レベルに設定する。これにより、室内機1Bの冷房能力を小さくして室温Trのオーバーシュートを抑制し、消費電力を低減化することができる。 When the target time ts is set, as shown in FIG. 15, the control device 6B is in the first learning region A1 where the temperature difference ΔTc between the room temperature Tr and the target temperature Ts is smaller than T1, and is based on the straight line L1. When the cooling is started, the blowing capacity of the blower 26 is set to a low level. Thereby, the cooling capability of the indoor unit 1B can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
 制御装置6Bは、室温Trと目標温度Tsの温度差ΔTcがT1よりも大きな第2の学習領域A2にあり、直線L2に基づいて冷房を開始する場合は、送風機26の送風能力を高レベルに設定する。これにより、室内機1Bの冷房能力を大きくして室温Trを迅速に目標温度Tsにすることが可能となる。 When the temperature difference ΔTc between the room temperature Tr and the target temperature Ts is in the second learning region A2 where the control device 6B is larger than T1, and the cooling is started based on the straight line L2, the air blowing capacity of the blower 26 is set to a high level. Set. As a result, the cooling capacity of the indoor unit 1B can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
 暖房時には、室外熱交換器23で外気と熱交換された冷媒が四方弁22を介して圧縮機21の吸込口21aに供給され、圧縮機21によって圧縮される。圧縮機21の吐出口21bから吐出された高温で高圧の冷媒は、四方弁22を介して室内熱交換器25に供給され、室内熱交換器25で室内空気と熱交換される。室内空気は、送風機26によって吸い込まれ、室内熱交換器25で温められた後に、室内9に吹き出される。室内熱交換器25で熱交換された冷媒は、膨張弁24によって膨張されて低温になる。膨張した低温の冷媒は、室内熱交換器25で室内空気と熱交換した後、四方弁22を介して圧縮機21の吸込口21aに戻る。 During heating, the refrigerant heat-exchanged with the outside air by the outdoor heat exchanger 23 is supplied to the suction port 21 a of the compressor 21 through the four-way valve 22 and is compressed by the compressor 21. The high-temperature and high-pressure refrigerant discharged from the discharge port 21 b of the compressor 21 is supplied to the indoor heat exchanger 25 through the four-way valve 22, and is heat-exchanged with indoor air in the indoor heat exchanger 25. The room air is sucked by the blower 26 and heated by the indoor heat exchanger 25 and then blown into the room 9. The refrigerant heat-exchanged by the indoor heat exchanger 25 is expanded by the expansion valve 24 and becomes a low temperature. The expanded low-temperature refrigerant exchanges heat with indoor air in the indoor heat exchanger 25, and then returns to the suction port 21a of the compressor 21 via the four-way valve 22.
 制御装置6Bは、図16で示したように、目標温度Tsと室温Trの温度差ΔThがT11よりも小さな第1の学習領域A11にあり、直線L11に基づいて暖房を開始する場合は、送風機26の送風能力を低レベルに設定する。これにより、室内機1Bの暖房能力を小さくして室温Trのオーバーシュートを抑制し、消費電力を低減化することができる。 As shown in FIG. 16, the control device 6B is in the first learning region A11 where the temperature difference ΔTh between the target temperature Ts and the room temperature Tr is smaller than T11, and when the heating starts based on the straight line L11, 26 blowing capacity is set to a low level. Thereby, the heating capability of the indoor unit 1B can be reduced, the overshoot of the room temperature Tr can be suppressed, and the power consumption can be reduced.
