WO2017161963A1 - 一种光纤状态的检测方法及装置 - Google Patents

一种光纤状态的检测方法及装置 Download PDF

Info

Publication number
WO2017161963A1
WO2017161963A1 PCT/CN2017/072646 CN2017072646W WO2017161963A1 WO 2017161963 A1 WO2017161963 A1 WO 2017161963A1 CN 2017072646 W CN2017072646 W CN 2017072646W WO 2017161963 A1 WO2017161963 A1 WO 2017161963A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
preset
deviation value
value
sampling point
Prior art date
Application number
PCT/CN2017/072646
Other languages
English (en)
French (fr)
Inventor
杜树奎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017161963A1 publication Critical patent/WO2017161963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method and apparatus for detecting an optical fiber state.
  • the optical transport network uses optical fibers as the physical channel for transmitting the main light, and the quality of the main optical state directly affects the service transmission performance.
  • problems such as aging of the optical fiber, damage to the external fiber, curling of the optical fiber, bending at a large angle, and large tensile force, which will cause the main light attenuation to increase and the bit error rate to be high, thereby affecting the normal operation of the network. . Therefore, how to diagnose the main light state, the rapid positioning problem is critical to ensure the normal operation of the network.
  • the traditional diagnostic fiber method uses an optical time domain analyzer (OTDR), which is an optoelectronic integrated instrument that utilizes the backscattering principle generated by Rayleigh scattering and Fresnel reflection when optical pulses are transmitted through the fiber. Fiber length, transmission attenuation, joint attenuation, etc. can be measured.
  • OTDR optical time domain analyzer
  • the manual inbound interruption service is used for measurement, and the network loss is large for the operator; the measurement data needs to be analyzed and the period is long, and the business personnel demand is high.
  • the present disclosure provides a method and a device for detecting the state of an optical fiber, which are used to solve the problem that the fault analysis accuracy is low and the normal operation of the service is affected when the optical fiber fault is detected by the OTDR embedded transmission device in the prior art.
  • the present disclosure provides a method for detecting an optical fiber state, including: collecting measurement data of an optical fiber according to a preset acquisition parameter, where the preset acquisition parameter includes: an acquisition start time and an end of acquisition Time and acquisition time interval; comparing measurement data of the current sampling point with the preset reference reference value to determine a deviation value of the current sampling point; preset alarm according to the preset optical fiber measurement parameter and the deviation value
  • the alarm rule is searched in the database to determine the cause of the alarm of the sampling point corresponding to the deviation value, and an experience record is generated.
  • Determining, according to the alarm threshold value in the alarm rule, an alarm cause of the sampling point corresponding to the deviation value including: determining, when the absolute value of the deviation value is less than the degradation threshold, determining the sampling point as a normal point; if the absolute value of the deviation value is equal to or greater than the degradation threshold and less than the interruption threshold, determining that the sampling point is a degradation point; and the absolute value of the deviation value is greater than In the case of the interrupt threshold, it is determined that the sampling point is a break point.
  • the method of searching for the experience record according to the alarm cause to update the alarm threshold includes: when the alarm cause is an interrupt alarm, sorting the deviation values in all the experience records according to an absolute value, and the maximum absolute value is The deviation value corresponding to the value is determined as the interruption threshold; when the alarm cause is the degradation alarm, the deviation values in all the experience records are sorted according to the absolute value, and the deviation value corresponding to the smallest absolute value is determined as the degradation gate. Limit.
  • the method further includes: configuring the preset optical fiber measurement parameter for the optical time domain analyzer OTDR, configuring the preset acquisition parameter for the collector; and manually using the OTDR
  • the optical fiber is tested to obtain a test result of the fiber after manual troubleshooting, and the test result is used as the preset reference reference value.
  • the present disclosure provides an apparatus for detecting an optical fiber state, comprising: an acquisition module, configured to collect measurement data of an optical fiber according to a preset acquisition parameter, where the preset acquisition parameter includes: an acquisition start time, and an acquisition end a time and an acquisition time interval; the determining module is configured to compare the measurement data of the current sampling point with the preset reference reference value to determine a deviation value of the current sampling point; and the processing module is configured to measure according to the preset optical fiber The parameter and the deviation value are searched for an alarm rule in the preset alarm database to determine an alarm cause of the sampling point corresponding to the deviation value, and generate an experience record.
  • the processing module includes: a first searching unit, configured to search for a default alarm rule according to the preset fiber measurement parameter if there is no experience record in the preset alarm database; and the first determining unit is configured to Determining an alarm cause of the sampling point corresponding to the deviation value according to the default alarm threshold value in the default alarm rule; the first generating unit is configured to set the preset optical fiber measurement parameter, the deviation value, and the The corresponding cause of the alarm is established to generate an empirical record.
  • a first searching unit configured to search for a default alarm rule according to the preset fiber measurement parameter if there is no experience record in the preset alarm database
  • the first determining unit is configured to Determining an alarm cause of the sampling point corresponding to the deviation value according to the default alarm threshold value in the default alarm rule
  • the first generating unit is configured to set the preset optical fiber measurement parameter, the deviation value, and the The corresponding cause of the alarm is established to generate an empirical record.
  • the processing module includes: a second searching unit, configured to search for an alarm rule according to the preset fiber measurement parameter in a case where an experience record exists in the preset alarm database; and the second determining unit is configured to be configured according to the The alarm threshold in the alarm rule determines the alarm cause of the sampling point corresponding to the deviation value; the second generation list And setting a correspondence between the preset optical fiber measurement parameter, the deviation value, and the alarm cause to generate an experience record; the second searching unit is configured to search for an experience record according to the alarm cause, And updating the alarm threshold; the updating unit is configured to update the alarm rule according to the alarm threshold to detect the next sampling point according to the new alarm rule.
  • the second searching unit is further configured to: in the case that the alarm cause is an interrupt alarm, sort the deviation values in all the experience records according to an absolute value, and determine the deviation value corresponding to the largest absolute value as the interruption threshold. If the alarm cause is a degradation alarm, the deviation values in all the experience records are sorted according to the absolute value, and the deviation value corresponding to the smallest absolute value is determined as the degradation threshold value.
  • the device further includes: a configuration module configured to configure the preset optical fiber measurement parameter for the optical time domain analyzer OTDR, configure the preset acquisition parameter for the collector, and manually test the optical fiber by using the OTDR to obtain manual exclusion The test result of the fiber after the failure, and the test result is used as the preset reference reference value.
  • a configuration module configured to configure the preset optical fiber measurement parameter for the optical time domain analyzer OTDR, configure the preset acquisition parameter for the collector, and manually test the optical fiber by using the OTDR to obtain manual exclusion The test result of the fiber after the failure, and the test result is used as the preset reference reference value.
  • the disclosure collects the measurement data detected by the OTDR according to the preset acquisition parameters, and compares the collected data with a preset reference reference value to obtain a deviation value, according to the deviation value and the preset fiber measurement parameter.
  • the alarm rule is searched in the preset alarm database to determine the cause of the alarm, and the experience record is generated.
  • the method starts from the deviation value, finds the cause of the alarm according to the deviation value, and accurately analyzes the fault, and solves the problem of embedded transmission through the OTDR in the prior art.
  • the fault analysis accuracy is low, which affects the normal operation of the service.
  • FIG. 1 is a flow chart of a method for detecting a state of an optical fiber in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a device for detecting an optical fiber state in an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a processing module of a fiber state detecting device in an embodiment of the present disclosure
  • FIG. 4 is another schematic structural diagram of a processing module of a fiber state detecting device in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a preferred structure of a fiber state detecting device in an embodiment of the present disclosure
  • FIG. 6 is a flow chart of a method for detecting a state of an optical fiber according to a first embodiment of the present disclosure
  • FIG. 7 is a flowchart of an intelligent diagnosis of a method for detecting an optical fiber state according to a first embodiment of the present disclosure
  • Example 8 is a flow chart of a method for detecting the state of an optical fiber of Example 2 in a preferred embodiment of the present disclosure.
  • the fault analysis accuracy is low, and the normal operation of the service is affected.
  • the present invention provides a fiber state detecting method and device, and the following The invention will be further described in detail by way of examples. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the embodiment of the invention provides a method for detecting the state of the optical fiber.
  • the flow of the method is as shown in FIG. 1 and includes steps S102 to S106:
