WO2017161933A1 - Snr估计的方法、装置和存储介质 - Google Patents

Snr估计的方法、装置和存储介质 Download PDF

Info

Publication number
WO2017161933A1
WO2017161933A1 PCT/CN2016/111170 CN2016111170W WO2017161933A1 WO 2017161933 A1 WO2017161933 A1 WO 2017161933A1 CN 2016111170 W CN2016111170 W CN 2016111170W WO 2017161933 A1 WO2017161933 A1 WO 2017161933A1
Authority
WO
WIPO (PCT)
Prior art keywords
snr
frequency offset
doppler frequency
estimating
power
Prior art date
Application number
PCT/CN2016/111170
Other languages
English (en)
French (fr)
Inventor
钱兴
陈玉
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017161933A1 publication Critical patent/WO2017161933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, and a storage medium for signal-to-noise ratio (SNR) estimation.
  • SNR signal-to-noise ratio
  • a mobile terminal selects an appropriate transmission block size, a modulation mode, and an equivalent coding rate as a channel quality indicator (CQI) by measuring the channel quality of the current environment in real time. Reported to the network side, the network side considers the CQI information included in the recommended value fed back by the mobile terminal, and determines the parameters used in the next data transmission. In order for the transmission technology to achieve considerable transmission efficiency, the transmitting end must obtain CQI information that is sufficiently accurate, timely, and suitable for the current channel state. The CQI information is determined by SNR. Therefore, how to estimate SNR has become the focus of research.
  • CQI channel quality indicator
  • Embodiments of the present invention are directed to providing a method and apparatus for SNR estimation to obtain an accurate SNR.
  • a method of signal to noise ratio SNR estimation comprising:
  • the SNR is estimated based on the Doppler shift.
  • an apparatus for estimating SNR comprising:
  • An estimation module configured to estimate a Doppler frequency offset according to the information of the power control command
  • the estimating module is further configured to estimate an SNR according to the Doppler frequency offset.
  • a third aspect of the embodiments of the present invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used in the method for estimating the signal to noise ratio SNR.
  • Embodiments of the present invention provide a method, an apparatus, and a storage medium for SNR estimation, which acquire information of a channel power control command, and then estimate a Doppler frequency offset according to information of a power control command; after that, a Doppler frequency offset is obtained. Then, the SNR is estimated based on the Doppler shift. In this way, according to the information of the channel power control command, the SNR can be accurately estimated by considering the parameter of the Doppler frequency offset, thereby accurately determining the CQI reflecting the current channel quality condition. In this way, an accurate SNR is estimated based on the Doppler frequency offset, and the CQI information is determined by the SNR to determine an accurate QoS.
  • FIG. 1 is a flowchart of a method for SNR estimation according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for SNR estimation according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of still another apparatus for SNR estimation according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another apparatus for SNR estimation according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for SNR estimation, which is applied to a device for SNR estimation.
  • the device may be a part of a server, or may be a separate device. As shown in FIG. 1 , the method includes:
  • Step 101 Acquire information of a channel power control command.
  • the information of the channel power control command can be obtained from the system power control unit.
  • channel power refers to the power value of the carrier frequency of a certain channel.
  • GSM Global System for Mobile communication
  • Step 102 Estimate a Doppler frequency offset according to information of the power control command.
  • the statistical power is continuously increased or decreased by the length of time elapsed; the Doppler shift is estimated based on the length of time that the power is continuously increased or decreased.
  • the length of time elapsed is the duration of continuous increase in power, or the duration of continuous decrease.
  • the power increase and decrease histogram is obtained according to the continuous increase or decrease of the power elapsed time; the fitting function is obtained according to the power increase and decrease histogram; and the fitting function is determined according to the fitting function and the power increase and decrease histogram.
  • average; the average value and a second predetermined formula, the estimated Doppler shift f d, the second predetermined formula is: Where n is the average value and C is the constant associated with the power control adjustment frequency.
  • the fitting function is obtained by Gaussian fitting of the power increase and decrease histogram.
  • the average value of the fitting function is calculated by combining the power increase and decrease histogram with the average method of finding the ordinary function.
  • the main function of the power increase and decrease histogram is to define the abscissa of the fitting function, so as to find the average value of the fitting function.
  • the second preset formula is predetermined by simulation.
  • C may take 0.6615, but is not limited to this value.
  • Step 103 Estimate the signal to noise ratio according to the Doppler frequency offset.
  • the information also includes an initial symbol for descrambling despreading.
  • the smaller refers to the Doppler frequency offset estimation located in the (0, 100) interval.
  • this case corresponds to the fact that the receiving end is in a stationary or low-speed motion state, and at this time, the use is simple.
  • the third equation for noise interference estimation is to save power and calculate the SNR using the third formula.
  • the third formula is: Where S is SNR, N is the total number of received Common Pilot Channel (CPICH) symbols, x i is the received ith descrambled despread symbol, and x j is the received jth solution Disturbing the expansion symbol.
  • CPICH Common Pilot Channel
  • the larger one refers to the Doppler frequency offset estimation in the interval of (100, 200) or (200, 300).
  • This case corresponds to the fact that the receiving end is in a high-speed motion state in the actual situation, and the general situation is first
  • the common pilot channel (CPICH) symbol of the descrambled despreading is linearly filtered, and the filtered output correction symbol y i is used to calculate the noise interference, which means that it is possible to use the previous transmission time interval. (Transmission Time Interval, TTI) CPICH symbol.
  • TTI Transmission Time Interval
  • the filter coefficient indicates the degree of correlation between symbols, which should be related to the Doppler frequency offset. Therefore, different frequency offset regions are used, and different coefficients are used, and the coefficients are determined in advance by offline simulation.
  • the first interval to which the Doppler frequency offset belongs is pre-divided according to the first preset rule, and the matching channel parameters of each interval are preset by offline simulation, so that each interval forms a filter, and finally the channel forms a Group filter.
  • the initial symbol is filtered by the first filter, and the filtered initial symbol is used as a modified symbol; the total number of initial symbols is obtained; and the initial symbol, the modified symbol, the total number, and the first preset formula are estimated.
  • the first preset formula is: Where N is the total number, x i is the initial symbol, and y i is the correction symbol.
  • the Doppler frequency offset belongs to the interval; then the filter corresponding to the interval is used to filter the descrambled despread symbol x i to obtain the modified symbol y i ;
  • the SNR is calculated using the first preset formula.
  • step 103 the method further includes:
  • the delay compensation is determined according to the reporting period; when the reporting period is less than or equal to the preset time, the delay compensation is determined according to the Doppler frequency offset and the reporting period. Equivalent to the length of the reporting period compared to the length of the preset time.
  • the reporting period is greater than the preset time, that is, the duration of the reporting period is greater than the preset duration corresponding to the preset time.
  • Case 1 When the reporting period is greater than the preset time, the delay compensation is determined according to the reporting period.
  • a simple geometric model can be employed.
  • the time t e of the most recently estimated CQI, the time t a when the delayed CQI is used by the downlink scheduling, and the interval t p -t e and t of the two times relative to the most adjacent maximum peak time must be determined.