 制御装置6Bは、目標温度Tsと室温Trの温度差ΔThがT11よりも大きな第2の学習領域A12にあり、直線L12に基づいて暖房を開始する場合は、送風機26の送風能力を高レベルに設定する。これにより、室内機1Bの暖房能力を大きくして室温Trを迅速に目標温度Tsにすることが可能となる。 The control device 6B is in the second learning area A12 where the temperature difference ΔTh between the target temperature Ts and the room temperature Tr is larger than T11, and when the heating is started based on the straight line L12, the blowing capacity of the blower 26 is set to a high level. Set. Thereby, the heating capability of the indoor unit 1B can be increased, and the room temperature Tr can be quickly set to the target temperature Ts.
 なお、この実施の形態3では、温度差ΔTc(またはΔTh)が第1の学習領域A1(またはA11)である場合における送風機26の送風能力を、温度差ΔTc(またはΔTh)が第2の学習領域A2(またはA12)である場合における送風機26の送風能力よりも低くしたが、これに限るものではなく、温度差ΔTc(またはΔTh)が第1の学習領域A1(またはA11)である場合における空調能力を、温度差ΔTc(またはΔTh)が第2の学習領域A2(またはA12)である場合における空調能力よりも低くすれば同じ効果が得られる。 In the third embodiment, the blowing capacity of the blower 26 when the temperature difference ΔTc (or ΔTh) is in the first learning region A1 (or A11), and the temperature difference ΔTc (or ΔTh) is the second learning. Although it was lower than the blowing capacity of the blower 26 in the case of the region A2 (or A12), the present invention is not limited to this, and the temperature difference ΔTc (or ΔTh) is the first learning region A1 (or A11). The same effect can be obtained if the air conditioning capacity is made lower than the air conditioning capacity when the temperature difference ΔTc (or ΔTh) is in the second learning region A2 (or A12).
 空調能力を下げる方法としては、圧縮機21の運転周波数を下げる方法がある。圧縮機21の運転周波数を下げると、圧縮機21から吐出される冷媒の温度および圧力が低下し、冷媒の流量が小さくなる。膨張弁24の開度は、圧縮機21の運転周波数に応じて設定される。圧縮機21および膨張弁24は、共同して、冷媒(熱媒体)の流量を調整する流量調整部と、冷媒(熱媒体)の温度を調整する温度調整部との両方を構成する。 As a method of reducing the air conditioning capacity, there is a method of reducing the operating frequency of the compressor 21. When the operating frequency of the compressor 21 is lowered, the temperature and pressure of the refrigerant discharged from the compressor 21 are lowered, and the flow rate of the refrigerant is reduced. The opening degree of the expansion valve 24 is set according to the operating frequency of the compressor 21. The compressor 21 and the expansion valve 24 jointly constitute both a flow rate adjusting unit that adjusts the flow rate of the refrigerant (heat medium) and a temperature adjusting unit that adjusts the temperature of the refrigerant (heat medium).
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1A,1B 室内機、2,14 温度検出器、3 操作部、4 目標温度設定部、5 目標時刻設定部、6,6A,6B 制御装置、7 学習部、8 演算部、9 室内、10 熱源機、11 流量調整弁、12 熱交換器、13,26 送風機、15~17 配管、20 室外機、21 圧縮機、22 四方弁、23 室外熱交換器、24 膨張弁、25 室内熱交換器。 1, 1A, 1B indoor unit, 2, 14 temperature detector, 3 operation unit, 4 target temperature setting unit, 5 target time setting unit, 6, 6A, 6B control device, 7 learning unit, 8 calculation unit, 9 indoors, 10 heat source machine, 11 flow control valve, 12 heat exchanger, 13, 26 blower, 15-17 piping, 20 outdoor unit, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24 expansion valve, 25 indoor heat exchange vessel.