  • S102 Collect measurement data of the optical fiber according to the preset collection parameter, where the preset acquisition parameters include: an acquisition start time, an acquisition end time, and an acquisition time interval;
  • S104 Compare the measurement data of the current sampling point with a preset reference reference value to determine a deviation value of the current sampling point;
  • S106 Search for an alarm rule in the preset alarm database according to the preset fiber measurement parameter and the deviation value, determine an alarm cause of the sampling point corresponding to the deviation value, and generate an experience record.
  • the measurement data detected by the OTDR is collected according to the preset acquisition parameters, and the collected data is compared with a preset reference reference value to obtain a deviation value, which is measured according to the deviation value and the preset optical fiber.
  • the parameter is used to search for the alarm rule in the preset alarm database to determine the cause of the alarm, and then generate an experience record.
  • the method starts from the deviation value, finds the cause of the alarm according to the deviation value, and accurately analyzes the fault, and solves the problem of OTDR in the prior art.
  • the transmission device is embedded to detect the fiber fault, the fault analysis accuracy is low, which affects the normal operation of the service.
  • the preset fiber measurement parameters are measured parameters using the embedded OTDR fiber
  • the preset acquisition parameters are the acquisition parameters of the collector used.
  • the collector collects the measurement data according to the preset acquisition parameters to obtain the sampled measurement data, which is also the measurement data to be used in the present invention.
  • the optical fiber time domain analyzer OTDR can also be configured with preset optical fiber measurement parameters, and the preset acquisition parameters can be configured for the collector; the optical fiber is manually tested by the OTDR to obtain manual elimination. The test result of the fiber after the fault, and the test result is used as a preset reference value.
  • the comparison process may be: subtracting the preset reference reference data of the position point by using the measurement data of the current sampling position point, of course, The measurement data of the position point may be detected by the preset reference reference data of the current sampling position point, and further, the result obtained by the subtraction is determined as the deviation value of the current sampling point.
  • the alarm rules are searched in the preset alarm database according to the preset fiber measurement parameters and the deviation value, the alarm cause of the sampling point corresponding to the deviation value is determined, and the experience record is generated.
  • One is normal. In the initial situation, there is no experience record in the preset alarm database. Normally, the experience record exists in the preset alarm database. The two cases are described separately below.
  • the preset default alarm rule may exist in the alarm database, where the default alarm rule may be determined by a person skilled in the art according to experience or experiment, and the alarm rule These include: preset fiber measurement parameters, interrupt thresholds, and degradation thresholds.
  • the default alarm rule is searched according to the preset fiber measurement parameter; and the sampling point corresponding to the deviation value is determined according to the default alarm threshold (interrupt threshold and degradation threshold) in the default alarm rule.
  • the cause of the alarm; subsequently, the preset fiber optic measurement parameters, the deviation value, and the alarm cause are associated to generate an experience record for subsequent viewing and comparison.
  • the alarm rule is the alarm rule that has been modified. That is, the alarm threshold may be the alarm threshold that has been adjusted according to multiple experience records. Looking for an alarm The reason is that the alarm rule is first searched according to the preset fiber measurement parameter; then the alarm cause corresponding to the deviation value is determined according to the alarm threshold in the alarm rule; then, the fiber measurement parameter, the deviation value, and the alarm cause are preset. Establish correspondences to generate empirical records. After the experience record is generated, you need to find the experience record based on the alarm cause to update the alarm threshold and update the alarm rule according to the alarm threshold to detect the next sampling point according to the new alarm rule.
  • the sampling point is a normal point; if the absolute value of the deviation value is equal to or greater than the degradation threshold and less than the interruption threshold, the sampling point is determined as the degradation point; if the absolute value of the deviation value is greater than the interruption threshold, the sampling point is determined to be Break point.
  • the process of searching for an experience record according to the cause of the alarm to update the alarm threshold is as follows, including: in the case that the alarm cause is an interrupt alarm, the deviation values in all the experience records are sorted according to the absolute value, and the largest absolute value is corresponding. The deviation value is determined as the interruption threshold; when the alarm cause is the degradation alarm, the deviation values in all the empirical records are sorted according to the absolute value, and the deviation value corresponding to the smallest absolute value is determined as the degradation threshold.
  • the cause of the alarm may also be presented to the user.
  • different colors can be rendered for different alarm causes in order to distinguish them clearly.
  • the embodiment of the present invention further provides a device for detecting the state of the optical fiber.
  • the structure of the device is as shown in FIG. 2, and includes: an acquisition module 10 configured to collect measurement data of the optical fiber according to a preset acquisition parameter, where the preset acquisition parameter is preset.
  • the method includes: an acquisition start time, an acquisition end time, and an acquisition time interval.
  • the determining module 20 is coupled to the acquisition module 10 and configured to compare the measurement data of the current sampling point with a preset reference reference value to determine a deviation of the current sampling point.
  • the processing module 30 is coupled to the determining module 20 and configured to search for an alarm rule in the preset alarm database according to the preset fiber measurement parameter and the deviation value to determine the alarm cause of the sampling point corresponding to the deviation value, and generate an experience record.
  • FIG. 3 is a schematic structural diagram of the foregoing processing module 30, including: a first searching unit 301, configured to find a default alarm according to preset fiber optic measurement parameters if there is no empirical record in the preset alarm database.
  • the first determining unit 302 is coupled to the first searching unit 301, and configured to determine, according to the default alarm threshold value in the default alarm rule, an alarm cause of the sampling point corresponding to the deviation value; the first generating unit 303, and the first A determining unit 302 is coupled to establish a correspondence between the preset fiber measurement parameters, the deviation value, and the alarm cause to generate an experience record.
  • FIG. 4 is a schematic diagram showing another structure of the foregoing processing module 30.
  • the method further includes: a second searching unit 311 configured to search for an alarm according to preset fiber optic measurement parameters if there is an empirical record in the preset alarm database.
  • the second determining unit 312 is configured to be coupled to the second searching unit 311, and configured to determine, according to the alarm threshold value in the alarm rule, an alarm cause of the sampling point corresponding to the deviation value; the second generating unit 313 and the second determining unit 312 Coupling, configured to establish a correspondence between the preset fiber measurement parameters, the deviation value, and the alarm cause to generate an experience record;
  • the second search unit 311 is further configured to search for the experience record according to the alarm cause to update the report.
  • the alarm threshold value updating unit 314 is coupled to the second searching unit 311 and configured to update the alarm rule according to the alarm threshold value to detect the next sampling point according to the new alarm rule.
  • the second searching unit 312 is further configured to: in the case that the alarm cause is an interrupt alarm, sort the deviation values in all the experience records according to the absolute value, and determine the deviation value corresponding to the largest absolute value as the interruption threshold. Value; when the alarm cause is a degradation alarm, the deviation values in all the experience records are sorted according to the absolute value, and the deviation value corresponding to the smallest absolute value is determined as the degradation threshold value.
  • the structure of the detecting device is further illustrated in FIG. 5.
  • the device further includes: a configuration module 40 coupled to the collecting module 10 and configured to configure a preset optical fiber for the optical time domain analyzer OTDR. Measuring parameters, configuring preset acquisition parameters for the collector; manually testing the optical fiber through the OTDR to obtain the test result of the fiber after manual troubleshooting, and using the test result as a preset reference reference value; the presentation module 50 is coupled with the processing module 30, Set to present the cause of the alert to the user.
  • the embodiment of the invention provides a method and a device for detecting the state of the optical fiber, which can accurately detect the fiber fault, so as to at least solve the problem that the fault analysis accuracy occurs when the OTDR is embedded in the transmission device for main light measurement.
  • a method for detecting an optical fiber state in this embodiment is as follows, and includes:
  • the OTDR normal measurement needs to be configured with measurement parameters, including measurement pulse width, measurement maximum distance, sampling time, and so on.
  • the measurement result (that is, the measurement data) collected in real time is compared with the reference value set in the previous period, the deviation value is calculated, the deviation value is input into the intelligent diagnosis rule, and the interruption point and the deterioration point are output.
  • the intelligent diagnosis rule adopts a method based on the experience and the learning rule. Specifically, according to the site start point, the interrupt alarm data under different parameter configurations is collected, and the alarm data is degraded, and the pulse width, the measurement maximum distance, the sampling time, and the deviation value are measured.
  • the records such as the cause of the alarm are entered into the experience database as empirical data as the basic data of the learning rules.