  • p -t a Assuming t p is the time of the nearest neighbor maximum peak, T d is the average interval between the largest peaks. The closer the time is to the peak, the larger the SNR should be.
  • the SNR of the required compensation can be estimated from the difference, denoted as ⁇ SNR c .
  • ⁇ SNR c is satisfied If t e is less than t p , t a is greater than t p , and ⁇ SNR c is satisfied If both t e and t a are greater than t p , ⁇ SNR c is satisfied
  • a combination of the preset SNR sampling rate and the number of times the iterative prediction is required is selected.
  • Different Doppler frequency offset intervals are proposed to adopt different filter coefficients.
  • the Doppler frequency offset interval is pre-divided according to the second preset rule, and the coefficients of each interval are determined by simulation in advance.
  • the next SNR is predicted using the known SNR, and the predicted SNR is combined with the known SNR to predict the next SNR, and so on, until the SNR value at the desired time is estimated.
  • the final predicted SNR and the SNR difference obtained in step 103 are defined as ⁇ SNR c . It should be noted that the Doppler frequency offset interval in this step may be different from the Doppler frequency offset interval partition in step 103, and the partition basis is determined only by actual simulation results.
  • the method further includes estimating CQI information of the channel based on the SNR and the mapping relationship.
  • the mapping relationship refers to a mapping relationship between the CQI and the SNR. It is worth noting that different terminals correspond to different mapping relationships. Optionally, the mapping relationship belongs to the prior art, and the embodiment is not described in detail.
  • the SNR determined by step 103 and the inherent mapping relationship can determine the CQI corresponding thereto. information.
  • the received signal strength changes dynamically with time, and the degree of change is related to the relative moving speed between the transmitting end and the receiving end.
  • the performance is more or less affected by the maximum Doppler shift of the channel, and there is a direct relationship between the maximum Doppler shift and the terminal moving speed.
  • Estimation of SNR is affected by many factors, especially transmission mode and speed. Therefore, the embodiment of the present invention estimates the SNR of the channel according to the Doppler frequency offset.
  • the SNR can be accurately estimated, and the CQI reflecting the current channel quality condition can be accurately determined.
  • an accurate SNR is estimated based on the Doppler frequency offset, and the CQI information is determined by the SNR to determine an accurate QoS.
  • the embodiment of the present invention provides a method for SNR estimation, which is applied to a channel correction and compensation device. It is assumed that D is a channel, R is a receiving end, and S is a transmitting end. As shown in FIG. 2, the method includes:
  • Step 201 Acquire information of a D power control command.
  • the information of the D power control command can be obtained from the system power control unit.
  • Power control refers to the control of the mobile station power in order to maintain the signal level at an equal level when all mobile stations in the cell arrive at the base station and maintain the communication quality at an acceptable level.
  • Power control is divided into forward and reverse power control.
  • Reverse power control is divided into open loop power control and closed loop power control. Closed loop power control is subdivided into outer loop power control and inner loop power control.
  • Power control is one of the most important requirements in cellular systems.
  • the cellular system is also called the "community system" system.
  • the area to be covered by the communication signal is divided into a plurality of cells, and the radius of each cell can be regarded as a distribution density of the user of about 1 to 10 km.
  • a base station is set up in each cell to serve users within the scope of the cell. System capacity can be further increased by cell splitting.
  • Step 202 Obtain a direction of increasing and decreasing D power according to information of the D power control command.
  • This embodiment uses a new technology different from the conventional one, that is, the relationship between the Doppler frequency offset and the fading power envelope maximum occurrence rate, and the algorithm in this embodiment only needs to obtain the power variation in the D power control. direction.
  • Step 203 Count the length of time that the D power continuously increases or decreases.
  • the number of consecutive occurrences of the same symbol in the above symbol sequence is calculated to form a set of digital sequences. Since it is assumed that the time interval in which the above symbols appear in pairs is 1 unit, the number of times also represents the duration of the forward or negative slope of the fading signal envelope, and also corresponds to the length of time during which power is continuously increased or decreased.
  • the sequence of numbers corresponding to the sequence of symbols is: "..., 4, 3, 4, 5, 5, ".
  • Step 204 Obtain a corresponding histogram according to the length of the continuous increase or decrease of the statistical D power.
  • the frequency at which each digit appears in the sequence of statistics results in a corresponding histogram.
  • the numbers in the digital sequence in this embodiment have directions, and when the corresponding histogram is obtained, the direction represented by the numbers is reflected.
  • the number representing the symbol "+” is a histogram drawn upward on the horizontal axis; the number representing the symbol "-” is a downward drawing of the histogram on the basis of the horizontal axis.
  • Step 205 Fit the histogram distribution to obtain an average value of the D forward or negative slope duration distribution.
  • a Gaussian fit is chosen to obtain an average of the D forward or negative slope duration distribution.
  • the average value of the D forward or negative slope duration distribution is calculated as in the calculation of the average value of the ordinary function.
  • Gaussian fitting is a Gaussian function system. Using a Gaussian function to fit, the advantage lies in the calculation The points are very simple and fast. This has applications in many areas, especially computational chemistry. It is feasible to apply the Gaussian fitting algorithm to the quantitative analysis model, which not only simplifies the model parameters, but also improves the interpretability of the model.
  • Step 206 Estimate the Doppler frequency offset according to an average value of the D forward or negative slope duration distribution.
  • the average value is half of the average time between the maximum power peaks, and the relationship between the Doppler frequency offset satisfies the second preset formula, and the second preset formula is: Where n is the average value calculated in step 205, C is the constant associated with the power control adjustment frequency, and f d is the estimated value of the Doppler shift.
  • the second preset formula can be directly used to estimate the Doppler shift.
  • Step 207 Accurately estimate the SNR according to the Doppler frequency offset estimation result.
  • the range of Doppler shift is (0,300), which can be divided into two cases:
  • Case 1 A Doppler shift estimate at (0,100), or a case where a meaningful average is not fitted for step 205.
  • the third formula is estimated using simple noise interference to save power consumption, and the SNR is calculated by the third formula.
  • the third formula is: Where N is the total number of Common Pilot Channel (CPICH) symbols received by R, x i is the received ith descrambling despreading symbol, and x j is the received jth descrambling despreading symbol.
  • CPICH Common Pilot Channel
  • Case 2 A Doppler shift estimate at (100, 200) or (200, 300), or a case where a meaningful average is obtained for step 205.
  • This situation corresponds to the fact that the receiving end R is in a high-speed motion state in the actual situation.
  • the common pilot channel (CPICH) symbol after descrambling and despreading is linearly filtered, and the filtered output correction symbol is used.
  • y i the calculation of noise interference, which means that it is possible to use the CPICH symbol of the previous Transmission Time Interval (TTI).
  • the filter coefficients represent the degree of correlation between the symbols and should be related to the Doppler shift. Therefore, different frequency offset regions are used, and different filter coefficients are used, and the coefficients are determined in advance by offline simulation.
  • the Doppler frequency offset is first determined; then the filter corresponding to the interval is used to filter the descrambled despread symbol x i to obtain the modified symbol y i ;
  • a preset formula calculates the SNR.
  • the first preset formula is:
  • Doppler frequency offset interval is pre-divided according to the first preset rule, and the matching channel parameters of each interval are preset by offline simulation, so that each interval forms a filter, and finally the channel is formed.
  • a set of filters are pre-divided according to the first preset rule, and the matching channel parameters of each interval are preset by offline simulation, so that each interval forms a filter, and finally the channel is formed.
  • the frequency offset range of D is (0,300), which is divided into three intervals (0, 100], (100, 200), and (200, 300), which respectively correspond to the receiving end R in the actual situation. at low, medium and high speed scenario.
  • determining filter coefficients of the three sections, each forming a filter, i.e. a filter 3 is formed.
  • f d where the first determining section and the filter using the symbol corresponding to x i of the D Filtering is performed to obtain y i after filtering, and finally the SNR value is obtained according to the first preset formula.
  • Step 208 Find the correction amount ⁇ SNR b according to the preset correction table.
  • a correction table is also developed, and the residual deviation that may exist in the mode is corrected according to different transmission modes, and the correction amount is ⁇ SNR b . It is worth noting that the correction table is generally obtained by offline simulation combined with hardware debugging and calibration.
  • Step 209 Determine whether the CQI reporting period is greater than a preset duration. If yes, go to step 210; if no, go to step 211.
  • the length of the CQI reporting period is different, and the corresponding delay error is also different, so it is necessary to judge the length of the CQI reporting period.
  • the preset duration is 2s. That is, in this embodiment, It is considered that the reporting period of the CQI is greater than 2s, and the reporting period is longer. Similarly, when the reporting period of the CQI is less than or equal to 2s, the reporting period is short.
  • Step 210 Obtain a delay compensation ⁇ SNR c according to a CQI reporting period by using a geometric model method. Go to step 212.
  • a simple geometric model can be used.
  • the time t e of the most recently estimated CQI, the time t a when the delayed CQI is used by the downlink scheduling, and the interval t p -t e and t of the two times relative to the most adjacent maximum peak time must be determined.
  • p -t a Assuming t p is the time of the nearest neighbor maximum peak, T d is the average interval between the largest peaks. The closer the time is to the peak, the larger the SNR should be.
  • the SNR of the required compensation can be estimated from the difference, denoted as ⁇ SNR c .
  • ⁇ SNR c is satisfied. If t e is less than t p , t a is greater than t p , and ⁇ SNR c is satisfied If both t e and t a are greater than t p , ⁇ SNR c is satisfied
  • Step 211 Obtain a delay compensation ⁇ SNR c by using a linear prediction method according to the result of the Doppler frequency offset estimation and the CQI reporting period.
  • the Doppler frequency offset and the CQI reporting period a combination of a preset SNR sampling rate and the number of iteration predictions is selected.
  • Different Doppler frequency offset intervals are proposed to adopt different filter coefficients.
  • the Doppler frequency offset interval is pre-divided according to the second preset rule, and the coefficients of each interval are determined by simulation in advance.
  • the next SNR is predicted using the known SNR, and the predicted SNR is combined with the known SNR to predict the next SNR, and so on, until the SNR value at the desired time is estimated.
  • the final predicted SNR and the SNR difference obtained in step 207 are defined as ⁇ SNR c . It should be noted that the Doppler frequency offset interval in this step may be different from the Doppler frequency offset interval partition in step 207, and the partition basis is determined only by the actual simulation result.
  • Step 212 according to the SNR, ⁇ SNR b and ⁇ SNR c, to obtain the corrected compensated for SNR cqi of D.
  • SNR is the use of Doppler shift
  • ⁇ SNR b is the residual deviation correction
  • ⁇ SNR c is the delay compensation.
  • the adjustment amount ⁇ SNR c that requires delay compensation is finally obtained.
  • a threshold is set in advance for the compensation so that the absolute value of the ⁇ SNR c finally used for the delay compensation is not greater than the threshold. If an adaptive method is used, the final filter coefficients will be saved for the prediction of the next-time CQI report.
  • the threshold value in this embodiment is 0.5 dB.
  • Step 213 Estimate CQI information of the channel according to the SNR cqi and the mapping relationship.
  • mapping relationship refers to the mapping relationship between the CQI and the SNR. It is worth noting that different terminals correspond to different mapping relationships. Optionally, the mapping relationship belongs to the prior art, and the embodiment is not described in detail.
  • An embodiment of the present invention provides an apparatus 30 for SNR estimation. As shown in FIG. 3, the apparatus includes:
  • the obtaining module 301 is configured to acquire information of a channel power control command.
  • the estimation module 302 is configured to estimate a Doppler frequency offset based on the information of the power control command.
  • the estimating module is further configured to estimate a signal to noise ratio SNR according to the Doppler frequency offset.
  • the SNR can be accurately estimated, and the CQI reflecting the current channel quality condition can be accurately determined.
  • an accurate SNR is estimated based on the Doppler frequency offset, and the CQI information is determined by the SNR to determine an accurate QoS.
  • the estimating module 302 includes:
  • a determining unit 3021 configured to determine, according to the Doppler frequency offset, a first interval to which the Doppler frequency offset belongs, and further configured to determine the first interval according to a correspondence between the interval and the filter Corresponding first filter;
  • the estimating unit 3022 is configured to estimate the SNR according to the first filter and the first preset formula
  • the statistic unit 3023 is configured to count the length of time that the power is continuously increased or decreased.
  • the information includes an initial symbol for descrambling despreading, and the estimating unit 3022 is configured to:
  • the S is the SNR
  • the N is the total number
  • the x i is the initial symbol
  • the y i is the modified symbol.
  • the information also includes power, and the estimating unit 3022 is further configured to estimate the Doppler frequency offset based on the length of time that the power is continuously increased or decreased.
  • the statistics unit 3023 is configured to acquire and count the length of time that the power continuously increases or decreases
  • the estimating unit 3022 is configured to: obtain a power increase and decrease histogram according to the continuous increase or decrease of the length of time experienced by the power;
  • the acquiring module 301 is further configured to: obtain a channel quality indication information CQI reporting period; as shown in FIG. 5, the apparatus 30 further includes:
  • the determining module 303 is configured to determine the delay compensation according to the Doppler frequency offset and the reporting period, and further configured to determine, according to the correspondence between the transmission mode and the correction amount, a corresponding to the current transmission mode in the information Current correction amount;
  • the determining module 303 is further configured to determine a corrected compensation amount of the channel according to the SNR, the delay compensation, and the current correction amount.
  • the determining module 303 is configured to:
  • the delay compensation is determined according to the Doppler frequency offset and the reporting period.
  • the obtaining module 301, the estimating module 302, the determining module 303, the determining unit 3021, the estimating unit 3022, and the counting unit 3023 may each be a Central Processing Unit (CPU) located in the SNR estimating device 30. , Microprocessor Unit (MPU), Digital Signal Processor (DSP), or Field Programmable Gate Array (FPGA).
  • CPU Central Processing Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • An embodiment of the present invention further provides a computer storage medium having stored therein computer executable instructions for performing one or more of the foregoing methods for estimating signal to noise ratio SNR, For example, the method as shown in FIGS. 1 and/or 2 can be performed.
  • the computer storage medium can be any type of storage medium, optionally a non-transitory storage medium.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may employ hardware embodiments, software embodiments, or junctions. In the form of an embodiment of the software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种SNR估计的方法,包括:获取动态信道功率控制命令的信息;根据所述功率控制命令的信息,估计多普勒频偏;根据所述多普勒频偏,估计信噪比SNR。本发明实施例同时还公开了一种SNR估计的装置及计算机存储介质。