Claims (8)

  1.  室温を調整する室内機と、
     室温を検出する温度検出器と、
     目標温度を設定するための温度設定部と、
     目標時刻を設定するための時刻設定部と、
     前記目標時刻に前記室温が前記目標温度に到達するように、前記目標時刻よりも予備運転時間だけ早い時刻に前記室内機を起動させる制御装置とを備え、
     前記制御装置は、
     前記室内機の過去の運転データに基づいて、前記室内機の起動時における室温と前記目標温度との温度差と、前記室内機の運転時間との関係を学習する学習部と、
     前記学習部の学習結果に基づいて、前記室温を前記目標温度にするために必要な前記予備運転時間を求める演算部とを含み、
     前記学習部は、前記温度差と前記室内機の運転時間との関係を前記温度差の大きさに応じて第1~第Nの学習領域に分割し、各学習領域毎に前記温度差と前記室内機の運転時間との関係を学習し、Nは2以上の整数である、空気調和装置。
    An indoor unit that adjusts the room temperature;
    A temperature detector for detecting room temperature;
    A temperature setting unit for setting a target temperature;
    A time setting unit for setting the target time;
    A controller that activates the indoor unit at a time earlier than the target time by a preliminary operation time so that the room temperature reaches the target temperature at the target time,
    The controller is
    Based on past operation data of the indoor unit, a learning unit that learns a relationship between a temperature difference between the room temperature and the target temperature when the indoor unit is activated, and an operation time of the indoor unit,
    A calculation unit that obtains the preliminary operation time necessary for setting the room temperature to the target temperature based on a learning result of the learning unit;
    The learning unit divides the relationship between the temperature difference and the operation time of the indoor unit into first to Nth learning regions according to the magnitude of the temperature difference, and the temperature difference and the An air conditioner that learns the relationship with the operation time of an indoor unit, and N is an integer of 2 or more.
  2.  冷房時における前記温度差は、前記室内機の起動時における室温から前記目標温度を減算した値であり、
     暖房時における前記温度差は、前記目標温度から前記室内機の起動時における室温を減算した値であり、
     前記学習部は、冷房時における前記温度差および前記室内機の運転時間の関係を学習するとともに、暖房時における前記温度差および前記室内機の運転時間の関係を学習する、請求項1に記載の空気調和装置。
    The temperature difference during cooling is a value obtained by subtracting the target temperature from the room temperature when starting the indoor unit,
    The temperature difference during heating is a value obtained by subtracting the room temperature when starting the indoor unit from the target temperature,
    The learning unit according to claim 1, wherein the learning unit learns a relationship between the temperature difference during cooling and an operation time of the indoor unit, and learns a relationship between the temperature difference during heating and the operation time of the indoor unit. Air conditioner.
  3.  前記学習部は、各学習領域毎に前記温度差と前記室内機の運転時間との関係を直線で近似する、請求項1に記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein the learning unit approximates the relationship between the temperature difference and the operation time of the indoor unit by a straight line for each learning region.
  4.  前記室内機の空調能力は制御可能になっていて、
     前記第1の学習領域における前記温度差は前記第Nの学習領域における前記温度差よりも小さく、
     前記制御装置は、前記温度差が前記第1の学習領域である場合における前記室内機の空調能力を、前記温度差が前記第Nの学習領域である場合における前記室内機の空調能力よりも低くする、請求項1に記載の空気調和装置。
    The air conditioning capacity of the indoor unit is controllable,