  • the current fiber configuration parameter Ai is indexed, and the method based on the experience library is to learn the rules from experience as follows: Different rules are learned for the currently input fiber measurement parameters.
  • the specific learning step is as follows: querying the same record set of Ci, that is, taking out the same record set as the measurement parameters.
  • the alarm cause C5 is the record of the interrupt alarm.
  • the deviation value C4 is sorted, and the absolute value I of the maximum deviation is taken as the interruption threshold.
  • the alarm cause C5 is the record of the degradation alarm.
  • a fiber state detecting device comprising: a reference value setting module (corresponding to a part of functions of the configuration module), a parameter configuration module (corresponding to a part of functions of the configuration module), and a database module (equivalent to the preset alarm database), the real-time measurement module (equivalent to the function of the acquisition module), the measurement result intelligent diagnosis module (equivalent to the function of the determination module and the processing module), the alarm reporting module (equivalent to the function of the presentation module), Experience library correction module.
  • the reference value setting module is configured to collect the optical fiber measurement result when the optical fiber is in good running state, and use it as a reference value of the normal state of the optical fiber.
  • the parameter configuration module is set to set the relevant parameters of the automatic measurement and the fault point threshold to the database.
  • Database module set to save reference values, configured parameters, and empirical data.
  • Real-time measurement module set to collect fiber measurement results in real time.
  • the intelligent diagnosis module of the measurement result is set to compare the measurement result collected in real time with the reference value set in the previous period, calculate the deviation value, input the intelligent diagnosis rule, and output the interruption point and the degradation point.
  • the alarm reporting module is configured to assemble the fault points obtained by analyzing the measurement results into alarms and report them to the display.
  • the experience library correction module is set to provide a human-machine interface for the operation and maintenance personnel to confirm the alarm, correct the confirmed alarm, delete the false alarm, and input the experience alarm through the man-machine interface, enrich the intelligent diagnosis experience library, and improve the learning rules. Accuracy.
  • the intelligent diagnosis algorithm is used to gradually learn the diagnosis rule of the main light, thereby improving the accuracy of the diagnosis, and finally improving the accuracy of the main light failure.
  • the design method and the device solve the problem that the fault analysis accuracy that occurs when the OTDR is embedded in the transmission device for main light measurement is low, the reliability of the service operation is improved, and the operation and maintenance cost is reduced.
  • FIG. 6 is a flowchart of the method, including the following steps:
  • step S602 the reference value is set, including the commissioning and commissioning, and the service is opened, and after the service and the optical fiber are normal, Manually perform fiber measurement and set the measurement data as a reference value.
  • the reference value is set, including the commissioning and commissioning, and the service is opened, and after the service and the optical fiber are normal, Manually perform fiber measurement and set the measurement data as a reference value.
  • the fiber state fluctuates, it is compared with the reference value to locate the fault point.
  • Step S604 parameter configuration, including: timer start time, end time, time interval, fiber measurement parameters, specifically including pulse width, measurement maximum distance, sampling time, etc., wherein the timer is used for timing measurement fiber.
  • Step S606 Collecting optical fiber measurement data: when the system is running, the timer is used to perform timing measurement on the optical fiber, so as to provide real-time positioning fault points to provide comparison data.
  • Step S608 performing intelligent diagnosis on the measurement data.
  • the intelligent diagnosis process can be based on an empirical library (alarm database) plus an empirical learning method.
  • step S610 the alarm point is reported to the alarm point generated by the intelligent diagnosis, and the fault point exceeding the threshold is assembled into an alarm and reported to the network management tube, and the optical fiber is visually displayed with a highlight color.
  • Step S612 providing a human-machine interface, adding, deleting, and maintaining the experience library, and correcting the result of generating the alarm, and adding to the experience database.
  • Figure 7 is the flow of the intelligent diagnosis process, including the following process:
  • Step S702 calculating a deviation value of each position point before the current test data and the reference value, and inputting the measurement parameter and the deviation value as inputs of the intelligent diagnosis.
  • Step S704 according to the optical fiber measurement parameter as an index to the record corresponding to the query in the experience database.
  • step S706 the experience library is learned. Specifically, in the set of the query, the reason for continuing to query the alarm is to record the interrupt alarm, sort the deviation value, and take the absolute value of the maximum deviation as the interruption threshold; Record the deterioration alarm, sort the deviation, and take the absolute value degradation threshold of the minimum deviation.
  • Step S708 Associate the current parameter with the interrupt threshold and the degradation threshold to generate an alarm rule.
  • Step S710 determining the type of the current location point. Enter the current configuration parameter to find the threshold, compare the deviation with the threshold, the point larger than the interrupt threshold is the interruption point, which is greater than the degradation threshold, the point smaller than the interruption threshold is the degradation point, and the point smaller than the degradation threshold is the normal point.
  • step S712 the alarm is confirmed and corrected.
  • the alarm is falsely reported, the alarm cause is incorrectly modified, and the corrected alarm is saved to the experience database as the next learning experience.
  • FIG. 8 is a flowchart of a preferred processing scheme of a method for detecting an optical fiber state according to an embodiment of the present invention. As shown in FIG. 8, the method includes:
  • Step S802 configuring fiber measurement parameters.
  • the fiber measurement parameters include measurement pulse width, measurement maximum distance, sampling time, and the like.
  • step S804 after the commissioning is performed to ensure that the service is normal, the optical fiber is manually tested by using a traditional OTDR meter or a remote embedded OTDR module. After the fault is manually analyzed, the fiber test result is queried, and the fiber is in a good state, and the measurement data is saved as Reference values for the basis of intelligent diagnostic analysis.
  • Step S806 configuring the collection parameters, where the timer is preferably used, and the collection parameters include the start. Time, end time, time interval, etc. In the implementation process, those skilled in the art can also place S806 before S804.
  • Step S808 collecting optical fiber measurement data according to the collection parameters, interacting with the device, and querying the optical fiber measurement data.
  • Step S810 comparing the current fiber measurement data of the query with the set reference value, calculating the deviation value of each point; and generating a combination of ⁇ distance point, deviation value ⁇ .
  • step S812 the optical fiber measurement parameter and the deviation value are used as input data of the intelligent diagnosis to start the process of intelligent diagnosis.
  • step S814 the measurement parameters such as the measurement pulse width, the measurement maximum distance, and the sampling time are input as input to the alarm experience database to query the corresponding experience record.
  • Step S816 Generate an alarm rule according to the learned experience record.
  • the record fields queried include: measurement pulse width, measurement maximum distance, sampling time, deviation value, and alarm cause.
  • the offset value field of the alarm cause is sorted, and the absolute value of the maximum deviation is taken as the interrupt threshold; the cause of the alarm is the deviation in the degradation alarm, and the absolute value of the minimum deviation is degraded.
  • the generated alarm rule records include: measurement pulse width, measurement maximum distance, sampling time, interrupt threshold, and degradation threshold.
  • Step S818, comparing ⁇ distance point, deviation value ⁇ with the alarm rule.
  • the point is the interruption point.
  • the point is the degradation point, and when the deviation value is less than The degradation threshold, which is the normal point, assembles the interruption point and the degradation point into an interruption and degradation alarm.
  • Step S820 reporting the interruption and degradation alarm to the human-machine interface, and rendering the optical fiber with color highlighting.
  • step S822 it is determined whether to continue collecting measurement data in real time. If yes, then step S808, otherwise, step S824.
  • the above method and corresponding device can be implemented by software programming, hardware (for example, DSP, ASIC, FPGA, programmable logic device or other electronic unit or any combination thereof), or a combination of software and hardware, which is convenient and convenient, and operability Strong, compared with the prior art, can quickly diagnose optical fiber errors more effectively, more accurately, and more timely; solve the problem of low accuracy of fault analysis when using OTDR embedded in transmission equipment for main light measurement, Improve the reliability of business operations and reduce operation and maintenance costs.
  • An exemplary embodiment of the present disclosure also provides a non-transitory computer readable storage medium including instructions executable by a processor to perform the above-described method of detecting a fiber state.
  • the non-transitory computer readable storage medium can be a read only memory (ROM), a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the present disclosure is applicable to the field of communications, and solves the problem that the fault analysis accuracy is low and the normal operation of the service is affected when the optical fiber fault is detected by the OTDR embedded transmission device in the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本公开涉及一种光纤状态的检测方法及装置,其中,该方法包括:按照预设采集参数采集光纤的测量数据,其中,预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;将当前采样点的测量数据与预设基准参考值进行比较,以确定当前采样点的偏差值;根据预设光纤测量参数和偏差值在预设告警数据库中查找告警规则,以确定偏差值对应的采样点的告警原因,并生成经验记录。本公开按照预设采集参数对OTDR检测到的测量数据进行采集,再将采集到的数据与预设基准参考值进行比较,来得到一个偏差值,跟根据该偏差值和预设光纤测量参数来在预设告警数据库中查找告警规则,以便确定告警原因,进而生成经验记录,解决了现有技术的问题。