Description

SNR估计的方法、装置和存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信噪比(Signal-Noise Ratio,SNR)估计的方法、装置和存储介质。
背景技术
在无线移动通信***中,移动终端通过实时测量当前所处环境的信道质量,选择适当的传输块大小、调制方式和等效编码速率等数据传输参数,作为信道质量指示(Channel Quality Indicator,CQI)上报给网络侧,网络侧考虑移动终端反馈的推荐值所包含的CQI信息,确定下一次数据传输所采用的参数。为了使传输技术达到可观的传输效率,发射端必须获得足够精确、及时有效并且适合当时信道状态的CQI信息。而CQI信息是通过SNR确定的。因此,如何估计SNR就成了研究的重点内容。
发明内容
本发明实施例期望提供一种SNR估计的方法和装置,以获得准确的SNR。
本发明实施例的技术方案是这样实现的:
第一方面,提供一种信噪比SNR估计的方法,所述方法包括:
获取信道功率控制命令的信息;
根据所述功率控制命令的信息,估计多普勒频偏;
根据所述多普勒频偏,估计SNR。
第二方面,提供一种SNR估计的装置,所述装置包括:
获取模块,配置为获取信道功率控制命令的信息;
估计模块,配置为根据所述功率控制命令的信息,估计多普勒频偏;
所述估计模块,还配置为根据所述多普勒频偏,估计SNR。
本发明实施例第三方面还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于上述信噪比SNR估计的方法。
本发明实施例提供了一种SNR估计的方法、装置和存储介质,获取信道功率控制命令的信息;再根据功率控制命令的信息,估计多普勒频偏;之后,将获得多普勒频偏,再依据多普勒频偏估计SNR。这样一来,根据信道功率控制命令的信息,在考虑到多普勒频偏这一参数可以精确估计SNR,进而准确确定出反映出当前信道质量情况的CQI。这样,根据多普勒频偏估计出准确的SNR,再通过SNR确定CQI信息,从而确定准确的QoS。
附图说明
图1为本发明实施例提供的一种SNR估计的方法的流程图;
图2为本发明实施例提供的另一种SNR估计的方法的流程图;
图3为本发明实施例提供的一种SNR估计的装置的结构示意图;
图4为本发明实施例提供的又一种SNR估计的装置的结构示意图;
图5为本发明实施例提供的再一种SNR估计的装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,以下所说明的优选实施例仅用于说明和 解释本发明,并不用于限定本发明。
本发明实施例提供一种SNR估计的方法,应用于SNR估计的装置,该装置可以是服务器中的一部分,也可以是单独的设备,如图1所示,该方法包括:
步骤101、获取信道功率控制命令的信息。
这里,信道功率控制命令的信息可以从***功率控制单元中获取。
在无线通信中,信道功率指的是某个信道的载频的功率值。比如说移动通信中,全球移动通信***(Global System for Mobile communication,GSM)的1-124信道的功率,说的其实就是手机在该通信信道的发射功率值。
步骤102、根据功率控制命令的信息,估计多普勒频偏。
可选地,统计功率连续增加或减少所经历时间长度;根据功率连续增加或减少所经历时间长度,估计多普勒频偏。这里的所经历时间长度,为功率连续增加的持续时长,或连续减少的持续时长。
示例的,假设增加功率用符号“+”表示,减少功率用符号“-”表示,在某一确定时间段内,某一信道得到一串“…,+,+,+,+,-,-,-,+,+,+,+,-,-,-,-,-,+,+,+,+,+,…”的符号序列。假设上述符号两两出现的时间间隔是1个单位,因此,该次数也代表衰落信号包络的正向或负向斜率的持续时间长度,也对应着功率连续增加或减少的时间长度。则上述符号序列所对应的功率连续增加或减少所经历时间长度为:“…,4,3,4,5,5,…”。
可选地,根据功率连续增加或减少所经历时间长度,获得功率增减直方图;根据功率增减直方图,得到拟合函数;根据拟合函数和功率增减直方图,确定拟合函数的平均值;根据平均值和第二预设公式,估计多普勒频偏fd,第二预设公式为:
Figure PCTCN2016111170-appb-000001
其中述n为平均值,C为与功率控制调 整频率相关的常数。
这里,拟合函数是功率增减直方图通过高斯拟合而得到。与求普通函数的平均值方法相同,结合功率增减直方图,计算出拟合函数的平均值。这里,功率增减直方图的主要作用是限定拟合函数的横坐标,这样以便求出拟合函数的平均值。
值得说明的是,第二预设公式是由仿真预先确定,可选地,C可取0.6615,但是不限于该值。
步骤103、根据多普勒频偏,估计信噪比。
这里,信息还包括解扰解扩的初始符号。
这里可以分为两种情况:
情况1:多普勒频偏值较小时。
本实施例中,较小是指位于(0,100]区间的多普勒频偏估计。可选地,这种情况对应于实际情况中接收端处于静止或低速运动状态,此时,使用简单的噪声干扰估计第三公式,以节省功耗,用第三公式计算SNR。第三公式为:
Figure PCTCN2016111170-appb-000002
其中,S是SNR,N为接收到公共导频信道(Common Pilot Channel,CPICH)符号的总数,xi为接收到的第i个解扰解扩符号,xj为接收到的第j个解扰解扩符号。
情况2:多普勒频偏值较大时。
本实施例中,较大是指位于(100,200]区间或(200,300)区间的多普勒频偏估计。这种情况对应于实际情况中接收端处于高速运动状态,一般情况拟先对解扰解扩后的公共导频信道(Common Pilot Channel,CPICH)符号做线性滤波,用滤波后的输出修正符号yi,做噪声干扰的计算,这意味着有可能使用了前面发射时间间隔(Transmission Time Interval,TTI)的CPICH符号。滤波系数表示符号之间的相关程度,应和多普勒频偏有关。 因此不同频偏区域,使用不同的滤波系数,系数由离线仿真预先确定。
可选地,根据所述多普勒频偏,确定多普勒频偏所属的第一区间;根据区间与滤波器的对应关系,确定第一区间对应的第一滤波器;根据第一滤波器和第一预设公式,估计所述SNR。
上述多普勒频偏所属的第一区间是依据第一预设规则预先划分,每个区间的匹配信道参数由离线仿真预先设定,使得每个区间形成一个滤波器,最终该信道会形成一组滤波器。
可选地,将初始符号通过第一滤波器滤波,将滤波后的初始符号作为修正符号;获取初始符号的总个数;根据初始符号、修正符号、总个数和第一预设公式,估计SNR,第一预设公式为:
Figure PCTCN2016111170-appb-000003
其中N为总个数,xi为初始符号,yi为修正符号。
这里,首先根据多普勒频偏估计结果,确定多普勒频偏所属区间;然后利用该区间所对应的滤波器对解扰解扩符号xi做相应的滤波,得到修正符号yi;最后采用第一预设公式计算SNR。
在步骤103之后,所述方法还包括:
获取信道质量指示信息CQI上报周期;
根据多普勒频偏和上报周期,确定时延补偿;根据传输模式和修正量的对应关系,确定与信息中的当前传输模式对应的当前修正量;根据SNR、时延补偿和当前修正量,确定信道的修正补偿量。
可选地,上报周期大于预设时间时,根据上报周期,确定时延补偿;上报周期小于或者等于预设时间时,根据多普勒频偏和上报周期,确定时延补偿。相当于,上报周期的时长与预设时间的时长的长度比较。上报周期大于预设时间,即为,上报周期的时长大于预设时间对应的预设时长。
这里可以分为两种情况:
情况1:上报周期大于预设时间时,根据上报周期,确定时延补偿。