    The temperature difference in the first learning region is smaller than the temperature difference in the Nth learning region;
    The control device lowers the air conditioning capability of the indoor unit when the temperature difference is in the first learning region, and is lower than the air conditioning capability of the indoor unit when the temperature difference is in the Nth learning region. The air conditioning apparatus according to claim 1.
  5.  前記室内機は、
     熱媒体と室内空気との熱交換を行なう室内熱交換器と、
     前記室内熱交換器によって熱交換された空気を室内に送る送風機とを含み、
     前記制御装置は、前記送風機から室内への送風量を減少させることにより、前記室内機の空調能力を低くする、請求項4に記載の空気調和装置。
    The indoor unit is
    An indoor heat exchanger for exchanging heat between the heat medium and room air;
    A blower that sends the air heat-exchanged by the indoor heat exchanger into the room,
    The air conditioning apparatus according to claim 4, wherein the control device reduces the air conditioning capacity of the indoor unit by reducing the amount of air blown from the blower into the room.
  6.  前記室内機は、
     熱媒体と室内空気との熱交換を行なう室内熱交換器と、
     前記室内熱交換器に流入する熱媒体の流量を調整する流量調整部とを含み、
     前記制御装置は、前記流量調整部を制御して前記室内熱交換器に流入する熱媒体の流量を減少させることにより、前記室内機の空調能力を低くする、請求項4に記載の空気調和装置。
    The indoor unit is
    An indoor heat exchanger for exchanging heat between the heat medium and room air;
    A flow rate adjustment unit for adjusting the flow rate of the heat medium flowing into the indoor heat exchanger,
    The air conditioner according to claim 4, wherein the control device controls the flow rate adjusting unit to reduce the flow rate of the heat medium flowing into the indoor heat exchanger, thereby reducing the air conditioning capability of the indoor unit. .
  7.  前記室内機は、
     熱媒体と室内空気との熱交換を行なう室内熱交換器と、
     前記室内熱交換器に流入する熱媒体の温度を調整する温度調整部とを含み、
     前記制御装置は、冷房時には前記温度調整部を制御して熱媒体の温度を上げることにより、前記室内機の空調能力を低くする、請求項4に記載の空気調和装置。
    The indoor unit is
    An indoor heat exchanger for exchanging heat between the heat medium and room air;
    A temperature adjustment unit that adjusts the temperature of the heat medium flowing into the indoor heat exchanger,
    The air conditioner according to claim 4, wherein the control device lowers the air conditioning capability of the indoor unit by controlling the temperature adjusting unit and increasing the temperature of the heat medium during cooling.
  8.  前記室内機は、
     熱媒体と室内空気との熱交換を行なう室内熱交換器と、
     前記室内熱交換器に流入する熱媒体の温度を調整する温度調整部とを含み、
     前記制御装置は、暖房時には前記温度調整部を制御して熱媒体の温度を下げることにより、前記室内機の空調能力を低くする、請求項4に記載の空気調和装置。
    The indoor unit is
    An indoor heat exchanger for exchanging heat between the heat medium and room air;
    A temperature adjustment unit that adjusts the temperature of the heat medium flowing into the indoor heat exchanger,
    The air conditioner according to claim 4, wherein the control device lowers the air conditioning capability of the indoor unit by controlling the temperature adjusting unit and lowering the temperature of the heat medium during heating.
PCT/JP2016/072920 2016-03-22 2016-08-04 Air-conditioning device WO2017163445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056676 2016-03-22
JP2016056676A JP6377093B2 (en) 2016-03-22 2016-03-22 Air conditioner