Description

一种光纤状态的检测方法及装置 技术领域
本公开涉及通讯领域,特别是涉及一种光纤状态的检测方法及装置。
背景技术
光传送网采用光纤作为传送主光的物理通道,主光状态的好坏直接影响到业务传输性能。但***在运行中,往往存在光纤的老化、外破损伤、光纤卷曲、大角度弯折以及承担较大拉力等问题,会造成主光衰减增大、误码率高,进而影响网络的正常运行。因此,如何诊断主光状态,快速定位问题对保证网络的正常运行十分关键。
传统诊断光纤方法采用光时域分析仪(OTDR),OTDR是一种光电一体化仪表,它利用光脉冲在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射原理,从而可以对光纤长度、传输衰减、接头衰减等进行测量。但存在以下缺点:使用时人工进站中断业务进行测量,断网对运营商经济损失大;需要对测量数据进行分析且周期较长,业务人员要求高。
为解决人工进站断业务测量问题,大部分厂家采用将OTDR嵌入传输设备,可实现对光纤远程在线检测。但由于故障原因呈现多样性和复杂性,使得分析故障难度大大增加,准确性很低,直接影响了业务的正常运行。
针对相关技术中存在的故障分析准确性低,目前尚未提出有效的解决方案。
发明内容
本公开提供一种光纤状态的检测方法及装置,用以解决现有技术中通过OTDR嵌入传输设备的方式检测光纤故障时,故障分析准确性低,影响业务正常运行的问题。
为解决上述技术问题,一方面,本公开提供一种光纤状态的检测方法,包括:按照预设采集参数采集光纤的测量数据,其中,所述预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;将当前采样点的测量数据与所述预设基准参考值进行比较,以确定所述当前采样点的偏差值;根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录。
根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录,包括:在所述预设告警数据库中不存在经验记录的情况下,根据所述预设光纤测量参数查找缺省告警规则;根据所述缺省告警规则中的缺省告警门限值确定所述偏差值对应的采样点的告警原因;将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录。
根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录,包括:在所述预设告警数据库中存在经验记录的情况下,根据所述预设光纤测量参数查找告警规则;根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因;将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录;根据所述告警原因查找经验记录,以更新所述告警门限值;根据所述告警门限值更新所述告警规则,以根据新的告警规则对下一个采样点进行检测。
根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因,包括:在所述偏差值绝对值小于所述劣化门限值的情况下,确定所述采样点为正常点;在所述偏差值绝对值等于或大于所述劣化门限值、且小于所述中断门限值的情况下,确定所述采样点为劣化点;在所述偏差值绝对值大于所述中断门限值的情况下,确定所述采样点为中断点。
根据所述告警原因查找经验记录,以更新所述告警门限值,包括:在所述告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;在所述告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
按照预设采集参数采集光纤的测量数据之前,所述方法还包括:为光时域分析仪OTDR配置所述预设光纤测量参数,为采集器配置所述预设采集参数;通过所述OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将所述测试结果作为所述预设基准参考值。
另一方面,本公开提供一种光纤状态的检测装置,包括:采集模块,设置为按照预设采集参数采集光纤的测量数据,其中,所述预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;确定模块,设置为将当前采样点的测量数据与所述预设基准参考值进行比较,以确定所述当前采样点的偏差值;处理模块,设置为根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录。
所述处理模块包括:第一查找单元,设置为在所述预设告警数据库中不存在经验记录的情况下,根据所述预设光纤测量参数查找缺省告警规则;第一确定单元,设置为根据所述缺省告警规则中的缺省告警门限值确定所述偏差值对应的采样点的告警原因;第一生成单元,设置为将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录。
所述处理模块包括:第二查找单元,设置为在所述预设告警数据库中存在经验记录的情况下,根据所述预设光纤测量参数查找告警规则;第二确定单元,设置为根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因;第二生成单 元,设置为将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录;所述第二查找单元,设置为于根据所述告警原因查找经验记录,以更新所述告警门限值;更新单元,设置为根据所述告警门限值更新所述告警规则,以根据新的告警规则对下一个采样点进行检测。
所述第二查找单元,还设置为在所述告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;在所述告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
所述装置还包括:配置模块,设置为为光时域分析仪OTDR配置所述预设光纤测量参数,为采集器配置所述预设采集参数;通过所述OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将所述测试结果作为所述预设基准参考值。
本公开按照预设采集参数对OTDR检测到的测量数据进行采集,再将采集到的数据与预设基准参考值进行比较,来得到一个偏差值,跟根据该偏差值和预设光纤测量参数来在预设告警数据库中查找告警规则,以便确定告警原因,进而生成经验记录,该方法从偏差值入手进行考虑,根据偏差值查找告警原因,故障分析精确,解决了现有技术中通过OTDR嵌入传输设备的方式检测光纤故障时,故障分析准确性低,影响业务正常运行的问题。
附图说明
图1是本公开实施例中光纤状态的检测方法的流程图;
图2是本公开实施例中光纤状态的检测装置的结构示意图;
图3是本公开实施例中光纤状态的检测装置处理模块的一种结构示意图;
图4是本公开实施例中光纤状态的检测装置处理模块的另一种结构示意图;
图5是本公开实施例中光纤状态的检测装置的优选结构示意图;
图6是本公开优选实施例中实例一的光纤状态的检测方法流程图;
图7是本公开优选实施例中实例一的光纤状态的检测方法智能诊断的流程图;
图8是本公开优选实施例中实例二的光纤状态的检测方法流程图。
具体实施方式
为了解决现有技术中通过OTDR嵌入传输设备的方式检测光纤故障时,故障分析准确性低,影响业务正常运行的问题,本发明提供了一种光纤状态的检测方法及装置,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
本发明实施例提供一种光纤状态的检测方法,该方法的流程如图1所示,包括步骤S102至S106:
S102,按照预设采集参数采集光纤的测量数据,其中,预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;
S104,将当前采样点的测量数据与预设基准参考值进行比较,以确定当前采样点的偏差值;
S106,根据预设光纤测量参数和偏差值在预设告警数据库中查找告警规则,以确定偏差值对应的采样点的告警原因,并生成经验记录。
本发明实施例按照预设采集参数对OTDR检测到的测量数据进行采集,再将采集到的数据与预设基准参考值进行比较,来得到一个偏差值,跟根据该偏差值和预设光纤测量参数来在预设告警数据库中查找告警规则,以便确定告警原因,进而生成经验记录,该方法从偏差值入手进行考虑,根据偏差值查找告警原因,故障分析精确,解决了现有技术中通过OTDR嵌入传输设备的方式检测光纤故障时,故障分析准确性低,影响业务正常运行的问题。
在实现过程中,预设光纤测量参数是使用嵌入的OTDR光纤测量参数,预设采集参数是使用的采集器的采集参数。OTDR在按照预设光纤测量参数采集到各个测量数据后,采集器会根据预设采集参数对上述的测量数据进行采集,以得到采样后的测量数据,这也正是本发明要使用的测量数据。
因此,在按照预设采集参数采集光纤的测量数据之前,还可以为光时域分析仪OTDR配置预设光纤测量参数,为采集器配置预设采集参数;通过OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将测试结果作为预设基准参考值。
在获得了测量数据后,将当前采样点的测量数据与预设基准参考值进行比较,比较的过程可以是用当前采样位置点的测量数据减去该位置点的预设基准参考数据,当然,也可以是当前采样位置点的预设基准参考数据检测该位置点的测量数据,进而,将做减法得到的结果确定为当前采样点的偏差值。
在实施过程中,根据预设光纤测量参数和偏差值在预设告警数据库中查找告警规则、确定偏差值对应的采样点的告警原因并生成经验记录的过程存在两种情况,一种是初始情况,一种是正常情况。初始情况即预设告警数据库中不存在经验记录,正常情况即预设告警数据库中已存在经验记录。下面对该两种情况分别进行说明。
在预设告警数据库中不存在经验记录的情况下,告警数据库中会存在预设的缺省告警规则,其中,该缺省告警规则可以是本领域技术人员根据经验或试验而确定的,告警规则中包括:预设光纤测量参数、中断门限值和劣化门限值。在这种情况下,根据预设光纤测量参数查找缺省告警规则;根据缺省告警规则中的缺省告警门限值(中断门限值和劣化门限值)确定偏差值对应的采样点的告警原因;随后,将预设光纤测量参数、偏差值和告警原因建立对应关系,以生成经验记录,以供后续查看比较。
在预设告警数据库中已存在经验记录的情况下,告警规则就是已经修改过的告警规则,即告警门限值可能是已经根据多次经验记录调整过的告警门限值。在查找告警 原因时,也是先根据预设光纤测量参数查找告警规则;再根据告警规则中的告警门限值确定偏差值对应的采样点的告警原因;随后,将预设光纤测量参数、偏差值和告警原因建立对应关系,以生成经验记录。生成经验记录后,还需要根据告警原因查找经验记录,以更新告警门限值,根据告警门限值更新告警规则,以根据新的告警规则对下一个采样点进行检测。
具体的,根据告警规则中的告警门限值确定偏差值对应的采样点的告警原因时,将偏差值绝对值与各个门限值进行比较,如果偏差值绝对值小于劣化门限值,则确定采样点为正常点;如果偏差值绝对值等于或大于劣化门限值、且小于中断门限值,则确定采样点为劣化点;如果偏差值绝对值大于中断门限值,则确定采样点为中断点。
根据告警原因查找经验记录、以更新告警门限值的过程具体如下,包括:在告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;在告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
在确定偏差值对应的采样点的告警原因之后,还可以将告警原因呈现给用户。优选的,可以为不同告警原因渲染不同颜色,以便明显区分。
本发明实施例还提供一种光纤状态的检测装置,该装置的结构示意如图2所示,包括:采集模块10,设置为按照预设采集参数采集光纤的测量数据,其中,预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;确定模块20,与采集模块10耦合,设置为将当前采样点的测量数据与预设基准参考值进行比较,以确定当前采样点的偏差值;处理模块30,与确定模块20耦合,设置为根据预设光纤测量参数和偏差值在预设告警数据库中查找告警规则,以确定偏差值对应的采样点的告警原因,并生成经验记录。
图3示出了上述处理模块30的一种结构示意图,其包括:第一查找单元301,设置为在预设告警数据库中不存在经验记录的情况下,根据预设光纤测量参数查找缺省告警规则;第一确定单元302,与第一查找单元301耦合,设置为根据缺省告警规则中的缺省告警门限值确定偏差值对应的采样点的告警原因;第一生成单元303,与第一确定单元302耦合,设置为将预设光纤测量参数、偏差值和告警原因建立对应关系,以生成经验记录。
图4示出了上述处理模块30的另一种结构示意图,其还可以包括:第二查找单元311,设置为在预设告警数据库中存在经验记录的情况下,根据预设光纤测量参数查找告警规则;第二确定单元312,与第二查找单元311耦合,设置为根据告警规则中的告警门限值确定偏差值对应的采样点的告警原因;第二生成单元313,与第二确定单元312耦合,设置为将预设光纤测量参数、偏差值和告警原因建立对应关系,以生成经验记录;第二查找单元311,还设置为根据告警原因查找经验记录,以更新告 警门限值;更新单元314,与第二查找单元311耦合,设置为根据告警门限值更新告警规则,以根据新的告警规则对下一个采样点进行检测。
优选的,第二查找单元312,还设置为在告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;在告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
在一个优选实施例中,上述检测装置的结构示意还可以如图5所示,所述装置还包括:配置模块40,与采集模块10耦合,设置为为光时域分析仪OTDR配置预设光纤测量参数,为采集器配置预设采集参数;通过OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将测试结果作为预设基准参考值;呈现模块50,与处理模块30耦合,设置为将告警原因呈现给用户。
优选实施例
本发明实施例提供了一种光纤状态的检测方法及装置,能够准确检测光纤故障,以至少解决采用将OTDR嵌入传输设备进行主光测量时出现的故障分析准确性低的问题。
本实施例的一种光纤状态的检测方法大致如下,包括:
(1)设定参考值:开局调测保证业务正常后,采用传统OTDR仪表或远程嵌入OTDR模块手动测试光纤,人工分析排除故障后,查询此时的光纤测试结果,此时光纤处于良好状态,将测量结果保存为参考值,供智能诊断分析提供依据。
(2)参数配置:OTDR正常测量需要配置测量参数,其中包括,测量脉冲宽度、测量最大距离、采样时间等。
(3)实时采集测量数据:参数配置后,启动测量,查询模块与设备交互,实时采集光纤测量结果。
上述过程(2)和(3)也可以在预先进行配置。
(4)智能诊断测量结果:将实时采集的测量结果(即测量数据)与前期设置的参考值进行对比,计算出偏差值,偏差值输入智能诊断规则,输出中断点、劣化点。