具体的,可以采用简单的几何模型。在该模型中,须确定最近估计CQI的时间te、上报延迟的CQI被下行调度采用时的时间ta以及这两个时间相对于最相邻最大峰值时间的间隔tp-te和tp-ta。假设tp是最相邻最大峰值的时间,Td是最大峰值之间的平均间隔。在时间上离峰值愈近,SNR就应愈大,根据差距可以估计所需补偿的SNR,记为ΔSNRc。可选地,如果te和ta都小于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000004
如果te小于tp,ta大于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000005
如果te和ta都大于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000006
情况2:上报周期小于或者等于预设时间时,根据多普勒频偏和上报周期,确定时延补偿。
可选地,根据多普勒频偏和CQI上报周期,选取预先设定的SNR采样率和需要迭代预测的次数的组合。不同多普勒频偏区间拟采用不同的滤波器系数,此处的多普勒频偏区间是依据第二预设规则预先划分,每个区间的系数事先通过仿真确定。利用己知的SNR来预测下一个SNR,再用被预测的SNR结合己知的SNR来预测下下一个SNR,如此继续,直到所需时刻的SNR值被估计。为了控制误差放大,本实施例中限制最大迭代预测次数优选取4。最后预测的SNR和步骤103得到的SNR差别定义为ΔSNRc。值得说明的是,本步骤中的多普勒频偏区间与步骤103中的多普勒频偏区间划分可以是不同的,划分依据仅由实际仿真结果决定。
在步骤103之后,所述方法还包括根据SNR和映射关系,估计信道的CQI信息。
可选地,映射关系是指CQI和SNR之间存在的映射关系,值得说明的是,不同的终端会对应不同的映射关系。可选地映射关系属于现有技术,本实施例就不再详述。
由步骤103确定的SNR和固有的映射关系,可以确定出与其对应的CQI 信息。
值得说明的是,在无线移动通信***中,接收的信号强度随着时间有动态的变化,变化快慢程度又与发射端和接收端之间的相对移动速度有关。目前针对无线信道的大部分高级接收端算法,性能或多或少受信道的最大多普勒频移的影响,最大多普勒频移和终端移动速度之间存在直接的关系。SNR的估计受多种因素的影响,尤其是传输模式和速度。故本发明实施例是依据多普勒频偏来估计信道的SNR。
这样一来,根据信道功率控制命令的信息,就可以精确估计SNR,进而准确确定出反映出当前信道质量情况的CQI。这样,根据多普勒频偏估计出准确的SNR,再通过SNR确定CQI信息,从而确定准确的QoS。
本发明实施例提供一种SNR估计的方法,应用于信道的修正补偿装置,假设D为一信道,R是接收端,S是发射端,如图2所示,该方法包括:
步骤201、获取D功率控制命令的信息。
这里,D功率控制命令的信息可以从***功率控制单元中得到。
可选地,***功率控制单元中存储着功率控制的相关信息。功率控制是指为使小区内所有移动台到达基站时信号电平基本维持在相等水平、通信质量维持在一个可接收水平,对移动台功率进行的控制。功率控制分为前向与反向功率控制,反向功率控制又分为开环功率控制和闭环功率控制,闭环功率控制细分为外环功率控制和内环功率控制。
功率控制是蜂窝***中最重要的要求之一。其中,蜂窝***也叫“小区制”***。是将通信信号所有要覆盖的地区划分为若干个小区,每个小区的半径可视用户的分布密度在1~10km左右。在每个小区设立一个基站为本小区范围内的用户服务。并可通过小区***进一步提高***容量。
步骤202、根据D功率控制命令的信息,获得D功率增加和减少的方向。
本实施例使用的是不同于传统的新技术,即利用多普勒频偏与衰落功率包络最大值出现率之间的关系,本实施例中的算法只需要获得D功率控制中的功率变化方向。
示例的,假设增加功率用符号“+”表示,减少功率用符号“-”表示,在某一确定时间段内,D中得到一串“…,+,+,+,+,-,-,-,+,+,+,+,-,-,-,-,-,+,+,+,+,+,…”的符号序列。
步骤203、统计D功率连续增加或减少的时间长度。
计算上述符号序列中连续出现同一符号的次数,组成一组数字序列。由于假设上述符号两两出现的时间间隔是1个单位,因此,该次数也代表衰落信号包络的正向或负向斜率的持续时间长度,也对应着功率连续增加或减少的时间长度。
示例的,以步骤202中的符号序列为例,则上述符号序列所对应的数字序列为:“…,4,3,4,5,5,…”。
步骤204、根据统计D功率连续增加或减少的长度,得到相应的直方图。
统计数字序列中各数字出现的频率,得到相应的直方图。值得说明的是,本实施例中数字序列中的数字是带有方向,在得到相应的直方图时,要体现出数字所代表的方向。可选地,代表符号“+”的数字是以横轴为基准向上绘制直方图;代表符号“-”的数字是以横轴为基准向下绘制直方图。
步骤205、将直方图分布进行拟合,得到D正向或负向斜率持续时间分布的平均值。
这里,选取高斯拟合,得到D正向或负向斜率持续时间分布的平均值。完成上述高斯拟合后,与计算普通函数的平均值方法相同,计算出D正向或负向斜率持续时间分布的平均值。
高斯拟合是用高斯函数系。使用高斯函数来进行拟合,优点在于计算 积分十分简单快捷。这一点在很多领域都有应用,特别是计算化学。高斯拟合算法运用到定量分析模型中是可行的,该方法不仅简化了模型参数,而且提高了模型的可解释性。
步骤206、根据D正向或负向斜率持续时间分布的平均值,估计多普勒频偏。
以功率控制的时间间隔为单位,上述平均值是最大功率峰值之间的平均时间的一半,与多普勒频偏之间的关系满足第二预设公式,第二预设公式为:
Figure PCTCN2016111170-appb-000007
其中n为步骤205计算出的平均值,C为与功率控制调整频率相关的常数,fd为多普勒频偏的估计值。该第二预设公式可直接用于估计多普勒频偏。
由第二预设公式可以看出,n与fd是成反比关系。可选地,经过反复实验,且与理论知识相结合,本实施例中C取0.6615,即
Figure PCTCN2016111170-appb-000008
步骤207、根据多普勒频偏估计结果,精确估计SNR。
这里,多普勒频偏的范围是(0,300),此处可以分为两种情况:
情况1:位于(0,100]的多普勒频偏估计结果,或对于步骤205拟合得不到有意义的平均值的情况。
这种情况对应于实际情况中接收端R处于静止或低速运动状态,此时,使用简单的噪声干扰估计第三公式,以节省功耗,用第三公式计算SNR。第三公式为:
Figure PCTCN2016111170-appb-000009
其中,N为R接收到公共导频信道(Common Pilot Channel,CPICH)符号的总数,xi为接收到的第i个解扰解扩符号,xj为接收到的第j个解扰解扩符号。
情况2:位于(100,200]或(200,300)的多普勒频偏估计结果,或对于步骤205拟合得到有意义的平均值的情况。
这种情况对应于实际情况中接收端R处于高速运动状态,一般情况拟 先对解扰解扩后的公共导频信道(Common Pilot Channel,CPICH)符号做线性滤波,用滤波后的输出修正符号yi,做噪声干扰的计算,这意味着有可能使用了前面发射时间间隔(Transmission Time Interval,TTI)的CPICH符号。滤波系数表示符号之间的相关程度,应和多普勒频偏有关。因此不同频偏区域,使用不同的滤波系数,系数由离线仿真预先确定。
根据多普勒频偏估计结果,首先确定多普勒频偏所属区间;然后利用该区间所对应的滤波器对解扰解扩符号xi做相应的滤波,得到修正符号yi;最后采用第一预设公式计算SNR。第一预设公式为:
Figure PCTCN2016111170-appb-000010