Publications (1)

Publication Number Publication Date
WO2017163445A1 true WO2017163445A1 (en) 2017-09-28

Family

ID=59900992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072920 WO2017163445A1 (en) 2016-03-22 2016-08-04 Air-conditioning device

Country Status (2)

Country Link
JP (1) JP6377093B2 (en)
WO (1) WO2017163445A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815477A (en) * 2021-01-18 2021-05-18 青岛海信日立空调***有限公司 Air conditioner and control method
CN114080528A (en) * 2019-06-27 2022-02-22 大金工业株式会社 Control device for air conditioner, air conditioning system, control method for air conditioner, and program

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522711B1 (en) 2017-09-08 2023-04-14 스미도모쥬기가이고교 가부시키가이샤 shovel
JP7152118B2 (en) * 2018-10-31 2022-10-12 アズビル株式会社 Optimal starting control device for air conditioning system
CN111256306A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus for air conditioning apparatus, and storage medium
CN111256328A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, electronic device, air conditioning device, and storage medium
CN111256296A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, synchronous control terminal, air conditioning equipment and storage medium
CN111256298A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus for air conditioning apparatus, and storage medium
CN111256348A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus for air conditioning apparatus, and storage medium
CN111256325A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus, and storage medium
CN111256319A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Air conditioning apparatus, control method thereof, control apparatus, and storage medium
CN111256307A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus, and storage medium
CN111256324A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, movement control apparatus, and storage medium
CN111256297A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Temperature control method, air conditioning apparatus, control apparatus for air conditioning apparatus, and storage medium
CN111256347B (en) * 2018-11-30 2022-09-02 广东美的制冷设备有限公司 Recommendation terminal, receiving terminal, pushing method of comfortable temperature zone and storage medium
EP3885664B1 (en) * 2018-12-12 2023-04-26 Mitsubishi Electric Corporation Air conditioning control device and air conditioning control method
JP7408976B2 (en) * 2019-09-25 2024-01-09 株式会社富士通ゼネラル air conditioner
JP7006859B2 (en) * 2019-10-23 2022-02-10 三菱電機株式会社 Air conditioning control device, air conditioning system, air conditioning control method, air conditioning control program
CN112032914B (en) * 2020-08-24 2022-09-02 广东Tcl智能暖通设备有限公司 Control method of air conditioner and air conditioning equipment
WO2023144979A1 (en) * 2022-01-28 2023-08-03 三菱電機株式会社 Air-conditioning control device, air-conditioning control method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142136A (en) * 1983-12-28 1985-07-27 Fujitsu Ltd Advanced operation controlling system of air- conditioning equipment
JPH07332740A (en) * 1994-06-03 1995-12-22 Toshiba Corp Operation control method of air conditioner
JPH1096545A (en) * 1996-09-24 1998-04-14 N T T Facilities:Kk Air conditioner and control method thereof
JP2003232584A (en) * 2003-01-27 2003-08-22 Mitsubishi Electric Corp Air conditioner
JP2003240308A (en) * 2002-02-12 2003-08-27 Fujitsu General Ltd Control method for air conditioner
JP2012202581A (en) * 2011-03-24 2012-10-22 Mitsubishi Electric Corp Refrigeration cycle device and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075083B2 (en) * 1994-06-08 2000-08-07 日産自動車株式会社 Vehicle air conditioning controller
JP4338604B2 (en) * 2004-08-02 2009-10-07 三菱電機株式会社 Air conditioning control system and remote monitoring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142136A (en) * 1983-12-28 1985-07-27 Fujitsu Ltd Advanced operation controlling system of air- conditioning equipment
JPH07332740A (en) * 1994-06-03 1995-12-22 Toshiba Corp Operation control method of air conditioner
JPH1096545A (en) * 1996-09-24 1998-04-14 N T T Facilities:Kk Air conditioner and control method thereof
JP2003240308A (en) * 2002-02-12 2003-08-27 Fujitsu General Ltd Control method for air conditioner
JP2003232584A (en) * 2003-01-27 2003-08-22 Mitsubishi Electric Corp Air conditioner
JP2012202581A (en) * 2011-03-24 2012-10-22 Mitsubishi Electric Corp Refrigeration cycle device and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080528A (en) * 2019-06-27 2022-02-22 大金工业株式会社 Control device for air conditioner, air conditioning system, control method for air conditioner, and program
CN114080528B (en) * 2019-06-27 2022-11-01 大金工业株式会社 Control device for air conditioner, air conditioning system, control method for air conditioner, and program
CN112815477A (en) * 2021-01-18 2021-05-18 青岛海信日立空调***有限公司 Air conditioner and control method
CN112815477B (en) * 2021-01-18 2023-11-03 青岛海信日立空调***有限公司 Air conditioner and control method

Also Published As

Publication number Publication date
JP2017172830A (en) 2017-09-28
JP6377093B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6377093B2 (en) Air conditioner
CN108344126B (en) Air conditioning system, indoor unit of air conditioning system, and method of controlling the same
US20110203298A1 (en) Heat pump system and control method thereof
MX2014008047A (en) Air-conditioning apparatus.
WO2022002286A1 (en) Air conditioner and control method thereof
KR20150125343A (en) Air conditioner and method for control of air conditioner
WO2019193685A1 (en) Air conditioning system control device, outdoor unit, relay unit, heat source unit, and air conditioning system
US9696067B2 (en) Apparatus and method for controlling indoor airflow for heat pumps
WO2019193649A1 (en) Control device, outdoor unit, and air conditioning system
US20230266029A1 (en) Systems and methods for optimal representation of setpoint selection via an array of lights
KR102346657B1 (en) Air conditioning system, indoor unit of air conditioning system and method for controlling the same
JP3518353B2 (en) Heat pump heating system
CN113587249B (en) Multi-split system
JP6890727B1 (en) Air conditioning system and control method
CN109186043A (en) Wall-hanging air conditioner and its control method
JP7319890B2 (en) Heat pump hot water heating system
KR101622619B1 (en) Air conditioner
CN113137719A (en) Air conditioner and control method
JP6851483B2 (en) Air conditioner
JP2017067320A (en) Air conditioner
KR101153422B1 (en) Method for controlling air conditionner
US11421907B2 (en) Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
JPH0436535A (en) Method of operating indoor fan of air conditioner
JP7232746B2 (en) Heat pump hot water heating system
JP2003254588A (en) Multi-type air conditioner

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895470

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895470

Country of ref document: EP

Kind code of ref document: A1