其中智能诊断规则采用基于经验库加学习规则的方法,具体地:根据现场开局点,收集不同参数配置下的中断告警数据,劣化告警数据,将测量脉冲宽度、测量最大距离、采样时间、偏差值、告警原因等记录作为经验数据录入经验库,作为学习规则的基础数据。定义经验库为CASE,其中一条经验记录为R={Ci}(i=1…5),其中测量脉冲宽度C1,测量距离C2,采样时间C3,偏差值C4,告警原因C5。设当前测量结果输入数据为T={Ai,L,P}(i=1…3),其中测量脉冲宽度A1,测量最大距离A2,采样时间A3,L为位置点,单位是m,P是当前测量结果与参考值的偏差值。将当前光纤配置参数Ai为索引,以经验库为基础数据到从经验中学习规则的方法如下:针对当前输入的光纤测量参数,学习出不同的规则。设规则为G={Ci,I,B},其中 i=1…3,I为中断门限,B为劣化门限。具体学习步骤为:查询出Ci相同的记录集合,即取出测量参数一样的记录集合。在查询的集合中,查询告警原因C5是中断告警的记录,对偏差值C4进行排序,取最大值偏差的绝对值I,将其作为中断门限;查询告警原因C5是劣化告警的记录,对偏差C4进行排序,取最小偏差的绝对值B,将其作为劣化门限。将T输入到G中,当Ai=Ci,且P>I,此时T为中断点,位置为L,当Ai=Ci,且I>P>B,此时T为劣化点,位置为L。
(5)上报错误点告警:将智能诊断的故障点生成告警,并上报显示。
(6)经验库修正:现场运维人员针对中断和劣化告警进行确认,将确认的告警进行修正,误报的删除,正确的告警通过人机界面录入经验库,丰富智能诊断经验库,提高学习规则的准确度。
根据本发明的另一方面,还提供一种光纤状态的检测装置,包括:参考值设定模块(相当于配置模块的部分功能),参数配置模块(相当于配置模块的部分功能),数据库模块(相当于预设告警数据库),实时测量模块(相当于采集模块的功能),测量结果智能诊断模块(相当于确定模块和处理模块的功能),告警上报模块(相当于呈现模块的功能),经验库修正模块。
参考值设定模块,设置为收集光纤运行状态良好时光纤测量结果,将其作为光纤正常状态的参考值。
参数配置模块,设置为将自动测量的相关参数、故障点门限设置到数据库中。
数据库模块,设置为保存参考值、配置的参数、经验数据。
实时测量模块,设置为实时采集光纤测量结果。
测量结果智能诊断模块,设置为将实时采集的测量结果与前期设置的参考值进行对比,计算出偏差值,偏差值输入智能诊断规则,输出中断点和劣化点。
告警上报模块,设置为将测量结果分析得到的故障点,组装成告警,并上报显示。
经验库修正模块,设置为提供人机界面供运维人员确认告警,将确认的告警进行修正,误报的删除,正确的告警通过人机界面录入经验库,丰富智能诊断经验库,提高学习规则的准确度。
通过本发明实施例,采用智能诊断算法进行逐步学习主光的诊断规则,进而提升诊断的准确率,最终提高了定位主光故障的准确率。通过该设计方法和装置,解决了采用将OTDR嵌入传输设备进行主光测量时出现的故障分析准确性低的问题,提高了业务运行的可靠性,降低了运维成本。
下面结合附图不及实施例对上述过程进行说明。
实例一
本实施例中提供了一种光纤状态的检测方法,图6是该方法的流程图,包括如下步骤:
步骤S602,设定参考值,包括开局调测,业务开通,保证业务和光纤正常后, 手动进行光纤测量,将测量数据设置为参考值,***运行过程中,当光纤状态波动时,与参考值对比,从而定位出故障点。
步骤S604,参数配置,包括:定时器开始时间,结束时间,时间间隔,光纤测量参数,具体包括脉冲宽度、测量最大距离、采样时间等,其中定时器是用于定时测量光纤。
步骤S606,采集光纤测量数据:***运行时,采用定时器方式进行定时测量光纤,从而实现实时定位故障点提供对比数据。
步骤S608,对测量数据进行智能诊断。智能诊断过程可以采用基于经验库(告警数据库)加根据经验学习的方法。
步骤S610,对根据智能诊断生成的告警点上报错误点告警,将超过门限的故障点组装成告警,上报到网管,光纤上用高亮颜色直观显示。
步骤S612,提供人机界面,对经验库进行增删改维护,对生成告警的结果进行修正,新增到经验库中。
图7是智能诊断过程的流程,包括如下过程:
步骤S702,计算当前测试数据与参考值之前的各个位置点的偏差值,并将测量参数和偏差值输入作为智能诊断的输入。
步骤S704,根据光纤测量参数作为索引到经验库中查询对应的记录。
步骤S706,对经验库进行学习,具体地,在查询的集合中,继续查询告警原因是中断告警的记录,对偏差值进行排序,取最大值偏差的绝对值作为中断门限;继续查询告警原因是劣化告警的记录,对偏差进行排序,取最小偏差的绝对值劣化门限。
步骤S708,将当前参数和中断门限、劣化门限关联起来,生成告警规则。
步骤S710,确定当前位置点的类型。输入当前配置参数找到门限值,将偏差与门限进行比较,大于中断门限的点是中断点,大于劣化门限,小于中断门限的点是劣化点,小于劣化门限的点是正常点。
步骤S712,对告警进行确认、修正。当是误报的告警删除,对告警原因不正确的进行修改,将修正的告警保存到经验库,作为下一次学习的经验。
实例二
图8是本发明实施例的光纤状态的检测方法的优选处理方案的流程图,如图8所示,包括:
步骤S802,配置光纤测量参数。其中,光纤测量参数包括测量脉冲宽度、测量最大距离、采样时间等。
步骤S804,开局调测保证业务正常后,采用传统OTDR仪表或远程嵌入OTDR模块手动测试光纤,人工分析排除故障后,查询此时的光纤测试结果,此时光纤处于良好状态,将测量数据保存为参考值,供智能诊断分析提供依据。
步骤S806,配置采集参数,其中,优选采用定时器来实现,采集参数包括起始 时间、结束时间、时间间隔等。在实现过程中,本领域技术人员还可以将S806放置在S804之前执行。
步骤S808,根据采集参数采集光纤测量数据,与设备交互,查询到光纤测量数据。
步骤S810,将查询的当前光纤测量数据与设置参考值进行对比,计算各个点的偏差值;生成{距离点,偏差值}的组合。
步骤S812,将光纤测量参数和偏差值作为智能诊断的输入数据,以开启智能诊断的过程。
步骤S814,根据测量脉冲宽度、测量最大距离、采样时间等测量参数作为输入到告警经验库中查询对应的经验记录。
步骤S816,根据查询到的经验记录,生成告警规则。其中查询到的记录字段包括:测量脉冲宽度、测量最大距离、采样时间、偏差值、告警原因。在查询的结果中,对告警原因是中断告警的偏差值字段进行排序,取最大值偏差的绝对值作为中断门限;将告警原因是劣化告警中的偏差进行排序,取最小偏差的绝对值劣化门限。生成告警规则记录包括:测量脉冲宽度、测量最大距离、采样时间、中断门限、劣化门限。
步骤S818,将{距离点,偏差值}与告警规则进行比较,当偏差值大于中断门限,此点为中断点,当偏差值小于中断门限大于劣化门限,此点为劣化点,当偏差值小于劣化门限,此点为正常点,将中断点和劣化点组装成中断和劣化告警。
步骤S820,向人机界面上报中断和劣化告警,并用颜色高亮渲染光纤。
步骤S822,判断是否继续实时采集测量数据,是,则步骤S808,否,则步骤S824。
步骤S824,结束检测。
上述方法及对应的装置可以通过软件编程、硬件(例如,DSP、ASIC、FPGA、可编程逻辑器件或其他电子单元或其任意组合)、或软件和硬件的组合来实现,改进方便,而且操作性强,相对于现有技术而言,能够更有效、更准确、更及时的对光纤错误进行快速诊断;解决了采用将OTDR嵌入传输设备进行主光测量时出现的故障分析准确性低的问题,提高了业务运行的可靠性,降低了运维成本。
本公开的一示例性实施例还提供一种包括指令的非临时性计算机可读存储介质,该指令可由一处理器执行以完成上述光纤状态的检测方法。例如,非临时性计算机可读存储介质可以是只读存储器(ROM)、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
工业实用性
本公开适用于通讯领域,解决了现有技术中通过OTDR嵌入传输设备的方式检测光纤故障时,故障分析准确性低,影响业务正常运行的问题。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (11)