值得说明的是,上述多普勒频偏区间是依据第一预设规则预先划分,每个区间的匹配信道参数由离线仿真预先设定,使得每个区间形成一个滤波器,最终该信道会形成一组滤波器。
示例的,假设D的频偏范围是(0,300),预先其划分为(0,100]、(100,200]和(200,300)这3个区间,分别对应实际情况中接收端R处于的低、中和高速场景。确定这3个区间的滤波器系数,形成各自的滤波器,即形成3个滤波器。先确定fd所在区间,然后采用对应滤波器对D的符号xi进行滤波,滤波后得到yi,最后根据第一预设公式得到SNR值。
步骤208、根据预设修正表格,查找修正量ΔSNRb
为了提供更大的适用性,同时还制定了修正表格,根据不同的传输模式,对该模式下可能存在的残留偏差作必要的修正,修正量为ΔSNRb。值得说明的是,修正表格一般通过离线仿真并结合硬件调试和校准仔细分析后得到。
步骤209、判断CQI上报周期是否大于预设时长。若是,则执行步骤210;若否,则执行步骤211。
这里,CQI上报周期长短的不同,所对应的延时误差也是不同的,故需要判断CQI上报周期的长短。可选地,预设时长取2s。即在本实施例中, 认为CQI上报周期大于2s属于上报周期较长;同理,当CQI上报周期小于或等于2s时,属于上报周期较短的情况。
步骤210、根据CQI上报周期,采用几何模型法得到时延补偿ΔSNRc。执行步骤212。
当CQI上报周期较长时,可以采用简单的几何模型。在该模型中,须确定最近估计CQI的时间te、上报延迟的CQI被下行调度采用时的时间ta以及这两个时间相对于最相邻最大峰值时间的间隔tp-te和tp-ta。假设tp是最相邻最大峰值的时间,Td是最大峰值之间的平均间隔。在时间上离峰值愈近,SNR就应愈大,根据差距可以估计所需补偿的SNR,记为ΔSNRc。更可选地,如果te和ta都小于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000011
如果te小于tp,ta大于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000012
如果te和ta都大于tp,ΔSNRc满足
Figure PCTCN2016111170-appb-000013
值得说明的是,由于SNR对CQI有大约1dB的分辨率,因此这修正不一定要严格精确,只要在统计意义上进行适当补偿,就会***性能的提升。
步骤211、根据多普勒频偏估计的结果和CQI上报周期,采用线性预测法得到时延补偿ΔSNRc
根据多普勒频偏和CQI上报周期,选取预先设定的SNR采样率和需要迭代预测的次数的组合。不同多普勒频偏区间拟采用不同的滤波器系数,此处的多普勒频偏区间是依据第二预设规则预先划分,每个区间的系数事先通过仿真确定。利用己知的SNR来预测下一个SNR,再用被预测的SNR结合己知的SNR来预测下下一个SNR,如此继续,直到所需时刻的SNR值被估计。为了控制误差放大,本实施例中限制最大迭代预测次数优选取4。最后预测的SNR和步骤207得到的SNR差别定义为ΔSNRc。值得说明的是,本步骤中的多普勒频偏区间与步骤207中的多普勒频偏区间划分可以 是不同的,划分依据仅由实际仿真结果决定。
步骤212、根据SNR、ΔSNRb和ΔSNRc,得到用于修正补偿后D的SNRcqi
通过初始估计和时延估计的修正和补偿,最后用于CQI映射的SNRcqi满足第三公式,第三公式为:SNRcqi=SNR+ΔSNRb+SNRc,其中SNR为利用多普勒频偏估计的SNR值,ΔSNRb为残留偏差修正,ΔSNRc为时延补偿。
值得说明的是,最终得到需要时延补偿的调整量ΔSNRc。为了尽量减少因补偿而可能引起的负面效应,预先为补偿设定一个门限值,使最终用于延迟补偿的ΔSNRc的绝对值不大于该门限值。如果使用了自适应方法,最后滤波器系数将被保存,为下-次CQI报告的预测备用。可选地,本实施例中门限值取0.5dB。
步骤213、根据SNRcqi和映射关系,估计信道的CQI信息。
这里,映射关系是指CQI和SNR之间存在的映射关系,值得说明的是,不同的终端会对应不同的映射关系。可选地映射关系属于现有技术,本实施例就不再详述。
本发明实施例提供一种SNR估计的装置30,如图3所示,该装置包括:
获取模块301,配置为获取信道功率控制命令的信息。
估计模块302,配置为根据所述功率控制命令的信息,估计多普勒频偏。
所述估计模块,还配置为根据所述多普勒频偏,估计信噪比SNR。
这样一来,根据信道功率控制命令的信息,就可以精确估计SNR,进而准确确定出反映出当前信道质量情况的CQI。这样,根据多普勒频偏估计出准确的SNR,再通过SNR确定CQI信息,从而确定准确的QoS。
可选地,如图4所示,所述估计模块302包括:
确定单元3021,配置为根据所述多普勒频偏,确定所述多普勒频偏所属的第一区间;还用于根据区间与滤波器的对应关系,确定所述第一区间 对应的第一滤波器;
估计单元3022,配置为根据所述第一滤波器和第一预设公式,估计所述SNR;
统计单元3023,配置为统计所述功率连续增加或减少所经历时间长度。
可选地,所述信息包括解扰解扩的初始符号,所述估计单元3022配置为:
将所述初始符号通过所述第一滤波器滤波,将滤波后的初始符号作为修正符号;
获取所述初始符号的总个数;
根据所述初始符号、所述修正符号、所述总个数和所述第一预设公式,估计所述SNR,所述第一预设公式为:
Figure PCTCN2016111170-appb-000014
其中,所述S是所述SNR,所述N为所述总个数,所述xi为所述初始符号,所述yi为所述修正符号。
所述信息还包括功率,所述估计单元3022还配置为根据所述功率连续增加或减少所经历时间长度,估计所述多普勒频偏。
统计单元3023,配置为获取并统计所述功率连续增加或减少所经历时间长度;
可选地,所述估计单元3022,配置为:根据所述功率连续增加或减少所经历时间长度,获得功率增减直方图;
根据所述功率增减直方图,得到拟合函数;
根据所述拟合函数和所述功率增减直方图,确定所述拟合函数的平均值;
根据所述平均值和第二预设公式,估计所述多普勒频偏fd,所述第二预设公式为:
Figure PCTCN2016111170-appb-000015
其中,所述n为所述平均值,所述C为与功率控制调 整频率相关的常数。
可选地,所述获取模块301还配置为获取信道质量指示信息CQI上报周期;如图5所示,所述装置30还包括:
确定模块303,配置为根据所述多普勒频偏和所述上报周期,确定时延补偿;还用于根据传输模式和修正量的对应关系,确定与所述信息中的当前传输模式对应的当前修正量;
所述确定模块303还配置为根据所述SNR、所述时延补偿和所述当前修正量,确定所述信道的修正补偿量。
可选地,所述确定模块303配置为:
所述上报周期大于预设时长时,根据所述上报周期,确定所述时延补偿;
所述上报周期小于或者等于所述预设时长时,根据所述多普勒频偏和所述上报周期,确定所述时延补偿。
在实际应用中,所述获取模块301、估计模块302、确定模块303、确定单元3021、估计单元3022和统计单元3023均可由位于SNR估计的装置30中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述信噪比SNR估计的方法中的一个或多个,例如,可执行如图1和/或图2所示的方法。所述计算机存储介质可为各种类型的存储介质,可选为非瞬间存储介质。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结 合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (15)