  1. 一种光纤状态的检测方法,包括:
    按照预设采集参数采集光纤的测量数据,其中,所述预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;
    将当前采样点的测量数据与所述预设基准参考值进行比较,以确定所述当前采样点的偏差值;
    根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录。
  2. 如权利要求1所述的检测方法,其中,根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录,包括:
    在所述预设告警数据库中不存在经验记录的情况下,根据所述预设光纤测量参数查找缺省告警规则;
    根据所述缺省告警规则中的缺省告警门限值确定所述偏差值对应的采样点的告警原因;
    将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录。
  3. 如权利要求1所述的检测方法,其中,根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录,包括:
    在所述预设告警数据库中存在经验记录的情况下,根据所述预设光纤测量参数查找告警规则;
    根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因;
    将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录;
    根据所述告警原因查找经验记录,以更新所述告警门限值;
    根据所述告警门限值更新所述告警规则,以根据新的告警规则对下一个采样点进行检测。
  4. 如权利要求3所述的检测方法,其中,根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因,包括:
    在所述偏差值绝对值小于所述劣化门限值的情况下,确定所述采样点为正常点;
    在所述偏差值绝对值等于或大于所述劣化门限值、且小于所述中断门限值的情况下,确定所述采样点为劣化点;
    在所述偏差值绝对值大于所述中断门限值的情况下,确定所述采样点为中断点。
  5. 如权利要求3所述的检测方法,其中,根据所述告警原因查找经验记录,以 更新所述告警门限值,包括:
    在所述告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;
    在所述告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
  6. 如权利要求1至5中任一项所述的检测方法,其中,按照预设采集参数采集光纤的测量数据之前,所述方法还包括:
    为光时域分析仪OTDR配置所述预设光纤测量参数,为采集器配置所述预设采集参数;
    通过所述OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将所述测试结果作为所述预设基准参考值。
  7. 一种光纤状态的检测装置,包括:
    采集模块,设置为按照预设采集参数采集光纤的测量数据,其中,所述预设采集参数包括:采集起始时间、采集结束时间和采集时间间隔;
    确定模块,设置为将当前采样点的测量数据与所述预设基准参考值进行比较,以确定所述当前采样点的偏差值;
    处理模块,设置为根据预设光纤测量参数和所述偏差值在预设告警数据库中查找告警规则,以确定所述偏差值对应的采样点的告警原因,并生成经验记录。
  8. 如权利要求7所述的检测装置,其中,所述处理模块包括:
    第一查找单元,设置为在所述预设告警数据库中不存在经验记录的情况下,根据所述预设光纤测量参数查找缺省告警规则;
    第一确定单元,设置为根据所述缺省告警规则中的缺省告警门限值确定所述偏差值对应的采样点的告警原因;
    第一生成单元,设置为将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录。
  9. 如权利要求7所述的检测装置,其中,所述处理模块包括:
    第二查找单元,设置为在所述预设告警数据库中存在经验记录的情况下,根据所述预设光纤测量参数查找告警规则;
    第二确定单元,设置为根据所述告警规则中的告警门限值确定所述偏差值对应的采样点的告警原因;
    第二生成单元,设置为将所述预设光纤测量参数、所述偏差值和所述告警原因建立对应关系,以生成经验记录;
    所述第二查找单元,还设置为根据所述告警原因查找经验记录,以更新所述告警门限值;
    更新单元,设置为根据所述告警门限值更新所述告警规则,以根据新的告警规 则对下一个采样点进行检测。
  10. 如权利要求9所述的检测装置,其中,
    所述第二查找单元,还设置为在所述告警原因为中断告警的情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最大的绝对值对应的偏差值确定为中断门限值;在所述告警原因为劣化告警情况下,将所有经验记录中的偏差值按照绝对值进行排序,将最小的绝对值对应的偏差值确定为劣化门限值。
  11. 如权利要求7至10中任一项所述的检测装置,还包括:
    配置模块,设置为为光时域分析仪OTDR配置所述预设光纤测量参数,为采集器配置所述预设采集参数;通过所述OTDR手动测试光纤,以得到人工排除故障后光纤的测试结果,并将所述测试结果作为所述预设基准参考值。
PCT/CN2017/072646 2016-03-21 2017-01-25 一种光纤状态的检测方法及装置 WO2017161963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610161727.7A CN107222254A (zh) 2016-03-21 2016-03-21 一种光纤状态的检测方法及装置
CN201610161727.7 2016-03-21