  1. 一种信噪比SNR估计的方法,所述方法包括:
    获取信道功率控制命令的信息;
    根据所述功率控制命令的信息,估计多普勒频偏;
    根据所述多普勒频偏,估计SNR。
  2. 根据权利要求1所述的方法,其中,所述根据所述多普勒频偏,估计信噪比SNR包括:
    根据所述多普勒频偏,确定所述多普勒频偏所属的第一区间;
    根据区间与滤波器的对应关系,确定所述第一区间对应的第一滤波器;
    根据所述第一滤波器和第一预设公式,估计所述SNR。
  3. 根据权利要求2所述的方法,其中,所述信息包括解扰解扩的初始符号,所述根据所述滤波器和第一预设公式,估计所述SNR包括:
    将所述初始符号通过所述第一滤波器滤波,将滤波后的初始符号作为修正符号;
    获取所述初始符号的总个数;
    根据所述初始符号、所述修正符号、所述总个数和所述第一预设公式,估计所述SNR,所述第一预设公式为:
    Figure PCTCN2016111170-appb-100001
    其中,所述S是所述SNR,所述N为所述总个数,所述xi为所述初始符号,所述yi为所述修正符号。
  4. 根据权利要求1所述的方法,其中,所述信息还包括信道的功率,所述根据所述功率控制命令的信息,估计多普勒频偏包括:
    获取并统计所述功率连续增加或减少所经历时间长度;
    根据所述功率连续增加或减少所经历时间长度,估计所述多普勒频偏。
  5. 根据权利要求4所述的方法,其中,所述根据所述功率连续增加或减少所经历时间长度,估计所述多普勒频偏包括:
    根据所述功率连续增加或减少所经历时间长度,获得功率增减直方图;
    根据所述功率增减直方图,得到拟合函数;
    根据所述拟合函数和所述功率增减直方图,确定所述拟合函数的平均值;
    根据所述平均值和第二预设公式,估计所述多普勒频偏fd,所述第二预设公式为:
    Figure PCTCN2016111170-appb-100002
    其中,所述n为所述平均值,所述C为与功率控制调整频率相关的常数。
  6. 根据权利要求1至5任意一项所述的方法,其中,所述方法还包括:
    获取信道质量指示信息CQI上报周期;
    根据所述多普勒频偏和所述上报周期,确定时延补偿;
    根据传输模式和修正量的对应关系,确定与所述信息中的当前传输模式对应的当前修正量;
    根据所述SNR、所述时延补偿和所述当前修正量,确定所述信道的修正补偿量。
  7. 根据权利要求6所述的方法,其中,所述根据所述多普勒频偏和所述上报周期,确定时延补偿包括:
    所述上报周期大于预设时长时,根据所述上报周期,确定所述时延补偿;
    所述上报周期小于或者等于所述预设时长时,根据所述多普勒频偏和所述上报周期,确定所述时延补偿。
  8. 一种SNR估计的装置,所述装置包括:
    获取模块,配置为获取信道功率控制命令的信息;
    估计模块,配置为根据所述功率控制命令的信息,估计多普勒频偏;
    所述估计模块,还配置为根据所述多普勒频偏,估计SNR。
  9. 根据权利要求8所述的装置,其中,所述估计模块包括:
    确定单元,配置为根据所述多普勒频偏,确定所述多普勒频偏所属的第一区间;还配置为根据区间与滤波器的对应关系,确定所述第一区间对应的第一滤波器;
    估计单元,配置为根据所述第一滤波器和第一预设公式,估计所述SNR。
  10. 根据权利要求9所述的装置,其中,所述信息包括解扰解扩的初始符号,所述估计单元,配置为:
    将所述初始符号通过所述第一滤波器滤波,将滤波后的初始符号作为修正符号;
    获取所述初始符号的总个数;
    根据所述初始符号、所述修正符号、所述总个数和所述第一预设公式,估计所述SNR,所述第一预设公式为:
    Figure PCTCN2016111170-appb-100003
    其中,所述S是所述SNR,所述N为所述总个数,所述xi为所述初始符号,所述yi为所述修正符号。
  11. 根据权利要求8所述的装置,其中,所述信息还包括功率,所述估计模块还包括:
    统计单元,配置为获取并统计所述功率连续增加或减少所经历时间长度;
    所述估计单元,还配置为根据所述功率连续增加或减少所经历时间长度,估计所述多普勒频偏。
  12. 根据权利要求11所述的装置,其中,所述估计单元具体用于:
    根据所述功率连续增加或减少所经历时间长度,获得功率增减直方图;
    根据所述功率增减直方图,得到拟合函数;
    根据所述拟合函数和所述功率增减直方图,确定所述拟合函数的平均值;
    根据所述平均值和第二预设公式,估计所述多普勒频偏fd,所述第二预设公式为:
    Figure PCTCN2016111170-appb-100004
    其中,所述n为所述平均值,所述C为与功率控制调整频率相关的常数。
  13. 根据权利要求8至12任意一项所述的装置,其中,所述获取模块还用于获取信道质量指示信息CQI上报周期;
    所述装置还包括:
    确定模块,配置为根据所述多普勒频偏和所述上报周期,确定时延补偿;
    所述确定模块,还配置为根据传输模式和修正量的对应关系,确定与所述信息中的当前传输模式对应的当前修正量;
    所述确定模块,还配置为根据所述SNR、所述时延补偿和所述当前修正量,确定所述信道的修正补偿量。
  14. 根据权利要求13所述的装置,其中,所述确定模块,配置为:
    所述上报周期大于预设时长时,根据所述上报周期,确定所述时延补偿;
    所述上报周期小于或者等于所述预设时长时,根据所述多普勒频偏和所述上报周期,确定所述时延补偿。
  15. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至7所述方法的至少之一。
PCT/CN2016/111170 2016-03-21 2016-12-20 Snr估计的方法、装置和存储介质 WO2017161933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610163835.8 2016-03-21
CN201610163835.8A CN107222919B (zh) 2016-03-21 2016-03-21 一种snr估计的方法和装置

Publications (1)

Publication Number Publication Date
WO2017161933A1 true WO2017161933A1 (zh) 2017-09-28

Family

ID=59899298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111170 WO2017161933A1 (zh) 2016-03-21 2016-12-20 Snr估计的方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN107222919B (zh)
WO (1) WO2017161933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116418636A (zh) * 2023-06-08 2023-07-11 芯迈微半导体(上海)有限公司 一种无线通信的增强的多普勒扩展估计方法和***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541855A (zh) * 2020-04-15 2021-10-22 ***通信集团山东有限公司 Cqi动态调整方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968236A (zh) * 2005-11-15 2007-05-23 中国科学技术大学 一种多普勒频偏估计方法
CN101841350A (zh) * 2010-04-23 2010-09-22 西安电子科技大学 基于随机共振预处理的多普勒频移估计方法
CN104022976A (zh) * 2014-06-16 2014-09-03 中国科学院计算技术研究所 面向高速铁路lte***的多普勒频移估计方法及***
WO2015036049A1 (en) * 2013-09-16 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for handling agc and tpc scaling
CN104901907A (zh) * 2015-05-18 2015-09-09 重庆邮电大学 一种动态环境下基于数据辅助的稳健信噪比估计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184080B (zh) * 2007-12-26 2011-04-06 北京创毅视讯科技有限公司 一种正交频分复用***的速度敏感型信道估计装置及方法
CN102223326B (zh) * 2011-06-21 2017-04-05 中兴通讯股份有限公司 一种基于多普勒频移的信道估计方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968236A (zh) * 2005-11-15 2007-05-23 中国科学技术大学 一种多普勒频偏估计方法
CN101841350A (zh) * 2010-04-23 2010-09-22 西安电子科技大学 基于随机共振预处理的多普勒频移估计方法
WO2015036049A1 (en) * 2013-09-16 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for handling agc and tpc scaling
CN104022976A (zh) * 2014-06-16 2014-09-03 中国科学院计算技术研究所 面向高速铁路lte***的多普勒频移估计方法及***
CN104901907A (zh) * 2015-05-18 2015-09-09 重庆邮电大学 一种动态环境下基于数据辅助的稳健信噪比估计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116418636A (zh) * 2023-06-08 2023-07-11 芯迈微半导体(上海)有限公司 一种无线通信的增强的多普勒扩展估计方法和***
CN116418636B (zh) * 2023-06-08 2023-08-18 芯迈微半导体(上海)有限公司 一种无线通信的增强的多普勒扩展估计方法和***

Also Published As

Publication number Publication date
CN107222919A (zh) 2017-09-29
CN107222919B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US9816969B2 (en) Adaptive channel state feedback based on channel estimation characteristics and reporting requirements
TWI491227B (zh) 用於協調多點傳輸叢集中之錨定向下選擇之方法與系統
EP2679061B1 (en) Positioning devices and methods in cellular communication systems
KR101129085B1 (ko) 수신 신호 품질 추정 방법 및 장치
CN1330814A (zh) 在ds/cdma蜂窝***中软越区切换期间组合功率控制命令的***和方法
JP6116032B2 (ja) 高電力高性能受信機又は低電力基本受信機を選択するためのデータスケジューリングアクティビティの監視
KR100965300B1 (ko) 상향링크 전력제어 방법
US6965780B1 (en) Reverse link outer loop power control with adaptive compensation
WO2017161933A1 (zh) Snr估计的方法、装置和存储介质
CN1310530A (zh) 调节要达到的信号质量目标的方法及相应的收发信机
US9888446B2 (en) Method and a first network node for controlling load
EP1128574A2 (en) Reverse link outer loop power control
JP2008541551A (ja) 無線通信システムの雑音推定
CN104469959A (zh) 一种信道配置方法及***、接入控制器
WO2015036049A1 (en) Method and network node for handling agc and tpc scaling
KR101401111B1 (ko) 인지 라디오 시스템에서 간섭온도 인지 기반의 적응전송장치 및 방법
Zhang et al. Uplink power control via adaptive hidden-markov-model-based pathloss estimation
KR20080039537A (ko) Rake 수신기의 지연값 선택을 위한 방법 및 장치
CN104469782A (zh) 一种移动授权用户频谱检测与其地理位置估计方法与装置
US9264316B2 (en) Method and network node
KR100546597B1 (ko) 위상 정보를 이용한 도플러 주파수 추정 방법
WO2020108078A1 (zh) 信号质量估计方法、装置、基站和存储介质
KR100589491B1 (ko) Cdma 시스템에서 멀티 스텝 예측을 통한 전력 제어 시스템 및 그 방법
CN108234032A (zh) 一种基于马尔可夫转移特性的恒虚警能量检测方法
KR20140076894A (ko) 이동통신 시스템에서 적응적 채널 품질 계산 방법 및 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895277

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895277

Country of ref document: EP

Kind code of ref document: A1