Publications (1)

Publication Number Publication Date
WO2017161963A1 true WO2017161963A1 (zh) 2017-09-28

Family

ID=59899295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072646 WO2017161963A1 (zh) 2016-03-21 2017-01-25 一种光纤状态的检测方法及装置

Country Status (2)

Country Link
CN (1) CN107222254A (zh)
WO (1) WO2017161963A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034899A1 (zh) * 2018-08-16 2020-02-20 华为技术有限公司 一种实现光链路故障识别的方法、装置及***
CN110840430A (zh) * 2018-08-21 2020-02-28 北京万生人和科技有限公司 腹内压数据筛选方法、计算机可读存储介质、腹内压数据筛选装置
CN111277332A (zh) * 2018-12-04 2020-06-12 中兴通讯股份有限公司 工程应用中光模块的性能状态检测方法、装置及电子设备
CN113194366A (zh) * 2021-04-23 2021-07-30 烽火通信科技股份有限公司 一种基于闭环约束的业务配置合理性校验方法与装置
CN113225147A (zh) * 2018-05-07 2021-08-06 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和***
CN114090412A (zh) * 2022-01-20 2022-02-25 北京安帝科技有限公司 一种分布式告警处理方法及***
CN114582040A (zh) * 2022-05-05 2022-06-03 中国长江三峡集团有限公司 一种风力发电设备智能巡检***及方法
US11750282B2 (en) 2018-10-05 2023-09-05 Centre For Development Of Telematics (C-Dot) Learning-based method and system for configuring an optical time-domain reflectometer in a gigabit passive optical network

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756263B (zh) * 2018-12-20 2021-01-01 新华三大数据技术有限公司 光纤老化预测方法及装置
EP3734385B1 (de) * 2019-05-02 2022-10-05 Siemens Aktiengesellschaft Verfahren zum rechnergestützten verarbeiten von zustandsmeldungen in einer automatisierungsanlage
CN110149143A (zh) * 2019-05-16 2019-08-20 广东信通通信有限公司 光纤测试数据处理方法、装置、计算机设备和存储介质
CN110224750A (zh) * 2019-06-04 2019-09-10 北京百度网讯科技有限公司 光模块工作状态的确定方法及装置、设备及存储介质
CN112910548A (zh) * 2019-12-04 2021-06-04 中兴通讯股份有限公司 测定onu状态的方法、检测仪表及***
CN112186613B (zh) * 2020-09-30 2021-12-10 国网北京市电力公司 电缆管理方法、装置以及***
CN113872681B (zh) * 2021-12-06 2022-03-25 高勘(广州)技术有限公司 移动终端的光缆监管方法、***、移动终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173926B2 (ja) * 1997-06-19 2008-10-29 アルカテル−ルーセント 反射率測定による光伝送リンクの故障位置決定方法、およびこの方法を用いた位置決定装置
CN102386974A (zh) * 2011-12-13 2012-03-21 中国电信股份有限公司 Pon网络故障检测方法和装置
CN103441794A (zh) * 2013-09-05 2013-12-11 重庆大学 变电站光纤故障定位***和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932056B (zh) * 2012-11-12 2015-10-28 烽火通信科技股份有限公司 一种检测光信号性能和诊断光纤链路故障的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173926B2 (ja) * 1997-06-19 2008-10-29 アルカテル−ルーセント 反射率測定による光伝送リンクの故障位置決定方法、およびこの方法を用いた位置決定装置
CN102386974A (zh) * 2011-12-13 2012-03-21 中国电信股份有限公司 Pon网络故障检测方法和装置
CN103441794A (zh) * 2013-09-05 2013-12-11 重庆大学 变电站光纤故障定位***和方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225147A (zh) * 2018-05-07 2021-08-06 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和***
CN113225147B (zh) * 2018-05-07 2024-05-14 中兴通讯股份有限公司 一种阵列天线总辐射功率的测量方法、装置和***
US11451295B2 (en) 2018-08-16 2022-09-20 Huawei Technologies Co., Ltd. Optical link fault identification method, apparatus and system
WO2020034899A1 (zh) * 2018-08-16 2020-02-20 华为技术有限公司 一种实现光链路故障识别的方法、装置及***
US11870490B2 (en) 2018-08-16 2024-01-09 Huawei Technologies Co., Ltd. Optical link fault identification method, apparatus and system
CN110840430A (zh) * 2018-08-21 2020-02-28 北京万生人和科技有限公司 腹内压数据筛选方法、计算机可读存储介质、腹内压数据筛选装置
US11750282B2 (en) 2018-10-05 2023-09-05 Centre For Development Of Telematics (C-Dot) Learning-based method and system for configuring an optical time-domain reflectometer in a gigabit passive optical network
CN111277332A (zh) * 2018-12-04 2020-06-12 中兴通讯股份有限公司 工程应用中光模块的性能状态检测方法、装置及电子设备
CN111277332B (zh) * 2018-12-04 2022-10-21 中兴通讯股份有限公司 工程应用中光模块的性能状态检测方法、装置及电子设备
CN113194366A (zh) * 2021-04-23 2021-07-30 烽火通信科技股份有限公司 一种基于闭环约束的业务配置合理性校验方法与装置
CN113194366B (zh) * 2021-04-23 2022-06-03 烽火通信科技股份有限公司 一种基于闭环约束的业务配置合理性校验方法与装置
CN114090412A (zh) * 2022-01-20 2022-02-25 北京安帝科技有限公司 一种分布式告警处理方法及***
CN114582040B (zh) * 2022-05-05 2022-08-09 中国长江三峡集团有限公司 一种风力发电设备智能巡检***及方法
CN114582040A (zh) * 2022-05-05 2022-06-03 中国长江三峡集团有限公司 一种风力发电设备智能巡检***及方法

Also Published As

Publication number Publication date
CN107222254A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2017161963A1 (zh) 一种光纤状态的检测方法及装置
CN103728429B (zh) 水质在线监测方法及监测***
CN109741927B (zh) 微型变压器生产线的设备故障和潜在不良品智能预测***
CN105703934A (zh) 一种面向家庭宽带业务的pon网络故障诊断方法和装置
CN116611712B (zh) 基于语义推断的电网工作票评估***
US11501106B2 (en) Anomaly factor estimation device, anomaly factor estimation method, and storage medium
KR101953558B1 (ko) 스마트 기기 결함 관리 장치 및 방법
CN109443525A (zh) 一种设备异响检测***及检测方法
WO2017076189A1 (zh) 一种基于差分窗和模板匹配的otdr事件分析算法
CN103983881A (zh) 核探测器的故障诊断方法及装置
CN110659201A (zh) 一种安全技术防范工程智能测试分析***
CN114895163A (zh) 一种基于电缆绝缘性能的电缆巡检定位装置及方法
CN117171366B (zh) 用于电网调度运行态势的知识图谱构建方法及***
FR3095700B1 (fr) Procédé de détection de défauts non francs dans un câble par analyse en composantes principales
CN117517877A (zh) 一种分布式行波在线测量故障定位***
JP2672576B2 (ja) プラント・機器の診断支援システム
CN117554752A (zh) 电力电缆故障在线检测***及方法
KR101754165B1 (ko) 비주기 가속도 데이터를 병합한 구조물 이상거동 검출 및 안전성 평가 시스템
CN108390790B (zh) 路由设备故障诊断方法及装置
CN113037586B (zh) 通用且鲁棒的智能家居设备事件指纹提取方法和装置
CN111291239B (zh) 机组测试方法、装置、设备和存储介质
CN115346164A (zh) 组件识别模型的自动模型重建方法及***
CN112995995A (zh) 异常检测器、异常检测网络和用于检测异常活动的方法
CN116763312B (zh) 一种基于可穿戴设备的异常情绪识别方法及***
CN118425763A (zh) 一种基于位移传感器的位移曲线录波方法和处理主机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769240

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769240

Country of ref document: EP

Kind code of ref document: A1